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tectors with hierarchical pedestrian region reduction. It is intended for monocular environment

since it is the simplest, least expensive, and most practical environment to work in real appli-

cations. The pedestrian is represented by the combination of channel features. The operation

is broken down into two steps, namely, training and testing. In training step, the channel fea-

tures are weighted by pedestrian template for meaningful feature selection process. Handling

partial occlusion is carried out in testing step by constructing a hierarchical region reduction
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CHAPTER I

INTRODUCTION

1.1 Problem and Motivation

Nowadays, pedestrian accident rates by vehicle are still high. Using technologies as

tools to reduce accidents is a viable means to save life. These vehicles need to be equipped

with state-of-the-art tools so as to prevent potential mishaps. Moreover, surveillance and action

cameras are often installed on various type of vehicles such as cars, motorcycles, and bicycles

to serve the purpose. Detecting pedestrian by the equipment becomes an on-going research. A

number of techniques are applied to accommodate a wide range of real world applications such

as finding human in an image, detecting human in surveillance videos using static cameras,

surveillance system with moving cameras, robot vision, and automatic pedestrian detection

system for vehicle design.

In this regard, pedestrian detection is one of the most active researches in computer vi-

sion. There are many published researches in this field that lead to a wide array of research

diversifications. Among numerous researches, the areas of interest are grouped into several

topics such as:

1) Finding the features to represent pedestrian

Pedestrian class is one of the object that is non-rigid, different postures, variation of cloth-

ing, and always affected by illumination. These make pedestrian class complicated to

represent.

2) Computing time for real world applications

One of the major aim is pedestrian detection system to prevent accident since the accident

can happen any time. The system should perform in real-time with acceptable perfor-

mance.

3) Partial occlusion problems

In real world situation, pedestrians can be occluded on the scene. The occlusion can be
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caused by many objects such as bushes, trees, cars, bags, and other pedestrians. So, the

pedestrian detection system should be capable of handling partial occlusion problems.

From the topics mention above, pedestrian detection is an interesting and challenging

problem. This dissertation proposes a pedestrian detection framework with partial occlusion

handling. The proposed approach uses a weighted mean pedestrian silhouette for feature selec-

tion to determine the expected pedestrian location in a subwindow. Then, the appearance-based

boosted decision trees are applied as classifiers with aggregated channel features (ACF). The

partial occlusion problem is handled by a hierarchical pedestrian appearance scheme that in-

tegrated into boosted decision trees. From the experimental results, the proposed framework

yields good results and handles partial occlusion problem well.

1.2 Objectives

The objectives of this dissertation are the following.

1) To detect pedestrian in moving monocular camera environment, focusing on the detection

system which require as low resource as possible and can be applied in wide range of

applications.

2) To detect partial occlusion pedestrian. From video observation in urban environment,

partial occlusion problem is the major cause of more than half of pedestrians viewing in

the scene blocked. So partial occlusion handling capability is required.

1.3 Scope and Limitations

This dissertation concerns two aspects. The first aspect is to determine a fully visible

pedestrian. The second aspect is the pedestrian with partial occlusion. There are two issues

worth considering prior to elaborating on the proposed method. First, many researches attempt

to collect more types or channels of data by including more equipment to capture additional in-

formation such as stereo-based camera and infra-red sensor. Moreover, various types of image

information such as depth, motion, and optical flow are taken into account in the classification

process. Second, despite the use of this information which can improve the recognition accu-

racy, they are rather costly in terms of computations and practical use. To resolve the causes of

these factors, the following basic constraints are imposed in the scope of work.
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1) The proposed method operates in moving monocular camera environment. All images are

taken from a monocular camera.

2) The camera is set perpendicular to the upright pedestrian’s body. It pans on a hypothetical

plane parallel to the ground. Therefore, the work will focus on applications in driving

assistance. In this environment, the camera is attached to the car set parallel to the ground,

and pans during the vehicle turns.

1.4 Summary of Contributions

The contributions of this dissertation are three folds. First, a semantic feature selection

based on a mean smoothed pedestrian template is proposed. In training step of boosted deci-

sion trees, the feature points are selected using the mean smoothed pedestrian template where

each pixel is weighted by the average pedestrian silhouette. Second, a combination of chan-

nel features for pedestrian representation is proposed by using two powerful image features as

channel features. Third, a partial occlusion handing technique is established for use with multi-

appearance based boosting decision trees. This approach combines several boosted decision

trees in a hierarchical fashion. The classification result in each level activates the corresponding

classifiers to handle the problem.

1.5 Research Procedures

1) Review and study fundamentals and related works of pedestrian detection.

2) Propose a partial occlusion handling method.

3) Experiment and compare results with other techniques.

4) Propose a pedestrian detection framework.

5) Experiment with standard datasets and compare the results with other techniques.

6) Analyse the experimental results, draw some concluding remarks and future works.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. The next chapter describes some

backgrounds and related works. Chapter 3 establishes an architecture of pedestrian detection



4

framework with partial occlusion handling. Chapter 4 describes the experimental setting and

demonstrates the experimental results of the proposed framework. Finally, some discussions,

conclusion, and future work of the dissertation are given in Chapter 5.



CHAPTER II

LITERATURE REVIEWS

In recent years, pedestrian classification is one of the most active research topics in com-

puter vision. Some issues and surveys were discussed in [1–5]. Numerous efforts have been

dedicated to various pedestrian recognition areas. Examples are gaining more information from

the source by additional sensors and related instrument to a system, finding a feature that can

capture pedestrian characteristics, integration with many classifiers, handling more complicated

scenarios such as partial occlusion and night-time situation. This chapter reviews and discusses

the related works including the recent works and algorithms in domain of pedestrian detection.

