การศึกษาความเหมาะสมของปูนในงานหล่อเครื่องประดับโลหะผสมทองและโลหะไทเทเนียม

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโลหการและวัสดุ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Investigations of jewelry investments and suitability for gold alloys and titanium casting

Mr. Thanawat Phetrattanarangsri

Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Metallurgical and Materials Engineering Department of Metallurgical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การศึกษาความเหมาะสมของปูนในงานหล่อเครื่องประดับ	
	โลหะผสมทองและโลหะไทเทเนียม	
โดย	นายธนวัฒน์ เพชรรัตนรังสี	
สาขาวิชา	วิศวกรรมโลหการและวัสดุ	
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.บุญรัตน์ โล่ห์วงศ์วัฒน	
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ผู้ช่วยศาสตราจารย์ ดร.เอกสิทธิ์ นิสารัตนพร	

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

......คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)

คณะกรรมการสอบวิทยานิพนธ์

.....ประธานกรรมการ

(รองศาสตราจารย์ ดร.ปฐมา วิสุทธิพิทักษ์กุล)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.บุญรัตน์ โล่ห์วงศ์วัฒน)

....อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(ผู้ช่วยศาสตราจารย์ ดร.เอกสิทธิ์ นิสารัตนพร)

.....กรรมการ

(ดร.เชษฐา พันธ์เครือบุตร)

.....กรรมการภายนอกมหาวิทยาลัย

(ดร.สุรศักดิ์ กุยมาลี)

ธนวัฒน์ เพชรรัตนรังสี : การศึกษาความเหมาะสมของปูนในงานหล่อเครื่องประดับโลหะ ผสมทองและโลหะไทเทเนียม (Investigations of jewelry investments and suitability for gold alloys and titanium casting) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.บุญรัตน์ โล่ห์วงศ์วัฒน, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร.เอกสิทธิ์ นิสารัตนพร, 180 หน้า.

ในอุตสาหกรรมเครื่องประดับนิยมใช้กระบวนการหล่อแบบขี้ผึ้งหายโดยใช้ปูนเป็นวัสดุ สำหรับสร้างเบ้าแบบซึ่งในการหล่อทองนั้นนิยมปูนในกลุ่มยิปซัมที่ประกอบด้วย cristobalite, quartz และยิปซัม และในระหว่างการอบปูน พบการสลายตัวไปของน้ำและการเปลี่ยนเฟสของ cristobalite, quartz และ แคลเซียมซัลเฟต ในส่วนพฤติกรรมของปูนกลุ่มสปิเนลที่ใช้ในการหล่อไทเทเนียมมี ส่วนประกอบหลักเป็น แมกนีเซียมออกไซด์ และ อะลูมิเนียมออกไซด์ ขณะทำการอบเกิดการสลายตัว ของแมกนีเซียม อะซิเตท ที่เป็นตัวประสานกลายเป็น แมกนีเซียมออกไซด์ และเมื่ออุณหภูมิสูงขึ้นทำ ให้เกิดปฏิกิริยาระหว่างแมกนีเซียมออกไซด์ และ อะลูมิเนียมออกไซด์ กลายเป็นแมกนีเซียม อะลูมิเนตสปิเนล

หลังจากปรับเปลี่ยนรูปแบบการอบปูนจากการพิจารณาพฤติกรรมของปูนขณะได้รับความ ร้อนพบว่าการเปลี่ยนรูปแบบการอบปูนทำให้ปูนมีความแข็งแรงเพิ่มขึ้นและไม่ทำให้คุณภาพชิ้นงาน หลังงานหล่อด้อยลง ซึ่งสามารถลดระยะเวลาในการอบปูนในกลุ่มยิปซัมลงได้ แต่อย่างไรก็ตามปูนที่มี ขนาดอนุภาคเล็กที่สุดจะมีความเรียบผิวที่ดีที่สุดแต่มีความสามารถในการซึมผ่านที่ไม่ดีจึงทำให้เกิด ตำหนิใต้ผิวชิ้นงานซึ่งทำให้ความแข็งที่ผิวชิ้นงานลดลง

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาควิชา	วิศวกรรมโลหการ	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมโลหการและวัสดุ	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2559	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5770189521 : MAJOR METALLURGICAL AND MATERIALS ENGINEERING KEYWORDS: INVESTMENT CASTING / GYPSUM-BONDED INVESTMENT / SPINEL-BASE INVESTMENT / THERMOCHEMICAL

THANAWAT PHETRATTANARANGSRI: Investigations of jewelry investments and suitability for gold alloys and titanium casting. ADVISOR: ASST. PROF. BOONRAT LOHWONGWATANA, Ph.D., CO-ADVISOR: ASST. PROF. EKASIT NISARATANAPORN, Ph.D., 180 pp.

In the jewelry industry, the investment was used to produce investment mold for lost wax casting. The popular investment for gold casting is the gypsum-boned investment that consists of three phase including cristobalite, quartz, and gypsum as a binder. During burning out, the dehydration of gypsum, cristobalite and quartz inversions and III-II calcium sulfate transition were indicated by using several characterization techniques. In spinel-based investment view, titanium casting can use the spinel-based investment that consists of magnesia and alumina. During burning out mold, magnesium acetate as binder decomposes to magnesia. When the temperature increased, magnesium aluminate spinel was occurred by the reaction of magnesia and alumina.

After developed the burnout cycle from consideration in the thermal behavior of investments, the investment molds that were burned out by using new burnout cycle, can increase the strength of investment molds and the quality of casting product were not decreased. In gypsum-bonded investment, the new burnout cycle can decrease burnout time in casting process. However, the smallest particle size of investment can produce good surface quality in casting product but has a low permeability of the mold that causes porosity defects at subsurface of casting product and decreasing hardness on casting surface.

Department:	Metallurgical Engineering	Student's Signature
Field of Study:	Metallurgical and	Advisor's Signature
	Materials Engineering	Co-Advisor's Signature
Academic Year:	2016	

กิตติกรรมประกาศ

ขอขอบคุณบริษัท คริสตี้เจมส์ จำกัด สำนักงานกองทุนสนับสนุนงานวิจัย และสมาคม ผู้ค้าอัญมณีและเครื่องประดับ ที่ช่วยสนับสนุนเงินวิจัย

ขอขอบพระคุณ คณาจารย์ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ซึ่งกรุณาสละเวลาให้ความรู้ คำแนะนำ ความช่วยเหลือ การแก้ปัญหา ตลอดจนเอื้อเฟื้อเครื่องมือและอุปกรณ์ต่างๆ ตลอดการทำงานวิจัย

ขอขอบพระคุณ เจ้าหน้าที่สำนักงาน (ธุรการ) ที่ได้ให้ความช่วยเหลือในการใช้งาน สถานที่และอุปกรณ์ต่างๆ ของภาควิชาฯ และช่วยเหลือในการติดต่อประสานงานต่างๆ

ขอขอบพระคุณ นายบุริมพักตร์ ศักดิ์โกมลศรี คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น ที่เอื้อเฟื้อเครื่องมือและอุปกรณ์ในการทดสอบ

ขอขอบพระคุณ นายชนกันต์ ธงไชย นายปัญญ์ วิโรจน์ นายกำพล ลีลาฤดี นายสืบสกุล ยศพิทักษ์ นางสาวกมลพัชร ศรีทอง และนิสิตปริญญาโท ภาควิชาวิศวกรรมโลหการ คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ซึ่งกรุณาสละเวลา ให้ความรู้ คำแนะนำ และความ ช่วยเหลือตลอดการทำวิจัย

ขอขอบพระคุณ อาจารย์ ดร.เชษฐา พันธ์เครือบุตร ดร.อัจฉรา คำกองแก้ว และอาจารย์ ที่ปรึกษา ผู้ช่วยศาสตราจารย์ ดร.บุญรัตน์ โล่ห์วงศ์วัฒน ผู้ประสิทธิ์ประศาสตร์วิชาความรู้ ผู้ที่คอย ช่วยเหลือให้คำปรึกษาจนงานวิจัยสำเร็จลุล่วงมาได้ด้วยดี ท้ายที่สุด ขอขอบคุณครอบครัวผู้เป็นที่ รักและผู้ให้กำลังใจตลอดการทำงานวิจัยด้วยดีมาตลอด

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	จ
กิตติกรรมประกาศ	ฉ
สารบัญ	ช
สารบัญภาพ	ູ່ມີ
สารบัญตาราง	จิ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญของปัญหา	1
1.2 วัตถุประสงค์ของงานวิจัย	2
1.3 ขอบเขตการศึกษา	2
1.4 ประโยชน์ที่คาดว่าจะได้รับ	2
บทที่ 2 วรรณกรรมปริทรรศน์	3
2.1 กระบวนการหล่อแบบขี้ผึ้งหาย (lost wax casting)	3
2.2 โลหะทองคำ (Gold)	4
2.3 ปูนในกลุ่มยิปซัม (Gypsum-bonded investment)	7
2.4 โลหะไทเทเนียม (Titanium)	9
2.5 ปูนในกลุ่มสปิเนล (Spinel-based investment)1	2
บทที่ 3 ขั้นตอนการดำเนินงานวิจัย1	4
3.1 วัสดุที่ใช้ในงานวิจัยใช้ในงานวิจัย	4
3.1.1 โลหะที่ใช้ในการหล่อแบบขี้ผึ้งหาย	4
3.1.2 ปูนเซรามิก	4
3.1.3 ต้นแบบพอลิเมอร์1	4

3.2 ตรวจสอบส่วนผสมทางเคมี	14
3.2.1 ตรวจสอบส่วนผสมทางเคมีของโลหะ	14
3.2.2 ตรวจสอบส่วนผสมทางเคมีของผงปูนเซรามิก	14
3.3 การเตรียมชิ้นงานเพื่อตรวจสอบปูนเซรามิก	15
3.4 การศึกษาสมบัติทางความร้อนของปูนเซรามิกและต้นแบบพอลิเมอร์	20
3.5 การวิเคราะห์โครงสร้างจุลภาคและการทดสอบสมบัติทางกลของปูนเซรามิก	21
3.6 การออกแบบชิ้นงานโลหะ	22
3.7 การหล่อชิ้นงานโลหะ	23
3.8 การวิเคราะห์ลักษณะพื้นผิวและความแข็งของชิ้นงานโลหะ	23
3.9 วิเคราะห์และรายงานผลการทดลอง	23
บทที่ 4 ผลการทดลองและวิเคราะห์ผลการทดลอง	24
4.1 ส่วนผสมทางเคมีของวัสดุที่ใช้ในการทดลอง	24
4.1.1 ผลการตรวจสอบส่วนผสมทางเคมีของโลหะทองผสมและโลหะไทเทเนียม	
บริสุทธิ์	24
4.1.2 ผลการตรวจสอบส่วนผสมทางเคมีของผงปูนทั้ง 4 แบบ	24
4.2 การศึกษาส่วนประกอบและขนาดของอนุภาคปูน	25
4.2.1 ผลการศึกษาส่วนประกอบของปูนกลุ่มยิปซัม	25
4.2.2 ผลการศึกษาส่วนประกอบของปูนกลุ่มสปิเนล	31
4.2.3 ผลการศึกษาขนาดอนุภาคของผงปูน	33
4.3 การศึกษาพฤติกรรมของปูนระหว่างกระบวนการเตรียมเบ้าปูน	34
4.3.1 ผลการศึกษาพฤติกรรมทางความร้อนระหว่างกระบวนการอบปูนเซรามิก	34
4.3.1.1 พฤติกรรมทางความร้อนของปูนกลุ่มยิปซัม	34
4.3.1.2 พฤติกรรมทางความร้อนของปูนกลุ่มสปิเนล	38

ซ

4.3.2 ผลของการอบปูนต่อสัณฐานวิทยาของอนุภาคปูน
4.3.3 ผลการศึกษาสมบัติทางความร้อนของต้นแบบพอลิเมอร์
4.4 ผลของรูปแบบการอบต่อความแข็งแรงของเบ้าปูน
4.5 ผลของรูปแบบการอบต่อคุณภาพชิ้นงานทอง
4.5.1 การศึกษาความเรียบผิวของชิ้นงานโลหะหลังการหล่อ
4.5.2 การศึกษาความแข็งผิวของชิ้นงานหลังงานหล่อ
4.5.3 การศึกษาโครงสร้างจุลภาคและตำหนิใต้ผิวของชิ้นงานหลังงานหล่อ
บทที่ 5 สรุปผลการทดลอง
5.1 สรุปผลการทดลองปูนในกลุ่มยิปซัม52
5.2 สรุปผลการทดลองปูนในกลุ่มสปิเนล53
รายการอ้างอิง
ภาคผนวก
ภาคผนวก ก
ภาคผนวก ข
ประวัติผู้เขียนวิทยานิพนธ์

ณ

สารบัญภาพ

หน้	ำ
กาพที่ 2.1 แสดงกระบวนการหล่อแบบขี้ผึ้งหาย	3
กาพที่ 2.2 แผนภาพเฟส Au-Ag-Cu	5
กาพที่ 2.3 แสดงโครงสร้างจุลภาคของทองคำ 18K	6
กาพที่ 2.4 แสดงตำหนิที่เกิดจาการหดตัว	6
กาพที่ 2.5 แสดงผล XRD ของผงปูน และปูนหลังการผสมน้ำ	8
กาพที่ 2.6 แสดงโครงสร้างจุลภาคจาก SEM ของผงปูนที่ผสมน้ำ	8
กาพที่ 2.7 แสดงกระดูกไทเทเนียมที่ทดแทนกระดูกในร่างกายมนุษย์	0
กาพที่ 2.8 แสดงโครงสร้างจุลภาคของไทเทเนียมบริสุทธิ์1:	1
กาพที่ 2.9 แสดง alpha-case layer1:	1
กาพที่ 2.10 แสดงขนาดอนุภาคของผงปูนที่ให้ในการหล่อไทเทเนียม	3
กาพที่ 3.1 แสดงการอบปูนรูปแบบที่ 1	6
กาพที่ 3.2 แสดงการอบปูนรูปแบบที่ 2 ของปูนกลุ่มยิปซัม	8
กาพที่ 3.3 แสองการอบปูนรูปแบบที่ 3 ของปูนกลุ่มยิปซัม	9
กาพที่ 3.4 แสดงการอบปูนรูปแบบที่ 3 ของปูนกลุ่มสปิเนล	0
กาพที่ 3.5 แสดงเครื่อง DSC/TG22	1
กาพที่ 3.6 แสดงขนาดต้นแบบพอลิเมอร์22	2
กาพที่ 4.1 แสดงส่วนประกอบของผงปูนกลุ่มยิปซัมจากเทคนิค XRD	6
กาพที่ 4.2 แสดงความแตกต่างระหว่าง CaSO4(H2O) _{0.5} กับ CaSO4(H2O) _{0.625}	7
กาพที่ 4.3 แสดงส่วนประกอบของ Green part ของปูนกลุ่มยิปซัมจากเทคนิค XRD	9
กาพที่ 4.4 แสดงส่วนประกอบของปูนที่ผ่านการอบจากเทคนิค XRD	0

ภาพที่ 4.5 แสดงส่วนประกอบของผงปูน, Green part และปูนหลังการอบ ของกลุ่มสปิเนลจา	าก
เทคนิค XRD	. 31
ภาพที่ 4.6 แสดงสเปกตรัมของ spinel liquid จากการทดสอบ FTIR	. 33
ภาพที่ 4.7 แสดงสมบัติทางความร้อนของ Investment A ด้วยเทคนิค DSC/TG	. 34
ภาพที่ 4.8 แสดงสมบัติทางความร้อนของปูนกลุ่มยิปซัม	. 36
ภาพที่ 4.9 แสดงพฤติกรรมทางความร้อนจากการวิเคราะห์ด้วยเทคนิค In-situ XRD (ก) การ เปลี่ยนแปลง XRD patterns ที่อุณหภูมิต่าง; (ข) การสูญเสียน้ำในผลึกยิปซัม; (ค) การเปลี่ยน เฟสของ cristobalite; (ง) การเปลี่ยนเฟสของแคลเซียมซัลเฟต; (จ) การเปลี่ยนเฟสของ	
quartz	. 37
ภาพที่ 4.10 แสดงสมบัติทางความร้อนของปูน Investment T ด้วยเทคนิค DSC/TG	. 39
ภาพที่ 4.11 แสดงสัณฐานวิทยาของปูนกลุ่มยิปซัม (ก) ผงปูน (ข) ปูนหลังทำการอบ	. 40
ภาพที่ 4.12 แสดงการวิเคราะห์ธาตุของอนุภาคผงปูน Investment A	. 40
ภาพที่ 4.13 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment A หลังการอบ	. 41
ภาพที่ 4.14 แสดงสัณฐานวิทยาของปูน Investment T (ก) ผงปูน; (ข) ปูนหลังทำการอบ	. 41
ภาพที่ 4.15 แสดงการวิเคราะห์ธาตุของอนุภาคผงปูน Investment T	. 42
ภาพที่ 4.16 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment T หลังการอบ	. 42
ภาพที่ 4.17 แสดงสมบัติทางความร้อนของต้นแบบพอลิเมอร์	. 43
ภาพที่ 4.18 แสดงความแข็งแรงของปูนหลังทำการอบด้วยรูปแบบการอบที่ต่างกัน	. 45
ภาพที่ 4.19 แสดงค่าความแข็งผิวชิ้นงานจากรูปแบบการอบที่ 1 และ 3	. 47
ภาพที่ 4.20 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ : ของปูน Investment A	3 . 49
ภาพที่ 4.21 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ 3 ของปูน Investment B	3 . 49
ภาพที่ 4.22 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ :	3
ของปูน Investment C	. 49

ภาพที่ 4.23 แสดงภาพโครงสร้างจุลภาคงบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบ	ที่
1 และ 3 ของปูน Investment C	50
ภาพที่ 4.24 แสดงตำหนิจากแก๊สบริเวณใต้ผิวชิ้นงานที่หล่อด้วยรูปแบบการอบที่ 3 ของปูน	
Investment C	50
ภาพที่ 4.25 แสดงโครงสร้างจุลภาคใต้ผิวชิ้นงานไทเทเนียมบริสุทธิ์ ที่หล่อด้วยรูปแบบการอบท์	1 1
และ 3 ของปุ่น Investment T	. 51

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญตาราง

2	,
หน	เา

ตารางที่	2.1	แสดงเกรดทองคำ	4
ตารางที่	3.1	แสดงชิ้นงานที่ทำการอบไล่ต้นแบบพอลิเมอร์ในรูปแบบต่างๆ	15
ตารางที่	4.1	แสดงผลการตรวจสอบส่วนผสมทางเคมีของโลหะ	24
ตารางที่	4.2	แสดงผลการตรวจสอบส่วนผสมทางเคมีของผงปูน	25
ตารางที่	4.3	แสดงปริมาณสารประกอบในผงปูนกลุ่มยิปซัม	28
ตารางที่	4.4	แสดงปริมาณสารประกอบในผงปูนกลุ่มสปีเนล	32
ตารางที่	4.5	แสดงขนาดอนุภาคผงปูน	34
ตารางที่	4.6	แสดงค่าความขรุขระของผิวชิ้นงานหลังการหล่อ	46

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญของปัญหา

ในปัจจุบันธุรกิจเครื่องประดับทั้งภายในประเทศและภาคการส่งออกมีการแข่งขันเพิ่มสูงขึ้น ใน ภาคอุตสาหกรรมจึงมีความจำเป็นอย่างมากที่จะต้องพัฒนาคุณสมบัติของเครื่องประดับโลหะรวมถึง กระบวนการผลิตเพื่อให้ได้คุณภาพที่ดีซึ่งสามารถเพิ่มจำนวนและมูลค่าการส่งออกได้ การพัฒนา กระบวนการผลิตจึงเป็นปัจจัยสำคัญที่ต้องทำการศึกษาในการเพิ่มกำลังการผลิตโดยการลดระยะเวลา และค่าใช้จ่ายในกระบวนการผลิตเครื่องประดับโลหะ เช่น แหวน กำไล สร้อย ต่างหู ฯลฯ ที่นิยมผลิต ด้วยกระบวนการหล่อแบบขี้ผึ้งหาย (Investment casting หรือ Lost-wax casting) เนื่องจาก กระบวนการหล่อแบบขี้ผึ้งหายมีความแม่นยำสูงและสามารถผลิตชิ้นงานที่มีรูปร่างชับซ้อนรวมทั้งได้ ผิวชิ้นงานที่มีความเรียบผิวที่ดี นอกจากนี้กระบวนการหล่อแบบขี้ผึ้งหายนี้ยังเป็นกระบวนการที่มี ต้นทุนการผลิตต่ำเมื่อเทียบกับการขึ้นรูปด้วยวิธีการอื่นๆ อาทิ การทุบขึ้นรูป (Forging) เป็นต้น [1] อย่างไรก็ตามเครื่องประดับโลหะที่ผลิตได้จำเป็นต้องมีสมบัติที่ดีในหลายๆด้าน เช่น สีผิวของ เครื่องประดับ ความเรียบผิว ความแข็งแรง รวมทั้งความทนทานต่อการใช้งาน ซึ่งขึ้นกับปัจจัยที่เป็น ตัวแปรสำคัญระหว่างกระบวนการหล่อ ได้แก่ส่วนผสมของโลหะที่ใช้ ขั้นตอนกรรมวิธีการผลิตแบบ ขี้ผึ้งหาย นอกจากนี้ยังมีปัจจัยสำคัญที่ใช้ในกระบวนการได้แก่ สมบัติของปูนที่ใช้ในกระบวนการหล่อ แบบขี้ผึ้งหาย (Investment material) เนื่องจากปูนที่เลือกใช้จะส่งผลอย่างมากกับคุณภาพของ ชิ้นงานเครื่องประดับโลหะ

ปัจจัยเกี่ยวกับปูนในกระบวนการหล่อแบบขี้ผึ้งหายมีความสำคัญในหลายขั้นตอน ตั้งแต่การ เลือกใช้ปูนที่มีสมบัติที่เหมาะสมกับโลหะที่ต้องการหล่อ การผสมปูน และการอบปูน ตัวแปรเหล่านี้ เป็นตัวกำหนดสมบัติที่ดีของแบบหล่อปูนเซรามิก (ceramic mold) ทั้งในด้านสมบัติทางความร้อน (thermal properties) สมบัติทางกายภาพ (physical properties) และสมบัติเชิงกล (mechanical properties) ซึ่งส่งผลโดยตรงต่อสมบัติของซิ้นงานเครื่องประดับโลหะที่หล่อด้วยกระบวนการชี้ผึ้งหาย [2, 3] โดยแบบหล่อปูนเซรามิกที่ดีควรมีลักษณะพื้นผิวที่เรียบในบริเวณที่สัมผัสกับน้ำโลหะและมี สมบัติการซึมผ่านที่ดี (permeable) นอกจากนั้นต้องมีความแข็งแรงตลอดกระบวนการหล่อ [4] แต่ อย่างไรก็ตามเมื่อศึกษาทางด้านงานวิจัยที่เกี่ยวกับการพัฒนาสมบัติของปูนหล่อในกระบวนการหล่อ แบบขี้ผึ้งหายเพื่อใช้ในอุตสาหกรรมทั้งในและนอกประเทศนั้น ยังพบว่ามีปริมาณงานวิจัยที่พบอยู่ไม่ มากนัก ซึ่งในอุตสาหกรรมโดยทั่วไปจะใช้ประสบการณ์และทักษะของแรงงานที่ทำหน้าที่ใน อุตสาหกรรมนั้นๆ อีกทั้งกระบวนการอบปูนที่มีในปัจจุบันยังใช้เวลาที่นานทำให้ประสิทธิภาพในการ ผลิตถูกจำกัดด้วยปัจจัยดังกล่าว เนื่องจากผู้ผลิตอาจไม่สามารถทำการศึกษาถึงเวลาที่เหมาะสมทำให้ อาจต้องสูญเสียค่าใช้จ่ายในด้านพลังงานเพิ่มสูงขึ้นจากการอบปูนที่เกินความจำเป็น

จากปัญหาดังกล่าวจึงได้มีงานวิจัยนี้ขึ้นเพื่อศึกษาวิจัยและทำความเข้าใจเกี่ยวกับสมบัติของปูน แต่ละแบบที่ใช้ในงานหล่อเครื่องประดับ รวมถึงสิ่งที่เกิดขึ้นในกระบวนการหล่อ โดยงานวิจัยนี้ คาดหวังว่าจะสามารถทำให้อุตสาหกรรมเครื่องประดับเลือกใช้ปูนที่มีสมบัติตรงกับโลหะที่ต้องการ ผลิตและออกแบบขั้นตอนการอบปูนที่เหมาะสมสำหรับการหล่อขึ้นรูปในอุตสาหกรรมเครื่องประดับ ซึ่งจะลดเวลาและต้นทุนในการผลิตเครื่องประดับโลหะที่มีคุณภาพที่ดีรวมถึงเพิ่มอัตราการผลิตให้ดีขึ้น ได้อีกด้วย

1.2 วัตถุประสงค์ของงานวิจัย

เพื่อให้ทราบถึงโครงสร้างจุลภาค อุณหภูมิสำคัญและการเปลี่ยนเฟสของปูนหล่อ
เครื่องประดับโลหะผสมทองและโลหะไทเทเนียม

 เพื่อให้ทราบถึงผลของรูปแบบการอบปูนที่มีผลต่อโครงสร้างจุลภาค และคุณสมบัติต่างๆ ของเครื่องประดับโลหะผสมทองและโลหะไทเทเนียม

1.3 ขอบเขตการศึกษา

 ศึกษาปูนหล่อเครื่องประดับทอง 18K ที่แตกต่างกัน ซึ่งเป็นปูนในกลุ่มยิปซัม (Gypsumbonded investment) จำนวน 3 แบบ และปูนในกลุ่มสปิเนล (spinel-based investment) สำหรับ หล่อโลหะไทเทเนียม CP grade 2 จำนวน 1 แบบ

 สึกษาผลของรูปแบบการอบปูนทั้ง 4 แบบต่อลักษณะทางกายภาพของพื้นผิวของแบบ หล่อปูนเซรามิก โดยอุณหภูมิที่เหมาะสมสำหรับการอบปูนจะอ้างอิงจากคู่มือแนะนำการใช้งานของ ปูนแต่ละแบบและปรับเปลี่ยนรูปแบบการอบปูนเพื่อเร่งและหน่วงระยะเวลาการอบปูนทั้ง 4 แบบ

3. ศึกษาลักษณะทางกายภาพของผิวโลหะที่มีลักษณะเป็นรูปแบบอย่างง่ายและไม่ซับซ้อน

4. ศึกษาสมบัติทางกลและทางกายภาพของชิ้นงานที่ได้จากการอบปูนที่แตกต่างกัน

5. ศึกษาสมบัติทางความร้อนของต้นแบบขี้ผึ้งสำหรับโลหะผสมทองและโลหะไทเทเนียม

1.4 ประโยชน์ที่คาดว่าจะได้รับ

เข้าใจผลของระยะเวลาในการอบปูนที่มีต่อชิ้นงานเครื่องประดับโลหะ และพฤติกรรมที่
เกิดขึ้นระหว่างการอบปูน

 สามารถนำองค์ความรู้ที่ได้ไปทำการปรับเปลี่ยนอุณหภูมิและระยะเวลาในการอบปูนให้มี ระยะเวลาสั้นลงและยังคงคุณภาพชิ้นงานเครื่องประดับโลหะที่ดีได้ เพื่อเพิ่มประสิทธิภาพในการผลิต ในภาคอุตสาหกรรมเครื่องประดับ

บทที่ 2 วรรณกรรมปริทรรศน์

2.1 กระบวนการหล่อแบบขี้ผึ้งหาย (lost wax casting)

กระบวนการหล่อแบบขี้ผึ้งหายนั้นเป็นกระบวนการที่มีมาตั้งแต่ช่วงบาบิโลเนีย (Babylonian period) ซึ่งช่วงแรกใช้ในการหล่อโลหะทองสัมฤทธิ์ (bronze) ต่อมาจึงมีการนำทองคำมาหล่อขึ้นรูป ชิ้นงาน โดยกระบวนการดังกล่าวสามารถทำให้ได้ชิ้นงานที่มีรูปร่างสวยงามและมีรายละเอียดที่ดีกว่า กระบวนการอื่นๆ แต่อย่างไรก็ตามช่วงเวลาต่อมากระบวนการหล่อแบบขี้ผึ้งหายก็เริ่มลดน้อยลงใน อุตสาหกรรมสมัยใหม่จนกระทั้ง Philbrook D.และ William H. ได้นำกระบวนการดังกล่าวมาปรับใช้ กับงานทางทันตกรรมทั้งการครอบฟันและการอุดฟัน และเริ่มมีการพัฒนากระบวนการหล่อมาเรื่อยๆ จนหลังสงครามโลกครั้งที่สองได้มีการทำแม่แบบยางมาใช้ในการผลิตต้นแบบที่เป็นขี้ผึ้งขึ้น[6] ทำให้ ต่อมาอุตสาหกรรมเครื่องประดับได้ใช้กระบวนการดังกล่าวมากขึ้นและมีการพัฒนามาอย่างต่อเนื่อง ดังจะเห็นได้จากงานวิจัยที่มีอยู่มากมายทั้งในและต่างประเทศ

ภาพที่ 2.1 แสดงกระบวนการหล่อแบบขี้ผึ้งหาย [5]

กระบวนการหล่อแบบขี้ผึ้งหายเริ่มต้นด้วยการสร้างต้นแบบขี้ผึ้งโดยการฉีดขี้ผึ้งเข้าไปใน แม่แบบยาง เมื่อได้ต้นแบบขี้ผึ้งแล้วจึงทำการเทปูนที่ผสมกับตัวประสาน ทิ้งให้แบบปูนแข็งตัว จากนั้น ทำการอบเพื่อไล่ขี้ผึ้งและเพิ่มความแข็งแรงของปูน จากนั้นนำแบบปูนเข้าเครื่องหล่อและทำการหล่อ จนได้ชิ้นงานโลหะที่มีรูปร่างที่ต้องการ นำชิ้นงานออกจากต้น(ทางเดินน้ำโลหะ) และทำการตกแต่ง ชิ้นงานให้มีความเงางามมากขึ้น ซึ่งกระบวนการหล่อเครื่องประดับด้วยวิธีขี้ผึ้งหายนั้นแสดงใน ภาพที่ 2.1

2.2 โลหะทองคำ (Gold)

โลหะทองคำเป็นโลหะมีค่าที่แสดงถึงสัญลักษณ์ของความมั่งคั่งและถูกใช้เป็นทุนสำรอง เงินตราระหว่างประเทศ เนื่องจากทองคำนั้นถือว่าเป็นโลหะที่มีมูลค่าในตัวเองจึงมีผู้นิยมนำทองคำมา ทำเป็นเครื่องประดับจำนวนมากตัวโลหะทองคำมีความงดงามมันวาว มีความคงทน ไม่หมองไม่ผุ กร่อนเพราะมีความเฉื่อยในการเกิดปฏิกิริยา ในปัจจุบันได้มีแบ่งประเภททองคำให้หลายเกรด (Karat) ตามความบริสุทธิ์หรือปริมาณของทองคำในโลหะผสมที่ใช้ในการทำเครื่องประดับต่างๆ ดังแสดงใน ตารางที่ 2.1

Gold Content and Notation			
USA Karat stamping	Parts Gold	Gold%	
24К	24/24	99.9%	
22K	22/24	91.7%	
18K	18/24	75.0%	
14K	14/24	58.3%	
12K	12/24	50.0%	
10K	10/24	41.7%	
9К	9/24	37.5%	
- Div	A DECEMBER OF A		

ธาตุทองคำมีสัญลักษณ์ทางเคมีคือ Au ซึ่งมาจากภาษาละตินว่า Aurum ซึ่งทองอยู่ในกลุ่ม โลหะทรานซิชัน (transition metal) โดยมีจุดหลอมเหลวอยู่ที่ประมาณ 1060 อาศาเซสเซียส จุด เดือดอยู่ที่ประมาณ 2700 องศาเซสเซียส และมีความถ่วงจำเพาะ 19.3 ทองคำจะมีลักษณะที่อ่อน และมีความเหนียวสามารถตีออกเป็นแผ่นได้ ในงานเครื่องประดับจึงต้องมีการเติมธาตุผสมต่างๆ เพื่อให้วัสดุมีความแข็งแรงมากยิ่งขึ้นเพื่อเพิ่มความคงทนในการใช้งาน เช่นการเติมทองแดงจะทำให้ โครงสร้างผลึกของทองเกิดการบิดเบี้ยวเนื่องจากอะตอมของทองแดงนั้นมีขนาดที่เล็กกว่าอะตอมของ ทองประมาณ 11.93% ทำให้การเติมทองแดงจึงส่งผลต่อความแข็งแรงรวมถึงความแข็งของทองที่ เพิ่มขึ้นด้วย[8]

โดยทั่วไปในอุตสาหกรรมเครื่องประดับนิยมใช้ทองคำเกรด 18K เนื่องจากมีความแข็งแรง และสามารถปรับเปลี่ยนสีได้จากการเติมธาตุผสมต่างๆ ซึ่งนอกจากชนิดของธาตุที่เลือกใช้แล้วปริมาณ สัดส่วนในการผสมก็มีผลต่อคุณสมบัติของโลหะได้อีกด้วย [9-11] โดยทอง 18K ที่ประกอบด้วย ทองคำร้อยละ75 โดยน้ำหนักและมีส่วนผสมอื่นๆได้แก่ เงิน และทองแดง อย่างละ 12.5 เปอร์เซ็นต์ จะมีจุดหลอมเหลวอยู่ที่ 885-895 องศาเซสเซียส และความหนาแน่นที่ 15.45 กรัมต่อลูกบาศก์ เซนติเมตร[12] ถ้าเทียบกับทองคำบริสุทธิ์จะมีจุดหลอมเหลวและความหนาแน่นที่ต่ำกว่า ซึ่งใน อุตสาหกรรมทั่วไปจะมีการปรับเปลี่ยนส่วนผสมของเงินและทองแดง ตามแผนภาพเฟสของระบบที่มี สามองค์ประกอบตามภาพที่ 2.2

ภาพที่ 2.2 แผนภาพเฟส Au-Ag-Cu [13]

มีงานวิจัยจาก X.J. Zhang et al.[13] เลือกใช้ส่วนผสมของทองคำ 75.5% โดยน้ำหนัก เงิน 14.7% และ ทองแดง 9.8% ได้โครงสร้างจุลภาพเป็นดังภาพที่ 2.3 จะเห็นได้ว่าเป็นโครงสร้าง เดนไดรต์ (dendritic structure) ของทองและบริเวณรอบๆ เดนไดรต์ที่เป็นเฟสยูเทกติกของทอง และทองแดงอย่างชัดเจน[13] แต่อย่างไรก็ตามการโตของเดนไดรต์สามารถขัดขวางการเติมเต็มของ น้ำโลหะบริเวณรอบๆ เดนไดรต์ได้และส่งผลให้เกิดรูที่เกิดจากการหดตัว (shrinkage pore) ได้ดัง แสดงในภาพที่ 2.4 [12]

ภาพที่ 2.3 แสดงโครงสร้างจุลภาคของทองคำ 18K [13]

ภาพที่ 2.4 แสดงตำหนิที่เกิดจาการหดตัว[12]

2.3 ปูนในกลุ่มยิปซัม (Gypsum-bonded investment)

ในการหล่อเครื่องประดับโลหะทองปัจจัยที่มีผลอย่างมากต่อคุณภาพของชิ้นงาน เครื่องประดับที่ดี ส่วนหนึ่งมาจากปูนที่ใช้ในกระบวนการหล่อซึ่งปูนที่ดีต้องมีความแข็งแรงตลอดทุก อุณหภูมิในกระบวนการหล่อ มีความพรุนที่เหมาะสมเพื่อให้แก๊สที่เกิดในกระบวนการหล่อสามารถ แทรกตัวออกมาได้ และผิวของปูนที่สัมผัสกับน้ำโลหะต้องมีผิวที่เรียบซึ่งขึ้นอยู่กับขนาดของอนุภาค ปูนและส่วนผสมต่างๆในผงปูนรวมถึงอัตราส่วนของส่วนผสมในผงปูน

ปูนในกลุ่มยิปซัมที่ใช้ในงานหล่อเครื่องประดับทองโดยทั่วไปประกอบด้วย CaSO₄•0.5(H₂O) (calcium sulphate hemihydrate) ประมาณ 25-30% ทำหน้าที่เป็นตัวประสาน (binder) และ SiO₂ (silica) 70-75% ทำหน้าที่เป็นวัสดุทนไฟ (refractory material) ซึ่งประกอบด้วยสองเฟส ได้แก่ quartz และ cristobalite โดยสัดส่วนของ quartz และ cristobalite ส่งผลต่อคุณสมบัติของ เบ้าปูน (mold) เนื่องจากทั้งสองเฟสมี คุณสมบัติทางกลที่ขึ้นกับความร้อน (thermomechanical properties) อุณหภูมิการเปลี่ยนเฟส (phase transition temperature) และ ค่าสัมประสิทธิ์ การขยายตัวทางความร้อน (thermal expansion coefficient) ที่แตกต่างกัน [6, 14]

การศึกษาผลของ quartz และ cristobalite ที่มีต่อปูนในกลุ่มยิปซัมของ Yun-Jong Kim et al.[15] พบว่า cristobalite จะเริ่มมีการขยายตัวมากขึ้นเมื่ออุณหภูมิ 250 องศาเซสเซียสซึ่งการ ขยายตัวนั้นเป็นการชดเชยการหดตัวของปูนใน mold ทำให้การหดตัว (shrinkage) ลดลง ดังนั้น cristobalite จึงเป็นส่วนสำคัญในการความคุมการขยายตัวทางความร้อน ในส่วนของ quartz ทำหน้าที่เสริมความแข็งแรง กล่าวคือการที่มีสัดส่วนของ quartz ที่เพิ่มขึ้นนั้นส่งผลให้ความแข็งแรง ของปูนมีแนวโน้มเพิ่มขึ้น ดังนั้นการเลือกสัดส่วนที่เหมาะสมในการผสม silica ทั้งสองเฟสจึงมี ความสำคัญ โดยงานวิจัยก่อนหน้าพบสัดส่วนที่ดีที่สุดอยู่ที่ 42% cristobalite ต่อ 22% quartz โดย น้ำหนักซึ่งเลือกจากความแข็งแรงและการขยายตัวทางความร้อนที่ดีที่สุด

นอกจากนี้ยังมีการศึกษาผลของยิปซัม[6] ซึ่งเป็นสาเหตุหนึ่งที่ทำให้เกิดความเสียหายใน งานหล่อเครื่องประดับ เนื่องจากผง CaSO₄•0.5(H₂O) เมื่อทำการผสมน้ำจะทำให้น้ำเข้าไปในผลึก เกิดปฏิกิริยา hydration เป็น CaSO₄•2(H₂O) ดังแสดงจากผล XRD ในภาพที่ 2.5 แสดงผล XRD ของผงปูน และปูนหลังการผสมน้ำ [6] และเมื่อพิจารณาภาพถ่าย SEM ของปูนที่ทำการผสมน้ำพบ CaSO₄•2(H₂O) ที่มีสัณฐานวิทยาเป็นลักษณะคล้ายแท่ง และ silica มีสัณฐานวิทยาเป็นลักษณะคล้าย ก้อนดังแสดงในภาพที่ 2.6

ภาพที่ 2.5 แสดงผล XRD ของผงปูน และปูนหลังการผสมน้ำ [6]

ภาพที่ 2.6 แสดงโครงสร้างจุลภาคจาก SEM ของผงปูนที่ผสมน้ำ [6]

ต่อมาเมื่อทำการอบปูนจะเกิดการดูดความร้อนเกิดปฏิกิริยา dehydrationทำให้น้ำที่อยู่ใน ผลึกสลายตัวไป ที่อุณหภูมิประมาณ 140 องศาเซสเซียส จาก CaSO₄•2(H₂O) กลายเป็น CaSO₄ และ 2 โมลของน้ำ (2(H₂O))[16] ต่อมาที่อุณหภูมิประมาณ 250 องศาเซสเซียส เกิดปฏิกิริยาดูดพลังงานซึ่ง เป็นผลมาจากการเปลี่ยนเฟสจาก α -cristobalite เป็น β -cristobalite เมื่ออุณหภูมิสูงขึ้นถึง ประมาณ 572 องศาเซสเซียส quartz จะเกิดการเปลี่ยนเฟสจาก α -quartz เป็น β - quartz [6] โดย อุณหภูมิที่สูงขึ้นส่งผลให้เกิดการเปลี่ยนเฟสและเกิดการขยายตัวทางความร้อนขึ้นซึ่งการเปลี่ยนเฟส ของ cristobalite และ quartz เกิดการขยายตัว 1.6% และ 1.3% ตามลำดับ[17] เมื่อสิ้นสุดขั้นตอน การอบปูน เบ้าปูนจะถูกนำไปรองรับน้ำโลหะหลอมเหลวที่มีอุณหภูมิประมาณ 900-1200 องศาเซสเซียส ซึ่งเป็นอุณหภูมิเดียวกับอุณหภูมิที่เกิดการสลายตัวของยิปซัม โดยการสลายตัวเป็นไป ตามสมการที่ 2.1 และ 2.2 ตามลำดับ[2] ซึ่งแก๊ส SO₂ และ O₂ ที่เกิดขึ้นจากการสลายตัวของยิปซัม อาจทำให้เกิดรูพรุนที่ผิวของชิ้นงานส่งผลให้คุณภาพชิ้นงานเครื่องประดับลดลงได้

$$CaSO_{4 (S)} \rightarrow CaO_{(g)} + SO_{3 (g)}$$
(2.1)
$$SO_{3 (g)} \rightarrow SO_{2 (g)} + 0.5O_{2 (g)}$$
(2.2)

นอกจากแก๊สที่เกิดจากการสลายตัวของยิปซัม ยังอาจเกิดปฏิกิริยาระหว่างของ CaSO4 กับ อนุภาค silica ส่งผลให้เกิด Ca2SiO4 (calcium silicates) ดังในสมการที่ 2.3 [18]

$$CaSO_{4(S)} + SiO_{2(S)} \rightarrow Ca_2SiO_{4(g)} + 2SO_{3(g)}$$
(2.3)

ไม่เพียงแต่ส่วนประกอบภายในผงปูนเท่านั้นแต่ขนาดของอนุภาคของผงปูนยังมีส่วนสำคัญที่ ส่งผลต่อคุณภาพของชิ้นงานหล่อ อาทิ การมีขนาดอนุภาคของผงปูนที่เล็กลงทำให้ขนาดของรูพรุนใน แบบปูนนั้นเล็กลงส่งผลให้ผิวปูนเรียบทำให้ผิวของชิ้นงานโลหะมีความเรียบและสวยงาม แต่การที่รู พรุนมีขนาดที่เล็กลงทำให้ความสามารถในการซึมผ่าน (permeability) ของอากาศภายในปูนออกสู่ ภายนอกน้อยลงด้วย [14] ส่งผลให้เกิดแก๊สตกค้างภายในชิ้นงานเกิดเป็นตำหนิรูพรุนภายในชิ้นงาน โลหะเป็นต้น ดังนั้นปูนที่ดีจึงมีขนาดอนุภาคของปูนที่เหมาะสมด้วย

