[ v W

nsngmsutlasien lUnsnusuay

= =S
UNANEIIY 199

a a 4 s’c:y' 1 3 [ a a o a
eniwusiiluganvisesmsanmiaunangesisyaninemansuniiudia
AMNINARAAAT MAITIATAMAAT
AUZINGINAAT PNAINTAUNIINGAY

=S =4
1UNsANYT 2546
ISBN 974-17-3953-2

a a 4 a @
AVANTUYDIPWIANINIUNVINY1AY



ORDER-PRESERVING GENERALIZED TRANSFORMATION SEMIGROUPS

Miss Sawian Jaidee

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in-Mathematics
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2003
ISBN 974-17-3953-2



Thesis Title Order-preserving Generalized Transformation Semigroups

By Miss Sawian Jaidee
Field of study Mathematics
Thesis Advisor Associate Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master 's Degree

........................................................ Dean of Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

Thesis Committee

........................................................ Chairman

(Assistant Professor Patanee Udomkavanich , Ph.D.)

........................................................ Thesis Advisor

(Associate Professor Yupaporn Kemprasit, Ph.D.)

......................................................... Member

(Sajee Pianskool, Ph.D.)



won 19R ¢ Aengumaudaaieita lUisnesudy (ORDER-PRESERVING GENERALIZED
TRANSFORMATION SEMIGROUPS ) 0. /3w : 5¢1. as. gvinsel Wudszdnd $1maumih
33 i1 ISBN 974-17-3953-2

dwsuma X 1% P(X), T(X) uaz 1(X) unuiengdnsudasnedauun X fangumsutag
oy X uaziingdmsudasndmmiwenioun X awdwy s liifeia bvestengmsutas
waised  dmsuma X uazY W PX,Y)={a:A->Y|Ac X} TXX, Y)={aecP(XY)
ldoma =X} waz I(X,Y)={aePX Y)|ayiwonii } dwmsu 6e P(Y, X)
(P(X, Y), 8) ununangd (P(X, Y),*) Tas a+B=alf dmsunn o, B e P(X,Y) iilowia
ngl (T(X,Y), 0) Tag 0 € T(Y, X) uaz (I(X,Y), 8)las 6 I(Y, X) Tushwmaunsiiu

dwsnTman X W OP(X), OT(X) uaz OI(X) unudsngmsutasuduisnmsuduny
X fengdnsudesfuiisaesusuvon X sasfensdnisudasuiedumilsenilefisnmsuguun X
awdwy  dwmsulwee XuazY lag Id OP(X,Y)={a € P(X,Y)|a snwdudu } dwmsy
6 e OP(Y, X) 1% (OP(X, Y), &) ununangdl (OP(X, Y),*) Tasimuamsduiums « wudeafu
$ruvu wilewdang (OT(X, Y), 6) Tas 0. OT(Y, X) uaz (OI(X, Y), 6) Tas 6 € OI(Y, X)
TurueaReaiv

mm%?qﬁa"lﬂﬁgﬂuﬁi’ﬁuué’a &1 X dumasusunndau udr OP(X) uaz OI(X) iflufangl
Usnd  dwSuduma X ves Z dlddudan OT(X) ufengildsnd seluniniu dmsugae X
vou IR dilide OT(X) dunangulsnd fdedie X fhusalauasivevivn

[

Tums3sed slihanuseddiususninan Budaiedun#lunsvendnvas iuilelaiang)
(OP(X.Y), 6) Tas 6 e OP(Y, X) uaz nang (OI(X,Y), 8) Tas 6. OI(Y, X) Wuiengtlsnd

Tagit X uaz Y dusmsudunndn  swaashmaduaudaugiuves 0 Judenlvsuiuuazifisane
14éTﬂt?mi"unmﬂuﬂsﬁmaﬁm;ﬂméwﬁ wazmd i dnuazdeduiielanangy (OT(X,Y), ) Tav

6 e OT(Y, X) dufangtsnd  Taedt X uaz Y iumasugunndu TumsIidnuazil selil
movvesnnuiufsngiilsndves OT(X), X |, Y| uaz 6 snmaiidfundrsuiiceaagicudadu
°ﬂ°ﬂﬁ'mﬂﬁ’ﬁﬂymzﬁummwmﬂuﬁqnaﬂﬂsﬂﬁmaa (OT(X,Y), 9) Taoiie Xouaz Y fudvaaves Z
Sendnnnnimile wasderns X uar Youshawes IR Aamnsnunnnimiisdaannsalilumen
vos O waglumenved X uaz 6 awdiay ﬁ'q"lﬂﬂ’hifuﬁﬂﬁ’wqyijuwﬁuﬁmgmﬁﬁﬁu%mmam’j

un Tavft X uaz Y ifusesugunndin s ldTenlaiisuiluuaniivaneiien (OS(X,Y), 6) =

OS(X)  uazitedn (OS(X,Y), 6) = OS(Y) Tasii OS(X,Y) #e OP(X,Y), OT(X,Y) w3e

OI(X,Y) uaz 6 € OS(Y, X)

a a d i aa
MAIY AdAaNS AVIUOFDTIA e,
a A d A A S (=
SANRRE AR (G AL (k] AUDFDDINTINUT O e,
=} =1
MsAnNYT 2546



# # 4472474123 : MAJOR MATHEMATICS

KEY WORDS : REGULAR SEMIGROUPS, ORDER-PRESERVING GENERALIZED

TRANSFORMATION SEMIGROUPS
SAWIAN JAIDEE : ORDER-PRESERVING GENERALIZED TRANSFORMATION
SEMIGROUPS. THESIS ADVISOR : ASSOC. PROF. YUPAPORN KEMPRASIT, Ph.D.,
33 pp. ISBN 974-17-3953-2

Foraset X, let P(X), T(X) and I(X) denote respectively the partial
transformation semigroup on X, the full transformation semigroup on X and the
1-1 partial transformation semigroup on X. These transformation semigroups are
generalized as follows: For sets X and Y, let P(X,Y)={a:A—>Y|Ac X},
TX,Y)={aeP(XY)| doma=X} and I(X,Y)={aeP(XY)| aisl-1} For
0 € P(Y, X), let (P(X,Y), &) denote the semigroup (P(X,Y),*) where axp = adp for
all a, f € P(X,Y). The semigroups (T(X, Y), &) with 6 e T(Y, X) and (I(X, Y), 8) with
0 € I(Y, X) are defined similarly.

For a poset X, let OP(X), OT(X) and OI(X) denote the order-preserving
partial transformation semigroup on X, the full order-preserving transformation
semigroup on X and the order-preserving 1-1 partial transformation semigroup on X,
respectively. For any posets X and Y, let OP(X,Y)={a e P(X,Y)| a is order-
preserving }. For 8 € OP(Y, X), let (OP(X.,Y), 8) denote the semigroup (OP(X, Y),*)
where the operation = is defined as above. The semigroups (OT(X,Y), 8) with &
e OT(Y, X) and (OI(X,Y), ) with & < OI(Y, X) are defined similarly.

The following facts are known. If X isa chain, then OP(X) and OI(X) are
regular semigroups. For any nonempty subsets X of Z, OT(X) isregular. Moreover,
for a nonempty interval X of IR, OT(X) isregular ifandonly if X isclosed and
bounded.

