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Chapter 1

Introduction

1.1 Motivation

General relativity, also known as the general theory of relativity, was issued by
Albert Einstein in 1915. It defines the geometric property of spacetime. As commonly
acknowledged, general relativity is a beautiful scheme and a self-explanatory theory in
relation to the gravitational field. Actually, general relativity has often been described
about the forces between two elementary particles and the geometry of spacetime in the
universe. Moreover, Einstein has proposed an important equation called the “Einstein
field equation”. The equation describes the fundamental interactions of gravitation as a
result of spacetime being curved by matter and energy. The Einstein field equation is a
difficult-to-solve equation due to its mathematical complexity. It is a fully non-linear
partial differential equation which, in general, cannot directly be solved. Therefore,
some assumptions must be made in order to reduce the complexity of the equation. One
of the popular assumptions is that of a perfect fluid sphere [1-5].

Perfect fluid spheres are simply developed as idealized models of stars. Using
the perfect fluid constraints that are composed of features like no-viscosity, no
conduction of heat and isotropy, has led us to the ordinary differential equations. These
differential equations have to be solved to find the exact solutions. Normally, the
solutions can be described in term of physically realistic stars. Therefore, perfect fluid
spheres are well known as an assumption to represent idealized stars. In this thesis, we
consider these solutions in isotropic coordinates [6-9].

Furthermore, we can also derive the solutions in another form. According to
astrophysics, the Tolman-Oppenheimer-Volkov (TOV) equation can be used to describe
the internal structure of general relativistic static perfect fluid spheres [1, 10, 11]. The
significance of the TOV equation constrains is to study the interior structure of perfect
fluid spheres, including the density and pressure profiles.

Despite the complexity of finding the exact solutions to the Einstein field

equations, there is another way to obtain the new exact solutions without directly solving



the Einstein field equations. This method is the so called “solution generating theorems”
[6-9, 11].

For the investigation of the solution generating theorems and the TOV equation
in the isotropic coordinates, the study considers using pure mathematical principles as a
way of finding several new solutions.

In our research, we develop the relative solution generating theorems that map
perfect fluid spheres into perfect fluid spheres in isotropic coordinates [6-8, 12, 13]. In
this framework, we derive a new corollary and a new theorem by combining two linking
theorems that is also a perfect fluid sphere, and investigate those properties. Moreover,
we apply this theorem in the Maple program to generate new perfect fluid spheres. In
addition, we also present the new theorem using a new technique to expand some exact
solutions [14]. Finally, we study and develop new solutions for the TOV equation,
thereby also directly giving information about the pressure and density profiles of

general relativistic static perfect fluid spheres.

1.2 Objectives

The goal of this research is to analyze the properties of perfect fluid spheres and
derive the new theorem for the generation of the exact solution in isotropic coordinates.
In addition, we also modify the Tolman-Oppenheimer-Volkov equations and convert it

into the form of pressure and density profiles.

1.3 Structure of the thesis

This thesis looks for two problems in general relativity.
= We shall present the technical ways in finding the exact solutions in the isotropic
coordinates using pure mathematical principles. These solutions can be
described using physically realistic stars.
= We shall convert the exact solutions into another form. In terms of the TOV
equation, which can be explained using the internal structure of realistic stars

including the pressure and the density profiles.



The thesis is divided as follows

In chapter 2, we explain the basic knowledge behind both special and general
relativity. Moreover, we also introduce the concept of perfect fluid spheres, which are
simply the assumption used in building and developing idealized models of stars.

In chapter 3, we introduce the solution generating theorems in the isotropic
coordinates using pure mathematical principles as a way of finding several new
solutions. We present the new theorem by linking two theorems and analyzing the
property of perfect fluid spheres. Moreover, we also generate a new theorem using a
new technique. Towards the end of chapter 3, for convenience we introduce the Maple
program to apply with some example solutions to help generating perfect fluid spheres.

In chapter 4, we introduce the TOV equation in isotropic coordinates.
Furthermore, we discuss the TOV equation in isotropy with other coordinates in order
to construct a modified TOV equation based on the main principles of the TOV equation.

In chapter 5, conclusions are drawn and a discussion is provided on all aspects

of the thesis. Moreover, interesting issues are further suggested in last section.



Chapter 2

General Introduction

Relativity is an extremely well acknowledged theory, and is perhaps one of the
most famous theories in physics. It was formulated by Albert Einstein in 1905. The
theory of relativity is very useful in predicting everything, including the existence of
black holes. Moreover, we can use this theory to study some phenomena such as the
bending of light due to gravity, the behavior of the moon in its orbit, and various other
occurrences in the universe. Einstein formulated these concepts with respect to special
as well as general situations [1].

In this chapter, we introduce all the fundamental knowledge required in the
comprehension of this thesis. We shall also brief the basic ideas behind both special and
general relativity. In the third section, we introduce an assumption called “perfect fluid
spheres” to provide an ordinary differential equation.

2.1 Special relativity

The primary purpose of this section is to offer an essential idea for the
understanding of the completely unfamiliar special relativity. The preliminary concept
is first provided, which is immediately followed by the inertial frame, Newtonian

physics, and the postulate of special relativity.

2.1.1 Inertial frame

In order to discuss space and time without being ambiguous, it is more helpful
to introduce the notation of a reference body, which we usually call as an “inertial frame
of reference”. This is one in which Newton’s law of motion holds. By considering many
freely moving objects in different space and time, one may deduce that all parts of an
inertial frame move along together. An inertial frame has a constant velocity and a zero

acceleration that is related to other frames [4, 15].



2.1.2 Newtonian physics

Classical physics is concerned with the behavior of physical objects, as
developed by Newton, Galileo, and others. These ideas obey the laws of both space and
time. Consider two inertial frames S and S’ having all their axes aligned. Let S’ move
along the X-directional axes relative to S at speed v as in figure 2.1 [1, 4, 15].

y y v

0 X o X
Figure 2.1: Galilean transformation.
As determined in two inertial frames in standard configuration, according to
Newtonian physics,

t'=t,
X' '=X-—Vt,
’ (2.1)
y =Y,
A=

The above equations represent what is called as the Galilean transformation. It

can also be written in a matrix form as

t’ 1 0 Ot
X' -v 1 0 0}|x
v |o 1 0fy/
Z' 0 0 1}z

Due to we considered in high velocity, the Galilean transformation was

deformed by the Lorentz transformation. It can be represented in this transformation



X' =y(x—vt), (2.2)
y'=Y,
7' =1,
where y = ﬁ >1, and c is the speed of light. Note that the limit of v/c — 0,
1-(v°/c

v remains finite, the Lorentz transformations approach to the Galilean transformation.

This transformation can be obeyed with two postulates as following below.

2.1.3 Two postulates of special relativity

Now, we shall introduce special relativity. We find that the principle of relativity
is still obeyed, but the Galilean transformation is broken. The main postulates of special
relativity are

(1) First postulate (principle of relativity)

The laws of physics must be the same for all inertial reference frame.

(2) Second postulate (speed of light postulate)

The speed of light in vacuum, determined in any inertial reference frame, always
has the same value of ¢ (c is a universal physical constant). The speed of light is
approximately 3x10° m/s, no matter how fast the source of light and the observer are

moving relative to one another [10, 16-18].

We now need to complete the theory of gravitation, particularly looking at

general relativity.

2.2 General relativity

General relativity, also known as the general theory of relativity, was developed
by Albert Einstein in 1915. This theory is best known as an essence in modern
astrophysics. According to general relativity, the observed gravitational attraction
between matters is a direct result of spacetime being curved by matters and energy. This
spacetime curvature is the fundamental idea behind general relativity. Eventually,
Einstein presented an equation that explains the fundamental interaction of gravitation



called the “Einstein field equation” [2, 3, 17]. In the previous section, we presented the
idea of special relativity, but the idea of gravitation has its limits with Newton’s theory
of gravitation. Einstein began by modifying Newton’s theory of gravity to match with
the ideas of special relativity. However, it failed to explain particular circumstances.
Consequently, Einstein came to offer the ideas of general relativity.

General relativity is the main basis of this thesis. In particular, we have divided
the body of the thesis into three sections. First, we describe the physical meaning of the
values used in this thesis. In the second section, we focus on the Einstein field equation.

Finally, we consider the algorithm for calculating the Einstein field equation.

2.2.1 Physical meaning of values
1) Einstein summation

There are essentially three rules to Einstein summation notation, namely:
repeated indices are implicitly summed over, each index can appear at most twice in any
term, and each term must contain identical non-repeated indices. Therefore, Einstein
summation is a notational convention for simplifying expressions. For example, the
indices can range over the set {1,2,3},

3]
y=Y X =cX +C,X2 +¢,X,

i=1
From the above expression, it happens that for a sum involved, we can simplify

by the usage of y=cx'. In this case, we call "i* as a dummy index.
Note that the typical coordinates {xl,xz,xs} would be used instead of the

traditional coordinates {x,y,z}, respectively. In general relativity, we determine the
index in a commonly recognized form, that is [19]
= The Greek alphabets are used for space-time components, where indices often
start from values 0,1,2, or 3 (normally used for letters «,v,...)

= The classical Latin alphabet is used for the spatial component only, where

indices accept values 1,2, or 3 (normally used for letters i, j,...)



2) Tensor

Tensor is an important quantity, which is useful in representing two different
coordinate systems. When objects have to change from one coordinate to another, a set
of components can be changed in a given way [4, 20, 21]. We consider such relation as

the definition of tensor. For each p,q=0,1,2,..., all tensors of rank ( p,q) form a vector
space,

T=Twe" | ©0,®0,®.00, ®d' " ®...0dX", (23)

. . 0
where ® is the tensor product. Notice that 0, means vl
X 1
In the previous relation, tensor is the operation between a set of components and
the basic component. This relationship can be regarded in the transformationof T —>T'

at point a:

T@=T"" (X)®3,®), ®..00, ®d"@d"*®...Qd"

ViVo...V,
12 a

__ T AP2Pp ' ’ ’ ' v vh vy
=T L (X)®0, ®0, ®..00, ®d @i ®...®d

0105...

a

FH -

Figure 2.2: The transformation maps coordinate X = (x*, x*) onto coordinate

X' =(x",x"*) containing a point a.