2.4 โลหะไทเทเนียม (Titanium)

ไทเทเนียม เป็นโลหะที่ถูกค้นพบในประเทศอังกฤษ โดย Gregor ในปี ค.ศ. 1790 จนใน ช่วงสงครามโลก ไทเทเนียมเป็นที่นิยมใช้เป็นวัสดุทางการทหารของประเทศฝั่งตะวันตก ต่อมาใน ช่วงต้น ค.ศ.1930s ได้มีการนำโลหะไทเทเนียมมาใช้เป็นวัสดุทดแทนอวัยวะในร่างกายมนุษย์ ดัง ตัวอย่างในภาพที่ 2.7 แสดงตัวอย่างกระดูกเทียมไทเทเนียมที่ใช้ทดแทนกระดูกมนุษย์ ในปัจจุบัน โลหะไทเทเนียมเริ่มมีความนิยมมากขึ้นในอุตสาหกรรมเครื่องประดับ เนื่องจากมีสีสันที่สวยงาม หลากหลายเป็นที่นิยมอีกทั้งมีน้ำหนักที่เบามีความหนาแน่นอยู่ที่ประมาณ 4.4 กรัมต่อลูกบาศก์ เซนติเมตร มีจุดหลอมเหลวที่สูงถึง 1670 องศาเซสเซียส เป็นโลหะที่มีความแข็งแรงต่อน้ำหนักที่สูง มี ความไวต่อการทำปฏิกิริยากับออกซิเจนที่อุณหภูมิสูง[5]

ภาพที่ 2.7 แสดงกระดูกไทเทเนียมที่ทดแทนกระดูกในร่างกายมนุษย์

โครงสร้างจุลภาคของโลหะไทเทเนียมมีลักษณะตามการเปลี่ยนแปลงเฟสและการแข็งตัว (Solidification) โดยอุณหภูมิของไทเทเนียมบริสุทธิ์ที่เริ่มมีการแข็งตัวอยู่ที่ 1670 องศาเซสเซียส และ เมื่ออุณหภูมิลดลงมาที่ 882 องศาเซสเซียส เบต้าเฟส (β -phase) ที่มีโครงสร้างผลึกเป็น BCC (bodycentered cubic) จะเปลี่ยนเฟสกลายเป็น แอลฟาเฟส (α -phase) ที่มีโครงสร้างผลึกเป็น HCP (hexagonal close packed) โดยโครงสร้างจุลภาคจะมีลักษะเป็นเกรนของ β -phase ที่เกิดขึ้นมา ก่อนแล้วจะมี α -phase ที่มีหลากหลายสัณฐานวิทยาอยู่ด้านในเกรนซึ่งจากภาพที่ 2.8 จะ ประกอบด้วย α -phase ที่ขอบเกรน บริเวณ A, α -phase ที่มีลักษณะเป็นเข็มละเอียด บริเวณ B และ α -phase ที่มีลักษณะเป็น Widmänstaetten บริเวณ C [19]

สำหรับปัญหาในการหล่อไทเทเนียมนั้นเนื่องมาจากไทเทเนียมมีอุณหภูมิหลอมเหลวที่สูงและ สามารถเกิดปฏิกิริยากับออกซิเจนได้ง่ายที่อุณหภูมิสูง ยิ่งไปกว่านั้นในบรรยากาศปกติที่อุณหภูมิห้องก็ ยังปรากฏฟิล์มออกไซด์ของไทเทเนียมอยู่ที่ผิวโดยจะมีฟิล์มออกไซด์อยู่สามระดับโดยชั้นในสุดที่ติดกับ เนื้อโลหะจะเป็น TiO ชั้นต่อมาเป็น Ti₂O₃ และชั้นที่ติดกับบรรยากาศเป็น TiO₂ ตามลำดับ[20, 21] ดังนั้นการหล่อไทเทเนียมจึงต้องทำในบรรยากาศที่มีแก๊สเฉื่อยปกคลุม แต่อย่างไรก็ตามเมื่อน้ำโลหะ ไทเทเนียมเข้าสู่แบบปูนจะเกิดปฏิกิริยากับออกซิเจนเกิดเป็นชั้นออกไซด์อยู่ที่ผิวโลหะไทเทเนียมที่ เรียกกันว่า "alpha-case (**α**-case) layer" ดังแสดงในภาพที่ 2.9

ภาพที่ 2.8 แสดงโครงสร้างจุลภาคของไทเทเนียมบริสุทธิ์ [19]

Internal surface

ภาพที่ 2.9 แสดง alpha-case layer [22]

โดยการศึกษาของ Guitin *et al*. [22] พบว่า alpha-case layer จะประกอบไปด้วยสามชั้น คือ oxide layer, alloy layer และ hardening layer โดยส่วนที่เป็น oxide layer และ alloy layer รวมกันเรียกว่า ชั้นเกิดปฏิกิริยา (reaction layer) alpha-case layer จะมีลักษณะแข็งแต่เปราะโดย ความแข็งสูงสุดที่ผิวจะมีค่าประมาณ 800-1200Hv ซึ่งสูงมากเมื่อเทียบกับความแข็งของเนื้อโลหะ ไทเทเนียมที่มีความแข็งอยู่ที่ประมาณ 200Hv[23] ดังนั้นชั้นปฏิกิริยาดังกล่าวจึงไม่เป็นที่ต้องการ เพราะทำให้คุณสมบัติทางกลนั้นไม่สม่ำเสมอแต่กระบวนการหล่อไม่สามารถควบคุมชั้นการ เกิดปฏิกิริยาได้ ซึ่งความแข็งจะขึ้นกับความหนาของ reaction layer โดยความหนานี้ขึ้นกับการเลือก ส่วนผสมของปูนที่ใช้ในการหล่อ โดยความหนาของชั้นปฏิกิริยาจะลดลงจากการเลือกใช้ปูน SiO₂-base, Al₂O₃-base และ MgO-base ตามลำดับ ดังนั้นการเลือกปูนกลุ่ม MgO-base จึงเป็น ทางเลือกที่เหมาะสมสำหรับการหล่อไทเทเนียม

2.5 ปูนในกลุ่มสปิเนล (Spinel-based investment)

เนื่องจากไทเทเนียมมีจุดหลอมเหลวที่สูงและสามารถเกิดปฏิกิริยาที่พื้นผิวได้ง่ายที่อุณหภูมิสูง โดยผลของปฏิกิริยาทำให้เกิด alpha-case layer ที่เป็นชั้นที่แข็งแต่เปราะโดยเฉพาะอย่างยิ่งจากการ เลือกใช้ปูนที่มี SiO₂ ดังนั้นจึงไม่ควรเลือกใช้ปูนที่มีส่วนผสมของ SiO₂ ในงานหล่อไทเทเนียม ซึ่งตลาด ปูนในปัจจุบันมีปูนสำหรับหล่อไทเทเนียมที่หลากหลาย ปูนที่เป็นที่นิยมและสามารถหล่อได้คุณภาพ ชิ้นงานที่ดีคือแก่ปูนอะลูมินา-แมกนีเซีย (alumina-magnesia (non-silica) investment) หลังจากที่ ผสมผงปูนกับตัวประสาน จากนั้นทิ้งให้แข็งตัวแล้วนำไปอบจะเกิดการเปลี่ยนเฟสเป็นสปิเนล กล่าวคือ MgO (magnesia) และ Al₂O₃ (alumina) จะรวมตัวกันกลายเป็นสปิเนล (MgAl₂O₄) ซึ่งมีการ เปลี่ยนแปลงขนาดน้อยมากทำให้ชิ้นงานที่ได้จากการหล่อไทเทเนียมด้วยปูนชนิดนี้มีความแม่นยำที่สูง มาก [24]

นอกจากความแม่นยำในการหล่อ ความสามารถในการซึมผ่านของปูนยังเป็นปัจจัยสำคัญที่ อาจทำให้เกิดความเสียหายภายในชิ้นงาน กล่าวคือแก๊สที่ไม่สามารถซึมผ่านออกจากเบ้าปูนได้จะทำ ให้ชิ้นงานโลหะที่ได้จากการหล่อมีลักษณะที่เป็นโพรงด้านในชิ้นงาน ซึ่งความสามารถในการซึมผ่านที่ ดีนั้นเป็นผลมาจากขนาดรูพรุนที่เหมาะสม ซึ่งมาจากการมีขนาดอนุภาคผงปูนที่เหมาะสม โดยขนาดที่ เหมาะสมที่ทำให้มีความสามารถในการซึมผ่านที่ดีและสามารถหล่อชิ้นงานที่มีคุณภาพได้นั้นต้องมี ขนาดอยู่ในช่วง 60-280 ไมครอน [25] แสดงในภาพที่ 2.10

ภาพที่ 2.10 แสดงขนาดอนุภาคของผงปูนที่ให้ในการหล่อไทเทเนียม [25]

ดังนั้นการเลือกใช้ปูนในกลุ่มสปิเนลจึงเป็นทางเลือกที่เหมาะสมในการหล่อไทเทเนียมด้วย กระบวนการหล่อแบบขี้ผึ้งหาย

> จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 3 ขั้นตอนการดำเนินงานวิจัย

3.1 วัสดุที่ใช้ในงานวิจัยใช้ในงานวิจัย

ในงานวิจัยนี้มีวัสดุที่ใช้ในการทดสอบอยู่ 3 ประเภท ได้แก่ โลหะ, ปูนเซรามิก และ ต้นแบบ พอลิเมอร์ โดยมีรายละเอียดดังต่อไปนี้

3.1.1 โลหะที่ใช้ในการหล่อแบบขี้ผึ้งหาย

 โลหะทอง 18K เป็นเกรดที่นิยมใช้ในอุสาหกรรมเครื่องประดับเนื่องจากมีความ แข็งแรงที่มากกว่าทองบริสุทธิ์

 2. โลหะไทเทเนียมบริสุทธิ์เกรด 2 เป็นเกรดมีความนิยมใช้สำหรับผลิตชิ้นงานที่เป็น เครื่องประดับเนื่องจากมีความเหนียวและสามารถขึ้นรูปได้ง่าย

3.1.2 ปูนเซรามิก

1. ปูนในกลุ่มยิปซัม (gypsum-bonded investment) 3 แบบ สำหรับหล่อโลหะ ทอง 18K

 2. ปูนในกลุ่มสปิเนล (spinel-based investment) 1 แบบ สำหรับหล่อโลหะ ไทเทเนียมบริสุทธิ์เกรด 2

3.1.3 ต้นแบบพอลิเมอร์

3.2 ตรวจสอบส่วนผสมทางเคมี

3.2.1 ตรวจสอบส่วนผสมทางเคมีของโลหะ

การทดสอบเพื่อหาค่าส่วนผสมทางเคมีของโลหะทองและโลหะไทเทเนียม โดยใช้เทคนิค X-ray fluorescence (XRF) ซึ่งอาศัยหลักการคือ เมื่อชิ้นงานได้รับรังสีเอ็กซ์ ที่มีค่าพลังงานที่สูง พอที่จะทำให้อิเล็กตรอนชั้นในหลุดออกจากชั้นพลังงานและเกิดความไม่เสถียร อิเล็กตรอนชั้นนอกจึง เปลี่ยนชั้นพลังงานเพื่อให้เกิดความเสถียร และปลดปล่อยโฟตอนออกมาซึ่งจะมีความเป็นเอกลักษณ์ เฉพาะของแต่ละธาตุทำให้เราสามารถทราบถึงธาตุต่างๆ ที่อยู่ในวัสดุที่ศึกษาได้

3.2.2 ตรวจสอบส่วนผสมทางเคมีของผงปูนเซรามิก

การทดสอบเพื่อหาค่าส่วนผสมทางเคมีของผงปูนโดยใช้เทคนิค X-ray fluorescence (XRF) เช่นเดียวกันโลหะ

3.3 การเตรียมชิ้นงานเพื่อตรวจสอบปูนเซรามิก

มีขั้นตอนการเตรียมชิ้นงานดังต่อไปดังนี้

 เตรียมผงปูนเซรามิก (Investment powder) ทั้งสี่แบบ ได้แก่ แบบ A (Investment A), แบบ B (Investment B), แบบ C (Investment C) สำหรับหล่อวัสดุโลหะทอง และ แบบ T (Investment T) สำหรับหล่อโลหะไทเทเนียม

 ผสมผงปูนเซรามิกทั้งสี่แบบกับตัวประสานและปล่อยให้แข็งตัวเป็น Green part โดยตัว ประสานในปูนกลุ่มยิปซัมคือ น้ำ ส่วนตัวประสานในปูนกลุ่มสปิเนลคือ น้ำสปิเนล (spinel liquid)

3. นำ Green part มาผ่านการอบ (Burned out flask) โดยใช้ระยะเวลาในการอบ 3 รูปแบบ (Condition) ซึ่งแสดงชิ้นงานหลังการอบใน ตารางที่ 3.1

รูปแบบการอบ	Gypsum-bonded investment			Spinel-based investment
	A	В	С	Т
Condition 1	A1	B1	C1	Τ1
Condition 2	A2	B2	C2	-
Condition 3	A3	B3	C3	Т3

ตารางที่ 3.1 แสดงชิ้นงานที่ทำการอบไล่ต้นแบบพอลิเมอร์ในรูปแบบต่างๆ

้โดยการปรับอุณหภูมิและอัตราการให้ความร้อนมีรูปแบบการอบดังต่อไปนี้

- 1. อบตามคู่มือของปูนแต่ละชนิด (Condition 1) ซึ่งแสดงในภาพที่ 3.1
- 2. อบแบบเร่งระยะเวลาการอบ (Condition 2) แสดงในภาพที่ 3.2
- อบแบบหน่วงระยะเวลาการอบ (Condition 3) ได้แก่ รูปแบบการอบแบบที่ 3 ของปูน กลุ่มยิปซัม และ กลุ่มสปิเนล โดยแสดงในภาพที่ 3.3 และ ภาพที่ 3.4 ตามลำดับ

ภาพที่ 3.1 แสดงการอบปูนรูปแบบที่ 1

โดยรายละเอียดของรูปแบบการอบที่ 1 ของปูนแต่ละแบบเป็นต่อไปดังนี้

Investment A

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 2.5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 150 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 2 ชั่วโมง 30 นาที

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 4 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 375 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 3 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 725 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 4 ชั่วโมง

-ลดอุณหภูมิด้วยอัตราเร็ว 2 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 600 องศาเซสเซียส แล้วปล่อยไว้ที่ อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

Investment B

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 149 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 371 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 732 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 2 ชั่วโมง

-ลดอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 600 องศาเซสเซียส แล้วปล่อยไว้ที่ อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

Investment C

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 4 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 230 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 3 ชั่วโมง

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 4 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 725 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 4 ชั่วโมง

-ลดอุณหภูมิด้วยอัตราเร็ว 2 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 600 องศาเซสเซียส แล้วปล่อยไว้ที่ อุณหภูมินี้เป็นเวลา 1 ชั่วโมง Investment T

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 8 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 300 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 30 นาที

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 8 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 880 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-ลดอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 675 องศาเซสเซียส แล้วปล่อยไว้ที่ อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

ภาพที่ 3.2 แสดงการอบปูนรูปแบบที่ 2 ของปูนกลุ่มยิปซัม

โดยรูปแบบการอบปูนที่ 2 ของปูนกลุ่มยิปซัมมีรายละเอียดดังต่อไปนี้

-เพิ่มอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 150 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 730 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 2 ชั่วโมง

-ลดอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 600 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 30 นาที

ภาพที่ 3.3 แสองการอบปูนรูปแบบที่ 3 ของปูนกลุ่มยิปซัม

โดยรูปแบบการอบปูนที่ 3 ของปูนกลุ่มยิปซัมมีรายละเอียดดังต่อไปนี้

-เพิ่มอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 150 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 370 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 730 องศาเซสเซียส แล้วปล่อย ไว้ที่อุณหภูมินี้เป็นเวลา 2 ชั่วโมง

-ลดอุณหภูมิ ด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 600 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

โดยรูปแบบการอบปูนที่ 3 ของ Investment T แสดงรายละเอียดดังต่อไหนี้ -เพิ่มอุณหภูมิด้วยอัตราเร็ว 3 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 300 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-เพิ่มอุณหภูมิด้วยอัตราเร็ว 3 องศาเซสเซียสต่อนาที จนอุณหภูมิถึง 880 องศาเซสเซียส แล้วปล่อยไว้ ที่อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

-ลดอุณหภูมิด้วยอัตราเร็ว 5 องศาเซสเซียสต่อนาที่ จนอุณหภูมิถึง 675 องศาเซสเซียส แล้วปล่อยไว้ที่ อุณหภูมินี้เป็นเวลา 1 ชั่วโมง

3.4 การศึกษาสมบัติทางความร้อนของปูนเซรามิกและต้นแบบพอลิเมอร์

ทำการศึกษาสมบัติทางความร้อนของปูนเซรามิกที่เป็น Green parts และต้นแบบที่เป็นขี้ผึ้ง โดยใช้เครื่อง Differential Scanning Calorimeter (DSC) / Thermogravimetric (TG) รุ่น Netzsch-F30 ดังภาพที่ 3.5 ทำการวัดค่าอุณหภูมิต่างๆ ที่มีปฏิกิริยาเกิดขึ้น ซึ่งใช้หลักการวัดค่า พลังงานและน้ำหนักที่เปลี่ยนแปลงไป ซึ่งพลังงานที่เปลี่ยนแปลงไปนั้นอาจเป็นเกิดปฏิกิริยา คายพลังงาน(Exothermic) หรือ ดูดพลังงาน (endothermic) เมื่อพิจารณาร่วมกับข้อมูลการ เปลี่ยนแปลงน้ำหนักจึงทำให้ทราบว่าปฏิกิริยาใดเกิดขึ้นที่อุณหภูมินั้นๆ

ภาพที่ 3.5 แสดงเครื่อง DSC/TG

3.5 การวิเคราะห์โครงสร้างจุลภาคและการทดสอบสมบัติทางกลของปูนเซรามิก

เครื่องมือที่ใช้ในการทดสอบ ได้แก่

 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Field Emission Scanning Electron Microscope, FESEM) รุ่น JSM-7001F ที่ใช้ Schottky type field-emission เป็นแหล่งกำเนิด อิเล็กตรอนทำให้กล้องมีความคมชัด (resolution) สูงถึง 1.2 นาโนเมตร ในการตรวจสอบโครงสร้าง จุลภาคของผงปูน A, B, C, T และ ปูนหลังอบตามคู่มือของปูนแต่ละชนิดได้แก่ A1, B1, C1, T1 รวม 8 ตัวอย่าง โดยทำการตรวจสอบด้วย Secondary Electron Detector

 Energy dispersive X-ray spectroscopy (EDS) รุ่น INCA PentalFETx3 เพื่อตรวจสอบ ธาตุองค์ประกอบในเฟสของผงปูน A, B, C, T และ ปูนหลังอบตามคู่มือของปูนแต่ละชนิดได้แก่ A1, B1, C1, T1 รวม 8 ตัวอย่าง โดยทำการวิเคราะห์ธาตุแบบแผนที่ (Mapping)

 X-ray diffractometer (XRD) รุ่น PANalytical-EMPYREAN เพื่อตรวจสอบเฟสของผง ปูน A, B, C, T และ เฟสของปูนที่เปลี่ยนแปลงไปหลังอบตามคู่มือของปูนแต่ละชนิดได้แก่ A1, B1, C1, T1 รวมถึง Green parts ทั้ง 4 ชนิด รวม 12 ตัวอย่าง โดยทำการตรวจสอบเก็บข้อมูลทุกๆ 0.1 องศา ตั้งแต่มุม 15-90 องศา ซึ่งใช้ Cu-K_α เป็นแหล่งกำเนิดพลังงาน (X-ray source) 4. In-situ X-ray diffractometer (In-situ XRD) เพื่อตรวจสอบการเปลี่ยนแปลงเฟสขณะ ได้รับความร้อนของ Green part ของปูนกลุ่มยิปซัม โดยเลือกทำการทดสอบใน Investment A อุณหภูมิที่ใช้ในการตรวจสอบ ได้แก่ อุณหภูมิห้อง, 70 องศาเซสเซียส, 150 องศาเซสเซียส, 250 องศา เซสเซียส, 375 องศาเซสเซียส, 580 องศาเซสเซียส, 725 องศาเซสเซียส, และลดอุณหภูมิจนถึง 600 องศาเซสเซียส ตามลำดับ

5. Particle Analyzer รุ่น Mastersizer-2000 เพื่อตรวจสอบขนาดของอนุภาคผงปูน A, B, C และ T ซึ่งทำการวัดโดยใช้อากาศเป็นตัวกลางและใช้เทคนิคการวิเคราะห์แบบ Laser diffraction Technique

 5. วัดความแข็งแรงด้วยการทดสอบแรงกด (Compression test) โดยใช้เครื่อง Universal Testing Machine เพื่อทดสอบความแข็งแรงของปูนหลังการอบโดยมีชิ้นงานปูน A1-3, B1-3, C1-3, T1 และ T3 รวม 11 ตัวอย่าง โดยใช้ความเร็วในการกดที่ 1 มิลลิเมตรต่อนาที

3.6 การออกแบบชิ้นงานโลหะ

ออกแบบชิ้นงานเป็นขั้นบันไดที่มีความสูงแตกต่างกันสามความสูง ได้แก่ 2 มิลลิเมตร 4 มิลลิเมตร และ 8 มิลลิเมตร ซึ่งมีความกว้าง 10 มิลลิเมตร ยาว 30 มิลลิเมตร เป็นไปตาม DIN 13906 [14] ซึ่งแสดงในภาพที่ 3.6

ภาพที่ 3.6 แสดงขนาดต้นแบบพอลิเมอร์

3.7 การหล่อชิ้นงานโลหะ

หล่อโลหะผสมทองและไทเทเนียมด้วยกระบวนการหล่อแบบขี้ผึ้งหาย โดยมีขั้นตอนดังต่อไปนี้

- 1. เริ่มจากการติดต้นเทียนหรือแบบพอลิเมอร์
- 2. ผสมผงปูนกันสารละลายให้เข้ากันจากนั้นเทปูนที่ผสมให้ท่วมแบบที่เตรียมไว้
- 3. ดูดอากาศออกเพื่อทำให้อากาศในแบบปูนน้อยลง
- 4. ทิ้งให้ปูนแข็งตัวประมาณ 1-2 ชั่วโมง
- 5. นำเบ้าปูนที่แข็งแล้วเข้าเตาอบแล้วทำการอบตามรูปแบบที่กำหนดไว้
- 6. นำเบ้าที่อบแล้วเข้าเครื่องหล่อโลหะจากนั้นโลหะจะถูกหลอมเหลวแล้วเทเข้าสู่เบ้าปูน
- 7. รอจนน้ำโลหะเย็นตัวแล้วทำการกำจัดแบบปูนทิ้ง จะได้ชิ้นงานโลหะตามแบบที่ต้องการ

ทั้งนี้ชิ้นงานทองนั้นได้ผ่านการหล่อจากกระบวนการหล่อจริงในภาคอุตสาหกรรม ส่วนการ หล่อไทเทเนียนนั้นปฏิบัติตามขั้นตอนที่กล่าวไปแล้วข้างต้น ณ ห้องปฏิบัติการคณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

3.8 การวิเคราะห์ลักษณะพื้นผิวและความแข็งของชิ้นงานโลหะ

เครื่องมือที่ใช้ในการทดสอบได้แก่

 เครื่องวัดความเรียบผิว (Profilometer) รุ่น TALYSCAN150 เพื่อตรวจสอบความเรียบผิว ของชิ้นงาน โดยใช้ความเร็วในการกราดตรวจ (scan) 1500 ไมครอนต่อวินาที ทำการกราดตรวจเก็บ ข้อมูล 1 ตารางมิลลิเมตร

2. เครื่องทดสอบความแข็งแบบวิกเกอร์ (Vickers Hardness) เพื่อตรวจสอบความแข็งผิวของ ชิ้นงานโลหะทองผสมและโลหะไทเทเนียมบริสุทธิ์ที่ได้จากการหล่อ โดยใช้แรงกดที่ 200 gf [26, 27]

 กล้องจุลทรรศน์แบบแสง (Optical Microscope) เพื่อตรวจสอบลักษณะโครงสร้างจุลภาค ใต้ผิวของชิ้นงานโลหะทองผสมและโลหะไทเทเนียมบริสุทธิ์ หลังจากการหล่อที่รูปแบบการหล่อต่างๆ และตัดชิ้นงานตามขวาง (cross section) ด้วยเครื่องตัดละเอียดแล้ว ขัดกระดาษทราบ เบอร์ 1200 2000 และ 2500 จากนั้นขัดละเอียดด้วย ผงเพชรขนาด 3 ไมครอน และ 1 ไมครอน ตามลำดับ

3.9 วิเคราะห์และรายงานผลการทดลอง
บทที่ 4 ผลการทดลองและวิเคราะห์ผลการทดลอง

4.1 ส่วนผสมทางเคมีของวัสดุที่ใช้ในการทดลอง

4.1.1 ผลการตรวจสอบส่วนผสมทางเคมีของโลหะทองผสมและโลหะไทเทเนียมบริสุทธิ์

โดยใช้เครื่อง XRF ที่สถาบันวิจัยและพัฒนาอัญมณีและเครื่องประดับแห่งชาติ (สวอ) ในการตรวจสอบปริมาณส่วนผสมทางเคมีซึ่งปริมาณธาตุที่ได้จากการวิเคราะห์แสดงในตารางที่ 4.1

สมองโองห	ปริมาณธาตุ (wt%)					
ขนตของเสทธ	Au (Gold)	Ag (Silver)	Cu (Copper)	Ti (Titanium)		
โลหะทองผสม	75.06	12.31	12.61	-		
โลหะไทเทเนียม	-///5		-	99.99		

ตารางที่ 4.1 แสดงผลการตรวจสอบส่วนผสมทางเคมีของโลหะ

จากผลการวิเคราะห์ธาตุในโลหะทองผสมพบว่ามีปริมาณทองคำบริสุทธิ์อยู่ที่ 75.06% ซึ่งจัดว่าอยู่ใน ทองคำเกรด 18K (18 karat) ที่มีโลหะเงินและทองแดงผสมอยู่ 12.31% และ 12.61% ตามลำดับ ส่วน โลหะไทเทเนียมมีความบริสุทธิ์อยู่ที่ 99.99%Ti

หาลงกรณ์มหาวิทยาลัย

4.1.2 ผลการตรวจสอบส่วนผสมทางเคมีของผงปูนทั้ง 4 แบบ

การตรวจสอบส่วนผสมทางเคมีของปูนทั้ง 4 แบบ ด้วยเครื่อง XRF ได้ผลการวิเคราะห์แสดง ในตารางที่ 4.2 โดยที่ผงปูน Investment A-C นั้นเป็นปูนในกลุ่มยิปซัม มีธาตุที่เป็นส่วนประกอบหลัก ได้แก่ Si, S และ Ca ซึ่งเป็นธาตุที่มาจากสารประกอบ SiO₂ และ CaSO₄ ตามลำดับ[6] นอกจากนั้นยัง มีสารเติมแต่ง (additive) ได้แก่ Al และ Mg ที่อาจส่งผลต่อการแข็งตัวของปูนหลังจากการผสมผงปูน กับน้ำ โดยใน Investment B นั้นมีสารเติมแต่งในปริมาณที่น้อย จึงไม่ทำมาพิจารณาเมื่อเทียบกับ ปริมาณของสารเติมแต่งของปูนแบบอื่น

ผงปูนในกลุ่มสปิเนล หรือ Investment T มีธาตุที่เป็นส่วนประกอบหลักได้แก่ Al, Mg และ Zr ซึ่งมาจากสารประกอบ Al₂O₃, MgO และ ZrO₂ ตามลำดับ นอกจากนี้ยังพบธาตุอื่นๆ ได้แก่ Si, Ca และ Hf ซึ่งอาจส่งผลต่อสมบัติบางประการของปูนและกระบวนการหล่อได้

Investment	Chemical Element (wt%)						
powder	Si	S	Ca	Al	Mg	Zr	Hf
А	68.28	16.10	15.33	0.29	-	-	-
В	68.64	15.71	15.65	-	-	-	-
С	69.43	14.93	14.93	0.45	0.26	-	-
Т	1.12	-	0.73	39.34	46.69	10.55	1.58

ตารางที่ 4.2 แสดงผลการตรวจสอบส่วนผสมทางเคมีของผงปูน

4.2 การศึกษาส่วนประกอบและขนาดของอนุภาคปูน

4.2.1 ผลการศึกษาส่วนประกอบของปูนกลุ่มยิปซัม

จากการศึกษาส่วนประกอบของผงปูนกลุ่มยิปซัมด้วยเทคนิค XRD ได้แสดงผลการทดสอบใน ภาพที่ 4.1 พบว่าผงปูนทั้งสามแบบประกอบด้วย SiO₂ ที่มีเฟสเป็น **α**-quartz มีโครงสร้างผลึกเป็น hexagonal และ **α**-cristobalite มีโครงสร้างผลึกเป็น tetragonal ซึ่งอัตราส่วนของสองเฟสนี้มีผล ต่อความแข็งแรงของเบ้าปูน นอกจากซิลิกาแล้วผงปูนกลุ่มยิปซัมยังประกอบด้วยตัวประสานที่เป็น CaSO₄•0.5(H₂O) (calcium sulfate hemihydrate) ใน Investment A ส่วนใน Investment B และ Investment C นั้นพบตัวประสานที่เป็น CaSO₄•0.625(H₂O) (calcium sulfate subhydrate) แสดง ในภาพที่ 4.2 การที่ตัวประสานมีโมเลกุลของน้ำอยู่ในผลึกมากกว่าตัวประสานของผงปูนแบบอื่น เนื่องมาจากกระบวนการผลิตปูนที่มีอุณหภูมิ, ความชื้น และความดันไอน้ำที่ต่างกันทำให้มีน้ำในผลึกที่ แตกต่างกัน [28]

นอกจากการวิเคราะห์ชนิดของสารประกอบแล้วข้อมูลจาก XRD ยังสามารถวิเคราะห์ปริมาณ ของสารประกอบแต่ละเฟสได้ด้วยเทคนิค Rietveld refinement ซึ่งคำนวณโดยใช้โปรแกรม HighScore Plus โดยปริมาณสารประกอบของปูนกลุ่มยิปซัมแสดงในตารางที่ 4.3 ซึ่งค่า GoF (Goodness Of Fit) แสดงความแม่นยำในการคำนวณปริมาณสารประกอบ กล่าวคือ ความแม่นยำจะ มากที่สุดเมื่อค่า GoF เท่ากับ 1 ซึ่งค่าที่ได้จากการคำนวณที่แสดงในตารางนั้นมีค่าใกล้เคียงหนึ่งทำให้ ยืนยันได้ว่าข้อมูลที่ได้จากการคำนวณปริมาณสารประกอบในปูนมีความถูกต้องแม่นยำและเชื่อถือได้

ภาพที่ 4.1 แสดงส่วนประกอบของผงปูนกลุ่มยิปซัมจากเทคนิค XRD

ภาพที่ 4.2 แสดงความแตกต่างระหว่าง CaSO₄(H₂O)_{0.5} กับ CaSO₄(H₂O)_{0.625}

Sample powder	04510	04510	04 Calcium Sulfata	GoF
	%SIU ₂	$\%$ 300_2		(Goodness
	(Quartz)	(Cristobalite)	Hydrate	of Fit)
Investment A	34.3	33.8	31.9	1.6
Investment B	27.1	37.3	35.5	1.7
Investment C	28.6	35.0	36.4	1.8

ตารางที่ 4.3 แสดงปริมาณสารประกอบในผงปูนกลุ่มยิปซัม

การศึกษา Green part หรือผงปูนที่ผสมกับน้ำในอัตราส่วน 100 ต่อ 38 โดยน้ำหนักแล้วทิ้ง ให้แข็งตัวในบรรยากาศปกติ พบว่า เฟสของตัวประสาน CaSO₄•0.5(H₂O) ใน Investment A รวมถึง CaSO₄•0.625(H₂O) ใน Investment B และ C นั้นเกิดการเปลี่ยนแปลงเป็น CaSO₄•2(H₂O) (calcium sulfate dihydrate) จากผลการทดสอบ XRD ของ Green part ปูนทั้งสามแบบซึ่งแสดงใน ภาพที่ 4.3 โดยน้ำที่ผสมเข้าไปทำเกิดปฏิกิริยา hydration ของแคลเซียมซัลเฟต

จากนั้นเมื่อทำการอบเข้าปูนที่เป็น Green part ตามรูปแบบการอบของคู่มือของปูนแต่และ แบบแล้วพบเฟสของ CaSO₄ (calcium sulfate anhydrate) แสดงผล XRD ของปูนที่ผ่านการอบ ในภาพที่ 4.4 ซึ่งเฟสที่เกิดขึ้นนั้นมาจากการเกิดปฏิกิริยา dehydration ที่น้ำในผลึกของ CaSO₄•2(H₂O) นั้นออกจากผลึกกลายเป็น CaSO₄ [6] แต่อย่างไรก็ตาม เฟสของซิลิกา ทั้ง quartz และ cristobalite นั้นไม่พบการเปลี่ยนแปลงเฟสอาจเนื่องมาจากเกิดการเปลี่ยนแปลงย้อนกลับขณะ เย็นตัว เนื่องจากการศึกษาก่อนหน้า[6] พบการเปลี่ยนเฟสของ **α**-cristobalite เป็น **β**-cristobalite ที่อุณหภูมิประมาณ 250 องศาเซสเซียส และการเปลี่ยนเฟสของ **α**-quartz เป็น **β**-quartz ที่อุณหภูมิ ประมาณ 572 องศาเซสเซียส จึงได้มีการศึกษาพฤติกรรมทางความร้อนของปูนกลุ่มยิปซัมขณะทำ การอบเพิ่มเติม ซึ่งแสดงผลการทดลองและวิเคราะห์ผลการทดลองในหัวข้อการศึกษาพฤติกรรมของ ปูนระหว่างกระบวนการเตรียมเบ้าปูน

ภาพที่ 4.3 แสดงส่วนประกอบของ Green part ของปูนกลุ่มยิปซัมจากเทคนิค XRD

ภาพที่ 4.4 แสดงส่วนประกอบของปูนที่ผ่านการอบจากเทคนิค XRD

4.2.2 ผลการศึกษาส่วนประกอบของปูนกลุ่มสปิเนล

ภาพที่ 4.5 แสดงส่วนประกอบของผงปูน, Green part และปูนหลังการอบ ของกลุ่มสปิเนลจาก เทคนิค XRD

จากผลการศึกษาส่วนประกอบของผงปูน Investment T ซึ่งเป็นปูนในกลุ่มสปิเนล แสดงใน ภาพที่ 4.5 พบว่ามีส่วนประกอบหลักได้แก่ MgO, Al₂O₃, และ ZrO₂ นอกจากนั้นยังมีสารเติมแต่งคือ Al₁₈B₄O₃₃(9Al₂O₃•2B₂O₃) และ LiF ซึ่งสารเติมแต่งเหล่านี้สามารถลดอุณหภูมิการเกิดสปิเนล MgAl₂O₄ และเพิ่มอัตราการเกิดปฏิกิริยาในสถานะของแข็งได้[29-31] โดยปริมาณของแต่ละ สารประกอบในผงปูน Investment T นั้นแสดงในตารางที่ 4.4 ซึ่งสารเติมแต่งที่ตรวจสอบพบนั้นมี ปริมาณที่น้อยมากเมื่อเทียบกับข้อจำกัดของเทคนิคการตรวจสอบด้วย XRD ที่สามารถตรวจสอบ สารประกอบที่มีปริมาณมากกว่าร้อยละ 5 แต่อย่างไรก็ตามค่าความแม่นยำในการคำนวณปริมาณ สารประกอบก็ยังคงมีค่าอยู่ในช่วงที่เชื่อถือได้

ตารางที่ 4.4 แสดงปริมาณสารประกอบในผงปูนกลุ่มสปิเนล

Sample powder	%MgO	%Al ₂ O ₃	%ZrO ₂	%Al ₁₈ B ₄ O ₃₃	%LiF	GOF
Investment T	70.1	19.3	5.8	3.3	1.5	1.4

จากนั้นเตรียม Green part โดยผสมผงปูน Investment T กับ spinel liquid ปล่อยให้ แข็งตัวเป็น Green part แล้วนำไปทดสอบ XRD เพื่อตรวจสอบการเปลี่ยนแปลงของเฟสที่เกิดขึ้น พบว่าหลังจากการผสม spinel liquid แล้วไม่พบเฟสเพิ่มเติมหรือแตกต่างจากผงปูน อาจเนื่องมาจาก ส่วนผสมใน spinel liquid ไม่มีความเป็นผลึก จึงได้มีการศึกษา spinel liquid เพิ่มเติมโดยใช้เครื่อง Fourier transform infrared spectroscopy (FTIR) ซึ่งเป็นเครื่องที่ใช้ในทดสอบเพื่อหา โมเลกุลของสาร โดยอาศัยหลักการเกี่ยวกับการสั่นของโมเลกุลและการดูดกลืนแสงอินฟราเรด แสดงผลการทดสอบในภาพที่ 4.6 พบ Mg(CH₃COO)₂ (Magnesium Acetate) จากช่วงการดูดกลืน (absorption band) ที่ wavenumber 1547, 1412, 1347, 1046, 1020 และ 929 cm⁻¹ ซึ่งค่า เหล่านี้แสดงถึง C-O asymmetry stretching, C-O symmetry stretching, CH₃ symmetry stretching, out of plane CH₃ rocking, in-plane CH₃ rocking และ C-C stretching ตามลำดับ [32] ส่วนช่วงการดูดกลืน 3244 cm⁻¹ และ 1639 cm⁻¹ แสดงถึง O-H bending และ O-H stretching ตามลำดับ ซึ่งเกิดจากโมเลกุลของน้ำ (H₂O) [33] จากผลดังกล่าวทำให้คาดได้ว่า spinel liquid อาจจะ เป็นสารละลาย Mg(CH₃COO)₂ ที่มีน้ำอยู่ในผลึก (Mg(CH₃COO)₂•X(H₂O))

ต่อมาเมื่อทำการอบ Green part ตามรูปแบบการอบตามคู่มือ วิเคราะห์ด้วย XRD พบ MgO, Al₂O₃ และเฟส MgAl₂O₄ จากการทำปฏิกิริยาของ MgO และ Al₂O₃ บางส่วนอีกทั้งยังพบ ZrO₂ ที่เกิด การเปลี่ยนโครงสร้างผลึกจากโครงสร้าง cubic เป็น monoclinic แต่อย่างไรก็ตามผลหลังการอบปูน ไม่พบสารเติมแต่ง Al₁₈B₄O₃₃ และ LiF ซึ่งคาดว่าเกิดการสลายตัวระหว่างการอบและเพื่อที่จะทราบ อุณหภูมิต่างๆในการเกิดปฏิกิริยาได้นั้นจึงได้มีการศึกษาสมบัติทางความร้อนของปูนในหัวข้อผล การศึกษาสมบัติทางความร้อนของปูนเซรามิกต่อไป

ภาพที่ 4.6 แสดงสเปกตรัมของ spinel liquid จากการทดสอบ FTIR

4.2.3 ผลการศึกษาขนาดอนุภาคของผงปูน

นอกการส่วนประกอบของปูนแล้วขนาดของอนุภาคผงปูนก็ยังเป็นส่วนสำคัญที่ส่งผลต่อความ เรียบผิวและคุณภาพชิ้นงานหลังจากการหล่อ[3] ดังนั้นจึงได้ทำการศึกษาขนาดของอนุภาคผงปูนที่ใช้ ในการทดลองด้วยเครื่อง Particle Analyzer เพื่อนำผลการทดสอบขนาดอนุภาคผงปูนไปอธิบาย ความเรียบผิวของชิ้นงานทองผสมและไทเทเนียมบริสุทธิ์ หลังการหล่อด้วยรูปแบบการหล่อที่กำหนด ซึ่งผลการวิเคราะห์ขนาดอนุภาคผงปูนนั้นแสดงในตารางที่ 4.5

ตารางที่ 4.5 แสดงขนาดอนุภาคผงปูน

Sample powder	Particle size (μ m)
Investment A	28.44 ± 0.17
Investment B	23.38 ± 0.06
Investment C	19.42 ± 0.21
Investment T	105.43 ± 1.14

ผลการทดสอบแสดงให้เห็นว่าปูนกลุ่มสปิเนล หรือ Investment T มีขนาดอนุภาคที่ใหญ่กว่า ปูนกลุ่มยิปซัม และในปูนกลุ่มยิปซัม ขนาดของปูน Investment A มีขนาดใหญ่กว่า Investment B และ C ตามลำดับ

4.3 การศึกษาพฤติกรรมของปูนระหว่างกระบวนการเตรียมเข้าปูน

4.3.1 ผลการศึกษาพฤติกรรมทางความร้อนระหว่างกระบวนการอบปูนเซรามิก

4.3.1.1 พฤติกรรมทางความร้อนของปูนกลุ่มยิปซัม

สมบัติทางความร้อนของ Investment A ที่แสดงถึงพฤติกรรมขณะทำการอบปูนกลุ่มยิปซัม แสดงในภาพที่ 4.7

ภาพที่ 4.7 แสดงสมบัติทางความร้อนของ Investment A ด้วยเทคนิค DSC/TG

จากกราฟการวิเคราะห์ DSC พบการดูดความร้อนที่อุณหภูมิ 88 องศาเซสเซียส แสดงถึงการ ระเหยของความชื้นซึ่งมีการดูดความร้อน 434.2 J/g เมื่อพิจารณาควบคู่กับกราฟการเปลี่ยนแปลงมวล ที่อุณหภูมิ 25-91 องศาเซสเซียส พบการสูญเสียน้ำหนักจากความชื้นใน Green part ประมาณ 13.2% หลังจากนั้นเมื่ออุณหภูมิสูงขึ้นเกิดปฏิกิริยา dehydration ของ CaSO₄•2(H₂O) กลายเป็น CaSO₄ ดังสมการการเกิดปฏิกิริยาเคมีต่อไปนี้ [34]

$$CaSO_{4} \bullet 2(H_{2}O)_{(s)} \rightarrow CaSO_{4} \bullet 0.5(H_{2}O)_{(s)} + 1.5(H_{2}O)_{(g)}$$
(1)
$$CaSO_{4} \bullet 0.5(H_{2}O)_{(s)} \rightarrow CaSO_{4(s)} + 0.5(H_{2}O)_{(g)}$$
(2)

