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Chapter 1  

Introduction 

1.1 Motivation 

General relativity, also known as the general theory of relativity, was issued by 

Albert Einstein in 1915. It defines the geometric property of spacetime. As commonly 

acknowledged, general relativity is a beautiful scheme and a self-explanatory theory in 

relation to the gravitational field. Actually, general relativity has often been described 

about the forces between two elementary particles and the geometry of spacetime in the 

universe. Moreover, Einstein has proposed an important equation called the  “Einstein 

field equation”. The equation describes the fundamental interactions of gravitation as a 

result of spacetime being curved by matter and energy. The Einstein field equation is a 

difficult-to-solve equation due to its mathematical complexity. It is a fully non-linear 

partial differential equation which, in general, cannot directly be solved. Therefore, 

some assumptions must be made in order to reduce the complexity of the equation. One 

of the popular assumptions is that of a perfect fluid sphere [1-5]. 

Perfect fluid spheres are simply developed as idealized models of stars. Using 

the perfect fluid constraints that are composed of features like no-viscosity, no 

conduction of heat and isotropy, has led us to the ordinary differential equations. These 

differential equations have to be solved to find the exact solutions. Normally, the 

solutions can be described in term of physically realistic stars. Therefore, perfect fluid 

spheres are well known as an assumption to represent idealized stars. In this thesis, we 

consider these solutions in isotropic coordinates [6-9].  

Furthermore, we can also derive the solutions in another form. According to 

astrophysics, the Tolman-Oppenheimer-Volkov (TOV) equation can be used to describe 

the internal structure of general relativistic static perfect fluid spheres [1, 10, 11]. The 

significance of the TOV equation constrains is to study the interior structure of perfect 

fluid spheres, including the density and pressure profiles. 

Despite the complexity of finding the exact solutions to the Einstein field 

equations, there is another way to obtain the new exact solutions without directly solving 
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the Einstein field equations. This method is the so called “solution generating theorems” 

[6-9, 11].   

For the investigation of the solution generating theorems and the TOV equation 

in the isotropic coordinates, the study considers using pure mathematical principles as a 

way of finding several new solutions. 

In our research, we develop the relative solution generating theorems that map 

perfect fluid spheres into perfect fluid spheres in isotropic coordinates [6-8, 12, 13]. In 

this framework, we derive a new corollary and a new theorem by combining two linking 

theorems that is also a perfect fluid sphere, and investigate those properties. Moreover, 

we apply this theorem in the Maple program to generate new perfect fluid spheres. In 

addition, we also present the new theorem using a new technique to expand some exact 

solutions [14]. Finally, we study and develop new solutions for the TOV equation, 

thereby also directly giving information about the pressure and density profiles of 

general relativistic static perfect fluid spheres. 

1.2 Objectives 

The goal of this research is to analyze the properties of perfect fluid spheres and 

derive the new theorem for the generation of the exact solution in isotropic coordinates. 

In addition, we also modify the Tolman-Oppenheimer-Volkov equations and convert it 

into the form of pressure and density profiles. 

1.3 Structure of the thesis 

This thesis looks for two problems in general relativity. 

 We shall present the technical ways in finding the exact solutions in the isotropic 

coordinates using pure mathematical principles. These solutions can be 

described using physically realistic stars.  

 We shall convert the exact solutions into another form. In terms of the TOV 

equation, which can be explained using the internal structure of realistic stars 

including the pressure and the density profiles. 
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The thesis is divided as follows 

 In chapter 2, we explain the basic knowledge behind both special and general 

relativity. Moreover, we also introduce the concept of perfect fluid spheres, which are 

simply the assumption used in building and developing idealized models of stars. 

 In chapter 3, we introduce the solution generating theorems in the isotropic 

coordinates using pure mathematical principles as a way of finding several new 

solutions. We present the new theorem by linking two theorems and analyzing the 

property of perfect fluid spheres. Moreover, we also generate a new theorem using a 

new technique. Towards the end of chapter 3, for convenience we introduce the Maple 

program to apply with some example solutions to help generating perfect fluid spheres.  

 In chapter 4, we introduce the TOV equation in isotropic coordinates. 

Furthermore, we discuss the TOV equation in isotropy with other coordinates in order 

to construct a modified TOV equation based on the main principles of the TOV equation.  

 In chapter 5, conclusions are drawn and a discussion is provided on all aspects 

of the thesis. Moreover, interesting issues are further suggested in last section.    
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Chapter 2  

General Introduction 

Relativity is an extremely well acknowledged theory, and is perhaps one of the 

most famous theories in physics. It was formulated by Albert Einstein in 1905. The 

theory of relativity is very useful in predicting everything, including the existence of 

black holes. Moreover, we can use this theory to study some phenomena such as the 

bending of light due to gravity, the behavior of the moon in its orbit, and various other 

occurrences in the universe. Einstein formulated these concepts with respect to special 

as well as general situations [1]. 

 In this chapter, we introduce all the fundamental knowledge required in the 

comprehension of this thesis. We shall also brief the basic ideas behind both special and 

general relativity. In the third section, we introduce an assumption called “perfect fluid 

spheres” to provide an ordinary differential equation.  

2.1 Special relativity 

The primary purpose of this section is to offer an essential idea for the 

understanding of the completely unfamiliar special relativity. The preliminary concept 

is first provided, which is immediately followed by the inertial frame, Newtonian 

physics, and the postulate of special relativity. 

2.1.1 Inertial frame 

 In order to discuss space and time without being ambiguous, it is more helpful 

to introduce the notation of a reference body, which we usually call as an “inertial frame 

of reference”. This is one in which Newton’s law of motion holds. By considering many 

freely moving objects in different space and time, one may deduce that all parts of an 

inertial frame move along together. An inertial frame has a constant velocity and a zero 

acceleration that is related to other frames [4, 15].  
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2.1.2 Newtonian physics 

 Classical physics is concerned with the behavior of physical objects, as 

developed by Newton, Galileo, and others. These ideas obey the laws of both space and 

time. Consider two inertial frames S  and S   having all their axes aligned. Let S   move 

along the X-directional axes relative to S  at speed v  as in figure 2.1 [1, 4, 15]. 

 
Figure 2.1: Galilean transformation. 

 As determined in two inertial frames in standard configuration, according to 

Newtonian physics,  

   

,

,

,

.

t t

x x vt

y y

z z

 

  

 

 

            (2.1) 

 The above equations represent what is called as the Galilean transformation. It 

can also be written in a matrix form as 

         

1 0 0 0

1 0 0
.

0 0 1 0

0 0 0 1

t t

x v x

y y

z z

     
      
     
     

     
     

 

 Due to we considered in high velocity, the Galilean transformation was 

deformed by the Lorentz transformation. It can be represented in this transformation 

S S 

x
x

y y

0 0

newx

v
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  

2
,

,

,

,

vx
t t

c

x x vt

y y

z z





 
   

 

  

 

 

             (2.2) 

where 

 2 2

1
1,

1 /v c
  


 and c  is the speed of light. Note that the limit of 0,v c   

v  remains finite, the Lorentz transformations approach to the Galilean transformation.  

This transformation can be obeyed with two postulates as following below.    

2.1.3 Two postulates of special relativity 

 Now, we shall introduce special relativity. We find that the principle of relativity 

is still obeyed, but the Galilean transformation is broken. The main postulates of special 

relativity are  

(1) First postulate (principle of relativity) 

The laws of physics must be the same for all inertial reference frame. 

(2) Second postulate (speed of light postulate)  

The speed of light in vacuum, determined in any inertial reference frame, always 

has the same value of c (c is a universal physical constant). The speed of light is 

approximately 83 10  m/s, no matter how fast the source of light and the observer are 

moving relative to one another [10, 16-18]. 

We now need to complete the theory of gravitation, particularly looking at 

general relativity. 

2.2 General relativity 

 General relativity, also known as the general theory of relativity, was developed 

by Albert Einstein in 1915. This theory is best known as an essence in modern 

astrophysics. According to general relativity, the observed gravitational attraction 

between matters is a direct result of spacetime being curved by matters and energy. This 

spacetime curvature is the fundamental idea behind general relativity.  Eventually, 

Einstein presented an equation that explains the fundamental interaction of gravitation 
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called the “Einstein field equation” [2, 3, 17]. In the previous section, we presented the 

idea of special relativity, but the idea of gravitation has its limits with Newton’s theory 

of gravitation. Einstein began by modifying Newton’s theory of gravity to match with 

the ideas of special relativity. However, it failed to explain particular circumstances. 

Consequently, Einstein came to offer the ideas of general relativity. 

General relativity is the main basis of this thesis. In particular, we have divided 

the body of the thesis into three sections. First, we describe the physical meaning of the 

values used in this thesis. In the second section, we focus on the Einstein field equation. 

Finally, we consider the algorithm for calculating the Einstein field equation. 

2.2.1 Physical meaning of values 

1) Einstein summation  

 There are essentially three rules to Einstein summation notation, namely: 

repeated indices are implicitly summed over, each index can appear at most twice in any 

term, and each term must contain identical non-repeated indices. Therefore, Einstein 

summation is a notational convention for simplifying expressions. For example, the 

indices can range over the set  1,2,3 ,   

      
3

1 2 3

1 2 3

1

.i

i

i

y c x c x c x c x


            

From the above expression, it happens that for a sum involved, we can simplify 

by the usage of .iiy c x  In this case, we call " "i  as a dummy index. 