The transformation to coordinates T’ can be written as

jT(X)

T 1P1P 2:+Pp (x r) — axpi' 5’Xp§ . 8Xp”’ 8XV ! aXV 2 . 6XV“
010 2::04 ox* ox*e axl’p axal' axaz' axaq



From the above expression, there is an exact sequence of transformation, which

is one by one (i.e. p, pairswith z,...,v, pairs with o). It does not jump over indices.

Hence, we will prescribe the tensors as following:

Tensor (0,0): scalar

S(X")=S(X)
= Tensor (1,0): vector
oxX”
VA (X" = V#A(X
(X) ==V (X)
= Tensor (0,1): dual vector, gradient
v, (x)=2 v, (x)
oX™
= Tensor (2,0):
A AP
TPLPZ(X’).__GX aX Tﬂlﬂz(x)
axﬂl axﬂz
" Tensor (0,2):
N OX OX™
TUlo"z(X ): - "1"2(X)
OX™* OX”

J
012 22

Figure 2.3: The Cauchy stress tensor, with tensor of rank (0, 2) for which

the tensor’s component is in a 3-dimensional Cartesian coordinate system [21].
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i 12 13
Figure 2.4: A tensor of rank (0, 3) [20].

Rule for tensor algebra

(1) The sum of two tensors; if T and S are tensors of type (P,q), then T +S
is also a tensor defined as

U ;b = Tczb +S ;b :
(2) The outer product of two tensors can be explained as
T2S° =U® or T;'Sg, =Upy.
(3) Contraction is often used to reduce the rank of the tensor. In general, one

could have combination such as [4]

Uab — Aa/IBlb and Tcab — S;l?b .

3) Metric tensor

In particular, let us introduce the metric tensor, which is significant in the
beginning of the calculation. We have a metric (also known as ds?) which represents
the shortest distance between two points in space. As for the basics of ds®, for

simplicity, we first consider it in a two-dimensional coordinate.

= Cartesian coordinate (X, Y):

y

dy ds

dx
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Using the Pythagorean theorem, we attain ds® = dx” + dy?.

On the other hand, we can also generalize ds* from

ds® = Zzli g;dx'dx!

i=L j=L
= g, dx'dx" + g,,dx'dx* + g,,dx’dx" + g,,dx*dx?,

where x'=x, x*=y and g,, =1, g,,=0, g, =0, g,, =1. Then we can bring g; into
the matrix form, where g; can be defined as

[gd{é ﬂ fori, j=12.

Similarly, in three-dimensional coordinate, we obtain

1 00

[g;]=[0 1 0|, fori j=123.
001

= Polar coordinate (r,6):

dr 7
= ’\ ds
d9\ r

o)

Since dé is spread over an angle of a small value, then the region of the curve is

equal to rdd. We will further look into the line. With the same logic as the Cartesian

coordinate, we derive that ds® is equal to dr? +r2de?. Therefore, g can also be derived

as
1 O o
o 2| fori,j=12.

We can see that g; =0, where i = j. This can definitely be used in creating a

diagonal matrix g; by forming a trace of matrix from the coefficients in each set of

coordinates, such as the coefficient in the r-coordinate being equal to 1, while the 6-
coordinate being equal to r.
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In general relativity, we can neglect these summation signs by using the Einstein

summation convention. Then the metric can be generalized to
2 _ HAvY
ds® =g, dx“dx". (2.4)
Further discussing about spacetime, it is a four-dimensional space with indices

u,v often starting from values 0, 1, 2, and 3, respectively. Consequently, we call [g ]

uv
as “metric tensor”, with a tensor rank of (0, 2). In addition, we can also define the metric
tensor as taking the form

9o Y01 Y02 Y05

g, = 0 9u Yo 913. (2.5)
O 92 92 0O

O3 Us1 Uz UOgs

Furthermore, we can also define the “inverse metric tensor” (representing g*“)
v -1
as[g"]=[9.] -

4) Einstein tensor

In this section, we shall refer to the Einstein tensor. This is an essential quantity
because we have to use it for calculating the left hand side of the Einstein field equation,
while the right hand side will be introduced later in section 2.2. Currently, we shall
discuss the relative values that satisfy the Einstein tensor. Moreover, we also offer an
overview of the Christoffel symbol, Riemann curvature tensor, Ricci tensor, and Ricci

scalar, respectively.
= Christoffel symbol

We present the Christoffel symbol in general relativity, which is a connector
between vector space. That tells us how the basis of vectors changes as we move from
one point to another. In order to understand it in more detail, we must consider the
shifting of vector A and B using the rule for vector addition. On flat space, vectors

perform as figure 2.5;
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A+B
Figure 2.5: Vector addition on flat space.

However, if we conduct an investigation on curved space, vector B may be changed.

~
—

Therefore, B is equivalent to I'B, where I is a connector for linking vector spaces.

The main assumption here is that the metric tensor is faultless. Generally, we can now

obtain the connector as

0 0

1"# :1 HO ago‘v + gpo’ _ gVP , (26)
X2 ox”  ox¥  ox°

where g, is a metric tensor, and g“* is the inverse metric tensor. Then the affine

connection coefficients that are built-up by metric tensor, we call as the Christoffel

U

symbol, which is denoted as {
vp

}. Furthermore, in this basis, the connection

coefficients are symmetric, i.e.,, I';, =" [22, 23].

® Riemann curvature tensor

Now, we consider the parallel transportation of vector v along curve C by

moving along two separate paths as follows (figure 2.6);
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{;(2]
{;(IJ

(xl_.:c2 +5x2) A A
(Jc1 +5x1,xi +0x7)

4 o (Jc1 +5x1,x2)

Figure 2.6: The parallel transportation of vector v on a curved surface.

We will move vector v from point A to B. Let §x* be aslight shift along x*
- axis, and sx* be a slight shift along x? - axis, respectively.

Initially, we look at path 1a since vector v# has a covariant derivative (i.e.
V v =0). Note that V,v* =0v* +T"* V", then we get
V(X" + 0%, X7) = v (X, X5) = T4 (X, X2V (X, XP)ox
Therefore, in path 1b:
VA = 04X X, XP) =T (X + 0%, XA (X + 60X, X)) 8,
where T4, (X' + %', X%) =T, (X', X*) +0,T%, (X}, x*) ox* +O((5x1)2).
Similarly, we can consider a continuation toward path 2, while using the results
from path 1, and interchanging the indices 1 <> 2. Actually, we can also derive it as
Tl =ty =—{0Tt — 0,1ty + T4 0, —T4, T IV SXSX +---,
So, we determine the Riemann curvature tensor as
ho = {0l — 0,0l + T4 T0, T4,
Generally, the Riemann curvature tensor can also be written in the form [22, 24]
RO, =00 -0, +T0 . T/ . (2.7)
Consequently, the Riemann curvature tensor is an essential quantity, which we

shall study in a small area. The Riemann curvature tensor refers to the curvature of

spacetime.
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Moreover, we also determine the Ricci tensor (R, ) and the Ricci scalar, which
are related to the curvature of spacetime. It is easy to find the value of the Ricci tensor

because it occurs from R, =R’ , which is a contraction over two indices. In contrast,

the value of the Ricci scalar is defined as R=9“'R,.

Finally, we derive the Einstein tensor (representing G, ) as following,
G, =R, -—g R (2.8)
uv = v _E gyv ' '

where g, is the metric tensor, RW is the Ricci tensor, and R is the Ricci scalar.

2.2.2 Einstein field equation

The acceleration due to gravity has an effect on the curvature of spacetime. As
the theory proposes, the principles of general relativity relates to the effect of spacetime
being curved by matter, which consequently affects the path of other moving matter
within that curvature of spacetime. Therefore, Albert Einstein published an equation that
explains the fundamental interactions of gravitation as a result of this curvature of
spacetime by matter and energy. The equation is called the “Einstein field equation” or
“Einstein’s equation”, which can be explained by

G, =8rGT,, (2.9
where G, is the “Einstein tensor” describing the geometry of spacetime and

T, is the “stress energy tensor” describing the distribution of matter and

uv

energy.

2.2.3 The procedure in the calculation of the Einstein field equation

Now, we shall consider the algorithm for the calculation of the Einstein field
equation. In this section, we will focus on the left hand side of the Einstein field equation,
that is, we will present the procedure in the calculation of the Einstein tensor. For the
part of stress energy tensor, the calculations are more gradual, details of which will be

provided more in section 2.2.
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Let us introduce the left hand side of the Einstein field equation. We begin with

the metric ds* for spacetime, which has four-dimensional coordinates t,r, o, #. Then
we will consider the metric tensor g, from
ds® =g, dx“dx". (2.10)

In this thesis, we study matters with symmetric property. That is, the off-diagonal

components of the metric tensor that are equal to zero, while the components of the

diagonal metric tensor §,, have determinable values. So, §,, and g” " take to the

forms
0o O 0 0
g, = o gz 0 (2.11)
0 0 g, O
07/ 100 N0 s,
and
i 0 0 0
Joo
0 i 0 0
g,uv - gll , . (212)
0 O — O
02
0 0 0 i
L 933
The Einstein tensor is defined as
G, =R, —% g.R, (2.13)

where Rw is the Ricci tensor and R is the Ricci scalar. The Ricci tensor and Ricci

scalar are

R, =R =8I0 0T+ T, ~TI/I" (2.14)

4 Hpv v V> opu pu’

and

R: g#VRluv' (215)
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Using the above information, we can derive the Christoffel symbol Ffp. Moreover, we

must also derive the other Christoffel symbols. These symbols are used in general
relativity for which there is a connection with each of the coordinates,

1 o9, 99, o9
1"# e Lacd ov po vp . 216
s { x| x| ox } (216)

And then we write the Riemann curvature tensor as

RS, =00 —0,I0 +I% . 0T . (2.17)

o — Oul ve TON o

We start off with replacing the Christoffel symbols and the Riemann curvature
tensors in the equation with the Ricci tensor. Then we find the value of the Ricci scalar.
Finally, we can derive the Einstein tensor from the above process.

As for the stress energy tensor, we shall present the details later in section 2.3,
which is related to our beginning assumption. Theories of relativity are continuously
being developed. The additional knowledge has corresponded with previous theories.
These theories can be associated with Newtonian physics for the explanation of natural
events related to gravitation in the universe, such as studying the expansion of the
universe or calculating the orbit of planet Mercury. For this reason, general relativity is

a necessary inclusion in the theory of gravitation of spacetime.