โดยสมการการเกิดปฏิกิริยาเคมีที่ (1) ซึ่งเป็นปฏิกิริยาการดูดความร้อนที่เกิดขึ้นในช่วงอุณหภูมิ 103-135 องศาเซสเซียส โดยการเกิดปฏิกิริยา dehydration ของ CaSO₄•2(H₂O) กลายเป็น CaSO₄•0.5(H₂O) และ 1.5(H₂O) ซึ่งการสลายตัวของน้ำสูญเสียน้ำหนักไป 4.2% สังเกตได้จากกราฟ TG ที่อุณหภูมิ 110-128 องศาเซสเซียส ต่อมาที่อุณหภูมิประมาณ 142 องศาเซสเซียส เกิดปฏิกิริยาเคมีที่ (2) ขึ้น กล่าวคือ 0.5 โมลของน้ำที่เหลือในผลึก(0.5(H₂O)) สลายตัวออกจากผลึกทำ ให้CaSO₄•0.5(H₂O) กลายเป็น CaSO₄ โดยน้ำที่สูญเสียไปนั้นแสดงในกราฟ TG ที่อุณหภูมิ 128-159 องศาเซสเซียส และมีน้ำหนักที่สูญเสียไปประมาณ 1.4% ต่อมาเมื่ออุณหภูมิสูงขึ้น พบปฏิกิริยาการดูดความร้อนที่อุณหภูมิประมาณ 240 องศาเซสเซียส ซึ่งเป็นการดูดความร้อนจาก การเปลี่ยนเฟสของ α-cristobalite กลายเป็น β-cristobalite ต่อมาที่อุณหภูมิ 563 องศาเซสเซียส เกิดปฏิกิริยาการดูดความร้อนเพื่อเปลี่ยนเฟสของ α-quartz กลายเป็น β-quartz โดยปฏิกิริยาที่ เกิดขึ้นระหว่างการให้ความร้อนทั้งหมดนั้นสามารถพบได้ในปูนกลุ่มยิปซัมซึ่งรวมถึง Investment B และ Investment C ด้วยเช่นกัน โดยแสดงคุณสมบัติทางความร้อนเปรียบเทียบกราฟ DSC ของปูน กลุ่มยิปซัมในภาพที่ 4.8

จากภาพเปรียบเทียบสมบัติทางความร้อนของปูนกลุ่มยิปซัม พบว่าการระเหยของความชื้นใน ปูนอยู่ในช่วงอุณหภูมิ 88-106 องศาเซสเซียส และการสลายตัวของน้ำในผลึกของ calcium sulfate dihydrate กลายเป็น calcium sulfate anhydrate ที่ช่วงอุณหภูมิ 125-150 องศาเซสเซียส การเกิดปฏิกิริยา dehydration ส่งผลให้เบ้าปูนเกิดการหดตัว ทำให้มีรูพรุนในเบ้าปูนเพิ่มขึ้น ซึ่งเพิ่มโอกาสที่แก๊สจะสามารถออกจากชิ้นงานหล่อในขณะที่ทำการหล่อชิ้นงานได้ดี จึงทำให้สามารถ ลดการเกิดตำหนิที่เกิดการแก๊สในชิ้นงานหล่อ แต่อย่างไรก็ตามความแข็งแรงของเบ้าปูนก็จะลดลง เช่นกัน [14, 35] ต่อมาที่ช่วงอุณหภูมิ 240-247 องศาเซสเซียส เกิดการเปลี่ยนเฟสของ cristobalite จาก $\pmb{\alpha}$ -cristobalite กลายเป็น $\pmb{\beta}$ -cristobalite และเกิดการขยายตัวเพื่อชดเชยการหดตัวเนื่องจาก เสียน้ำไปในช่วงอุณหภูมิก่อนหน้าส่งผลให้เบ้าปูนมีความแข็งแรงเพิ่มขึ้น รวมถึงการเปลี่ยนเฟส $\pmb{\alpha}$ -quartz กลายเป็น $\pmb{\beta}$ -quartz ที่ช่วงอุณหภูมิ 563-574 องศาเซสเซียส ยังส่งต่อความแข็งแรงของ เบ้าปูนที่ทำการอบเช่นกัน [15]

หาลงกรณ์มหาวิทยาลัย

นอกจากนั้นเทคนิค In-situ XRD ได้ถูกนำมาใช้ในการยืนยันพฤติกรรมทางความร้อนของปูน กลุ่มยิปซัม (Investment A) รวมถึงการเปลี่ยนเฟสของ SiO₂ (cristobalite inversion และ quartz inversion) ที่ไม่พบในผลที่ได้ทำการวิเคราะห์ด้วยเทคนิค XRD ภายหลังการอบปูน ซึ่งผลของ พฤติกรรมทางความร้อนด้วยเทคนิค In-situ XRD แสดงในภาพที่ 4.9 โดยอุณหภูมิในการทดสอบนั้น พิจารณาจากผลของ DSC และอุณหภูมิของการอบจริง

ภาพที่ 4.9 แสดงพฤติกรรมทางความร้อนจากการวิเคราะห์ด้วยเทคนิค In-situ XRD (ก) การ เปลี่ยนแปลง XRD patterns ที่อุณหภูมิต่าง; (ข) การสูญเสียน้ำในผลึกยิปซัม; (ค) การเปลี่ยนเฟส ของ cristobalite; (ง) การเปลี่ยนเฟสของแคลเซียมซัลเฟต; (จ) การเปลี่ยนเฟสของ quartz

จากภาพที่ 4.9(ก) แสดงการเปลี่ยนแปลงของปูนกลุ่มยิปซัมระหว่างการอบ จากผลของการ วิเคราะห์ XRD ในภาพที่ 4.9(ข) พบพืคของ CaSO₄•2(H₂O) ที่อุณหภูมิห้องจนกระทั้งอุณหภูมิถึง 150 องศาเซสเซียส พืคของ CaSO₄•2(H₂O) หายไปแสดงถึงการเกิดปฏิกิริยา dehydration ของ CaSO₄•2(H₂O) กลายเป็น CaSO₄ ที่มีโครงสร้างผลึกเป็น hexagonal หลังจากอุณหภูมิสูงขึ้นเกิดการ เปลี่ยนเฟสของ cristobalite ที่ขัดเจนจากภาพที่ 4.9(ค) โดยที่อุณหภูมิ 150 องศาเซสเซียส พบ **α**-cristobalite ที่มีโครงสร้างผลึกเป็น tetragonal หลังจากนั้นที่อุณหภูมิ 250 องศาเซสเซียส พบ **α**-cristobalite และ β-cristobalite ที่มีโครงสร้างผลึกเป็น cubic จนกระทั้งที่อุณหภูมิประมาณ 375 องศาเซสเซียส พบเพียงเฟสของ β-cristobalite ซึ่งแสดงถึงการเปลี่ยนเฟสของ cristobalite ที่สมบูรณ์ นอกจากนั้นที่อุณหภูมินี้ยังเกิดการเปลี่ยนเฟสของ CaSO₄ ดังแสดงในภาพที่ 4.9(ง) จากโครงสร้าง hexagonal (All phase) เป็น orthorhombic (All phase) ซึ่งเรียกการเปลี่ยนแปลง นี้ว่า III-II CaSO₄ transition [36, 37] ต่อมาเมื่ออุณหภูมิประมาณ 580 องศาเซสเซียส เกิดการเปลี่ยน เฟสของ quartz ซึ่งแสดงในภาพที่ 4.9(จ) จากเฟส **α**-quartz ที่มีโครงสร้างเป็น hexagonal กลายเป็น β-quartz ที่มีโครงสร้าง hexagonal เช่นเดียวกันแต่มีความสมมาตรมากขึ้นและมีความ หนาแน่นที่น้อยกว่าโครงสร้างผลึกของ **α**-quartz [38, 39]

นอกจากการเปลี่ยนแปลงเฟสขณะอบแล้วสิ่งที่ต้องคำนึงถึงอีกคือ การขยายและการหดตัว ทางความร้อนเนื่องจากอาจส่งผลต่อความแข็งแรงของปูนแบบได้ การเกิดปฏิกิริยา dehydration ของอนุภาคยิปซัมนั้นทำให้เกิดการหดตัวมากกว่า 2% โดยปริมาตร[17] และการหดตัวที่มากที่สุดนั้น เกิดในช่วงอุณหภูมิ 300-450 องศาเซสเซียส ซึ่งเกิดการเปลี่ยนโครงสร้างผลึกของ CaSO₄ จาก สัณฐานวิทยาที่มีลักษณะคล้ายเข็มที่มีโครงสร้างแบบ hexagonal กลายเป็นลักษณะเข็มที่มีขนาดสั้น กว่าและมีโครงสร้างแบบ orthorhombic [37] หลังจากนั้นเมื่อเกิดการเปลี่ยนเฟสของ cristobalite จะเกิดการขยายตัวเพื่อชดเซยการหดตัว ซึ่งการขยายตัวดังกล่าวนั้นมีการเปลี่ยนแปลงปริมาตร ประมาณ 5.5% จากการคำนวณโดยใช้ความถ่วงจำเพาะของ แอลฟาและบีตา cristobalite และ 5.7% โดยปริมาตรจากการคำนวณผลของการวิเคราะห์ In-situ XRD นอกจากนี้ยังมีการขยายตัว เนื่องจากการเปลี่ยนเฟสของ quartz ที่มีการขยายตัวประมาณ 4.7% โดยปริมาตร จากการคำนวณ ด้วยความถ่วงจำเพาะของแอลฟาและบีตา cristobalite และ 4.3% โดยปริมาตร จากการคำนวณ

ดังนั้นการเลือกอุณหภูมิในการอบปูนรวมถึงอัตราเร็วในการเพิ่มความร้อน จึงต้องคำนึงถึง อุณหภูมิและพฤติกรรมของปูนกลุ่มยิปซัมระหว่างทำการอบด้วย

4.3.1.2 พฤติกรรมทางความร้อนของปูนกลุ่มสปิเนล

จากผลการทดสอบสมบัติทางความร้อนของปูนกลุ่มสปิเนลที่แสดงในภาพที่ 4.10 พบการดูด ความร้อนจากกราฟ DSC ที่อุณหภูมิ 122 องศาเซสเซียส แสดงถึงการสูญเสียน้ำในโมเลกุล ของ Magnesium Acetate Tetrahydrate (Mg(CH₃COO)₂•4(H₂O)) ทำให้เกิด Mg(CH₃COO)₂ เมื่อ พิจารณาควบคู่กับผล TG ที่ช่วงอุณหภูมิ 94-137 องศาเซสเซียส พบการสูญเสียน้ำไป 3.5% โดยน้ำหนัก จากนั้นเมื่ออุณหภูมิสูงขึ้นในช่วงอุณหภูมิ 287-379 องศาเซสเซียส พบการหายไปของ มวลประมาณ 5.4% โดยน้ำหนัก ควบคู่กับกราฟการคายความร้อนที่อุณหภูมิ 285 องศาเซสเซียส และ 388 องศาเซสเซียส แสดงถึงการเกิดปฏิกิริรยาของ Magnesium Acetate ทำให้เกิด MgO [41] นอกจากนี้ยังพบการคายความร้อนที่อุณหภูมิ 336 องศาเซสเซียส ซึ่งคาดว่าเป็นการเปลี่ยนเฟสของ ZrO₂ จากโครงสร้างผลึกที่เป็น cubic เปลี่ยนเป็นโครงสร้างผลึกที่เป็น monoclinic จนกระทั้ง อุณหภูมิ 706 องศาเซสเซียส พบการคายความร้อนซึ่งเป็นการเกิดปฏิกิริยาระหว่าง MgO และ Al₂O₃ ทำให้เกิดสปิเนล MgAl₂O₄ [31]

ในส่วนของสารเติมแต่งซึ่งได้แก่ $Al_{18}B_4O_{33}$ และ LiF อาจเกิดการสลายตัวในช่วงการเกิด $MgAl_2O_4$ เนื่องจากรายงานก่อนหน้า [31] พบการแตกตัวของไอออน F⁻ เข้าไปแทนที่ O^{2-} ซึ่งทำให้เกิด การเพิ่มขึ้นของช่องว่างไอออนบวก (the cation vacancy) ส่งผลให้ ไอออนบวกของ Mg^{2+} และ Al^{3+} มีความสามารถในแพร่เข้าไปในผลึกของอลููมินาเพื่อทำให้เกิด $MgAl_2O_4$ ได้ง่ายขึ้น ส่วนสารเติมแต่ง $Al_{18}B_4O_{33}$ มีผู้เสนอผลของ B_2O_3 ต่อการเพิ่มความสามารถในการเกิด $MgAl_2O_4$ [29] กล่าวคือที่

อุณหภูมิสูง B₂O₃ จะเกิดการละลายกับแมกนีเซียและสัมผัสกับอลูมินาทำให้เพิ่มพื้นที่ผิวสัมผัสและทำ ให้ Mg²⁺ เกิดการแพร่ได้ง่ายขึ้นทำให้เพิ่มโอกาสในการเกิด MgAl₂O₄ แต่อย่างไรก็ตามข้อเสนอ ดังกล่าวยังไม่สามารถพิสูจน์ได้อย่างแน่ชัด

4.3.2 ผลของการอบปูนต่อสัณฐานวิทยาของอนุภาคปูน

จากการศึกษาสัณฐานวิทยาของอนุภาคผงปูนกลุ่มยิปซัม (Investment A) ที่แสดงในภาพที่ 4.11(ก) พบลักษณะของปูนสองลักษณะได้แก่ อนุภาคที่มีลักษณะเป็นก้อน (blocky shapes) และ อนุภาคที่มีลักษณะเป็นแท่งทรงกระบอก (rod shapes) ซึ่งแสดงถึงอนุภาคของ SiO₂ และ ตัวประสาน (calcium sulfate hydrate) ตามลำดับ โดยยืนยันจากผลการทดสอบ EDS Mapping ซึ่งแสดงในภาพ ที่ 4.12

ภาพที่ 4.11 แสดงสัณฐานวิทยาของปูนกลุ่มยิปซัม (ก) ผงปูน (ข) ปูนหลังทำการอบ

หลังจากทำการอบ อนุภาคของตัวประสานที่เป็นแท่งทรงกระบอกนั้นมีขนาดที่เล็กลงจนมี สัณฐานวิทยาเป็นลักษณะคล้ายเข็มโดยแสดงในภาพที่ 4.11(ข) และผลการวิเคราะห์ธาตุของปูนหลัง การเผาในภาพที่ 4.13 ผลที่เกิดขึ้นนั้นเนื่องมาจากการที่น้ำในผลึกของตัวประสานออกจากผลึก กลายเป็น CaSO₄ ในช่วงอุณหภูมิ 125-150 องศาเซสเซียส และ III-II CaSO₄ transition อุณหภูมิประมาณ 375 องศาเซสเซียส ซึ่งเป็นการยืนยันผลจากการวิเคราะห์สารประกอบของปูน ที่กล่าวมาแล้วข้างตัน

ภาพที่ 4.12 แสดงการวิเคราะห์ธาตุของอนุภาคผงปูน Investment A

ภาพที่ 4.13 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment A หลังการอบ

ในส่วนการเปลี่ยนสัณฐานวิทยาของผงปูนในกลุ่มสปิเนลแสดงในภาพที่ 4.14(ก) ซึ่งในผงปูน กลุ่มสปิเนล (Investment T) นั้นพบอนุภาคที่มีรูปร่าง เป็นก้อนที่มีเหลี่ยมมุม, ก้อนกลม และ เป็น ลักษณะคล้ายเข็มซึ่งแสดงถึง MgO, Al₂O₃ และ Al₁₈B₄O₃₃ ตามลำดับ โดยจากการยืนยันเฟสด้วยการ วิเคราะห์ธาตุของผงปูน Investment T ด้วยเทคนิค EDS mapping แสดงในภาพที่ 4.15

ภาพที่ 4.14 แสดงสัณฐานวิทยาของปูน Investment T (ก) ผงปูน; (ข) ปูนหลังทำการอบ

หลังจากการอบปูนในกลุ่มสปิเนลพบการเปลี่ยนแปลงสัณฐานวิทยาแสดงในภาพ 4.14(ข) ซึ่งอนุภาค ของปูนมีการรวมกลุ่มกันกล่าวคือมีอนุภาคคล้ายแผ่นเล็กๆ อยู่บนอนุภาคที่เป็นก้อนใหญ่กว่า เมื่อ ตรวจสอบด้วยการวิเคราะห์ธาตุของปูนกลุ่มสปิเนลหลังทำการอบที่แสดงในภาพที่ 4.16 พบว่าเฟสที่มี ลักษณะเป็นก้อนใหญ่คือ MgO และอนุภาคที่เป็นก้อนเล็กกว่าคือ Al₂O₃ ส่วนอนุภาคที่มีลักษณะ คล้ายแผ่นเป็นอนุภาคที่ประกอบด้วยธาตุ Mg, Al และ O จึงสามารถสรุปได้ว่าเป็นเฟสของ สปิเนล หรือ MgAl₂O₄ ซึ่งจากตำแหน่งการเกิดแล้วคาดกว่า สปิเนลที่เกิดขึ้นทำหน้าที่เป็นตัวประสานเพื่อเพิ่ม ความแข็งแรงของเบ้าปูนกลุ่มสปิเนล

ภาพที่ 4.16 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment T หลังการอบ

4.3.3 ผลการศึกษาสมบัติทางความร้อนของต้นแบบพอลิเมอร์

ต้นแบบพอลิเมอร์เป็นอีกหนึ่งตัวแปรที่ต้องนำมาพิจารณาการสลายตัวของต้นแบบพอลิเมอร์ หรือที่เรียกกันว่า "แบบเทียน" หรือ "ต้นเทียน" เนื่องจากการอบปูนนั้นนอกจากจะต้องการเพิ่มความ แข็งแรงของปูนแล้วยังต้องการกำจัดต้นแบบพอลิเมอร์ด้วย โดยต้นแบบพอลิเมอร์ที่ใช้ในงานหล่อ เครื่องประดับด้วยวิธีการหล่อแบบ lost wax นั้นนิยมใช้ต้นแบบที่มีส่วนประกอบของพาราฟิน (paraffin wax) เป็นส่วนประกอบหลักและผสมขี้ผึ้ง (bees wax), Carnauba, Candelilla ฯลฯ ขึ้นกับคุณสมบัติที่ต้องการนำไปใช้งาน [42]

จากผลการวิเคราะห์สมบัติทางความร้อนของต้นแบบพอลิเมอร์ที่ใช้ในการหล่อแสดงในภาพที่ 4.17 พบการหลอมละลายจากการดูดความร้อนที่อุณหภูมิประมาณ 60 องศาเซสเซียส แต่ไม่มีการ เปลี่ยนแปลงมวลซึ่งอาจเป็นการละลายของพาราฟินและ bees wax [43] จากนั้นเมื่ออุณหภูมิสูงขึ้น พบการคายพลังงานในช่วงอุณหภูมิ 192-313 องศาเซสเซียส ควบคู่กับการเปลี่ยนแปลงมวลที่ช่วง อุณหภูมิ 240-300 องศาเซสเซียส แสดงถึงการสลายตัวและระเหยไปของ bees wax จากนั้นที่ อุณหภูมิ ประมาณ 319 องศาเซสเซียส เกิดการสลายตัวไปของ Carnauba จนกระทั้งอุณหภูมิ มากกว่า 400 องศาเซสเซียส จึงเกิดการสลายตัวไปของพาราฟิน [44] ดังนั้นต้นแบบพอลิเมอร์ที่ใช้ใน การทดลองอาจประกอบไปด้วย พาราฟิน, bees wax ที่มีคุณสมบัติที่ดีต่อผิวชิ้นงานหลังงานหล่อ และ ส่วนประกอบที่เป็นสารเติมแต่งคือ Carnauba ที่ให้คุณสมบัติที่ดีด้านความแม่นยำของสัดส่วนชิ้นงาน ในกระบวนการหล่อแบบขี้ผึ้งหาย เนื่องจากต้นแบบพอลิเมอร์มีจุดหลอมเหลวที่ต่ำ ดังนั้นขณะอบปูน การเพิ่มอุณหภูมิในช่วงที่ ต้นแบบพอลิเมอร์หลอมละลายนั้นจึงต้องมีความระมัดระวัง ในการใช้อัตราการให้ความร้อนที่ไม่สูง เกินไป เนื่องจากการละลายหรือเปลี่ยนสถานะจากของแข็งเป็นของเหลวของต้นแบบพอลิเมอร์มีการ ขยายตัว และการขยายตัวที่เร็วเกินไปอาจส่งผลต่อความแข็งแรงและตำหนิที่อาจเกิดขึ้นกับเบ้าปูนที่ ทำการอบได้

4.4 ผลของรูปแบบการอบต่อความแข็งแรงของเบ้าปูน

ผลการทดสอบความแข็งแรงของปูนด้วยการกดปูนหลังจากทำการอบ ด้วยรูปแบบการอบที่ ต่างกันของปูนในกลุ่มยิปซัมและปูนในกลุ่มสปิเนล ซึ่งแสดงในภาพที่ 4.18 โดยการอบปูนรูปแบบที่ 1 (condition 1) นั้นเป็นการอบปูนตามคู่มือของปูนแต่และแบบ ซึ่งการทดสอบปูนในกลุ่มยิปซัมพบว่า Investment A มีค่าความแข็งแรงมากกว่า ปูน Investment C และ Investment B ตามลำดับ เนื่องจากปูน Investment A มีปริมาณ quartz ที่ส่งผลต่อความแข็งแรงของปูนหลังการอบมากกว่า ปูน Investment C และ Investment B ตามลำดับ จากนั้นได้ทำการเร่งการอบปูนเป็นรูปแบบ การอบที่ 2 (condition 2) โดยการลดลำดับการคงอุณหภูมิไป มีเพียงการคงอุณหภูมิที่ 150 ้องศาเซลเซียล และ 730 องศาเซลเซียล เท่านั้นทำให้ลดเวลาการอบเหลือเพียง 6 ชั่วโมง พบว่าผล การทดสอบความแข็งแรงของปนลดลง เนื่องมาจากการลดลำดับการคงอุณหภูมิดังกล่าวข้ามช่วง ้อุณหภูมิการเปลี่ยนเฟสของ cristobalite และ CaSO₄ ทำให้อาจเกิดการเปลี่ยนเฟสที่ไม่สมบูรณ์ของ cristobalite และ CaSO4 รวมถึงอาจเกิดการหดตัวที่รุนแรงเนื่องจากการเปลี่ยนเฟส จึงทำให้ค่าความ แข็งแรงของปูนในกลุ่มยิปซัมลดลง ดังนั้นในรูปแบบการอบที่ 3 (condition 3) จึงเพิ่มการคงอุณหภูมิ ที่ 370 องศาเซลเซียล ใช้เวลาในการอบประมาณ 8 ชั่วโมง พบว่าความแข็งแรงของปูน Investment A และ B ในรูปแบบการอบที่ 3 ใกล้เคียงกับความแข็งแรงในรูปแบบการอบที่ 1 แต่ใน Investment C พบความแข็งแรงที่เพิ่มขึ้นอย่างชัดเจน เนื่องจาก ในรูปแบบการอบที่ 1 ของปูน Investment C ได้ ้ข้ามช่วงการคงอุณหภูมิประมาณ 150 องศาเซสเซียส ซึ่งเป็นช่วงที่น้ำออกจากผลึกของยิปซัม ซึ่งอาจ ทำให้เกิดการหดตัวที่รุนแรง ดังนั้นในรูปแบบการอบที่ 3 ของ Investment C ที่มีการคงอุณหภูมิ ในช่วงการหายไปของน้ำจึงทำให้ลดความรุนแรงจากหดตัวและส่งผลให้มีความแข็งแรงของปุนเพิ่มขึ้น จากรูปแบบการอบตามคู่มือ

เนื่องจากค่าความแข็งแรงในรูปแบบการอบที่ 3 มีความความแข็งแรงที่ใกล้เคียงหรือมากกว่า รูปแบบการอบที่ 1 ในปูนกลุ่มยิปซัม ดังนั้นในการหล่อชิ้นงานเพื่อเปรียบเทียบคุณภาพชิ้นงานหลังงาน หล่อจากการเปลี่ยนรูปแบบการอบจึงได้เลือกรูปแบบการอบที่ 1 และ 3 เป็นรูปแบบในการอบเพื่อ เปรียบเทียบคุณภาพชิ้นงานทองผสมต่อไป

ภาพที่ 4.18 แสดงความแข็งแรงของปูนหลังทำการอบด้วยรูปแบบการอบที่ต่างกัน

สำหรับรูปแบบการอบปูนในกลุ่มสปิเนลในรูปแบบการอบที่ 1 ที่มีระยะเวลาในการอบ ประมาณ 5 ชั่วโมงซึ่งมีอัตราการให้ความร้อน 8 องศาเซสเซียสต่อนาที ซึ่งใช้ระยะเวลาในการอบที่ใช้ เวลาไม่นานจึงไม่ทำการเร่งเวลาในการอบปูนกลุ่มสปิเนลเป็นรูปแบบการอบปูนที่ 2 อีกทั้งการเพิ่ม อัตราการให้ความร้อนที่มากเกินไปอาจทำให้เบ้าปูนเกิดตำหนิจากการหดตัว หรือ ขยายตัว จากการ ได้รับความร้อนที่เร็วเกินไป จึงลดอัตราการให้ความร้อนเป็น 5 องศาเซสเซียสต่อนาที เป็นรูปแบบ การอบที่ 3 เพื่อให้การเกิดปฏิกิริยาระหว่างการอบเกิดขึ้นได้อย่างสมบูรณ์มากขึ้นซึ่งการลดอัตราการ ให้อุณหภูมิดังกล่าว ส่งผลให้ค่าความแข็งแรงเพิ่มขึ้นอย่างเห็นได้ชัดโดยมีระยะเวลาในการอบปูนใน กลุ่มสปิเนลอยู่ที่ประมาณ 8 ชั่วโมง

4.5 ผลของรูปแบบการอบต่อคุณภาพชิ้นงานทอง

4.5.1 การศึกษาความเรียบผิวของชิ้นงานโลหะหลังการหล่อ

จากการศึกษาความขรุขระของชิ้นงานหลังการหล่อด้วยโลหะทองผสมและไทเทเนียมบริสุทธิ์ แสดงในตารางที่ 4.6 เมื่อเปรียบเทียบชิ้นงานที่ได้จากการหล่อจากปูนกลุ่มยิปซัมและกลุ่มสปิเนลพบ ว่าชิ้นงานที่ได้จากการหล่อด้วยปูนกลุ่มยิปซัมนั้นให้ความเรียบผิวที่ดีกว่าปูนกลุ่มสปิเนล เนื่องจากปูน ในกลุ่มสปิเนลนั้นมีขนาดอนุภาคที่ใหญ่กว่าปูนในกลุ่มยิปซัม และเมื่อพิจารณาปูนในกลุ่มยิปซัมจาก การหล่อด้วยรูปแบบการอบที่ 1 พบว่าความขรุขระของผิวขึ้นงานขึ้นกับขนาดของอนุภาคและรูปแบบ การอบ กล่าวคือ ชิ้นงานทองผสมที่ได้จากการหล่อด้วยปูน Investment B มีความขรุขระน้อยกว่า ปูน Investment A เล็กน้อย เนื่องจากมีขนาดอนุภาคปูนที่เล็กกว่า ส่งผลให้มีความเรียบผิวที่ดีกว่า อย่างไรก็ตามปูน Investment C ที่มีขนาดอนุภาคเล็กที่สุดและควรทำความเรียบผิวได้ดีที่สุด แต่มีค่า ความขรุขระมากที่สุด เนื่องจากการอบปูนในรูปแบบที่ 1 ของ Investment C นั้น มีการข้ามช่วงการ คงอุณหภูมิในช่วงการเกิดปฏิกิริยา dehydration ของยิปซัม จึงทำให้เกิดการหดตัวที่รุนแรง ส่งผลต่อ ผิวงานหลังการหล่อมีคุณภาพที่ไม่ดี

เมื่อพิจารณารูปแบบการอบที่ 3 ต่อความขรุขระผิวของชิ้นงานที่หล่อด้วยปูนกลุ่มยิปซัมแต่ละ แบบพบว่า ชิ้นงานที่หล่อด้วยปูน Investment A และ Investment B นั้นให้ค่าความขรุขระที่ ใกล้เคียงกันแต่มากกว่า Investment C เล็กน้อยเนื่องจากปูน Investment C นั้นมีขนาดอนุภาคที่ เล็กกว่าจึงมีความเรียบผิวที่ดีกว่า

เมื่อเปรียบเทียบรูปแบบการอบต่อความขรุขระของปูนแต่ละแบบพบว่า ความขรุขระของ ชิ้นงานจากการหล่อด้วยปูน Investment A และ Investment B ด้วยรูปแบบการอบที่ 1 และ 3 นั้น มีค่าความขรุขระที่ใกล้เคียงกัน ส่วนในปูน Investment C พบว่ารูปแบบการอบที่ 3 นั้นให้ค่าความ ขรุขระผิวลดลงและมีความแข็งแรงของปูนแบบเพิ่มขึ้น เนื่องมาจากการปรับรูปแบบการอบปูนให้มี ความสมบูรณ์มากขึ้นรวมถึงใช้เวลาในการอบปูนลดลงจากรูปแบบการอบที่ 1 ของ Investment C

จุหาล	a what is a factor of the second state of the					
CHULAL	Condition 1	Condition 3				
Gold alloy (Investment A)	0.14	0.14				
Gold alloy (Investment B)	0.12	0.14				
Gold alloy (Investment C)	0.18	0.12				
Pure Titanium (Investment T)	0.23	0.23				

ตารางที่ 4.6 แสดงค่าความขรุขระของผิวชิ้นงานหลังการหล่อ

ส่วนผลในการเปลี่ยนรูปแบบการอบปูน Investment T นั้นได้ค่าความขรุขระใกล้เคียงกัน ดังนั้นการเปลี่ยนรูปแบบการอบปูนกลุ่มสปิเนลนั้นไม่ส่งผลต่อความเรียบของผิวชิ้นงาน แต่ส่งผลต่อ ความแข็งแรงที่ดีขึ้นของปูนแบบหลังทำการอบ

4.5.2 การศึกษาความแข็งผิวของชิ้นงานหลังงานหล่อ

จากการทดสอบความแข็งที่ผิวของขึ้นงานโลหะทองผสมและไทเทเนียมบริสุทธิ์ หลังจากการ หล่อด้วยรูปแบบการอบปูนที่ 1 และ 3 แสดงความสัมพันธ์ในภาพที่ 4.19 โดยเมื่อพิจารณาความแข็ง ผิวของชิ้นงานทองในรูปแบบการอบที่ 1 พบว่าชิ้นงานที่หล่อด้วยปูน Investment A มีความแข็งสูง ที่สุดเมื่อเทียบกับชิ้นงานทองที่หล่อด้วยปูน Investment B ที่มีความแข็งใกล้เคียงกับชิ้นงานทองที่ หล่อด้วยปูน Investment C เนื่องมาจาก Investment B และ C มีปริมาณยิปซัมที่มาก อาจทำให้เกิด แก๊ส SO₂ ที่เกิดขึ้นจากการสลายตัวของยิปซัมยังอาจทำให้เกิดรูพรุนที่ผิวของชิ้นงาน[2] ส่งผลความ แข็งผิวที่ต่ำกว่า Investment A ที่มีปริมาณยิปซัมน้อยกว่า

ส่วนความแข็งของชิ้นงานทองที่หล่อด้วยรูปแบบการอบปูนแบบที่ 3 พบว่าความแข็งของ ชิ้นงานทองที่หล่อด้วยปูน Investment A และ B ให้ความแข็งผิวอยู่ในช่วงที่ใกล้เคียงกับความแข็งผิว ของทองที่หล่อโดยใช้การอบปูนแบบที่ 1 ส่วนชิ้นงานที่หล่อด้วยปูน Investment C นั้นมีค่าความแข็ง ผิดที่ลดลง เนื่องมาจากการที่มีปริมาณยิปซัมที่มากและมีขนาดอนุภาคที่เล็กเมื่อเปลี่ยนรูปแบบการอบ เพื่อให้เกิดการเปลี่ยนเฟสในแบบปูนที่สมบูรณ์ ซึ่งอาจทำให้รูพรุนหรือความสามารถในการซึมผ่าน (Permeability) ลดลง[14] จึงอาจทำให้แก๊สที่เกิดขึ้นจากการสลายตัวของยิปซัมไม่สามารถซึมผ่าน ออกจากโลหะทองได้จึงทำให้เกิดตำหนิในชิ้นงานซึ่งส่งผลต่อความแข็งผิวที่ลดลง

ภาพที่ 4.19 แสดงค่าความแข็งผิวชิ้นงานจากรูปแบบการอบที่ 1 และ 3

ในส่วนของความแข็งผิวไทเทเนียมบริสุทธิ์ที่ผ่านการหล่อด้วยการอบแบบที่ 1 มีค่าความแข็ง น้อยกว่ารูปแบบการอบที่ 3 เล็กน้อย และค่าที่สูงมากเมื่อเทียบกับความแข็งของเนื้อโลหะไทเทเนียมที่ มีความแข็งอยู่ที่ประมาณ 200HV[23] เนื่องมากจากที่ผิวขึ้นงานเกิดเฟสของ alpha-case (**α**-case) layer [22]

4.5.3 การศึกษาโครงสร้างจุลภาคและตำหนิใต้ผิวของชิ้นงานหลังงานหล่อ

จากการศึกษาบริเวณใต้ผิวชิ้นงาน A1 ที่หล่อด้วยรูปแบบการอบที่ 1 ของปูน Investment A ไม่พบตำหนิใต้ผิวเช่นเดียวกันบริเวณใต้ผิวชิ้นงาน A3 ที่หล่อด้วยรูปแบบการอบที่ 3 ของปูน Investment A ซึ่งแสดงในภาพที่ 4.20 ส่วนในชิ้นงาน B1 และ B3 ที่หล่อด้วยรูปแบบการอบที่ 1 และ 3 ของปูน Investment B ตามลำดับ จากภาพที่ 4.21 ไม่พบตำหนิใต้ผิวชิ้นงาน แต่ในการหล่อด้วยปูน Investment C ด้วยรูปแบบการอบที่ 1 และ 3 พบตำหนิใต้ผิวชิ้นงาน โดยชิ้นงาน C1 พบตำหนิใต้ผิว เพียงเล็กน้อยแต่ในชิ้นงาน C3 พบตำหนิใต้ผิวที่ชัดเจนและมีปริมาณมากกว่าชิ้นงาน C1 ซึ่งแสดงภาพ ที่ 4.22 เพื่อเปรียบเทียบตำแหน่งและปริมาณตำหนิหลังการหล่อด้วยปูน Investment C ได้ทำการกัด กรด Aqua regia ที่เป็นการผสมของ nitric acid และ hydrochloric acid ด้วยอัตราส่วน 1 ต่อ 3 ตามลำดับ ทำให้เห็นโครงสร้างและตำแหน่งของตำหนิอย่างชัดเจนซึ่งแสดงในภาพที่ 4.23 ตำหนิของ การหล่อด้วยรูปแบบการหล่อที่ 3 ของปูน Investment C มีปริมาณตำหนิมากกว่า ตำหนิจากการอบ ด้วยรูปแบบที่ 1 โดยบริเวณที่พบนั้น อยู่บริเวณระหว่างแขนของเดนไดรต์ (interdendritic regions) ซึ่งเป็นตำหนิที่เกิดจากแก๊สที่เกิดขึ้นระหว่างการหล่อและไม่สามารถออกจากเบ้าปูนได้ โดยแสดง ้ตำหนิในภาพที่ 4.24 ซึ่งมีลักษณะตำหนิเป็นทรงกลมและมีพื้นผิวของตำหนิที่เรียบ สาเหตุที่พบตำหนิ ้ดังกล่าว เนื่องมาจากแก๊สที่เกิดจากการสลายตัวของยิปซัมขณะที่ทำการหล่อ ซึ่งในปูนInvestment C ้นั้นมีความสามารถในการซึมผ่านที่ไม่ดีเพราะ Investment C มีขนาดอนุภาคที่เล็กกว่าปูนแบบอื่นๆ และผลของตำหนิที่มากขึ้นของการหล่อด้วยรูปแบบการอบที่ ทำให้ค่าความแข็งผิวลดลงเมื่อ 3 เปรียบเทียบกับชิ้นงานที่หล่อด้วยรูปแบบการอบที่ 1

ภาพที่ 4.20 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ 3

ภาพที่ 4.21 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ 3

ภาพที่ 4.22 แสดงภาพตัดขวางบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1 และ 3

ของปูน Investment C

ภาพที่ 4.23 แสดงภาพโครงสร้างจุลภาคงบริเวณใต้ผิวของชิ้นงานทองผสมที่ใช้รูปแบบการอบที่ 1

และ 3 ของปูน Investment C

ภาพที่ 4.24 แสดงตำหนิจากแก๊สบริเวณใต้ผิวชิ้นงานที่หล่อด้วยรูปแบบการอบที่ 3 ของปูน Investment C

ในส่วนของไทเทเนียมบริสุทธิ์หลังงานหล่อพบเฟสของ alpha-case (**α**-case) layer ที่ บริเวณใต้ผิวของชิ้นงานซึ่งแสดงในภาพที่ 4.25 พบ alpha-case layer ที่มีความหนา 233.19 **μ**m ใน ชิ้นงานที่หล่อด้วยรูปแบบการอบที่ 1 และพบความหนาเพิ่มขึ้นเป็น 243.44 **μ**m เมื่อหล่อด้วยรูปแบบ การอบที่ 3 ซึ่งจากการเพิ่มขึ้นของความหนาของ alpha-case layer ทำให้ค่าความแข็งที่ตรวจสอบได้ ที่ผิวมีค่าสูงขึ้นเล็กน้อยจากการเปลี่ยนรูปแบบการอบที่ 1 เป็นรูปแบบการอบที่ 3

ภาพที่ 4.25 แสดงโครงสร้างจุลภาคใต้ผิวชิ้นงานไทเทเนียมบริสุทธิ์ ที่หล่อด้วยรูปแบบการอบที่ 1 และ 3 ของปูน Investment T

ความหนาที่เพิ่มขึ้นของชั้น alpha-case layer เมื่อเปลี่ยนรูปแบบการอบอาจเป็นผลมาจาก ระยะเวลาการอบที่เพิ่มขึ้นทำให้เบ้าปูนมีอุณหภูมิที่สูงสม่ำเสมอกว่ารูปแบบที่มีระยะเวลาในการอบสั้น กว่า จึงทำให้ออกซิเจนจากปูนทำปฏิกิริยากับน้ำไทเทเนียมหลอมเหลวระหว่างการหล่อ จากนั้น ออกซิเจนจะแพร่ผ่านเข้าไปในน้ำไทเทเนียมหลอมเหลว และเมื่อเย็นตัวจะเกิดชั้นปฏิกิริยาเป็น alpha-case layer [45] ดังนั้นเบ้าปูนที่มีอุณหภูมิสูงสม่ำเสมอในรูปแบบการอบที่ 3 อาจเพิ่มโอกาสใน การแพร่ของออกซิเจนได้มากกว่าทำให้เกิดชั้นของ alpha-case layer ที่มีความหนามากกว่าในการ อบปูนแบบที่ 1

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 5 สรุปผลการทดลอง

5.1 สรุปผลการทดลองปูนในกลุ่มยิปซัม

ปูนในกลุ่มยิปซัมประกอบด้วย SiO₂ ที่มีเฟสเป็น $oldsymbol{lpha}$ -quartz และ $oldsymbol{lpha}$ -cristobalite โดยมี โครงสร้างผลึกเป็นhexagonal และ tetragonal ตามลำดับ และมีตัวประสานที่เป็น CaSO4•0.5(H2O) หรือ CaSO₄•0.625(H₂O) ซึ่งขึ้นอยู่กับกระบวนการผลิตปูน เมื่อผสมผงปูนกับน้ำ CaSO₄•0.5(H₂O) หรือ CaSO4•0.625(H2O) จะเปลี่ยนเป็น CaSO4•2(H2O) และขณะอบปูน CaSO4•2(H2O) จะ เกิดปฏิกิริยา dehydration เป็น CaSO4•0.5(H2O) ที่ช่วงอุณหภูมิ 110-128 องศาเซสเซียส และน้ำ 0.5 โมลที่เหลือจะ dehydrate กลายเป็น CaSO₄ ที่ช่วงอุณหภูมิ 128-159 องศาเซสเซียส ซึ่งการ หายไปของน้ำทำให้เกิดการหดตัวขึ้นและเมื่อทำการเพิ่มอุณหภูมิจนถึงช่วง 240- 250 องศาเซสเซียส เกิดการเปลี่ยนเฟสของ cristobalite จาก lpha-cristobalite กลายเป็น eta-cristobalite ที่มีโครงสร้าง ้ผลึกเป็น Cubic มีการขยายตัวเพิ่มชดเชยการหดตัวเนื่องจากการสูญเสียน้ำ ต่อมาที่อุณหภูมิประมาณ 375 องศาเซสเซียส เกิดการเปลี่ยนเฟสของ CaSO4 จากโครงสร้าง hexagonal (All phase) เป็น orthorhombic (All phase) ซึ่งเรียกการเปลี่ยนแปลงนี้ว่า III-II CaSO4 transition ซึ่งการเปลี่ยนเฟส หลังจากนั้นเมื่ออุณหภูมิสูงขึ้น นี้ทำให้เกิดการหดตัวปริมาณมาก ในช่วงอุณหภูมิ 563-574 องศาเซสเซียส จะเกิดการเปลี่ยนเฟส lpha-quartz กลายเป็น eta-quartz ที่มีโครงสร้าง hexagonal เช่นเดียวกันแต่มีความสมมาตรมากขึ้นและมีความหนาแน่นที่ลดลงทำให้เกิดการขยายตัวขึ้น

เมื่อทำการปรับรูปแบบการอบปูนทำให้ลดระยะเวลาในการอบปูนจาก 8-12 ชั่วโมง เหลือ เพียง 8 ชั่วโมงในปูนทุกแบบ พบว่าการปรับรูปแบบการอบทำให้ความแข็งแรงของปูนเพิ่มขึ้น และ ไม่ทำให้เสียคุณภาพชิ้นงานหล่อถ้าปูนมีขนาดอนุภาคที่เหมาะสม กล่าวคือเมื่อปูนมีขนาดอนุภาคที่เล็ก จะได้ความเรียบผิวที่ดีแต่มีความสามารถในการซึมผ่านที่ไม่ดี จึงอาจทำให้เกิดตำหนิในชิ้นงานซึ่งทำให้ ความแข็งที่ผิวชิ้นงานลดลง โดยรูปแบบการอบที่เหมาะสมจากการทดลองคือรูปแบบการอบที่ 3 ที่มี อัตราการให้ความร้อนที่ 5 องศาเซสเซียสต่อนาที โดยมีการคงอุณหภูมิที่ 150 องศาเซสเซียส, 370 องศาเซสเซียส และ 730 องศาเซสเซียส โดยมีระยะเวลาการคงอุณหภูมิที่ 1 ชั่วโมง, 1 ชั่วโมง และ 2 ชั่วโมง ตามลำดับ

5.2 สรุปผลการทดลองปูนในกลุ่มสปิเนล

ี ปูนในกลุ่มสปิเนลประกอบด้วยส่วนประกอบหลักที่เป็น MgO, Al₂O₃, และ ZrO₂ นอกจากนั้น ้ยังมีสารเติมแต่งคือ Al₁₈B₄O₃₃ และ LiF ซึ่งเป็นสารประกอบที่ทำให้การเกิดปฏิกิริยาของ MgO และ MgAl₂O1 เมื่อทำการผสมด้วย ที่อุณหภูมิต่ำลง ที่เป็น Al₂O₃ เป็น spinel liquid Mg(CH₃COO)₂•4(H₂O) แล้วทิ้งให้แข็งตัวเมื่อทำไปอบที่ช่วงอุณหภูมิ 94-137 องศาเซสเซียส น้ำใน โมเลกุล Mg(CH3COO)2•4(H2O) จะหายไปทำให้ได้ Mg(CH3COO)2 ต่อเมื่ออุณหภูมิสูงขึ้นในช่วง 287-379 องศาเซสเซียส เกิดการสลายตัวของ Magnesium Acetate ทำให้เกิดเป็น MgO และที่ อุณหภูมิ 336 องศาเซสเซียส คาดว่าเป็นการเปลี่ยนเฟสของ ZrO₂ จากโครงสร้างผลึกที่เป็น cubic เปลี่ยนเป็นโครงสร้างผลึกที่เป็น monoclinic จนอุณหภูมิถึง 706 องศาเซสเซียส พบการเกิดขึ้นของ MgAl₂O₄ จากการเกิดปฏิกิริยาของ MgO และ Al₂O₃ ดังนั้นการอบปูนในกลุ่มสปิเนลจึงต้องมีอุณหภูมิ สูงสุดในการอบที่มากกว่าอุณหภูมิการเกิดสปิเนล

หลังการเพิ่มระยะเวลาในการอบโดยการลดอัตราการให้ความร้อนทำให้ความแข็งแรงของปูน เพิ่มขึ้นได้แต่อย่างไรก็ตามยังส่งผลให้ชั้นของ alpha-case layer ที่มีความหนาที่เพิ่มขึ้นทำให้ความ แข็งที่ผิวของไทเทเนียมมีความแข็งเพิ่มขึ้นด้วย ดังนั้นในกระบวนการหล่อไทเทเนียมนั้นการอบใน รูปแบบที่ 3 ทำให้การหล่อมีประสิทธิภาพมากขึ้นเนื่องจากปูนมีความแข็งแรงขึ้น แต่ในส่วนการ ตกแต่งผิวชิ้นงานหลังการหล่ออาจจะทำได้ยากขึ้นเนื่องจากความแข็งผิวที่เพิ่มขึ้น จากชั้นปฏิกิริยาที่ หนาขึ้น

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

รายการอ้างอิง

- [1] S. Jones and C. Yuan, "Advances in shell moulding for investment casting," *Journal of Materials Processing Technology,* vol. 135, pp. 258-265, 4/20/ 2003.
- [2] G. M. Ingo., "Thermal and microchemical characterisations of CaSO4-SiO2 investment materials for casting jewellery alloys," *Thermochimica Acta*, vol. 321(1-2), pp. 175-183, 1998.
- K. A. a. m. C. Guler, "Surface Quality and Dimensional Accuracy of Gypsum Bonded Investment Flask Casting Moulds," *Materials Teasting*, vol. 53(9), pp. 551-555, 2011.
- [4] D. Ott, "Properties of melt and thermal processes during solidification in jewellery casting," *Gold Bulletin,* vol. 33, pp. 25-32.
- [5] H. Schuster, "Titanium Casting And Working Process," *the Santa Fe Symposium on Jewelry Manufacturing Technology*, 2006.
- [6] P. Sbornicchia, G. Montesperelli, G. M. Ingo, and G. Gusmano, "Advances in jewellery microcasting," *Thermochimica Acta*, vol. 419, pp. 195-204, 2004.
- [7] G.t.association.(2-24-2016).Available: <u>http://www.goldtraders.or.th/PageView.aspx?page=5</u>
- [8] C. W. Corti, "Basic metallurgy of the precious metals," in *The Santa Fe Symposium on Jewelry Manufacturing Technology*, Albuquerque, N.M., 2007, pp. 77-108.
- [9] M.D. Siro, D. Maggian, D. Frizzo, and S. Bortolamei, "Characterization of 9, 10, 14 and 18 Karat Gold Alloys," *The Santa Fe Symposium on Jewelry Manufacturing Technology*, 2010.
- [10] W. S. Rapson, "The metallurgy of the coloured carat gold alloys," *Gold Bulletin*, vol. 23, pp. 125-133, 1990.
- [11] U. E. Klotz, "Blue and Purple Gold," *The Santa Fe Symposium on Jewelry Manufacturing Technology 2009,* 2009.
- [12] C. W. Corti, "Basic metallurgy of the precious metals, Part II development of alloy microstructure through solidification and working," in *The Santa Fe*

Symposium on Jewelry Manufacturing Technology, Albuquerque, N.M., 2008, pp. 81-101.