2.1 Camera and Additional Equipment

Most pedestrian detection researches utilize two types of camera, namely, monocular and

stereo cameras. In a monocular system, the information directly obtained from a single camera

is the sequence of images. Basic information that widely use is intensity or color image. Given

image sequences or video data, a number of researches used the motion flow acquired from two

consecutive frames computation as another source of information [6, 7]. Thus, the monocular

system is inexpensive and easy to implement in real world settings [1, 8–10]. With the limited

sources of the image information problem in monocular environment, a stereo-based system

was proposed [11]. The most attractive benefit of stereo-based system is information from a

depth channel. The depth channel can be applied to both classification and detection prob-

lems such as search space reduction and scene analysis [12, 13]. In [14, 15], three information

channels were obtained, including intensity, flow, and depth, which yielded good classification

results. More information can thus be added, depending on the additional equipment being in-

corporated into the system such as an infra-red camera [16, 17] and other sensors. However, the

more equipment and information channels are added, the higher complexity of the system be-

comes. Consequently, the approaches including a stereo camera and additional equipment may

be expensive and more complicated to implement in real world applications than the monocular

system counterpart.
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2.2 Features for Pedestrian Classification

Irrespective of the number of cameras used, the problem is how to represent the variation

of pedestrian classes. Many features that capture the image information have been proposed

such as histogram of oriented gradient (HOG) [18], local binary pattern [19], region covariance

[20], edgelet [21], Haar-like rectangle [6, 22], and local receptive field [23, 24].

2.2.1 Histogram of Oriented Gradient

Shape of object is a crucial information widely used in image processing interpreted by

the distribution of image gradients. This information can be derived from the gradients of im-

age. Gradients of image are the values that describe a changing in color or intensity of image

in directed manner. These values can be described in both how fast of the changing and the

direction of the changing. The gradient of the image compose of two different information.

First, the gradient magnitude that represent how fast the color or intensity of image is chang-

ing. More magnitude implied faster changing. Second, the gradient orientation represents the

changing direction of color or intensity of image. Histogram of oriented gradient (HOG) is a

very popular descriptor in domain of object detection, especially in pedestrian detection. HOG

was first introduced by Dalal et al. [18] in 2005. HOG computes the appearance of gradient

orientation in each small portions of an image. The input image is divided into small regions

called cells. For each cell, compute the histogram of gradients according to the orientation and

weighted by its magnitude. Neighbouring cells are formed to bigger region called block. The

histograms in the block are concatenated and normalized. The combination of these histograms

in all block then represents the HOG descriptor as shown in Figure 2.1.

2.2.2 Local Binary Pattern

The Local Binary Pattern (LBP) is a widely used image descriptor in pattern recognition.

LBP is computed by comparing pixel’s value of a pixel with its neighbours. The neighbour pix-

els having higher value are assigned to 1 and the lower value are assigned to 0. The binarized

neighbour pixels form the binary number and the histogram bin associated with the decimal

value of binary number is accounted. The final result is a histogram of binary pattern that rep-

resents the image. The process of LBP descriptor is illustrated in Figure 2.2. Therefore normal

LBP feature need 256 histogram bins to represent image pattern. There is an extend version

of LBP that reduce the size of histogram bin based on frequency occurrence binary patterns in
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Figure 2.1: HOG calculation.

image called uniform pattern. The uniform patterns are the patterns which the number of bit

transitions happen at most two times. Example of uLBP patterns are displayed in Table 2.1.

From original 256 histogram bins, this uniform LBP (uLBP) compose of 59 histogram bins

only.

Figure 2.2: An LBP process.

2.2.3 Rectangle Filters

A simple but powerful rectangle filters was proposed by Viola et al.[22, 25]. The cal-

culation is very simple by giving a set of rectangle as shown is Figure 2.3, the values denote

the difference between summation of all pixel values in white area and summation of all pixel

values in black area. This fast computation can be performed using integral images and learned

using adaptive boosting.
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Table 2.1: Example of uniform binary pattern.

Pattern Number of transitions Uniform

00000000 0 Yes
00111100 2 Yes
10001110 3 No
10101010 7 No
11100000 1 Yes

Figure 2.3: Examples of rectangle filters.

Since each individual image feature captures only one dominant information it represents,

there is no feature that can encompass the pedestrian well in every situation. To overcome this

problem, a multi-featured approach was employed. In [26], the different image features were

concatenated to constitute one feature space. This was apparent in an example of mixture-

of-experts [15] that made use of this multi-featured classification. The multi-featured with

trainable classifiers was proposed in [27]. Wang et al. [28] combined two powerful image de-

scriptors, HOG and LBP, for pedestrian detection with partial occlusion handling. The decision

value of SVM is decomposed and distributed into small regions. These decomposed values are

used to indicate the occlusion area of the detection window. The integral feature channels (ICF)

that combined image information from many image channels and represented in one integral

image was proposed in [29]. The ICF is the combination of the sum of many rectangle regions

of the image in different channels and fast to compute. Benenson et al., [30] proposed roerei

detector that applied ICF with all possible rectangle features and improve performance using

global normalization. Informed Haar feature is introduced by Zhang et al.[63]. Informed Haar

is a template pool formed by multiple size binary and ternary rectangle features. Each rectan-

gle is created by sliding the rectangle over pedestrian shape and collect the pedestrian shape

information as shown in Figure 2.4. Informed Haar composes of multiple features such as LUV

color, gradient magnitude, and gradient histogram. This technique is applied with a boosted

decision tree.
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Figure 2.4: Examples of informed Haar rectangle feature.

2.2.4 Word Channel Features

Costea et al.[65] designed word channel feature for single classifier pedestrian detection.

Word channel is high level visual word based on visual codebook with lower dimension of

descriptors. Three types of feature are trained by the codebook to group visual words such as

LUV, HOG, and LBP. The input image is extracted to these three types of feature. Each feature

is matched with the corresponding codebook. The map will be decomposed to channel for each

word of individual trained feature and perform sliding window classification with cascade of

boosted decision tree. The steps for pedestrian detection using word channel are summarized

in Figure 2.5.

2.2.5 Aggregate Channel Features

One of the recent image features called Aggregate Channel Features (ACF) which is

a fast multi-scale image feature proposed by Dollar et al. [31]. The ACF is composed of

several image features called channel which interpolatable with nearby scales such as color,

gradient, and gradient histogram. Given an input image I , the channel features, Ci = ϕi(I),

is obtained by transforming I with image feature extraction ϕi. Each channel feature Ci is

grouped into a block of pixels and summing and smoothed to lower resolution. Then, each

channel is vectorized and concatenated to form a image feature. The boosted decision tree

is applied with ACF to yield good performance for pedestrian detection. The procedure is

summarized in Figure 2.6.

In multi-scale object detection, image features are normally computed in every scales

as shown in Figure 2.7a. This is one of the bottlenecks in object detection system. The ACF
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Figure 2.5: Steps of word channels pedestrian detection.