2.3 Introduction to perfect fluid spheres

We shall now provide an introduction to perfect fluid spheres. Perfect fluid
spheres are simply an assumption developed as idealized models of stars. In this section,
we present perfect fluid spheres in various coordinates. Furthermore, we also introduce
the different properties of perfect fluid spheres. Finally, we will show how perfect fluid
constraint can be used to build several new exact solutions for any relativistic static

perfect fluid spheres.

2.3.1 Introduction

In the elementary step of the approximation of stars, we use perfect fluid spheres
to develop idealized models of stars. We also make use of the properties of perfect fluid
spheres; i.e., non-viscosity, no conduction of heat, and isotropy, which implies that in

orthonormal components, the stress energy tensor takes the form
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p 0 0 0
|0 R 00 (2.18)
“=lo 0 p O

0 0 0 p

where p is the density, and p,, p, are the radial pressure and the transverse pressure,

respectively.

Using the condition of isotropy, we obtain p, = p, which can be implied as
Te =T, :Té&' Equating the appropriate orthonormal component of the Einstein tensor

[25], we obtain

G, =G, =G (2.19)

i
This equation is a “perfect fluid constraint”, which supplies us with the ordinary
differential equation [ODE] for any relativistic static perfect fluid sphere.

2.3.2 Coordinate systems for perfect fluid spheres

First we introduce the coordinate systems for perfect fluid spheres in accordance

with expectations. There are exact solutions of the Einstein field equation, which can be

written in a closed form (ds?). The perfect fluid constraint of the static perfect fluid
spheres is now considered in some coordinate systems. To place the use of the overall
coordinate system, observations made through by Finch and Skea [9] project shows that
about 55% of all work relates to fluid spheres is used in the Schwarzschild curvature
coordinates, about 35% of related research is used in the isotropic coordinates, while and

the remaining 10% is expanded into the specialized coordinate systems [12].

Coordinates Metric

Schwarzschild

ds? = —¢ (Nt +———dr? + r2d0.
curvature B(r)

|SOt|’0p|C dSZ :_412(r)dt2 + {dr2+r2dQ2}.

_
g*(r)B*(r)

Others coordinates

o Gaussianpolar | o ds®=—¢%(r)dt’ +dr’ +R*(r)d’.

¢ S
is%%rr:gfmm o ds’ =—¢(r){dt’ —dr®}+{*(R*(r)dQ’}.
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e Buchdahl o ds’ =—£2(r)dt? + £ (r){dr + R*(r)dQ’ ).

Note that the arbitrary function ¢ (r), B(r), and R(r) are scaling factors, which

have an effect on the curvature of spacetime.

2.3.3 Properties of perfect fluid sphere

As perfect fluid spheres are the natural assumption generated as idealized models
of stars, the properties of perfect fluid spheres can be used to formulate perfect fluid
constraint. This leads to an ordinary differential equation.

We begin with the Einstein field equation,
Gw :87rTW. (2.20)
Turning now to stress energy tensor (on the right hand side), we shall introduce
the term of the stress energy tensor TW. Figure 2.7 summarizes the physical

interpretation of the elements of the stress energy tensor matrix as follow [4];

Energy density Energy flux
Tyl Ty Ty T
L,
T
Momentum density = Sheer stress
| T5| TG4 13,

Momentum flux  Ppressure
Figure 2.7: The matrix form of stress energy tensor.

From figure 2.7, we can attend to the physical interpretation, in detail, of the various
quantities. For the physical meaning of each component, we shall display that as
expressions.

Firstly, we shall start by describing a surface of constant x*. Let us consider a

three dimensional coordinate system xyz as shown below,
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: MHF“ +

Figure 2.8: Three dimensional coordinates xyz [26].

“A surface of constant X means plane yZ at x=c, where C is a constant.
Similarly, a surface of constant y and z are the planes xz and xy at y=k and z =1,
respectively. For a four dimensional coordinate txyz, we use the same logic as in a three

dimensional coordinate.
Next, we write a four-momentum as following;

Since spacetime has four dimensions, we represent spacetime into a matrix form as
[ct x vy z]T .

Dividing spacetime (4-vectors) by t, we obtain a four-velocity as follows;
[c Ve Vv, Y, ]T :

Then we multiply a four-velocity by m to derive a four-momentum as
i mc? E |
mc = S

C C
mv, = p,

X
mvy = py
mv, = p,

z

Let us introduce the physical interpretation of the stress energy tensor (definition 1).
Definition 1. The stress energy tensor T, is the flux of the 4 -th component of four-
momentum across a surface of constant x".

By the definition, we can write out each component of the stress energy tensor.

In particular, we shall display some significant components of perfect fluid spheres as
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mvx_max_i_IO
“tyzooyz AT
_mvy:mayzizp
2" ¢ oxz A
__mvz_maz_i_p
T txyy o oxy A

That explains the physical meaning in each element of the stress energy tensor
as in figure 2.7.

As mentioned earlier, there are three general properties of perfect fluid spheres;
namely, no-viscosity, no conduction of heat, and isotropy. The isotropic property means
that the pressure remains the same regardless of the direction of measure. Using the

properties of perfect fluid spheres, we derive the stress energy tensor as

AR NN
0 0 0

T/ L= ,
1o 0 p O
0 0 0 p

where o is the density, p, and p, are the radial pressure and the transverse pressure,

respectively.

Consequently, we obtain the perfect fluid constraint

Gy =G,; =G, (2.20)

This condition leads us to the ordinary differential equation [ODE] for any

relativistic static perfect fluid sphere.

In this section, we introduce perfect fluid spheres in various coordinates, which
is, as mentioned earlier, the assumption necessary in the development of idealized
models of stars. Then we derive a perfect fluid constraint such that it can also be implied
as ordinary differential equation.

In the next chapter, we consider isotropic coordinates. A perfect fluid constraint
can lead to solution generating theorems. Furthermore, we also present the solution
generating theorems in isotropic coordinates, which is an important tool in mapping a

perfect fluid sphere to a perfect fluid sphere, in the isotropic coordinates.
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Chapter 3

Solution generating theorems

Although the determination of exact solutions can be possible for the Einstein
field equations; however, there is another way to obtain new exact solutions without
having to directly solve the Einstein field equations. This method is the so called
“solution generating theorems”. In the descriptive approximation of stars, we will apply
these solutions to analyze the realistic stars, investigate several well-known spacetime,
and maybe generate a new solution as an unexpected solution. At present, we use the
“solution generating theorems” to solve for new exact solutions, which can comfortably
generate the class of several new perfect fluid spheres. As for the concept behind of this
work, we have studied the solution generating theorems by mapping a perfect fluid
sphere into a perfect fluid sphere. If we have a perfect fluid sphere and we apply the
solution generating theorems with some coordinates of the sphere, we obtain a new
solution. These solution generating theorems have been derived using perfect fluid

constrain. We can see a brief illustration of this concept, as shown below;

Solution generating theorem

Figure 3.1: Using solution generating theorems for the mapping
of a perfect fluid sphere to a perfect fluid sphere.

In this chapter, we regard the solution generating theorems in isotropic
coordinates using pure mathematical principles as a way of finding several new
solutions. In the current chapter, we study the isotropic coordinates. Let us first refer to
the characteristics of isotropic coordinates, which are provided in the section below.
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3.1 Isotropic coordinates

In the previous chapter, we have learnt about the coordinate systems of perfect
fluid spheres. There are now several coordinate systems of perfect fluid spheres in use.
One of the well-known coordinates is the isotropic coordinates. A significant
characteristic of the isotropic coordinates is that the coefficients of radial and angular

coordinates are equal. The metric takes the form

1
ds? = - (r)?dt> + ———{dr? + r3dQ?!, (3.1)
where dQ* =d@” +sin® ddg®. It is simply constructed to define §,,, which is equal to
[—&(r)? 0 0 0 |
1
e 0
£(r)*B(r)’
0 NN
&(r)?B(r)?
2 ain?
0 0 r szln 6’2
i g(r)"B(r)” |
Then we calculate the Einstein tensor as follows
G :—ZB’BC2 ; rJr(B')zg“2 —({')282, (3.2)
G;; =G, =—BBS /r+(B)’¢” —BB'¢” +(¢")°B. (3.3)

Note that rr and ff have the same meaning when the stress energy tensor is a diagonal

matrix. Otherwise, rr is not equivalent to f¥.

3.2 Ordinary differential equation

In the elementary step of the approximation of stars, we use perfect fluid spheres
to develop idealized models of stars. We also make use of the properties of perfect fluid
spheres. So we obtain

G; =G, =G

i (3.4)

which provides us with an ordinary differential equation [ODE]. Then we derive
the ordinary differential equation for isotropic coordinates when we make use of perfect
fluid constraint as [6-8, 11-13]:

(;'j _B'-Br (3.5)
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Let us define g(r)= i((rr)) We can find £(r) as exp(Ig(r)dr) and equation (3.5)
becomes
, B"-B'/r 36
9" =——g— (3.6)

Equation (3.6) can be rewritten in terms of B(r) as:

B”—BT'—zgzszo. (3.7)

We can then employ the ordinary differential equation for isotropic coordinates

as the equation (3.5) to develop several new solution generating theorems. Accordingly,
section 3.3 consists of the analysis and expansions of perfect fluid spheres in isotropic

coordinates.

3.3 Solution generating theorems for isotropic coordinates

As derived in [13], we have developed several “algorithmic” techniques that
permit one to generate large classes of perfect fluid spheres. Let us now develop two

solution generating theorems appropriate for isotropic coordinates [6-8].

Theorem 1. (7" BVW or Buchdahl transformation (T7)) Suppose that {,(r), B(r)}
represents an initial perfect fluid sphere as

2 _ 2442 ; 2 212
ds? = —¢,(r)dt +§O(r)280(r)2 {dr® +r’dQ?}.

Let B,(r) be fixed, then we obtain

dsf =2 a4 S0 a2ty
¢o(r) B, (r)

is also a perfect fluid sphere. That is, the mapping

T, (&, (r).By(N) > {ﬁ Bo<r)}. (3.8)

takes perfect fluid spheres into perfect fluid spheres.