- X. J. Zhang, K. K. Tong, R. Chan, and M. Tan, "Gold jewellery casting: Technology design and defects elimination," *Journal of Materials Processing Technology*, vol. 48, pp. 603-609, 1/15/ 1995.
- [14] B. Yaman and M. Cigdem, "Effect of particle size variations of gypsum bonded investment powders on metallurgical quality of investment castings," *International Journal of Cast Metals Research*, vol. 23, pp. 60-64, 2010.
- [15] S.-B. K. Yun-Jong Kim, Hyun-Hye Park, Myeong-Deok Seo, Byoung-Cheon Lee, Man-So Han, Taik-Nam Kim, Sung-Baek Cho, "Effect of Cristobalite and Quartz on the Properties of Gypsum Bonded Investment," *J. Mater. Sci. Technol.*, vol. 24, pp. 143-144, 2008-01-28 2008.
- [16] E. M. van der Merwe, C. A. Strydom, and J. H. Potgieter, "Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O, gypsum and phosphogypsum in an inert atmosphere," *Thermochimica Acta*, vol. 340–341, pp. 431-437, 12/14/ 1999.
- [17] P. J. Horton, "Investment powder technology the present and future," in *The Santa Fe Symposium on Jewelry Manufacturing Technology*, Albuquerque, N.M., 2001, pp. 213-239.
- [18] C. R. G.M. Ingo, G. Chiozzini & C. Veroli, "Thermochemical and Microstructural Study of CaSO4," The Santa Fe Symposium on Jewelry Manufacturing Technology 2000.
- [19] K. M. Ibrahim, M. Mhaede, and L. Wagner, "Mechanical characterization of cp-Ti produced by investment casting," *Transactions of Nonferrous Metals Society of China*, vol. 21, pp. 1735-1740, 2011.
- [20] X. Cheng and S. G. Roscoe, "Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins," *Biomaterials*, vol. 26, pp. 7350-6, Dec 2005.
- [21] J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, "Structure and composition of passive titanium oxide films," *Materials Science and Engineering: B,* vol. 47, pp. 235-243, 1997/06/30 1997.

- [22] Y. Guilin, L. Nan, L. Yousheng, and W. Yining, "The effects of different types of investments on the alpha-case layer of titanium castings," *The Journal of Prosthetic Dentistry*, vol. 97, pp. 157-164, 3// 2007.
- [23] N. Teng-amnuay, C. Tangpatjaroen, E. Nisaratanaporn, and B. Lohwongwatana, "Replication of Trabecular Bone Structure and Reaction Layer Analysis of Titanium Alloys Using Investment Casting Technique," *Procedia Technology*, vol. 12, pp. 316-322, 2014.
- [24] J. Fischer, A. Ebinger, T. Hagi, B. Stawarczyk, A. Wenger, and E. Keller, "Mold filling and dimensional accuracy of titanium castings in a spinel-based investment," *Dent Mater,* vol. 25, pp. 1376-82, Nov 2009.
- [25] H. H. Morten S., "Mold filling of Ti castings using investments with different gas permeability," *Dental materials,* vol. 11, pp. 11-18, 1995.
- [26] C. C. Hung, G. L. Hou, C. C. Tsai, and C. C. Huang, "Pure titanium casting into zirconia-modified magnesia-based investment molds," *Dent Mater*, vol. 20, pp. 846-51, Nov 2004.
- [27] A. Basso and M. Poliero, "14-18KT Yellow Gold Alloys for Investment Casting: A New Approach," in *The Santa Fe Symposium on Jewelry Manufacturing Technology*, Albuquerque, N.M., 2002, pp. 38-60.
- [28] C. Bezou, A. Nonat, J. C. Mutin, A. N. Christensen, and M. S. Lehmann, "Investigation of the Crystal Structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by Powder Diffraction Methods," *Journal of Solid State Chemistry*, vol. 117, pp. 165-176, 1995/06/01 1995.
- [29] G. Bhattacharya, S. Zhang, M. E. Smith, D. D. Jayaseelan, and W. E. Lee,
 "Mineralizing Magnesium Aluminate Spinel Formation With B2O3," *Journal of the American Ceramic Society*, vol. 89, pp. 3034-3042, 2006.
- [30] G. Bhattacharya, S. Zhang, D. D. Jayaseelan, and W. E. Lee, "Mineralizing Effect of Li2B4O7 and Na2B4O7 on Magnesium Aluminate Spinel Formation," *Journal of the American Ceramic Society,* vol. 90, pp. 97-106, 2007.
- [31] T. M. Souza, A. P. Luz, and V. C. Pandolfelli, "Magnesium fluoride role on alumina-magnesia cement-bonded castables," *Ceramics International*, vol. 40, pp. 14947-14956, 2014.

- [32] S.-F. Pang, C.-Q. Wu, Q.-N. Zhang, and Y.-H. Zhang, "The structural evolution of magnesium acetate complex in aerosols by FTIR–ATR spectra," *Journal of Molecular Structure*, vol. 1087, pp. 46-50, 2015.
- [33] M. Sasani Ghamsari and A. R. Bahramian, "High transparent sol-gel derived nanostructured TiO2 thin film," *Materials Letters*, vol. 62, pp. 361-364, 2/15/ 2008.
- [34] K. Isa and H. Okuno, "Thermal Decomposition of Calcium Sulfate Dihydrate under Self-generated Atmosphere," *Bulletin of the Chemical Society of Japan*, vol. 55, pp. 3733-3737, 1982/12/01 1982.
- [35] W. K. Luk and B. W. Darvell, "Effect of burnout temperature on strength of gypsum-bonded investments," *Dental Materials,* vol. 19, pp. 552-557, 2003.
- [36] T. Mori, "Study of gypsum bonded casting investments Part 1," *Australian Dental Journal*, vol. 38(3), pp. 220-224, 1993.
- [37] F. Aghajani, Z. Hasratiningsih, and T. Mori, "Gypsum-bonded Investment and Dental Precision Casting (IV) Transformation of III-CaSO₄ to II-CaSO₄," Dental Materials Journal, vol. 23, pp. 373-378, 2004.
- [38] D. A. K. M. G. Tucker, AND M. T. Dove, "A detailed structural characterization of quartz," *Mineralogica l Magazine*, vol. 65(4), pp. 489–507, 2001.
- [39] H. Yao and I. Hatta, "Phase transitions of quartz studied by a.c. calorimetry," *Thermochimica Acta*, vol. 266, pp. 301-308, 1995/11/15 1995.
- [40] A. I. K. WAKASA, Y. YOSHIDA, M. YAMAKI, "Silica investment prepared for dental purposes effect of cristobalite content on mechanical properties," *Chapman & Hall*, 1993.
- [41] K. ISA and M. Nogawa, "Thermal decomposition of magnesium acetate tetrahydrate under self-generated atmosphere," *Thermochimica Acta*, vol. 75, pp. 197-206, 1984.
- [42] G. Fontani, "Understanding injection waxes," in *The Santa Fe Symposium on Jewelry Manufacturing Technology*, Albuquerque, N.M., 2015, pp. 107-128.
- [43] Z. Ruguo, Z. Hua, Z. Hong, F. Ying, L. Kun, and Z. Wenwen, "Thermal Analysis of Four Insect Waxes Based on Differential Scanning Calorimetry (DSC)," *Procedia Engineering*, vol. 18, pp. 101-106, 2011.

- [44] U. W. and W. W., "Waxes products of thermal degradation of waste plastics obtaining, capabilities, and application," *Archiwum Gospodarki Odpadami i Ochrony Srodowiska*, vol. 6, pp. 71-78, 2007.
- [45] M.-G. Kim, S. Kim, nbsp, K, and Y.-J. Kim, "Effect of Mold Material and Binder on Metal-Mold Interfacial Reaction for Investment Castings of Titanium Alloys," *MATERIALS TRANSACTIONS*, vol. 43, pp. 745-750, 2002.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาพที่ ก- 2 แสดงสมบัติทางความร้อนของปูน Investment C

ภาพที่ ก- 4 แสดงสัณฐานวิทยาของผงปูน Investment A (ต่อ)

ภาพที่ ก- 5 แสดงสัณฐานวิทยาของผงปูน Investment A (ต่อ)

ภาพที่ ก- 6 แสดงสัณฐานวิทยาของผงปูน Investment A (ต่อ)

ภาพที่ ก- 8 แสดงสัณฐานวิทยาของผงปูน Investment B (ต่อ)

ภาพที่ ก- 9 แสดงสัณฐานวิทยาของผงปูน Investment B (ต่อ)

ภาพที่ ก- 10 แสดงสัณฐานวิทยาของผงปูน Investment B (ต่อ)

ภาพที่ ก- 12 แสดงสัณฐานวิทยาของผงปูน Investment C (ต่อ)

ภาพที่ ก- 14 แสดงสัณฐานวิทยาของผงปูน Investment C (ต่อ)

ภาพที่ ก- 16 แสดงสัณฐานวิทยาของผงปูน Investment T (ต่อ)

ภาพที่ ก- 18 แสดงสัณฐานวิทยาของผงปูน Investment T (ต่อ)

ภาพที่ ก- 19 แสดงสัณฐานวิทยาของปูน Investment A หลังการอบ

ภาพที่ ก- 20 แสดงสัณฐานวิทยาของปูน Investment A หลังการอบ (ต่อ)

ภาพที่ ก- 21 แสดงสัณฐานวิทยาของปูน Investment A หลังการอบ (ต่อ)

ภาพที่ ก- 24 แสดงสัณฐานวิทยาของปูน Investment B หลังการอบ (ต่อ)

ภาพที่ ก- 25 แสดงสัณฐานวิทยาของปูน Investment B หลังการอบ (ต่อ)

ภาพที่ ก- 28 แสดงสัณฐานวิทยาของปูน Investment C หลังการอบ (ต่อ)

ภาพที่ ก- 29 แสดงสัณฐานวิทยาของปูน Investment C หลังการอบ (ต่อ)

ภาพที่ ก- 32 แสดงสัณฐานวิทยาของปูน Investment T หลังการอบ (ต่อ)

ภาพที่ ก- 33 แสดงสัณฐานวิทยาของปูน Investment T หลังการอบ (ต่อ)

ภาพที่ ก- 35 แสดงการวิเคราะห์ธาตุของอนุภาคผงปูน Investment B

ภาพที่ ก- 36 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment B หลังการอบ

ภาพที่ ก- 37 แสดงการวิเคราะห์ธาตุของอนุภาคผงปูน Investment C

ภาพที่ ก- 38 แสดงการวิเคราะห์ธาตุของอนุภาคปูน Investment C หลังการอบ

				System D	etails									
me: Sciroo	xo 2000	Beam L	ength (mm)	10.00	Obscur	ation (%) :	3.78		Residual (%): 1.084				
1.525		Absorpt	orption : 0.1		Dispersant Name :			Dispersant I	RI: 1.000					
				Result Sta	tistics									
/pe: Volun	ne	Concent	tration :	0.0006 %Vol	Specific	c Surface Are	a: 1.	14 m²/g						
rs :		D (0.1) :	2.5	um	D (0.5) :	20.63	um		D (0.9): 65	.84				
1 um	1.00	D [3,2] :	5.27	um	Span :	3.070			Uniformity :	0.967				
Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (um)	Volume in %	Size (um)	Volume In %				
0.00	0.147	0.02	1.082	0.77	7.962	3.10	58.573		430.887	Solution 10				
0.00	0.172	0.05	1.262	0.84	9.283	3 34	68.291	4.11	502.377	0.00				
0.00	0.200	0.08	1.471	0.94	10.823	3.60	79.621	2.46	585.729	0.00				
0.00	0.233	0.13	1.715	1.05	12.619	3.89	92.832	1.60	682.910	0.00				
0.00	0.272	0.18	2.000	1 19	14.713	4.33	108.234	1.05	796.214	0.00				
0.00	0.317	0.25	2.332	136	17.154	4.25	126,191	1.09	928.318	0.00				
0.00	0.370	0.34	2.719	1.55	20.000	4.01	147.128	0.55	1082.339	0.00				
0.00	0.431	0.43	3.170	1.30	23.318	5.01	171.539	0.03	1261.915	0.00				
0.00	0.502	0.51	3.696	1.70	27.187	5.38	200.000	0.00	1471.285	0.00				
0.00	0.586	0.57	4.309	1.90	31.698	5.66	233.183	0.00	1715.392	0.00				
0.00	0.683	0.57	5.024	2.21	36,957	5.79	271.871	0.00	2000.000	0.00				
0.00	0.796	0.63	5.857	2.44	43.089	5.71	316.979	0.00	2000.000					
0.00	0.928	0.67	6.829	2.66	50.238	5.39	369 570	0.00						
0.01	1.082	0.72	7.962	2.88	58 573	4.84	430.887	0.00						
	1.525 rpe : Volur rs : 1 um Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.525 rpe : Volume rs : 1 1 um Volume In% Size (µm) 0.00 0.47 0.00 0.200 0.00 0.272 0.00 0.317 0.00 0.431 0.00 0.431 0.00 0.592 0.00 0.592 0.00 0.796 0.001 0.228 0.001 0.528 0.01 0.528	1.525 Absorpt rpe : Volume Concent rs : D (0.1) : 1 1 um D [3,2] : Volume In% 0.147 0.02 0.00 0.272 0.13 0.00 0.272 0.13 0.00 0.317 0.25 0.00 0.431 0.43 0.00 0.566 0.51 0.00 0.568 0.51 0.00 0.568 0.51 0.00 0.692 0.43 0.00 0.796 0.63 0.00 0.796 0.63	1.525 Absorption : 0.1 rpe : Volume Concentration : rs : D (0.1) : 2.5 1 um D [3,2] : 5.27 Volume In % 0.147 0.02 0.00 0.272 0.05 0.00 0.272 0.18 0.00 0.317 0.28 0.00 0.317 0.28 0.00 0.566 6.57 0.00 0.568 6.57 0.00 0.766 6.63 0.00 0.796 6.67 0.00 0.796 6.67 0.00 0.796 6.67 0.00 0.796 6.67 0.00 0.796 6.67 0.01 0.026 0.72	1.525 Absorption :: 0.1 Result Sta rpe : Volume Concentration :: 0.0006 % Vol rs : D (0.1) : 2.5 um 1 um D [3,2] : 5.27 um Volume Size (µm) Volume In % Size (µm) Volume In % 0.00 0.172 0.02 1.082 0.77 0.00 0.233 0.08 1.716 0.044 0.00 0.233 0.08 1.716 0.044 0.00 0.237 0.18 2.302 1.19 0.00 0.317 0.25 2.719 1.55 0.00 0.431 0.266 1.76 0.241 0.00 0.650 0.61 3.666 1.76 0.00 0.652 0.61 3.666 1.76 0.00 0.656 0.67 5.857 2.66 0.00 0.628 0.77 5.857 2.66 0.01 <	1.525 Absorption: 0.1 Dispers rpe: Volume Concentration: 0.0006 %Vol Specific rs: D (0.1): 2.5 um D (0.5): 1 D (0.5): 1 um D [3,2]: 5.27 um Span: Volume in% 0.000 0.200 0.05 1.682 0.777 0.000 0.200 0.05 1.682 0.777 2.962 0.000 0.202 0.05 1.471 0.044 9.082 0.000 0.223 0.18 2.000 1.05 1.421 0.00 0.317 0.25 2.332 1.36 2.000 0.00 0.317 0.25 2.332 1.36 2.000 0.00 0.431 0.43 3.170 1.56 23.318 0.00 0.586 0.51 4.309 1.88 31.686 0.00 0.586 0.51 4.309 2.21 3.69.57 0.00 <td>1.525 Absorption: 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Are rs : D (0.1): 2.5 um D (0.5): 20.63 1 um D [3,2]: 5.27 um Size (µm) Volume In % Volume In % Size (µm) Volume In % Size (µm) Volume In % Size (µm) Volume In % 0.00 0.200 0.05 1.682 0.77 3.83 3.10 0.00 0.223 0.06 1.471 0.044 9.883 3.34 0.00 0.237 0.13 2.000 1.105 12.016 3.50 0.00 0.317 0.25 2.332 1.36 17.16 4.61 0.00 0.586 0.51 3.300 1.16 2.318 5.38 0.00 0.586 0.51 4.309 1.38 31.689 5.56 0.00<</td> <td>1.525 Absorption: 0.1 Dispersant Name : repe: Concentration: 0.0006 %Vol Specific Surface Area : 1. rs: D (0.1): 2.5 um D (0.5): 20.63 um 1 um D [3,2]: 5.27 Usume in % Size (µm) <td colspan="4" siz<="" td=""><td>1.525 Absorption : 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m*/g 1 Unime D (0.1): 2.5 um D (0.5): 20.63 um Volume In % Size (um) Size (um) Volume In % Size (um) Volume In % Size (um) Volume I</td><td>1.525 Absorption: 0.1 Dispersant Name : Dispersant I Result Statistics rpe : Volume Concentration : 0.0006 %vol Specific Surface Area : 1.14 m²/g rs : D (0.1): 2.5 um D (0.5) : 20.63 um D (0.9): 65 1 um D (3,2] : 5.27 um Span: 3.070 Uniformity : Volume in % 0.4172 0.020 0.05 1.022 0.77 2.982 3.10 98.273 4.11 40.827 502.377 0.00 0.272 0.05 1.471 0.44 10.823 3.34 78.621 3.28 502.377 585.729 0.00 0.272 0.13 2.000 1.161 10.823 3.34 78.621 3.28 592.332 1.66 682.910 502.377 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 582.22 1.66</td></td></td>	1.525 Absorption: 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Are rs : D (0.1): 2.5 um D (0.5): 20.63 1 um D [3,2]: 5.27 um Size (µm) Volume In % Volume In % Size (µm) Volume In % Size (µm) Volume In % Size (µm) Volume In % 0.00 0.200 0.05 1.682 0.77 3.83 3.10 0.00 0.223 0.06 1.471 0.044 9.883 3.34 0.00 0.237 0.13 2.000 1.105 12.016 3.50 0.00 0.317 0.25 2.332 1.36 17.16 4.61 0.00 0.586 0.51 3.300 1.16 2.318 5.38 0.00 0.586 0.51 4.309 1.38 31.689 5.56 0.00<	1.525 Absorption: 0.1 Dispersant Name : repe: Concentration: 0.0006 %Vol Specific Surface Area : 1. rs: D (0.1): 2.5 um D (0.5): 20.63 um 1 um D [3,2]: 5.27 Usume in % Size (µm) Size (µm) <td colspan="4" siz<="" td=""><td>1.525 Absorption : 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m*/g 1 Unime D (0.1): 2.5 um D (0.5): 20.63 um Volume In % Size (um) Size (um) Volume In % Size (um) Volume In % Size (um) Volume I</td><td>1.525 Absorption: 0.1 Dispersant Name : Dispersant I Result Statistics rpe : Volume Concentration : 0.0006 %vol Specific Surface Area : 1.14 m²/g rs : D (0.1): 2.5 um D (0.5) : 20.63 um D (0.9): 65 1 um D (3,2] : 5.27 um Span: 3.070 Uniformity : Volume in % 0.4172 0.020 0.05 1.022 0.77 2.982 3.10 98.273 4.11 40.827 502.377 0.00 0.272 0.05 1.471 0.44 10.823 3.34 78.621 3.28 502.377 585.729 0.00 0.272 0.13 2.000 1.161 10.823 3.34 78.621 3.28 592.332 1.66 682.910 502.377 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 582.22 1.66</td></td>	<td>1.525 Absorption : 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m*/g 1 Unime D (0.1): 2.5 um D (0.5): 20.63 um Volume In % Size (um) Size (um) Volume In % Size (um) Volume In % Size (um) Volume I</td> <td>1.525 Absorption: 0.1 Dispersant Name : Dispersant I Result Statistics rpe : Volume Concentration : 0.0006 %vol Specific Surface Area : 1.14 m²/g rs : D (0.1): 2.5 um D (0.5) : 20.63 um D (0.9): 65 1 um D (3,2] : 5.27 um Span: 3.070 Uniformity : Volume in % 0.4172 0.020 0.05 1.022 0.77 2.982 3.10 98.273 4.11 40.827 502.377 0.00 0.272 0.05 1.471 0.44 10.823 3.34 78.621 3.28 502.377 585.729 0.00 0.272 0.13 2.000 1.161 10.823 3.34 78.621 3.28 592.332 1.66 682.910 502.377 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 582.22 1.66</td>				1.525 Absorption : 0.1 Dispersant Name : Result Statistics rpe : Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m*/g 1 Unime D (0.1): 2.5 um D (0.5): 20.63 um Volume In % Size (um) Size (um) Volume In % Size (um) Volume In % Size (um) Volume I	1.525 Absorption: 0.1 Dispersant Name : Dispersant I Result Statistics rpe : Volume Concentration : 0.0006 %vol Specific Surface Area : 1.14 m²/g rs : D (0.1): 2.5 um D (0.5) : 20.63 um D (0.9): 65 1 um D (3,2] : 5.27 um Span: 3.070 Uniformity : Volume in % 0.4172 0.020 0.05 1.022 0.77 2.982 3.10 98.273 4.11 40.827 502.377 0.00 0.272 0.05 1.471 0.44 10.823 3.34 78.621 3.28 502.377 585.729 0.00 0.272 0.13 2.000 1.161 10.823 3.34 78.621 3.28 592.332 1.66 682.910 502.377 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 585.729 582.22 1.66

	System D	etails	
Accessory Name : Scirocco 2000	Beam Length (mm) : 10.00	Obscuration (%): 2.46	Residual (%) : 1.309
Particle RI: 1.525	Absorption : 0.1	Dispersant Name :	Dispersant RI : 1.000
	Result Sta	tistics	
Distribution Type : Volume	Concentration : 0.0004 %Vol	Specific Surface Area : 1.14 m²/g)
Mean Diameters :	D (0.1): 2.51 um	D (0.5): 20.45 um	D (0.9) : 65.64 um
D [4,3] : 28.29 um	D [3,2]: 5.26 um	Span: 3.087	Uniformity: 0.972
Size (µm) Volume in % Size (µm) Vol 0.020 0.00 0.147 0.127 0.023 0.00 0.172 0.00 0.200 0.032 0.00 0.233 0.00 0.233 0.037 0.00 0.217 0.043 0.00 0.317 0.059 0.00 0.317 0.666 0.00 0.670 0.059 0.00 0.431 0.666 0.00 0.592 0.066 0.00 0.592 0.068 0.00 0.592 0.066 0.00 0.593 0.083 0.147 0.795 0.147 0.01 1.062 0.292 0.147	Size (µm) Volume in % 0.02 1.882 0.77 0.05 1.252 0.84 0.08 1.715 0.93 0.13 2.000 1.05 0.13 2.000 1.65 0.34 2.372 1.36 0.34 3.707 1.76 0.51 3.690 1.76 0.51 3.090 2.22 0.65 5.024 2.22 0.65 5.62 2.667 0.67 6.857 2.46 0.67 6.857 2.46 0.67 7.962 2.91	Size (µm) Volume in % Size (µm) Volume in % 7.962 3.14 58.573 4.05 9.83 3.64 92.83 2.41 10.023 3.68 79.621 3.23 112.610 3.64 92.832 2.41 14.113 3.93 106.234 1.68 17.154 4.64 128.191 0.58 23.316 5.99 270.000 0.00 23.316 5.99 200.000 0.00 31.686 5.67 223.183 0.00 36.65 233.183 0.00 0.00 34.666 6.57 371.879 0.00 43.696 5.57 371.879 0.00 43.696 5.54 369.570 0.00 90.233 4.78 460.877 0.00	Size (µm) Volume In % 400.897 0.00 502.377 0.00 662.210 0.00 662.210 0.00 796.214 0.00 1022.3316 0.00 1022.331 0.00 1261.915 0.00 1271.522 0.00 2000.000 0.00

				System I	Details					
Sciroco	0 2000	Beam Le	ength (mm)	: 10.00	Obscur	ation (%) :	3.42		Residual (%): 0.954
		Absorpti	UT. U.I		Dispers	ant Name :			Dispersant	KI : 1.000
				Result St	atistics					
: Volum	e	Concent	ration :	0.0006 %Vol	Specific	Surface Are	a: 1.14	m²/g		
		D (0.1) :	2.49	um	D (0.5) :	20.67	um		D (0.9) : 66	.15 L
um		D [3,2] :	5.28	um	Span :	3.080			Uniformity :	0.976
olume in %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm) V	olume In %	Size (µm)	Volume In %
0.00	0.147	0.02	1.082	0.79	7.962	3.10	58.573	4.11	430.887	0.00
0.00	0.200	0.05	1.471	0.86	10.823	3.34	79.621	3.27	585,729	0.00
0.00	0.233	0.08	1.715	0.95	12.619	3.60	92 832	2.42	682.910	0.00
0.00	0.272	0.18	2.000	1.20	14.713	4.24	108.234	1.06	796.214	0.00
0.00	0.317	0.25	2.332	1.36	17.154	4.62	126.191	0.63	928.318	0.00
0.00	0.431	0.34	3 170	1.54	20,000	5.00	147.128	0.17	1082.339	0.00
0.00	0.502	0.43	3,696	1.75	27.187	5.36	200.000	0.02	1471,285	0.00
0.00	0.586	0.51	4.309	1.96	31.698	5.64	233.183	0.00	1715.392	0.00
0.00	0.683	0.63	5.024	2.41	36.957	5,70	271.871	0.00	2000.000	0.00
0.00	0.796	0.68	5.857	2.64	43.089	5.39	316.979	0.00		1.0
0.01	1.082	0.73	7.962	2.87	58.573	4.84	430.887	0.00		
					0	/				100
										 100 90 80 70 60 50 40
										 100 90 80 70 60 50 40 30
										90 90 70 60 50 40 30 20
										100 90 80 70 60 50 40 30 20 10
	2525 : Volume um otume in % 0.00	Size (um) um stame in % 0000	Size (un) Volume Concent : Volume D (0.1) : D (0.1) : um D [3,2] : D (0.1) : D (0.1) : otome In % 0.147 0.02 0.05 0.000 0.233 0.13 0.223 0.13 0.000 0.272 0.13 0.317 0.25 0.000 0.371 0.25 0.541 0.000 0.566 0.57 0.663 0.000 0.566 0.57 0.663 0.001 0.2928 0.73 1.082	Size (um) Size (um) Size (um) 0.00 0.11 2.49 um D [3,2] : 5.28 clume In % Size (um) Volume In % Size (um) Size (um) 0.00 0.17 0.02 0.233 0.13 0.00 0.233 0.13 2.2719 0.00 0.317 0.18 3.170 0.00 0.331 0.43 0.43 0.00 0.356 0.57 0.386 0.00 0.566 0.57 0.386 0.00 0.566 0.57 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.63 0.587 0.00 0.586 0.587 7.962	State (JM) Deam Eniger (JM) 10.00 525 Absorption: 0.1 Result State Concentration: 0.0005 % Vol D (0.1): 2.49 um um D [3,2]: 5.28 um State (JM) Volume In % 0.000 0.117 0.02 0.66 0.000 0.117 0.02 0.79 1.262 0.79 0.000 0.272 0.13 0.06 2.379 1.36 0.000 0.370 0.25 0.79 1.64 0.000 0.431 0.43 3.666 1.76 0.000 0.451 0.43 3.666 1.76 0.000 0.562 0.51 4.309 2.19 0.001 0.688 0.57 5.024 2.41 0.001 0.688 0.73 5.024 2.41 0.001 0.688 0.73 5.024 2.41 0.002 0.796	Size (um) Volume Volume Size (um) Volume Volume Size (um) Volume Volume Zize (um) Volume Zize (um) Volume Zize (um) Volume Zize (um) <td>Size (um) Volume Size (um) Volume In % Size (um) Size (um) Volume In % Size (um) Size (um) Volume In % Size (um) Size (um) Size (um) Volume In % Size (um)</td> <td>Size (un) Volume Size (un) Size (un) Size (un) Size (un) Size (un) Size (un) Volume Size (un) Volume Size (un) Volume S</td> <td>Size (um) Volume Concentration : 0.1 Dispersant Name : :: Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m²/g um D (0.1) : 2.49 um D (0.5) : 20.67 um um D [3,2] : 5.28 um Span : 3.080 dume in %: 0.000 0.417 0.02 0.78 3.080 dume in %: 0.172 0.06 1.402 0.79 1.302 0.79 0.00 0.772 0.68 2.799 1.50 1.209 1.201 1.262 0.79 0.00 0.377 0.68 2.303 1.20 1.30 3.40 1.261 1.261 0.00 0.377 0.68 2.331 1.30 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.211</td> <td>Size (unit) Size (unit) Volume In % Size (unit) Volume In % Size (unit) Volume In % Size (unit) Size (unit) Size (unit) Volume In % Size (unit) Size (unit)</td>	Size (um) Volume Size (um) Volume In % Size (um) Size (um) Volume In % Size (um) Size (um) Volume In % Size (um) Size (um) Size (um) Volume In % Size (um)	Size (un) Volume Size (un) Size (un) Size (un) Size (un) Size (un) Size (un) Volume Size (un) Volume Size (un) Volume S	Size (um) Volume Concentration : 0.1 Dispersant Name : :: Volume Concentration : 0.0006 %Vol Specific Surface Area : 1.14 m²/g um D (0.1) : 2.49 um D (0.5) : 20.67 um um D [3,2] : 5.28 um Span : 3.080 dume in %: 0.000 0.417 0.02 0.78 3.080 dume in %: 0.172 0.06 1.402 0.79 1.302 0.79 0.00 0.772 0.68 2.799 1.50 1.209 1.201 1.262 0.79 0.00 0.377 0.68 2.303 1.20 1.30 3.40 1.261 1.261 0.00 0.377 0.68 2.331 1.30 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.201 1.211	Size (unit) Size (unit) Volume In % Size (unit) Volume In % Size (unit) Volume In % Size (unit) Size (unit) Size (unit) Volume In % Size (unit) Size (unit)

			System De	tails			
Accessory Name :	Scirocco 2000	Beam Length (mm) :	10.00	Obscuration (%) :	0.90	Residual (%) :	0.867
Particle RI : 1.525		Absorption : 0.1		Dispersant Name :	Dry dispersion	Dispersant RI :	1.000
			Result Stati	istics			
Distribution Type :	Volume	Concentration :	0.0001 %Vol	Specific Surface Area :	1.34 m²/g	I.	
Mean Diameters :		D (0.1): 1.96	um	D (0.5): 16.28	um	D (0.9): 54.77	um
D [4,3]: 23.35	um	D [3,2]: 4.48	um	Span: 3.244		Uniformity: 1.0)2
Size (µm) Volume ir 0.020 0 0.023 0 0.027 0 0.032 0 0.032 0 0.043 0 0.059 0 0.068 0 0.069 0 0.069 0 0.069 0 0.108 0 0.126 0	Size (µm) Vi 0.0 0.147 0.0 0.172 0.00 0.200 0.00 0.233 0.00 0.317 0.00 0.317 0.00 0.4272 0.00 0.317 0.00 0.562 0.00 0.566 0.00 0.566 0.00 0.686 0.00 0.686 0.00 0.686 0.01 1.082	Size (µm) 0.03 1.082 0.05 1.262 0.05 1.471 0.10 1.715 0.21 2.332 0.63 3.1696 0.63 3.696 0.71 4.309 0.78 5.024 0.78 5.024 0.78 5.024 0.81 6.829 0.91 7.962	Volume In % 0.98 1.06 1.16 1.28 1.42 1.57 1.57 1.96 2.18 2.42 2.69 2.69 2.69 2.57 3.28	Size (µm) Volume In % 7.982 3.61 9.283 3.94 10.823 3.94 12.619 4.27 12.619 5.12 20.000 5.12 23.318 5.32 23.167 5.44 21.697 5.41 31.698 5.31 34.697 4.88 43.099 4.88 50.238 3.78	Size (µm) Volume In % 55.73 3.01 76.21 2.23 79.621 2.23 108.234 0.86 108.234 0.87 128.191 0.57 147.128 0.01 203.000 0.00 203.183 0.00 271.871 0.00 396.970 0.00 398.970 0.00	Size (µm) Volur 430.887 502.377 985.729 682.910 796.214 928.318 1082.339 1261.915 1471.285 1771.5392 2000.000	e In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

				System D	etails			
Accessory Name :	Scirocco 2000	Beam Le	ength (mm) :	10.00	Obscuration (%) :	1.76	Residual (%) :	0.511
Particle RI : 1.525		Absorpti	ion: 0.1		Dispersant Name :	Dry dispersion	Dispersant RI	1.000
	Result Statistics							
Distribution Type :	Volume	Concent	ration : 0	.0002 %Vol	Specific Surface An	ea: 1.34 m²⁄	g	
Mean Diameters :		D (0.1) :	2.02	um	D (0.5): 16.62	um	D (0.9): 54.77	7 um
D [4,3]: 23.45	um	D [3,2] :	4.48	um	Span: 3.174		Uniformity :	0.994
Size (µm) Volum 0.020 0.023 0.027 0.037 0.043 0.043 0.059 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.108 0.108 0.126	Image: Non-Section 2000 Size (0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.001 1	(µ) Volume In % 1.147 0.03 1.172 0.06 200 0.06 2.233 0.16 2.72 0.16 2.317 0.22 3.370 0.32 3.431 0.43 5.562 0.54 5.566 0.77 5.686 0.77 5.686 0.87 9.284 0.87	Size (µm) 1.082 1.262 1.471 1.715 2.000 2.332 2.719 3.170 3.696 4.309 5.024 5.857 6.829 7.962	Volume in % 0.93 1.00 1.10 1.22 1.37 1.54 1.74 1.96 2.19 2.44 2.69 2.69 2.25 3.23	Size (µm) Volume In % 7.962 3.33 9.283 3.85 10.823 3.85 12.619 4.19 14.713 4.54 20.000 5.19 23.318 5.43 20.000 5.19 23.318 5.57 31.688 5.40 38.957 5.05 43.089 4.51 50.228 3.83	Size (µm) Volume In % 55.573 3.06 68.291 2.27 92.852 1.55 108.234 0.68 128.191 0.47 147.128 0.13 170.533 0.00 233.163 0.00 233.163 0.00 365.570 0.00 366.570 0.00 430.887 0.00	Size (µm) V(430.837 502.377 565.729 562.247 562.817 563.18 1082.239 1281.315 1471.286 1715.392 2000.000 1200	tume in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

				System D	etails						
Accessory Name :	Scirocco 2000	Beam Le	ngth (mm) :	10.00	Obscuration (%):	0.90		Residual (%): 0.86	7
Particle RI : 1.525		Absorpt	on: 0.1		Dispersant N	ame :	Dry dispers	ion	Dispersant	RI : 1.00	0
				Result Sta	tistics						
Distribution Type :	Volume	Concent	ration: 0	.0001 %Vol	Specific Surfa	ice Area :	1.34	m²/g			
Mean Diameters :		D (0.1) :	1.96	um	D (0.5): 16.2	8	um		D (0.9): 54	.77	um
D[4,3]: 23.35	um	D [3,2] :	4.48	um	Span : 3.244	ļ.			Uniformity :	1.02	
Size (µm) Volum 0.023 0.023 0.027 0.032 0.037 0.043 0.050 0.059 0.059 0.068 0.080 0.083 0.106 0.126 0.126 0.147	Size (µm) Size (µm) 0.00 0.147 0.00 0.120 0.00 0.230 0.00 0.230 0.00 0.370 0.00 0.370 0.00 0.586 0.00 0.586 0.00 0.6586 0.00 0.6796 0.00 0.6796 0.01 1.062	Volume in % 0.03 0.06 0.10 0.15 0.21 0.30 0.42 0.53 0.63 0.71 0.78 0.85 0.91	Size (µm) 1.082 1.262 1.471 1.715 2.000 2.332 2.719 3.170 3.696 4.309 5.024 5.857 6.829 7.962	Volume in % 0.98 1.06 1.16 1.28 1.42 1.57 1.75 1.96 2.18 2.18 2.42 2.69 2.69 2.297 3.28	Size (µm) Volume 7.962 9.283 10.823 12.619 14.713 17.154 20.000 2.3316 27.187 31.695 36.957 43.069 50.226 56.573	In % 3.61 3.94 4.27 4.58 4.87 5.12 5.32 5.44 5.46 5.31 4.98 4.46 3.78	Size (µm) Vc 58,573 68,291 68,291 79,621 92,832 108,234 126,191 147,128 171,539 200,000 233,183 271,871 316,979 366,570 430,887 430,887	slume In % 3.01 2.23 1.54 0.96 0.57 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00	Size (µm) 430.887 502.377 585.729 682.910 736.214 928.318 1082.339 1261.915 1471.285 1715.392 2000.000	Volumo In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1

						System	Details					
Acces	sory Name :	Scirocco	2000	Beam Le	ength (mm)	: 10.00	Obscu	ration (%) :	1.30		Residual (%	6): 0.660
Partic	le RI : 1.525			Absorpt	ion: 0.1		Disper	sant Name	: Dry disp	ersion	Dispersant	RI : 1.000
	Result Statistics											
Distril	bution Type :	Volume		Concent	ration : (0.0002 %Vol	Specifi	c Surface A	rea: 1.	36 m²/g	9	
Mean	Diameters :			D (0.1) :	2.09	um	D (0.5)	: 14.23	um		D (0.9) : 43	3.45 um
D [4,3]: 19.22	um		D [3,2] :	4.41	um	Span :	2.906			Uniformity	: 0.908
	Size (µm) Volum 0.020 0.023 0.027 0.037 0.037 0.043 0.059 0.059 0.066 0.060 0.060 0.068 0.063 0.108 0.126 0.126	e in % 0.00	Size (µm) 0.147 0.172 0.200 0.233 0.272 0.317 0.370 0.431 0.502 0.586 0.683 0.796 0.928 1.082	Volume In % 0.03 0.06 0.10 0.22 0.31 0.42 0.53 0.61 0.68 0.74 0.78 0.78 0.78 0.78	Size (µm) 1.082 1.262 1.471 1.715 2.000 2.332 2.719 3.170 3.696 4.309 5.024 5.857 6.829 7.962	Volume In % 0.89 0.97 1.08 1.22 1.40 1.62 1.87 2.14 2.14 2.75 3.07 3.41 3.77	Size (µm) 7.962 9.283 10.823 12.619 14.713 17.154 20.000 23.318 27.187 31.698 36.957 43.089 50.238 58.573	Volume In % 4.16 4.57 4.99 5.39 6.74 5.97 6.04 5.92 5.57 5.03 4.33 3.52 2.68	Size (µm) 58,573 66,291 79,621 92,832 106,234 126,191 147,128 200,000 233,183 271,871 316,579 369,570 430,887	Volume In % 1.89 1.19 0.65 0.24 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Size (um) 430.887 502.377 585.729 682.910 796.214 928.318 1082.339 1261.915 1471.285 1715.392 2000.000	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