 Note that the typical coordinates  1 2 3, ,x x x  would be used instead of the 

traditional coordinates  , , ,x y z  respectively. In general relativity, we determine the 

index in a commonly recognized form, that is [19] 

 The Greek alphabets are used for space-time components, where indices often 

start from values 0,1,2, or 3 (normally used for letters , ,  ) 

 The classical Latin alphabet is used for the spatial component only, where 

indices accept values 1,2, or 3 (normally used for letters , ,i j ) 
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2) Tensor 

Tensor is an important quantity, which is useful in representing two different 

coordinate systems. When objects have to change from one coordinate to another, a set 

of components can be changed in a given way [4, 20, 21]. We consider such relation as 

the definition of tensor. For each , 0,1,2,p q  , all tensors of rank  ,p q  form a vector 

space, 

     1 2 1 2

1 2 1 2
,p q

q p
T T dx dx dx

    

                        (2.3) 

where   is the tensor product. Notice that 
1

 means 
1

.
x





  

In the previous relation, tensor is the operation between a set of components and 

the basic component. This relationship can be regarded in the transformation of  T T   

at point :a  

        1 2 1 2

1 2 1 2
( ) ( )p q

q p a
T a T X dx dx dx

    

                 

             1 2 1 2

1 2 1 2
( ) .p q

q p a
T X dx dx dx

    

     

               

 

Figure 2.2: The transformation maps coordinate 1 2( , )X x x  onto coordinate 

1 2( , )X x x    containing a point .a  

The transformation to coordinates T   can be written as 

  
1 2 1 2

1 2 1 2

1 2 1 21 2
1 2

( ) ( ).
p q

p p

q qp
q

x x x x x x
T X T X

x x x x x x

    
     

         

 

  

       
              

  

1x

2x

a

1x

2x
2x

1x
a
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From the above expression, there is an exact sequence of transformation, which 

is one by one (i.e. 
1  pairs with 

1, , q   pairs with 
q ). It does not jump over indices. 

Hence, we will prescribe the tensors as following: 

 Tensor (0,0): scalar 

( ) ( )S X S X    
 Tensor (1,0): vector 

       
1

1 1

1

( ) ( )
x

V X V X
x


 






 


        

 Tensor (0,1): dual vector, gradient 

        
1

1 1
1

( ) ( )
x

V X V X
x



  


 


 

 Tensor (2,0): 

     
1 2

1 2 1 2

1 2

( ) ( )
x x

T X T X
x x

 
   

 

 
 

 
 

 

 Tensor (0,2): 

     
1 2

1 2 1 2
1 2

( ) ( )
x x

T X T X
x x

 

     

 
 

 
 

  

 
Figure 2.3: The Cauchy stress tensor, with tensor of rank (0, 2) for which 

the tensor’s component is in a 3-dimensional Cartesian coordinate system [21]. 
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Figure 2.4: A tensor of rank (0, 3) [20]. 

Rule for tensor algebra 

 (1) The sum of two tensors; if T and S  are tensors of type  ,p q , then T S   

is also a tensor defined as 

      
... ... ...

... ... ... .
ab ab ab

cd cd cdU T S    

 (2) The outer product of two tensors can be explained as 

         a b abT S U  or .a c ac

b de bdeT S U   

 (3) Contraction is often used to reduce the rank of the tensor. In general, one 

could have combination such as [4] 

        
ab a bU A B   and 

ab a b

c cT S 

  . 

3) Metric tensor 

 In particular, let us introduce the metric tensor, which is significant in the 

beginning of the calculation. We have a metric (also known as 2ds ) which represents 

the shortest distance between two points in space. As for the basics of 2d ,s  for 

simplicity, we first consider it in a two-dimensional coordinate. 

 Cartesian coordinate  , :x y  

 

ds

dx

dy

x

y
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Using the Pythagorean theorem, we attain 2 2 2d d d .s x y   

On the other hand, we can also generalize 2ds  from 

         
2 2

2

1 1

d d di j

ij

i j

s g x x
 

   

          1 1 1 2 2 1 2 2

11 12 21 22d d d d d d d d ,g x x g x x g x x g x x     

where 1 ,x x  2x y  and 11 1,g  12 0,g  21 0,g  22 1.g   Then we can bring 
ijg  into 

the matrix form, where 
ijg  can be defined as 

                     
1 0

0 1
ijg

 
     

 
,          for , 1,2.i j   

Similarly, in three-dimensional coordinate, we obtain   

           

1 0 0

0 1 0 ,

0 0 1

ijg

 
      
  

     for , 1,2,3.i j   

 Polar coordinate  , :r   

 

Since d  is spread over an angle of a small value, then the region of the curve is 

equal to d .r   We will further look into the line. With the same logic as the Cartesian 

coordinate, we derive that 2ds  is equal to 2 2 2d d .r r   Therefore, ijg  can also be derived 

as  

           
2

1 0
,

0 r

 
 
 

         for , 1,2.i j   

We can see that 0,ijg   where .i j  This can definitely be used in creating a 

diagonal matrix ijg  by forming a trace of matrix from the coefficients in each set of 

coordinates, such as the coefficient in the r -coordinate being equal to 1, while the  -

coordinate being equal to 2.r  

dr

r

r

ds



d
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In general relativity, we can neglect these summation signs by using the Einstein 

summation convention. Then the metric can be generalized to  

           
2d d d .s g x x 

                          (2.4) 

Further discussing about spacetime, it is a four-dimensional space with indices 

,   often starting from values 0, 1, 2, and 3, respectively. Consequently, we call g
    

as “metric tensor”, with a tensor rank of (0, 2). In addition, we can also define the metric 

tensor as taking the form 

                

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

.

g g g g

g g g g
g

g g g g

g g g g



 
 
 
 
 
 

               (2.5) 

Furthermore, we can also define the “inverse metric tensor” (representing g  ) 

as 
1

.g g




      
 

4) Einstein tensor  

In this section, we shall refer to the Einstein tensor. This is an essential quantity 

because we have to use it for calculating the left hand side of the Einstein field equation, 

while the right hand side will be introduced later in section 2.2. Currently, we shall 

discuss the relative values that satisfy the Einstein tensor. Moreover, we also offer an 

overview of the Christoffel symbol, Riemann curvature tensor, Ricci tensor, and Ricci 

scalar, respectively. 

 Christoffel symbol 

We present the Christoffel symbol in general relativity, which is a connector 

between vector space. That tells us how the basis of vectors changes as we move from 

one point to another. In order to understand it in more detail, we must consider the 

shifting of vector A  and B  using the rule for vector addition. On flat space, vectors 

perform as figure 2.5;  
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Figure 2.5: Vector addition on flat space. 

However, if we conduct an investigation on curved space, vector B  may be changed. 

Therefore, B  is equivalent to ,B  where   is a connector for linking vector spaces. 

The main assumption here is that the metric tensor is faultless. Generally, we can now 

obtain the connector as 

        
1

,
2

g gg
g

x x x

   
   

  
    

   
             (2.6) 

where g  is a metric tensor, and g   is the inverse metric tensor. Then the affine 

connection coefficients that are built-up by metric tensor, we call as the Christoffel 

symbol, which is denoted as 




 
 
 

. Furthermore, in this basis, the connection 

coefficients are symmetric, i.e., 
 

     [22, 23]. 

 Riemann curvature tensor  

Now, we consider the parallel transportation of vector v  along curve C  by 

moving along two separate paths as follows (figure 2.6); 

 

  
  
 
 

A B

A B



   

 

14 

 

Figure 2.6: The parallel transportation of vector v  on a curved surface. 

We will move vector v  from point A  to .B  Let 1x  be a slight shift along 1x

- axis, and 2x  be a slight shift along 2x - axis, respectively.  

Initially, we look at path 1a since vector v  has a covariant derivative (i.e. 

0v

  ). Note that 1 1 1 ,v v v   

     then we get 

      
1 1 2 1 2 1 2 1 2 1

1( , ) ( , ) ( , ) ( , ) .v x x x v x x x x v x x x   

      

Therefore, in path 1b: 

                     
1 1 2 1 1 2 1 1 2 2

(1) 2( , ) ( , ) ( , ) ,v v x x x x x x v x x x x   

         

where   2
1 1 2 1 2 1 2 1 1

2 2 1 2( , ) ( , ) ( , ) .x x x x x x x x O x  

            

 Similarly, we can consider a continuation toward path 2, while using the results 

from path 1, and interchanging the indices 1 2.  Actually, we can also derive it as 

               1 2

(1) (2) 1 2 2 1 1 2 2 1 ,v v v x x        

                      

So, we determine the Riemann curvature tensor as 

       12 1 2 2 1 1 2 2 1 .vR      

                

Generally, the Riemann curvature tensor can also be written in the form [22, 24] 

                .vR      

                              (2.7) 

 Consequently, the Riemann curvature tensor is an essential quantity, which we 

shall study in a small area. The Riemann curvature tensor refers to the curvature of 

spacetime.  
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Moreover, we also determine the Ricci tensor ( )R  and the Ricci scalar, which 

are related to the curvature of spacetime. It is easy to find the value of the Ricci tensor 

because it occurs from ,R R

   which is a contraction over two indices. In contrast, 

the value of the Ricci scalar is defined as .R g R

  

 Finally, we derive the Einstein tensor (representing G ) as following, 

          
1

,
2

G R g R                       (2.8) 

where g  is the metric tensor, R  is the Ricci tensor, and R  is the Ricci scalar. 

2.2.2 Einstein field equation 

The acceleration due to gravity has an effect on the curvature of spacetime. As 

the theory proposes, the principles of general relativity relates to the effect of spacetime 

being curved by matter, which consequently affects the path of other moving matter 

within that curvature of spacetime. Therefore, Albert Einstein published an equation that 

explains the fundamental interactions of gravitation as a result of this curvature of 

spacetime by matter and energy. The equation is called the “Einstein field equation” or 

“Einstein’s equation”, which can be explained by 

           8 ,G GT                  (2.9) 

where G  is the “Einstein tensor” describing the geometry of spacetime and  

           T  is the “stress energy tensor” describing the distribution of matter and 

energy. 