Proof Suppose that {£,(r), B,(r)} solves equation (3.5).

Let B,(r) be fixed, we have changed £, (r) to &, (r). We write £, (r) = gl( )’
r
0
Then
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2
2

1 1, 2 2
4_1, — (§0j — _?0240 — _é/o' — é/_o’ )
¢ 1 1 o o

% %

That {gl(r), Bo(r)} also satisfies equation (3.5).

Therefore {£,(r), By (r)} = {ﬁ Bo(r)} is also a perfect fluid sphere. #
0

In addition, solution generating theorem, as defined in theorem 1, is a “square

root of unity” in the sense that T, T, = I, where | is an identity. That is, when we apply

theorem 1 twice, we obtain the initial perfect fluid spheres as the following [6-8]

T, 0T, :{So(r), By ()} = {% Bo(r)} = {&o(r), By(n)}- 3.9)

After applying theorem 1 n-times, we can represent £ (r) as:

1
g(r)=1%(r)

¢,(r) if nisevennumber.

if n isodd number,

Theorem 2. (8" BVW transformation (Ts)) Let &,(r) be fixed and extend B,(r) to

B,(r)Z,(r). Define
Z,(r) = {mgj—B“(jrr)z }

for arbitrary o and £. Then

2 _ _ 2 42 l 2 2 2
ds? = ¢, (r)?dt? + TG {dr® + r’doy’}
is also a perfect fluid sphere. That is, the mapping of
Ty 1{<o(r), By ()} = {<4 (1), By(n)Zo (By (1))} (3.10)

takes perfect fluid spheres into perfect fluid spheres.

Proof Assume that {¢;(r),B,(r)} satisfies equation (3.7).
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We require that {§O(r), Bo(r)ZO(r)} is also a perfect fluid sphere. Therefore

{5 (r), By(r)Z,(r)} must satisfies equation (3.7), i.e.,
( 0 0) ( . 0) ZgéBOZ(,:O,

where ¢, = é Expanding the above differential equation to
0

(B(')'Z0 +2ByZ, + BOZ(')')—(B(;ZO)/ r —(BOZ(S)/ r —Zgé(BOZO) =0,
we can then rearrange terms to get

[Bg— Bro — 2g§BOJz0 +2B{Z; + ByZy —(B,Zy)/ r=0. (3.11)

By the above assumption, the first term in equation (3.11) vanishes and we have a linear
homogeneous 2" order ODE in terms of Zo \

B
BOZ(’)’+(ZB(; _TOJ Z! =0, (3.12)

Equation (3.12) can be solved in two steps. First, we use method of separation of

variables to get
Z! B, 1
—r=2—+=, (3.13)
4 B, r

followed by integration both sides of the equation (3.13) to obtain

7Y B/ 1
j%dr :I[—2E2+Fjdr

1 ., 1 1
jz—éolz0 :—ZJEOdBO +der

In|Z, | ==2In|By|+In|r|+In|¢]
er
Zé:B_OZ

Finally, integrating the above equation leads to

Z,(r) = a+gj r, (3.14)

o()



27

where o and ¢ are the arbitrary integration constants. #

Definition 2. A transformation T is called “idempotent” if T oT =T , where the
symbol = represents equality up to the relabeling of the parameters. In this sense, any
theorem is idempotent if we apply the transformation more than once, with no further

solutions being obtained.

To see this, consider the mapping of theorem 2

Ty 0T {80, By} 2 {40, BoZo(Byi 1)} - {¢4. By Z, (BN Z,(ByZy (Byi 1))}, (3.15)

r
where Zl = G+Ejmdr.

When we apply the transformation of theorem 2 the second time, it does not lead

to a new yield (no additional information). Therefore, theorem 2 is idempotent [6-8].

Having now found two solution generating theorems and the ordinary
differential equation, this leads to a new corollary.

Corollary 1. Let{<,(r),B,(r)} and {,(r),B,(r)} be perfect fluid spheres and let

{0(r) be fixed. Then for real arbitrary constant «, g,

{¢aB, + fB,} (3.16)

is also a perfect fluid sphere.

Proof Suppose that {<,(r), B,(r)} and {<,(r), B,(r)} are perfect fluid spheres.

Recall a linear homogeneous 2" order ODE in terms of B(r),

written as
" B’ 2
B"—-——-2g°B=0. (3.17)
r
Then we obtain
B — B2 o428 -0, (3.18)
r
B!

and Bk;'—Tb—Zngb —0. (3.19)



28

We want to show that {go(r), Bl(r)}, where B,(r) =aB, + B, solves equation

(3.5). Since
B, =aB, + 5B,
B, = aB, + B,
B/=aB!+ B/,
we have

Blﬂ_%_zngl =aB;’+ﬂBl;’—aTBa—@—292aBa —ZgzﬂBb,
:a(Bg—ﬂ—Znga)+ﬂ(Bé’—&—2ngb)’
r r

=0. (by assumption)

Hence, {Jo,ocBa +,BBb} is also a perfect fluid sphere. #

3.4 New theorems

We shall now present new theorems which can conveniently generate a large

class of perfect fluid spheres. The new theorems have the same technique as [6-8, 12,

13]. In section 3.4.1, we offer the new theorems by composing T, and Tg, then we

analyze the property of these perfect fluid spheres. In section 3.4.2, we introduce a new
technique of finding a new solution that is also in the form of a perfect fluid sphere.
3.4.1 The new theorem of two linking theorems

The solution generating theorem we shall present is slightly different from those

developed so far. We can also simultaneously apply T, and Tg. So, the transformation

can be represented as:

Theorem 3. Suppose that {é’o(r), Bo(r)} is an initial perfect fluid sphere. Let £, (r) and

B,(r) be changed togl( ) and B, (r)Z,(r), respectively. Define
r

0

Z,(r) ={a+gjﬁdr}, (3.20)

for arbitrary o and ¢. The transformation
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Ty :{&o(r), By (r)} |—>{ ,Bo(r)ZO(BO(r);r)} (3.21)

1
€o(r)

maps perfect fluid spheres into perfect fluid spheres.

Proof. We shall transform {£;(r), B,(r)} to {¢(r), B,(r)}.

Let &,(r)= = and B,(r)=B,(r)Z,(r)
S T TR
N N R S g
Then ¢, =——-¢,, which implies that =+ = —=%-¢, = —=2.
o & 220 g
Also we have

B/ =B,Z, +Z,B,, and B/=B,Z/+2BZ. +B!Z,.
If {£,(r),B,(r)} would be a perfect fluid sphere, it has to satisfy perfect fluid
constraint in equation (3.5), i.e.,

&Y _B-BIr
A 2B, |

1

So we have

3z © BZ/+2BiZ;+BZ, BZ;+Z,8
‘) 2B,Z, 2rB,Z,

then
B-B/r_2Z; BZ B Z; B
2B, 2Z, B,Z, 2B, 2rz, 2rB,’

and therefore
Zy BZi 27 _
2Z, BZ, 2rz,

Multiplying the above equation by 2Z,, we get

zg:z—é— 2B;Z; |
r B,

Z; 1 2B
and = =
Z, r B,
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Integrating twice on both sides of the above equation, we eventually have

zo(r)={a+gjﬁdr}. #

We can see that the term Z,(r) has the same as theorem 2. Now, we verify

TyoT, :{gov Bo} = {é,i' ByZ, (By; I’)} = {4’01 BoZo(By: 1)Z,(ByZ, (B,y; I’))}, (3.22)

0

r
where Zl = U+8Imdr.
0 0

When we apply T, once, ¢£(r) perpetually changes. Therefore, after applying T,

n-times, the function £'(r) has the same result as T, . Therefore, T, is not idempotent.

3.4.2 A new technique for generating perfect fluid spheres

There are several techniques to solve for the solutions, which can be applied in
the classification of a large class of perfect fluid spheres. In this framework, we focus
on the isotropic coordinates. We present a technique to expand a new solution generating
theorem based on using the assumption of perfect fluid spheres, which implies an

ordinary differential equation as following [6-8, 14]:

B -B'Ir
[%j :T- (3.23)

Let g(r) =%, we can find that

¢(ry=exp([g(rdr),

equation (3.23) becomes

B"-B'/r

9°(r) = T (3.24)

B"-B'/r

r=+
or g(r) T

(3.25)
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Therefore,
B"-B'/r
ry=exp| £|,/———dr |.
$(r) p[ W5 ] (3.26)
From equation (3.25), we obtain
B"—B'/r—2g*(r)B =0. (3.27)
Now, let h(r) :w. We can find that
2B(r)
B(r) = exp(_[Zh(r)dr). (3.28)

Differentiate h(r) we get

h!(r) — 1 B(r)B”(r) - B'(r) B'(r)
2 B(r)®

BN 1(BMY
~2B(r) 2\ B(r)

_B'(r) .2
> Fa 2h2(r).

Therefore, we get

BN _,, 2 3.29
e h'(r) + 2h?(r). (3.29)

From equation (3.24) the above steps have led to a new equation

g?(r) =2h*(r)+h'(r)=h(r)/r. (3.30)

Definition 3. The general Riccati equation can be written in the form
y'(X) = 0o (¥) + 0, () y(X) + 0, (X) y* (X),
for arbitrary function q,(x), g,(x), and g,(x). Without knowing a solution, we shall

need a particular solution to solve the Riccati equation. If we are given a particular

solution y,(x), then the general solution is obtained as
kexp{ [ [20, (Y, () +,(0]dr
1k 0, (x) exp{ [ [20, ()Y () + 0, (9]l for

for a real arbitrary constant [6, 11, 27, 28].

y(x) =¥, () +
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Using equation (3.30), we can rearrange it into the form of the Riccati equation

h'(r) = gz(r)+%h(r)—2h2(r), (3.31)

1
where q,(r) = gZ(r), ql(r):F, and q,(r)=-2.

Through the algorithmic solving of the Riccati equation, if we know an initial
solution (i.e. one particular solution) then we can derive its general solution [27].

Let {g,(r).hy(r)} be a known solution of equation (3.31).

Then
1
hy(r) = gé(r)+Fho(r) —2hg (r), (3.32)
e Assume the general solution
h(r r +_ (3.33)
(r) =hy(r) (0
where h,(r) is a particular solution of the Riccati differential equation, which

satisfies the equation
N'(r) = G (r) + G, (Nh(r) + 6, (Nh*(r). (3.34)
Substituting h(r) = () +% in equation (3.34)

!