Figure 2.6: Steps of ACF detector.
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(a)

(b)

Figure 2.7: Multi-scale feature approximation. (a) Standard approach. (b) ACF approach.

surpasses this issue by using fast feature pyramid technique which approximates the channel

features in nearby scales during detection as shown in Figure 2.7b.

Recently, improvement on ACF has been attempted using locally decorrelated channel

features (LDCF) [61]. This approach removes correlation of local image regions and estimates

a local covariance matrix that shares information for all image regions.

2.2.6 Spatial Pooling Features

Spatial pooling feature (SP) was proposed by Paisitkriangkrai et al.[50, 64]. SP is com-

posed of modified version of two features, namely, covariance descriptor and LBP. The input

image is decomposed into several region of interests called pooling regions. SP covariance fea-

ture is extracted by computing covariance matrix of small patches in pooling region. The result

of all patches represent covariance feature of pooling region. For SP LBP, LBP is extracted

from each patch in pooling region and concatenated to represent the SP LBP of the pooling

region. The SP feature concept is shown in Figure 2.8.

2.2.7 Motion Feature

Many pedestrian detectors use motion feature as an additional information [5, 6, 14].

Dalal et al. [7] adapted HOG computation from gradient based to optical flow based. These
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Figure 2.8: Concept of spatial pooling features

two types of HOG are combined and used for pedestrian detection. Enzweiler et al. [8] used

parallax flow computation to generate regions of interest before performing pedestrian classi-

fication process. Park et al. [8] proposed a new motion feature extraction called Stabilized

Difference temporal feature (SDt). The SDt is performed by weakly stabilized across multiple

video frames. After stabilizing, the centric motion of both camera and objects are discarded

and part centric motion is collected. The features are computed by normalizing the temporal

difference of the stabilized image frames.

2.3 Type of Classifiers

A number of diverse classifiers can be applied on the pedestrian detection problem such

as support vector machine (SVM) [7, 14, 15, 27, 32], neural networks [14, 15, 27], cascades

of boosted classifiers [33, 34], decision tree and deep networks. An adaptive boosting [6, 35,

36] and bootstrapping technique are the popular approaches for enhancing these classifiers in

training process. Details of each type of classifiers are described below:

2.3.1 Support Vector Machine

The support vector machine (SVM) is a supervised model for classification and regres-

sion problems. The optimal hyperplanes are constructed by the input data with associative

labels. There are many SVM kernels that are widely used in pedestrian detection problem such



13

Figure 2.9: Applying HOG with linear SVM.

as linear SVM, histogram intersection kernel, and latent SVM. Dalal et al.[18] proposed HOG

feature and applied it with linear SVM as shown in Figure 2.9. Maji et al.[37] proposed the his-

togram intersection kernel with logarithmic runtime complexity. The latent SVM was proposed

by Felzenszwalb et al.[38, 39] which was designed as a part-based model where each part was

a latent variable.

2.3.2 Convolution Neuron Networks

A convolution neuron networks (CNN) is a type of neuron networks where each neuron

responds with specific overlap regions. Individual neurons are grouped and formed as a layer

called convolutional layer. The lowest layer learns the data from image features or pixel values

and sent the outputs to the higher layer as inputs. In [40], the CNN are used for pedestrian de-

tection as a high level feature extraction. The lowest layer learns from image pixel values. The

unsupervised model in each layer is trained using the output of previous layer. The supervised

model is trained with the extracted features from the CNN and used to classify the pedestrian.

The structure of CNN learning proposed by [40] is illustrated in Figure 2.10. A CNN based

networks called switchable deep network (SDN) is proposed by Luo et al.[41]. The SDN archi-

tecture composed of three type of layers, namely, a convolution layer, four switchable layers,

and a logistic regression layer. The convolution layer extracts low and mid level features from

input image while switchable layers extract high level representations based on pedestrian parts.

The logistic regression layer collects the entire information from previous layers and predict the

label of input image.

2.3.3 Cascade of Boosted Classifiers

Cascade of boosted classifiers, proposed by Viola et al.[22, 25], is a model that ensembles

some boosted classifiers to a set of sequential classifiers. Each classifier is called a stage. In

each stage, the input feature is classified and the positive result is sent to the next classifier,

while the negative result is rejected from the cascade immediately. The process of cascade of
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Figure 2.10: Structure of convolution neuron networks.

Figure 2.11: Overview of cascade classifiers.

boosting classifiers is shown in Figure 2.11.

2.3.4 Decision Tree

Decision tree is a well-known supervised classification learning technique. Each interior

node of decision tree is called a decision node representing input variables or features. Edges

or branches represent the alternative corresponding input according to the decision node. Each

leaf or terminal node represents the label of classification problem or decision value for each

class. There are many techniques called ensemble that combine decision trees together such as

bagging [42], random forest [43], rotation forest [44], and boosted tree.

2.3.4.1 Adaptive Boosting

Boosting technique is an algorithm for creating strong classifier from combinations of

weak classifiers. Weak classifier is a classifier that is slightly better performance than a random
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guess method. Basic procedure of boosting is iterating of learning weak classifiers. In each iter-

ation, increase the weight of each misclassified instance and reduce the weight of the corrected

one. So the weak classifiers will focus more on uncorrected training data from previous itera-

tion. There are many boosting algorithms, for example, LPBoost [45], Gradient boosting [46],

and the popular adaptive boosting (AdaBoost) that is adopted in this study. Adaboost was pro-

posed by Y.Freund and R.Schapire in 1997 [47]. With Adaboost method, the weak classifiers

are first trained by equal weight training data. The best classifier is selected and the training

data are weighted according to the errors of the best classifier. Then, other weak classifiers are

trained using weighted training data. These steps are repeated until the condition are met. The

final strong classifier is formed by ensembling individual weak classifier from each iteration.

2.3.4.2 Boosted Decision Tree

A boosted decision tree is a boosted classifier where each weak classifier is a decision

tree. Normally, training decision tree can gain upto 100% accurate on training data. In boosting

approach, each weak classifier has to confine to performance slightly better than random guess.

