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CHAPTER 1

INTRODUCTION

1.1 Problems Identification and Objectives of Work

Identifying the actual geometrical frame of a 2-D structural object by Mul-
tispace Karhunen-Loeve transform (MKL) [7] cannot be easily achieved because
MKL supports only simple shapes. In addition, a number of eigenvectors must
be specified prior to the MKL transformation. This prior specifying process is
not feasible and impractical to automatically undertake when a given object is
complicated. In this study, we propose a new adaptive technique to overcome
these disadvantages by locally and recursively bifurcating the unsupervised clus-
tering self-organizing mapping (SOM) and Karhunen-Loeve transformation. The
number of eigenvectors can thus be determined during the geometrical frame iden-

tification process.

1.2 Scope of Work

The following conditions are considered in this study:

1. The real input data for testing are noiseless images of well-defined structural

objects. No dense objects are considered.



2. The synthetic input data for testing will be generated by some mathematic

functions.

The rest of this thesis is organized as follows. Chapter 2 reviews the literature.
Background knowledge such as SOM, KL, and MKL is briefly summarized in
Chapter 3. Chapter 4 describes the detail of the proposed geometrical frame
identification procedures. Chapter 5 shows our experimental results for both real
and synthetic data sets. Chapter 6 concludes the work and suggests some relevant

future work.



CHAPTER 2

LITERATURE REVIEW

Identifying the characteristic, structure, and features of a given set of data
is the most essential step prior to classification, recognition, and understanding
process. The identified features must preserve the nature of the data and the
irrelevant features should be excluded after the extraction process.

Several interesting techniques have been proposed. Rahul Singh, Vladimir
Cherkassky, and Nikolaos Papanikolopoulos [1] presented a method for obtaining
a skeletal description of planar sparse shapes by computing the principal curves of
the given data points considered as the extracted structure of data points. Their
method employed a minimum spanning tree to set the topology of the data points.
A piecewise approximation of the principal curve is used to link each node of the
topology. Thus, the connected curves represent the skeleton of given data points.
The method is an evolutionary computation of skeleton topology which is adaptive
during the iteration.

Derek C. Stanford and Adrian E. Raftery [2] proposed an automatic process of
detecting the curvilinear features in spatial point patterns with or without back-
ground noise using principal curves based clustering with parametric modeling of
noise and nonparametric modeling of a feature shape. The number of features and
the amount of smoothing are simultaneously determined by approximate Bayes

factors.



The application of principal curves for feature extraction was also studied by
Kegl and Krzyzak [3]. Their algorithm presented an automatic method to find
piecewise linear skeletons of the data points. This method is based on the previous
work of Kegl, Krzyzak, Linder, and Zeger [4] which are piecewise linear curves.
Their method consists of two main steps: finding skeleton topology of the dark
pixel (or called the character) and improving it.

Majid Altuwaijri and Magdy Bayoumi [5] proposed an skeletonization algo-
rithm for Arabic characters to be used in Arabic character recognition system.
They employed the ART2 network which is a self-organizing neural network for
the clustering of dark pixels of a character image. The skeleton is generated by
plotting the center of each cluster and linking adjacent clusters by straight lines.

Hichem Frigui and Raghu Krishnapuram [6] proposed Robust Competitive
Agglomeration (RCA) algorithm which combines the advantages of two major
of traditional clustering algorithms: hierarchical and partitional clustering tech-
niques. The advantage of hierarchical clustering is the number of clusters needs
not be specified a priori. On the other hand, this clustering considered the data
points in local processing. Thus, the information about the global knowledge such
as the shape or size of the cluster was lost. The outcome of this restriction is a
problem of separating overlapping clusters.” A cluster can be partitioned by using
either crisp or fuzzy clustering. The number of clusters must be specified prior to
the clustering process. This approach is sensitive to noise and outliers.

The Multispace Karhunen-Loeve transform (MKL) proposed by Cappelli, Maio,
and Maltoni [7] can extract frames of a given 2-dimensional object. The technique

is sensitive to the shape of an object which is unsuitable to apply to a complex



Figure 2.1: Two examples of frame identification using MKL. The lines represent
the frame of each object. (a) Character N which has a simple structure. (b) A

Thai character which has a complex structure.

Figure 2.2: The results of identifying the frame of character seven by MKL with

different pre-specified numbers of lines.

structural object. Figure 2.1(b) shows the result of MKL when it is used to extract
the frame of a Thai character. The extracted frame, denoted by lines, does not
conform with the natural structure of the character. In addition, the number of
lines must be specified prior to the extraction. A technique proposed by Perez and
Vidal can be used to identify the frame of a structural object [8]. However, the
technique is constrained by the pre-specified number of lines as those in MKL.
Figure 2.2 illustrates the different results of identifying the frame of character

seven with different numbers of lines.