In this research, the first known fact mentioned above is used to characterize
when the semigroup (OP(X, Y), #) with 8 € OP(Y, X) and the semigroup (OI(X, Y), )
with 6 € OI(Y, X) are regular where X and Y are chains. It is shown that being an
order-isomorphism of @ is mainly necessary and sufficient for regularity of these se-
migroups. We also characterize when the semigroup (OT(X,Y), 8) with 6 € OT(Y, X)
is regular where X and Y are chains. This characterization is given in terms of regulari-
ty of OT(X), |X|, |Y| and 6. Due tothe above second and third known results, the
characterizations of regularity of (OT(X,Y), #) when both X and Y are nontrivial
subsets of Z and when both X and Y are nontrivial intervals of IR can be given
respectively intermof € and in termsof X and 6. Here, anontrivial set means a set
containing more than one element. Moreover, some interesting isomorphism theorems
are provided where X and Y are chains. Necessary and sufficient conditions are
given for that (OS(X,Y), 8) = OS(X) and for that (OS(X,Y), 8) = OS(Y) where
OS(X,Y) is OP(X,Y), OT(X)Y) or OI(X,Y) and & e OS(Y, X).
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

For a set X, let | X| denote the cardinality of X. The identity mapping on a
nonempty set A is denoted by 14. The set of all integers and the set of all real
numbers are denoted by Z and R, respectively.

We call an element a of a semigroup S an idempotent of S if a*> = a and
S is said to be an idempotent semigroup or a band if every element of S is an
idempotent.

An element a of a semigroup S is said to be regular if a = aba for some b € S
and we call S a reqular semigroup if every element of S is regular. Therefore every
idempotent semigroup is regular.

The domain and the range of any mapping a will be denoted by dom « and
ran «, respectively. For an element x in the domain of a mapping «, the image
of a at x is written by xa. For any mappings a and 3, the composition af of «
and ( is defined as follows: aff = 0 if ran a N dom B = &, otherwise af is
the composition of &|qan o n dom Bja—1 A0 B (ran o 1 dom g Where 0 is the empty
transformation, that is, the mapping with empty domain. Then for mappings «;, 3

and vy, we have

dom(af) = (ran a Ndom B)a~! C dom «,
ran(af) = (ran a Ndom )5 C ran g,

z € dom(af) & x € dom « and xa € dom f3,

(@B)y = a(B).



For a set X, a partial transformation of X is a mapping from a subset of X
into X. Then the empty transformation 0 is a partial transformation of X. Let

P(X) be the set of all partial transformations of X, that is,

P(X)={a:A = X|ACX}

Then 14 € P(X) for every nonempty subset A of X. In particular, 1y € P(X).
Therefore under the composition of mappings, P(X) is a semigroup having 0 and
1x as its zero and identity, respectively. The semigroup P(X) is called the partial
transformation semigroup on X. By a transformation semigroup on X we mean
a subsemigroup of P(X).

By a transformation of X we mean a mapping of X into itself. Let T'(X) be

the set of all transformations of X. Then

T(X) = {a € P(X) | dom o = X}

which is a subsemigroup of P(X) containing 1x and it is called the full transfor-
mation semigroup on X.

Let I(X) denote the set of all 1-1 partial transformations of X, that is,

IX)2 {a € P(X) |a is1-1}.

Then I(X) is a subsemigroup of P(X) containing 0 and 1x and it is called the

1-1 partial transformation semigroup on X or the symmetric inverse semigroup
on X.

It is well-known that P(X), T(X) and I(X) are all regular for every set X ([2],

page 4).



For sets X and Y, let

PX,)Y)={a: A=Y | AC X},
T(X,)Y)={ae P(X,Y) | dom o = X},

[(X,Y)={aeP(X,Y) |« is 1-1}.

Note that P(X,X) = P(X), T(X,X) = T(X) and [(X,X) = I(X). For a
nonempty subset A of X and y € Y, let A, be the element of P(X,Y) with do-
main A and range {y}.

Let S(X,Y)be P(X,Y), T(X,Y)or I(X,Y). Forf € S(Y, X),let (S(X,Y),6)

denote the semigroup (S(X,Y),*) where the operation * is defined by
axf=abf forall o, f€S(X,Y).
We observe that S(X) = (S(X, X), 1x).

Example 1.1. Let X and Y be nonempty sets and @ € X. Then (T(X,Y),Y,)

is the semigroup T'(X,Y") with the operation * defined as follows:
axf=aY,p=X,; foralla, e€T(X,Y).
Also, (P(X,Y),Y,) is the semigroup P(X,Y) with the operation o defined by

(dom @),z if a#0 and a€ dom g,
aofl=aY,p=

0 otherwise.

Moreover, for b € Y, the semigroup (I(X,Y),{b},) is the semigroup (I(X,Y),e)

where

{ba'},s if b€ ran @ and a € dom S,
aeff= a{b}aﬁ =

0 otherwise.



Let X and Y be partially ordered sets. For a € P(X,Y), « is said to be

order-preserving if

for 1,29 € dom o, 1 < a9 in X = z1a0 < 2900 inY.

1 are order-

A bijection ¢ : X — Y is called an order-isomorphism if ¢ and ¢~
preserving. It is clear that if both X and ¥ are chains and ¢ : X — Y is an
order-preserving bijection, then ¢ is an order-isomorphism from X onto Y. We

say that X and Y are order-isomorphic if there is an order-isomorphism from X

onto Y. Naturally, a bijection ¢ : X — Y satisfying the condition
for xy, 29 € X, 21 <z in X & 100 <z1p0 inY

is called an anti-order-isomorphism. We say that X and Y are anti-order-isomorphic
if there is an anti-order-isomorphism from X onto Y.

A transformation semigroup on a poset X is said to be an order-preserving
transformation semigroup on X if all of its elements are order-preserving. Define
OP(X) by

OP(X)={a € P(X) | «is order-preserving}.

Then OP(X)is clearly a subsemigroup of P(X) containing 0 and 1x. We de-
fine OT(X) and OI(X) similarly. Then OT'(X) and OI(X) are subsemigoups of
T(X) and I(X), respectively. Note that 1x € OT(X) and 0, 1x € OI(X). The
semigroups OP(X), OT(X) and OI(X) are called the order-preserving partial
transformation semigroup on X, the full order-preserving transformation semi-
group on X and the order-preserving 1-1 partial transformation semigroup on X,
respectively.

In this research, the partial order on any subset of R always means the natural
partial order on R.

In [4], Y. Kemprasit and T. Changphas characterized when OT'(X) is a regular



semigroup where X is a nonempty subset of Z and X is a nonempty interval of

R as follows:

Theorem 1.2. [4] For any nonempty subset X of Z, the semigroup OT(X) is

reqular.

Theorem 1.3. [4] For a nonempty interval X of R, OT(X) is a regular semi-

group if and only if X is closed and bounded.

Moreover, they answered similar questions for OP(X) and OI(X) for an arbitrary

chain X as follows:

Theorem 1.4. [4] If X is a chain, then the semigroups OP(X) and OI(X) are

reqular.