	System Details								
Accessory Name :	Scirocco 2000	Beam Length (mm)	: 10.00	Obscuration (%) :	1.90	Residual (%) :	0.361		
Particle RI : 1.525		Absorption : 0.1		Dispersant Name :	Dry dispersion	Dispersant RI :	1.000		
	Result Statistics								
Distribution Type :	Volume	Concentration :	0.0003 %Vol	Specific Surface Area :	: 1.38 m²/g	J			
Mean Diameters :		D (0.1): 2.04	um	D (0.5): 14.32	um	D (0.9): 44.67	um		
D [4,3]: 19.64	um	D [3,2]: 4.36	um	Span: 2.978		Uniformity: 0.9	33		
Size (µm) Volume 0.020 0.027 0.023 0.027 0.032 0.037 0.043 0.043 0.059 0.059 0.068 0.080 0.0693 0.1083 0.128 0.147	Size (µm) V 0.00 0.147 0.00 0.172 0.00 0.200 0.00 0.233 0.00 0.370 0.00 0.371 0.00 0.370 0.00 0.371 0.00 0.431 0.00 0.562 0.00 0.562 0.00 0.562 0.00 0.562 0.00 0.5683 0.00 0.5683 0.01 1.682	Size (jume in %) Size (jume in %) 0.03 1.082 0.06 1.471 0.11 1.471 0.16 2.000 0.23 2.332 0.43 2.719 0.43 2.719 0.43 3.170 0.64 3.606 0.69 4.309 0.69 5.024 0.75 5.657 0.79 6.829 0.84 7.962	Volume In % 0.91 0.99 1.11 1.85 1.64 1.80 2.16 2.16 2.44 2.72 3.02 3.02 3.02 3.02 3.02 3.02 3.02	Size (µm) Volume In % 7 962 4.06 9 283 4.48 10 823 4.81 12 619 5.41 14,713 5.70 17,154 5.70 23.318 5.86 27,167 5.49 36,857 4.93 36,957 4.93 43,099 4.23 43,099 2.69 68,57 2.69	Size (µm) Volume In %. 58,573 1.97 78,621 0.85 92,852 0.51 108,234 0.51 126,191 0.00 200,000 0.00 233,183 0.000 300,000 368,570 368,570 0.000	Size (im) Volum 400.887 502.377 585.729 682.2910 796.214 908.318 1082.338 1082.338 1281.915 1471.285 1715.332 2000.000	e in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		

			System D	etails					
Accessory Name :	Scirocco 2000	Beam Length (mr	n): 10.00	Obscuration (%) :	2.20	Residual (%) :	0.416		
Particle RI : 1.525		Absorption :	0.1	Dispersant Name :	Dry dispersion	Dispersant RI :	1.000		
	Result Statistics								
Distribution Type :	Volume	Concentration :	0.0003 %Vol	Specific Surface Area	1: 1.39 m²/	g			
Mean Diameters :		D (0.1): 2.01	um	D (0.5): 14.1	um	D (0.9): 44.18	um		
D [4,3]: 19.41	um	D [3,2]: 4.32	um	Span: 2.992		Uniformity : 0.9	38		
Size (µm) Volum 0.020 0.027 0.032 0.037 0.035 0.050 0.050 0.059 0.068 0.069 0.090 0.093 0.126 0.126 0.126 0.147	e in % 0.00 0.172 0.00 0.200 0.00 0.233 0.00 0.233 0.00 0.2370 0.00 0.377 0.00 0.377 0.00 0.562 0.00 0.56	Volume In % 0.03 0.06 0.11 0.16 0.22 0.32 0.43 0.64 0.33 0.64 0.33 0.64 0.76 0.63 0.76 0.84 0.76 0.85	Volume in % 822 0.92 101 1.13 171 1.13 102 1.46 119 1.82 119 1.82 119 1.82 119 1.82 119 2.48 1096 2.45 124 2.74 1257 3.37 126 3.72	Size (um) Volume In % 7,962 4,11 9,283 4,53 10,823 4,57 12,619 4,97 12,619 5,98 20,000 5,98 23,18 5,84 23,18 5,84 31,668 4,485 36,965 4,485 36,965 4,14 30,897 4,14 30,288 2,62 28,573 2,62	Size (µm) Volume In % 56.573 1.92 68.291 1.92 79.621 0.82 108.234 0.50 126.191 0.04 147.128 0.00 147.128 0.00 231.183 0.00 231.83 0.00 316.979 0.00 368.570 0.00	Size (um) Volun 430.887 52.377 585.729 585.729 682.910 796.214 928.318 1082.333 1261.915 1471.285 1715.382 2000.000	e In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		

	System	Details			
Accessory Name : Scirocco 2000	Beam Length (mm): 10.00	Obscuration (%) : 2	31	Residual (%) :	1.345
Particle RI : 1.525	Absorption : 0.1	Dispersant Name : D)ry dispersion	Dispersant RI :	1.000
	Result S	tatistics			
Distribution Type : Volume	Concentration : 0.0009 %Vo	Specific Surface Area :	0.44 m²/g		
Mean Diameters :	D(0.1): 4.33 um	D (0.5): 108.58	um	D(0.9): 215.99	um
D [4,3] : 106.75 um	D [3,2] : 13.64 um	Span: 1.949		Uniformity: 0.6	25
Size (µm) Volume In % Size (µm) I 0.020 0.00 0.147 0.023 0.00 0.200 0.027 0.00 0.200 0.032 0.00 0.220 0.037 0.00 0.233 0.037 0.00 0.272 0.043 0.00 0.317 0.050 0.00 0.3370 0.059 0.00 0.431 0.068 0.00 0.502 0.080 0.500 0.568 0.033 0.00 0.683 0.108 0.00 0.698 0.108 0.00 0.699 0.126 0.00 0.996 0.126 0.00 0.996	Volume In % Size (µm) Volume In % 0.00 1.082 0.53 0.00 1.262 0.63 0.00 1.471 0.82 0.00 1.715 0.95 0.00 2.332 1.07 0.00 2.332 1.07 0.00 2.3719 1.18 0.00 3.066 1.38 0.00 3.066 1.45 0.00 3.066 1.50 0.00 5.024 1.50 0.03 5.657 1.50 0.39 6.829 1.45	Size (µm) Volume In % Size 7.982 1.40 9.283 1.37 10.823 1.37 1.06 1.41 14.713 1.44 1.47 1.46 17.154 1.48 1.57 1.66 22.318 1.66 1.57 1.68 31.686 1.40 2.31.68 1.40 31.686 0.82 2.5 3.689 60.238 0.83 2.5 3.62,573	Ze (µm) Volume in % 58.573 1.82 68.291 1.82 98.822 6.83 108.234 6.89 108.234 6.89 128.191 8.61 128.193 8.66 200.000 6.72 223.183 6.72 233.183.677 2.42 365.670 0.00 369.570 0.00	Size (µm) Volum 430.887 502.377 585.723 585.723 682.910 796.214 928.218 1082.339 1261.915 1471.285 1715.382 2000.000	a in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

			System D	etails			
Accessory Name : Particle RI : 1.525	Scirocco 2000	Beam Length (mm)	10.00	Obscuration (%) : Dispersant Name :	1.21 Dry dispersion	Residual (%) : Dispersant RI :	0.800 1.000
			Result Sta	tistics			
Distribution Type :	Volume	Concentration :	0.0004 %Vol	Specific Surface Area	a: 0.468 m²	/g	
Mean Diameters :		D (0.1): 4.02	um	D (0.5): 106.99	um	D (0.9): 215.47	um
D [4,3]: 104.86	um	D [3,2]: 12.83	um	Span: 1.976		Uniformity: 0.	645
Size (µm) Volum 0.020 0.027 0.023 0.027 0.032 0.037 0.043 0.050 0.059 0.068 0.093 0.093 0.106 0.126 0.147 0.147	Size (µm) Size (µm) 0.00 0.147 0.00 0.202 0.00 0.233 0.00 0.233 0.00 0.237 0.00 0.317 0.00 0.502 0.00 0.532 0.00 0.532 0.00 0.502 0.00 0.562 0.00 0.562 0.00 0.566 0.00 0.796 0.00 1.062	Volume In %: Size (µm) 0.00 1.082 0.00 1.262 0.00 1.262 0.00 1.262 0.00 1.261 0.00 2.322 0.00 2.332 0.00 2.719 0.00 3.666 0.00 3.666 0.00 4.309 0.00 4.309 0.04 5.024 0.22 5.657 0.24 6.829 0.41 7.982	Volume in %. 0.57 0.73 0.88 1.02 1.15 1.28 1.29 1.49 1.66 1.61 1.63 1.61 1.63	Size (µm) Volume In % 7.962 1.53 9.283 1.49 10.823 1.49 12.619 1.48 14.713 1.50 27.167 1.55 23.16 1.52 23.18 1.56 23.18 1.56 31.696 1.41 36.997 0.92 43.089 0.80 50.238 0.80	Size (µm) Volume In % 58,573 1.68 68,291 2.92 79,621 4.64 92,832 4.64 108,234 6.59 126,191 8.94 126,193 9.44 147,128 9.55 200,000 8.57 233,183 6.73 243,187 4.40 316,879 0.08 396,9570 0.08	Size (µm) Volut 430,887 506,377 566,729 666,910 796,214 928,318 1066,339 1261,915 1471,285 1715,382 2000.000 900.000	ne In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

			System De	etails					
Accessory Name : So	cirocco 2000	Beam Length (mm)	: 10.00	Obscuration (%) :	1.73	Residual (%) :	0.888		
Particle RI : 1.525		Absorption : 0.	1	Dispersant Name :	Dry dispersion	Dispersant RI :	1.000		
	Result Statistics								
Distribution Type : V	olume	Concentration :	0.0006 %Vol	Specific Surface Area	: 0.464 m²/g	I			
Mean Diameters :		D (0.1): 4.06	um	D (0.5): 106.2	um	D (0.9): 215.65	um		
D [4,3] : 104.69	um	D [3,2]: 12.92	um	Span: 1.992		Uniformity: 0.6	48		
Size (µm) Volume In % 0.020 0.00 0.023 0.00 0.027 0.00 0.037 0.00 0.043 0.00 0.059 0.00 0.068 0.00 0.089 0.00 0.093 0.00 0.093 0.00 0.093 0.00 0.093 0.00 0.093 0.00 0.108 0.00 0.1126 0.00 0.126 0.00	Size (µm) Vol 0 0.147 0 0.172 0 0.233 0 0.272 0 0.370 0 0.371 0 0.552 0 0.562 0 0.683 0 0.796 0 0.796	umo in % Size (µm 0.00 1.68 0.00 1.68 0.00 1.68 0.00 1.68 0.00 1.77 0.00 2.93 0.00 2.93 0.00 2.93 0.00 3.170 0.00 3.66 0.00 3.66 0.00 3.66 0.00 3.66 0.00 4.505 0.22 6.82 0.41 7.966	Volumo In % 0.56 0.72 0.87 1.01 1.14 1.25 1.37 1.47 1.54 1.54 1.61 1.80 1.56	Size (µm) Volume In % 7.962 1.51 9.283 1.47 10.823 1.47 12.619 1.46 14.713 1.55 20.000 1.61 22.313 1.64 27.167 1.44 31.696 1.20 36.957 0.96 43.089 0.86 52.238 0.86 52.573 1.08	Size (µm) Volume in % 58,573 1,77 68,291 3,00 79,621 4,70 108,294 8,61 108,294 8,31 126,191 8,33 147,128 9,33 147,128 9,34 200,000 8,45 233,183 4,37 216,979 2,42 316,979 0,09 396,570 0,09 30,887 0.00	Size (µm) Volum 430.887 502.377 505.729 682.910 766.214 398.318 1062.339 1251.915 1471.265 1771.5322 2000.000	2 In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		

ตารางที่ ก- 1 แสดงผลการทดสอบความขรุขระของผิวโลหะหลังการหล่อด้วยรูปแบบการอบที่ 1 และ 3

ภาคผนวก ข

Name and formula

Reference code:	00-049-1642
Mineral name:	Tazheranite, syn
Compound name:	Zirconium Oxide
Empirical formula:	O ₂ Zr
Chemical formula:	ZrO ₂

Crystallographic parameters

Crystal system:	Cubic	
Space group:	Fm-3m	
Space group number:	225	
a (Å):	5.1280	
b (Å):	5.1280	
c (Å):	5.1280	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (°):	90.0000	
Volume of cell (10 ⁶ pm ³):	134.85	
Z:	4.00	
RIR::		
Subfiles and quality		

Subfiles:

Quality:

Comments

Creation Date: Additional Patterns: General Comments: Sample Preparation: Common Phase, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic, Superconducting Material Indexed (I)

ALONGKORN UNIVERSITY

01-Sep-99 See 00-022-0540. To replace 00-027-0997 Oxygen deficient structure (in range of "Zr O" 1.688-"Zr O" 1.740) Prepared by sintering 10 wt.% "Zr O2" in "Al2 O3" at 1973 K for 90 minutes at a pressure of 0.133 MPa. The oxygen deficient phase was synthesized by annealing in vacuum at pressures below 2.8x10-2 MPa.

References

Primary reference: Tomaszewski, H., Godwod, K., *J. Eur. Ceram. Soc.*, **15**, 17, (1995) Unit cell: Duwez, Odell., *J. Am. Ceram. Soc.*, **33**, 274, (1950)

No.	h	k	I	d [Å]	2θ [°]	I [%]
1	1	1	1	2.96463	30.120	100.0
2	2	0	0	2.56448	34.960	17.0
3	2	2	0	1.81521	50.220	32.0
4	3	1	1	1.54668	59.740	16.0
5	2	2	2	1.48102	62.680	2.0
6	4	0	0	1.28085	73.940	1.0
7	3	3	1	1.17697	81.760	2.0
8	4	2	0	1.14676	84.400	3.0
9	4	2	2	1.04697	94.740	1.0
10	3	3	3	0.98647	102.680	1.0
11	5	3	1	0.86685	125.400	1.0
12	6	0	0	0.85472	128.640	1.0

Reference code:	01-079-0612		
Mineral name:	Periclase, syn		
Compound name:	Magnesium Oxide		
Empirical formula:	MgO		
Chemical formula:	MgO		

Crystallographic parameters

Crystal system:	Cubic
Space group:	Fm-3m
Space group number:	225
a (Å):	4.2170
b (Å):	4.2170
c (Å):	4.2170
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	74.99
Z:	4.00
RIR:	3.04

Status, subfiles and quality

Status: Subfiles:

Quality:

Comments

ANX:
ICSD collection code:
Creation Date:
Modification Date:
Cross-References:
ANX:
Analysis:
Formula from original source:
ICSD Collection Code:
Hypothetical Structure:
Calculated Pattern Original Remarks:

Minor Warning: Wyckoff Sequence: Unit Cell Data Source: Alternate Pattern Pharmaceutical, Common Phase, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic, Cement and Hydration Product, Superconducting Material, ICSD Pattern Hypothetical (H)

าลงกรณมหาวทยาลย
AX 41000
41990
01-Sep-98
01-Sep-11
ICSD:41990
AX
Mg1 O1
Mg O
41990
Structure calculated theoretically
Melts at ambient pressure at 3098 K, predicted by PIB potential at
3200(500) K, 590 K for a 1000-atom cluster. Predicted melting point at
300 GPa about 10000 K, for a 1000-atom cluster about 15000 K
No e.s.d reported/abstracted on the cell dimension
h a(FM3-M)
Single Crystal

References

Primary reference: *Calculated from ICSD using POWD-12++* Structure: Cohen, R.E., Gong, Z., *Phys. Rev. B: Condens. Matter. Mater. Phys.*, **50**, 12301, (1994)

No.	h	k	Т		d [Å]	20 [°]	I [%]
1	1	1		1	2.43469	36.889	11.5
2	2	0		0	2.10850	42.856	100.0
3	2	2		0	1.49093	62.217	46.2
4	3	1		1	1.27147	74.578	5.2
5	2	2		2	1.21734	78.510	11.5
6	4	0		0	1.05425	93.884	4.2
7	3	3		1	0.96745	105.541	1.6
8	4	2		0	0.94295	109.552	10.7
9	4	2		2	0.86079	126.984	8.1
10	5	1		1	0.81156	143.302	1.2

Reference code:	01-078-1217		
Mineral name:	Griceite, syn		
Compound name:	Lithium Fluoride		
Empirical formula:	FLi		
Chemical formula:	LiF		

Crystallographic parameters

Fm-3m
225
4.0270
4.0270
4.0270
90.0000
90.0000
90.0000
65.30
4.00
1.52

Status, subfiles and quality

Status: Subfiles: Quality: Alternate Pattern Common Phase, Inorganic, Forensic, Mineral, ICSD Pattern Indexed (I)

Comments

ANX: ICSD collection code: Creation Date: Modification Date: Cross-References: ANX: Analysis: Formula from original source: ICSD Collection Code: Calculated Pattern Original Remarks: Minor Warning: Wyckoff Sequence:

F1 Li1 Li F 62361 Mp. 1116 K No e.s.d reported/abstracted on the cell dimension. No R factors reported/abstracted b a(FM3-M) Single Crystal.

Unit Cell Data Source:

References

Primary reference: *Calculated from ICSD using POWD-12++*, (2004) Structure: Recker, K., Wallrafen, F., Dupre, K., *Naturwissenschaften*, **75**, 156, (1988)

AX

AX

62361 01-Sep-98

01-Sep-11

ICSD:62361

No.	h	k	I.	d [Å]	2θ [°]	I [%]
1	1	1	1	2.32499	38.697	79.8
2	2	0	0	2.01350	44.986	100.0
3	2	2	0	1.42376	65.508	40.7
4	3	1	1	1.21419	78.753	8.7
5	2	2	2	1.16249	83.001	9.3
6	4	0	0	1.00675	99.838	3.4
7	3	3	1	0.92386	112.979	2.2
8	4	2	0	0.90047	117.618	8.9
9	4	2	2	0.82201	139.138	7.0

Reference code:	00-042-1468
Mineral name: Compound name: Common name:	Corundum, syn Aluminum Oxide sapphire, alundum, alumina, diamonite, ruby
Empirical formula:	Al ₂ O ₃
Chemical formula:	Al ₂ O ₃

Crystallographic parameters

Crystal system:	Rhombohedral		
Space group:	R-3c		
Space group number:	167		
a (Å):	4.7588		
b (Å):	4.7588		
c (Å):	12.9920		
Alpha (°):	90.0000		
Beta (°):	90.0000		
Gamma (°):	120.0000		
Calculated density (g/cm ³):	3.98		
Measured density (g/cm^3) :	4.05		
Volume of cell (10 ⁶ pm ³):	254.80		
Z:	6.00		
RIR:	1.00		

Status, subfiles and quality

Status: Subfiles:

Quality:

Marked as deleted by ICDD Pharmaceutical, Common Phase, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic, Cement and Hydration Product, Superconducting Material Star (S)

Comments

Color: Creation Date: Additional Patterns: Color: Deleted Or Rejected By: Melting Point: Sample Source or Locality: White 01-Sep-92 Validated by calculated pattern 00-043-1484 White Deleted by 00-010-0173 which is satisfactory 2323 K Sample is the National Institute of Standards and Technology corundum standard reference material 674 Powder Diffraction.

References

Unit Cell Data Source:

Primary reference: Welton-Holzer, J., McCarthy, G., North Dakota State University, Fargo, North Dakota, USA., *ICDD Grant-in-Aid*, (1989) Structure: Ishizawa, N., Miyata, T., Minato, I., Marumo, F., Iwai, S., *Acta Crystallogr., Sec. B: Struct. Crystallogr. Cryst. Chem.*, **26**, 228, (1980) Optical data: Winchell, A., Winchell, H., *Microscopic Character of Artificial Inorg. Solid Sub.*, 60, (1964)

No.	h	k	I	d [Å]	20 [°]	I [%]
1	0	1	2	3.48000	25.577	70.0
2	1	0	4	2.55100	35.151	97.0
3	1	1	0	2.37900	37.785	42.0
4	0	0	6	2.16500	41.685	1.0
5	1	1	3	2.08500	43.363	100.0
6	2	0	2	1.96400	46.184	1.0
7	0	2	4	1.73980	52.559	42.0
8	1	1	6	1.60140	57.504	82.0
9	2	1	1	1.54610	59.765	2.0
10	1	2	2	1.51470	61.134	5.0
11	0	1	8	1.51090	61.305	7.0
12	2	1	4	1.40450	66.522	30.0
13	3	0	0	1.37380	68.209	45.0
14	1	2	5	1.33580	70.432	1.0
15	2	0	8	1.27540	74.309	1.0
16	1	0	10	1.23900	76.882	13.0
17	1	1	9	1.23410	77.244	6.0
18	2	1	7	1.19290	80.442	2.0
19	2	2	0	1.18980	80.695	5.0
20	3	0	6	1.15980	83.237	1.0
21	2	2	3	1.14710	84.369	4.0
22	1	3	1	1.13870	85.137	1.0
23	3	1	2	1.12570	86.359	4.0
24	1	2	8	1.12420	86.502	3.0
25	0	2	10	1.09900	89,000	5.0
26	0	0	12	1.08240	90.740	2.0
27	1	3	4	1.07820	91.193	6.0
28	2	2	6	1.04270	95.251	12.0
29	0	4	2	1.01750	98.410	2.0
30	2	01	10	0.99780	101.067	9.0
31	1	1	12	0.98530	102.850	1.0
32	4	0	4	0.98200	103.334	2.0
33	3	2	1	0.94320	109.509	1.0
34	1	2	- 11	0.94120	109.854	1.0
35	2	1 W13	2	0.93570	110.819	2.0
36	3	1	8	0.93470	110.997	2.0
37	2	2	9	0.91800	114.092	2.0
38	3	2	4	0.90780	116.105	9.0
39	0	1	14	0 90540	116 594	7.0
40	4	1	0	0.89940	117.843	5.0
41	2	- 3	5	0 88850	120 216	1.0
42	4	1	3	0 88050	122 053	3.0
43	0	4	8	0.87000	124 602	2.0
44	1	3	10	0.85820	127 682	10.0
45	r r	0	12	0 85030	129 893	4.0
46	5 2	0	14	0.84610	131 125	4.0
47	2	2	7	0.84740	132 244	1.0
48	2	<u>د</u> 1	12	0.07270	132.277	1.0
40	ے ل	± 1	13	0.83050	136 101	16.0
<i>נ</i> ד	т	T	0	0.00000	130.101	10.0

Reference code:	00-029-0009
Compound name:	Aluminum Borate
Empirical formula: Chemical formula:	Al ₁₈ B ₄ O ₃₃ Al ₁₈ B ₄ O ₃₃

Crystallographic parameters

Crystal system:	Orthorhombic		
a (Å):	7.7040		
b (Å):	15.0050		
c (Å):	5.6690		
Alpha (°):	90.0000		
Beta (°):	90.0000		
Gamma (°):	90.0000		
Calculated density (g/cm ³):	2.68		
Measured density (g/cm ³):	2.94		
Volume of cell (10 ⁶ pm ³):	655.33		
Z: RIR::	1.00		

Status, subfiles and quality

Status:	
Subfiles:	
Quality:	

Comments

Color: Creation Date: Color: Deleted Or Rejected By: General Comments: Melting Point: Sample Preparation: Unit Cell Data Source: Marked as deleted by ICDD Inorganic Indexed (I)

White 01-Sep-79 White Deleted by 00-032-0003 2è-calibraion with "Na CI" as internal standard 1713 K Synthesized in a sealed Pt-tube by solid-state reaction at 1000 C Powder Diffraction.

References

Primary reference: Uhlig et al., Institut fur Kristallographie, Technische Hochschule, Aachen, Germany., *ICDD Grantin-Aid*, (1976) Unit cell: Scholze., *Z. Anorg. Allg. Chem.*, **284**, 272, (1956)
Peak list

No.	h	k	I	d [Å]	20 [°]	I [%]
1	0	2	0	7.51000	11.774	5.0
2	1	2	0	5.38000	16.464	100.0
3	0	1	1	5.30000	16.714	25.0
4	0	2	1	4.52000	19.624	5.0
5	1	1	1	4.37000	20.305	40.0
6	2	0	0	3.85000	23.083	8.0
7	0	3	1	3.75000	23.707	14.0
8	2	2	0	3.42000	26.033	10.0
9	1	3	1	3.37000	26.426	45.0
10	2	1	1	3.12000	28.587	5.0
11	0	0	2	2.83500	31.532	10.0
12	2	3	1	2.68700	33.318	40.0
13	0	5	1	2.65300	33.758	5.0
14	1	5	1	2.50900	35.759	20.0
15	2	4	1	2.42900	36.978	5.0
16	1	3	2	2.34800	38.303	5.0
17	3	1	shidd 1 a	2.31200	38.923	5.0
18	0	4	2	2.26100	39.838	10.0
19	2	5	1	2.18500	41.285	20.0
20	1	4	2	2.17000	41.584	10.0
21	3	4	0	2.11900	42.633	20.0
22	2	6	0	2.09800	43.081	5.0
23	2	4	2	1.95000	46.535	5.0
24	4	0	0	1.92590	47.152	5.0
25	0	8	0	1.87550	48.500	5.0
26	4	2	0	1.86540	48.779	5.0
27	3	5	1	1.84520	49.349	11.0
28	4	0	1	1.82340	49.979	10.0
29	3	6	0	1.79130	50.938	5.0
30	0	8	1	1.78050	51.269	5.0
31	4	3	1	1.71300	53.446	5.0
32	0	4	3	1.68760	54.316	11.0
33	4	0	2	1.59310	57.831	6.0
34	1	5	3	1.56550	58.950	5.0

จหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

01-086-1449
Baddeleyite, syn Zirconium Oxide
O ₂ Zr ZrO ₂

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	P21/c
Space group number:	14
a (Å):	5.1442
b (Å):	5.2097
c (Å):	5.3112
Alpha (°):	90.0000
Beta (°):	99.2200
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	140.50
Z:	4.00
RIR:	4.60

Status, subfiles and quality

Status: Subfiles:		
Quality:		

Alternate Pattern Alloy, metal or intermetalic, Common Phase, Forensic, ICSD Pattern, Inorganic, Mineral, Superconducting Material Star (S)

Comments

ANX:
ICSD collection code:
Creation Date:
Modification Date:
Cross-References:
ANX:
Analysis:
Formula from original source:
ICSD Collection Code:
Calculated Pattern Original Remarks:

AX2 82543 01-Sep-99 01-Sep-11 ICSD:82543 AX2 O2 Zr1 Zr O2 82543 Stable up to 1273 K (2nd ref., Tomaszewski), 1273-2573 K: P42/nmc. For data obtained at other beam line cf. 82544, 18190 for single crystal data. Sample Source or Locality: Specimen from Commission on Powder Diffraction of IUCR. Wyckoff Sequence: e3(P121/C1). Unit Cell Data Source: Powder Diffraction.

References

Primary reference: *Calculated from ICSD using POWD-12++*, (1997) Structure: Gualtieri, A., Norby, P., Hanson, J., Hriljac, J., *J. Appl. Crystallogr.*, **29**, 707, (1996)

Peak list

No.	h	k	1	d [Å] b	20 [°]	I [%]
1	1	0	0	5.07776	17.451	6.8
2	0	1	1	3.69538	24.063	17.8
3	1	1	0	3.63627	24.460	13.9
4	-1	1	1	3.16267	28.193	100.0
5	1	1	1	2.83923	31.484	70.1
6	0	0	2	2.62129	34.179	21.2
7	0	2	0	2.60485	34.401	13.3
8	2	0	0	2.53888	35.324	16.3
9	-1	0	2	2.49809	35.920	3.1
10	0	2	1	2.33276	38.563	6.0
11	1	2	0	2.31768	38.824	0.2
12	2	1	0	2.28228	39.451	1.1
13	-1	1	2	2.25252	39.994	0.6
14	-2	1	1	2.21246	40.750	14.5
15	1	0	2	2.19056	41.1/6	5.1
16	-1	2	1	2.17954	41.394	5.3
1/	1	2	1	2.06467	43.812	0.1
18	1	1	2	2.01932	44.849	7.1
19	2			1.98999	45.547	6.9
20	-2	0		1.98999	45.547	0.9
21	-2	2	2	1.03090	40.939	1.9
22	0	2	2	1,04709	49.270	17.9
23	-1	2	0	1.01013	50.134	12.7
27	-1 -2	2	1	1 78224	51 216	57
25	2	0	d l	1 69316	54 123	12.3
20	2	0	2	1 69316	54 123	12.5
27	1	2	2	1 67653	54 705	0.7
20	2	2	1	1.65982	55.302	4.7
30	0	1	3	1.65680	55.412	9.6
31	-1	1	3	1.65076	55.632	6.5
32	1	3	Ō	1.64313	55.913	8.2
33	-3		1	1.60919	57.199	8.6
34	3	2.1	0	1.60919	57.199	8.6
35	-1	3	1	1.59165	57.889	5.3
36	-2	2	2	1.58133	58.303	3.3
37	1	a 187 3 (n	เรณ์ม 1⊓า	1.54523	59.802	8.7
38	-3	0	2	1.53870	60.082	7.2
39	1	CHULA ¹ ON	3	1.50893	61.393	5.6
40	-2	1	3	1.49535	62.012	6.8
41	3	1	1	1.47699	62.870	9.9
42	-3	1	2	1.47699	62.870	9.9
43	0	2	3	1.45121	64.119	1.4
44	0	3	2	1.44/14	64.321	2.4
45	-1	2	3	1.44/14	64.321	2.4
40	2	3	0	1.43335	05.015	0.8
47	-1	с С	2	1.42569	65.390	2.4
40 40	2	2	2	1.41901	65.723	0.5
49 50	-7	2	0	1.41901	65 035	0.5
51	-2	3	2	1 36083	68 951	2.1
52	1	3	2	1 35185	60.931	2.5
53	2	2	3	1 34873	69.658	0.1
54	-2	2	2	1 33900	70 238	0.9
55	-3	2	2	1 32483	71 103	2.0
56	3	2	1	1 32483	71 103	2.2
57	-1	0	4	1 32132	71 320	3.9
58	Ō	ů 0	4	1.31065	71.991	0.9
59	-2	3	2	1.30842	72.133	1.4
60	0	3 4	0	1.30242	72.518	1.1
61	2	1	3	1.30006	72.671	1.0
62	-3	1	3	1.28563	73.620	0.4
63	4	0	0	1.26944	74.717	1.6
64	0	4	1	1.26400	75.094	4.3

65	1	4	0	1 26158	75 263	0.6
66	-4	1	1	1.24454	76.478	2.3
67	-1	4	1	1.23783	76.968	0.3
68	4	1	0	1.23335	77.300	0.8
69	0	3	3	1.23179	77.416	0.7
70	-1	3	3	1.22931	77.601	0.5
71	-4	0	2	1.22254	78.112	0.9
72	1	0	4	1.22254	78.112	0.9
73	-2	1	4	1.21462	78.720	0.6
74	1	4	1	1.21462	78.720	0.6
75	-3	3	1	1.21209	78.916	2.1
76	3	3	0	1.21209	78.916	2.1
77	2	2	3	1.19336	80.404	0.4
78	-4	1	2	1.18961	80.710	0.2
79	1	1	4	1.18961	80.710	0.2
80	3	2	2	1.18217	81.324	0.5
81	-3	2	3	1.18217	81.324	0.5
82	-1	2	4	1.17838	81.641	1.8
83	Ō	2	4	1.17079	82.285	0.5
84	1	3	3	1.16725	82.589	1.8
85	0	4	2	1.16725	82.589	1.8
86	-2	3	3	1.16093	83.138	2.5
87	4	1	- Com	1,16093	83.138	2.5
88	2	4		1.15884	83.321	0.8
89	-1	4	2	1 15488	83 671	0.3
90	3	3	110 1	1 15228	83 903	1.6
91	-3	3	2	1 15228	83 903	1.0
92	-4	2		1 14938	84 163	1.0
93	-2	4	/////	1 14938	84 163	1.5
0/	2	2	1	1 1/11/	8/ 012	1.5
9 7 05	-3	2	4	1 12741	86 106	1.0
95	1	0		1 11050	86 056	1.5
90 07	1	T	1	1 11//0	00.930	0.3
97	2	т 2		1.11440	07.70	2.2
90	-4	2		1.10071	00.210	2.3
100	1	2	4	1.100/1	00.210	2.3
100	2	1	1	1.10517	00.373	2.5
101	2	1	4	1.09528	09.303	1.0
102	-4	1	5	1.09003	09.040	2.7
103	4	2	1	1.00500	90.007	0.0
104		1	2	1.07065	91.342	1.0
105	2	าหาร่า	งกรณมรูเ	1.0/105	91.000	0.2
100	2	2	3	1.00213	92.970	0.4
107	с С	5	2	1.05502	93.794	1./
100	-3	2	3	1.05502	93.794	1./
109	-1	נ ז	4	1.05154	94.200	0.1
110	0	2	4	1.04013	94.040	1.1
111	0	4	2	1.04429	95.000	0.9
112	-1		5	1.042/7	95.242	1.2
113	-1	1	3	1.03973	95.010	0.1
114	-3	2	4	1.03400	90.231	2.2
115	-3	4	1	1.03205	90.555	1.9
110	3	4	0	1.03205	90.555	1.9
11/	-4	3	1	1.03121	90.000	1.5
110	0	1	5	1.02/90	97.075	2.1
119	-4	2	3	1.02482	97.400	0.3
120	4	3	0	1.02482	97.400	0.3
121	1	5	0	1.02067	97.998	1./
122	5	0	0	1.01555	98.665	0.9
123	-2	3	4	1.01400	98.869	1.2
124	-2	1	5	1.00953	99.464	2.8
125	-5	1	1	1.00953	99.464	2.8
120	1	4	3	1.00409	100.199	0.5
12/	-5	0	2	1.00263	100.399	1.0
128	-4	3	2	0.99931	100.857	1.6
129	1	3	4	0.99931	100.85/	1.6
130	4	2	2	0.99515	101.438	1.9
131	3	4	1	0.99515	101.438	1.9
132	-3	4	2	0.99411	101.585	0.7

133	-5	1	2	0.98456	102.958	0.2
134	4	3	1	0.98267	103.235	0.4
135	-1	2	5	0.98267	103.235	0.4
136	-4	1	4	0.97804	103.923	0.4
13/	1	1	5	0.97804	103.923	0.4
138	0	2	5	0.9/26/	104./34	0.1
139	0	5	2	0.96825	105.416	0.7
140	2	5	0	0.96419	106.052	0.6
141	د ۱	0	4	0.96419	100.052	0.0
142	-1	5	2 1	0.90104	106.450	1.3
143	-2	5	5	0.95640	100.907	0.1
145	-2	2	1	0.95045	107.290	0.3
146	5	1	1	0.95015	107.250	13
147	3	1	4	0.93213	108 677	0.4
148	5	2	0	0.94641	108.961	1.5
149	3	3	3	0.94641	108.961	1.5
150	4	1	3	0.94092	109.902	1.4
151	1	5	2	0.94092	109.902	1.4
152	-4	3	3	0.93858	110.311	1.0
153	2	5	1	0.93858	110.311	1.0
154	-5	2	2	0.93571	110.818	1.6
155	2	4	3	0.93481	110.978	1.5
156	-4	2	4	0.92940	111.954	1.7
157	-3	4	3	0.92940	111.954	1.7
158	-1	4	4	0.92756	112.291	0.7
159	2	3	4	0.92641	112.504	0.3
160	-2	5	2	0.92307	113.128	1.0
161	4	3	2	0.91517	114.641	0.1
162	-4	4		0.91352	114.964	0.5
163	4	4	0	0.90907	115.850	0.4
164	5	2		0.90776	116.114	0.1
105	2	1	5	0.90463	116.752	1.4
167	_3	2		0.90403	117.010	1.4
168	-5	2	2	0.90555	117.019	0.3
169	0	3	5	0.89759	118 227	1.0
170	4	2	3	0.89759	118 227	1.0
171	0	5	3	0.89494	118.797	0.1
172	-1	5	3	0.89398	119.005	0.1
173	1	4	4	0.89137	119.578	0.3
174	-4	4	2	0.89137	119.578	0.3
175	-5	2	3	0.88950	119.991	0.6
176	3	5	0	0.88729	120.487	1.9
177	-3	5	1	0.88729	120.487	1.9
178	-5	3	1	0.88528	120.945	2.0
179	-2	3	5	0.88528	120.945	2.0
180	4	4	1	0.87888	122.434	0.9
181	5	3	0	0.8/665	122.968	0.6
182	0	0	6	0.8/33/	123.765	0.7
183	-5	0	4	0.8/33/	123./65	0.7
184	0	6	0	0.86834	125.021	1.4
105	-4 2	1	5	0.80834	125.021	1.4
100	2	2	2	0.00003	125.450	0.1
188	-2	3	4	0.86332	125.450	0.1
189	-3	5	2	0.86332	126 314	0.0
190	õ	1	6	0.86173	126.735	0.3
191	-5	1	4	0.86173	126.735	0.3
192	-2	1	6	0.85833	127.647	0.2
193	Ō	-6	1	0.85661	128.116	1.5
194	3	4	3	0.85300	129.124	0.2
195	-3	4	4	0.85241	129.290	0.3
196	5	2	2	0.85036	129.875	0.1
197	-1	6	1	0.84833	130.466	0.3
198	-6	1	1	0.84599	131.158	2.1
199	5	3	1	0.84599	131.158	2.1

Reference code:	01-087-0652
Mineral name:	Periclase
Compound name:	Magnesium Oxide
Empirical formula:	MgO
Chemical formula:	MgO

Crystallographic parameters

Crystal system:	Cubic
Space group:	Fm-3m
Space group number:	225
a (Å):	4.2110
b (Å):	4.2110
c (Å):	4.2110
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	74.67
Z:	4.00
RIR:	3.04

Status, subfiles and quality

Status: Subfiles:

Quality:

Comments

ANX: ICSD collection code: Creation Date: Modification Date: Cross-References: ANX: Analysis: Formula from original source: ICSD Collection Code: Minor Warning:

Wyckoff Sequence: Unit Cell Data Source:

References

AX 64929 01-Sep-00 01-Sep-11 ICSD:64929 AX Mg1 O1 Mg O 64929 No e.s.d reported/abstracted on the cell dimension. No R factors reported/abstracted b a(FM3-M)

Pharmaceutical, Common Phase, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic, Cement and Hydration Product, Superconducting Material,

Primary reference: *Calculated from ICSD using POWD-12++*, (1997) Structure: Wyckoff, R.W.G., *Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.*, **62**, 529, (1925)

Single Crystal.

Alternate Pattern

ICSD Pattern

Indexed (I)

Peak list

No.	h	k	I	d [Å]	20 [°]	I [%]
1	1	1	1	2.43122	36.943	11.3
2	2	0	0	2.10550	42.920	100.0
3	2	2	0	1.48881	62.315	45.4
4	3	1	1	1.26966	74.702	5.1
5	2	2	2	1.21561	78.643	11.3
6	4	0	0	1.05275	94.058	4.2
7	3	3	1	0.96607	105.756	1.6
8	4	2	0	0.94161	109.784	10.5
9	4	2	2	0.85957	127.312	8.1
10	5	1	1	0.81041	143.797	1.2

Reference code:	01-071-6332
Compound name:	Magnesium Aluminum Oxide
Common name:	spinel HP, magnesium dialuminum oxide
Empirical formula:	Al ₂ MgO ₄
Chemical formula:	MgAl ₂ O ₄

Crystallographic parameters

Crystal system:	Cubic
Space group:	Fd-3m
Space group number:	227
a (Å):	8.0776
b (Å):	8.0776
c (Å):	8.0776
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	527.04
Z:	8.00
RIR:	1.71

Status, subfiles and quality

Diffraction data collected at non ambient pressure, Alternate Pattern
Common Phase, Inorganic, Forensic, Mineral, ICSD Pattern
Star (S)

Comments

Status:

Subfiles: Quality:

ANX: ICSD collection code: Creation Date: Modification Date: Cross-References: ANX: Analysis: Formula from original source: ICSD Collection Code: Pressure of Datacollection: Sample Source or Locality: Wyckoff Sequence: Unit Cell Data Source:

References

Primary reference: *Calculated from ICSD using POWD-12++* Structure: Finger, L.W., Hazen, R.M., Hofmeister, A.M., *Phys. Chem. Miner.*, **13**, 215, (1986)

AB2X4

77584 01-Sep-05

AB2X4

01-Sep-11

ICSD:77584

Al2 Mg1 O4 Mg Al2 O4 77584

1000 MPa

e d a(FD3-MZ)

Single Crystal.

Specimen from SE Asia

Peak list

No.		h	k		I	d [Å]	20 [°]	I [%]
	1	1	1	L	1	4.66360	19.015	36.2
	2	2	-	2	0	2.85586	31.296	34.5
	3	3	1	L	1	2.43549	36.876	100.0
	4	2	2	2	2	2.33180	38.579	0.8
	5	4	()	0	2.01940	44.847	53.5

6	3	3	1	1.85313	49.124	0.2
7	4	2	2	1.64883	55.703	8.5
8	5	1	1	1.55453	59.408	43.3
9	4	4	0	1.42793	65.293	61.7
10	5	3	1	1.36536	68.690	2.9
11	4	4	2	1.34627	69.804	0.2
12	6	2	0	1.27718	74.188	2.3
13	5	3	3	1.23182	77.413	8.4
14	6	2	2	1.21774	78.479	1.0
15	4	4	4	1.16590	82.705	5.0
16	7	1	1	1.13109	85.847	2.3
17	6	4	2	1.07941	91.062	3.8
18	7	3	1	1.05161	94.192	10.8
19	8	0	0	1.00970	99.441	6.0
20	7	3	3	0.98684	102.626	0.2
21	6	4	4	0.97955	103.697	0.1
22	8	2	2	0.95195	108.031	1.9
23	7	5	1	0.93272	111.352	7.4
24	6	6	2	0.92656	112.475	0.8
25	8	4	0	0.90310	117.067	5.0
26	9	1	1	0.88663	120.637	1.0
27	8	4	2	0.88134	121.856	0.2
28	6	6	4	0.86107	126.909	0.3
29	9	3		0.84676	130.927	7.2
30	8	4	4	0.82442	138.249	13.1
31	9	3	3	0.81183	143.188	0.5

Reference code:	01-089-3072		
Mineral name:	Corundum, syn		
Compound name:	Aluminum Oxide		
Empirical formula:	Al ₂ O ₃		
Chemical formula:	Al ₂ O ₃		

Crystallographic parameters

Rhombohedral
R-3c
167
4.7600
4.7600
12.9900
90.0000
90.0000
120.0000
254.89
6.00
2.63

Status, subfiles and quality

Status: Subfiles: Alternate Pattern Alloy, metal or intermetalic, Cement and Hydration Product, Common Phase, Forensic, ICSD Pattern, Inorganic, Mineral, Pharmaceutical, Superconducting Material Blank (B)

Quality:

Comments

ANX: ICSD collection code: Creation Date: Modification Date: Cross-References: ANX: Analysis: Formula from original source: ICSD Collection Code: Calculated Pattern Original Remarks:

43732 Cell from 2nd reference: 4.7591(4), 12.9894(30). Minor Warning: No e.s.d reported/abstracted on the cell dimension. Significant Warning: 12%<R factor (for single crystal). Wyckoff Sequence: e c(R3-CH). Unit Cell Data Source: Single Crystal.