CHAPTER 3

BACKGROUND KNOWLEDGE

An object consists of a set of vectors in a two dimensional space. To partition
this set of vector into clusters, the proposed technique employs SOM as a means
for defining the geometrical frame. The geometrical frame of each cluster is further
broken down by Karhunen-Loeve transformation. The number of clusters is not
pre-specified but is adaptively determined during the partitioning process. The
basic concepts of self-organizing mapping and Karhunen-Loeve transformation
are summarized in this chapter. As such we will review the concepts of MKL and

compare our proposed approach with the MKL.

3.1 Self-Organizing Maps (SOM)

The SOM learning process is based on the concept of representing a set of
data vectors by a neuron whose location among the data vectors is captured by
its synaptic weight vector. Let X be a currently selected data vector and W;
the weight vector of neuron i. Neuron ¢* is called a winner neuron with respect

to Xy, if its weight vector W, satisfies the following condition

Wi, — Xyl = ming |[W; — Xil| Wi i=1,...,n (3.1)



where n is the number of neuron. The winner neuron W, is updated with respect

to data vector X by this simple learning rule

W) = W (X, — W) (3.2)

%

where 7 is a learning rate.

3.2 Karhunen-Loeve transform (KL)

Karhunen-Loeve transformation is a popular technique for projecting a large
amount of data, which are derived from the patterns of interest, onto lower di-
mensional subspaces. The KL transformation is a powerful instrument for pattern
representation and compression. The KL yields the orthogonal basis functions as
the eigenvectors of the covariance matrix.

Let the set of input vector be x;,2=1,2,..., P of N dimensions. The covari-

ance matrix of the input data is

1 ¥/
A = — (Xi — C) (Xi — C)T (33)
= =1
P
1
cC = F - X; (34)

where c is the average vector. The matrix A can be written as the multiplication

of three matrices by means of single value decomposition [9] as follow:
A=UxSxUT (3.5)

where S is a diagonal matrix, with nonnegative diagonal elements in decreasing
order, U is a unitary matrix, and U7 is the transpose of U. We obtain the

eigenvectors and eigenvalues from the eigenvector e; which is a column vector



in U, and the eigenvalue \; which is a scalar in the diagonal of S, respectively.
Next, define a transformation matrix ¥ whose columns contain the eigenvector e;
corresponding to the m largest eigenvalue A;, 7 = 1,2,...,m. The reconstruction
is given by X = Wa where a is vector projection obtained from a = U'x.

This KL transformation is optimal [10]. The optimality is based on minimiz-
ing the mean squared error between the original vector and its reconstruction

corresponding to

]V
> X =MSE(x; — %), i=12,...,P (3.6)

j=m+1
The percentage mean-square reconstruction error ¢ is calculated by dividing
equation 3.6 by the sum of all the A’s eigenvalues:

N
Zj:m—i—l )\9

(=
Z;'V:I )‘j

3.3 Multispace Karhunen-Loeve transform (MKL)

A multispace generalization of the KL transform (which is called MKL) par-
titions a given pattern set into several subsets called subspaces. Each subspace
represents a subset of patterns that has similar characteristics, thus allowing more

selective features to be extracted. This method consists of two main steps:

1. Partition the given data into a set of initial subspaces. In fact, choosing
an unsuitable set of subspaces or applying inappropriate space-management
techniques could cause a severe performance degradation. This is because
any inappropriate partitioning may scatter the data into too many clusters

and the information on the natural structure of the data will be lost. Figure



3.1(a) and (b) demonstrate the initial partitions and the result of partition-
ing the spiral data by Iterative Removing method, respectively. While figure

3.1(c) and (d) are the initial and partitioning result of Self-Organizing Maps.

2. Improve the shape of each subspace by iterative optimizing method [7] based
on the percentage mean-square average reconstruction error & on the given
data. The percentage mean-square reconstruction error ¢ related to the KL

spaces S; is defined as follows:

/) Z?-l(P]iD' ¢(5i) (3.8)

3

where P is the number of given input vectors, P; is a vector of subspace S;, and

() is the number of subspaces.
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Figure 3.1: Examples of identifying the frames with different of the space-
management techniques. Each color represents one cluster. The extracted frames
are represented in yellow lines. (a)-and (b) are initial partition and final partition
resulted by Iterative Removing Method, respectively. (c) and (d) are initial and

final partitioning resulted by Self-Organizing Maps, respectively.