Thus, each decision tree is restricted to specific depth or height to reserve as weak classifier

and a decision value from each decision tree is combined as the final result. The process of

training boosted decision tree is summarized in Figure 2.12. Appel et al.[48] presented a fast

training approach for boosted decision tree. This technique trains the features using multiple

small subsets of training data. It prunes the features that guarantee to perform worse than other

features called underachieving features. By pruning some features, the computation cost of

training a boosted decision tree is reduced.

2.3.5 Partial Area Under the Receiver Operating Characteristic Curve Boosting

Partial area under the receiver operating characteristic (ROC) curve boosting (pAUC-

Boost) is an ensemble technique that focus on optimizing the areas under ROC curve in specific

range proposed by Paisitkriangkrai et al.[49, 50]. pAUCBoost is mainly common with other

boosting algorithms by combining several weak classifiers to formed the strong classifier. The

major difference is pAUCBoost focused on the miss ordering of positive data and negative data

in training set. The positive samples with lower rank than the negative samples will be assigned

more weight in next iteration of boosting. The purpose is all positive samples should be ranked

higher than the negative samples.
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Figure 2.12: Boosted decision tree with Adaboost.

From a variety set of classifiers, the active choices that show the top results in major

pedestrian dataset are the boosted decision tree (Adaboost), the deep networks, and pAUC-

Boost.

2.4 Partial Occlusion Problem

There are two schemes of pedestrian detector. The first type is full-body classification that

uses the information from full body appearance of pedestrian to classify a test image. The main

advantage of this scheme is high accuracy rate because this technique collects all information

from the entire body of the pedestrian image. But this technique is not efficient enough to

handle real world situation. Thus, not only variations of pedestrian’s postures and illumination

are the problems, but also partial occlusion of pedestrian poses an additional challenge. The

second scheme is the detector that can handle partially occluded pedestrian. The benefit of this

scheme is suitable with real world problem. Due to the occlusion, the pedestrian appearance

in the image changes and consequently effects performance of the detector. This section focus

on how to handle with partial occlusion problem. In order to handle the partially occluded

pedestrian, there are several perspective in this problem as follows:



17

Figure 2.13: An overview of a joint deep network and DPM.

1) Region-based approach: A conventional region-based pedestrian classification and de-

tection methodology were employed [38, 51–53], where a number of components or re-

gions were extracted. Normally, a pedestrian composes of three regions, namely, head

(including shoulder), torso, and legs. However, Rao et al.[36] and Xia et al.[33] divided

a pedestrian into six regions, and Wojek et al.[54] used these six pedestrian regions with

high resolution images to improve the performance. There are many techniques based

on the region-based approach such as multiple component learning [35], probabilistic

component assembly [55] using a Bayesian approach for grouping the components, and

a region detector with edgelet feature [21]. The problem was handled by using several

modalities such as intensity, motion, and depth, along with component-based classifiers

[14] and a combination of features [28].

2) Deformable part model: A well-known deformable part model (DPM) was proposed by

Felzenszwalb et al. [38, 39] that was applied in many researches such as multiresolution

approach [56, 57], and multi-pedestrian as a cue to detect single one [58]. DPM is the

SVM with latent structure. DPM defines the part position as a latent variable. Recently,

Ouyang et al. [52, 59] applied this approach with deep networks. The image feature is

extracted using convolution neuron network over HOG. The deformable part model is

performed for each part and classification is done in final process. The process of joint

deep model is shown in Figure 2.13.
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(a)

(b)

Figure 2.14: Example of regions based on appearance approach. (a) Horizontal regions. (b) Vertical
regions

3) Appearance-based approach: This method is similar to the region-based method but

different in how to divide each region. This scheme splits the region in levels of ap-

pearance instead of region of pedestrian parts. Mathias et al.[60] used 33 regions with

vary pedestrian appearance level including both horizontal and vertical region. Each re-

gion was classified by the corresponding detectors and combined the results. Figure 2.14

illustrates the example of appearance regions.

Major pedestrian detection algorithms are summarized in Table 2.2. In terms of feature,

the channel features which represent image in LUV color space, gradient magnitude, and gra-

dient orientation is the most popular choice. For a classifier, Adaboost technique is employed

as the dominant classifier and INRIA person dataset are applied to the system as a training set.

Most of top detectors such as ACF-Caltech+ [61], LDCF [61], Katamari [5], and SpatialPool-

ing+ [50] use channel as the feature and Adaboost as the classifier while SpatialPooling+ uses

multiple features and pAUCBoost as classifier. All top detector use Caltech dataset.

Based on these related works, an appearance-based multi-featured framework for pedes-

trian detection that uses the information from a monocular camera is proposed. The proposed

framework uses ACF wih modified uLBP, boosted decision tree with Adaboost as the classifier

on Caltech pedestrian dataset, and a combination of pedestrian appearance patterns to handle

partial occlusion. The mean smoothed template is applied for efficient feature point selection.

To support a wider range of real world applications, the framework is established based on the
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Table 2.2: Summary of major pedestrian detection algorithms.

Algorithm Feature Classifier Training dataset

ACF [31] channels AdaBoost INRIA
ACF-Caltech+ [61] channels AdaBoost Caltech
ACF+SDt [62] channels AdaBoost Caltech
ChnFtrs [29] channels AdaBoost INRIA
ConvNet [40] pixels CNN INRIA
ChnFtrs [29] channels AdaBoost INRIA
Franken [60] channels AdaBoost INRIA
HikSvm [37] HOG HIK SVM INRIA
HOG [18] HOG linear SVM INRIA
HOG-LBP [28] HOG+LBP linear SVM INRIA
InformedHaar [63] channels AdaBoost INRIA/Caltech
JointDeep [59] color+gradient CNN INRIA/Caltech
LatSvm-V1 [38] HOG latent SVM PASCAL
LatSvm-V2 [39] HOG latent SVM INRIA
LDCF [61] channels AdaBoost Caltech
Katamari [5] channels AdaBoost INRIA/Caltech
MT-DPM+Context [57] HOG latent SVM Caltech+
pAUCBoost [49] HOG+COV pAUCBoost INRIA
Roerei [30] channels AdaBoost INRIA
SDN [41] pixels CNN INRIA/Caltech
SpatialPooling [64] multiple pAUCBoost INRIA/Caltech
SpatialPooling+ [50] multiple pAUCBoost Caltech
VJ [25] Haar AdaBoost INRIA
WordChannels [65] WordChannels AdaBoost INRIA/Caltech

combination of various image features instead of relying on variety of information as in stereo

environment or added equipment. Details on formulation and implementation of the proposed

approach will be described in next chapter.