A significant isomorphism theorem of full order-preserving transformation semi-

groups is as follows:

Theorem 1.5. [5, page 223| For posets X and Y, OT(X) = OT(Y) if and only

if X and'Y are order-isomorphic or anti-order-isomorphic.

Example 1.6. (1) Since Z is order-isomorphic to 27 through the map x — 2z,
by Theorem 1.5, we have OT(Z) = OT (2Z).

(2) We have that OT'(R) = OT(RT) where R* is the set of positive real numbers
because the map = — ¢e” is an order-isomorphism of R onto R™.

(3) Since z — 2 is an anti-order-isomorphism from [1, 00) onto (0, 1], we deduce

from Theorem 1.5 that OT'([1,00)) = OT((0, 1]).

We generalize the semigroups OP(X), OT(X) and OI(X) where X is a poset

as follows: For any posets X and Y, let

OP(X,Y)={a € P(X,Y) | ais order-preserving}



and for § € OP(Y,X), let (OP(X,Y),0) denote the semigroup (OP(X,Y), %)
where a * f = «aff for all a,3 € OP(X,Y). The semigroups (OT(X,Y),0)
with 8 € OT (Y, X) and (OI(X,Y),0) with § € OI(Y,X) are defined similarly.
Note that if S(X,Y) is P(X,Y), T(X,Y) or I(X,Y) and 6 € OS(Y,X), then
(OS(X,Y),0) is a subsemigroup of (S(X,Y),0). We remark here that OS(X) =

(OS(X,X), 1x).

Example 1.7. From Example 1.1, if X and Y are posets, a € X and b € Y,
then Y, € OT(Y,X) € OP(Y,X) and {b}, € OI(Y,X), then (OT(X,Y),Y,),
(OP(X,Y),Y,) and (OI(X,Y),{b},) are subsemigroups of (T'(X,Y),Y,),

(P(X,Y),Y,) and (I(X,Y),{b}.), respectively.
Example 1.8. Let 0 : Z — 7Z be defined by
nf = (n+1)f =n for every n € 2Z.

Then 0 € OT(Z) and ran 6 = 2Z. Suppose that (OT(Z), ) has an identity, say
1. Thus

afn = nha = « for every a € OT(Z),

in particular, nfly; = nf = 1. This implies that ran § = Z, a contradiction.
Hence (OT'(Z),0) does not have an identity. But by Example 1.6(1), OT(Z) =

OT(2Z) and both have an identity, so we conclude that

(OT(Z),0) 2 OT(Z) and (OT(Z),0) 2 OT(2Z).

In Chapter II, we are concerned with regularity of the order-preserving gener-
alized transformation semigroups (OP(X,Y),0) with § € OP(Y, X) and
(OI(X,Y),0) with 8 € OI(Y, X) where X and Y are any chains. We give neces-

sary and sufficient conditions for § and | X| so that the semigroup (OP(X,Y"),6)



is regular and for 6 so that (OI(X,Y),0) is a regular semigroup. The main tool
for this chapter is Theorem 1.4.

The main purpose of Chapter III is to characterize when the semigroup
(OT(X,Y),0) with 6 € OT(Y,X) is regular where X and Y are chains. The
characterization is given in terms of regularity of OT'(X), | X]|, |Y| and 6.

Some interesting isomorphism theorems are provided in Chapter IV. We char-

acterize when the following statements hold where X and Y are chains.

(OP(X,Y),0) 2 OP(X) where 0€ OP(Y,X),
(OP(X,Y),0) = OP(Y) where 0€ OP(Y,X),
(OI(X,Y),0) = OL(X)  where 0e& OI(Y,X),
(OI(X,Y),0) = OI(Y)  where 0€ OI(Y,X),
(OT(X,Y),0) = OT(X) where 0¢c OT(Y,X),

(OT(X,Y),0) =0T (Y) where 0e OT(Y,X).

We can see from our purpose that we confine our attention when posets X and
Y are chains. However, some required lemmas for our main results can be given

in terms of any posets X and Y.



CHAPTER 11
REGULAR ORDER-PRESERVING GENERALIZED

PARTIAL TRANSFORMATION SEMIGROUPS

We know from Theorem 1.4 that for any chain X, the semigroups OP(X) and
OI(X) are always regular. The purpose of this chapter is to extend this result
by considering when the semigroup (OP(X,Y),0) with § € OP(Y, X) and the
semigroup (OI(X,Y),0) with 6 € OI(Y, X) are regular.

To obtain the main two theorems of this chapter, Theorem 1.4 and the follow-

ing two lemmas are required.

Lemma 2.1. Let X andY be posets and let OS(X,Y) be OP(X,Y) or OI(X,Y)
and 0 € OS(Y, X). If the semigroup (OS(X,Y),0) is regular, then dom 6 =Y

and ran 8 = X.

Proof. We prove the lemma by contrapesitive, Assume that.dom 6 # Y or ran 6 #

X.

Case 1: dom § #Y. Let y € Y\dom 6 and = € X. Then {2}, € OS(X,Y) and
{z},0 = 0. This implies that {z},0af{z}, = 0 # {2}, for every a € OS(X,Y).

Thus {z}, is not a regular element of (OS(X,Y),0).

Case 2: ran 6 # X. Let x € X\ran 0 and y € Y. Then {z}, € OS(X,Y) and
6{z}, = 0 which implies that {z},0ab{z}, = 0 # {z}, for every a € OS(X,Y),

and so {z}, is not a regular element of (OS(X,Y),6).



Therefore (OS(X,Y),0) is not a regular semigroup, and hence the lemma is

proved. Il

Lemma 2.2. Let X andY be posets and let OS(X,Y) be OP(X,Y) or OI(X,Y)
and 0 € OS(Y, X). If 0 is an order-isomorphism fromY onto X, then the following
statements hold.

(i) The map o — ab is an isomorphism of (OS(X,Y"),0) onto OS(X).

(i) The map a — Oa is an isomorphism of (OS(X,Y),0) onto OS(Y).

Proof. 1t is clear that af € OS(X) and fa € OS(Y) for all a € OS(X,Y).
Define ¢ : OS(X,Y) — OS(X) and ¢ : OS(X,Y) — OS(Y) by ap = af and

ap = Oa for all o € OS(X,Y). Then for o, € OS(X,Y),

(@8B)p = a0 = (ad)(B30) = (ap)(By),
(@fB)¢" =0abp = (0a)(08) = (ap ) (Be),

so o and ¢ are homomorphisms. Next, we will show that o and ¢ are bijections.

For o, g € OS(X,Y), then

ap =B =a=aly =ali = (ap)d ' =(Bp)d~' = B0~ = 31y = 3,

a@’ = ﬁcp' =a=1lya=0"10a= «9_1(040,) = 9_1(@0/) =07'98 = 1xB = 3.

Thus ¢ and ¢ are1-1. Also, for ¥ € QS(X) and A€ OS(Y), we have y6~1, §~\
€ OS(X,Y) and (Y0 V) = (0710 = v(0710) = y1x = v and (07'N\)¢ =
0(0~1N) = (00X = 1y A = X\, so p and ¢ are onto.