2.2.3 The procedure in the calculation of the Einstein field equation 

 Now, we shall consider the algorithm for the calculation of the Einstein field 

equation. In this section, we will focus on the left hand side of the Einstein field equation, 

that is, we will present the procedure in the calculation of the Einstein tensor. For the 

part of stress energy tensor, the calculations are more gradual, details of which will be 

provided more in section 2.2.   
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 Let us introduce the left hand side of the Einstein field equation. We begin with 

the metric 2ds  for spacetime, which has four-dimensional coordinates , , , .t r    Then 

we will consider the metric tensor g  from 

         
2 .ds g dx dx 

              (2.10) 

 In this thesis, we study matters with symmetric property. That is, the off-diagonal 

components of the metric tensor that are equal to zero, while the components of the 

diagonal metric tensor g  have determinable values. So, g  and g 
 take to the 

forms 

                

00

11

22

33

0 0 0

0 0 0
,

0 0 0

0 0 0

g

g
g

g

g



 
 
 
 
 
 

                  (2.11) 

and  

                

00

11

22

33

1
0 0 0

1
0 0 0

.
1

0 0 0

1
0 0 0

g

g
g

g

g



 
 
 
 
 
 
 
 
 
 
 
 

            (2.12) 

The Einstein tensor is defined as 

                
1

,
2

G R g R                (2.13) 

where R  is the Ricci tensor and R  is the Ricci scalar. The Ricci tensor and Ricci 

scalar are 

   ,R R      

                             (2.14) 

and 

          .R g R

                         (2.15) 
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Using the above information, we can derive the Christoffel symbol 


 . Moreover, we 

must also derive the other Christoffel symbols. These symbols are used in general 

relativity for which there is a connection with each of the coordinates, 

           
1

.
2

g gg
g

x x x

   
   

  
    

   
          (2.16) 

And then we write the Riemann curvature tensor as 

           .vR      

                           (2.17) 

We start off with replacing the Christoffel symbols and the Riemann curvature 

tensors in the equation with the Ricci tensor. Then we find the value of the Ricci scalar. 

Finally, we can derive the Einstein tensor from the above process. 

As for the stress energy tensor, we shall present the details later in section 2.3, 

which is related to our beginning assumption. Theories of relativity are continuously 

being developed. The additional knowledge has corresponded with previous theories. 

These theories can be associated with Newtonian physics for the explanation of natural 

events related to gravitation in the universe, such as studying the expansion of the 

universe or calculating the orbit of planet Mercury. For this reason, general relativity is 

a necessary inclusion in the theory of gravitation of spacetime. 

2.3 Introduction to perfect fluid spheres 

We shall now provide an introduction to perfect fluid spheres. Perfect fluid 

spheres are simply an assumption developed as idealized models of stars. In this section, 

we present perfect fluid spheres in various coordinates. Furthermore, we also introduce 

the different properties of perfect fluid spheres. Finally, we will show how perfect fluid 

constraint can be used to build several new exact solutions for any relativistic static 

perfect fluid spheres. 

2.3.1 Introduction 

In the elementary step of the approximation of stars, we use perfect fluid spheres 

to develop idealized models of stars. We also make use of the properties of perfect fluid 

spheres; i.e., non-viscosity, no conduction of heat, and isotropy, which implies that in 

orthonormal components, the stress energy tensor takes the form 
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ˆˆ

0 0 0

0 0 0
,

0 0 0

0 0 0

r

t

t

p
T

p

p



 
 
 
 
 
 

          (2.18) 

where   is the density, and ,r tp p  are the radial pressure and the transverse pressure, 

respectively. 

Using the condition of isotropy, we obtain r tp p  which can be implied as 

ˆ ˆ ˆ ˆˆˆ .rrT T T
 

   Equating the appropriate orthonormal component of the Einstein tensor 

[25], we obtain 

                ˆ ˆ ˆ ˆˆˆ .rrG G G
 

                          (2.19) 

This equation is a “perfect fluid constraint”, which supplies us with the ordinary 

differential equation [ODE] for any relativistic static perfect fluid sphere. 

2.3.2 Coordinate systems for perfect fluid spheres 

First we introduce the coordinate systems for perfect fluid spheres in accordance 

with expectations. There are exact solutions of the Einstein field equation, which can be 

written in a closed form ( 2ds ). The perfect fluid constraint of the static perfect fluid 

spheres is now considered in some coordinate systems. To place the use of the overall 

coordinate system, observations made through by Finch and Skea [9] project shows that 

about 55% of all work relates to fluid spheres is used in the Schwarzschild curvature 

coordinates, about 35% of related research is used in the isotropic coordinates, while and 

the remaining 10% is expanded into the specialized coordinate systems [12]. 

Coordinates Metric 

Schwarzschild 

curvature 
2 2 2 2 2 21

d ( )d d d .
( )

s r t r r
B r

       

Isotropic  2 2 2 2 2 2

2 2

1
d ( )d d d .

( ) ( )
s r t r r

r B r



      

Others coordinates 

 Gaussian polar 

 Sygnge 

isothermal 

 

 
2 2 2 2 2 2d ( )d d ( )d .s r t r R r      

    2 2 2 2 2 2 2d ( ) d d ( ) ( )d .s r t r r R r        
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 Buchdahl   2 2 2 2 2 2 2d ( )d ( ) d ( )d .s r t r r R r        

Note that the arbitrary function ( ),r  ( ),B r  and ( )R r  are scaling factors, which 

have an effect on the curvature of spacetime. 

2.3.3 Properties of perfect fluid sphere 

As perfect fluid spheres are the natural assumption generated as idealized models 

of stars, the properties of perfect fluid spheres can be used to formulate perfect fluid 

constraint. This leads to an ordinary differential equation.  

We begin with the Einstein field equation, 

8 .G T               (2.20) 

Turning now to stress energy tensor (on the right hand side), we shall introduce 

the term of the stress energy tensor .T  Figure 2.7 summarizes the physical 

interpretation of the elements of the stress energy tensor matrix as follow [4]; 

 

Figure 2.7: The matrix form of stress energy tensor. 

From figure 2.7, we can attend to the physical interpretation, in detail, of the various 

quantities. For the physical meaning of each component, we shall display that as 

expressions. 

Firstly, we shall start by describing a surface of constant .x  Let us consider a 

three dimensional coordinate system xyz as shown below, 

Energy fluxEnergy density

Momentum density

Momentum flux Pressure

Sheer stress
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Figure 2.8: Three dimensional coordinates xyz [26]. 

“A surface of constant x ” means plane yz  at ,x c  where c  is a constant. 

Similarly, a surface of constant y  and z  are the planes xz  and xy  at y k  and ,z l  

respectively. For a four dimensional coordinate txyz , we use the same logic as in a three 

dimensional coordinate.  

Next, we write a four-momentum as following;     

Since spacetime has four dimensions, we represent spacetime into a matrix form as 

       .
T

ct x y z    

Dividing spacetime (4-vectors) by t , we obtain a four-velocity as follows; 

.
T

x y zc v v v     

Then we multiply a four-velocity by m  to derive a four-momentum as 

     

2

.x x

y y

z z

mc E
mc

c c

mv p

mv p

mv p

 
  

 
 

 
 

  

  

Let us introduce the physical interpretation of the stress energy tensor (definition 1). 

Definition 1. The stress energy tensor T  is the flux of the  -th component of four-

momentum across a surface of constant .x  

 By the definition, we can write out each component of the stress energy tensor. 

In particular, we shall display some significant components of perfect fluid spheres as 

00 : ,
E

T
xyz

    
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11 : ,x x xmv ma F
T p

tyz yz A
      

22 : ,
y y ymv ma F

T p
txz xz A

     

33 : .z z zmv ma F
T p

txy xy A
     

 That explains the physical meaning in each element of the stress energy tensor 

as in figure 2.7.   

As mentioned earlier, there are three general properties of perfect fluid spheres; 

namely, no-viscosity, no conduction of heat, and isotropy. The isotropic property means 

that the pressure remains the same regardless of the direction of measure. Using the 

properties of perfect fluid spheres, we derive the stress energy tensor as  

ˆˆ

0 0 0

0 0 0
,

0 0 0

0 0 0

r

t

t

p
T

p

p



 
 
 
 
 
 

 

where  is the density, rp  and tp  are the radial pressure and the transverse pressure, 

respectively. 

 Consequently, we obtain the perfect fluid constraint 

                    ˆ ˆ ˆ ˆˆˆ .rrG G G
 

              (2.20) 

This condition leads us to the ordinary differential equation [ODE] for any 

relativistic static perfect fluid sphere. 

 In this section, we introduce perfect fluid spheres in various coordinates, which 

is, as mentioned earlier, the assumption necessary in the development of idealized 

models of stars. Then we derive a perfect fluid constraint such that it can also be implied 

as ordinary differential equation.  

In the next chapter, we consider isotropic coordinates. A perfect fluid constraint 

can lead to solution generating theorems. Furthermore, we also present the solution 

generating theorems in isotropic coordinates, which is an important tool in mapping a 

perfect fluid sphere to a perfect fluid sphere, in the isotropic coordinates.   
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Chapter 3  

Solution generating theorems 

 Although the determination of exact solutions can be possible for the Einstein 

field equations; however, there is another way to obtain new exact solutions without 

having to directly solve the Einstein field equations. This method is the so called 

“solution generating theorems”. In the descriptive approximation of stars, we will apply 

these solutions to analyze the realistic stars, investigate several well-known spacetime, 

and maybe generate a new solution as an unexpected solution. At present, we use the 

“solution generating theorems” to solve for new exact solutions, which can comfortably 

generate the class of several new perfect fluid spheres. As for the concept behind of this 

work, we have studied the solution generating theorems by mapping a perfect fluid 

sphere into a perfect fluid sphere. If we have a perfect fluid sphere and we apply the 

solution generating theorems with some coordinates of the sphere, we obtain a new 

solution. These solution generating theorems have been derived using perfect fluid 

constrain. We can see a brief illustration of this concept, as shown below;  

 
  

Figure 3.1: Using solution generating theorems for the mapping 

of a perfect fluid sphere to a perfect fluid sphere. 

 
In this chapter, we regard the solution generating theorems in isotropic 

coordinates using pure mathematical principles as a way of finding several new 

solutions. In the current chapter, we study the isotropic coordinates. Let us first refer to 

the characteristics of isotropic coordinates, which are provided in the section below. 

 

 

Solution generating theorem
PFS2PFS1
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3.1 Isotropic coordinates 

 In the previous chapter, we have learnt about the coordinate systems of perfect 

fluid spheres. There are now several coordinate systems of perfect fluid spheres in use. 