CHAPTER III

PROPOSED METHOD

The proposed pedestrian detection framework is composed of six major steps as follows:

1) A mean smoothed pedestrian template (MSPT) construction.

2) Pedestrian’s region scheme based on appearance-based approach.

3) Training boosted decision trees with MSPT weighting using ACF and uLBP as features.

4) Node and path label assignment in decision tree and path label table construction.

5) A hierarchical region structure for pedestrian detection.

6) Combined detection score.

An overview of pedestrian detection framework is illustrated in Figure 3.1. Details are further

described in the sections that follow.

Figure 3.1: An overview of the proposed framework.
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3.1 A Mean Smoothed Pedestrian Template (MSPT) Construction

A straightforward approach to determine whether there is a pedestrian in an image or

not is by searching the formation of distributed pixels, where the shape is similar to pedestrian

shape. The problem of this approach is the variation of pedestrian postures. This is handled

by MSPT which is an estimated pedestrian shape template to represent pedestrian’s posture.

This template will be used in training step of boosted decision trees. The MSPT is constructed

by averaging sum of a set of pedestrian silhouette images. The objective of constructing this

template is to define a rough pedestrian shape and to find the average location of pedestrian that

appear on the detection window. The silhouette images are generated by manually labelling the

training data. The covered area is analyzed to determine possible existence of a pedestrian. An

example of how to construct a template is shown in Figure 3.2. Let P be the set of N pedestrian

images, S be the set of N pedestrian’s silhouette images generating from P , and si be the binary

pedestrian’s silhouette image where si ∈ S. The procedure for generating MSPT is shown in

Algorithm 1. The MSPT is done in data preparation step and applied in training step.

Figure 3.2: An example of MSPT construction.

3.2 Pedestrian Regions based on Appearance Approach

The problems concerning about the pedestrian regions are how many local regions, how

large each region should be to permit extracting as much information as possible so as to achieve
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Algorithm 1 Creating MSPT

1: Input: Set of pedestrian image P .
2: for i = 1 to N do
3: Extracting silhouette image si and manually label it.
4: end for
5: Compute a rough mean template by M =

∑N
i=1 si
N

6: Normalize and smooth M using Gaussian smoothing filter.
7: Output: The mean smoothed pedestrian template M .

maximum recognition accuracy, and how to represent a pedestrian that is related to the actual

pedestrian appeared in the video frames. To find the information corresponding with these

problems, the occlusion statistics of pedestrian dataset in urban scene reported by Dollár et al.

[66] are investigated. Some interesting points of this report are:

1) For all pedestrians appear in the scene, over 70% are occluded at least one frame. This

means that the occlusion problem is very important and appears in the scene frequently.

Pedestrians are most likely to be occluded.

2) Occlusion scenarios can be divided into four categories:

- Fully visible: pedestrians have no occlusion.

- Partial occlusion: pedestrians having 1-35% occluded area or 65-99% visible.

- Heavy occlusion: pedestrians having 36-80% occluded area or 20-64% visible.

- Full occlusion: pedestrians having over 80% area of occlusion.

3) The areas of occlusion most likely appear in lower part and left or right side of the pedes-

trian image. There are rare cases that the upper part of the pedestrian is occluded.

4) The pedestrian occlusion regions based on the observation along with the level of pedes-

trian visibility in detection window are visualized in Figure 3.3(a). The gray color regions

represent pedestrian visible area. There are seven types of occlusion scenarios. The fully

visible pedestrian type occurs approximately about 22% of all pedestrians in the scene.

Four types of horizontal occlusion in bottom area of detection window occupy 69% of oc-

clusion patterns. The two vertical left and right occlusion types of the detection window

occur 2.6% and 2.7%, respectively.

From this observation, the occlusion regions can be grouped into three cases, namely, full vis-

ible region, horizontal regions, and vertical regions. The assumptions to be established on the
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proposed pedestrian regions are: 1) In the context of occlusion, the bottom region of a detection

window that represents pedestrian’s legs is not necessary in the detection process. From the oc-

clusion statistics, over 69% of occlusion types are horizontal cases that occluded in the bottom

area of the detection window. In addition for part-based approach, the leg part is insignificant

because it will be covered in most horizontal cases. 2) The appearance-based approach with

multiple levels of appearance from top to bottom is a reasonable choice and supported by the

observation result of the horizontal occlusion that the lower area is occluded with multiple lev-

els. 3) Dividing into too many regions makes both training and testing step time-consuming. In

each region, the detector should handle only a few occlusion levels. So the occlusion types with

nearby level of occlusion should be grouped. From these assumptions, the proposed framework

sets up six pedestrian regions based on appearance approach. Each region represents pedestrian

in a specific level of visibility in the detection window. The proposed region scheme composes

of full, horizontal, and vertical regions. The details of each region are described below.

1) Full appearance region - This region supports the pedestrian with fully visible in the

scene and cover 100% area of detection window.

2) Horizontal level 1 region (H75) - This region supports the pedestrian having partial oc-

clusion in horizontal scheme, exposing about 75% from top to bottom of pedestrian de-

tection window. This region is designed by grouping two nearby low levels of horizontal

occlusion scenarios reported in occlusion statistics.

3) Horizontal level 2 region (H50) - This region supports 50% horizontal occlusion from

the bottom and 50% visible region of pedestrian detection window.

4) Horizontal level 3 region (H30) - This is the smallest horizontal region to handle with

heavy occlusion scenario, exposing approximately 30% visible region and covering ap-

proximately 70% occlusion from the bottom.

5) Vertical left region (VL) - This vertical region covers 62.5% from the right side of the

pedestrian detection window, exposing the left side.

6) Vertical right region (VR) - This vertical region covers 62.5% from the left side of pedes-

trian detection window, exposing the right side.

The schematic visualization of the visibility region of pedestrian based on observation is

shown in Figure3.3(b) and summarize in Table 3.1. The proposed region scheme is designed
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Table 3.1: Summary of the proposed pedestrian region scheme.