References

Primary reference: *Calculated from ICSD using POWD-12++* Structure: Graham, J., *J. Phys. Chem. Solids*, **17**, 18, (1960)

A2X3

43732 01-Sep-02

A2X3 Al2 O3 Al2 O3

01-Sep-11

ICSD:43732

Peak list

No.	h	k	I	d [Å]	20 [°]	I [%]
1	0	1	2	3.48045	25.573	100.0
2	1	0	4	2.55099	35.151	0.1
3	1	1	0	2.38000	37.768	16.2
4	0	0	6	2.16500	41.685	0.1
5	1	1	3	2.08570	43.348	32.6
6	2	0	2	1.96459	46.169	7.2
7	0	2	4	1.74023	52,545	0.7
8	1	1	6	1.60151	57,499	30.6
9	2	1	1	1.54699	59,727	1.0
10	1	2	- 2	1 51509	61 117	75
11	0	- 1	8	1 51077	61 311	8.0
12	2	1	4	1 40476	66 508	0.0
12	2	0	, 0	1 37400	68 103	16.2
14	1	2	5	1 33620	70 407	10.2
15	1	2	J	1.33020	70.707	0.4
15	۲ ۲	0	0	1.27550	74.302	5.0
10	1	0	10	1.23094	/0.00/	1.1
17	1	1	9	1.23413	//.242	2.3
18	2	1	/	1.19326	80.413	0.3
19	2	2	0	1.19000	80.678	1./
20	0	3	96	1.16015	83.206	0.2
21	2	2	3	1.14746	84.336	1.2
22	1	3	1	1.13891	85.118	0.1
23	3	1	2	1.12600	86.330	4.0
24	1	2	8	1.12423	86.499	5.8
25	0	2	10	1.09896	89.004	1.1
26	0	0	12	1.08250	90.729	0.5
27	1	3	4	1.07843	91.168	0.1
28	3	1	5	1.04646	94.800	0.1
29	2	2	6	1.04285	95.233	4.0
30	0	4	2	1.01784	98,365	1.6
31	2	1	10	0.99773	101.077	1.3
32	1	1	12	0 98536	102 840	0.1
33	4	Ō	4	0.98229	103 290	0.1
34	1	3	7	0 97340	104 623	0.1
35	3	2	1	0.94322	109 506	0.1
36	1	2	11	0.94113	109.500	0.1
37	2	2	11	0.03585	110 703	0.1
38	2		2	0.03/83	110.755	1.0
20	2		0	0.95405	114.050	1.0
39	2		9	0.91017	114.059	0.5
40	5	2	4	0.90600	110.005	0.2
41	0	1	14	0.90521	110.033	0.9
42	4	1	0	0.89956	117.810	1.3
43	2	3	5	0.88867	120.178	0.1
44	4	1	3	0.88075	121.994	0.7
45	0	4	8	0.87011	124.574	0.5
46	1	3	10	0.85824	127.672	0.4
47	0	3	12	0.85033	129.884	1.0
48	2	0	14	0.84608	131.130	0.5
49	3	2	7	0.84261	132.181	0.1
50	2	1	13	0.84112	132.640	0.1
51	1	4	6	0.83070	136.031	3.5
52	3	1	11	0.82142	139.361	0.1
53	2	- 3	8	0.81721	140.984	2.5
54	- 1	1	15	0.81380	142.363	0.5
55	4	n n	10	0 80735	145 149	0.5
55	- 1)	2	10	0.00755	148 202	0.1
50	2	۲ ۲	12	0.00070	1/0.233	0.1
57	U	5	4	0.79911	149.130	U.1

Reference code:	01-086-2270
Mineral name: ICSD name:	Anhydrite Calcium Sulfate
Empirical formula:	CaO ₄ S
Chemical formula:	Ca(SO₄)

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	Amma
Space group number:	63
a (Å):	6.9930
b (Å):	6.9950
c (Å):	6.2450
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm^3):	2.96
Measured density (g/cm^3):	2.96
Volume of cell (10 ⁶ pm ³):	305.48
Z:	4.00
RIR:	1.47

Subfiles and Quality

Subfiles:

CHULA Inorganic Mineral Pharmaceutical ICSD Pattern Calculated (C)

Quality:

Comments

Sample source: Additional pattern: ICSD collection code: Test from ICSD: Specimen from Leopoldshall, Stassfurt, Germany. See PDF 72-916. 040043 Calc. density unusual but tolerable.

References

Primary reference:	
Structure:	

Calculated from ICSD using POWD-12++, (1997) Hawthorne, F.C., Ferguson, R.B., Can. Mineral., **13**, 289, (1975)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	1	1	4.65856	19.035	0.2
2	1	1	1	3.87704	22.920	4.7
3	0	2	0	3.49750	25.447	100.0
4	0	0	2	3.12250	28.564	2.4
5	1	0	2	2.85118	31.349	35.0
6	2	1	1	2.79646	31.978	1.9
7	2	2	0	2.47275	36.301	11.6
8	0	2	2	2.32928	38.623	16.1
9	1	2	2	2.20991	40.799	23.4
10	0	3	1	2.18438	41.298	5.7
11	1	3	1	2.08460	43.372	6.2
12	0	1	3	1.99519	45.421	4.5
13	2	2	2	1.93852	46.827	3.2
14	1	1	3	1.91863	47.342	0.4
1.5	3	0	2	1.86792	48.709	13.9
16	2	3	1	1 85257	49 140	2 4
17	0	4	0	1.74875	52.270	6.5
18	2	1	ې ۲	1 73291	52 784	0 2
19	3	2	2	1 64766	55 746	13 4
20	3	3	1	1 59390	57 800	1 0
21	2	4	0	1 56404	59 011	±.0 5 9
22	0	0	4	1 56125	59 127	3.3
23	0	4	2	1 52576	60 645	1 7
24	1	0	4	1 52374	60 733	1 0
25	1	े २	- ۲	1 51593	61 080	1.0 0 7
26	1	4	2	1 49069	62 228	58
27	0	2	4	1 42566	65 410	3 2
28	2	3	3	1 41919	65 745	0.5
29	1	2	ے د	1 39692	66 930	2 6
30	0	5	1	1.36493	68 715	0 2
31	1	5	1	1 33953	70 207	0.2
32	2	2	4	1 32014	71 394	3 9
32	2	0	4	1 29717	72 859	1 7
34	3	о Д	2	1 27660	74 228	±•7 5 2
35	<u></u>	- <u>-</u> Д	0	1 23638	77 075	1 4
36	0	1	5	1 22955	77 583	0 1
37	о 2	2	<u></u>	1 21622	78 596	28
38	5	2	2	1 19905	79.946	2.0
39	3	5	1	1 17801	81 672	0 1
40	0	6	0	1 16583	82 711	2 6
40 41	0	٥ ۵	о 4	1 16464	82 814	2.0
42	0	5	- ۲	1 16114	83 119	1 2
13	2	1	5	1 15993	83 225	1.2 0 /
ч.5 Л.Л	<u>г</u> Л	1	2	1 1/882	84 214	1 2
45	1	5	2	1 14525	84 537	0 7
46	- 6	1	1	1 13065	85 889	0.1
40 47	2	5		1 10572	88 318	2 Q
1 A	2	۵ ۵	۵ ۵	1 10/06	88 394	J.0 ⊿ ∩
4 Q	2	-≖ 5	т २	1 10197	88 697	2 1
	6	0	2	1 09192	89 733	0 4
00	0	0	4		0	J • 1

Reference code:	01-083-2465
Mineral name: ICSD name:	Quartz low, syn Silicon Oxide
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system: Space group:	Hexagonal P3121
Space group number:	152
a (Å):	4.9148
b (Å):	4.9148
c (Å):	5.4062
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Calculated density (g/cm^3):	2.65
Measured density (g/cm^3):	2.66
Volume of cell (10 ⁶ pm ³):	113.09
Z:	3.00
RIR:	3.05

Subfiles and Quality

Subfiles:

CHULA Inorganic MonwERSITY Mineral Alloy, metal or intermetalic Pharmaceutical ICSD Pattern Calculated (C)

Quality:

Comments

Additional pattern:	See PDF 46-1045 and 33-1161.
ICSD collection code:	200721
Test from ICSD:	At least one TF implausible.
	Calc. density unusual but tolerable.
	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++
Structure:	Jorgensen, J.D., J. Appl. Phys., 49, 5473, (1978)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deo] I [%]
1	1	0	0	4.25634	20.853	21.0
2	1	0	1	3.34425	26.634	100.0
3	1	1	0	2.45740	36.536	6.5
4	0	1	2	2.28183	39.459	6.6
5	1	1	1	2.23713	40.281	2.9
6	2	0	0	2.12817	42.441	4.5
7	0	2	1	1.98026	45.783	2.6
8	1	1	2	1.81832	50.128	10.8
9	0	0	3	1.80207	50.612	0.3
10	2	0	2	1.67212	54.861	3.3
11	1	0	3	1.65946	55.315	1.3
12	2	1	0	1.60875	57.217	0.2
13	2	1	1	1.54192	59.943	7.1
14	1	1	3	1.45320	64.021	1.4
15	3	0	0	1.41878	65.767	0.3
16	2	1	2	1.38244	67.725	4.1
17	0	2	3	1.37526	68.127	5.2
18	3	0	1	1.37231	68.294	5.4
19	0	1	4	1.28817	73.451	1.5
20	0	3	2	1.25625	75.639	1.9
21	2	2	0	1.22870	77.647	1.0
22	1	2	3	1.20010	79.862	2.1
23	2	2	1	1.19814	80.019	1.2
24	1	1	4	1.18425	81.152	1.7
25	3	1	0	1.18050	81.464	2.3
26	3	1	1	1.15332	83.810	1.1
27	0	2	4	1.14092	84.933	0.2
28	2	2	2	1.11856	87.047	0.1
29	0	3	3	1.11475	87.420	0.2

าลงกรณ์มหาวิทยาลัย

Reference code:	01-081-1849
ICSD name:	Calcium Sulfate Hydrate
Empirical formula: Chemical formula:	CaHO _{4.5} S Ca(SO ₄)(H ₂ O) _{0.5}

Crystallographic parameters

Crystal system: Space group: Space group number:	Monoclinic I2 5
a (Å):	12.0275
D (A):	6.9312
	12.6919
Alpha (*):	90.0000
	90.1800
Gamma (*):	90.0000
Calculated density (g/cm^3):	2.73
Volume of cell (10^6 pm^3):	1058.06
Z:	12.00
RIR:	1.09

Subfiles and Quality

Subfiles:

Quality:

Inorganic ICSD Pattern Hypothetical (H)

Comments

General comments:

ICSD collection code: Test from ICSD: TF are of mixed type. TF are converted prior to pattern calculation. 073263 No R value given. At least one TF missing.

References

Primary reference: Structure: Calculated from ICSD using POWD-12++ Abriel, W., Nesper, R., Z. Kristallogr., **205**, 99, (1993)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	-1	0	1	8.74384	10.108	0.8
2	2	0	0	6.00537	14.739	100.0
3	-1	1	2	4.36528	20.327	2.9
4	-2	1	1	4.27347	20.769	1.1
5	-1	0	3	3.98700	22.280	2.4
6	-3	0	1	3.82640	23.227	0.6
7	0	1	3	3.61109	24.633	1.7
8	3	1	0	3.47041	25.649	42.1
9	-1	2	1	3.22040	27.678	0.8
10	0	0	4	3.17296	28.100	0.1
11	2	1	3	3.09218	28.850	1.1
12	0	2	2	3.04136	29.343	10.5
13	4	0	0	3.00269	29.729	71.8
14	-3	0	3	2.91461	30.649	0.6
15	3	0	3	2.90549	30.748	0.5
16	1	1	4	2,80363	31.894	66.0
17	-4	0	2	2.72057	32.895	3.3
18	4	0	2	2.71254	32.995	6.2
19	-1	2	3	2.61781	34.226	0.4
20	-3	2	1	2.56657	34.931	0.3
21	-1	0	- 5	2 48208	36 160	0 1
22	-5	0	1	2 36477	38 021	0 2
23	-3	1	4	2 34491	38 355	23
24	0	2	4	2 34025	38 435	4 0
25	_ 4	1	י ר	2.34023	38 893	1.0 0 1
26	- Д	1	3 3	2.31374	39 000	0.1
20	- Д	2	0	2 26892	39 693	27
28	יד ר	2	с 2	2.20052	40 482	0.2
20	-2	1	5	2.22052	40.402	0.2
30	-2	⊥ 1	5	2.21361	40.042	0.4
31	_1		1	2.21501	40.720	1 2
30	-4	2	4	2.10090	41.207	2.0
J∠ 22	ے د	ے 1	4	2.1/923	41.400	2.9 6 5
22	-5	1	2	2.14149	42.104	12 /
24 25	4	2	2	2.13000	42.270	13.4
30	U	0	0 2	2.11551	42.711	9.9
30	2 1	0	5	2.08828	43.292	0.1
37	-1	2	5	2.01961	44.842	U.I 1 4
38	6	0	0	2.001/9	45.263	1.4
39	-2	0	6 1	1.99614	45.399	1.0
40	-5	2	1 O	1.95182	46.489	0.2
41	-3	3	1	1.90992	47.371	0.1 2 F
42	-6	1	1	1.904/2	47.709	3.5
43	-5	L 2	4	1.84889	49.244	18.6
44	-1	3	4	1.84612	49.323	32.5
45	-3	2	5	1.82556	49.916	0.4
46	3	2	5	1.82182	50.025	0.3
47	-4	3	1	1.81275	50.293	0.2
48	-3	1	6	1.80841	50.422	0.2
49	0	2	6	1.80555	50.508	0.3
50	-1	0	./	1.79369	50.865	0.1
51	5	2	3	1.78865	51.019	0.1
52	-6	1	3	1.75464	52.081	0.1
53	6	1	3	1.75065	52.209	0.1
54	5	0	5	1.74329	52.446	0.2
55	6	2	0	1.73521	52.709	3.5

56	0	4	0	1.73280	52.788	3.1
57	2	2	6	1.72801	52.946	2.5
58	0	3	5	1.70862	53.594	0.3
59	-6	0	4	1.69711	53.987	5.4
60	6	0	4	1.69182	54.170	12.1
61	5	3	0	1.66630	55.069	5.2
62	-2	3	5	1.64449	55.863	0.1
63	7	1	2	1.61089	57.134	1.0
64	-1	2	7	1 59181	57 883	0 1
65	-1	4	, ,	1 58969	57 967	0 1
66	0	0	8	1 58648	58 096	0.1
67	-3	1	1	1 57800	58 / 38	0.1
68	-5	2	5	1.57000	59 126	0.1
60	-J 5	2	5	1.50120	50 200	0.1
70	J	1	S C	1.55750	59.209	0.1
70	-5	1	6	1.55064	59.572	0.0
/1	1	3	6	1.546/5	59./3/	1.4
72	-1	Ţ	8	1.53445	60.265	1.1
/3	-6	2	4	1.52417	60./14	0.4
74	0	4	4	1.52068	60.869	1.1
75	-4	1	7	1.51714	61.026	0.5
76	8	0	0	1.50343	61.643	0.4
77	4	4	0	1.50134	61.738	0.6
78	-3	2	7	1.49270	62.135	0.1
79	-4	3	5	1.48689	62.405	0.2
80	4	3	5	1.48419	62.531	0.1
81	-2	4	4	1.47491	62.969	2.9
82	-4	4	2	1.46153	63.613	0.6
83	-6	0	6	1.45731	63.819	0.5
84	3	3	6	1.45282	64.039	0.5
85	-5	0	7	1.45008	64.175	0.3
86	7	2	3	1.44435	64.460	0.6
87	0	2	8	1.44252	64.552	1.0
88	-6	3	3	1.42635	65.374	0.1
89	6	3	3	1.42449	65.470	0.1
90	-1	4	5	1.42141	65.630	0.1
91	-2	2	8	1,40363	66.568	0.2
92	2	2	8	1 40182	66 665	03
93	-5	4	1	1 39716	66 917	0 1
94	2	3	7	1 38663	67 493	0 1
95	0	1	ģ	1 38189	67 756	0.1
96	7	⊥ ג	0	1 37873	67 932	0.1
97	_ /	1	1	1 35791	69 120	1 /
90	_1	5	2	1 3/590	69 826	1.1
90	-6	2	6	1 3/337	69.020	0.7
100	-0	2 1	6	1 24046	70 151	0.5
100	U F	4	7	1.34040	70.131	0.2
101	-5	2	/	1.33/70	70.317	0.1
102	5	2	/	1.33427	70.524	0.1
103	-3	0	9	1.33162	/0.686	0.1
104	3	0	9	1.32900	/0.846	0.1
105	-6	1	-7	1.32205	71.275	0.1
106	6	1	7	1.31808	71.523	0.1
107	9	1	0	1.31221	71.892	1.2
108	-5	3	6	1.31013	72.024	1.7
109	7	1	6	1.30757	72.187	1.0
110	-5	1	8	1.30266	72.503	2.6
111	1	3	8	1.29981	72.687	5.3
112	4	3	7	1.28747	73.497	0.2
113	2	5	3	1.28582	73.607	0.3

114	6	4	2	1.28281	73.808	0.6
115	-9	0	3	1.27547	74.304	0.1
116	-8	2	4	1.26624	74.939	1.8
117	7	3	4	1.26311	75.156	4.3
118	4	1	9	1.25417	75.786	0.1
119	-4	5	1	1.25259	75.899	0.1
120	-3	3	8	1.24430	76.495	3.2
121	6	0	8	1.24212	76.654	2.7

Reference code:	01-080-0787
ICSD name:	Calcium Sulfate
Empirical formula: Chemical formula:	CaO ₄ S Ca (SO ₄)

Crystallographic parameters

Crystal system: Space group: Space group number:	Orthorhombic Bmmb 63
a (Å):	6.9920
b (A):	6.9990
c (Å):	6.2400
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm^3):	2.96
Volume of cell (10 ⁶ pm ³):	305.37
Z:	4.00
RIR:	1.75

Status, subfiles and quality

Status: CHULA	Marked as deleted by ICDD
Subfiles:	Inorganic
	Corrosion
	Pharmaceutical
	ICSD Pattern
Quality:	Calculated (C)

<u>Comments</u>

ICSD collection code:	068592
Test from ICSD:	No R value given.
	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Hartman, P., <i>Eur. J. Mineral.</i> , 1 , 721, (1989)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4.65560	19.048	0.1
2	1	1	1	3.87635	22.924	5.0
3	0	2	0	3.49950	25.432	100.0
4	0	0	2	3.12000	28.587	2.1
5	0	1	2	2.84968	31.366	30.8
6	1	2	1	2.79735	31.968	3.2
7	2	2	0	2.47328	36.293	7.0
8	0	2	2	2.32780	38.648	17.4
9	2	1	2	2.20883	40.820	18.8
10	3	0	1	2.18334	41.318	5.9
11	1	3	1	2.08577	43.346	5.8
12	1	0	3	1.99365	45.458	4.2
13	2	2	2	1.93817	46.836	2.9
14	1	1	3	1.91738	47.375	0.3
15	0	3	2	1.86841	48.696	12.5
16	3	2	1	1.85239	49.145	2.9
17	0	4	0	1.74800	52.294	6.6
18	1	2	3	1.73227	52.805	0.3
19	2	3	2	1.64784	55.739	11.9
20	1	4	1	1.63789	56.108	0.5
21	3	3	1	1.59414	57.790	2.1
22	2	4	0	1.56377	59.022	2.6
23	0	0	4	1.56000	59.179	1.6
24	0	4	2	1.52497	60.679	2.4
25	0	1	4	1.52264	60.782	1.4
26	1	3	3	1.51507	61.118	0.9
27	4	1	2	1.49002	62.259	4.0
28	0	2	4	1,42460	65.464	2.2
29	3	2	3	1 41863	65 775	0 9
30	2	4	2	1 39867	66 835	1 3
31	2	1	4	1.39598	66.981	1.9
32	3	4	1	1 36539	68 688	0 6
33	1	5	1	1 34052	70 147	0.0
34	2	2	4	1 31946	71 436	°•± 3 5
35	0	2	4	1 29680	72 883	1 2
36	0	5	2	1 27647	72.005	1 · 2 1 1
37	1	Л	0	1 2366/	77.056	1.1 0 7
38	1	-	5	1 22858	77 656	0.7
30	2	3	1	1 21585	78 625	2 7
10	1	1	т 5	1 21008	70.023	0.2
40 // 1	2	5	2	1 19961	79.073	1 5
12	2	5	1	1 17787	81 684	1.5
42	0	5		1 16650	82 653	1 7
43	6	0	0	1 16522	02.000	1 0
44	0	1	1	1 16390	82.733	1 6
45	3	4	3	1 16051	02.079 83 175	1.0
40	ر 1	+ 0	ר ב	1 150001	03.100	0.9
4 / / 0	⊥ ∧	∠ ∧	с С	1 1/060	0J.200 8/ 1/1	0.4
40	4 /	4 1	∠ л	エ・エイジロン 1 1 / 01 つ	04.141 81 076	0.3
49 50	4	ц Т	4 つ	1.14013 1.14561	04.2/0	0./
50	1	5	3 1	1,14301	04.004	0.4
51 CO	Ţ	б	Ţ	1.13152	85.8U/	U.L
ЭZ	2	ю	U	I.IU653	VV.∠30	⊥.6

53	2	4	4	1.10475	88.415	3.2
54	5	2	3	1.10152	88.743	1.6
55	3	0	5	1.10020	88.877	0.4
56	0	6	2	1.09263	89.658	0.1
57	6	0	2	1.09167	89.759	0.1

•

Reference code:	01-076-0935
Mineral name:	Cristobalite low
ICSD name:	Silicon Oxide
Empirical formula:	O₂Si
Chemical formula:	SiO₂

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P41212
Space group number:	92
a (Å) [.]	4 9787
а (Л). Ь (Å):	4.0707
D (A).	4.9787
c (A):	6.9502
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (d/cm^3):	2 32
Volume of cell (10 ⁶ pm ³):	172.28
Z:	4.00
RIR:	5.01

Subfiles and Quality

Subfiles:

Inorganic Mineral **AN DAMERSITY** Alloy, metal or intermetalic Corrosion Pharmaceutical ICSD Pattern Calculated (C)

Quality:

Comments

Sample source: Additional pattern: ICSD collection code: Specimen from Ellora Caves, India. See PDF 39-1425 and PDF 82-1556. 034927

References

Primary reference: Structure: Calculated from ICSD using POWD-12++, (1997) Peacor, D.R., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., **138**, 274, (1973)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4.04740	21.943	100.0
2	1	1	0	3.52047	25.278	0.7
3	1	1	1	3.14056	28.396	8.5
4	1	0	2	2 84960	31 366	10 3
5	2	0	0	2.04900	36 051	12 6
C S	1	1	2	2.40900	30.031 30.005	12.0
0	Ţ	Ţ	- 2	2.4/315	36.295	4.3
/	2	0	T	2.34356	38.3/8	0.1
8	2	1	0	2.22654	40.481	0.1
9	2	1	1	2.12039	42.604	2.6
10	1	0	3	2.10046	43.028	0.2
11	2	0	2	2.02370	44.747	2.0
12	1	1	3	1.93528	46.910	4.5
13	2	1	2	1.87475	48.520	4.6
14	2	2	0	1 76024	51 903	0 4
15	0	0	1	1 73755	52 632	0.7
16	2	2	1	1 70626	52.052	0.7
17	2	2	1	1.70030	53.071	0.1
1/	2	0	3	1.69592	54.028	2.2
18	1	0	4	1.64051	56.010	0.4
19	3	0	1	1.61419	57.006	3.2
20	2	1	3	1.60534	57.349	1.2
21	3	1	0	1.57440	58.585	0.4
22	2	2	2	1.57028	58.753	0.5
23	1	1	4	1,55811	59.258	0.1
24	3	1	1	1 53550	60 220	23
25	3	0	2	1 49756	61 911	2.5
25	2	1	2	1 12100	61 070	2.0
20	2	T O	~	1.43409	04.970 CE 4E4	2.0
27	2	0	4	1.42480	65.454	1.3
28	2	2	3	1.40157	66.679	1.2
29	3	2	0	1.38084	67.814	0.1
30	2	1	4	1.36981	68.436	2.0
31	3	2	1	1.35437	69.326	0.9
32	3	0	3	1.34913	69.634	0.6
33	1	0	5	1.33884	70.248	1.6
34	3	1	3	1.30217	72.534	1.9
35	1	1	5	1 29291	73 138	0 1
36	3	2	2	1 28325	73 779	1 Q
20	1			1 24469	76 169	1.J 0 1
20	4	0	0	1.24400	70.400	0.1
38	2	2	4	1.23658	//.061	0.6
39	4	0	1	1.22518	//.912	0.9
40	2	0	5	1.21365	78.795	0.1
41	4	1	0	1.20751	79.274	1.2
42	3	0	4	1.20011	79.861	0.1
43	4	1	1	1.18969	80.704	0.3
44	3	2	3	1.18614	80.995	1.2
45	2	1	5	1.17912	81.579	1.2
46	3	3	0	1 17349	82 055	03
47	<u>ح</u>	0	2	1 17178	82 200	0.3
10	3	1	1	1 16670	82.636	0.3
40	2	⊥ ⊃	1	1 15711	02.030	0.7
49	2	5	Ţ	1 1 4 0 6 0	03.4/4	0.4
50	4	Ţ	2	1.14062	84.960	0.2
51	1	0	6	1.12823	86.118	0.1
52	3	3	2	1.11181	87.710	0.4
53	1	1	6	1.10033	88.864	1.4
54	4	2	1	1.09926	88.973	1.0
55	4	0	3	1.09645	89.262	0.8
56	2	2	5	1.09090	89.839	0.1

Reference code:	01-072-0916
Mineral name: ICSD name:	Anhydrite Calcium Sulfate
Empirical formula:	CaO ₄ S
Chemical formula:	Ca(SO₄)

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	Amma
Space group number:	63
۵ (Å)؛	7 00 00
	7.0060
b (A):	6.9980
c (Å):	6.2450
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm/3):	2.95
Volume of cell (10 ⁶ pm ³):	306.18
Z:	4.00
RIR:	1.77

Subfiles and Quality

Subfiles:

Inorganic Mineral Pharmaceutical ICSD Pattern Calculated (C)

Quality:

Comments

Sample source: Additional pattern:

ICSD collection code: Test from ICSD:

<u>References</u>

Primary reference: Structure: Specimen from Stassfurt, West Germany. See PDF 37-1496, PDF 72-503, PDF 74-2421 and PDF 862270. 016382 Published coordinates have been corrected.

Calculated from ICSD using POWD-12++, (1997) Kirfel, A., Will, G., Acta Crystallogr., Sec. B, **36**, 2881, (1980)

<u>Peak list</u>

No.	h	k	1	d [A] 2Theta[deg] I [%]
1	0	1	1	4.65944 19.032	0.1
2	1	1	1	3.87976 22.904	5.2
3	2	0	0	3.50300 25.406	100.0
4	0	0	2	3.12250 28.564	2.2
5	1	0	2	2.85206 31.339	32.6
6	2	1	1	2 79997 31 937	3 2
7	2	2	0	2 17558 36 258	3 . 2 7 7
, Q	2	0	2	2 32972 38 615	177
0	2 1	2	2	2.32372 30.013	10.7
10		2	1	2.21070 $40.7042.19520$ 41.292	19.7
11	0	2 1	1	2.10320 41.202	0.0
	3	1	Ţ	2.08/78 43.303	6.1
12	0	Ţ	3	1.99526 45.420	4.4
13	2	2	2	1.93988 46.792	3.1
14	1	1	3	1.91896 47.333	0.4
15	3	0	2	1.87015 48.647	13.7
16	2	3	1	1.85404 49.098	3.0
17	4	0	0	1.75150 52.182	6.2
18	0	4	0	1.74950 52.246	6.4
19	2	1	3	1.73375 52.757	0.3
20	3	2	2	1.64934 55.684	12.9
21	4	1	1	1.63949 56.048	0.5
22	3	3	1	1.59561 57.732	2.1
23	4	2	0	1.56516 58.965	2.9
24	0	0	4	1.56125 59.127	1.7
25	4	0	2	1.52626 60.623	2.5
2.6	1	0	4	1.52387 60.728	1.5
27	3	1	3	1 51633 61 062	0 9
28	1	4	2	1 49128 62 200	4 5
20	2	0	1	1 42576 65 404	2 6
30	2	3	3	1 / 1 0 8 5 7 1 1	0 9
21	~ ~	2	2	1 20009 66 765	1 1
22	4	2	<u>ک</u>	1 20712 66 010	1.4
3Z 22	1	2	4	1.39/12 68.919	2.3
33	4	3	1	1.36667 68.615	0.6
34	5	1	I I	1.34184 /0.068	0.1
35	Ţ	5	Ţ	1.34049 /0.149	0.1
36	2	2	4	1.32057 71.367	4.1
37	4	1	3	1.31629 71.635	2.2
38	3	0	4	1.29792 72.810	1.5
39	5	0	2	1.27761 74.159	4.9
40	4	4	0	1.23779 76.971	0.8
41	0	1	5	1.22957 77.582	0.1
42	3	2	4	1.21690 78.544	3.3
43	1	1	5	1.21106 78.996	0.2
44	5	2	2	1.20075 79.810	1.9
45	5	3	1	1.17892 81.596	0.3
46	6	0	0	1.16767 82.552	1.9
47	0	6	0	1.16633 82.668	1.9
48	4	0	4	1.16486 82.795	2.0
49	4	3	3	1.16207 83.038	1.0
50	2	1	5	1.16018 83.203	0.5
51	4	4	2	1.15068 84.046	0.4
52	1	4	4	1.14909 84.189	0.8
53	5	1	۲ ۲	1.14669 84 406	05
54	6	1	1	1 13264 85 702	0.0
5.5	6	2	Ô	1.10762 88 127	1 8
~ ~	-	-	-	00.12/	- • 0

56	4	2	4	1.10573	88.317	3.8
57	2	5	3	1.10246	88.647	1.9
58	0	3	5	1.10109	88.787	0.5
59	6	0	2	1.09370	89.547	0.2
60	0	6	2	1.09260	89.662	0.1

Reference code:	00-039-1425
Mineral name: PDF index name:	Cristobalite, syn Silicon Oxide
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system: Space group:	Tetragonal P41212	
Space group number:	92	
a (Å):	4.9732	
b (Å):	4.9732	
c (Å):	6.9236	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (°):	90.0000	
Volume of cell (10^6 pm^3):	171.24	
Z:	4.00	
RIR:	Constanting of the second	

Subfiles and Quality

Subfiles:

Inorganic Mineral Alloy, metal or intermetalic Cement and Hydration Product Common Phase Educational pattern Forensic NBS pattern Pigment/Dye Star (S)

Quality:

Comments

Color: Sample preparation:	Colorless Cristobalite was prepared by the Trans Tech Company using Berkeley 5 micron MIN-U-SIL(R). A two kilogram sample was heated at 1600 C for eight hours. The sample was then air quenched, treated with 6N HCl and then jet- milled. The +325 mesh fraction was then removed by sieving.
Structure:	The structure was determined by Peacor (1).
Polymorphism:	There are a number of other forms of SiO ₂ .
Additional pattern:	To replace 11-695 and validated by calculated pattern.

	See ICSD 75484 (PDF 82-1404); See ICSD 75490 (PDF
	82-1410). See ICSD 30269 (PDF 75-923); See ICSD 34927
	(PDF 76-935); See ICSD 34928 (PDF 76-936); See ICSD
	34929 (PDF 76-937); See ICSD 47219 (PDF 77-1315); See
	ICSD 47220 (PDF 77-1316); See ICSD 47221 (PDF 77-
	1317);
Temperature:	The temperature was ~25 C.
<u>References</u>	

Primary reference:	Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C.,
	Dragoo, A., NBS, Gaithersburg, MD, USA., ICDD Grant-in-
	<i>Aid</i> , (1988)
Structure:	1. Peacor, D., Z. Kristallogr., Kristallgeom., Kristallphys.,
	Kristallchem., 138 , 274, (1973)
Unit cell:	Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C.,
	Powder Diffraction, 3 , 253, (1988)
<u>Peak list</u>	

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4.03974	21.985	100.0
2	1	1	0	3.51470	25.320	1.0
3	1	1	1	3.13592	28.439	8.0
4	1	0	2	2.84116	31.462	9.0
5	2	0	0	2.48740	36.080	13.0
6	1	1	2	2.46750	36.381	4.0
7	2	0	1	2.34170	38.410	1.0
8	2	1	1	2.11791	42.656	2.0
9	2	0	2	2.01957	44.843	2.0
10	1	1	3	1.92935	47.063	4.0
11	2	1	2	1.87147	48.611	4.0
12	2	2	0	1.75907	51.940	1.0
13	0	0	4	1.73033	52.869	1.0
14	2	0	3	1.69221	54.156	2.0
15	1	0	4	1.63488	56.220	1.0
16	3	0	1	1.61217	57.084	3.0
17	2	1	3	1.60131	57.507	1.0
18	3	1	0	1.57207	58.680	1.0
19	2	2	2	1.56745	58.870	1.0
20	3	1	1	1.53356	60.304	2.0
21	3	0	2	1.49520	62.019	2.0
22	3	1	2	1.43165	65.102	2.0
23	2	0	4	1.42102	65.650	1.0
24	2	2	3	1.39908	66.813	1.0
25	2	1	4	1.36560	68.676	2.0
26	3	2	1	1.35277	69.420	1.0
27	3	0	3	1.34650	69.790	1.0
28	1	0	5	1.33398	70.542	1.0
29	3	1	3	1.29976	72.690	1.0
30	3	2	2	1.28133	73.908	1.0
31	2	2	4	1.23318	77.312	1.0
32	4	0	1	1.22375	78.020	1.0
33	4	1	0	1.20599	79.394	1.0
34	3	2	3	1.18427	81.150	1.0
35	2	1	5	1.17576	81.862	1.0
36	3	1	4	1.16384	82.884	1.0

37	3	3	1	1.15546	83.620	1.0
38	3	3	2	1.11050	87.840	1.0
39	4	2	1	1.09783	89.120	1.0
40	1	1	6	1.09628	89.280	1.0

Reference code:	00-033-0311
Mineral name: PDF index name:	Gypsum, syn Calcium Sulfate Hydrate
Empirical formula:	CaH ₄ O ₆ S
Chemical formula:	CaSO₄ ⋅2H₂O

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	C2/c
Space group number:	15
- (Å).	6 0045
a (Å):	6.2845
b (A):	15.2079
c (Å):	5.6776
Alpha (°):	90.0000
Beta (°):	114.0900
Gamma (°):	90.0000
Calculated density (g/cm^3):	2.31
Measured density (g/cm^3):	2.32
Volume of cell (10 ⁶ pm ³):	495.37
Z:	4.00
RIR:	1.83

Subfiles and Quality

Inorganic
Mineral
Cement and Hydration Product
Common Phase
Forensic
NBS pattern
Pigment/Dye
Star (S)

Quality:

Subfiles:

<u>Comments</u>

Color: General comments: Sample preparation:	Colorless Preferred orientation enhances $0k0$ reflections. Sample prepared by adding H_2SO_4 to a Ca (NO_3) ₂
	solution; the precipitate was filtered out, washed in water and bottled while moist; the crystals were dried immediately before use with care taken to prevent dehydration.
Optical data:	A=1.521, B=1.523, Q=1.530, Sign=+, 2V=58°
Additional pattern:	To replace 6-46 and validated by calculated pattern 36-432. See ICSD 2057 (PDF 70-982).
Temperature:	Pattern taken at 25 C.

References

Primary reference: Optical data: *Natl. Bur. Stand. (U.S.) Monogr. 25*, **17**, 16, (1980) Winchell, A., *Elements of Optical Mineralogy*, **2**, 157, (1951)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	2	0	7.63000	11.589	100.0
2	0	2	1	4.28300	20.722	100.0
3	0	4	0	3.79900	23.397	17.0
4	1	1	1	3.17200	28.109	4.0
5	0	4	1	3.06500	29.111	75.0
6	-2	2	1	2.87300	31.104	45.0
7	-1	1	2	2.78900	32.066	10.0
8	1	3	1	2.73200	32.754	2.0
9	1	5	0	2.68500	33.344	35.0
10	-1	5	1	2.59700	34.508	6.0
11	0	6	0	2.53400	35.394	2.0
12	-2	0	2	2.49500	35.966	11.0
13	-1	3	2	2.47600	36.252	1.0
14	0	2	2	2.45200	36.619	6.0
15	-2	4	1	2.40600	37.345	4.0
16	2	4	0	2.29100	39.295	1.0
17	1	5	1	2.21900	40.625	15.0
18	0	4	2	2.14200	42.153	2.0
19	-2	4	2	2.08600	43.341	25.0
20	-1	5	2	2.07400	43.605	15.0
21	1	1	2	2.04800	44.187	6.0
22	1	7	0	2.03200	44.554	1.0
23	-1	7	1	1.99200	45.498	4.0
24	-2	6	1	1.96300	46.209	3.0
25	0	8	0	1.89980	47.840	16.0
26	2	4	1	1.87950	48.390	12.0
27	-1	1	3	1.86500	48.791	3.0
28	0	6	2	1.81180	50.321	13.0
29	-2	2	3	1.79950	50.689	6.0
30	0	8	1	1.78440	51.149	9.0
31	-2	6	2	1.77850	51.331	12.0
32	1	5	2	1.70930	53.571	1.0
33	0	2	3	1.68460	54.421	3.0
34	-2	4	3	1.66400	55.151	6.0
35	2	6	1	1.64560	55.822	4.0
36	-2	8	1	1.62090	56.749	9.0
37	-1	9	1	1.60050	57.539	1.0
38	2	8	0	1.58460	58.171	4.0
39	0	8	2	1.53270	60.341	2.0
40	0	10	0	1.52090	60.859	1.0
41	-2	8	2	1.51190	61.260	1.0
42	1	9	1	1.49820	61.881	1.0
43	-2	6	3	1.49470	62.042	1.0
44	-3	7	2	1.45910	63.731	3.0
45	-4	4	1	1.43920	64.719	5.0
46	3	7	0	1.43540	64.911	3.0
47	2	8	1	1.42780	65.299	2.0
48	-2	0	4	1.41780	65.818	3.0
49	-4	2	3	1.40150	66.683	2.0
----	----	----	---	---------	--------	-----
50	2	6	2	1.36570	68.670	5.0
51	1	11	0	1.34400	69.939	1.0
52	-1	11	1	1.33240	70.638	2.0
53	-2	8	3	1.32620	71.018	4.0
54	-4	6	2	1.32340	71.191	4.0
55	0	8	3	1.27850	74.099	1.0
56	1	11	1	1.27220	74.528	1.0
57	0	12	0	1.26740	74.858	1.0
58	4	6	0	1.24810	76.221	3.0
59	2	10	1	1.24410	76.510	2.0
60	2	8	2	1.23360	77.281	3.0
61	-4	2	4	1.23090	77.482	2.0

Date: 22-Apr-16 Time: 4:31:41 PM

File: HighScore Plus - HTK_phase_375

User: Empyrean

Name and formula

Reference code:	01-089-8937
Compound name:	Silicon Oxide
Common name:	Quartz a, a-Si O2
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system:	Hexagonal
Space group:	P3221
Space group number:	154
a (Å):	4.9384
o (Å):	4.9384
c (Å):	5.4213
c (Å):	90.0000
ecta (°):	90.0000
Gamma (°):	120.0000
/olume of cell (10 ⁶ pm ⁻³):	114.50
Z:	3.00
RIR:	2.92

Status, subfiles and quality

Status: Subfiles:
Quality:

Diffraction data collected at non ambient temperature, Alternate Pattern Pharmaceutical, Common Phase, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic, Cement and Hydration Product, ICSD Pattern Star (S)

Comments

ANX:	AX2
ICSD collection code:	89279
Creation Date:	01-Sep-03
Modification Date:	01-Sep-11
Cross-References:	ICSD:89279
ANX:	AX2
Analysis:	02 Si1
Formula from original source:	Si O2
ICSD Collection Code:	89279
Calculated Pattern Original Remarks:	Stable up to 846 K, above P6222, above 1143 K tridymite is stable
Temperature of Data Collection:	597 K
Wyckoff Sequence:	c b(P3221)
Lipit Cell Data Source:	Single Constal
Unit Cell Data Source:	Single Crystal.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Kihara, K., Eur. J. Mineral., **2**, 63, (1990)

No.	h	k	I	d [Ă]	20 [°]	I [%]
1	1	0	0	4.27678	20.753	20.2
2	0	1	1	3.35773	26.525	100.0
3	1	1	0	2.46920	36.355	5.9
4	1	0	2	2.28952	39.321	5.5
5	1	1	1	2.24710	40.095	2.5
6	2	0	0	2.13839	42.228	4.7
7	2	0	1	1.98923	45.565	2.8
8	1	1	2	1.82539	49.921	12.4

Date: 22-Apr-16	5 Time: 4:51	.41 PIVI	File.	HighScore	Plus - HTK_pr	lase_575	User. Empyrean
9	0	0	3	1.80710	50.461	0.3	
10	0	2	2	1.67887	54.622	2.7	
11	0	1	3	1.66460	55.130	1.3	
12	2	1	0	1.61647	56.918	0.2	
13	1	2	1	1.54908	59.638	7.6	
14	1	1	3	1.45828	63.771	1.1	
15	3	0	0	1.42559	65.413	0.5	
16	1	2	2	1.38835	67.398	4.4	
17	0	3	1	1.38025	67.847	6.3	
18	2	0	3	1.38025	67.847	6.3	
19	1	0	4	1.29200	73.197	1.5	
20	3	0	2	1.26174	75.252	2.2	
21	2	2	0	1.23460	77.207	1.3	
22	2	1	3	1.20480	79.488	2.1	
23	2	2	1	1.20480	79.488	2.1	
24	1	1	4	1.18811	80.833	2.0	
25	3	1	0	1.18617	80.993	1.8	
26	1	3	1	1.15875	83.329	1.6	
27	2	0	4	1.14476	84.581	0.2	
28	2	2	2	1.12355	86.565	0.1	
29	3	0	3	1.11924	86.981	0.1	
30	1	3	2	1.08668	90.284	1.6	
31	4	0	0	1.06919	92.183	0.4	
32	0	1	5	1.05101	94.262	1.0	
33	4	0	1	1.04899	94,500	0.5	
34	2	1	4	1.03857	95.751	1.0	
35	2	2	3	1.01941	98,161	0.8	
36	0	4	2	0.99462	101.514	0.1	
37	1	1	5	0.99276	101.776	0.5	
38	1	3	3	0.99163	101.938	0.3	
39	0	3	4	0.98226	103.295	0.3	
40	3	2	0	0.98116	103.458	0.4	
41	2	3	1	0.96548	105.849	0.9	
42	4	1	0	0.93327	111.253	0.1	
43	3	2	2	0.92258	113.219	0.4	
44	4	1	1	0.91974	113,758	1.1	
45	4	0	3	0.91974	113,758	1.1	
46	2	2	4	0.91270	115.126	0.2	
47	0	-	6	0.90355	116.975	0.1	
48	1	2	5	0.90045	117.620	0.7	
49	3	1	4	0.89260	119.307	0.5	
50	1	Ô	6	0.88404	121,230	0.1	
51	1	4	2	0.88243	121.601	0.4	
52	3	0	5	0.86301	126 396	0.1	
53	5	0	0	0.85536	128.463	0.1	
54	1	1	6	0.84852	130,409	0.1	
55	0	5	1	0.84490	131 483	0.1	
56	0	4	4	0.83943	133 168	0.1	
57	0	2	6	0.83230	135 480	0.1	
58	1	4	3	0.82922	136 543	0.7	
50	3	2	0	0.82307	138 744	0.0	
55	5		2	0.02307	1/1 59/	0.2	
61	2	2	2	0.013/1	142.000	0.0	
62	2	2	1	0.01400	142.000	0.3	
62	3	2	1	0.01374	144.307	0.5	
64	4	2	0	0.80823	149.752	0.5	
64	1	3	5	0.80029	148.527	0.5	
65	2	4	1	0.79940	148.985	0.1	

Name and formula

Reference code:	01-081-1849
ICSD name:	Calcium Sulfate Hydrate
Empirical formula:	CaHO _{4.5} S
Chemical formula:	Ca(SO ₄)(H ₂ O) _{0.5}

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	I2
Space group number:	5
a (Å):	12.0275
b (Å):	6.9312
c (Å):	12.6919
Alpha (°):	90.0000
Beta (°):	90.1800
Gamma (°):	90.0000
Calculated density (g/cm^3):	2.73
Volume of cell (10^6 pm^3):	1058.06
Z:	12.00
RIR:	1.09

Subfiles and Quality

Subfiles:	Inorganic
	ICSD Pattern
Quality:	Hypothetical (H)

Comments

General comments:	TF are of mixed type.
	TF are converted prior to pattern calculation.
ICSD collection code:	073263
Test from ICSD:	No R value given.
	At least one TF missing.