Hence ¢ is an isomorphism of (0S(X,Y),6) onto OS(X) and ¢ is an isomor-

phism of (OS(X,Y),0) onto OS(Y'). Therefore (i) and (ii) are proved. O

Theorem 2.3. Let X and Y be chains. For 0 € OI(Y,X), the semigroup

(OI(X,Y),0) is reqular if and only if 6 is an order-isomorphism from'Y onto X.
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Proof. Assume that (OI(X,Y),#) is regular. By Lemma 2.1, we have dom § =Y
and ran §# = X. Since § € OI(Y, X), 6 is order-preserving and 1-1. It therefore
follows that 6 is an order-isomorphism from Y onto X.

Conversely, assume that 6 is an order-isomorphism from Y onto X. It then de-
duces from Lemma 2.2(i) that (OI(X,Y),0) = OI(X). Since X is a chain, OI(X)
is a regular semigroup by Theorem 1.4. Therefore the semigroup (OI(X,Y),6) is

regular, as required. Il

We observe here from the proof of Theorem 2.3 that the following fact is true.
For posets X and Y, if the semigroup (O7(X,Y),0) with 6 € OI(Y, X) is regular,

then @ is an order-isomorphism from Y onto X.

Theorem 2.4. Let X and Y be chains. For 0 € OP(Y,X), the semigroup
(OP(X,Y),0) is regular if and only if
(i) 0 is an order-isomorphism from Y onto X or

(i) dom 0 =Y, ran 6 =X and | X| =1

Proof. To prove necessity, assume that (OP(X,Y),#) is a regular semigroup. We
have by Lemma 2.1 that dom 6 =Y and ran § = X. If | X| = 1, then (ii) holds,
that is, dom # =Y, ran § = X-and |X| = 1. Assume that | X| > 1. We will show
that 0 is an order-isomorphism from Y onto X. It remains to show that 6 is 1-1.
Suppose in the contrary that 8 is not 1-1. Then there exist a € X, e, f € Y such
that e < f and el = ff = a. Since |X| > 1, there is b € X\{a}. Then b < a or

a < b because X is a chain.

Case 1: b < a. Define a : {a,b} — Y by aa = f and ba = e. Then a €
OI(X,Y) C OP(X,Y). Since ef = fO = a, we have that aafl = a = baf. But

dom(af) C dom «, thus dom(af) = {a,b} and ran(af) = {a}. Consequently, for
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3 € OP(X,Y),

lran(aff0a)| < |ran(af)| = 1.

Therefore a # afffa for every € OP(X,Y) since |ran o| = |{e, f}| = 2. Thus

a is not a regular element of (OP(X,Y),#) which is a contradiction.

Case 2: a < b. Define A : {a,b} — ¥ by bA = f and aX = e. Then X\ €
OI(X,Y) C OP(X,Y). We can show similarly to Case 1 that A is not a regular

element of (OP(X,Y),0). This is contrary to the assumption.

Hence we deduce that 6 1s 1-1, so (i) holds if |X| > 1.

To prove sufficiency, assume that (i) or (ii) holds. If (i) is true, then we have
that (OP(X,Y),0) = OP(X) by Lemma 2.2(i). Since OP(X) is regular from
Theorem 1.4, it follows that (OP(X,Y),0) is a regular semigroup.

Next, assume that (ii) holds, that is, dom # = Y, ran § = X and |X| = 1.
Let X = {z}. Then Y0 = {z}. If « € OP(X,Y)\{0}, then dom a = {z}
and ran o = {xa}. Since za € Y = dom 6, zaf = =, and so zaba = zo.
Thus afa = «. This proves that (OP(X,Y),0) is an idempotent semigroup, and
therefore (OP(X,Y),0) is a regular semigroup.

Hence the theorem is completely proved. Il

Example 2.5. Define 0y, 0, : Z — Z by

20, =+ 1 and 26, = 2z for all x € Z.

Then the mappings 6; and 6y are order-preserving. Moreover, 6; is an order-
isomorphism from Z onto Z and 6, is an order-isomorphism from Z onto 2Z.
We then deduce from Theorem 2.3 and Theorem 2.4 that the semigroups
(OI(Z,7),6,), (OI(2Z,Z),65), (OP(Z,Z),6,) and (OP(2Z,7Z),05) are all regular

but the semigroups (OI(Z,Z),0:) and (OP(Z,Z), 02) are not regular. For the later
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conclusion, we can see directly from the fact that {1}, € OI(Z,Z) C OP(Z,7Z)
and 02{1}o = 0 (since 1 ¢ ran 0y) which implies that {1}o0250:{1}¢ = 0 # {1}o

for all 3 € OP(Z,Z).

AONUUINYUINNS )
ANRINITUNINE AL



CHAPTER III
REGULAR FULL ORDER-PRESERVING

GENERALIZED TRANSFORMATION SEMIGROUPS

In this chapter, we consider the semigroup (OT'(X,Y),0) with 6 € OT(Y, X)
where X and Y are chains. The main purpose is to characterize when (OT(X,Y), 8)
is a regular semigroup. This characterization is given in terms of regularity of
OT(X), |X], |Y| and 6. This characterization with Theorem 1.2 and Theorem
1.3 will tell us when the semigroup (OT'(X,Y),0) is regular where both X and Y
are nontrivial subsets of Z and both X and Y are nontrivial intervals of R. By a
nontrivial set we mean a set containing more than one element.

Throughout this chapter, let- X and Y be any chains and 6 any element of
OT(Y, X), unless otherwise mentioned.

The following sequence of lemmas is desired to obtain our main result of this

chapter.

Lemma 3.1. Leta, b € X and ¢, d € Y be such that a <b, ¢ < d and c0 = df.

If a: X =Y is defined by

c if x <0,
To =

d ifz>b,

then o € OT(X,Y),|ran a| =2 and |ran(af)| = 1.
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Proof. Since a € {x € X | < b}, we have that {r € X | z < b} # @ and so
{r € X |z <bla={c} Also, {x € X |z >bla ={d}. But ¢ < d, thus
a € OT(X,Y) and ran a = {¢,d}. Consequently, ran(af) = (ran «)f = {c,d}0 =

{ch,df} = {cl} because cf = df. Hence |ran a| = 2 and |ran(ad)| = 1. O

Lemma 3.2. Let |X| > 1. If the semigroup (OT(X,Y),0) is regular, then 0 is

1-1.

Proof. We will prove the lemma by contrapositive. Assume that 6 is not 1-1.
Then there are a,b € X and ¢,d € Y such that a < b,¢ < d and cf = df. Define
a: X — Y asin Lemma 3.1. By Lemma 3.1, o € OT(X,Y), |ran o] = 2 and
[ran(af)| = 1. Since for each f € OT(X,Y), [ran(aff0a)| < |ran(af)| = 1, so we
have that |ran(afffa)| = 1 # |ran «|. Thus aff0a # o for every § € OT(X,Y).
Hence « is not a regular element of (OT(X,Y),0). Therefore, (OT(X,Y),0) is

not a regular semigroup. O

Lemma 3.3. Let e, f €Y be such thate < f and a € X.

(i) If x < a for all x € ran 0 and o : X — Y is defined by

e if z <a,
To =

Y 16f g e
then € OT(X,Y), |ran o =2 and |ran(fa)| = 1.