CHAPTER 4

GEOMETRICAL FRAME IDENTIFICATION

The proposed algorithm concerns only structural objects. The definition of
a structural object will be given in the next section. There are two main steps
required to identify the geometrical frame of a structural object. The first step is

to prepare the input data and the second step is to identify the frame.

(a) (b)

Figure 4.1: Some examples of structural and non-structural objects. (a) A struc-

tural object. (b) A non-structural ebject, dense object.

4.1 ~Structural Objects

Definition 1 A structural object is an object that can be bifurcated into a set of

sub-objects. Each sub-object must have the following properties.
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1. The direction of each sub-object can be represented by an eigenvector with
maximum eigenvalue obtained from the covariance matrix of all data in the

sub-object.

2. All data of the sub-object must gather along a line of the same dimension
passing through these data. The standard deviation of the distance between
each data and the line is less than or equal to the average distance among

all pairs of data in the sub-object.

Some examples of struetural and non-structural objects are shown in Figure
4.1. The object in Figure 4.1(a) is a structural object and it is bifurcatable into
several structural sub-objects. But the object in Figure 4.1(b) is not a structural
object since the object cannot be bifurcated into a set of sub-objects using the

constraints.

4.2 Preparation Input data for the Geometrical Frame

Identification

An object consists of a set of data points in a 2-dimensional space. The
input data are obtained in two ways, real data-and syntetic data. In case of real
data, we use an image of object whose one pixel corresponds to one point in the
cartesian coordinates. In case of syntetic data, the data are generated by using
some mathematics functions. Both types of data must be normalized without
deforming their original shapes for fitting the size of any input data within the
specified 2-dimensional area, regardless of its actual size. Figure 4.2 shows the

prepared data prior to the GFI computation. The image is a Thai character.
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(a) (b)

Figure 4.2: An example of given input image and its normalized result. (a) The

given image. (b) The normalized image in cartesian coordinates.

4.3 GFI computation

The identifying process starts with bifurcating a given object into two in-
dependent clusters, {cluster;|i € {1,2}}, using self-organizing mapping (SOM).
This process is to bifurcate the object into sub-objects and to find the local eigen-
vector of each sub-object. Each data point must belong to only one cluster. Then,
Karhunen-Loeve transformation is employed to identify the eigenvector with max-
imum eigenvalue of each cluster. This eigenvector identifies the possible principal
direction of the cluster. Then, a line drawn along this principal direction is used
as the first candidate frame line of the cluster.- Although, this approach sounds
reasonable, it-is infeasible in the real situation. The principal direction only states
the direction of the frame. It does not specify the proper location of the frame
line among the data points. In addition, the determination of accepting the shape
of the bifurcated cluster cannot be performed by this frame line. To resolve
this shape problem, four additional frame lines, namely framescp,, framescp,,

frameapp,, and frameapp,, are introduced to define the boundaries or the out-
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Figure 4.3: Two examples of acceptable and non-aceceptable shapes. (a) An ac-
ceptable shape defined by framescp,, framescn,, frameapp,, and frameapp,.
(b) A non-acceptable shape defined by framescp,, framescp,, frameapp,, and
frameapp,. ~(c)-and (d). framer,s and outskirts of a;cluster of (a) and (b)

respectively.
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skirts of the cluster. If the cluster is not acceptable then the cluster must be
further bifurcated. Figure 4.3 illustrates two examples of an acceptable shape
and a non-acceptable shape. The acceptable shape is illustrated in Figure 4.3(a).
In Figure 4.3(b), the shape is non-acceptable and the cluster must be further
bifurcated. The four additional frames are obtained from the principal frame line
by moving the principal frame line upward, downward, leftward, and rightward
with some statistical distances of the data points. The algorithms for computing

these statistical distances are as follows.

Algorithm CLUSTER_-AVG_SCATTER_DIST (cluster,)

1. begin
2. for each x; in cluster, do
3. let d; be the distance between x; and its nearest data point.

4.  compute average distance of all d;

. 1 |clusteral ;-
avgs = |clusterq| Zj:l dﬂ'

5. compute standard deviation of all d;
— 1 |clustera]
sty = ot S (ds — avge .