One of the well-known coordinates is the isotropic coordinates. A significant 

characteristic of the isotropic coordinates is that the coefficients of radial and angular 

coordinates are equal. The metric takes the form 

 2 2 2 2 2 2

2 2

1
d ( ) d d d ,

( ) ( )
s r t r r

r B r



             (3.1) 

where 2 2 2 2d d sin d .      It is simply constructed to define ,g  which is equal to 

   

2

2 2

2

2 2

2 2

2 2

( ) 0 0 0

1
0 0 0

( ) ( )

.
0 0 0

( ) ( )

sin
0 0 0

( ) ( )

r

r B r

r

r B r

r

r B r











 
 
 
 
 
 
 
 
 
 
 

 

Then we calculate the Einstein tensor as follows 

     2 2 2 2 2

ˆˆ 2 / ( ) ( ) ,rrG B B r B B                   (3.2) 
      2 2 2 2 2 2

ˆ ˆ ˆ ˆ / ( ) ( ) .G G B B r B BB B
 

                      (3.3) 

Note that rr  and ˆˆrr  have the same meaning when the stress energy tensor is a diagonal 

matrix. Otherwise, rr   is not equivalent to ˆˆ.rr   

3.2 Ordinary differential equation 

In the elementary step of the approximation of stars, we use perfect fluid spheres 

to develop idealized models of stars. We also make use of the properties of perfect fluid 

spheres. So we obtain 

           ˆ ˆ ˆ ˆˆˆ ,rrG G G
 

              (3.4) 

which provides us with an ordinary differential equation [ODE]. Then we derive 

the ordinary differential equation for isotropic coordinates when we make use of perfect 

fluid constraint as [6-8, 11-13]: 

      
2

/
.

2

B B r

B





    
 

 
            (3.5) 
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Let us define 
( )

( ) .
( )

r
g r

r






  We can find ( )r  as  exp ( )dg r r  and equation (3.5) 

becomes 

   2 /
( ) .

2

B B r
g r

B

 
             (3.6) 

Equation (3.6) can be rewritten in terms of ( )B r  as: 

             22 0.
B

B g B
r


                         (3.7) 

 We can then employ the ordinary differential equation for isotropic coordinates 

as the equation (3.5) to develop several new solution generating theorems. Accordingly, 

section 3.3 consists of the analysis and expansions of perfect fluid spheres in isotropic 

coordinates. 

3.3 Solution generating theorems for isotropic coordinates 

As derived in [13], we have developed several “algorithmic” techniques that 

permit one to generate large classes of perfect fluid spheres. Let us now develop two 

solution generating theorems appropriate for isotropic coordinates [6-8]. 

Theorem 1. (7th BVW or Buchdahl transformation (T7)) Suppose that 0 0( ), ( )r B r

represents an initial perfect fluid sphere as 

      2 2 2 2 2 2

0 2 2

0 0

1
d ( ) d d d .

( ) ( )
s r t r r

r B r



                  

 Let 0 ( )B r  be fixed, then we obtain 

        
2

2 2 2 2 20

2 2

0 0

( )1
d d d d

( ) ( )

r
s t r r

r B r




      

is also a perfect fluid sphere. That is, the mapping 

            7 0 0 0

0

1
: ( ), ( ) , ( ) .

( )
T r B r B r

r




 
 
 

          (3.8) 

takes perfect fluid spheres into perfect fluid spheres. 

Proof Suppose that  0 0( ), ( )r B r  solves equation (3.5).  

Let 0 ( )B r  be fixed, we have changed 0 ( )r  to 1( ).r  We write 
1

0

1
( ) .

( )
r

r



     

Then 
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2

2

2 22
02

0 0 0 01

1 0 0

0 0

1 1

.
1 1


   

  

 

                                
                

 

 

That  1 0( ), ( )r B r  also satisfies equation (3.5).  

Therefore  1 0 0

0

1
( ), ( ) , ( )

( )
r B r B r

r




 
  
 

 is also a perfect fluid sphere.     # 

In addition, solution generating theorem, as defined in theorem 1, is a “square 

root of unity” in the sense that 7 7 ,T T I  where I  is an identity. That is, when we apply 

theorem 1 twice, we obtain the initial perfect fluid spheres as the following [6-8] 

                7 7 0 0 0 0 0

0

1
: ( ), ( ) , ( ) ( ), ( ) .

( )
T T r B r B r r B r

r
 



 
 
 

          (3.9) 

After applying theorem 1 n-times, we can represent ( )r  as: 

          0

0

1
if isodd number,

( )( )

( ) if iseven number.

n
rr

r n








 



   

Theorem 2. (8th BVW transformation (T8)) Let 0 ( )r  be fixed and extend 0 ( )B r  to

0 0( ) ( ).B r Z r  Define 

0 2

0

d
( ) ,

( )

r r
Z r

B r
 
 

  
 

  

for arbitrary  and .   Then 

                  2 2 2 2 2 2

0 2 2 2

0 0 0

1
d ( ) d d d

( ) ( ) ( )
s r t r r

r B r Z r



      

is also a perfect fluid sphere. That is, the mapping of 

           8 0 0 0 0 0 0: ( ), ( ) ( ), ( ) ( ( ); )T r B r r B r Z B r r          (3.10) 

takes perfect fluid spheres into perfect fluid spheres. 

Proof Assume that  0 0( ), ( )r B r  satisfies equation (3.7). 
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We require that  0 0 0( ), ( ) ( )r B r Z r  is also a perfect fluid sphere. Therefore 

 0 0 0( ), ( ) ( )r B r Z r  must satisfies equation (3.7), i.e., 

      
 0 0 2

0 0 0 0 02 0,
B Z

B Z g B Z
r


     

where 
0

0

0

.g





  Expanding the above differential equation to 

            2

0 0 0 0 0 0 0 0 0 0 0 0 02 / / 2 0,B Z B Z B Z B Z r B Z r g B Z             

we can then rearrange terms to get 

        20
0 0 0 0 0 0 0 0 0 02 2 / 0.

B
B g B Z B Z B Z B Z r

r

 
          

 
         (3.11) 

By the above assumption, the first term in equation (3.11) vanishes and we have a linear 

homogeneous 2nd order ODE in terms of 0Z , 

0
0 0 0 02 0.

B
B Z B Z

r

 
     

 
            (3.12) 

Equation (3.12) can be solved in two steps. First, we use method of separation of 

variables to get 

   0 0

0 0

1
2 ,

Z B

Z B r

 
  


                     (3.13) 

followed by integration both sides of the equation (3.13) to obtain 

       0 0

0 0

1
d 2 d

Z B
r r

Z B r

  
   

  
   

          0 0

0 0

1 1 1
d 2 d dZ B r

Z B r
   

    

             
0 0ln 2ln ln lnZ B r       

         0 2

0

.
r

Z
B


     

Finally, integrating the above equation leads to 

0 2

0

( ) d ,
( )

r
Z r r

B r
               (3.14) 
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where   and   are the arbitrary integration constants.     # 

Definition 2. A transformation T is called “idempotent” if T T T , where the 

symbol  represents equality up to the relabeling of the parameters. In this sense, any 

theorem is idempotent if we apply the transformation more than once, with no further 

solutions being obtained.  

To see this, consider the mapping of theorem 2 

               8 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0: , , ( ; ) , ( ; ) ( ( ; )) ,T T B B Z B r B Z B r Z B Z B r         (3.15) 

where 1 2 2

0 0

d .
( ) ( )

r
Z r

B r Z r
       

When we apply the transformation of theorem 2 the second time, it does not lead 

to a new yield (no additional information). Therefore, theorem 2 is idempotent [6-8]. 

Having now found two solution generating theorems and the ordinary 

differential equation, this leads to a new corollary. 

Corollary 1. Let  0( ), ( )ar B r and  0( ), ( )br B r be perfect fluid spheres and let 

0 ( )r  be fixed. Then for real arbitrary constant , ,   

         0 , a bB B                    (3.16) 

is also a perfect fluid sphere. 

Proof  Suppose that  0( ), ( )ar B r  and  0( ), ( )br B r are perfect fluid spheres. 

Recall a linear homogeneous 2nd order ODE in terms of ( )B r ,  

written as 

            22 0.
B

B g B
r


                       (3.17) 

Then we obtain    

22 0,a
a a

B
B g B

r


                (3.18) 

and    22 0.b
b b

B
B g B

r


                 (3.19) 
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We want to show that  0 1( ), ( ) ,r B r  where 1( ) a bB r B B     solves equation 

(3.5). Since 

               
1

1

1

,

,

,

a b

a b

a b

B B B

B B B

B B B

 

 

 

 

   

   

 

we have 

2 2 21
1 12 2 2 ,a b

a b a b

B BB
B g B B B g B g B

r r r

 
   

 
                   

       2 2( 2 ) ( 2 ),a b
a a b b

B B
B g B B g B

r r
 

 
         

     0.          (by assumption) 

Hence,  0 , a bB B   is also a perfect fluid sphere.   # 

3.4 New theorems 

 We shall now present new theorems which can conveniently generate a large 

class of perfect fluid spheres. The new theorems have the same technique as [6-8, 12, 

13]. In section 3.4.1, we offer the new theorems by composing 7T  and 8T , then we 

analyze the property of these perfect fluid spheres. In section 3.4.2, we introduce a new 

technique of finding a new solution that is also in the form of a perfect fluid sphere.   

3.4.1 The new theorem of two linking theorems 

 The solution generating theorem we shall present is slightly different from those 

developed so far. We can also simultaneously apply 7T  and 8T . So, the transformation 

can be represented as: 

Theorem 3. Suppose that  0 0( ), ( )r B r  is an initial perfect fluid sphere. Let 0 ( )r and 

0 ( )B r  be changed to
0

1

( )r
 and 0 0( ) ( ),B r Z r  respectively. Define 

    
0 2

0

( ) d ,
( )

r
Z r r

B r
 
 

  
 

                        (3.20) 

for arbitrary  and .  The transformation 
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               9 0 0 0 0 0

0

1
: ( ), ( ) , ( ) ( ( ); )

( )
T r B r B r Z B r r

r




 
 
 

                    (3.21) 

maps perfect fluid spheres into perfect fluid spheres. 