(i) If £ > a for allx € ran 0 and 5 : X — Y is defined by

e ifr<a,
xf =

fifxz>a,

then p € OT(X,Y),|ran 3] =2 and |ran(68)| = 1.
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Proof. (i) Sinceran # C {z € X |z < a}, {r € X |z < a} # @, s0 {z €
X | x < a}a = {e}. We also have {z € X | z > a}a = {f}. It then follows
that o« € OT(X,Y) since e < f, ran a = {e, f} and ran(fa) = (ran 6)a = {e}.
Therefore |ran a| = 2 and |ran(fa)| = 1.

(ii) Because ran 0 C {x € X | # > a}, we have {x € X | z > a}f8 = {f}.
But {r € X |2 <a}f ={e}and e < f, sowehave g € OT(X,Y), ran 3 = {e, f}

and ran(0g3) = (ran 0)B = {f}. Therefore |ran §| =2 and |ran(65)| = 1. O

Lemma 3.4. Let |Y| > 1. [f the semigroup (OT(X,Y),0) is regular, then for

every x € X, y <z <z for somey, z € ran 6.

Proof. We prove the lemma by contrapositive. Assume that it is not true that for
every v € X, y < x < z for some y, z € ran 6. Then there is an element a € X
such that x < a for all x € ran 6 or > a for all x € ran 0. Let e, f € Y be such

that e < f.

Case 1: =z < a for all x € ran ¢. Define  : X — Y as in Lemma 3.3
(i). Then a € OT(X,Y),|ran | = 2 and |ran(fa))| = 1. But for each A €
OT(X,Y), [ran(afdNa)| <-ran(fa)| = 1 for alloh € OT(X,Y), so it follows that
[ran(afN0a)| =1 for every A € OT(X,Y). Thus af 0a # aforall A € OT(X,Y).

Hence « is not-a regular element-of the semigroup(OT(X,Y),0).

Case 2: z > a for all x € ran §. Define f: X — Y as in Lemma 3.3 (ii). Then
g € OT(X,Y),|ran f| = 2 and |ran(f3)] = 1. Since for each A € OT(X,Y)
lran(BON05)| < |ran(05)| = 1, we deduce that |[ran(BONIF)| = 1 for every A €
OT(X,Y). Thus BONIGB # [ for all A € OT(X,Y). Hence [ is not a regular

element of the semigroup (OT(X,Y),0).

From Case 1 and Case 2, we have that (OT(X,Y),0) is not a regular semigroup,

and hence the lemma is proved. Il



16

Lemma 3.5. Let a € X\ran 0 be such that b < a < ¢ for some b, ¢ € ran 0 and

e, [,g€Y suchthate < f <g. If a: X — Y is defined by

.
e ifx<a,

o =4 f ifq=aq,

9 if x> a.

Then o € OT(X,Y), |ran a| =3 and |ran(fa)| = 2.

Proof. Since b€ {x € X | v <a}, ce {r € X | z > a}, it follows that
{reX |z<ala={e}, aa=f {xreX |z>a}la=y,

and hence ran a = {e, f,g}. But e < f < g, s0 a € OT(X,Y). Moreover,

ran(fa) = (ran 0)«
={reranl |z <ala U {xecrand | x> a}la since a ¢ ran
={e} U {f} since be{reranf |z <a} and

ce{re€ranf | x> a}

= {€7f}'

Hence |ran «| = 3 and |ran(fa)| = 2, as required. O

Lemma 3.6. Let |Y| > 2. If the semigroup (OT(X,Y),0) is reqular, then ran 6 =

X.

Proof. This lemma is proved by contrapositive. Since |Y| > 2, there aree, f,g € Y
be such that e < f < ¢g. Assume that ran § # X. Then there is a € X\ran 6

satisfying one of three following conditions.
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(1) z <aforall x € ran 0.
(2) x> aforall z € ran 0.

(3) b<a<cforsome b, c € ran 6.

If (1) or (2) holds, then by Lemma 3.4, (OT'(X,Y"), #) is not regular. Assume that
(3) holds, define a : X — Y as in Lemma 3.5. By Lemma 3.5, a € OT(X,Y),
lran | = 3 and |ran(fa)| = 2. Hence for every A € OT(X,Y), |[ran(ad )| <
lran(fa)| = 2, so a # a0 for every A € OT(X,Y). Thus « is not a regular
element of (OT(X,Y),0). Therefore (OT(X,Y),0) is not a regular semigroup if
(3) is true.

Hence the lemma is proved. Il

Lemma 3.7. Let |Y| =2. If ran 6 = {minX, max X}, then (OT(X,Y),0) is an

tdempotent semigroup.

Proof. Let a € OT(X,Y). Then either [ran af = 1 or |ran o] = 2 because |Y| = 2.
Since ran(afa) C ran «, it follows that afa = «a if [ran «f = 1. Next, assume that
lran a| = 2. Thenrana =Y. Let Y = {e, f} withe < f. Thus X = ea™ U fa™!
which is a disjoint union. Then minX € ea~! and maxX € fa~! because e < f
and « is order-preserving. Since 6'is order-preserving, ran .= {e, f} = {minX,

maxX}and'e < f.it follows that-ed = minX and [0 = maxX. Consequently,

(ea Haba = {ef}a = {minX}a = {e} = (ea Ha,

(fa Haba = {f0}a = {maxX}a = {f} = (fa ')a,

which implies that o = afa, so « is an idempotent of (OT(X,Y),0).

This proves that (OT(X,Y),0) is an idempotent semigroup, as desired. [

Lemma 3.8. Let 6 be an order-isomorphism from'Y onto X. Then the following

statements hold.



18

(i) The map a — ab is an isomorphism of (OT(X,Y),8) onto OT(X).

(i) The map a — Oa is an isomorphism of (OT(X,Y),0) onto OT(Y).

Proof. 1t is clear that for any a € OT(X,Y), af € OT(X) and fa € OT(Y).
Define ¢ : (OT(X,Y),0) — OT(X) by ap = af for all « € OT(X,Y) and define
¢ (OT(X,Y),0) — OT(Y) by ay’ = fa for all o« € OT(X,Y). We can show
similarly to the proof of Lemma 2.2 that ¢ is an isomorphism of (OT(X,Y),0)

onto OT(X) and ¢ is an isomorphism of (OT(X,Y), ) onto OT(Y). O
Now we are ready to provide our main theorem of this chapter.

Theorem 3.9. The semigroup (OT(X,Y),0) is reqular if and only if one of the
following statements holds.

(i)  The semigroup OT(X) is regular and 0 is an order-isomorphism from 'Y

onto X.
(i) |X]|=1.
(ii) Y] = 1.

(i) |Y|=2 and ran 0 = {minX, mazxX}.

Proof. To prove necessity, assume. that the semigroup (OT(X,Y),0) is regular

and suppose that (ii),(iii) and (iv) are false. Then
|X|> 1, Y] > 1 and (|Y]| # 2 or ran 6 #{minX, maxX }).