(ho(r)"‘%] qo(r)"'%(r){h (r)+ ()} Z{ho(r) (—}

, 3 1 q(r ) hy(r) 1
ho(r)"‘( 2 r)jz(r) Qo () + 0 (N () +—= 20 {h (N+2—"—= ) 7 (r)}
_ ql(r) ho(r) 2 — —2h?2 —h 3.35

=0 2'(r) — 5 20 T ED 0y (r) + 0, (r)hy (r) —2hZ (r) —h (r) (3.35)

From the first assumption, we get the right hand side of the equation equals to

zero and equation (3.35) becomes

L Z,(r)_[ql(r)—4ho(r)]:_ 2
22(r) z(r) z°(r)

Multiplying equation (3.36) by —ZZ(I’), we obtain it to be

(3.36)
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Z'(r)+[q,(r)—4hy(n)]z(r) =2, (3.37)
where z(r) is the general solution of the first order linear differential equation.

e On the other hand, we regroup the equation in terms of g,(r), where
g2(r) = h'(r) —%h(r) 1 2h%(r). (3.39)
Assuming that g(r) is a solution of the above equation,
g%(r) = h’(r)—%h(r)+2h2(r). (3.40)
Let us extend g(r) to G,(r)+9°(r) such that g,(r)+g"(r) is a solution of

equation (3.40). Then we substitute g,(r)+9"(r) into equation (3.40), taking us to
* 2 ’ 1 2
(90(N+97(")" =h'(r) = =h(r)+2n*(r)

95 (1) +29g,(r)g’(r) + g™ (r) =h'(r) —%h(r) +2h*(r)

Based on the first assumption of equation (3.39), we can derive it as
20,(r)g" () +9"(r)=0.

For g (r) # 0, we obtain
g7(r) =-29,(r)
go(r) + g*(r) T _go(r) (3.41)
Therefore, the above expression suggests that, if we have {g,(r),hy(r)} as a
perfect fluid sphere, then {—go(r),ho(r)+%} is also a perfect fluid sphere, where
z(r

_1 can be solved from equation (3.37).

z(r)
Next, let us start with the initial solution {d,(r), hy(r)} ={ 2—?1}-

Substituting g, (r) = = and hy(r) =1 into equation (3.37) as
r

2(r) +H —4} 2(r) =2, (3.42)
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which is a first order linear inhomogeneous ODE. Then we can solve it using the

integrating factor method,
Z(r) _ e—(lnr—4r)J'2e(lnr—4r)dr.

Therefore, we get

1 1
z(N=—=——+c.
() 2 8r

We choose ¢ =0 as an example.

Consequently, the function h(r) is equal to

1, 1
zry 1.1

2 8r

hy (1) +

Hence,

1-4r
1+4r’

h(r) =

Consider equation (3.41),
g°(r) =-29,(r).

That is the function g(r) is equal to

(1) +9'() =g (1) =2~

From £ (r) = exp(_[ g(r)dr), we obtain

¢(r) :exp(—j,/Z—ldr].
r

o f 1 .
Next, we consider in term I Z—Fdr. Integrating by part,

1
let U="2—1, then dU=—1,
' 2r? /2—
r

and dv =dr, then v=r. Therefore,

(3.43)

(3.44)

(3.45)

(3.46)
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+C,

:r,/Z—E—iln (4r-1)+2r 4—E
r 22 Ty
In(4+2‘/4—2]r—1
2 L '
=r _——
\} r Z\E

Finally, we have

In[(—4—2 4%jr+1]
S(r)=expsy—|r /2—%— +71 ¢ (3.47)

22

and

1-4r
B(r) :exp(jzmdr)
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= eprZ(lf‘” —ljdr)

=exp(In(4r+1)-2r+y,). (3.48)

as required, where 7;, and Y, are arbitrary constants.

3.5 Maple program: GRTensor program

In this section, we introduce some Maple programs to explain the basics of
general relativity. The feature of GRTensor is a package specially built to deal with GR.
In addition, we also use package of GRTensor with an example and verify a perfect fluid.
Particularly, we built the solution of the Einstein field equation in isotropic coordinates.
Furthermore, we also describe how one can use Maple and GRTensor for general
relativity [6-8, 29].

3.5.1 Using maple and GRTensor

GRTensor is built as a package in the Maple platform as a special set of libraries.
It deal with tensors and other geometric objects in general relativity. In this section, we

present some of the main features offered by GRTensor.

3.5.2 Examples and the application of theorem 3

For the application with general relativity, we have based it on the Einstein field
equation. Currently, there is an exact solution to the equation. We shall show the

examples when we apply theorem 3 to some perfect fluid spheres, based on isotropic
coordinates. We have derived theorem 3 by linking the two related theorems, T and T.

Furthermore, we have investigated these perfect fluid spheres, which can transform into
a new solution or the initial solution. For example, we bring the solution of Minkowski
and apply it with theorem 3 using the program Maple. In addition, for the other metric
of S1 and K-O I, we can see the codes of the program in appendix A. Parts of the

program code can be represented as follows;
® Minkowski Metric

It takes the form
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ds® =—dt® +dr® +r?d@* +r’sin® 6d¢*. (3.49)

There is a maple code for applying the Minkowski metric based on the following

# The new theorem of two linking theorems
(applied to Minkowski metric)

e
restart;

with (tensor) ; [Christoffell, Christoffel2, Einstein,
Jacobian, Killing eqns, Levi_Civita, Lie_diff, Ricci,

Ricciscalar, Riemann, RiemannF, Weyl, act,
antisymmetrize, change basis, commutator, compare, conj,
connexF, contract, convertNP, cov_diff, create, dlmetric,
d2metric, directional diff, displayGR, display allGR,
dual, entermetric, exterior diff, exterior prod, frame,
geodesic_eqns, get_char, get compts, get_rank, init,
invars, invert, lin com, lower, npcurve, npspin,
partial diff, permute_indices, petrov, prod, raise,
symmetrize, tensorsGR, transform];
coords:=[t,r,theta,phi];

[ Christoffell, Christoffel2, Einstein, Jacobian, Killing _eqns, Levi_Civita, Lie_diff, Ricci,
Ricciscalar, Riemann, RiemannF, Weyl, act, antisymmetrize, change_basis, commutator,
compare, conj, connexF, contract, convertNP, cov_diff, create, d1metric, d2metric,
directional diff, displayGR, display _allGR, dual, entermetric, exterior_diff, exterior _prod,
frame, geodesic_eqns, get_char, get_compts, get_rank, init, invars, invert, lin_com, lower,

npcurve, npspin, partial_diff, permute_indices, petrov, prod, raise, symmetrize, tensorsGR,

transform|
coords := [t, 7, 0, ¢]
> e
# Seed metric (initial solution)
Sy
zetalO(r) :=1;

&o(r) =1
> BO(xr) :=1;

BO(r) =1

> # Minkowski metric
# Theorem 0: checking the metric is a perfect fluid

g:=array (symmetric, sparse, 1..4, 1..4):
g[l,1]:=-zetal(xr)*2:

gl[2,2]:=1/BO(x):

gl[3,3]:=r*2:
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gl[4,4] :=(r*2) *sin(theta) *2:
metric:=create([-1,-1], eval(qg));

-100 0
010 0
metric = table| | compts = 0 072 0 ,index_char=1_-1, -1]

0 00 Asin(0)’
> tensorsGR (coords,metric,contra metric,’det met’, C1,
C2, Rm, Rc, Rs, G, C);
Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):
Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):
simplify (Gthth-Gphph) ;
# consistency check --- To verify a perfect fluid sphere,
this should be zero!
0

> dpO:=numer (simplify (Grr-Gthth)) ;
# checking a perfect fluid

dp0:=0
> fp--—————————-———-— .. -
# Theorem 3: BO->B1=B0*Z0;
" NN/ A § 3252~ > o/ Ry ——

Z0 (r) :=sigma + epsilon*int(r/(BO(r)”*2),r);
ﬂm0:c+~%e#

> Bl (r) :=BO(r)*z0(r) ;

> zetal (r) :=1/zetal (r) ;

Cl=r— !

co(r)

> g:=array (symmetric, sparse, 1..4, 1..4):
g[l,1]:=-1/(zetal(xr)*2):

gl[2,2] :=zetal(r)*2/(BO(xr)*2):

g[3,3] :=x*2*zetal(r)~2/(BO(r)"*2):

gl[4,4] :=x*2* (sin(theta) ) *2*zetal(r)*2/(BO(xr)*2):
metric:=create([-1,-1], eval(qg));

-100 0
010 0
metric = table| | compts = 0 02 0 ,index_char=1_-1, -1]

0 00 Asin(0)’
> tensorsGR (coords,metric,contra metric,’det met’, C1,
C2, Rm, Rc, Rs, G, C);
Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):
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Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):
simplify (Gthth-Gphph) ;

# consistency check --- For statisfying the perfect fluid
constraint, this must be equal to zero!
0

> dpl:=numer (simplify (Grr-Gthth)) ;
dpl =0

#CONCLUSION: Theorem 3 with a Minkowski seed gives
the Minkowski.

When we apply theorem 3 with the Minkowski metric, the output solution is the
same as the initial solution. In addition, when we apply this theorem with the S1 and K-
O 11l metrics, we derive a new solution, which is a perfect fluid sphere (See appendix
A).

This section describes a way in which some simple computer programs in Maple
and GRTensor can be used in general relativity. It shows that the speed of learning the
main concepts in general relativity can be increased by avoiding large hand computation

steps and a lot of errors or typos.

3.6 Conclusion

In this chapter, we focused on isotropic coordinates for extending a class of
several new solutions. We analyzed the relationship between the solution generating
theorems that map perfect fluid spheres into perfect fluid spheres. These theorems have
led us to a new corollary and some additional properties. In addition, we have also
presented two new solution generating theorems. The first theorem, we have derived by
applying T, and T;. Furthermore, we also investigated the idempotent property of this
theorem. In addition, we obtained the new theorem using a new technique. In the last
section, we applied theorem 3 with some example solutions such as Minkowski, S1, and

K-O Il in the GRTensor package of Maple. Consequently, when we apply this theorem
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on a known perfect fluid sphere, the solutions are often given as the same initial solution

or an obtained new solution.
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Chapter 4

The TOV equation in isotropic coordinates

Following the previous chapter, we recommend an applied technique, which is
a simple method in finding solutions, thus called “the solution generating theorems”.
We have also presented new theorems for the generation of perfect fluid spheres in
isotropic coordinates. These theorems are even more helpful in classifying a large class
of perfect fluid spheres.