6. end

The values of avg, and std; are used for defining framescp, and framescp,
as the boundaries of ‘a cluster. The boundaries can be considered in terms of the

width ‘of the cluster which is defined by
Scatter Bound = avgs + n * std (4.1)

where a constant n is pre-determined to control the width of a cluster. Obviously,
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different values of n will produce different boundaries.
Algorithm AvG_PROJECTION_DIST (cluster,)

1. begin

2. for each x; in cluster, do

3. let d; be the distance between x; and its first principal frame.
4. compute average distance

o 1 |clusterq| ;-
avgp = |cluster,| ijl dJ'

5. end

The value of awvg, is used for defining framespp, and framespp, which
are parts of the boundaries of a cluster. These frames framegscp,, framescp,,
frameapp,, and frameapp, are computed to find outskirts of cluster, by these
rules. If avg, is greater than avg, then framegcp, and framescp, are used as
the outskirts otherwise frameaspp, and frame,pp, are used instead. The algo-
rithm for identifying the geometrical frame of a given object is explained in the

following.
Algorithm GEOMETRICALFRAMEIDENTIFICATION

1. begin

2. let a set- AceeptedClus = ¢.

3. Dbifurcate the given data into {cluster;]i € {1,2}}
using self-organizing mapping.

4.  for each cluster;,i = {1,2} do

5.  begin

6. the Karhunen-Loeve transformation is employed to identify the



17

eigenvector with maximum eigenvalue of cluster;. A line drawn in
the direction of this eigenvector is considered as the first principal frame

or called the candidate frame frameg;.s of cluster;

7. compute avg, and stdy of cluster;.
8. compute avg, of cluster;.
9. move the first principal frame by avgs and avg, up and down or left
and right and get framescp; and frameapp,, for j = {1,2}.
10.  compute outskirts of cluster;
11.  set Scatter Bound < avg; + n * std.
12. if average distance of each point on framey;,s; and outskirts
to its pair nearest point in cluster; < Scatter Bound
13. then
14. accept this framey;, s and cluster;
AcceptedClus = AcceptedClus U {cluster;}.
15.  else
16. recursively bifurcate cluster; by calling step 3.
17. endif
18.  end
19.  try to merge two adjacent clusters in AcceptedClus
and identify a new frame using steps 6 to-14.
20. end

The geometrical frame lines obtained by the GEOMETRICALFRAMEIDENTI-

FICATION algorithm may not conform with the natural geometrical frame of the

given object due to too many clusters. To correct the geometrical frame, a merging
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procedure must be introduced in step 19. Figure 4.4 shows an example of merg-
ing four cluster and re-identify the frames. Notice that the number of clusters are
gradually and adaptively determined during the identification process. There is

no need to pre-specified the number of clusters as in the other techniques.

.k (1)
- e .
: 0'..‘: :'.'.' ::
b i
ou® ofe®
% e
o o
[ ¥ o'.‘
. .
o’ o
. ’ v
Qf“ .c’:
° °

Figure 4.4: An example of merging some clusters and obtaining a new frame

better the previous frame. (a) before merge. (b) after merge.

Figure 4.5 shows the process of GEOMETRICALFRAMEIDENTIFICATION when
it is applied to a Thai character. The given original data in Figure 4.5(a) is bi-
furcated into two sub-objects shown in Figure 4.5 (b) and (c). Both figures are
non-acceptable shapes. Thus, they are recursively bifurcated into sub-objects is
illustrated in Figures 4.5 (d) and (e), respectively. On the other hand, if any sub-
objects are acceptable shapes then the new obtained clusters must be checked ad-
jacency for merging two adjacent clusters and identifying a new frame, if possible.

This process is recursively performed until all generated frames are acceptable.



19

- al > %
of 9
o |
of u

EREEE) m w @ @ w W W m b W w % m

ot e m ot
a of of a
o o C o

9 o | 9

- » sl » sl > 5
wf f af
| | a
Bl | a
o | | o
" 0w @ w0 w @ m w @ W " _giem wgk J® o 0w @ m w LT wowm w1 " 0w @ w0 w @ n w @ W

et 1 e et
a wf o o
af of o af
n | o n
a)f of ol B
> % > > 5l > %)

et 1 1 et
a of of af
o | o o
n ol | n
a)f « o B

Figure 4.5: A step-by-step of the process of GEOMETRICALFRAMEIDENTIFICA-

TION when it is applied to a Thai character.



CHAPTER 5

EXPERIMENTAL RESULTS

The performance of GFI is compared with the previous MKL method on both
the syntetic and real data sets in several fields of applications such as piecewise
linear approximation, feature extraction, and clustering. One important parame-
ter controlling the geometrical frame of an object is n which is defined in equation
4.1. If n is large then the geometrical frame will be deformed from its natural
frame and the detail of the frame is reduced. But if n is small then the geometri-
cal frame will approach its natural frame. Figure 5.1 shows an example of a sine

curve and its different geometrical frames generated from different values of n’s.