Therefore we have | X| > 1 and either |Y| > 2 or |Y| = 2 and ran 6 # {minX,
maxX }. Note that minX or maxX may not exist. We will show that (i) is true,
that is, OT'(X) is regular and 6 is an order-isomorphism from Y onto X. From
that |X| > 1, we have by Lemma 3.2 that 6 is 1-1. We claim that the case
Y| = 2 and ran 6 # {minX, maxX} cannot occur. Suppose that |Y| = 2 and
ran 0 # {minX, maxX}. Since |Y| =2 and 0 is 1-1, |ran 0| = 2. Let ran 6 = {b, ¢}

with b < ¢. Then {b,c} # {minX, maxX}.
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Case 1: minX does not exist. Then there exists a € X such that a < b, so

a<b<ec.
Case 2: maxX does not exist. Then a > ¢ for some a € X, soa > ¢ > b.

Case 3: minX and maxX exist. But {b, ¢} # {minX, maxX}, so minX < b or

maxX > c¢. Then either minX < b < ¢ or maxX > ¢ > b.

From Case 1 - Case 3, we conclude that there exists an element a € X such that
x < a for all x € ran § or & > a for all x € ran 6. It therefore follows from
Lemma 3.4 that (OT(X,Y),#) is not a regular semigroup which contradicts the
assumption. Hence we prove the claim. Thus |[Y| > 2, and so by Lemma 3.6, we
have ran 6 = X. Consequently, € is an order-isomorphism from Y onto X. We
then deduce from Lemma 3.8(i) that (OT(X,Y),0) = OT(X). But (OT(X,Y),0)
is regular, so OT'(X) is regular. Hence (i) holds.

To prove sufficiency, assume that one of (i)-(iv) holds.

Case 1: (i) is true. By Lemma 3.8(i), we have (OT(X,Y),0) = OT(X). Since

the semigroup OT'(X) is regular, (OT(X,Y),0) is a regular semigroup.

Case 2: |X|=1. For a € OT(X,Y), [ran o] = 1, so @ = afa since ran(abfa) C
ran o. Thus « is an idempotent element of (OT(X,Y),#). For this case,

(OT(X,Y),0) is an idempotent semigroup, so it is regular.

Case 3: |Y| = 1. Then |OT(X,Y)| = 1, and thus the semigroup (OT'(X,Y),0)

is trivially regular.

Case 4: (iv) is true. Then by Lemma 3.7, (OT(X,Y), ) is an idempotent semi-

group, so it is regular.

Hence the theorem is completely proved. Il
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We know from Theorem 1.2 that OT'(X) is a regular semigroup for any nonempty
subset of Z. Then this fact and Theorem 3.9 yield the following two corollaries

directly.

Corollary 3.10. If X is a nonempty subset of Z, then the semigroup (OT(X,Y),0)
1s reqular if and only if one of the following statements holds.

(i) 6 is an order-isomorphism from'Y onto X.
(i) | X|=1.

(iii) |Y]=1.
(

) Y| =2 and ran 0 ={minX, mazxX}.

Corollary 3.11. Let X and Y be nontrivial subsets of Z. Then the semigroup
(OT(X,Y),0) is reqular if and only if
(i) 6 is an order-isomorphism from Y onto X or

(i) |Y| =2 and ran 0 = {minX, mazxX}.

We note that if (ii) of Corollary 3.11 holds, then X must be finite.

It is known from Theorem 1.3 that for a nonempty interval X of R, then
OT(X) is regular if and only if X is closed and bounded. We also know that for
a nonempty interval X of R, either |X| =1 or X dis (uncountably) infinite. Then

following three corollaries are directly obtained from these facts and Theorem 3.9.

Corollary 3.12. Let X be a nonempty interval of R. Then the semigroup
OT(X,Y),0) is reqular if and only if one of the following statements holds.

i) X is closed and bounded and 6 is an order-isomorphism from Y onto X.

(
(

(i) |x]=1.
(iid) |V]=1.
(

w) Y] =2and ran 0 = {minX, maxX}.
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Corollary 3.13. Let X and Y be nonempty intervals of R. Then the semigroup
OT(X,Y),0) is reqular if and only if one of the following statements holds.
i) X is closed and bounded and 0 is an order-isomorphism from Y onto X.

(
(
(i) | X]|=1.
(i) |Y|=1.
Corollary 3.14. Let X and Y be nontrivial intervals of R. Then the semigroup
(OT(X,Y),0) is regular if and only if X is closed and bounded and 0 is an order-

isomorphism from'Y onto X.
Example 3.15. Define 6,6, : Z — 7 as in Example 2.5, that is,
0 =x+1 and xz0y = 2z for all z € Z.

Since 6 is an order-isomorphism from Z onto Z and 65 is an order-isomorphism
from Z onto 27Z, by Corollary 3.10, (OT(Z, Z),0,) and (OT(2Z,Z),0s) are regular
semigroups but (OT(Z,7Z),65) is not a regular semigroup. For the later inclusion,

we can show directly as follows: Since 1z € OT(Z,Z) and for any a € OT(Z,Z),
ran(lz6ha0:17) = ran(fyab,) C ran(fy) =27 C Z,

so lz0a051; # 17 for all a € OT(Z,Z), so 1z is not a regular element of
(OT(Z,7Z),05).

Next, let' 05=64| (g1} Then ran 05 ={1,2}. M X ={0,1,2}; then ran 03 =
{1,2} #{minX, max X} = {0,2} # X. Therefore from Corollary 3.11,
(0T({0,1,2},{0,1}),05) is not a regular semigroup. If 64 = 6s|r1;. Then
ran 04 = {0,2}. If X is as above, that is, X = {0, 1,2}, then ran 6, = {0,2} =
{minX, maxX}, so by Corollary 3.11, the semigroup (OT'({0,1,2},{0,1}),6,) is

a regular semigroup.

Example 3.16. Let § : R — RT and ' : Rt — R be defined by

20 =10% for all z € R and 26 = logioz for all z € R*.
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Then @ is an order-isomorphism from R onto Rt and @' is an order-isomorphism
from R* onto R. Let 6, = 6y and 6, = 9’“10,100}. Then 6, is an order-
isomorphism from [0,1] onto [1,10] and 6 is an order-isomorphism from [10,100]
onto [1,2]. It therefore follows from Corollary 3.14 that (OT'([1,10], [0, 1]),6;) and

(OT([1,2],[10,100]), 85) are both regular semigroups.

Remark 3.17. In fact for a,b,¢c,d € R with a < b and ¢ < d, there is an order-

isomorphism 6 from [a,b] onto [¢,d]. To show this, define ¢ : R — R by

b—a
d—rc

T = ( J(x—c)+a forall z€R.

Then the slope of the line ¢ is —’ﬁ > (0, so0 ¢ is a strictly increasing continuous
function. But cp = a and dy = b, s0 |4 is an order-isomorphism from [c,d]
onto [a,b]. Let 0 = ¢|icq. Then @ is an order-isomorphism from [c,d] onto [a,b].
This implies by Corollary 3.14 that (OT(|a, b}, [c,d]), ) is a regular semigroup.
Note that if 6" =|(.a), then 6 is an order-isomorphism from (c,d) onto (a,b).

However, the semigroup (OT((a,b), (¢,d)), ') is not regular by Corollary 3.14.