In the present chapter, we shall explain the use of the TOV equation in isotropic
coordinates. We shall first describe in general the TOV equation.

Earlier, the Einstein field equation was denoted by the terms stress energy tensor,
such that the equation was a variable of the functions of pressure and density. Karl
Schwarzschild was the physicist who found and published the first exact solution to the
Einstein field equation in 1916. This solution is called as the “Schwarzschild solution”,
which describes the gravitational field outside a static spherically symmetric object.
Therefore, the Schwarzschild solution is a useful approximation for describing slowly
rotating astronomical objects such as many stars and planets. The Tolman-
Oppenheimer-Volkov equation attempts to find the solution inside a static spherically
symmetric object. In order for the solution to have continuity within the surface, the

TOV equation explains the interior structure of the static perfect fluid spheres.

Figure 4.1: The TOV equation describes the deflected spectacle of a neutron star,

including the density and pressure profile [30].
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Chapter 4 is composed of the TOV equation in isotropic coordinates, the main

theorems of the TOV equation, and the modified TOV equation. We will express each

topic in more detail.

4.1 The characteristic of the TOV equation in isotropic coordinates

In chapter 3, the solution can be written in the form of spacetime (ds? ). However,

in this current study, our main focus is the isotropic coordinates. The solution can

thereby also be expressed using the TOV equation. The TOV equation for isotropic

coordinates can be represented by [6, 11]:

{dr2 + erQZ}.

0
0

0 H

r’sin®é

¢(r)*B(r)* |

¢(r)*B(r)*

1
ds? == (r)’dt’ + ————
SO By
The metric tensor and inverse metric tensor can be written as
<0 0
V==
£(r)’B(r)°
9 =| r?
£(r)*B(r)?
0 0 0
__ &
£(r)?
£(r)?B(r)°
g = £(r)’B(r)’
r2

Considering the stress energy tensor,

r’sin’o |

(4.1)
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s(r)p 0 0 0
S 0 0
g(r)"B(r)

T, = 0 0 pr?
¢ (r)*B(r)*
0 0 présin® @
L £(r)*B(r)*

Then we get
T =g"g"T, = (¢ (N ) (=< *)S () p=4(r)*p,
T =g"g"T, =&(r)*B(r)*p,
o _gwger SO’ ZB(r)z 0

ZB(r)Z
1 gger, _SOPBOY
970" r?sin? o P

Definition 4. (Conservation of energy and momentum). A rule in physics, the total
energy momentum 4-vector of a system of particles not acted upon by external

forces is constant in measure and direction irrespective of any reactions among
the parts of the system. That is [4],
Mo _
v 174 =0

Consider the conservation of momentum [1, 5, 10]; V, T*" =0.

Since the metric is nontrivial, v=r.
Then

uv o ur " vr r Hv
V1% =0T"+1" T"+T, T,
_ rr r rott rerr r 760 r T ¢
0=0,T" + T4 T" +[ [T 4T, T™+ 1, T + T T# |,
=0,T" +(1"Ir +Ip +T +T% )T” +[F{tT“ +0T" 4+, T +F;¢T¢¢].
The Christoffel symbols can be defined by

T zlgup agpa+agpﬂ_agaﬁ ]
ox¥  ox*  ox°

af 2

We derive the Christoffel symbols as shown below;



So that

RS

10)
B M
B(N <N

“r B(r) <(n)

r B0 <0
[ =¢°(NB*(N¢'(r)

L PBO) rEm

FHH -
B() <M

2" i 2 ' 2 ainn? i
rr :—rsin20+r sin“ ¢B (r)+r sin“ag"(r)

” B(r) £(r)

0 _ -
F(M, =-sSIngcoséd

Iy, =sindcosd

0= ar (é/(r)Z B(r)2 p)+(§’(r) _ B'(I’) — é/’(r) +g— ZB’(r) _ Zgr(r)](g(r)Z B(r)Z p)

¢r)y B(r) ¢ r BN ()

+(§(r)ZB(r)Zc'(r))[ P j+(—m—4'(r)j(:(r)28(r)2p)

£r?) L B <(n)
{_H rB'(r) rzc'(r)lc(r)z B(r)’ pJ
B() — <(n) r

+(_r N r2B'(r) N rZC:r(r)Jsinz 6{4’(2)2-82(;-)2 pj_
B(r) s(r) r<sin“ @

0= {;(r)z B(r)? % p(¢(r)*2B(r)B'(r) + B(r)zzc(r)c(r))}

+[2¢(r)28(r)2
r

p—3¢(r)*B'(r)B(r) p-2B(r)*¢"(r)¢ (r) P}

+£(NS'(NB(r)* p+(~< (r)*B'(r)B(r) p—B(r)*£(r&'(r) p)

44
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v2 -2 BB (1) p+ ¢ (NS MBI p}.

Therefore,
é’z(r)Bz(r)%+§(r)§’(r)82(r)p+é“(r)é"(r)Bz(r) p=0.

Finally, we obtain

dp __¢'(n) 4.2
ar - 20 (p+0p). (4.2)

Let usset £(r) = exp(.[ g(r)dr).

Define an auxiliary function g(r) is defined to be [11]

_ m(r)+4zp(r)r’
9(n) = r’[1-2m(r)/r]
Hence, directly
do(r) [P0+ pM)][m(r) +4zp(r)r’ | 43)
dr r’[1-2m(r)/r] ’ '
—dm(r) = 472'p(r)r2. (4.4)
dr

The equations (4.3) and (4.4), called the “TOV equation” in isotropic
coordinates, describes the internal structure of general relativistic static perfect fluid
spheres. The significance of the TOV equation is associated with the constraints in
studying the interior structures.

We can see that it gives the same results as the TOV equations using the
Schwarzschild metric as in [31]. Because the TOV equation describes the interior of
stars in terms of pressure and density, they are considered as the real measures.
Regardless of the changing coordinates, the form of the TOV equation is not different.
Therefore, we can apply the theorems of the TOV equation with the Schwarzschild
coordinates and the isotropic coordinates together.

4.2 The main theorems of the TOV equation

We now study the main theorems of the TOV equation. Having already found

the solution generating theorems in isotropic coordinates, we can then derive these
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theorems directly in terms of the pressure and density profiles, p(r) and p(r), which are

useful in generating the interior solutions for perfect fluid spheres [6, 11].

Theorem 4. (P1) Defines an auxiliary function g,(r) by

m, (r) + 4z p, (r)r
r’[1-2my(r)/r]

go(r) = (4.5)

Then the general solution to the TOV equation is given by p(r) = p,(r)+op(r), where
Sp.J1-2m /'t exp{—ZJ'or godr}
r r r
1+476p,| ————¢8X {—2 dr}dr
p '[0 m p JO gO

and o p, is the shift in the central pressure.

sp(r) = : (4.6)

Proof. From the TOV equation (4.3), we can see that

dp(r)  [p(+ p(r)][ m(r) +4zp(r)r*]
dr r’[1-2m(r)/r]

_ pm(r) + p(r)[ 4z p(N)r® |+ p(r)m(r) +4zr°p?(r)
- r2[1—2m(r)/r] '

We can see that the above equation to be the Riccati equation.

The general solution p(r) of the TOV equation is p(r) = p,(r)+op(r), where
P, (r) is a particular solution.

Therefore, the function sp(r) is equal to
K exp{j{Z(— r? [1i7;::10 / r]J Po~ rgffigorr; r/n(;]]dr}
- kjrz[liz:n:/r]e)(p{j{z( r? [1‘—17;:10 / r]] P~ r‘:ﬁi/;or:]; Ti]}dr}dr
kexp{—J‘ m, +4xr’p, +871°p, dr}

r’[1-2m,/r]

1+47zkj¥exp —J' my +471°p, +871°p, dr odr
1-2m, /r r*[1-2m,/r]

Next, we will simplify the term of
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exp _'[ m, +4zr’p, +871°p, dr
r’[1-2m,/r] '

C0n3|derj 4zt p, drzj ATTDy gy
1-2m, /r] 1-2m,/r

—-2rm, +2m
Solving the above equation by substitution; U=1-2m,/r, du :(#jdr.

r2

dm, _ 4rxr?p,, then we obtain
"

du=(—8ﬁr Py , 2My jdr'

r r?

This leads us to the following equation

Amp,rdr =m—2°dr—%du. (4.8)
r

Therefore,

J- 472'[',00 _l d_U

1-2m, /r r:jrz(l—Zmolr) 2° U
= —dr—ln[l 2m /r]
r’(1-2my/r)

So that

exp _J- m, + 4frr3,00 +87r1° P, m
r?[1-2m, /r]

8rrp, m, +m, 12
= - In|1-2m,/
exp{ J(1—2m0/r+r2[1—2m0/r]}jr+ n[t-2m, /1] }
=J1-2m,/r exp[—zj godr]. (4.9)

Hence, from equation (4.7)

kKyl—2m,/r exp[—zj godr}

1—2rm T exp[—zj‘ godr]dr.
\f 0

To find the constant k , we must apply the boundary condition p(0) = p, at r =0.

(4.10)

We can consider the limits of integration from 0 to r as
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ky1—-2my(r)/rexp {—ZJ' godr}
0

5p, =lim (4.11)

r—0

1+ 47[le

> JL-2m (r)/r {—Zlgodr}dr

where Iimm approach to zero.
r—0 r

Using the fundamentals theorem of calculus, the integrals go to zero.

We can directly use mathematical methods to solve the equation (4.11), to obtain
k=0p,.