Proof. We shall transform  0 0( ), ( )r B r  to  1 1( ), ( ) .r B r  

 Let 1

0

1
( )

( )
r

r



  and 1 0 0( ) ( ) ( ).B r B r Z r  

Then 1 02

0

1
, 


     which implies that 

0 01
02

1 0 0

.
 


  

 
      

Also we have 

           1 0 0 0 0 ,B B Z Z B     and 1 0 0 0 0 0 02 .B B Z B Z B Z        

 If  1 1( ), ( )r B r  would be a perfect fluid sphere, it has to satisfy perfect fluid 

constraint in equation (3.5), i.e., 

    

2

1 1 1

1 1

/
.

2

B B r

B





   
 

 
   

 So we have 

        
2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

2
,

2 2

B Z B Z B Z B Z Z B

B Z rB Z





         
   
 

  

then 

                0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

/
,

2 2 2 2 2

B B r Z B Z B Z B

B Z B Z B rZ rB

       
       

 and therefore 

          0 0 0 0

0 0 0 0

0.
2 2

Z B Z Z

Z B Z rZ

   
    

 Multiplying the above equation by 02 ,Z  we get 

         0 0 0
0

0

2
,

Z B Z
Z

r B

  
    

  and        0 0

0 0

21
.

Z B

Z r B

 
 


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 Integrating twice on both sides of the above equation, we eventually have 

    
0 2

0

( ) d .
( )

r
Z r r

B r
 
 

  
 

     # 

We can see that the term 0 ( )Z r  has the same as theorem 2. Now, we verify 

           9 9 0 0 0 0 0 0 0 0 0 1 0 0 0

0

1
: , , ( ; ) , ( ; ) ( ( ; )) ,T T B B Z B r B Z B r Z B Z B r 



 
 
 

    (3.22) 

where 1 2 2

0 0

d .
( ) ( )

r
Z r

B r Z r
      

 When we apply 9T  once, ( )r  perpetually changes. Therefore, after applying 9T  

n-times, the function ( )r  has the same result as 7T . Therefore, 9T  is not idempotent. 

3.4.2 A new technique for generating perfect fluid spheres 

 There are several techniques to solve for the solutions, which can be applied in 

the classification of a large class of perfect fluid spheres. In this framework, we focus 

on the isotropic coordinates. We present a technique to expand a new solution generating 

theorem based on using the assumption of perfect fluid spheres, which implies an 

ordinary differential equation as following [6-8, 14]: 

         

2

/
.

2

B B r

B





    
 

 
                    (3.23) 

 Let 
( )

( ) ,
( )

r
g r

r






  we can find that 

          ( ) exp ( )d ,r g r r               

equation (3.23) becomes 

       2 /
( )

2

B B r
g r

B

 
              (3.24) 

or    
/

( ) .
2

B B r
g r

B

 
             (3.25) 
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Therefore, 

                
/

( ) exp d .
2

B B r
r r

B


  
   

 
                         (3.26) 

From equation (3.25), we obtain 

              2/ 2 ( ) 0.B B r g r B                (3.27) 

Now, let 
( )

( ) .
2 ( )

B r
h r

B r


  We can find that 

         ( ) exp 2 ( )d .B r h r r             (3.28) 

Differentiate ( )h r  we get 

      
2

1 ( ) ( ) ( ) ( )
( )

2 ( )

B r B r B r B r
h r

B r

   
   

 
 

    

2

( ) 1 ( )

2 ( ) 2 ( )

B r B r

B r B r

  
   

 
  

     2( )
2 ( ).

2 ( )

B r
h r

B r


      

Therefore, we get 

    2( )
( ) 2 ( ).

2 ( )

B r
h r h r

B r


               (3.29) 

From equation (3.24) the above steps have led to a new equation 

               2 2( ) 2 ( ) ( ) ( ) / .g r h r h r h r r                          (3.30) 

Definition 3. The general Riccati equation can be written in the form  

       2

0 1 2( ) ( ) ( ) ( ) ( ) ( ),y x q x q x y x q x y x      

for arbitrary function 0 ( ),q x 1( ),q x  and 2 ( ).q x  Without knowing a solution, we shall 

need a particular solution to solve the Riccati equation. If we are given a particular 

solution 0 ( ),y x  then the general solution is obtained as 

      
  

  
2 0 1

0

2 2 0 1

exp 2 ( ) ( ) ( ) d
( ) ( ) ,

1 ( )exp 2 ( ) ( ) ( ) d d

k q x y x q x r
y x y x

k q x q x y x q x r r


 

 



 
 

for a real arbitrary constant [6, 11, 27, 28].  
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 Using equation (3.30), we can rearrange it into the form of the Riccati equation 

          2 21
( ) ( ) ( ) 2 ( ),h r g r h r h r

r
                (3.31) 

where 2

0 0( ) ( ),q r g r  
1

1
( ) ,q r

r
  and 2( ) 2.q r    

 Through the algorithmic solving of the Riccati equation, if we know an initial 

solution (i.e. one particular solution) then we can derive its general solution [27]. 

 Let  0 0( ), ( )g r h r  be a known solution of equation (3.31). 

Then 

          2 2

0 0 0 0

1
( ) ( ) ( ) 2 ( ),h r g r h r h r

r
                (3.32) 

 Assume the general solution 

      
0

1
( ) ( ) ,

( )
h r h r

z r
                        (3.33) 

 where 0 ( )h r  is a particular solution of the Riccati differential equation, which 

satisfies the equation  

        
2

0 1 2( ) ( ) ( ) ( ) ( ) ( ).h r q r q r h r q r h r               (3.34) 

 Substituting 0

1
( ) ( )

( )
h r h r

z r
   in equation (3.34) 

                 

2

0 0 1 0 0

1 1 1
( ) ( ) ( ) ( ) 2 ( )

( ) ( ) ( )
h r q r q r h r h r

z r z r z r

     
          

     
 

      2 01
0 0 1 0 02 2

( )( )1 1
( ) ( ) ( ) ( ) ( ) 2 ( ) 2

( ) ( ) ( ) ( )

h rq r
h r z r q r q r h r h r

z r z r z r z r

   
           

   
    

     201
0 1 0 0 02 2

( )( )1 2
( ) 4 ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

h rq r
z r q r q r h r h r h r

z r z r z r z r
           (3.35) 

 From the first assumption, we get the right hand side of the equation equals to 

zero and equation (3.35) becomes 

       
 1 0

2 2

( ) 4 ( )1 2
( ) .

( ) ( ) ( )

q r h r
z r

z r z r z r


               (3.36) 

 Multiplying equation (3.36) by 
2 ( ),z r  we obtain it to be 
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    1 0( ) ( ) 4 ( ) ( ) 2,z r q r h r z r                (3.37) 

where ( )z r  is the general solution of the first order linear differential equation. 

 On the other hand, we regroup the equation in terms of  
0 ( ),g r  where 

           2 2

0

1
( ) ( ) ( ) 2 ( ).g r h r h r h r

r
              (3.39) 

 Assuming that ( )g r  is a solution of the above equation, 

           2 21
( ) ( ) ( ) 2 ( ).g r h r h r h r

r
              (3.40) 

 Let us extend ( )g r  to 0( ) ( )g r g r  such that 0( ) ( )g r g r  is a solution of 

equation (3.40). Then we substitute 0( ) ( )g r g r  into equation (3.40), taking us to 

      
2

2

0

1
( ) ( ) ( ) ( ) 2 ( )g r g r h r h r h r

r

      

       2 2 2

0 0

1
( ) 2 ( ) ( ) ( ) ( ) ( ) 2 ( )g r g r g r g r h r h r h r

r

        

 Based on the first assumption of equation (3.39), we can derive it as 

    
2

02 ( ) ( ) ( ) 0.g r g r g r      

 For *( ) 0,g r   we obtain 

     
*

0( ) 2 ( )g r g r   

                       
*

0 0( ) ( ) ( )g r g r g r                  (3.41) 

Therefore, the above expression suggests that, if we have  0 0( ), ( )g r h r  as a 

perfect fluid sphere, then 0 0

1
( ), ( )

( )
g r h r

z r

 
  
 

 is also a perfect fluid sphere, where 

1

( )z r
 can be solved from equation (3.37).  

 Next, let us start with the initial solution  0 0

1
( ), ( ) 2 ,1 .g r h r

r

  
  
  

 

 Substituting 
1

1
( )q r

r
  and 0 ( ) 1h r   into equation (3.37) as 

    
1

( ) 4 ( ) 2,z r z r
r

 
    

 
            (3.42) 
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which is a first order linear inhomogeneous ODE. Then we can solve it using the 

integrating factor method, 

        ln 4 ln 4
( ) 2 d .

r r r r
z r e e r

  
   

Therefore, we get 

             
1 1

( ) .
2 8

z r c
r

                  (3.43) 

We choose 0c   as an example.  

Consequently, the function ( )h r  is equal to 

                
0

1 1
( ) 1 .

1 1( )

2 8

h r
z r

r

  



  

Hence,  

                  
1 4

( ) .
1 4

r
h r

r





             (3.44) 

 Consider equation (3.41), 

            0( ) 2 ( ).g r g r    

That is the function ( )g r  is equal to 

      0 0

1
( ) ( ) ( ) 2 .g r g r g r

r

                  (3.45) 

From  ( ) exp ( )d ,r g r r    we obtain 

          
1

( ) exp 2 d .r r
r


 

    
 
              (3.46) 

Next, we consider in term 
1

2 d .r
r

  Integrating by part,  

let 
1

2 ,u
r

   then 
2

1
d ,

1
2 2

u

r
r





 

and d d ,v r  then .v r  Therefore, 
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1

2

1 1 1
2 d 2 d

1
2 2

r r r r c
r r

r
r

 
 
     
 

 
 

   

      
1

2

1 1
2 d

2 2
r r c

r r r
   


  

      1
2 2

1 1
2 d

1 1
2 2

4 4

r r c
r

r

   
    

     
     

  

      
1

2 2

1 1 1 1
2 d

42 2 1 1

4 4

r r c
r

r

 
     

    
    

   

  

            

2 2

2

1 1 1 1 1
2 ln

4 4 42 2
r r r c

r

     
            

     
 

      
2

2

1 1 1
2 ln

4 22 2

r
r r r c

r

 
       

 
 

         3

1 1 2
2 ln 4 1 2 4

2 2
r r r c

r r
        

       3

2
ln 4 2 4 1

1
2 .