References

Primary reference: Calculated from ICS Structure: Abriel, W., Nesper, F

Calculated from ICSD using POWD-12++ Abriel, W., Nesper, R., Z. Kristallogr., **205**, 99, (1993)

<u>Peak list</u>

No.	h	k	1	d [A] 2Theta[d	lea] I [%]
1	-1	0	1	8.74384 10.108	0.8
2	2	0	0	6.00537 14.739	100.0
3	-1	1	2	4.36528 20.327	2.9
4	-2	1	1	4.27347 20.769	1.1
5	-1	0	3	3.98700 22.280	2.4
6	-3	Õ	1	3 82640 23 227	0 6
7	0	1	т З	3 61109 24 633	1 7
8	3	1	0	3 47041 25 649	42 1
g	_ 1	2	1	3 22040 27 678	0.8
10	0	0	1	3 17296 28 100	0.0
11	2	1	3	3 09218 28 850	1 1
12	2	2	2	3 0/136 20 3/3	10 5
12	1	2	2	2 00260 20 720	10.J 71 0
10	4	0	2	2 01461 20 640	/1.0
14	- 3	0	ン つ	2.91461 30.649	0.6
10	5	1	2	2.90349 30.748	0.5
10	1		4	2.80363 31.894	66.0
1/	-4	0	2	2.72057 32.895	3.3
18	4	0	2	2.71254 32.995	6.2
19	-1	2	3	2.61/81 34.226	0.4
20	-3	2	1	2.56657 34.931	0.3
21	-1	0	5	2.48208 36.160	0.1
22	-5	0	1	2.36477 38.021	0.2
23	-3	1	4	2.34491 38.355	2.3
24	0	2	4	2.34025 38.435	4.0
25	-4	1	3	2.31374 38.893	0.1
26	4	1	3	2.30764 39.000	0.1
27	4	2	0	2.26892 39.693	2.7
28	3	2	3	2.22652 40.482	0.2
29	-2	1	5	2.21809 40.642	0.4
30	2	1	5	2.21361 40.728	0.3
31	-4	0	4	2.18596 41.267	1.2
32	2	2	4	2.17923 41.400	2.9
33	-5	1	2	2.14149 42.164	6.5
34	4	2	2	2.13606 42.276	13.4
35	0	0	6	2.11531 42.711	9.9
36	5	0	3	2.08828 43.292	0.1
37	-1	2	5	2.01961 44.842	0.1
38	6	0	0	2.00179 45.263	1.4
39	-2	0	6	1.99614 45.399	1.0
40	-5	2	1	1.95182 46.489	0.2
41	-3	3	2	1.90992 47.571	6.1
42	-6	1	1	1.90472 47.709	3.5
43	-5	1	4	1.84889 49.244	18.6
44	-1	3	4	1.84612 49.323	32.5
45	-3	2	5	1.82556 49.916	0.4
46	3	2	5	1.82182 50.025	0.3
47	-4	3	1	1.81275 50.293	0.2
48	-3	1	6	1.80841 50.422	0.2
49	0	2	6	1.80555 50.508	0.3
50	-1	0	7	1.79369 50.865	0.1
51	5	2	.3	1.78865 51.019	0.1
52	-6	1	3	1.75464 52.081	0.1
53	6	1	3	1.75065 52.209	0.1

54	5	0	5	1.74329	52.446	0.2
55	6	2	0	1.73521	52.709	3.5
56	0	4	0	1.73280	52.788	3.1
57	2	2	6	1.72801	52.946	2.5
58	0	3	5	1.70862	53.594	0.3
59	-6	0	4	1.69711	53.987	5.4
60	6	0	4	1.69182	54.170	12.1
61	5	3	0	1.66630	55.069	5.2
62	-2	3	5	1.64449	55.863	0.1
63	7	1	2	1.61089	57.134	1.0
64	-1	2	7	1.59181	57.883	0.1
65	-1	4	3	1.58969	57.967	0.1
66	0	0	8	1.58648	58.096	0.1
67	-3	4	1	1.57800	58.438	0.1
68	-5	2	5	1.56126	59.126	0.1
69	5	2	5	1.55736	59.289	0.1
70	-5	1	6	1 55064	59 572	0.6
71	1	3	6	1 54675	59 737	1 4
72	_1	1	8	1 53445	60 265	1 1
73	-6	2	4	1 52417	60 714	$1 \cdot 1$
74	0	<u>г</u> Д	1	1 52068	60 869	1 1
75	_1	1	7	1 51714	61 026	
76	2 Q	0	, 	1 503/3	61 643	0.0
70	7	1	0	1 50134	61 738	0.4
70	- 3	4	0	1 40270	62 135	0.0
70	_1	2	5	1 / 8680	62 405	0.1
00	-4	2	5	1 40009	62.405	0.2
00	4	3	5	1.40419	62.051	0.1
01	-2	4	4	1 4/491	62.909	2.9
02	-4	4	6	1 46133	63.013	0.0
00	-0	0	6	1 45731	64 020	0.5
04	5	0	0	1.45262	64.039	0.5
00	-5	0	2	1 40000	64.175	0.3
00	0	2	0	1 44435	64.460	1.0
0 /	G	2	0	1 44252	64.55Z	1.0
00	-6	2	2	1.42635	65.374	0.1
09	1	3	5	1 42449	65.470	0.1
90	-1	4	5	1.42141	65.630	0.1
91	-2	2	8	1.40363	66.568	0.2
92		2	0	1.40182	66.665	0.3
93	-5	4		1.39/16	66.917	0.1
94	2	3	/	1.38663	67.493	0.1
95	0	T	9	1.38189	67.756	0.1
96	/	3	0	1.3/8/3	67.932	0.1
97	-4	4	4	1.35/91	69.120	1.4
98	-1	5	2	1.34590	69.826	0.4
99	-6	2	6	1.34337	69.977	0.3
100	0	4	6	1.34046	70.151	0.2
101	-5	2	/	1.33/70	70.317	0.1
102	5	2	/	1.33427	70.524	0.1
103	-3	0	9	1.33162	70.686	0.1
104	3	0	9	1.32900	70.846	0.1
105	-6	1	/	1.32205	/1.2/5	0.1
105	6	Ţ	/	1.31808	/1.523	0.1
10/	9	Ţ	0	1.31221	/1.892	1.2
100	-5	3	6	1.31013	72.024	1.7
109	7	Ţ	6	1.30757	72.187	1.0
110	-5	1	8	1.30266	72.503	2.6

1	3	8	1.29981	72.687	5.3
4	3	7	1.28747	73.497	0.2
2	5	3	1.28582	73.607	0.3
6	4	2	1.28281	73.808	0.6
-9	0	3	1.27547	74.304	0.1
-8	2	4	1.26624	74.939	1.8
7	3	4	1.26311	75.156	4.3
4	1	9	1.25417	75.786	0.1
-4	5	1	1.25259	75.899	0.1
-3	3	8	1.24430	76.495	3.2
6	0	8	1.24212	76.654	2.7
	1 4 2 6 -9 -8 7 4 -4 -3 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 8 1.29981 4 3 7 1.28747 2 5 3 1.28582 6 4 2 1.28281 -9 0 3 1.27547 -8 2 4 1.26624 7 3 4 1.26311 4 1 9 1.25417 -4 5 1 1.25259 -3 3 8 1.24430 6 0 8 1.24212	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Name and formula

Reference code:	01-080-7958
Compound name:	Calcium Sulfate Hydrate
Empirical formula: Chemical formula:	CaH _{1.25} ^o 4.625 ^S Ca (SO ₄)(H ₂ O) _{0.625}

Crystallographic parameters

Crystal system:	Hexagonal
space group:	P3221
Space group number:	154
a (Å):	13.8690
b (Å):	13.8690
c (Å):	12.7189
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10 ⁶ pm ³):	2118.70
Z:	24.00
RIR:	1.55

Status, subfiles and quality

Status: Subfiles:	Diffraction data collected at non ambient pressure ICSD Pattern
Quality:	Inorganic Star (S)

Comments

ANX:

A8B8X37

ICSD collection code:	262107
Creation Date:	01-Sep-13
Cross-References:	ICSD:262107
ANX:	A8B8X37
Analysis:	H1.25 Ca1 04.625 S1
Formula from original source:	Ca (S O4) (H2 O)0.625
ICSD Collection Code:	262107
Pressure of Datacollection:	101.3 MPa
Temperature of Data Collection:	296 K
Wyckoff Sequence:	c24 b2 a3 (P3221)
Unit Cell Data Source:	Single Crystal.

References

Primary reference: Structure: Calculated from ICSD using POWD-12++ Schmidt, H., Paschke, I., Freyer, D., Voigt, W., Acta Crystallogr., Sec. B: Struct. Sci. •67, 467, (2011)

Peak list

No.	h	k	1	d (Å)	2Theta[deg]	I [8]
1	1	0	0	12.01090	7.354	0.2
2 3	0 1	1	1	8.73256 6.93450	10.121 12.755	0.2
4	2	0	0	6.00545	14.739	78.2
5 6	1 0	0 2	2 1	5.62026 5.43054	15.755 16.309	0.2
7 8	1 2	1	20	4.68694 4.53970	18.919 19.538	0.4
9	0	2	2	4.36628	20.323	4.3
10 11	1 0	2 0	1 3	4.27552 4.23963	20.759 20.936	0.5
12 13	1 0	0 3	3	3.99788 3.81890	22.218 23.274	1.2
14	1	2	2	3.69486	24.066	0.9
15 16	1 2	1	3 3	3.61717 3.46725	24.591 25.672	0.8
17 18	2 0	2 3	0	3.46725 3.38812	25.672 26.283	55.4 0.2
19	2	2	1	3.34518	26.626	0.1
20 21	3 1	1 3	0	3.33123 3.22253	26.740 27.659	0.2

จุฬาลงกรณ์มหาวิทยาลัย

22 23	1	2 0	3 4	3.09853 3.07383	28.790 29.026	0.3 1.6
24	2 4	2 0	2	3.04419 3.00273	29.315 29.729	10.7
26	1	3	2	2.95089	30.264	0.9
27 28	0 1	3 1	3 4	2.91085 2.89035	30.690 30.913	0.2
29 30	2 3	0 2	4 0	2.81013 2.75549	31.819 32.467	100.0 0.4
31	0	4	2	2.71527	32.961	7.6
32 33	32	2 2	1 3	2.69302	33.241 33.357	0.6
34 35	1 1	3 2	3 4	2.61938 2.60441	34.204 34.407	0.7 1.9
36	1	4	1	2.56706	34.924	0.7
37 38	3	2 3	2 4	2.52836 2.48997	35.476 36.041	0.6 0.3
39 40	0 1	4	3	2.45039 2.42325	36.644 37.069	0.1 0.7
41	5	0	0	2.40218	37.406	0.2
42 43	1 0	1 5	5 1	2.38817 2.36045	37.634 38.093	0.6
44 45	2 2	2 0	4 5	2.34347 2.34347	38.380 38.380	8.3 8.3
46	3	3	0	2.31150	38.932	0.6
47 48	3 1	2 3	3 4	2.31150 2.30010	38.932 39.133	0.6 0.4
49 50	4	2 5	0 2	2.26985 2.24721	39.676 40.093	5.2 0.3
51 52	1 1	4	3 5	2.22937 2.21914	40.427 40.622	3.0 1.4
53	0	4	4	2.18314	41.322	4.6
54 55	35	3 1	2 0	2.17245 2.15722	41.535 41.842	0.4 0.5
56	2	4	2	2.13776	42.241	18.8
57	1	5	1	2.12685	42.468	2.2
58	0	0	6	2.11982	42.616	8.3
59 60	1 5	0	63	2.09001 2.09001	43.254 43.254	0.1
61	2	3	4	2.08238	43.420	0.2
62	2	2	5	2 05100	44 119	0 1

63	1	5	2	2.04289	44.304	0.3
64	3	3	3	2.02946	44.613	1.2
00	÷.	-	2	2.02340	44.013	
60	1 G	3	0	2.021/3	44.792	1.4
60	0	4	-	2.00102	45.203	1.1
00	4	-	3	2.00182	45.263	1.4
70	ő	2 6	1	1.99894	45.331 45.922	0.2
71	4	з	0	1.97458	45.922	0.2
72	3	4	1	1.95121	46.505	0.9
73	4	0	5	1.94093	46.765	0.1
74	5 2	1	3	1.92265	47.237	0.7
	-	-		1.02200	47.237	0.7
76	2	6	2	1.90945	47.584	0.4
78	3	4	2	1.88577	48.219	0.2
70	0		-	1 07242	40 557	0.2
80	3	2	5	1.86909	48.677	0.4
81	2	4	4	1.84743	49.285	54.4
82	4	1	5	1.82541	49.920	0.3
83	1	6	1	1.81294	50.287	0.2
84	0	6	3	1.80858	50.417	0.4
85	2	2	6	1.80858	50.417	0.4
86	0	1	7	1.79654	50.779	0.1
87	3	4	3	1.78996	50.979	0.5
88	1	з	6	1.78996	50.979	0.5
89	1	5	4	1.78517	51.125	0.2
90	1	1	7	1.75765	51.985	0.1
91	1	6	2	1.75765	51.985	0.1
92	5	2	3	1.75149	52.182	0.3
93	0	5	5	1.74651	52.342	0.1
94	4	0	6	1.73363	52.761	5.8
95	4	4	0	1.73363	52.761	5.8
96	5	з	0	1.71584	53.351	0.1
97	3	з	5	1.71072	53.523	0.3
98	6	0	4	1.69406	54.092	18.8
99	2	4	5	1.69406	54.092	18.8
100	3	2	6	1.68144	54.532	0.9
101	6	1	3	1.68144	54.532	0.9
102	4	4	2	1.67259	54.844	0.8
103	6	2	0	1.66561	55.094	11.2
104	2	6	1	1.65151	55,604	0.1

105	1	5	5	1.64526	55.834	0.7
106	2	2	7	1.61127	57.119	1.2
107	2	6	2	1.61127	57.119	1.2
108	1	3	7	1.59513	57.751	0.1
109	0	7	3	1.59052	57.934	0.2
110	1	7	1	1.57858	58.414	0.3
111	0	6	5	1.57312	58.637	0.1
112	з	з	6	1.56231	59.083	0.2
113	3	4	5	1.55980	59.187	0.2
114	2	4	6	1.54926	59.630	1.3
115	1	7	2	1.54333	59.883	0.1
116	0	2	8	1.53692	60.158	3.8
117	4	4	4	1.52210	60.806	2.5
118	2	3	7	1.51689	61.037	0.2
119	з	5	4	1.51199	61.256	0.3
120	1	5	6	1.51199	61.256	0.3
121	8	0	0	1.50136	61.737	0.8
122	1	2	8	1.50136	61.737	0.8
123	5	4	2	1.49476	62.039	0.2
124	1	4	7	1.49476	62.039	0.2
125	1	7	3	1.48947	62.284	0.2
126	1	6	5	1.48641	62.427	0.1
127	2	6	4	1.47544	62.944	5.2
128	7	2	0	1.46737	63.330	0.1
129	0	8	2	1.46120	63.629	0.8
130	0	6	6	1.45543	63.911	0.7
131	2	2	8	1.44518	64.418	4.4
132	3	4	6	1.44518	64.418	4.4

Name and formula

Reference code:	01-080-6362
Mineral name:	Anhydrite
Compound name:	Calcium Sulfate
Empirical formula:	CaO ₄ S
Chemical formula:	Ca(SO ₄)

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	Amma
Space group number:	63
a (Å):	7.0012
b (Å):	6.9932
c (Å):	6.2416
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	305.60
Z:	4.00
RIR:	1.75

Status, subfiles and quality

Status: Subfiles: Quality: Alternate Pattern Pharmaceutical, Common Phase, Inorganic, Forensic, Mineral, Ceramic, Cement and Hydration Product, ICSD Pattern Star (S)

Comments

ANX:ABX4ICSD collection code:183918Creation Date:01-Sep-13Cross-References:ICSD:183918ANX:ABX4Analysis:Ca1 O4 S1Formula from original source:Ca (S O4)ICSD Collection Code:183918Sample Source or Locality:Baldonnel sedimentary formation, west-central Alberta, CanadaWyckoff Sequence:g f c2 (AMMA)Unit Cell Data Source:Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Antao, S.M., Powder Diffr., **26**, 326, (2011)

Peak list

No.	h	k		d [Ă]	20 [°]	I [%]
1	0	1	1	4.65662	19.043	0.1
2	1	1	1	3.87732	22.918	4.9
3	0	2	0	3.50061	25.424	100.0
4	2	0	0	3.50061	25.424	100.0
5	0	0	2	3.12080	28.580	2.5
6	1	0	2	2.85044	31.357	35.2
7	2	1	1	2.79814	31.959	3.4
8	2	2	0	2.47389	36.284	7.5
9	2	0	2	2.32831	38.640	21.1
10	0	2	2	2.32831	38.640	21.1

1 Of 4

User: Empyrean

11	1	2	2	2.20934	40.810	22.1	
12	0	3	1	2.20934	41 310	67	
13	1	3	1	2.10575	43 333	6.8	
14	2	1	1	2.00030	42 222	6.8	
19		1	2	1.00415	45.555	0.8	
15	2	2	2	1.99413	46 922	2.7	
10	2 1	1	2	1.93600	40.025	0.2	
10	1	1	2	1.91/0/	49.690	15.1	
10	3	2	2	1.00090	40.000	15.1	
19	2		1	1.05200	49.133	3.3	
20	4	0	0	1.75050	52.220	7.5	
21	2	4	2	1.74831	52.284	7.0	
22	2	1	3	1./32/3	52.790	0.3	
23	3	2	2	1.64828	55.723	14.4	
24	4	1	1	1.63839	56.089	0.4	
25	3	3	1	1.59453	57.775	2.5	
26	2	4	0	1.56409	59.009	3.3	
27	4	2	0	1.56409	59.009	3.3	
28	0	3	3	1.55221	59.506	0.1	
29	0	4	2	1.52527	60.666	2.8	
30	4	0	2	1.52527	60.666	2.8	
31	1	3	3	1.51541	61.103	1.0	
32	3	1	3	1.51541	61.103	1.0	
33	1	4	2	1.49031	62.245	5.2	
34	2	0	4	1.42495	65.446	2.8	
35	0	2	4	1.42495	65.446	2.8	
36	2	3	3	1.41897	65.757	1.0	
37	2	4	2	1.39907	66.814	1.7	
38	4	2	2	1.39907	66.814	1.7	
39	1	2	4	1.39632	66.962	2.3	
40	4	3	1	1.36575	68.667	0.7	
41	0	5	1	1.36575	68.667	0.7	
42	5	1	1	1.34093	70.122	0.1	
43	1	5	1	1.34093	70.122	0.1	
44	2	2	4	1.31980	71.415	4.5	
45	4	1	3	1 31546	71.687	0.2	
46	3	- Î	4	1 29716	72.859	1.6	
47	3	3	3	1 29244	73 168	0.1	
47	3	4	2	1.27676	74.217	5.6	
40	5	0	2	1.27676	74.217	5.6	
50	2	5	2	1.27070	74.570	0.2	
50	2	3	1	1.27156	77.024	0.5	
51	4	4	U	1.23094	77.034	1.0	
52	2	2	5	1.22669	77.033	0.1	
53	3	2	4	1.21017	78.600	3.7	
54	1	1	5	1.21039	79.049	0.2	
55	5	2	2	1.19996	/9.8/3	2.0	
56	3	5	1	1.17813	81.662	0.4	
57	5	3	1	1.1/813	81.662	0.4	
58	6	0	0	1.16687	82.621	2.2	
59	4	0	4	1.16554	82.736	2.3	
60	0	6	0	1.16554	82.736	2.3	
61	4	3	3	1.16074	83.154	0.6	
62	0	5	3	1.16074	83.154	0.6	
63	2	1	5	1.15952	83.261	0.4	
64	4	4	2	1.14991	84.115	0.4	
65	1	4	4	1.14839	84.252	1.0	
66	1	5	3	1.14595	84.473	0.1	
67	5	1	3	1.14595	84.473	0.1	
68	6	1	1	1.13187	85.774	0.1	
69	6	2	0	1.10686	88.203	1.9	
70	2	4	4	1.10505	88.385	3.9	
71	4	2	4	1.10505	88.385	3.9	
72	2	5	3	1.10175	88.719	0.2	
73	0	3	5	1.10046	88.851	0.4	
74	6	ñ	2	1.09297	89.623	0.1	
75	0	6	2	1 09187	89 738	0.1	
76	1	2	<u>د</u>	1.09735	90.213	0.1	
70	1		5	1.00/33	90.213	0.1	
//	5	1	5	1.08/35	90.213	0.1	
/8	1	0	2	1.07683	91.125	5.1	
/9	4	5	1	1.07628	91.402	0.1	
80	2	3	5	1.04981	94.404	0.1	
81	6	2	2	1.04319	95.192	1.3	
82	3	4	4	1.04174	95.367	2.0	
83	5	0	4	1 04174	95 367	2.0	

04	E	2	2	1 04027	05 545	0.0	
84	5	3	3	1.04027	95.545	0.9	
85	0	0	6	1.04027	95.545	0.9	
86	5	4	2	1.03149	96.625	1.2	
8/	1	0	6	1.02916	96.917	0.5	
88	6	3	1	1.02916	96.917	0.5	
89	6	1	3	1.00712	99.788	0.3	
90	4	1	5	1.00575	99.973	0.1	
91	5	2	4	0.99874	100.936	0.6	
92	2	0	6	0.99717	101.155	1.6	
93	0	2	6	0.99717	101.155	1.6	
94	3	6	2	0.98898	102.316	2.1	
95	0	7	1	0.98712	102.586	0.8	
96	1	2	6	0.98712	102.586	0.8	
97	1	7	1	0.97735	104.026	0.1	
98	5	5	1	0.97735	104.026	0.1	
99	6	4	0	0.97055	105.060	1.8	
100	4	6	0	0.97055	105.060	1.8	
101	4	4	4	0.96933	105.249	1.4	
102	2	2	6	0.95894	106.890	0.8	
103	7	0	2	0.95245	107.948	0.6	
104	2	7	1	0.94950	108.441	0.1	
105	6	0	4	0.93448	111.037	0.1	
106	0	6	4	0.93380	111 159	0.1	
107	ñ	5	5	0.93163	111.550	0.1	
108	4	3	5	0.93163	111.550	0.1	
100	6	4	2	0.92677	112 437	0.1	
110	4	6	2	0.92077	112.437	0.7	
111	1	6	4	0.92077	112.457	0.7	
112	1	5		0.92300	112.004	0.5	
112	E	5	5	0.92319	113.104	0.1	
115	2	1	2	0.92319	113.104	1.0	
114	/	2	2	0.91897	113.905	1.0	
115	3	2	6	0.91690	114.304	0.1	
116	3	/	1	0.90863	115.937	0.1	
11/	2	6	4	0.90280	117.131	0.9	
118	6	2	4	0.90280	117.131	0.9	
119	2	5	5	0.90002	117.712	0.2	
120	0	7	3	0.90002	117.712	0.2	
121	5	4	4	0.89518	118.744	0.5	
122	4	0	6	0.89425	118.947	1.2	
123	0	4	6	0.89425	118.947	1.2	
124	1	4	6	0.88678	120.603	0.5	
125	6	5	1	0.88678	120.603	0.5	
126	0	1	7	0.88450	121.124	0.1	
127	1	1	7	0.87752	122.759	0.1	
128	8	0	0	0.87515	123.331	0.4	
129	0	8	0	0.87415	123.573	0.4	
130	3	6	4	0.86697	125.370	1.0	
131	2	4	6	0.86618	125.572	1.5	
132	4	2	6	0.86618	125.572	1.5	
133	5	6	2	0.86104	126.918	1.0	
134	2	1	7	0.85755	127.861	0.1	
135	8	2	0	0.84896	130.281	0.3	
136	2	8	0	0.84811	130.530	0.3	
137	6	1	5	0.84619	131 101	0.5	
138	0	2	2	0.0-010	132 442	0.1	
120	0	0	2	0.04170	122.443	0.4	
140	/		4	0.041/0	122.443	0.4	
140	/	3	3	0.84075	132./54	0.1	
141	5		3	0.84020	132.927	0.1	
142	/	4	2	0.83639	134.140	1.0	
143	1	8	2	0.835/4	134.352	1.0	
144	3	1		0.82698	137.327	0.1	
145	1	3	7	0.82698	137.327	0.1	
146	6	6	0	0.82463	138.171	1.6	
147	4	6	4	0.82414	138.350	1.1	
148	6	4	4	0.82414	138.350	1.1	
149	6	5	3	0.82293	138.797	0.3	
150	4	5	5	0.82218	139.074	0.1	
151	7	2	4	0.81864	140.423	0.7	
152	2	8	2	0.81864	140.423	0.7	
153	8	3	1	0.81220	143 030	0.6	
153	5	2	6	0.01220	143 020	0.0	
155	2	2	7	0.01220	142 000	0.0	
155	2	3	/	0.01020	143.000	0.2	
156	5	2	1	0.80644	145.562	0.1	

Date: 22-Apr-16 Time: 4:34:45 PM			Fil	e: HighScor	e Plus - HTK	_phase_580	User: Empyrea
157	7	5	1	0.80644	145.562	0.1	
158	4	7	3	0.80059	148.377	0.2	
159	6	3	5	0.80059	148.377	0.2	

Date: 21-Apr-16 Time: 9:43:32 AM

File: HighScore Plus - 01-070-7345

User: Empyrean

Name and formula

Reference code:	01-077-8627
Mineral name:	Cristobalite, syn
Compound name:	Silicon Oxide
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P41212
Space group number:	92
a (Å):	4.9751
o (Å):	4.9751
c (Å):	6.9261
c (Å):	90.0000
ecta (°):	90.0000
Gamma (°):	90.0000
/olume of cell (10 ⁶ pm ⁻³):	171.43
Z:	4.00
RIR:	5.18

Status, subfiles and quality

Commonte	
Quality:	Hypothetical (H)
Submes.	Inorganic, Mineral, Pharmaceutical
Status: Subfiles:	Alternate Pattern Alloy, metal or intermetalic, Cement and Hydration Product, Common Phase, Forensic, ICSD Pattern

<u>Comments</u> AX2 162615 01-Sep-11 ICSD:162615 ANX: ICSD collection code: Creation Date: Cross-References: AX2 O2 Si1 ANX: Analysis: 02 SII Si 02 162615 Structure calculated theoretically DFT calculation within LDA; results of a GGA calculation are given in ICSD 162614 theoretic No e.s.d reported/abstracted on the cell dimension b a (P41212) Formula from original source: ICSD Collection Code: Hypothetical Structure: Calculated Pattern Original Remarks: Sample Source or Locality: Minor Warning: Wyckoff Sequence: Unit Cell Data Source: b a (P41212) Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Demuth, T., Jeanvoine, Y., Hafner, J., Angyan, J.G., J. Phys.: Condens. Matter , **11**, 3833, (1999)

No.	h	k		d [Ă]	20 [°]	I [%]
1	1	0	1	4.04070	21.980	100.0
2	1	1	0	3.51793	25.296	0.6
3	1	1	1	3.13653	28.433	8.4
4	1	0	2	2.84227	31.449	10.3
5	2	0	0	2.48755	36.078	13.3
6	1	1	2	2.46792	36.375	4.5
7	2	0	1	2.34113	38.420	0.1

Q	2	1	0	2 22/02	40 512	0.1	
ð	2	1	0	2.22493	40.512	0.1	
9	2	1	1	2.11832	42.04/	2.4	
10	1	0	3	2.09420	43.163	0.1	
11	2	0	2	2.02035	44.825	2.6	
12	1	1	3	1.93017	47.042	4.8	
13	2	1	2	1.87189	48.599	5.0	
14	2	2	0	1.75896	51.944	0.4	
15	0	0	4	1.73152	52.830	0.7	
16	2	2	1	1.70484	53,722	0.1	
17	2	0	- 3	1.69220	54,156	2.4	
18	1	0	4	1.63531	56 204	0.5	
10	3	0	1	1.61278	57.060	3.0	
20	2	1	3	1.60206	57.000	1.2	
20	2	1		1.00200	57.470	1.2	
21	3	1	2	1.57320	50.031	0.4	
22	2	2	2	1.50820	58.830	0.2	
23	1	1	4	1.55354	59.450	0.1	
24	3	1	1	1.53418	60.277	2.2	
25	3	0	2	1.49571	61.996	2.4	
26	3	1	2	1.43238	65.065	2.1	
27	2	0	4	1.42114	65.644	1.2	
28	2	2	3	1.39915	66.809	1.3	
29	3	2	0	1.37984	67.870	0.1	
30	2	1	4	1.36648	68.626	2.1	
31	3	2	1	1.35325	69.392	0.8	
32	3	0	3	1.34690	69.766	0.5	
33	1	0	5	1.33446	70.513	1.6	
34	3	1	3	1.30010	72 668	1.9	
35	1	1	5	1 28800	73 402	0.1	
26	2	1	2	1.20090	73.402	1.9	
30	3	2	2	1.20104	73.073	1.0	
37	4	0	0	1.24378	76.533	0.1	
38	2	2	4	1.23396	77.254	0.7	
39	4	0	1	1.22419	77.987	1.0	
40	2	0	5	1.21023	79.061	0.2	
41	4	1	0	1.20664	79.343	1.3	
42	3	0	4	1.19767	80.056	0.1	
43	4	1	1	1.18873	80.782	0.2	
44	3	2	3	1.18442	81.137	1.2	
45	2	1	5	1.17594	81.847	1.3	
46	3	3	0	1.17264	82.127	0.3	
47	4	0	2	1 17057	82 303	0.3	
48	3	1	4	1 16441	82.834	0.8	
40	3	3	1	1.15610	83 555	0.0	
50	3	1	2	1.13019	05.555 9E 069	0.7	
50	4	1	2	1.13945	05.000	0.2	
51	1	0	0	1.12448	80.475	0.1	
52	3	3	2	1.11069	87.821	0.5	
53	4	2	1	1.09839	89.063	1.0	
54	1	1	6	1.09681	89.225	1.4	
55	4	0	3	1.09498	89.414	0.4	
56	2	2	5	1.08827	90.116	0.2	
57	3	2	4	1.07911	91.094	0.3	
58	4	1	3	1.06939	92.161	0.1	
59	3	0	5	1.06313	92.864	0.1	
60	4	2	2	1.05916	93,317	0.4	
61	2	0	- 6	1.04710	94,724	0.1	
62	3	3	3	1.04551	94 914	0.2	
63	2	1	5	1.03966	95 610	0.2	
64	2	1	2	1.03900	07 400	0.2	
04	2	1	0	1.02405	97.400	0.1	
65	4	U	4	1.01017	99.378	0.1	
66	4	2	3	1.00219	100.459	0.3	
6/	4	3	U	0.99502	101.457	0.4	
68	4	1	4	0.98997	102.174	0.8	
69	5	0	1	0.98491	102.907	0.4	
70	3	2	5	0.97759	103.990	0.2	
71	5	1	0	0.97570	104.275	0.1	
72	3	3	4	0.97094	105.001	0.3	
73	1	0	7	0.97094	105.001	0.3	
74	5	1	1	0.96616	105.742	0.2	
75	2	2	6	0.96508	105 911	0.1	
76	2 E	2	2	0.90500	107 312	0.1	
70	2	0	2	0.93033	107.312	0.4	
//	5	U	6	0.94/42	108.789	0.2	
/8	5	1	2	0.93914	110.214	0.1	
/9	4	2	4	0.93594	110.776	0.1	
, ,							

Date: 21-Apr-16	5 Time: 9:43	:32 AM	File	e: HighScore	e Plus - 01-07	0-7345	User: Empyrean
81	4	0	5	0.92546	112.680	0.1	
82	5	2	0	0.92385	112.980	0.1	
83	2	0	7	0.91938	113.826	0.1	
84	5	2	1	0.91574	114.529	0.1	
85	5	0	3	0.91377	114.915	0.5	
86	4	1	5	0.90985	115.692	0.2	
87	2	1	7	0.90408	116.866	0.5	
88	5	1	3	0.89873	117.984	0.2	
89	3	3	5	0.89501	118.782	0.1	
90	5	2	2	0.89263	119.299	0.3	
91	3	2	6	0.88538	120.922	0.2	
92	4	4	0	0.87948	122.293	0.1	
93	4	4	1	0.87248	123.986	0.1	
94	4	2	5	0.86738	125.265	0.3	
95	0	0	8	0.86576	125.680	0.1	
96	5	0	4	0.86237	126.565	0.4	
97	2	2	7	0.86237	126.565	0.4	
98	5	2	3	0.85773	127.811	0.1	
99	5	3	0	0.85322	129.060	0.2	
100	1	0	8	0.85322	129.060	0.2	
101	4	4	2	0.85242	129.287	0.3	
102	3	0	7	0.85003	129.970	0.1	
103	5	1	4	0.85003	129.970	0.1	
104	5	3	1	0.84682	130.910	0.1	
105	1	1	8	0.84068	132.777	0.1	
106	3	1	7	0.83757	133.760	0.2	
107	4	1	6	0.83412	134.882	0.1	
108	6	0	0	0.82918	136.554	0.1	
109	5	3	2	0.82845	136.810	0.1	
110	6	0	1	0.82330	138.657	0.3	
111	6	1	0	0.81790	140.712	0.4	
112	2	0	8	0.81790	140.712	0.4	
113	5	2	4	0.81509	141.834	0.1	
114	6	1	1	0.81226	143.007	0.1	
115	5	0	5	0.80814	144.795	0.2	
116	6	0	2	0.80683	145.384	0.5	
117	2	1	8	0.80683	145.384	0.5	
118	3	2	7	0.80408	146.665	0.1	
119	4	2	6	0.80103	148.156	0.2	
120	5	1	5	0.79768	149.887	0.7	

Name and formula

Reference code:	01-076-9282
Mineral name: Compound name:	Quartz, syn Silicon Oxide
Common name:	a-Si O2, Silicon dioxide
Empirical formula:	° "Si
Chemical formula:	SIÓZ

Crystallographic parameters

Crystal system: Space group:	Hexagonal P3221
Space group number:	154
a (Å):	4.9139
b (Å):	4.9139
c (Å):	5.4057
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10^6 pm^3):	113.04
Z:	3.00
RIR:	3.09

Status, subfiles and quality

Status: Subfiles: Alternate Pattern Alloy, metal or intermetalic Cement and Hydration Product Common Phase Forensic

GHULALONGKORN UNIVERSITY

	ICSD Pattern Inorganic
	Mineral
Quality:	Pharmaceutical Indexed (I)
Comments	
ANX:	AX2
ICSD collection code: Creation Date:	173227 01-Sep-10
Modification Date:	01-Sep-11
Cross-References: ANX:	ICSD:173227 AX2
Analysis: Formula from original source:	02 Si1 Si 02
ICSD Collection Code:	173227
Calculated Pattern Original Rem Sample Source or Locality:	arks: Grain size 0.001-0.01 mm synthetic
Minor Warning: Wyckoff Sequence:	No R factors reported/abstracted c a (P3221)
Unit Cell Data Source:	Powder Diffraction.

References

Primary reference: Structure: Calculated from ICSD using POWD-12++ Nikitin, A.N., Markova, G.V., Balagurov, A.M., Vasin, R.N., Alekseeva, O.V., Kristallografiya **52**, 450, (2007)

Peak list

No.	h	k	1	d [Å]	2Theta[deg]	I [8]
1	1	0	0	4.25555	20.857	19.7
2	1	0	1	3.34375	26.638	100.0
3	1	1	0	2.45694	36.543	7.1
4	0	1	2	2.28157	39.464	7.2
5	1	1	1 0	2.23675 2.12778	40.288 42.449	3.1 5.1
7 8	0	2	1 2	1.97992 1.81806	45.792 50.136	2.9 11.9
9	0	0	з	1.80191	50.617	0.4
10	2	0	2	1.67188	54.870	3.6

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

11	1	0	3	1.65929	55.321	1.6
12 13	2	1	0 1	1.60845 1.54165	57.228 59.955	0.2
14 15	1 3	1 0	3	1.45303 1.41852	64.029 65.780	1.6
16	2	1	2	1.38222	67.737	5.0
17 18	0 3	2 0	3 1	1.37508	68.137 68.308	6.2 4.0
19 20	0	1 3	4 2	1.28804 1.25605	73.459 75.653	2.0
21	2	2	0	1.22847	77.664	1.3
22 23	1 2	2	3	1.19993 1.19793	79.875 80.036	2.6
24 25	1 3	1	4 0	1.18412 1.18028	81.162 81.482	2.1 2.4
26	3	1	1	1.15311	83.829	1.5
27 28	0 2	2	4	1.14078 1.11838	84.945 87.065	0.2
29 30	0 3	3 1	3 2	1.11458 1.08165	87.436 90.821	0.2
31	4	0	0	1.06389	92.778	0.4
32 33	1 0	0 4	5 1	1.04786 1.04386	94.634 95.111	1.2
34 35	1 2	2	4 3	1.03469 1.01502	96.228 98.735	1.2
36	1	1	5	0.98957	102.231	0.9
37 38	03	4 1	23	0.98957 0.98733	102.231 102.555	0.9
39 40	3	0 2	4 0	0.97846 0.97629	103.859 104.185	0.2
41 42	2 3	0 2	5 1	0.96386 0.96075	106.104 106.599	0.1
43	4	1	0	0.92864	112.093	0.1
44 45	2 0	3 4	2 3	0.91823 0.91612	114.048 114.454	0.4
46	1 2	4	1 4	0.91523	114.628 115.857	1.2
48	0	0	6	0.90095	117.516	0.1
49 50	2	1 3	54	0.89728	118.293 120.110	0.8
51	0	1	6	0.88142	121.838	0.2
5.2	4	1	2	0 87825	122 586	0.5

53	0	з	5	0.85987	127.231	0.2
54 55	3 5	2 0	3 0	0.85839 0.85111	127.630 129.660	0.1 0.1
56 57	1 5	1 0	6 1	0.84588 0.84075	131.191 132.754	0.2
58	4	0	4	0.83594	134.286	0.1
59 60	2 4	0 1	6 3	0.82964 0.82546	136.395 137.869	1.0 1.2
61 62	3 0	35	0 2	0.81898 0.81181	140.291 143.195	0.4 1.4
63	2	2	5	0.81181	143.195	1.4
64 65	3 4	3 2	1 0	0.80974 0.80422	144.087 146.598	0.5

Date: 22-Apr-16 Time: 4:30:29 PM

File: HighScore Plus - HTK_phase_250

User: Empyrean

Name and formula

Reference code:	01-076-0938
Compound name: Common name:	Silicon Oxide Cristobalite low
Empirical formula:	O ₂ Si
Chemical formula:	SiO2

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P41212
Space group number:	92
a (Å):	4.9898
b (Å):	4.9898
c (Å):	6.9920
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
/olume of cell (10 ⁶ pm ⁻³):	174.09
Z:	4.00
RIR:	5.06

Status, subfiles and quality

 Status:
 Diffraction data collected at non ambient temperature, Alternate Pattern

 Subfiles:
 Alloy, metal or intermetalic, Cement and Hydration Product, Common Phase, Forensic, ICSD Pattern, Inorganic, Mineral, Pharmaceutical

 Quality:
 Indexed (1)

Comments

A 5 13 /	41/2
ANX:	AX2
ICSD collection code:	34930
Creation Date:	01-Sep-98
Modification Date:	01-Sep-11
Cross-References:	ICSD:34930
ANX:	AX2
Analysis:	O2 Si1
Formula from original source:	Si O2
ICSD Collection Code:	34930
Calculated Pattern Original Remarks:	Metastable up to 500 K (2nd ref. , Tomaszewski), above Fd3-m
Sample Source or Locality:	Specimen from Ellora Caves, India
Temperature of Data Collection:	415 K
Minor Warning:	No e.s.d reported/abstracted on the cell dimension
Wyckoff Sequence:	b a(P41212)
Unit Cell Data Source:	Single Crystal.