CHAPTER IV

SOME ISOMORPHISM THEOREMS

In the last chapter, we provide some isomorphism theorems of order-preserving
generalized transformation semigroups. The purpose is to characterize when the
semigroup (OS(X,Y),#) is isomorphic to OS(X) and when it is isomorphic to
OS(Y) where X and Y are chains, OS(X,Y)is OP(X,Y), OT(X,Y)or OI(X,Y)
and 6 € OS(Y, X). We obtain some interesting isomorphism theorems as follows:
(0S(X,Y),0) = OS(X)[0OS(Y)] if and only if # is an order-isomorphism from
Y onto X where OS(X,Y) is OP(X,Y) or OI(X,Y) and 0 € OS(Y, X). Also,
(OT(X,Y),0) = OT(X) if and only if ¢ is an order-isomorphism from Y onto X,
but (OT(X,Y),0) = OT(Y) if and only if |Y| = 1 or # is an order-isomorphism
from Y onto X. To obtain these results, Theorem 1.4, Lemma 2.2, Theorem 2.3
and Theorem 2.4 will be referred.

Throughout this chapter, let X and Y be chains.

Theorem 4.1. For § € OI(Y, X), (OI(X,Y),0)= OI(X) if and-only if 0 is an

order-isomorphism from Y onto X.

Proof. First, assume that (OI(X,Y),6) = OI(X). We know from Theorem 1.4
that OI(X) is a regular semigroup. We then have that the semigroup (OI(X,Y), )
is regular. It therefore follows from Theorem 2.3 that € is an order-isomorphism
from Y onto X.

Conversely, assume that 6 is an order-isomorphism from Y onto X. We have

from Lemma 2.2(i) that (OI(X,Y),0) = OI(X), as required. O
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Theorem 4.2. For 6 € OI(Y,X), (OI(X,Y),0) = OI(Y) if and only if 0 is an
order-isomorphism from'Y onto X.

Proof. Assume that (OI(X,Y),0) = OI(Y). Since the semigroup OI(Y) is reg-
ular by Theorem 1.4, we deduce that the semigroup (OI(X,Y),0) is regular.

Therefore by Theorem 2.3, # is an order-isomorphism from Y onto X.

Conversely, assume that 6 is an order-isomorphism from Y onto X. It therefore

follows from Lemma 2.2(ii) that (OI(X,Y),0) = OI(Y), as desired. O
As a consequence of Theorem 4.1 and Theorem 4.2, we have

Corollary 4.3. For 0 € OI(Y,X), the following statements are equivalent.
(i) (OI(X,Y),0) = 0I(X).
(i) (OI(X,Y),0) = 0OI(Y).

(#ii) 0 is an order-isomorphism from Y onto X .

The following lemma gives necessary conditions for the semigroup (OS(X,Y),0)

to have an identity where OS(X,Y) is OP(X,Y ) or OT(X,Y) and 6 € OS(Y, X).

Lemma 4.4. Let OS(X,Y) be OP(X,Y) or OT(X,Y) and 0 € OS(Y, X). If the
semigroup (0S(X,Y),0) has an‘identity n, then n = 1y, and hence 6 is 1-1 and

ranmn =Y.

Proof.-We have that for any y € Y, X, € OS(X,Y). Since 7 is the identity of

(OS(X,Y),0), we have
nfa = afn = « for every a € OS(X,Y),

in particular,

X,0n =X, foreveryyeY.

Therefore for x € X,

yon = 2 X,0n =X, =y foreveryy €Y.
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This shows that #n = 1y which implies that 0 is 1-1 and ran n =Y. O]

We remark here from the proof of Lemma 4.4 that Lemma 4.4 is true for any

posets X and Y.

Theorem 4.5. For 0 € OP(Y,X), (OP(X,Y),0) = OP(X) if and only if 0 is

an order-isomorphism from Y onto X.

Proof. First, assume that (OP(X,Y),0) = OP(X). By Theorem 1.4, the semi-
group OP(X) is regular, and therefore (OP(X,Y),0) is a regular semigroup.

From Theorem 2.4, one of the following statements holds.

(1) 0 is an order-isomorphism from ¥ onto X.

(2) dom 0 =Y, ran § = X and | X| = 1.
Since (OP(X,Y),0) = OP(X) and OP(X) has an identity, we deduce from
Lemma 4.4 that 0 is 1-1. Hence if (2) holds, then |Y| = 1. Therefore we conclude
that 6 must be an order-isomorphism from Y onto X.

For the converse, assume that @ is an order-isomorphism from Y onto X. Then

(OP(X,Y),0) 2 OP(X) by Lemma 2.2(i). O

Theorem 4.6. For 0 ¢ OP(Y,X), (OP(X,Y),0) = OP(Y) if and only if 0 is

an order-isomorphism from'Y onto X.

Proof. By Theorem 1.4, OP(Y') is a regular semigroup.
If (OP(X,Y),0) = OP(Y), then the semigroup (OP(X,Y),0) is regular, so

by Theorem 2.4,

(1) 6 is an order-isomorphism from Y onto X or

(2) dom # =Y, ran # = X and |X| = 1.

Since OP(Y') has an identity, (OP(X,Y),0) has an identity. Thus 6 is 1-1 by

Lemma 4.4, so (2) implies |Y'| = 1. Hence 6 is an order-isomorphism from Y onto



26

Conversely, if 6 is an order-isomorphism from Y onto X, then (OP(X,Y),0) =

OP(Y) by Lemma 2.2(ii). O

The following corollary is an immediate consequence of Theorem 4.5 and The-

orem 4.6.

Corollary 4.7. For § € OP(Y, X), the following statements are equivalent.
(i) (OP(X,Y),0) =2 OP(X).
(ii) (OP(X,Y),0)= OP(Y).

(#i) 6 is an order-isomorphism from'Y onto X .

Beside Lemma 4.4, the following series of lemmas are required to determine
when (OT(X,Y),0) = OT(X) and when (OT(X,Y),0) = OT(Y) where 6 €
or(Y, X).

Lemma 4.8. For 0 € OT(Y, X), if |Y]| > 1 and the semigroup (OT(X,Y),0)

has an identity, then for every x € X, y < x < z for some y,z € ran 6.

Proof. Let e, f € Y be such that e < f. Suppose that the conclusion is false.

Then there is an element ¢ € X such that

(1)-x < afor all x € ran f-or

(2) 2> a for all = € ran 6.

Case 1: (1) holds. Define @ : X — Y as in Lemma 3.3(i), Then by Lemma 3.3(i),
a € OT(X,Y), [ran af = 2 and |ran(fa)| = 1. Thus for any n € OT(X,Y),

ran(nfa) C ran(fa), so |ran(nfa)| = 1. Hence

nfa # o for every n € OT(X,Y)

which implies that (OT'(X,Y"),#) has no identity.
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Case 2: (2) holds. Let §: X — Y be defined as in Lemma 3.3(ii). By Lemma
3.3(i1), B € OT(X,Y), |ran (] = 2 and |ran(f5)| = 1. We then have similarly to
Case 1 that

nds # B for every n € OT(X,Y)
and hence (OT(X,Y),0) has no identity.

Therefore the lemma is proved. O

Lemma 4.9. For 0 € OT'(Y, X), if |Y| > 2 and the semigroup (OT(X,Y),0)

has an identity, then ran 6 = X.