Region Occlude area (%) Visible area (%)

Full visible 0 100
Horizontal level 1 region (H75) 25 75
Horizontal level 2 region (H50) 50 50
Horizontal level 3 region (H30) 68.75 31.25
Vertical left region (VL) 37.5 62.5
Vertical right region (VR) 37.5 62.5

to capture the information about occlusion scenarios from the occlusion statistics and to reduce

the total number of regions by combining the nearby regions. In vertical scenarios, the statistics

show a low chance approximately 5% of occurrence in the scene but there are special cases that

cannot handle both full and all horizontal region schemes. So vertical regions are necessary

supplement. The output of this region scheme applied to the pedestrian image is shown in

Figure 3.3(c). The detection training proceeds as follows. Each image from the training dataset

is divided into six regions. Then the data of each region is used in the training process according

to the steps given in Figure 3.1.

3.3 Training Boosted Decision Tree with MSPT Weighting Using ACF and uLBP as Fea-

tures

The features for training the detectors are the combination of ACF and spatial uLBP. The

ACF is the same as the original proposed by Dollar et al. [31] with 10 channels including 3

channels of LUV color space, 1 channel of gradient magnitude, and 6 channels of gradient ori-

entation. Therefore, ACF is a channel-based feature. The ACF represent features that combine

multiple layers of image containing different information. Each channel has the same size as

the original image. When ACF is applied with boosted decision tree, the classification process

is performed in pixel-based comparison. To apply uLBP with ACF, the uLBP which is the

vector of histogram, is adapted to pixel-based and represented in the form of channels being

treated as ACF feature. A spatial uLBP is the extended version of the original uLBP that uLBP

is computed in cell structure and represented in pixel-based channel feature like that of ACF.

To compute the spatial uLBP, the input image is padded and divided into many small overlap

cells with one pixel stride. So the number of cells is equal to the number of pixels in the image.

In each cell, all pixels are transformed to uLBP pattern based on their neighbors. The uLBP

histogram is generated in the cell, normalized, and represented as the pattern of the center pixel
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of its cell. So the spatial uLBP forms the 59 channels of features having channel size equals

to the size of input image. By these steps, the uLBP histogram can be represented in pixel-

based channels feature as ACF. Figure 3.4 illustrates an example of spatial uLBP process and

the corresponding algorithm is shown below.

Algorithm 2 Computing spatial uLBP feature.

1: Input:
2: - Image I with size w × h.
3: - Cell size c.
4: Padding image with size ceil( c2 ) in each side.
5: Dividing image into cells.
6: for each cell do
7: for each pixel in the cell do
8: Computing LBP.
9: Transforming LBP to uLBP.

10: end for
11: Constructing histogram from uLBP in the cell.
12: Storing histogram as the representation of center pixel of the cell.
13: end for
14: Output: Spatial uLBP feature with size w × h× 59.

In training process, a set of region specific pedestrian detectors are trained using a de-

cision tree algorithm with Adaboost. In each iteration of boosted decision tree learning, the

feature points that are used to train the weak classifiers are selected randomly and uniformly.

So there is a chance that less informative features may be selected. To solved this problem, the

proposed MSPT is applied in this step for bias weighting. Thus, the feature points are selected

based on the value of the corresponding pixel in MSPT. The candidate features of Adaboost

are the features which distribute on the pedestrian area. So this set of features should be more

meaningful than the features from other areas.

3.4 Node and Path Label Assignment in Decision Tree and Path Label Table Construc-

tion

A boosted decision tree is a sequence of binary decision tree ensemble with the boosted

algorithm as shown in Figure 3.5. Each node of the decision tree represents the location of a

feature to be determined. During testing, the test image is extracted to determine the features

and passed them to the boosted decision tree. Each binary decision tree checks the value of

test sample and outputs the hypothesis value of that binary decision tree. This value is added to

obtain the final decision result. Evaluation proceeds as follows. Let TR be a boosted decision

tree of region R consisting of t decision trees, ui be an ith individual decision tree in TR.

Suppose ui is an n-depth decision tree and dj is the jth node of the decision tree. There will
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be 2n leaf nodes that contain hypothesis values from each decision path. Thus, there are only

n−1 levels of tree or 2n−1 decision nodes that are used to determine the feature point for each

decision tree. Focusing on the decision nodes, there are 2n−1 decision paths. In testing step,

each decision tree has exactly one possible decision path to evaluate. Each decision path holds a

set of decision features. When combine the boosted decision tree with region scheme, each path

in the decision tree can be assigned to the corresponding region and the reported hypothesis can

be represented as the hypothesis of the subregion. To make this idea possible, evaluation set up

proceeds by locating the position of features in each node and each decision path. This path is

then labelled associated with the region scheme. After all nodes in the path are labeled, they

form the region-corresponding path in each decision tree. Finally, each decision tree will have

associate region path label describing the group of feature locations along the decision path. An

overview with example of how to assign node and path label is shown in Figure 3.6. Further

classifications are given in the subsections that follow.

3.4.1 Assigning Horizontal Node Label

Horizontal node labelling starts from the decision nodes in the decision tree. Each of

them will be assigned a region label according to predefined horizontal region in Section 3.2.

There are three horizontal regions and one fully visible region that is counted both horizontal

and vertical region. In each nearby region, the smaller horizontal region is a subregion of the

bigger one. So the nearby horizontal regions can be grouped and the node label is assigned

based on these groups. Let H75 represent horizontal level 1 region, H50 represent horizontal

level 2 region, H30 represent horizontal level 3 region, and F represent fully visible region.

There are three possible groups, namely, F with H75 as a fully visible region, H75 with H50

as a horizontal level 1 region, and H50 with H30 as a horizontal level 2 region. Let t be the

number of decision trees in the boosted decision tree. There are 2n−1 decision paths from root

node to interior nodes at level n − 1. Therefore, the proposed framework deploys features as

channels. The feature location in each decision node of the boosted decision tree can be any

channel of features. The feature location of each node must be transformed to the same pixel

location of image independent of the number of channels. Algorithms 3- 5 show horizontal node

label assignment procedures. Note that the constant 3
4 in Algorithms 3 is the level of visibility

of H75 region. In the same manner, the constant 1
2 in Algorithms 4 and 5

16 in Algorithms 5 are

the level of visibility of H50 and H30 region, respectively.
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Algorithm 3 Assigning horizontal node label for a boosted decision tree of fully visible region.