2 2

r
r

r c
r

 
   

 
     

Finally, we have 

    1

2
ln 4 2 4 1

1
( ) exp 2 ,

2 2

r
r

r r
r

 

    
                  
  
  

  

          (3.47) 

and  

     
1 4

( ) exp 2 d
1 4

r
B r r

r

 
  

 
  
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2

exp 2 1 d
1 4

r
r

  
   

  
  

                2exp ln 4 1 2 .r r                  (3.48) 

as required, where 1,  and 2  are arbitrary constants.   

3.5 Maple program: GRTensor program  

 In this section, we introduce some Maple programs to explain the basics of 

general relativity. The feature of GRTensor is a package specially built to deal with GR. 

In addition, we also use package of GRTensor with an example and verify a perfect fluid. 

Particularly, we built the solution of the Einstein field equation in isotropic coordinates. 

Furthermore, we also describe how one can use Maple and GRTensor for general 

relativity [6-8, 29].  

3.5.1 Using maple and GRTensor 

 GRTensor is built as a package in the Maple platform as a special set of libraries. 

It deal with tensors and other geometric objects in general relativity. In this section, we 

present some of the main features offered by GRTensor. 

3.5.2 Examples and the application of theorem 3 

 For the application with general relativity, we have based it on the Einstein field 

equation. Currently, there is an exact solution to the equation. We shall show the 

examples when we apply theorem 3 to some perfect fluid spheres, based on isotropic 

coordinates. We have derived theorem 3 by linking the two related theorems, 7T  and 8.T  

Furthermore, we have investigated these perfect fluid spheres, which can transform into 

a new solution or the initial solution. For example, we bring the solution of Minkowski 

and apply it with theorem 3 using the program Maple. In addition, for the other metric 

of S1 and K-O III, we can see the codes of the program in appendix A. Parts of the 

program code can be represented as follows;  

 Minkowski Metric 

 It takes the form 
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        2 2 2 2 2 2 2 2d d d d sin d .s t r r r                   (3.49) 

 There is a maple code for applying the Minkowski metric based on the following 

 

> #----------------------------------- 

# The new theorem of two linking theorems  

 (applied to Minkowski metric) 

#----------------------------------- 
restart; 

  with(tensor);[Christoffel1, Christoffel2, Einstein, 

Jacobian,   Killing_eqns, Levi_Civita, Lie_diff, Ricci, 

Ricciscalar, Riemann, RiemannF, Weyl, act, 

antisymmetrize, change_basis, commutator, compare, conj, 

connexF, contract, convertNP, cov_diff, create, d1metric, 

d2metric, directional_diff, displayGR, display_allGR, 

dual, entermetric, exterior_diff, exterior_prod, frame, 

geodesic_eqns, get_char, get_compts, get_rank, init, 

invars, invert, lin_com, lower, npcurve, npspin, 

partial_diff, permute_indices, petrov, prod, raise, 

symmetrize, tensorsGR, transform]; 

 coords:=[t,r,theta,phi];  

 
> #--------------------------- 

# Seed metric (initial solution) 

#--------------------------- 

 zeta0(r):=1; 

 

> B0(r):=1; 

 

> # Minkowski metric 

#------------------------------------ 

# Theorem 0: checking the metric is a perfect fluid 

#------------------------------------- 

 g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-zeta0(r)^2: 

 g[2,2]:=1/B0(r): 

 g[3,3]:=r^2: 
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 g[4,4]:=(r^2)*sin(theta)^2: 

 metric:=create([-1,-1], eval(g)); 

 

> tensorsGR(coords,metric,contra_metric,’det_met’, C1, 

C2, Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 

 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

 simplify(Gthth-Gphph);  

# consistency check --- To verify a perfect fluid sphere, 

this should be zero! 

 

> dp0:=numer(simplify(Grr-Gthth));  

# checking a perfect fluid 

 

> #------------------------------------ 

  # Theorem 3: B0->B1=B0*Z0; 

  #------------------------------------ 

 Z0(r):=sigma + epsilon*int(r/(B0(r)^2),r); 

 

> B1(r):=B0(r)*Z0(r); 

 

> zeta1(r):=1/zeta0(r); 

 

> g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-1/(zeta0(r)^2): 

 g[2,2]:=zeta0(r)^2/(B0(r)^2): 

 g[3,3]:=r^2*zeta0(r)^2/(B0(r)^2): 

 g[4,4]:=r^2*(sin(theta))^2*zeta0(r)^2/(B0(r)^2): 

 metric:=create([-1,-1], eval(g)); 

 

> tensorsGR(coords,metric,contra_metric,’det_met’, C1, 

C2, Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 
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 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

 simplify(Gthth-Gphph);  

# consistency check --- For statisfying the perfect fluid 

constraint, this must be equal to zero! 

 

> dp1:=numer(simplify(Grr-Gthth)); 

 

>  #------------------------------------------------  

   #CONCLUSION: Theorem 3 with a Minkowski seed gives  

                the Minkowski. 

   #------------------------------------------------ 

>  # END OF PROOFS. 

 #----------------------------------------------------- 

 # END WORKSHEET 

 #----------------------------------------------------- 
>  

 When we apply theorem 3 with the Minkowski metric, the output solution is the 

same as the initial solution. In addition, when we apply this theorem with the S1 and K-

O III metrics, we derive a new solution, which is a perfect fluid sphere (See appendix 

A). 

 This section describes a way in which some simple computer programs in Maple 

and GRTensor can be used in general relativity. It shows that the speed of learning the 

main concepts in general relativity can be increased by avoiding large hand computation 

steps and a lot of errors or typos.  

3.6 Conclusion 

 In this chapter, we focused on isotropic coordinates for extending a class of 

several new solutions. We analyzed the relationship between the solution generating 

theorems that map perfect fluid spheres into perfect fluid spheres. These theorems have 

led us to a new corollary and some additional properties. In addition, we have also 

presented two new solution generating theorems. The first theorem, we have derived by 

applying 7T  and 8T . Furthermore, we also investigated the idempotent property of this 

theorem. In addition, we obtained the new theorem using a new technique. In the last 

section, we applied theorem 3 with some example solutions such as Minkowski, S1, and 

K-O III in the GRTensor package of Maple. Consequently, when we apply this theorem 
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on a known perfect fluid sphere, the solutions are often given as the same initial solution 

or an obtained new solution. 
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Chapter 4  

The TOV equation in isotropic coordinates 

 Following the previous chapter, we recommend an applied technique, which is 

a simple method in finding solutions, thus called “the solution generating theorems”. 

We have also presented new theorems for the generation of perfect fluid spheres in 

isotropic coordinates. These theorems are even more helpful in classifying a large class 

of perfect fluid spheres.  

 In the present chapter, we shall explain the use of the TOV equation in isotropic 

coordinates. We shall first describe in general the TOV equation.  

 Earlier, the Einstein field equation was denoted by the terms stress energy tensor, 

such that the equation was a variable of the functions of pressure and density. Karl 

Schwarzschild was the physicist who found and published the first exact solution to the 

Einstein field equation in 1916. This solution is called as the “Schwarzschild solution”, 

which describes the gravitational field outside a static spherically symmetric object. 

Therefore, the Schwarzschild solution is a useful approximation for describing slowly 

rotating astronomical objects such as many stars and planets. The Tolman-

Oppenheimer-Volkov equation attempts to find the solution inside a static spherically 

symmetric object. In order for the solution to have continuity within the surface, the 

TOV equation explains the interior structure of the static perfect fluid spheres.  

 
Figure 4.1: The TOV equation describes the deflected spectacle of a neutron star, 

including the density and pressure profile [30]. 
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 Chapter 4 is composed of the TOV equation in isotropic coordinates, the main 

theorems of the TOV equation, and the modified TOV equation. We will express each 

topic in more detail. 

4.1 The characteristic of the TOV equation in isotropic coordinates 

 In chapter 3, the solution can be written in the form of spacetime ( 2ds ). However, 

in this current study, our main focus is the isotropic coordinates. The solution can 

thereby also be expressed using the TOV equation. The TOV equation for isotropic 

coordinates can be represented by [6, 11]: 

           2 2 2 2 2 2

2 2

1
d ( ) d d d .

( ) ( )
s r t r r

r B r



                           (4.1) 

 The metric tensor and inverse metric tensor can be written as 

  

2

2 2

2

2 2

2 2

2 2

( ) 0 0 0

1
0 0 0

( ) ( )

,
0 0 0

( ) ( )

sin
0 0 0

( ) ( )

r

r B r

g r

r B r

r

r B r













 
 
 
 
 

  
 
 
 
 
   

  

2

2 2

2 2

2

2 2

2 2

1

( )

( ) ( )

( ) ( )

( ) ( )

sin

r

r B r

g r B r

r

r B r

r













 
 
 
 
 
 
 
 
 
   . 