Proof. Let e, f,g € Y be such that e < f < g. Suppose that ran 6 # X. Then
there is an element a € X\ran 6. Then one of the following three cases must

occur.

(1) z < afor all x € ran €.
(2) z > a for all & € ran 6.

(3) b < a < ¢ for some b, ¢ € ran 6.

Case 1: (1) or (2) holds. By Lemma 4.8, the semigroup (OT(X,Y),6) has no

identity.

Case 2: (3) holds. Let o : X — Y be defined as in Lemma 3.5. Then by this
lemma, a@ € OT(X,Y), [ran o] = 3 and |ran(fa)| = 2. But |[ran(nfa)| < |ran(fa)|

for any n € OT(X,Y), so [ran(nfa)| < 2 for all n € OT(X,Y"). Hence

nfa # a for every n € OT(X,Y)

which implies that the semigroup (OT'(X,Y’), ) has no identity.

Therefore the lemma is proved. O]
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Lemma 4.10. For § € OT(Y, X), if |Y| = 2, ran 0 = {minX, mazX} and the

semigroup (OT(X,Y),0) has an identity, then | X| = 2.

Proof. LetY = {e, f} with e < f and 7 the identity of the semigroup (OT'(X,Y), ).
From Lemma 4.4, 6 is 1-1. But |[Y| = 2 and 0 : Y = {e,f} — ran 0 =
{minX, maxX} is order-preserving, so e = minX < maxX = f0. To show
that | X| = 2, suppose not. Then |X| > 2 and so minX < a < maxX for some
a€ X. Sincen: X =Y ={e, [}, an=-eoran= f. Define a,: X — Y by

e if v <a, e if x <a,
T = and zf0 =

f ?’f €z Z a, f Zf T > aQ.
Since e < f and minX < a < maxX, we have a, 8 € OT(X,Y), (minX)a = e
and (maxX)s = f.
Case 1: an = e. Then anfa = efa = (minX)a = e < f = aa.

Case 2: an = f. Then anff = f05 = (maxX)B = f > e = af.

From Case 1 and Case 2, we have nfa # « and nf( # f3, respectively. This is
contrary to that 7 is the identity of the semigroup (OT(X,Y),0). This proves

that | X| = 2, as required. O

Lemma 4.11. For 0 € OT(Y, X), the semigroup (OT(X,Y),0) has an identity

if and only if |Y'| =1 or 6 is an order-isomorphism from Y onto X.

Proof. To prove necessity, assume that the semigroup (OT'(X,Y),0) has an iden-

tity and |Y| > 1. From Lemma 4.4, 0 is 1-1. We will show that ran § = X.

Case 1: |Y]| = 2. Let Y = {e, f} with e < f. Then ran 6 = {ef, f0} and
ef < fO since 0 is 1-1 and order-preserving. It then follows from Lemma 4.8,

e < x < fO for all x € X. This implies that ed = minX and ff = maxX.
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Hence ran § = {minX,maxX} . It therefore follows from Lemma 4.10 that

| X| = 2. Consequently, ran 0§ = X
Case 2: |Y| > 2. Therefore that ran 6 = X is directly obtained from Lemma 4.9.

Therefore 6 is an order-isomorphism from Y onto X.

To prove sufficiently, assume that |Y| =1 or # is an order-isomorphism from
Y onto X. If |Y| =1, then |OT(X,Y)| =1, so (OT(X,Y),0) has an identity. If
6 is an order-isomorphism from Y onto X, then by Lemma 3.8(i), we have that
(OT(X,Y),0) = OT(X). But OT(X) has an identity, thus (OT(X,Y),0) has an

identity. O

Theorem 4.12. For 0 € OT(Y, X), (OT(X,Y),0) = OT(X) if and only if 6 is

an order-isomorphism from Y onto X.

Proof. First, assume that (OT(X,Y),0) =2 OT(X). Then the semigroup

(OT(X,Y),0) has an identity since the semigroup OT'(X) does. By Lemma 4.11,
Y| = 1 or 6 is an order-isomorphism from Y onto X. Assume that Y| = 1.
Then |OT(X,Y)| = 1, so |OT(X)| = 1 since (OT(X,Y),0) = OT(X). Since
|OT(X)| =1 and X, € OT(X) for every x € X, we deduce that |X| = 1. This

shows that 6 is an order-isomorphism from Y onto X.

The converse is obtained directly from Lemma 3.8(i). O

Theorem 4.13. Forf € OT (Y, X), (OT(X,Y),0) = OT(Y) if and only if |Y|=

1 or 0 is an order-isomorphism from'Y onto X.

Proof. Assume that (OT(X,Y),0) = OT(Y). Then (OT(X,Y),6) has an iden-
tity. Then from Lemma 4.11, we have |Y'| = 1 or € is an order-isomorphism from
Y onto X.

If Y| =1, then |OT(X,Y)| =1=|0T(Y)], so (OT(X,Y),0) 2 OT(Y). It

0 is an order-isomorphism from Y onto X, then by Lemma 3.8(ii), we have that
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(OT(X,Y),0) = OT(Y).

Hence the theorem is proved, as required. Il

We can see in this chapter that having an identity and being isomorphic are

closely related. We combine this relationship to be a theorem as follows:

Theorem 4.14. For 6 € OT(Y,X) and |Y| > 1, the following statements are
equivalent.

i) (OT(X,Y),0) has an identity.

I1é

(

(i) (OT(X,Y),0)= OT(X).
(i) (OT(X,Y),0) = OT(Y).
(

i) 0 is an order-isomorphism from Y onto X.

Proof. Since |Y| > 1, by Lemma 4.11, (i)<>(iv). That (ii)<(iv) follows from

Theorem 4.12. Because |Y| > 1, we obtain that (iii)<(iv) from Theorem 4.13. [

Example 4.15. Let 0, : Z — 7 be defined as in Example 3.15, that is,
x0y = 2x for all z € Z.

By Theorem 4.1-4.2, Theorem 4.4-4.5 and Theorem 4.12-4.13, we have
(O1(2Z,7.),05) = OI(2Z) = OI(Z), (OP(2Z,7Z),05) = OP(2Z) = OP(Z) and

(OT(24,7),82) = OT(2Z) = OT(Z), respectively.

Remark 4.16. Let a,b,c,d € R be such that a < b and ¢ < d, then from Remark
3.16, there are order-isomorphisms 6 : [a,b] — [¢,d] and 0 : (a,b) — (c,d). By
Theorem 4.1-4.2, Theorem 4.4-4.5 and Theorem 4.12-4.13, we have respectively

that

(1) (O1([a, b], [¢,d]),0) = Ol([a, b]) = OI([c, d]),
(OI((a,b), (c,d)),0) = OI((a,b)) = OI((c, d)),
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(2) (OP([a,b], e, d]),0) = OP([a, b]) = OP([c, d]),
(OP((a,b),(c,d)),0') = OP((a,b)) = OP((c, d)),

(3) (OT([a,b], [e,d]), ) = OT([a,b]) = OT ([c, d)),
(OT((a,b), (c,d)),0') =

Note that all the above semig) oups except se on the last line are regular semi-
ﬁ

groups.
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