1: Input:
2: - A boosted decision tree TF .
3: - Height of detection window H .
4: for i = 1 to t do
5: for j = 1 to 2n − 1 do
6: Transforming image feature at node dj to pixel location (xj , yj).
7: if xj ≤ 3

4 ∗H then
8: Assigning label for node dj , lj = H75.
9: else

10: Assigning label for node dj , lj = F .
11: end if
12: end for
13: end for
14: Output: Node label l for each each node in a boosted decision tree of fully visible region.

Algorithm 4 Assigning node label for a boosted decision tree of horizontal level 1 region.

1: Input:
2: - A boosted decision tree TH75.
3: - Height of detection window H .
4: for i = 1 to t do
5: for j = 1 to 2n − 1 do
6: Transforming image feature at node dj to pixel location (xj , yj).
7: if xj ≤ 1

2 ∗H then
8: Assigning label for node dj , lj = H50.
9: else

10: Assigning label for node dj , lj = H75.
11: end if
12: end for
13: end for
14: Output: Node label l for each each node in a boosted decision tree of horizontal level 1 region.

Algorithm 5 Assigning node label for a boosted decision tree of horizontal level 2 region.

1: Input:
2: - A boosted decision tree TH50.
3: - Height of detection window H .
4: for i = 1 to t do
5: for j = 1 to 2n − 1 do
6: Transforming image feature at node dj to pixel location (xj , yj).
7: if xj ≤ 5

16 ∗H then
8: Assigning label for node dj , lj = H30.
9: else

10: Assigning label for node dj , lj = H50.
11: end if
12: end for
13: end for
14: Output: Node label l for each each node in a boosted decision tree of horizontal level 2 region.
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3.4.2 Assigning Vertical Node Label

This process is similar to the previous one. In vertical region case, there are only three re-

gions, namely, fully visible, vertical left, and vertical right regions. Unlike the horizontal region

appearance, the vertical regions support different pedestrian appearances and are not subset of

one another. However, some portions overlap. Hence, Algorithm 3 has to be augmented to

handle this overlap region. Let V L represent vertical left region, V R represent vertical right

region, and V LR represent overlap portions. The algorithm of vertical node label assignment

is shown in Algorithm 6.

Algorithm 6 Assigning vertical node label for a boosted decision tree of fully visible region.

1: Input:
2: - A boosted decision tree TV L or TV R.
3: - Height of detection window H .
4: for i = 1 to t do
5: for j = 1 to 2n − 1 do
6: Transforming image feature at node dj to pixel location (xj , yj).
7: if yj < 6 ∗ H + 1 then
8: Assigning label for node dj , lj = V L.
9: else

10: if yj < 10 ∗ H + 1 then
11: Assigning label for node dj , lj = V LR.
12: else
13: Assigning label for node dj , lj = V R.
14: end if
15: end if
16: end for
17: end for
18: Output: Node label l for each each node in a boosted decision tree of horizontal level 2 region.

3.4.3 Building Horizontal and Vertical Path Label Tables

After labelling all nodes of each decision tree in all boosted decision trees, the path label

tables will be constructed. There are two type of path label tables, namely, horizontal and

vertical path label tables. In this work, there are totally three horizontal and one vertical path

label tables. For horizontal path label tables, each path of the decision tree will be assigned

with the associative path label. The path label is defined by the biggest region of node label

in the same path. All path labels in each tree are grouped and represented as path label tables.

For vertical path label table, the path label is defined by using node label. There are 4 possible

cases in vertical path label assignment. First, all node labels V L and V LR will have path label

assigned as V L. Second, all node labels V R and V LR will have path label assigned as V R.
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Third, all node labels V LR will have path label assigned as V LR. Fourth, both V L and V R

nodes in the same path will have path label assigned as F . V LR is the case that can be counted

as both V L and V R. However, F is the case that the path is neither V L nor V R. All path

labels are collected and represented in vertical path label table. The algorithms for constructing

horizontal and vertical path label tables are described in Algorithm 7 and 8.

Algorithm 7 Constructing of a horizontal path label table for a boosted decision tree.

1: Input: A boosted decision tree T with corresponding node label l.
2: for i = 1 to t do
3: for each path j in a decision tree do
4: Path label Phi,j = region label with maximum area.
5: end for
6: end for
7: Output: A horizontal path label table Ph for a boosted decision tree.

Algorithm 8 Constructing of a vertical path label table for a boosted decision tree.

1: Input: A boosted decision tree T with corresponding node label l.
2: for i = 1 to t do
3: for each path j in a decision tree do
4: Let V is a set of node label in path j.
5: if V L ∈ V and V R 6∈ V then
6: Path label Pvi,j = V L.
7: else
8: if V R ∈ V and V L 6∈ V then
9: Path label Pvi,j = V R.

10: else
11: if V L ∈ V and V R ∈ V then
12: Path label Pvi,j = F .
13: else
14: Path label Pvi,j = V LR.
15: end if
16: end if
17: end if
18: end for
19: end for
20: Output: A vertical path label table Pv for a boosted decision tree.

3.5 Constructing the Hierarchical Region Structure

From the proposed appearance-based regions presented in Section 3.2 and path label

presented in Section 3.4, provision for handling partial occlusion based on this scheme is set up

below.

1) In horizontal region, each smaller region is a subset of the larger one. At any stage,

if the testing detection window is recognized as a pedestrian by one of a detector, it is
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unnecessary to activate other smaller detectors. On the other hand, if a larger region

detector rejects the testing window, there are two possible scenarios that could happen.

First, the testing window is negative as the result of the detector. In this case, the result

is correct without misclassification. Second, there is occlusion in that detection window

and the detector misclassifies it. This case is crucial and will lead to incorrect result. In

this case, the detector from smaller region has to be activated on this window instead.

The questions are how to know when the detector from the smaller region is activated,

and when there is any cue that will hint the system to activate the smaller one rather than

always perform all the remaining detectors as it is time consuming to test.

2) In the boosted decision tree model, each boosted decision tree consists of many decision

trees. The features used to test each image will be determined by the decision tree sequen-

tially. Each tree reports its hypothesis. All hypotheses will subsequently be combined and

assessed the final result. Using path label in each decision tree as proposed in Section 3.4,

each hypothesis precipitated from the corresponding decision tree will serve as a hint for

the labelled region. Based on this hint, if the sum of hypothesis values in each region is

more than the threshold value, the detector of that region will be activated.