Consequently,

op, ,/1—2m Ir exp{—Zjr godr}

op(r)= (4.12)
1+475p, e { -2 }
as required.
Theorem 5. (P2) Defines an auxiliary function g,(r) by
- my(N+4zp,(Nr’  m(r)+4zp(r)r’ (4.13)

%(r) = r’[1-2my(r)/r] ~ r*[1-2m(r)/r]’

Then the general solution to the TOV equation is given by p(r) = p,(r)+op(r) and
m(r) =m,(r)+om(r), where
ﬂ- 5pc I‘-go

0 =—C d
m(r) 3 rg {jgol 1, f} (4.14)

and
2
om 1+8zp,r (4.15)

4rr® 1-2my /1

5p(r) =~

Here, op, is the shift in the central density. Explicitly combining these formulae,

we have

op, 1+8zp,r’ r o 1-Tg, .
op(r)= g exp-< 2 dr;, _
p( ) []__|_ rgo]2 1—2m0 /r P J.0 % 1+ Fgo (4 16)

where sp, =—%.



49

Proof. From equation (4.13), we can see that
m(r) = go(r)r*[1-2m(r)/ r]-4zp(r)r’.

Solving for m(r) we get

m(r) = Jo(0r" —47p(n)r”
1+2rg,(r)

Considering

9o (N)r* —4z[p(r)+5p(r)]r’
1+2rg,(r)

m(r)+om(r) =

_go(Nr*=4zp(r)r’ —4zsp(r)r’
a 1+2rg,(r)

_ Go(Dr?—4zp(n)r®  4zsp(r)r’
~ 1+2rg,(r) 1+2rg,(r)

Thus,

_Arsp(nr

oMiBi= 1+2rg,(r)

(4.17)

m, (r) + 47z p, (r)r’
r?[1-2my(r)/r]

We substitute g, (r) = into equation (4.17), then

om(r) = —4z5p(nr? Lmolrz .
1+87p,r

Given m=m,+Jm and p = p, + dp. From equation (4.4) becomes

%(ém(r)). (4.18)

op(r) = Azr? d

Substituting sm(r) from equation (4.17) into equation (4.18),

__1d| spny’
PO =" L+2rgo(r)} (4.19)

Then we consider the TOV equation (4.3) by adjusting the terms of pressure and

density, so it can be written as

dop(r) __

ar [80(r) +&p(1)] 9o (1)- (4.20)

Replacing §p(r) from equation (4.19) into equation (4.20), we have
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dop(r) |1 d| op(nr
ar L dr{m} 5p(r)}go(r)’ 4.21)

which leads to

(4.22)

1 dsp(r) = Zgo(r)[l r go(r) 2r? 99 (r)] dr.
sp(r) (1+2rgy(r))(1+rg,(r))
Given the boundary condition as 0P(0) =Jp, and taking integration on both

sides from F=0to I'=r, we get

I() 1 [ 20,(P)[1-2gq(F) —2r2 g3 (F) | o
5, OP(F) (1+27g, (7)) (1+Fg,(F)) '

i 8P(D) I290(r>[1 F2gq (F)—2F°g3 (F) | i
Sp. % (1+2Fg, (7)) (1+Fg,(F))

j.ZgO(r)[l 2795 ()] r_j[ 295([ F*95(") J i

2 (1+2Fg, (7)) (1+Fgo (F)) (1+2Fg,(F))(1+Fg,(F))
From the above equation, let u =1+ fg,(F). Then du =(Fg; + g, )dF,
Fg,df = du —g,df.

Therefore,

i SP(r) I 29,(F)[1-27%g5(F) |
Sp, (1+2rg,(F) (1+rgo(r) > ( 2u 1

'—.C

( 2rg, (F)* "
+£((1+ 27g, (F))(1+ fgo(F))jdr'

. Zj[go(r)[mgo(f)z = 27°g,(F)’ |

2u-1
i (1+2¢g, (7)) (1+ g, (F))

u

=In

dr +c¢

2u-1
u2

=In

(1+27g, (F)) (1+Fgy(F)) e

For simplicity, we choose ¢, =0, gives

tf 9o(F(1-Fgo(M)) ..
+2£( (1+FgO(F)) jdr.

+2j[go(f) (L+279, (7)) (17, ()

In op(r) I 2u-—1

op,
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Then

_ M 1- go(r) P 4.23
sp(r)=5p, et {Jgon o (D } (4.23)

Finally, we get

op,  1+8zpyr’ - g,
op(r)= : dr
plr)= [L+1g,]* 1-2my /1 p{ j go1+rg0 i

4.3 The modified TOV equation

In this section, we shall introduce a new modified theorem for the TOV equation.
We study the extension of the values of pressure, density, and mass of objects in order

to analyze the arbitrary functions in terms of I, and how the form should be represented.

Theorem 6. Let p,(r) and p,(r) solve the TOV equation, and hold g,(r) fixed, in the
sense that

My (r) +4zp,(N)r® _ m(r)+4zp(r)r’

r’[1-2my(r)/r] ~ r*[1-2m(r)/r]’ (4.24)

go(r) =

Then the general solution to the TOV equation is given by p(r)=Z,(r)p,(r),
p(r)=A(r)p,(r), and m(r) = B,(r)m,(r). We define functions Z,(r)and A,(r) by

(1) s (r)g,(r)
Z,(r=—e""e" © A0A1G, dr, 4.25
. o po(r) (429
where v(r) :—.[Mdr, and
P, (r)
By (r)my (r)
= By(N) +— .
A (r)=By(r)+ P (4.26)
for all arbitrary B, (r).
Proof. From the TOV equation
dp(r) _ L")+ pM][m(r) +47p(r)r’ | 4.27)
dar r’[1-2m(r)/r] '

Then we substitute p(r) =Z,(r) p,(r), p(r) = A (r)p,(r),
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and m(r) = B,(r)m,(r) into equation (4.28) to give

dpo(f) dz,(r)
dr

(A2 () +Z,(1) po(N)][ Bo(Imy (1) +47Z, (1) o (N)F° |
r?[1-2B, (r)my(r)/r] '

Zy(r)

Py ()

Expanding the above equation as: the left hand side is equal to

[Po(r)"' po(r)][m (r) +47p, (r)r’ :I dz,(r)

%) rZ[1—2my(r)/r] dr

P, (1)-

While the right hand side is

[A) (1) +Z, (1) po(N)][ By (N)my (r) +47Z,(r) po (1) |
r?[1—2B,(r)m,(r)/r] ’

So, we get

o()

—Zy(r) [po (r)+ po(r)] Go(r) +———=p,(r)= _[Ab(r)po(r) +2Z,(r) po(r)] g, ().

Accordingly, we can write the equation in the form

r rp,(r)g,(r
Z (r) /00( )go( ) o( )__AO( )po( )go( )’ (428)
Po(F) Po(F)
which is the first order linear non-homogeneous equation in terms of Z(r).
We can solve for Z,(r) using the integrating factor method.
Finally,
Z,(r) = _e—v(r)J‘ev(r) Ay () po(r)g,(r) ar, (4.29)
Po(F)
rg,(r
where v(r) = —jMdr.
Po(r)
Next, we consider
am(n) _ Arp(r)re. (4.30)
dr
The extension of m(r) and p(r), in a more suggestive form, gives;
B (r)m,(r
A1) = B, (1) + 2 DTel), "

47, (N)r?
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4.4 Conclusion

In this chapter, the Tolman-Oppenheimer-Volkov equation attempts to find the
solution inside a static spherically symmetric object. In order for the solution to have
continuity within the surface, the TOV equation explains the interior structure of static
perfect fluid spheres. Furthermore, we can see that the TOV equation of isotropic
coordinates gives the same results as the TOV equations of the Schwarzschild metric.

We deformed these solutions into the TOV equation in terms of pressure and
density, and developed a new modified theorem for the TOV equation.
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Chapter 5

Conclusion

5.1 Conclusion and discussion

This thesis has been written with the aim of making several physical concepts
more comprehensible to people with a basic background in general relativity; especially
concepts related to isotropic coordinates, perfect fluid spheres in general relativity, and
the Tolman-Oppenheimer-Volkov equation.

In chapter 2, we introduced the basic concepts of relativity, which consist of
special and general relativity. In addition, we also presented the procedure for the
calculation of the Einstein field equation. General relativity, as specified, defines the
geometric property of spacetime. Einstein presented an equation that explains the
fundamental interaction of gravitation called the “Einstein field equation”. Moreover,
we also referred to a perfect fluid sphere in general relativity, in which it is used as an
assumption to idealize models of stars. Then we derived a perfect fluid constraint such
that imply us to ordinary differential equation. Perfect fluid spheres are simply
developed as idealized models of stars.

In chapter 3, we used the perfect fluid constraint to build several new exact
solutions for any relativistic static perfect fluid sphere. In the descriptive approximation
of stars, we made use of these solutions to analyze the realistic stars. Due to the
coordinate systems of perfect fluid spheres in perspective, perfect fluid spheres in the
isotropic coordinates forms about 35% of this research. A significant characteristic of
isotropic coordinates is that the coefficients of radial and angular coordinates are equal.
Therefore, we focus on these solutions in isotropic coordinates for extending several
classes of new solutions.

In fact, we have found a new relationship between the solution generating
theorems that map perfect fluid spheres into perfect fluid spheres. According to theorem
3, what we have presented is slightly different from the previous theorems. What we

have done is simultaneously apply T, and T,. So, the transformation can be represented

as
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. 1
T -{C;O(I’), Bo(r)} = {m, BO(I’)ZO(I')}.

Furthermore, these theorems have also led us to some additional properties,
which are idempotent property and the square root of unity. For the convenience in the
investigation of perfect fluid spheres, we applied theorem 3 to some example solutions
such as Minkowski, S1, and K-O 111 in the GRTensor package of Maple.

Working with the previous theorems, we obtain a new corollary, which can be

verified with all perfect fluid spheres in isotropic coordinates. Furthermore,
{;0, aB, +ﬂBb} is also a perfect fluid sphere, for real arbitrary constant «, .

We also specially constructed a new technique for the generation of perfect fluid
spheres. The methodology used has additionally been considered in isotropic
coordinates using the perfect fluid constraint. We have analyzed an ordinary differential
equation, and have also developed a technical solution with the Riccati equation. Finally,

we obtained the new functions of £(r) and B(r) with respectto r.

In chapter 4, we introduced the Tolman-Oppenheimer-Volkov equation.
Previously, we established the solution inside a static spherically symmetric object. In
order for the solution to have continuity within the surface, the TOV equation can be
explained through the interior structure of static perfect fluid spheres, including the
pressure and the density profiles. In this chapter, we found that the TOV equation in
isotropic coordinates gives the same results as the TOV equations of the Schwarzschild
metric. We deformed these solutions into the TOV equation in terms of pressure and
density. Moreover, we developed a new modified theorem for the TOV equation to study
the extension of the values of pressure, density, and mass of objects, which have all been
expressed to be a part of this theorem.