References

 Primary reference:
 Calculated from ICSD using POWD-12++, (2004)

 Structure:
 Peacor, D.R., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., **138**, 274, (1973)

No.	h	k		d [Ă]	20 [°]	I [%]
1	1	0	1	4.06160	21.865	100.0
2	1	1	0	3.52832	25.221	0.5
3	1	1	1	3.14998	28.309	8.2
4	1	0	2	2.86319	31.214	9.7
5	2	0	0	2.49490	35.968	12.8
6	1	1	2	2.48339	36.140	5.4

0.1		38.27	2 34979	1	0	2	7
0.1		40.20	2.34373	0		2	0
2.6		40.30	2.23131	1	1	2	0
2.6		42.48	2.12586	1	1	2	9
0.2		42.78	2.1116/	3	0	1	10
2.5		44.58	2.03080	2	0	2	11
4.6		46.66	1.94470	3	1	1	12
4.7		48.34	1.88098	2	1	2	13
0.4		51.779	1.76416	0	2	2	14
0.7		52 29	1 74800	4	-	0	15
0.1		53 520	1,71055	1		2	16
2.2		53.32	1.71033	2	2	2	17
2.2		53.78	1.70313	3	0	2	17
0.5		55.67	1.64970	4	0	1	18
3.5		56.85	1.61811	1	0	3	19
1.6		57.09	1.61183	3	1	2	20
0.3		58.442	1.57791	0	1	3	21
0.3		58.56	1.57499	2	2	2	22
0.1		58.91	1.56632	4	1	1	23
23		60.060	1 53020	1	1	3	24
2.5		61 710	1.55920	2	1	3	25
2.5		64.70	1.30195	2			25
2.5		04.70	1.43821	2	1	3	20
1.4		65.10	1.43159	4	0	2	27
1.3		66.40	1.40663	3	2	2	28
0.1		67.64	1.38392	0	2	3	29
2.1		68.08	1.37608	4	1	2	30
1.0		69.13	1.35758	1	2	3	31
0.7		69.35	1.35387	3	0	3	32
1.5		69.78	1.34652	5		1	33
1.5		72.24	1.30662	3	1	3	34
1.0		72.24	1.30002	5	1	1	25
0.1		/2.6/.	1.30002	5	1	1	35
1.8		/3.54	1.286//	2	2	3	36
0.1		76.26	1.24745	0	0	4	37
0.8		76.68	1.24170	4	2	2	38
1.0		77.69	1.22806	1	0	4	39
0.1		78.31	1.21985	5	0	2	40
14		79.06	1 21020	0	1	4	41
0.1		70 47	1 20405	4		2	42
0.1		20.47	1.20495		1	3	42
0.2		80.47	1.19247	1	1	4	43
1.2		80.68	1.18995	3	2	3	44
1.3		81.09	1.18495	5	1	2	45
0.3		81.83	1.17611	0	3	3	46
0.3		81.93	1.17490	2	0	4	47
0.6		82.24	1.17128	4	1	3	48
0.4		83.23	1.15981	1	3	3	49
0.7		84.68	1 14362	2	1	4	50
0.2		07.00	1.11472	2			50
0.4		87.42	1.11472	U	2	4	51
0.4		87.42.	1.114/2	2	3	3	52
1.2		88.23	1.10654	6	1	1	53
0.9		88.71	1.10181	1	2	4	54
0.3		88.91	1.09982	3	0	4	55
0.2		89.32	1.09587	5	2	2	56
0.2	-	90.450	1 08503	4	2	2	57
0.1	-	01 64	1.00303	2		J A	57
0.1		91.04	1.07404	3	1	4	50
0.1	_	92.05	1.07036	5	U	3	59
0.4		92.88	1.06293	2	2	4	60
0.1		93.69	1.05584	6	0	2	61
0.2		94.38	1.04999	3	3	3	62
0.3		94.78	1.04656	5	1	3	63
0.1		96 44	1 03296	6	1	2	64
0.1	-	00 20	1.015290	4	1	4	65
0.1		90.00	1.01540	4		4	60
0.3		99.88	1.00638	3	2	4	00
0.4		101.04	0.99796	U	3	4	67
0.8		101.459	0.99501	4	1	4	68
0.3		102.46	0.98795	1	0	5	69
0.1		103.09	0.98366	5	2	3	70
0.2		103 710	0.97943	7	ō	1	71
0.2		104 24	0.07590	4	 	2	73
0.2		104.20	0.97300	7	2	2	72
0.1		104.78	0.97235	0	2	2	/3
0.3		105.279	0.96913	1	1	5	74
0.4		106.77	0.95963	2	0	5	75
0.2		107.62	0.95440	6	0	3	76
0.1		109.65	0.94236	2	1	5	77
0.1		100 07	0 94040	4		4	78
0.1		110 51	0.07749	7	2	7	70
0.2				<i>L</i> .			

User: Empyrea	ohase_250	Plus - HTK_ph	: HighScore	File	Date: 22-Apr-16 Time: 4:30:29 PM				
	0.1	111.683	0.93089	5	0	4	80		
	0.1	112.339	0.92730	7	0	2	81		
	0.1	112.339	0.92730	0	2	5	82		
	0.1	113.985	0.91855	1	2	5	83		
	0.4	114.208	0.91740	3	0	5	84		
	0.1	114.654	0.91510	5	1	4	85		
	0.4	115.325	0.91169	7	1	2	86		
	0.2	117.239	0.90228	3	1	5	87		
	0.1	117.697	0.90009	5	3	3	88		
	0.3	118.641	0.89566	2	2	5	89		
	0.3	119.570	0.89140	6	2	3	90		
	0.1	121.683	0.88208	0	4	4	91		
	0.1	123.332	0.87514	1	4	4	92		
	0.1	123.611	0.87400	8	0	0	93		
	0.2	124.064	0.87216	5	2	4	94		
	0.2	124.802	0.86920	7	2	2	95		
	0.2	125.448	0.86666	4	3	4	96		
	0.1	126.920	0.86103	3	2	5	97		
	0.1	126.920	0.86103	8	0	1	98		
	0.3	128.486	0.85528	2	4	4	99		
	0.3	128.486	0.85528	0	3	5	100		
	0.1	128.875	0.85388	4	1	5	101		
	0.1	129.530	0.85157	6	0	4	102		
	0.1	130.152	0.84941	1	3	5	103		
	0.1	131.765	0.84397	7	1	3	104		
	0.1	133.168	0.83943	6	1	4	105		
	0.1	135.860	0.83120	0	0	6	106		
	0.1	135.860	0.83120	2	3	5	107		
	0.3	137.744	0.82581	1	0	6	108		
	0.2	138.091	0.82485	3	4	4	109		
	0.2	138.091	0.82485	8	0	2	110		
	0.4	139.777	0.82032	0	1	6	111		
	0.1	140.409	0.81868	4	2	5	112		
	0.1	141.981	0.81473	1	1	6	113		
	0.4	142.360	0.81381	8	1	2	114		
	0.2	142.981	0.81232	5	3	4	115		
	0.1	144.004	0.80993	7	2	3	116		
	0.2	145.806	0.80591	6	2	4	117		
	0.1	147.036	0.80331	3	3	5	118		
	0.6	147.790	0.80177	5	1	5	119		
	0.1	149.388	0.79863	2	1	6	120		

Date: 22-Apr-16 Time: 4:32:47 PM

File: HighScore Plus - HTK_phase_375

User: Empyrean

Name and formula

Reference code:	01-073-1942
Compound name: Common name:	Calcium Sulfate hexagonal anhydrite, γ-Ca S O4
Empirical formula:	CaO₄S
Chemical formula:	CaSO ₄

Crystallographic parameters

Crystal system:	Hexagonal
Space group:	P6222
Space group number:	180
a (Å):	6.9900
b (Å):	6.9900
c (Å):	6.3400
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10 ⁶ pm ⁻³):	268.27
Z:	3.00
RIR:	3.42

Status, subfiles and quality

Status:	
Subfiles:	
Quality:	

Alternate Pattern Pharmaceutical, Inorganic, Mineral, Ceramic, ICSD Pattern Indexed (I)

Comments

ANX:	ABX4
ICSD collection code:	24473
Creation Date:	01-Sep-98
Modification Date:	01-Sep-11
Cross-References:	ICSD:24473
ANX:	ABX4
Analysis:	Ca1 O4 S1
Formula from original source:	Ca S O4
ICSD Collection Code:	24473
Minor Warning:	No e.s.d reported/abstracted on the cell dimension. No R factors reported/abstracted
Wyckoff Sequence:	k d c(P6222)
Wyckoff Sequence:	K d C(P6222)
Unit Cell Data Source:	Single Crystal.

References

Primary reference: Calculated from ICSD using POWD-12++, (1997) Structure: Floerke, O.W., Neues Jahrb. Mineral., Abh., **84**, 189, (1952)

No.	h	k	1	d [Ă]	20 [°]	I [%]
1	1	0	0	6.05352	14.621	100.0
2	1	0	1	4.37826	20.266	0.9
3	1	1	0	3.49500	25.465	15.5
4	1	1	1	3.06074	29.153	6.3
5	2	0	0	3.02676	29.487	47.1
6	1	0	2	2.80826	31.840	52.4
7	2	0	1	2.73145	32.761	5.6
8	1	1	2	2.34804	38.302	5.0
9	2	1	0	2.28801	39.348	0.1
10	2	0	2	2.18913	41.204	5.1

11	2	1	1	2 15216	41.045	4.2	
11	2	1	1	2.15216	41.945	4.3	
12	2	0	0	2.11333	42.755	4.0	
13	1	0	2	2.01/04	44.004	3.5	
15	3	0	1	1.99524	47.23	6.1	
15	2	1	1	1.92200	47.233	22.2	
17	2 1	1	2	1.05524	F0 421	23.2	
19	2	2	0	1.00045	52 210	4.5	
10	2	2	2	1.74750	52.310	4.5	
19	2	0	3	1.73276	52.789	0.1	
20	3	0	2	1.70224	53.811	14.4	
21	2	2	1	1.68468	54.418	1.4	
22	3	1	0	1.67894	54.620	2.6	
23	3	1	1	1.62300	50.008	0.6	
24	2	1	3	1.55244	59.496	1.8	
25	1	0	4	1.53331	60.315	1.6	
26	2	2	2	1.53037	60.443	0.5	
27	4	0	0	1.51338	61.193	3.5	
28	3	1	2	1.48369	62.554	5.6	
29	4	0	1	1.4/202	63.107	0.3	
30	3		3	1.45942	63.715	0.2	
31	1	1	4	1.44350	64.502	2.1	
32	2	0	4	1.40413	66.541	0.1	
33	3	2	0	1.38877	67.375	0.8	
34	4	0	2	1.36573	68.669	0.1	
35	3	2	1	1.35661	69.196	0.9	
36	2	2	3	1.34672	69.777	0.1	
37	4	1	0	1.32099	/1.341	0.1	
38	3	1	3	1.31458	71.743	0.2	
39	2	1	4	1.30291	72.486	5.7	
40	4	1	1	1.29321	73.118	0.2	
41	3	2	2	1.27205	74.538	3.1	
42	3	0	4	1.24645	76.340	3.5	
43	1	0	5	1.24107	76.731	0.3	
44	4	0	3	1.23042	77.518	0.1	
45	4	1	2	1.21935	78.356	3.2	
46	5	0	0	1.21070	79.024	0.5	
47	1	1	5	1.19198	80.517	0.1	
48	5	0	1	1.18921	80.743	0.1	
49	2	2	4	1.17402	82.009	0.2	
50	2	0	5	1.16952	82.393	0.3	
51	3	3	0	1.16500	82.783	0.3	
52	3	2	3	1.16060	83.167	0.1	
53	3	1	4	1.15255	83.879	3.4	
54	4	2	0	1.14401	84.650	3.7	
55	5	0	2	1.13102	85.854	0.5	
56	4	2	1	1.12583	86.346	0.1	
57	4	1	3	1.12016	86.892	0.4	
58	2	1	5	1.10907	87.982	0.1	
59	3	3	2	1.09349	89.569	1.5	
60	5	1	0	1.08724	90.224	0.6	
61	4	2	2	1.07608	91.424	0.1	
62	3	ō	- 5	1.07362	91.693	0.1	
63	5	1	1	1.07160	91,916	0.1	
64	0	<u> </u>	6	1.05667	93,603	0.5	
65	5	ő	3	1.05052	94.320	0.1	
66	3	2	4	1.03052	95.030	1.6	
67	1	0	6	1.04003	95.050	0.3	
69	5	1	2	1.02944	93.403	2.2	
60	2	7	2	1 02025	97.007	0.1	
70	ے ا	J 1	ے ا	1.02025	98,760	1.0	
71	2	1		1.01145	90.705	0.3	
72	1	1	5	1 01145	00 207	0.3	
72	6	1	0	1.01145	99.207	1.0	
73	0		0	1.00092	33.343	1.0	
74	4	2	3	1.00000	99.931	0.3	
/5	2	0	6	0.99762	101.092	1.5	
/6	4	3	0	0.99519	101.433	0.3	
77	4	3	1	0.98315	103.164	0.1	
78	4	0	5	0.97194	104.847	0.1	
79	5	2	0	0.96934	105.247	0.3	
80	5	1	3	0.96680	105.642	0.1	
81	6	0	2	0.96213	106.379	0.4	
82	5	0	4	0.96213	106.379	0.4	
07	2	1	6	0.05020	106 921	0.4	

84 5 2 1 0.95820 107.008 0.2	
85 4 3 2 0.94950 108.440 1.0	
86 3 3 4 0.93871 110.289 0.5	
87 3 0 6 0.93608 110.751 0.2	
88 3 2 5 0.93608 110.751 0.2	
89 5 2 2 0.92697 112.400 1.3	
90 4 2 4 0.92697 112.400 1.3	
91 6 1 0 0.92315 113.111 0.2	
92 4 1 5 0.91477 114.718 0.1	
93 6 1 1 0.91352 114.964 0.1	
94 6 0 3 0.91048 115.566 0.1	
95 2 2 6 0.90421 116.837 1.0	
96 4 3 3 0.90036 117.641 0.1	
97 5 1 4 0.89658 118.443 0.9	
98 3 1 6 0.89429 118.937 0.3	
99 6 1 2 0.88633 120.705 1.2	
100 5 2 3 0.88108 121.917 0.1	
101 1 1 7 0.87675 122.943 0.1	
102 5 0 5 0.87565 123.209 0.1	
103 4 4 0 0.87375 123.672 0.5	
104 4 0 6 0.86638 125.521 1.0	
105 3 3 5 0.85789 127.768 0.1	
106 7 0 1 0.85685 128.050 0.1	
107 6 0 4 0.85112 129.658 0.1	
108 4 2 5 0.84940 130.154 0.1	
109 6 1 3 0.84596 131.165 0.1	
110 4 3 4 0.84283 132.113 0.8	
111 4 4 2 0.84283 132.113 0.8	
112 3 2 6 0.84093 132.699 0.3	
113 6 2 0 0.83947 133.155 0.9	
114 5 3 2 0.83430 134.823 1.2	
115 6 2 1 0.83221 135.521 0.1	
116 5 2 4 0.82695 137.338 0.8	
117 4 1 6 0.82537 137.902 0.4	
118 5 1 5 0.82537 137.902 0.4	
119 6 2 2 0.81150 143.329 0.1	
120 4 4 3 0.80746 145.100 0.1	
121 2 2 7 0.80413 146.644 0.1	
122 7 1 0 0.80181 147.768 0.3	
123 7 0 3 0.80037 148.489 0.3	
124 6 1 4 0.79771 149.871 1.0	

User: Empyrean

4 Of 4

Date: 22-Apr-16 Time: 4:28:24 PM

File: HighScore Plus - HTK_phase_250

User: Empyrean

Name and formula

Reference code:	01-071-6246
Compound name:	Silicon Oxide
Common name:	cristobalite-β high
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system:	Cubic
Space group:	Fd-3m
Space group number:	227
a (Å):	7.1264
b (Å):	7.1264
c (Å):	7.1264
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ⁻³):	361.91
Z:	8.00
RIR:	5.46

Status, subfiles and quality

Status: Subfiles: Quality:	Diffraction data collected at non ambient temperature Alloy, metal or intermetalic, Forensic, ICSD Pattern, Inorganic, Mineral, Pharmaceutical Star (S)
<u>Comments</u>	
ANX:	AX2

ICSD collection code:	77461
Creation Date:	01-Sep-05
Modification Date:	01-Sep-11
Cross-References:	ICSD:77461
ANX:	AX2
ICSD Collection Code:	77461
Calculated Pattern Original Remarks:	Mean Si-O: 1.60, Si-O-Si: 150.0, for ideal model cp. 77458. Temperature of Data Collection: 573 K. Unit Cell Data Source: Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Schmahl, W.W., Swainson, I.P., Dove, M.T., Graeme-Barber, A., Z. Kristallogr., **201**, 125, (1992)

No.	h	k	I	d [Ă]	20 [°]	I [%]
1	1	1	1	4.11441	21.581	100.0
2	2	2	0	2.51955	35.604	16.4
3	3	1	1	2.14868	42.016	1.6
4	2	2	2	2.05721	43.979	3.4
5	4	0	0	1.78159	51.236	0.5
6	3	3	1	1.63490	56.219	6.3
7	4	2	2	1.45466	63.949	4.8
8	5	1	1	1.37147	68.341	1.9
9	4	4	0	1.25978	75.390	1.5
10	5	3	1	1.20458	79.505	2.3
11	4	4	2	1.18773	80.864	0.1
12	6	2	0	1.12678	86.256	1.2
13	5	3	3	1.08676	90.275	0.2

Date: 22-Apr-1	6 Time: 4:28	:24 PM	File:	HighScore	Plus - HTK_	phase_250	User: Empyrear
14	6	2	2	1.07434	91.614	0.1	
15	4	4	4	1.02860	96.987	0.1	
16	7	1	1	0.99789	101.054	0.4	
17	6	4	2	0.95230	107.974	0.6	
18	7	3	1	0.92777	112.252	0.5	
19	8	0	0	0.89080	119.704	0.1	
20	7	3	3	0.87063	124.445	0.1	
21	6	4	4	0.86420	126.085	0.1	
22	8	2	2	0.83985	133.036	0.2	
23	7	5	1	0.82288	138 813	0.2	

Date: 22-Apr-16 Time: 4:24:41 PM

File: HighScore Plus - HTK_phase_150

User: Empyrean

Name and formula

Reference code:	01-071-6244
Compound name: Common name:	Silicon Oxide cristobalite-a high
Empirical formula:	O ₂ Si
Chemical formula:	SiO

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P41212
Space group number:	92
a (Å):	4.9829
b (Å):	4.9829
c (Å):	6.9633
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
/olume of cell (10 ⁶ pm ³):	172.89
Z:	4.00
RIR:	5.03

Status, subfiles and quality

 Status:
 Diffraction data collected at non ambient temperature, Alternate Pattern

 Subfiles:
 Alloy, metal or intermetalic, Cement and Hydration Product, Common Phase, Forensic, ICSD Pattern, Inorganic, Mineral, Pharmaceutical, Pigment/Dye

 Quality:
 Star (S)

 Comments
 AX2

 ICSD collection code:
 77456

 Creation Date:
 01-Sep-05

ANX:	AX2
ICSD collection code:	77456
Creation Date:	01-Sep-05
Modification Date:	01-Sep-11
Cross-References:	ICSD:77456
ANX:	AX2
ICSD Collection Code:	77456
Calculated Pattern Original Remarks:	Cell at 463 K: 4.9849, 6.9615. Mean Si-O: 1.596, Si-O-Si: 147.9. Temperature of Data Collection: 458 K.
	Unit Cell Data Source: Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Schmahl, W.W., Swainson, I.P., Dove, M.T., Graeme-Barber, A., Z. Kristallogr., **201**, 125, (1992)

<u>Peak list</u>

No.	h	k	I	d [Ă]	20 [°]	I [%]
1	1	0	1	4.05222	21.916	100.0
2	1	1	0	3.52342	25.256	0.5
3	1	1	1	3.14386	28.366	7.6
4	1	0	2	2.85398	31.317	8.9
5	2	0	0	2.49144	36.019	12.1
6	1	1	2	2.47653	36.244	5.4
7	2	0	1	2.34580	38.340	0.2
8	2	1	0	2.22841	40.446	0.1
9	2	1	1	2.12237	42.562	2.5
10	1	0	3	2.10401	42.952	0.2
11	2	0	2	2.02611	44.690	2.4
12	1	1	3	1.93830	46.833	4.0
 4.2	48 462	1 87688	2	1	2	13
---------	---------	---------	-----	---	---	----
4.2	40.402	1.0/000	2	1	2	13
0.4	51.030	1.70171	4	2	2	19
0.0	52.520	1.74081	4			15
0.1	53.018	1.70790	1	2	2	10
1.9	53.946	1.69829	3	0	2	1/
0.4	55.902	1.64341	4	0	1	18
3.2	56.951	1.61563	1	0	3	19
1.6	57.266	1.60/49	3	1	2	20
0.3	58.531	1.57572	0	1	3	21
0.3	58.686	1.57193	2	2	2	22
0.1	59.149	1.56072	4	1	1	23
2.0	60.161	1.53686	1	1	3	24
2.0	61.840	1.49910	2	0	3	25
2.4	64.904	1.43554	2	1	3	26
1.2	65.341	1.42699	4	0	2	27
1.1	66.587	1.40328	3	2	2	28
0.1	67.750	1.38200	0	2	3	29
1.7	68.320	1.37184	4	1	2	30
0.9	69.257	1.35556	1	2	3	31
0.6	69.539	1.35074	3	0	3	32
1.1	70.103	1.34125	5	0	1	33
1.3	72.436	1.30369	3	1	3	34
0.1	72.991	1.29515	5	1	1	35
1.5	73.695	1.28450	2	2	3	36
0.1	76.392	1.24572	0	0	4	37
0.7	76.937	1.23826	4	2	2	38
0.9	77.831	1.22625	1	0	4	39
0.1	78.642	1,21563	5	0	2	40
1.2	79 195	1 20852	0	1	4	41
0.1	80.619	1 19072	1	1	4	42
11	80.887	1 18745	3	2	3	43
1.1	81 423	1 18000	5	1	2	44
0.2	01.425	1.10099	0	2	2	45
0.2	01.971	1.17200	2		3	45
0.2	02.105	1.1/290	2	1		40
0.3	02.303	1.10022		1	3	47
0.3	03.304	1.15012	- 1	3	3	40
0.2	84.861	1.141/0	2	1	4	49
0.1	85.923	1.13029	6	0	1	50
0.4	87.606	1.11286	2	3	3	51
0.9	88.664	1.10229	6	1	1	52
0.8	88.876	1.10021	1	2	4	53
0.2	89.141	1.09763	3	0	4	54
0.1	89.670	1.09252	5	2	2	55
0.2	90.742	1.08238	4	2	3	56
0.1	91.880	1.07193	3	1	4	57
0.1	92.409	1.06717	5	0	3	58
0.3	93.085	1.06119	2	2	4	59
0.1	94.145	1.05201	6	0	2	60
0.1	94.623	1.04795	3	3	3	61
0.2	95.155	1.04350	5	1	3	62
0.1	96.897	1.02932	6	1	2	63
0.1	98,995	1.01305	4	0	4	64
0.2	00.147	1.00447	3	2	4	65
0.3	01 239	0.99657	0		4	66
0.5	01 779	0 99274	4	1	4	67
0.0	02 672	0.99274	1	3	4	68
0.5	03 497	0.90032		2		60
0.1	04.045	0.90097	5		3	20
0.1	04 205	0.97722		1		70
0.1	04.505	0.97550	/	0	1	/1
0.1	05.276	0.97361	4	2	2	72
0.1	05.276	0.96915	6	2	2	/3
0.2	03.496	0.96/74	1	1	5	/4
0.3	07.025	0.95810	2	0	5	75
0.1	.08.136	0.95132	6	0	3	76
0.1	09.913	0.94086	2	1	5	77
0.1	10.336	0.93844	4	2	4	78
0.1	11.043	0.93445	6	1	3	79
0.1	12.124	0.92847	5	0	4	80
0.1	12.711	0.92530	0	2	5	81
0.1	12.983	0.92383	7	0	2	82
0.1	14.240	0.91723	1	2		83
0.3	14 530	0.91574	2		4	84
0.5	15 112	0.01276	5	1	4	85
0.1		5.51270	3	-		00

			righteene	User. Empyrean		
86 2	1	7	0.90835	115.993	0.3	
87 5	1	3	0.90065	117.579	0.1	
88 3	3	5	0.89782	118.177	0.1	
89 5	2	2	0.89425	118.946	0.3	
90 3	2	6	0.88874	120.162	0.2	
91 4	4	0	0.88086	121.969	0.1	
92 4	4	1	0.87389	123.638	0.1	
93 0	0	8	0.87002	124.597	0.1	
94 4	2	5	0.87002	124.597	0.1	
95 2	2	7	0.86620	125.566	0.1	
96 5	0	4	0.86488	125.909	0.2	
97 5	2	3	0.85952	127.326	0.1	
98 1	0	8	0.85742	127.894	0.1	
99 5	3	0	0.85456	128.686	0.2	
100 3	0	7	0.85395	128.856	0.2	
101 4	4	2	0.85395	128.856	0.2	
102 5	1	4	0.85214	129.368	0.1	
103 5	3	1	0.84819	130.506	0.1	
104 1	1	8	0.84500	131.453	0.1	
105 3	1	7	0.84116	132.628	0.1	
106 4	1	6	0.83708	133.918	0.1	
107 5	3	2	0.82992	136.299	0.1	
108 6	0	0	0.82992	136.299	0.1	
109 6	0	1	0.82463	138.170	0.2	
110 4	4	3	0.82354	138.568	0.1	
111 2	0	8	0.82170	139.252	0.1	
112 6	1	0	0.81918	140.214	0.3	
113 5	2	4	0.81705	141.049	0.1	
114 6	1	1	0.81357	142.459	0.1	
115 2	1	8	0.81075	143.648	0.2	
116 4	3	5	0.81075	143.648	0.2	
117 3	2	7	0.80735	145.147	0.1	
118 6	0	2	0.80735	145.147	0.1	
119 4	2	6	0.80374	146.827	0.1	
120 5	3	3	0.80193	147.708	0.1	
121 5	1	5	0.79993	148.712	0.4	

Date: 22-Apr-16 Time: 4:34:17 PM

File: HighScore Plus - HTK_phase_580

User: Empyrean

Name and formula

Reference code:	01-070-8055
Compound name:	Silicon Oxide
Common name:	quartz-β high
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

$(Å)$: 4.9965 (A) : 4.9965 $(Å)$: 5.4543 $A pha (^{\circ})$: 90.0000 Seta (^{\circ}): 90.0000 Gamma (^{\circ}): 90.0000 Gamma (^{\circ}): 120.0000 John of cell (10 ⁶ pm ⁻³): 117.92 Z: 3.00 RIR: 4.32	Crystal system: Space group: Space group number:	Hexagonal P6422 181
/olume of cell (10 ⁶ pr ⁻³): 117.92 Z: 3.00 RIR: 4.32	a (Å): o (Å): c (Å): c (Å): ecta (°): Gamma (°):	4.9965 4.9965 5.4543 90.0000 90.0000 120.0000
RIR: 4.32	/olume of cell (10 ⁶ pm ⁻³): Z:	117.92 3.00
	RIR:	4.32

Status, subfiles and quality

Status: Subfiles: Quality:

Diffraction data collected at non ambient temperature Inorganic, Mineral, Alloy, metal or intermetalic, ICSD Pattern Star (S)

Comments

ANX:	AX2
ICSD collection code:	093975
Creation Date:	01-Sep-05
Modification Date:	01-Sep-11
Cross-References:	ICSD:093975
ANX:	AX2
Analysis:	O2 Si1
Formula from original source:	Si O2
ICSD Collection Code:	093975
Calculated Pattern Original Remarks:	Stable from 846 to 1143 K (2nd ref., Tomaszewski), below P3121
Temperature of Data Collection:	1073 K
Wyckoff Sequence:	j c(P6422)
Unit Cell Data Source:	Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Tucker, M.G., Keen, D.A., Dove, M.T., Mineral. Mag., **65**, 489, (2001)

No.	h	k		d [Ă] b	20 [°]	I [%]
1	1	0	0	4.32710	20.509	19.9
2	1	0	1	3.38988	26.269	100.0
3	1	1	0	2.49825	35.918	4.1
4	1	0	2	2.30716	39.008	1.4
5	1	1	1	2.27133	39.649	0.1
6	2	0	0	2.16355	41.714	3.8
7	2	0	1	2.01111	45.042	3.2
8	1	1	2	1.84215	49.436	13.9
9	0	0	3	1.81810	50.135	0.1

Date: 22-Apr-16	5 Time: 4:34	:17 PM	File:	HighScore	Plus - HTK_ph	nase_580	User: Empyrean
10	2	0	2	1.69494	54.062	0.8	
11	1	0	3	1.67616	54.718	0.5	
12	2	1	0	1.63549	56.197	0.1	
13	2	1	1	1.56658	58.906	6.9	
14	1	1	3	1.47003	63.202	0.4	
15	3	0	0	1.44237	64.559	0.8	
16	2	1	2	1,40260	66.623	4.0	
17	3	0	- 1	1.39443	67.065	1.7	
18	2	0	3	1.39190	67.203	6.0	
19	1	Ő.	4	1.30053	72.640	0.8	
20	3	Ő	2	1 27502	74 335	2.1	
21	2	2	0	1 24913	76 147	1.6	
21	2	1	3	1 21502	78.619	1.0	
22	3	1	0	1 20012	70.015	0.6	
23		1		1.20012	79.000	0.0	
29	1	1	- 4	1.19090	00.110	1.9	
25	2	1	1	1.17200	02.1/4	2.5	
20	2	0	4	1.15358	83./8/	0.1	
27	2	2	2	1.13500	85.419	0.1	
20	2	1	2	1.12990	00.954	0.1	
29	3	1	2	1.09846	89.055	0.9	
30	4	0	0	1.08177	90.808	0.7	
31	4	0	1	1.06111	93.094	0.1	
32	1	0	5	1.05776	93.477	0.8	
33	2	1	4	1.04732	94.698	0.6	
34	2	2	3	1.02955	96.868	0.6	
35	4	0	2	1.00555	100.001	0.1	
36	3	1	3	1.00159	100.542	0.1	
37	1	1	5	0.99971	100.802	0.2	
38	3	2	0	0.99270	101.784	0.2	
39	3	0	4	0.99088	102.045	0.3	
40	3	2	1	0.97666	104.130	0.7	
41	4	1	0	0.94425	109.329	0.1	
42	3	2	2	0.93283	111.333	0.5	
43	4	1	1	0.93041	111.770	0.7	
44	4	0	3	0.92966	111.907	0.6	
45	2	2	4	0.92107	113,504	0.1	
46	0	0	6	0.90905	115.853	0.2	
47	2	1	5	0.90751	116 163	0.4	
48	3	1	4	0.90089	117 529	0.1	
40	4	1	2	0.90009	119 377	0.5	
50	1	1	6	0.89963	110.063	0.5	
51	3	2	3	0.00905	124 281	0.1	
52	2	2	5	0.07125	124.201	0.1	
52	3	0	5	0.87005	124.569	0.1	
53	5	0	0	0.86542	125.769	0.1	
54	5	0	1	0.85473	128.638	0.3	
55	1	1	6	0.85473	128.638	0.3	
56	4	0	4	0.84/4/	130.718	0.1	
57	2	0	6	0.83808	133.597	0.4	
58	4	1	3	0.83808	133.597	0.4	
59	3	3	0	0.83275	135.339	0.1	
60	5	0	2	0.82488	138.080	0.2	
61	3	3	1	0.82321	138.692	0.1	
62	2	2	5	0.82165	139.273	0.1	
63	4	2	0	0.81774	140.774	0.4	
64	3	1	5	0.80722	145.206	0.6	
65	3	2	4	0.80255	147.403	0.7	

Date: 21-Apr-16 Time: 9:42:07 AM

File: HighScore Plus - 01-070-7345

User: Empyrean

Name and formula

Reference code:	01-070-7345
Mineral name:	Quartz
Compound name:	Silicon Oxide
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system:	Hexagonal
Space group:	P3221
Space group number:	154
a (Å):	4.9148
b (Å):	4.9148
c (Å):	5.4067
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10 ⁶ pm ⁻³):	113.10
Z:	3.00
RIR:	3.06

Status, subfiles and quality

Comments	
Quality:	Indexed (I)
Status: Subfiles:	Alternate Pattern Alloy, metal or intermetalic, Cement and Hydration Product, Common Phase, Forensic, ICSD Pattern, Inornanic Mineral Pharmaceutical

ANX:	AX2
ICSD collection code:	093094
Creation Date:	01-Sep-05
Modification Date:	01-Sep-11
Cross-References:	ICSD:093094
ANX:	AX2
Analysis:	O2 Si1
Formula from original source:	Si O2
ICSD Collection Code:	093094
Calculated Pattern Original Remarks:	Stable up to 846 K, above P6222, above 1143 K tridymite is stable
Minor Warning:	10%~R factor<15% (for powder)
Wyckoff Sequence:	c a(P3221)
Unit Cell Data Source:	Powder Diffraction.

References

Primary reference: Calculated from ICSD using POWD-12++ Structure: Dusek, M., Petricek, V., Wunschel, M., Dinnebier, R.E., van Smaalen, S., J. Appl. Crystallogr., **34**, 398, (2001)

No.	h	k	I	d [Ă]	20 [°]	I [%]
1	1	0	0	4.25633	20.853	17.6
2	0	1	1	3.34437	26.633	100.0
3	1	1	0	2.45740	36.536	8.0
4	0	1	2	2.28199	39.456	7.3
5	1	1	1	2.23716	40.281	2.8
6	2	0	0	2.12817	42.440	5.0
7	0	2	1	1.98028	45.783	2.5
8	1	1	2	1.81840	50.126	12.6

ate: 21-Apr-16	Time: 9:42	:07 AM	File	e: HighScore	e Plus - 01-07	0-7345	User: Empyrear
9	0	0	3	1.80224	50.607	0.4	
10	0	2	2	1.67219	54.858	3.4	
11	0	1	3	1.65960	55.310	1.5	
12	2	1	0	1.60874	57.217	0.2	
13	1	2	1	1.54193	59.943	9.1	
14	1	1	3	1.45329	64.016	1.6	
15	3	0	0	1.41878	65.767	0.3	
16	1	2	2	1.38247	67.723	5.0	
17	2	0	3	1.37533	68.123	6.6	
18	0	3	1	1.37232	68.293	4.0	
19	1	0	4	1.28828	73.443	2.0	
20	0	3	2	1.25628	75.637	2.6	
21	2	2	0	1.22870	77.647	1.4	
22	2	1	3	1.20016	79.857	2.6	
23	2	2	1	1.19815	80.018	1.0	
24	1	1	4	1.18434	81.144	2.2	
25	3	1	0	1.18049	81.464	2.4	
26	1	3	1	1.15332	83.810	1.6	
27	0	2	4	1.14099	84.926	0.2	
28	2	2	2	1.11858	87.045	0.1	
29	0	3	3	1.11479	87.416	0.2	
30	1	3	2	1.08185	90.799	2.3	
31	4	0	0	1.06408	92.757	0.4	
32	0	1	5	1.04805	94.612	1.3	
33	0	4	1	1.04406	95.087	0.8	
34	1	2	4	1.03488	96.204	1.3	
35	2	2	3	1.01521	98./10	1.0	
36	1	1	5	0.98976	102.205	0.9	
37	0	4	2	0.98976	102.205	0.9	
38	1	3	3	0.98751	102.529	0.5	
39	0	3	4	0.97864	103.832	0.3	
40	3	2	0	0.97647	104.158	0.7	
41	0	2	5	0.96404	106.076	0.1	
42	2	3	1	0.96092	106.5/1	1.3	
43	4	1	0	0.92881	112.062	0.1	
44	2	3	2	0.91839	114.016	0.4	
45	0	4	3	0.91629	114.422	1.1	
46	1	4	1	0.91540	114.596	1.2	
4/	2	2	4	0.90920	115.823	0.4	
48	0	0	6	0.90112	117.480	0.1	
49	1	2	5	0.89745	118.257	0.9	
50	3	1	4	0.88914	120.073	0.8	
51	1	0	6	0.88158	121.799	0.2	
52	1	4	2	0.87841	122.547	0.6	
53	0	3	5	0.86003	127.189	0.2	
54	2	3	3	0.85855	127.587	0.1	
55	1	1	6	0.84603	131.144	0.2	
56	0	5	1	0.84091	132.706	0.1	
57	0	4	4	0.83609	134.236	0.1	
58	0	2	6	0.82980	136.341	1.1	
59	1	4	3	0.82562	137.815	1.3	
60	3	3	0	0.81913	140.232	0.3	
61	5	0	2	0.81196	143.132	1.5	
62	2	2	5	0.81196	143.132	1.5	
63	3	3	1	0.80989	144.022	0.5	
64	4	2	0	0.80437	146.528	0.9	

Date: 22-Apr-16 Time: 4:25:23 PM

User: Empyrean

Name and formula

Reference code:	00-045-0157
Compound name:	Calcium Sulfate
Empirical formula:	CaO ₄ S
Chemical formula:	CaSO ₄

Crystallographic parameters

Crystal system:	Hexagonal
a (Å): b (Å): c (Å): Alpha (°): Beta (°): Gamma (°):	6.9723 6.9723 6.3050 90.0000 90.0000 120.0000
Volume of cell (10 ⁶ pm ³):	265.44
RIR::	-

Status, subfiles and quality

Diffraction data collected at non ambient temperature Cement and Hydration Product, Ceramic, Inorganic, Pharmaceutical Indexed (I)

<u>c</u>

Creation Date: Additional Patterns: General Comments: Sample Preparation: Temperature of Data Collection: Unit Cell Data Source: 01-Sep-95 See PDF 01-073-1942 Anhydrite phase III "Ca S O4 '0.5 H2 O" was dried on the hot stage of the X-ray diffractometer Pattern taken at 353 K Powder Diffraction.

References

Primary reference: Bobrov, B., Romashkov, A., Tubolev, A., Inorg. Mater. (Engl. Transl.), 24, 1006, (1988)

No.	h	k		d [Ă]	20 [°]	I [%]
1	1	0	0	6.04600	14.639	100.0
2	1	0	1	4.36400	20.333	1.0
3	1	1	0	3.48500	25.539	22.0
4	1	1	1	3.04400	29.317	17.0
5	2	0	0	3.01600	29.595	71.0
6	1	0	2	2.79400	32.007	22.0
7	2	0	1	2.72000	32.902	5.0
8	1	1	2	2.33800	38.473	3.0
9	2	1	0	2.28100	39.474	1.0
10	2	0	2	2.18000	41.384	3.0
11	2	1	1	2.14600	42.071	5.0
12	0	0	3	2.10600	42.909	2.0
13	3	0	0	2.01200	45.021	3.0
14	3	0	1	1.91700	47.385	6.0
15	2	1	2	1.84800	49.269	18.0
16	2	2	0	1.74300	52.455	5.0
17	3	0	2	1.69700	53.991	10.0
18	2	2	1	1.67500	54.759	4.0
19	3	1	0	1.67000	54.936	3.0
20	3	1	1	1.61700	56.898	1.0
21	2	1	3	1.54800	59.684	1.0

Date: 22-Apr-16 Time: 4:25:23 PM			File	e: HighScor	e Plus - HTK	_phase_150	User: Empyre
22	2	2	2	1.52600	60.634	1.0	
23	4	0	0	1.50900	61.390	2.0	
24	3	1	2	1.48000	62.728	3.0	
25	4	1	0	1.31200	71.906	1.0	
26	2	1	4	1.29800	72.805	3.0	
27	3	2	2	1.26700	74.886	3.0	

Date: 22-Apr-16 Time: 4:32:14 PM

File: HighScore Plus - HTK_phase_375

User: Empyrean

Name and formula

Reference code:	00-027-0605
Compound name:	Silicon Oxide
Common name:	cristobalite, high
Empirical formula:	O ₂ Si
Chemical formula:	SiO ₂

Crystallographic parameters

Crystal system:	Cubic
Space group:	Fd-3m
Space group number:	227
a (Å):	7.1300
b (Å):	7.1300
c (Å):	7.1300
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm ³):	2.20
Volume of cell (10 ⁶ pm ³):	362.47
Z:	8.00
RIR::	

Status, subfiles and quality

Status: Subfiles: Quality: Diffraction data collected at non ambient temperature Pharmaceutical, Inorganic, Forensic, Mineral, Alloy, metal or intermetalic Indexed (I)

Comments

Creation Date:01-Sep-77Additional Patterns:To replaceGeneral Comments:High â-crisSample Preparation:SynthesizeTemperature of Data Collection:High tempUnit Cell Data Source:Powder Di

01-Sep-77 To replace 00-004-0359 High â-cristobalite Synthesized by devitrifying pure vitreous silica at 1690 C High temperature pattern, taken at 573 K Powder Diffraction.

References

Primary reference: Leadbetter, A. et al., Private Communication, (1975) Unit cell: Leadbetter, A. et al., Nature (London), Phys. Sci., **244**, 125, (1973)

No.	h	k		d [Ă]	20 [°]	I [%]
1	1	1	1	4.11000	21.605	100.0
2	2	2	0	2.51800	35.627	12.0
3	3	1	1	2.14900	42.009	1.0
4	2	2	2	2.05600	44.006	4.0
5	4	0	0	1.78200	51.223	1.0
6	3	3	1	1.63600	56.178	7.0
7	4	2	2	1.45500	63.932	5.0
8	5	1	1	1.37200	68.311	2.0
9	4	4	0	1.26100	75.304	2.0
10	5	3	1	1.20300	79.631	3.0
11	4	4	2	1.18800	80.842	1.0
12	6	2	0	1.12800	86.140	2.0
13	5	3	3	1.08800	90.144	1.0
14	6	2	2	1.07500	91.542	1.0
15	4	4	4	1.02900	96.937	1.0

Date: 22-Apr-16 Time: 4:32:14 PM			File: HighScore Plus - HTK_phase_375				User: Em
16	5	5	1	0.99880	100.928	1.0	
17	6	4	2	0.95320	107.825	1.0	
18	7	3	1	0.92860	112.100	1.0	
19	8	0	0	0.89150	119.548	1.0	
20	7	3	3	0.87150	124.227	1.0	
21	6	6	0	0.84050	132.833	1.0	
22	7	5	1	0.82350	138.585	1.0	

ประวัติผู้เขียนวิทยานิพนธ์

นายธนวัฒน์ เพชรรัตนรังสี เกิดเมื่อวันที่ 29 ตุลาคม 2534 ได้สำเร็จการศึกษาระดับ มัธยมปลายจาก โรงเรียนสวนกุหลาบวิทยาลัย ระดับปริญญาตรีจากภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และได้เข้ารับการศึกษาต่อในหลักสูตรวิศวกรรม ศาสตรมหาบัณฑิตที่ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปี 2557

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University