CHAPTER V CONCLUSIONS

5.1 Effect of molar ratios of TiO2 to AC

In summary, the major findings include;

- TiO₂/AC composite delayed the phase transformation from anatase to rutile phase in TiO₂.
- TiO₂/AC composite in the molar of 1:10 is the best catalyst for photocatalysis process.
- In the comparison of adsorption process, the efficiency of materials can be ordered as TiO₂/AC/N₂ > TiO₂/N₂ > TiO₂/O₂.
- Adsorption of 2-CP onto TiO₂/O₂ composite followed the Langmuir adsorption isotherm rather than the Freundlich adsorption isotherm.
- Adsorption of 2-CP onto TiO₂/AC/N₂ and TiO₂/N₂ composite followed the Freundlich adsorption isotherm rather than the Langmuir adsorption isotherm.
- In the 2-CP removal efficiency by irradiation process, the efficiency of materials can be ordered as $TiO_2/AC/N_2 \cong TiO_2/N_2 > TiO_2/O_2 \cong TiO_2/P-25$.
- In the determination of kinetic values by Langmuir- Hinshelwood model, all materials have insignificant difference in k_c value. The 2-CP removal efficiency depends on K_{2-CP} value, which can be ordered as TiO₂/AC/N₂ > TiO₂/N₂ > TiO₂/O₂ > TiO₂/P-25.

5.2 Effect of different calcinations temperature of TiO₂/N₂, TiO₂/AC/N₂, and AC/N₂ composite

In summary, the major findings include.

- TiO₂/AC composite in the molar ratio of TiO₂/AC/N₂ and TiO₂/N₂ delayed the phase transformation from anatase to rutile phase from 1100°C-1300°C.
- Photocatalytic reduction of 2-CP using TiO₂/N₂ and TiO₂/AC/N₂ composite followed the pseudo first-order kinetic pattern. The k_{obs} constant of TiO₂/N₂ and TiO₂/AC/N₂ in 500°C as calcinations temperature found to be 0.0149

and 0.0143 and the percentage of removal about 92.72 and 91.79, respectively.

5.3 Mineralization of 2-CP using TiO₂/AC/N₂ and TiO₂/N₂, composite

 In identifying 2-CP intermediate by TOC and GC/MS, there was no intermediate detected during the photocatalysis process using TiO₂/N₂ and TiO₂/AC/N₂. The 2-CP degradation using both materials tends to be a complete mineralization.

5.4 Outcomes from this research

- Obtain the new material, TiO₂/AC, for adsorption and photocatalysis process.
- Obtain the adsorption behavior of TiO₂/AC/N₂ and TiO₂/N₂
- Obtain the kinetic information during irradiation of 2-CP using TiO₂/AC/N₂ and TiO₂/N₂
- Obtain the performance in 2-CP degradation.

From the above knowledge, the proper nanocrystal TiO_2/AC composite can be synthesized and used for application in organic contaminants as presented in this work. The synthesized TiO_2/AC composite $(TiO_2/AC/N_2 \text{ and } TiO_2/N_2)$ nanoparticle were tested and they successfully removed 2-chlorophenol from synthetic wastewater.

5.5 Further research suggestions

- Developing a new type of TiO₂/AC composite with specific properties such as natural based AC.
- Investigating possibilities in applying this synthesized TiO₂/AC composite for heavy metal removal
- Applications of this synthesized TiO₂/AC composite for cleaning air pollution.
- Applications of this synthesized TiO₂/AC composite for soil remediation.