=0
AWANVANA N

Ny NN |

NN/NN

Figure 5.1: An example of a sine curve identified by using different values of n.

(a) A given sine curve. (b) When n = 0. (c) When n = 1. (d) When n = 2.
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5.1 Piecewise Linear Approximation

The representation of curves is an important issue in several fields such as
contour analysis, pattern classification, signal processing, and pattern recogni-
tion in general. We attempt to define and locate the set of points that give
the most appropriate description of the curve by finding a set of r straight lines
(y =a1 +bix), (y =as +bex), ..., (y = ar + byx) that optimally fit an ordered
set of N points (z1,v1), (72.%2), ..., (zn,yn). By the method of [8] and MKL, a
number of straight lines must be specified prior to obtaining the piecewise linear
approximation. This is not feasible and impractical to automatically determine

when a given object is complicated as in the case of a spiral shown in Figure 5.2.

(a) (b)

Figure 5.2: The piecewise linear approximation for spiral function. (a) MKL

result. (b) Our result.

Figure 5.2(a) which is the result of MKL cannot extract the natural frames
of a spiral because this algorithm globally considers the data. This implies that
several portions of data scattered at different locations may be assigned to the
same cluster. Our technique takes a different approach by considering only the

local features of the data.
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5.2 Feature Extraction

The feature extraction is a pre-processing of many applications such as image
processing, speech recognition, pattern classification and recognition. The goal of
feature extraction in image processing is to enhance and improve an input image
before other processing step. The identified frames of an object can be used to
represent the features of the object. Figure 5.3 demonstrates the feature extraction
of overlapped objects. In addition, two different types of data are tested. The first
type consists of five complex structured Thai characters illustrated in Figure 5.4.
The geometrical frames of these five characters are identified by MKL and our
techniques. The comparison results are summarized in Figure 5.4. The second
type is a set of isolated English characters bounded by a frame, e.g. a license
plate of a car. Figure 5.5 shows the result of frame identification by MKL and

our technique.

3

=
J ]

(a) (b)

Figure 5.3: The feature extraction of overlapped objects, (a) and (b) Our results.
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Figure 5.4: The feature extraction of Thai characters. (a) and (b) Our results.

(c) MKL result. (d),(e), and (f) Our results.
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Figure 5.5: The feature extraction of a sign board. (a) Given object.

result. (c¢) Our result.
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Figure 5.6: Comparison of clustering of capsules image data between MKL and

GFI. (a) Given data. (b) Clustering by MKL. (¢) Clustering by our techngiue.
5.3 Clustering

Cluster analysis is one of the popular tools for exploring the underlying struc-
ture of a given data set and is being applied in wide varieties of engineering
and scientific disciplines such as medicine, psychology, biology, sociology, pattern
recognition, and image processing. The general clustering problem has major two

issues:

1. determination of the number of groups in the clustering.

2. the shape of each group after the clustering.

The first issue can be managed by using the GFI because the number of eigen-
vectors is automatically determined during the GFI process. For the second issue,
the structure revealed by MKL is based on the global covariance of the data set
and only the global structure is defined to share the data points among these
clusters. Thus, the outcome of the technique may not preserve the natural geo-
metrical frame of all the relevant clusters. Figure 5.6 shows the clustering result

of the given capsule image data. Our technqiue produces the correct clustering.



CHAPTER 6

CONCLUSION

This work presents a new method for identifying geometrical frame of 2-D
structural objects using combination of SOM and KL which is based on the re-
cursive bifurcation technigque. The characteristic of our algorithm is local and
adaptive, the algorithm rests primarily on the eigenvector established according
to a predefined bound. This bound, in turn, can scatter to cover the object,
whereby forming a cover frame. This provides greater flexibility to control the
detail of the generated frame. In addition, the SOM learning process depends
on the order of selecting an input during the training. Different selecting orders
will lead the neurons to different locations which obviously generate the different
results. The algorithm can be applied to many applications such as piecewise
linear approximation, feature extraction, clustering, and image pre-processing. It
is, however, sensitive to noise and unevenly scattered data. In addition, the ap-
pearance of an obtained frame does not look natural as the principal curve does.
Thus, further development should concern the improvement of the appearance
which can be acheived by applying the spline interpolation to each bifurcated

sub-object, and the robustness with respect to noise and the sparseness of data.
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