 Considering the stress energy tensor, 
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2

2 2

2

2 2

2 2

2 2

( ) 0 0 0

0 0 0
( ) ( )

.
0 0 0

( ) ( )

sin
0 0 0

( ) ( )

r

p

r B r

T pr

r B r

pr

r B r



 









 
 
 
 
 

  
 
 
 
 
 

 

 Then we get 

         

  2 2 2 2

2 2

2 2

2

2 2

2 2

( ) ( ) ( ) ( ) ,

( ) ( ) ,

( ) ( )
,

( ) ( )
.

sin

tt tt tt

tt

rr rr rr

rr

T g g T r r r r

T g g T r B r p

r B r
T g g T p

r

r B r
T g g T p

r

  



  



     









      

 

 

 

  

Definition 4. (Conservation of energy and momentum). A rule in physics, the total 

energy momentum 4-vector of a system of particles not acted upon by external 

forces is constant in measure and direction irrespective of any reactions among 

the parts of the system. That is [4], 

0.T 

     

 Consider the conservation of momentum [1, 5, 10]; 0.T 

   

Since the metric is nontrivial, .v r  

 Then 

  ,r r rT T T T    

         

                 0 ,rr rr r tt r rr r r

r r tt rrT T T T T T  

  
           

                   .rr t r rr r tt r rr r r

r tr rr r r tt rrT T T T T T   

   
               

 The Christoffel symbols can be defined by 

        
1

.
2

g g g
g

x x x

   

   

   
    

   
 

 We derive the Christoffel symbols as shown below; 
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 ( )

( )

t

tr

r

r






   

 ( ) ( )

( ) ( )

r

rr

B r r

B r r





 
     

 1 ( ) ( )

( ) ( )
r

B r r

r B r r








 
     

 1 ( ) ( )

( ) ( )
r

B r r

r B r r








 
     

 3 2( ) ( ) ( )r

tt r B r r     

 
2 2( ) ( )

( ) ( )
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2 2

2 2( ) ( )
2 ( ) ( ) ( ) ( ) ( ) ( ) .
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  

 
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Therefore, 

  2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.
p

r B r r r B r r r B r p
r

     


   
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 Finally, we obtain 

               
d (

d
.

)

( )

p r
p

r r







                         (4.2) 

Let us set ( ) exp( ( )d ).r g r r    

Define an auxiliary function ( )g r  is defined to be [11] 

 

3

2

( ) 4 ( )
( ) .

1 2 ( ) /

m r p r r
g r

r m r r





 

Hence, directly 

       
 

 

3

2

( ) ( ) ( ) 4 ( )d ( )
;

d 1 2 ( ) /

r p r m r p r rp r

r r m r r

     


                         (4.3) 

             2d ( )
4 ( ) .

d

m r
r r

r
                         (4.4) 

 The equations (4.3) and (4.4), called the “TOV equation” in isotropic 

coordinates, describes the internal structure of general relativistic static perfect fluid 

spheres. The significance of the TOV equation is associated with the constraints in 

studying the interior structures. 

 We can see that it gives the same results as the TOV equations using the 

Schwarzschild metric as in [31]. Because the TOV equation describes the interior of 

stars in terms of pressure and density, they are considered as the real measures. 

Regardless of the changing coordinates, the form of the TOV equation is not different. 

Therefore, we can apply the theorems of the TOV equation with the Schwarzschild 

coordinates and the isotropic coordinates together. 

4.2 The main theorems of the TOV equation 

 We now study the main theorems of the TOV equation. Having already found 

the solution generating theorems in isotropic coordinates, we can then derive these 
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theorems directly in terms of the pressure and density profiles, ( )p r  and ( )r , which are 

useful in generating the interior solutions for perfect fluid spheres [6, 11]. 

Theorem 4. (P1) Defines an auxiliary function 0 ( )g r  by 

 

3

0 0
0 2

0

( ) 4 ( )
( ) .

1 2 ( ) /

m r p r r
g r

r m r r





                                  (4.5) 

Then the general solution to the TOV equation is given by 0( ) ( ) ( ),p r p r p r    where 

               
 

 
0 0

0

0
0 0

0

1 2 / exp 2 d

( ) ,

1 4 exp 2 d
1 2 /

r

c

r r

c

p m r g r
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r

p g dr r
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




 



 




 
                 (4.6) 

and cp  is the shift in the central pressure. 

Proof. From the TOV equation (4.3), we can see that 

        
 

 
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We can see that the above equation to be the Riccati equation. 

 The general solution ( )p r  of the TOV equation is 0( ) ( ) ( ),p r p r p r   where 

0 ( )p r  is a particular solution. 

 Therefore, the function ( )p r  is equal to 
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             (4.7) 

 Next, we will simplify the term of 
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Solving the above equation by substitution; 01 2 / ,u m r   
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u r

r
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r
   then we obtain 
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This leads us to the following equation 

           0
0 2

1
4 d d d .

2

m
r r r u

r
                   (4.8) 

 Therefore, 
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 So that 
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 Hence, from equation (4.7) 
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 To find the constant k , we must apply the boundary condition (0) cp p  at 0.r   

We can consider the limits of integration from 0 to r as 
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where 0

0

2 ( )
lim
r

m r

r

 approach to zero.  

Using the fundamentals theorem of calculus, the integrals go to zero. 

We can directly use mathematical methods to solve the equation (4.11), to obtain 

      .ck p   

 Consequently, 
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as required. 

Theorem 5. (P2) Defines an auxiliary function 0 ( )g r  by 
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Then the general solution to the TOV equation is given by 0( ) ( ) ( )p r p r p r   and

0( ) ( ) ( ),m r m r m r   where 
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Here, c  is the shift in the central density. Explicitly combining these formulae,  

we have 
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Proof. From equation (4.13), we can see that 

    2 3

0( ) ( ) 1 2 ( ) / 4 ( ) .m r g r r m r r p r r    

 Solving for ( )m r  we get 

          
2 3

0

0

( ) 4 ( )
( ) .

1 2 ( )

g r r p r r
m r

rg r





  

Considering 

   
 2 3

0

0

( ) 4 ( ) ( )
( ) ( )

1 2 ( )

g r r p r p r r
m r m r

rg r

 


 
 


 

 
2 3 3

0

0

( ) 4 ( ) 4 ( )

1 2 ( )

g r r p r r p r r

rg r

  



 

 
2 3 3

0

0 0

( ) 4 ( ) 4 ( )

1 2 ( ) 1 2 ( )

g r r p r r p r r

rg r rg r

 
 

 
 

Thus, 
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We substitute 
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 into equation (4.17), then 
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Substituting ( )m r  from equation (4.17) into equation (4.18), 
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 Then we consider the TOV equation (4.3) by adjusting the terms of pressure and 

density, so it can be written as 
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 Replacing ( )r  from equation (4.19) into equation (4.20), we have 
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 which leads to 
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 Given the boundary condition as (0) cp p   and taking integration on both 

sides from 0r   to r r , we get 
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Then 
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Finally, we get 
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4.3 The modified TOV equation 

 In this section, we shall introduce a new modified theorem for the TOV equation. 

We study the extension of the values of pressure, density, and mass of objects in order 

to analyze the arbitrary functions in terms of ,r  and how the form should be represented.   

Theorem 6. Let 0 ( )p r and 0 ( )r  solve the TOV equation, and hold 0 ( )g r  fixed, in the 

sense that 

   

3 3

0 0
0 2 2

0

( ) 4 ( ) ( ) 4 ( )
( ) .

1 2 ( ) / 1 2 ( ) /

m r p r r m r p r r
g r

r m r r r m r r

  
 

 
          (4.24) 

Then the general solution to the TOV equation is given by 0 0( ) ( ) ( ),p r Z r p r  

0 0( ) ( ) ( ),r A r r   and 0 0( ) ( ) ( ).m r B r m r  We define functions 0 ( )Z r and 0 ( )A r by  

        
( ) ( ) 0 0 0

0

0

( ) ( ) ( )
( ) d ,

( )

r r A r r g r
Z r e e r

p r

                              (4.25) 

where 
0 0

0
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( ) d ,

( )

r g r
r r
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
    and 
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0 0 2

0

( ) ( )
( ) ( ) ,

4 ( )

B r m r
A r B r

r r


                      (4.26) 

for all arbitrary 0 ( ).B r    

Proof.  From the TOV equation 
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                      (4.27) 

 Then we substitute 0 0( ) ( ) ( ),p r Z r p r 0 0( ) ( ) ( ),r A r r   
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and 0 0( ) ( ) ( )m r B r m r  into equation (4.28) to give 

                0 0
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 Expanding the above equation as: the left hand side is equal to  
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While the right hand side is  
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So, we get  
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 Accordingly, we can write the equation in the form 
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which is the first order linear non-homogeneous equation in terms of 0 ( ).Z r  

 We can solve for 0 ( )Z r  using the integrating factor method.  

Finally,   
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where 
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 Next, we consider 
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The extension of ( )m r  and ( ),r  in a more suggestive form, gives; 
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4.4 Conclusion 

 In this chapter, the Tolman-Oppenheimer-Volkov equation attempts to find the 

solution inside a static spherically symmetric object. In order for the solution to have 

continuity within the surface, the TOV equation explains the interior structure of static 

perfect fluid spheres. Furthermore, we can see that the TOV equation of isotropic 

coordinates gives the same results as the TOV equations of the Schwarzschild metric.

 We deformed these solutions into the TOV equation in terms of pressure and 

density, and developed a new modified theorem for the TOV equation.  
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Chapter 5  

Conclusion 

5.1 Conclusion and discussion 

This thesis has been written with the aim of making several physical concepts 

more comprehensible to people with a basic background in general relativity; especially 

concepts related to isotropic coordinates, perfect fluid spheres in general relativity, and 

the Tolman-Oppenheimer-Volkov equation. 

In chapter 2, we introduced the basic concepts of relativity, which consist of 

special and general relativity. In addition, we also presented the procedure for the 

calculation of the Einstein field equation. General relativity, as specified, defines the 

geometric property of spacetime. Einstein presented an equation that explains the 

fundamental interaction of gravitation called the “Einstein field equation”. Moreover, 

we also referred to a perfect fluid sphere in general relativity, in which it is used as an 

assumption to idealize models of stars. Then we derived a perfect fluid constraint such 

that imply us to ordinary differential equation. Perfect fluid spheres are simply 

developed as idealized models of stars. 

In chapter 3, we used the perfect fluid constraint to build several new exact 

solutions for any relativistic static perfect fluid sphere. In the descriptive approximation 

of stars, we made use of these solutions to analyze the realistic stars. Due to the 

coordinate systems of perfect fluid spheres in perspective, perfect fluid spheres in the 

isotropic coordinates forms about 35% of this research. A significant characteristic of 

isotropic coordinates is that the coefficients of radial and angular coordinates are equal. 

Therefore, we focus on these solutions in isotropic coordinates for extending several 

classes of new solutions. 