To summarize, we have found the relative transformation theorems that map
perfect fluid spheres into perfect fluid spheres in isotropic coordinates. We analyzed the
properties of perfect fluid spheres and derived a new theorem for the generation of exact
solutions in isotropic coordinates. In addition, we also modified new solutions for the
TOV equation, which directly provides information about the pressure and density

profiles of general relativistic static perfect fluid spheres.
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This thesis developed and provided a platform for a better understanding of
isotropic coordinates and perfect fluid spheres in general relativity. Furthermore, we
generated two new theorems for the construction of perfect fluid spheres in isotropic

coordinates.

5.2 Further interesting issues

For a supplementary study of this thesis, we would like to
= Extend the TOV equation in other coordinates. This will be done to generate
several new theorems, which can be useful in learning physical meanings,
including the pressure and density profiles of stars.
= Study the physical meaning in terms of the temperature of realistic stars. It will

be based on the TOV equation.
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In chapter 3, we have already presented the application of theorem three with the
Minkowski metric in the GRTensor package of Maple. Now, we shall apply this theorem
with S1 and K-O Il respectively. This idea is obtained from [6-8].

e S1

The form of metric S1 write to be

ds® =—r*dt® +dr® +r?d@* +r’sin® 6d¢*.

# The new theorem of two linking theorems
(applied to S1 metric)

restart;

with (tensor) ;

[Christoffell, Christoffel2, Einstein, Jacobian,
Killing eqns, Levi_Civita, Lie diff, Ricci, Ricciscalar,
Riemann, RiemannF, Weyl, act, antisymmetrize,

change basis, commutator, compare, conj, connexF,
contract, convertNP, cov_diff, create, dlmetric,
d2metric, directional diff, displayGR, display allGR,
dual, entermetric, exterior diff, exterior prod, frame,
geodesic_eqns, get_char, get compts, get_rank, init,
invars, invert, lin com, lower, npcurve, npspin,
partial diff, permute indices, petrov, prod, raise,
symmetrize, tensorsGR, transform];
coords:=[t,r,theta,phi];

[ Christoffell, Christoffel2, Einstein, Jacobian, Killing eqns, Levi_Civita, Lie_diff, Ricci,
Ricciscalar, Riemann, RiemannF, Weyl, act, antisymmetrize, change basis, commutator,
compare, conj, connexF, contract, convertNP, cov_diff, create, dImetric, d2metric,
directional diff, displayGR, display allGR, dual, entermetric, exterior_diff; exterior prod,
frame, geodesic_eqns, get _char, get_compts, get_rank, init, invars, invert, lin_com, lower,

npcurve, npspin, partial _diff, permute_indices, petrov, prod, raise, symmetrize, tensorsGR,

transform|
coords := [t, 7, 0, (I)]
> - -
# SEED metric (initial metric)
# ___________________________

> BO(r):=1/r*2;
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> # S1 seed
# Theorem 0: check the seed is a perfect fluid

g:=array (symmetric, sparse, 1..4, 1..4):
gl[l,1]:=-1/zetal(xr)"2:

gl[2,2] :=zetal(r)*2/B0(r)*2:

g[3,3] :=x*2*zetal(r)~2/B0O(r)*2:

gl[4,4] :=(r"*2) *sin(theta) *2*zetal (r) ~2/B0 (r) *2:
metric:=create([-1,-1], eval(g)):

400 0
0 10 0
metric = table| | compts = ) ,index_char=1[-1, -1]
0 0~ 0
0 00 #sin(0)

> tensorsGR (coords,metric,contra metric,’det met’, C1,

C2, Rm, Rc, Rs, G, C);
Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):
Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):
simplify (Gthth-Gphph) ;

# consistency check --- To verify a perfect fluid sphere,
this should be zero!

0

> dpO0:=numer (simplify (Grr-Gthth)) ;
# checking a perfect fluid

dp0:=0
> - -
# Theorem 3: BO0->B1=B0*Z0;
R

Z0(r) :=sigma + epsilon*int(r/(BO(r)*2),r);

Z0(r) =0 + % e

> Bl (r) :=BO0(r)*Z0(xr) ;

> zetal (r) :=1/zetal (r) ;
gl = 2
> g:=array (symmetric, sparse, 1..4, 1..4):
gl[l,1]:=-1/(zetal(r)"2):
gl[2,2] :=zetal(r)*2/(B1l(xr)*2):



g[3,3] :=x*2*zetal(r)~2/(Bl(r)*2):
gl[4,4] :=x*2* (sin (theta) ) *2*zetal (r)*2/ (Bl (r)*2):
metric:=create([-1,-1], eval(qg));

>

metric = table

tensorsGR (coords ,metric,contra metric,’det met’, Cl, C2,
G, C);

Rm, Rc, Rs,

compts
0 0 0
}’(;’)4r4 0 0
2
((5 + %e;ﬁ]
6 (N4
0 rr(r) - 0
((5 + %e;ﬁ]
o sin(O)zr(r)4
0 0

,index_char=1[-1,

Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):

Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):

simplify (Gthth-Gphph) ;

# consistency check --- For satisfying the perfect fluid

constraint, this must be equal to zero!

0
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> dpl:=numer (simplify (Grr-Gthth)) ;
dpl =0

#CONCLUSION: Theorem 3 with an S1 seed gives
the new solution.

# ______________________________________________________
> # END OF PROOFS.
# ______________________________________________________
# END WORKSHEET
# ______________________________________________________
>
e K-Olll
The metric K-O Il has the form
2 .
ds* =—A(L+ar®) dt® +dr’ +r’d6” +r’sin’ 0dg’,
where A is a real arbitrary constant.
> - e e e
# The new theorem of two linking theorems
(applied to K-O-III metric)
# ___________________________________
restart;

with (tensor) ;

[Christoffell, Christoffel2, Einstein, Jacobian,
Killing eqns, Levi Civita, Lie diff, Ricci, Ricciscalar,
Riemann, RiemannF, Weyl, act, antisymmetrize,

change basis, commutator, compare, conj, connexF,
contract, convertNP, cov_diff, create, dlmetric,
d2metric, directional diff, displayGR, display allGR,
dual, entermetric, exterior diff, exterior prod, frame,
geodesic_eqns, get char, get compts, get_ rank, init,
invars, invert, lin com, lower, npcurve, npspin,
partial diff, permute indices, petrov, prod, raise,
symmetrize, tensorsGR, transform];
coords:=[t,r,theta,phi];
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[ Christoffell, Christoffel2, Einstein, Jacobian, Killing eqns, Levi_Civita, Lie_diff, Ricci,
Ricciscalar, Riemann, RiemannF, Weyl, act, antisymmetrize, change_basis, commutator,
compare, conj, connexF, contract, convertNP, cov_diff, create, d1metric, d2metric,
directional _diff, displayGR, display allGR, dual, entermetric, exterior_diff; exterior_prod,
frame, geodesic_eqns, get_char, get_compts, get_rank, init, invars, invert, lin_com, lower,

npcurve, npspin, partial_diff, permute_indices, petrov, prod, raise, symmetrize, tensorsGR,

transform|
coords == [t,1,0, 0]
> -
# SEED metric (initial metric)
zitaO(r):=l/(l + r*2/2);
Q) = ———
1+ 5
> BO(r):=1/(1 + r*2/2);
BO(r) = — -
L+

> # K-O-III seed
# Theorem 0: check the seed is a perfect fluid

g:=array (symmetric, sparse, 1..4, 1..4):
g[l,1]:=-1/zetal(r)*2:

gl[2,2] :=zetal(r)*2/B0(r)*2:

gl[3,3] :=x*2*zetal(r)~2/B0 (r) *2:

gl[4,4] :=(r*2) *sin(theta) *2*zetal (r) ~2/B0 (r) *2:
metric:=create([-1,-1], eval(g)):

1 » 2
- [1 + > 7 ] 00 0
metric := table| | compts = 0 1o 0 ,index_char=1_-1, -1]
0 0/’ 0
0 0 0 Asin(6)’

> tensorsGR (coords,metric,contra metric,’det met’, C1,

C2, Rm, Rc, Rs, G, C);
Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):
Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):
simplify (Gthth-Gphph) ;

# consistency check --- To verify a perfect fluid sphere,
this should be zero!



0

> dpO0:=numer (simplify (Grr-Gthth)) ;
# checking a perfect fluid

dp0:=0
> - =
# Theorem 3: BO->B1=B0*Z0;
i

Z0 (r) :=sigma + epsilon*int(r/(BO(r)”*2),r);
- 1o La 12
Z0(r) : (5+8[24 +4r+2rj

> Bl(r) :=BO(r)*Z0(r) ;
0+8(LV6+Lr4+Lr2)

BI(r) = 24 2

1—1—%1”2

> zetal (r) :=1/zetal (r) ;

1=1+~7
¢ 2

> g:=array (symmetric, sparse, 1..4, 1..4):
gl[l,1]:=-1/(zetal(r)"2):

gl[2,2] :=zetal(r)*2/(Bl(xr)"*2):

gl[3,3] :=x*2*zetal(r)~2/(Bl(r)"2):

gl[4,4] :=x*2* (sin (theta) ) *2*zetal (r) 2/ (Bl (r)*2):
metric:=create([-1,-1], eval(qg)):;

metric ;= table| | compts = | | -

0,0,0, ,index_char=1[-1, -1]

> tensorsGR (coords,metric,contra metric,’det met’, C1,
C2, Rm, Rc, Rs, G, C);
Grr:=simplify (G[compts] [2,2] /metric[compts] [2,2]):

65
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Gthth:=simplify (G[compts] [3,3]/metric[compts] [3,3]):
Gphph:=simplify (G[compts] [4,4] /metric[compts] [4,4]):
simplify (Gthth-Gphph) ;

# consistency check --- For satisfying the perfect fluid
constraint, this must be equal to zero!
0

> dpl:=numer (simplify (Grr-Gthth)) ;
dpl =0

#CONCLUSION: Theorem 3 with an K-O-III seed gives the
new solution.
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