In fact, we have found a new relationship between the solution generating 

theorems that map perfect fluid spheres into perfect fluid spheres. According to theorem 

3, what we have presented is slightly different from the previous theorems. What we 

have done is simultaneously apply 7T  and 8T . So, the transformation can be represented 

as 
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 9 0 0 0 0

0

1
: ( ), ( ) , ( ) ( ) .

( )
T r B r B r Z r

r




 
 
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Furthermore, these theorems have also led us to some additional properties, 

which are idempotent property and the square root of unity. For the convenience in the 

investigation of perfect fluid spheres, we applied theorem 3 to some example solutions 

such as Minkowski, S1, and K-O III in the GRTensor package of Maple. 

Working with the previous theorems, we obtain a new corollary, which can be 

verified with all perfect fluid spheres in isotropic coordinates. Furthermore, 

 0 , a bB B    is also a perfect fluid sphere, for real arbitrary constant , .   

 We also specially constructed a new technique for the generation of perfect fluid 

spheres. The methodology used has additionally been considered in isotropic 

coordinates using the perfect fluid constraint. We have analyzed an ordinary differential 

equation, and have also developed a technical solution with the Riccati equation. Finally, 

we obtained the new functions of ( )r  and ( )B r  with respect to .r     

In chapter 4, we introduced the Tolman-Oppenheimer-Volkov equation. 

Previously, we established the solution inside a static spherically symmetric object. In 

order for the solution to have continuity within the surface, the TOV equation can be 

explained through the interior structure of static perfect fluid spheres, including the 

pressure and the density profiles. In this chapter, we found that the TOV equation in 

isotropic coordinates gives the same results as the TOV equations of the Schwarzschild 

metric. We deformed these solutions into the TOV equation in terms of pressure and 

density. Moreover, we developed a new modified theorem for the TOV equation to study 

the extension of the values of pressure, density, and mass of objects, which have all been 

expressed to be a part of this theorem. 

To summarize, we have found the relative transformation theorems that map 

perfect fluid spheres into perfect fluid spheres in isotropic coordinates. We analyzed the 

properties of perfect fluid spheres and derived a new theorem for the generation of exact 

solutions in isotropic coordinates. In addition, we also modified new solutions for the 

TOV equation, which directly provides information about the pressure and density 

profiles of general relativistic static perfect fluid spheres. 
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This thesis developed and provided a platform for a better understanding of 

isotropic coordinates and perfect fluid spheres in general relativity. Furthermore, we 

generated two new theorems for the construction of perfect fluid spheres in isotropic 

coordinates. 

5.2 Further interesting issues 

For a supplementary study of this thesis, we would like to 

 Extend the TOV equation in other coordinates. This will be done to generate 

several new theorems, which can be useful in learning physical meanings, 

including the pressure and density profiles of stars.  

 Study the physical meaning in terms of the temperature of realistic stars. It will 

be based on the TOV equation. 
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In chapter 3, we have already presented the application of theorem three with the 

Minkowski metric in the GRTensor package of Maple. Now, we shall apply this theorem 

with S1 and K-O III, respectively. This idea is obtained from [6-8]. 

 S1 

The form of metric S1 write to be 

         2 4 2 2 2 2 2 2 2d d d d sin d .s r t r r r         

> #----------------------------------- 

  # The new theorem of two linking theorems  

   (applied to S1 metric) 

  #----------------------------------- 

restart; 

with(tensor); 

[Christoffel1, Christoffel2, Einstein, Jacobian, 

Killing_eqns, Levi_Civita, Lie_diff, Ricci, Ricciscalar, 

Riemann, RiemannF, Weyl, act, antisymmetrize, 

change_basis, commutator, compare, conj, connexF, 

contract, convertNP, cov_diff, create, d1metric, 

d2metric, directional_diff, displayGR, display_allGR, 

dual, entermetric, exterior_diff, exterior_prod, frame, 

geodesic_eqns, get_char, get_compts, get_rank, init, 

invars, invert, lin_com, lower, npcurve, npspin, 

partial_diff, permute_indices, petrov, prod, raise, 

symmetrize, tensorsGR, transform]; 

coords:=[t,r,theta,phi];  

 

> #--------------------------- 

  # SEED metric (initial metric) 

  #--------------------------- 

  zeta0(r):=1/r^2; 

 

> B0(r):=1/r^2; 
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> # S1 seed 

  #------------------------------------ 

  # Theorem 0: check the seed is a perfect fluid 

  #------------------------------------- 

 g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-1/zeta0(r)^2: 

 g[2,2]:=zeta0(r)^2/B0(r)^2: 

 g[3,3]:=r^2*zeta0(r)^2/B0(r)^2: 

 g[4,4]:=(r^2)*sin(theta)^2*zeta0(r)^2/B0(r)^2: 

 metric:=create([-1,-1], eval(g)); 

 

> tensorsGR(coords,metric,contra_metric,’det_met’, C1, 

C2, Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 

 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

 simplify(Gthth-Gphph);  

# consistency check --- To verify a perfect fluid sphere, 

this should be zero! 

 

> dp0:=numer(simplify(Grr-Gthth));  

# checking a perfect fluid 

 

> #------------------------------------ 

  # Theorem 3: B0->B1=B0*Z0; 

  #------------------------------------ 

 Z0(r):=sigma + epsilon*int(r/(B0(r)^2),r); 

 

> B1(r):=B0(r)*Z0(r); 

 

> zeta1(r):=1/zeta0(r); 

 

> g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-1/(zeta1(r)^2): 

 g[2,2]:=zeta1(r)^2/(B1(r)^2): 
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 g[3,3]:=r^2*zeta1(r)^2/(B1(r)^2): 

 g[4,4]:=r^2*(sin(theta))^2*zeta1(r)^2/(B1(r)^2): 

metric:=create([-1,-1], eval(g)); 
> 

tensorsGR(coords,metric,contra_metric,’det_met’, C1, C2, 

Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 

 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

simplify(Gthth-Gphph);  

# consistency check --- For satisfying the perfect fluid 

constraint, this must be equal to zero! 
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> dp1:=numer(simplify(Grr-Gthth)); 

 

> #------------------------------------------------------  

  #CONCLUSION: Theorem 3 with an S1 seed gives  

           the new solution. 

  #------------------------------------------------------ 
> # END OF PROOFS. 

  #------------------------------------------------------ 

  # END WORKSHEET 

  #------------------------------------------------------ 
>  

 K-O III 

The metric K-O III has the form 

      
2

2 2 2 2 2 2 2 2 2d 1 d d d sin d ,s A ar t r r r              

where A  is a real arbitrary constant.   

> #----------------------------------- 

  # The new theorem of two linking theorems  

    (applied to K-O-III metric) 

  #----------------------------------- 

restart; 

with(tensor); 

[Christoffel1, Christoffel2, Einstein, Jacobian, 

Killing_eqns, Levi_Civita, Lie_diff, Ricci, Ricciscalar, 

Riemann, RiemannF, Weyl, act, antisymmetrize, 

change_basis, commutator, compare, conj, connexF, 

contract, convertNP, cov_diff, create, d1metric, 

d2metric, directional_diff, displayGR, display_allGR, 

dual, entermetric, exterior_diff, exterior_prod, frame, 

geodesic_eqns, get_char, get_compts, get_rank, init, 

invars, invert, lin_com, lower, npcurve, npspin, 

partial_diff, permute_indices, petrov, prod, raise, 

symmetrize, tensorsGR, transform]; 

coords:=[t,r,theta,phi]; 
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> #--------------------------- 

  # SEED metric (initial metric) 

  #--------------------------- 

 zeta0(r):=1/(1 + r^2/2); 

 

> B0(r):=1/(1 + r^2/2); 

 

> # K-O-III seed 

  #------------------------------------ 

  # Theorem 0: check the seed is a perfect fluid 

  #------------------------------------- 

 g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-1/zeta0(r)^2: 

 g[2,2]:=zeta0(r)^2/B0(r)^2: 

 g[3,3]:=r^2*zeta0(r)^2/B0(r)^2: 

 g[4,4]:=(r^2)*sin(theta)^2*zeta0(r)^2/B0(r)^2: 

 metric:=create([-1,-1], eval(g)); 

 

> tensorsGR(coords,metric,contra_metric,’det_met’, C1, 

C2, Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 

 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

 simplify(Gthth-Gphph);  

# consistency check --- To verify a perfect fluid sphere, 

this should be zero! 
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> dp0:=numer(simplify(Grr-Gthth));  

# checking a perfect fluid 

 

> #------------------------------------ 

  # Theorem 3: B0->B1=B0*Z0; 

  #------------------------------------ 

 Z0(r):=sigma + epsilon*int(r/(B0(r)^2),r); 

 

> B1(r):=B0(r)*Z0(r); 

 

> zeta1(r):=1/zeta0(r); 

 

> g:=array (symmetric, sparse, 1..4, 1..4): 

 g[1,1]:=-1/(zeta1(r)^2): 

 g[2,2]:=zeta1(r)^2/(B1(r)^2): 

 g[3,3]:=r^2*zeta1(r)^2/(B1(r)^2): 

 g[4,4]:=r^2*(sin(theta))^2*zeta1(r)^2/(B1(r)^2): 

 metric:=create([-1,-1], eval(g)); 
 

> tensorsGR(coords,metric,contra_metric,’det_met’, C1, 

C2, Rm, Rc, Rs, G, C); 

 Grr:=simplify(G[compts][2,2]/metric[compts][2,2]): 
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 Gthth:=simplify(G[compts][3,3]/metric[compts][3,3]): 

 Gphph:=simplify(G[compts][4,4]/metric[compts][4,4]): 

 simplify(Gthth-Gphph);  

# consistency check --- For satisfying the perfect fluid 

constraint, this must be equal to zero! 

 

> dp1:=numer(simplify(Grr-Gthth)); 

 

> #------------------------------------------------------  

  #CONCLUSION: Theorem 3 with an K-O-III seed gives the 

new solution. 

  #------------------------------------------------------ 
> # END OF PROOFS. 

  #------------------------------------------------------ 

  # END WORKSHEET 

  #------------------------------------------------------ 
>  
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