From the above two provisions, assumptions on hierarchical region structure for pedestrian

detection can be deduced as follows:

1) Pedestrian regions can be arranged in hierarchical fashion based on level of appearance in

both horizontal and vertical schemes.

2) A boosted decision tree with path label technique can yield hidden information and give

a subregion hypothesis about the smaller region in hierarchical model.

3) Due to weakness of each individual decision tree, only one succeeding step in the hierar-

chical model is decided.

Let A be the set of appearance regions, Ha be the total hypothesis of region a where

a ∈ A. A partial hypothesis of subregion b of region c from dth individual decision tree is

represented by hb,c,d. The total hypothesis of each region can be expressed using subregion

hypothesis as follows:
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A full appearance region in horizontal scheme composes of the sum of hypothesis of decision

tree with path label F and the sum of hypothesis of decision tree with path label H75, i.e.,

HF =
∑

i h(Fh,F,i) +
∑

j h(H75,F,j)

A full appearance region in vertical scheme composes of the sum of hypothesis of decision tree

with path label F and the sum of hypothesis of decision tree with path label V L, V R, and

V LR, i.e.,

HF =
∑

i h(Fv,F,i) +
∑

j h(V L,F,j) +
∑

k h(V R,F,k) +
∑

m h(V LR,F,m)

A horizontal level 1 region composes of the sum of hypothesis of decision tree with path label

H75 and the sum of hypothesis of decision tree with path label H50, i.e.,

HH75 =
∑

i h(H75,H75,i) +
∑

i h(H50,H75,i)

A horizontal level 2 region composes of the sum of hypothesis of decision tree with path label

H50 and the sum of hypothesis of decision tree with path label H30, i.e.,

HH50 =
∑

i h(H50,H50,i) +
∑

i h(H30,H50,i)

For horizontal level 3 region, there is no subregion in this region. So the hypothesis is defined

by the sum of all decision tree in the region.

HH30 =
∑

i h(H30,H30,i)

For vertical left region, there is no subregion in this region. So the hypothesis is defined by the

sum of all decision tree in the region.

HV L =
∑

i h(V L,V L,i)

For vertical right region, there is no subregion in the region. So the hypothesis is defined by the

sum of all decision tree in the region.
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HV R =
∑

i h(V R,V R,i)

Normally, when testing the boosted decision tree, there is a threshold for checking current

cumulative hypothesis after individual decision tree is performed to increase the speed of the

system. This threshold is used for fast negative sample rejection. Only positive and hard neg-

ative samples will be further determined in the boosted decision tree. The occluded pedestrian

samples are most likely to be treated like negative samples by the full pedestrian detector. From

this threshold technique, there is a chance that the occluded pedestrian will be early rejected

from the boosted decision tree before collected some hidden or subregion information which

is the process for handling partial occlusion problem. To solve this problem, each subregion

is assigned a token that check the cumulative subregion hypothesis to ensure that the test data

is performed by enough number of decision trees and collect enough information about subre-

gions to decide partial occlusion situation. The token is a binary value, when positive indicates

that the hypothesis of subregion is more than a specific predefined positive threshold or lower

than a specific predefined negative threshold. This two predefined thresholds are set to guar-

antee that the subregion is determined already before detection window rejection. Algorithm 9

shows token computation and Algorithm 10 shows token checking. Both threshold values are

set manually to minimize computation time and maximize the experimental results. Despite the

boosted decision tree classification takes more time with high value of positive threshold and

low value of negative threshold, it yields more the information for use in subregion hypothesis

of occlusion handling.

Algorithm 9 A subregion token computation (ComputeToken).

1: Input:
2: - A previous cumulative subregion hypothesis H .
3: - A current subregion hypothesis h.
4: Compute cumulative subregion hypothesis H = H + h.
5: if (H ≥ Thrp) or (H ≤ Thrn) then
6: Assign subregion token Z = 1.
7: else
8: Assign subregion token Z = 0.
9: end if

10: Output:
11: - A current cumulative subregion hypothesis H .
12: - A token value Z.

The proposed hierarchical region structure for pedestrian detection is shown in Figure

3.7 and the algorithm is given in Algorithm 11. Note that the algorithm only shows the highest

level of hierarchical region structure.
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Algorithm 10 A region token checking (CheckToken).

1: Input:
2: - A horizontal token Zh.
3: - A set of vertical token Zv .
4: if (Zh = 1) and (∃Zvi ∈ Zv|Zvi = 1) then
5: Assign region token Ztot = 1.
6: else
7: Assign region token Ztot = 0.
8: end if
9: Output: Region token Ztot.

Algorithm 11 A boosted decision tree classification using hierarchical region structure

1: Input:
2: - Testing image feature I of detection window.
3: - A set of boosted decision trees of all region.
4: - A threshold values for current region Thry .
5: - A set of threshold values for horizontal region Thrh.
6: - A set of threshold values for vertical region Thrv
7: Initialize: Hy = 0, Hh = 0, Hv = 0, Zh = 0, Zv = 0.
8: for i = 1 to t do
9: Classified I using ui.

10: Get a hypothesis hyi, path label Phi , and Pyi according to the classification result.
11: Compute a hypothesis of current region, Hy = Hy + hyi.
12: Compute a hypothesis based on horizontal path label and token:
13: (Hh(Phi), Zhi) =ComputeToken(Hh(Phi), hyi).
14: Compute a hypothesis based on vertical path label and token:
15: (Hv(Pvi), Zvi) = ComputeToken(Hv(Pvi) + hyi).
16: if Hy ≤ Thry and CheckToken(Zh, Zv) then
17: if ∃q|(Hh(q) > Thrh(q)) or ∃r|(Hv(r) > Thrv(r)) then
18: Activate a boosted decision tree corresponding to q or r.
19: else
20: Reject this detection window.
21: end if
22: end if
23: end for
24: if Hy > Thry then
25: Accept this detection window as a pedestrian.
26: else
27: Reject this detection window.
28: end if
29: Output: Pedestrian classification result.
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Table 3.2: Details of weight for each region detector.

Region Weight

Full 1
H75 0.752

H50 0.52

H30 0.31252

VL 0.6252

VR 0.6252

3.6 Combining Detection Score

A hypothesis or detection score represents the confidence of the detector about its result.

In the proposed framework, there are many detectors performing detection tasks simultaneously.

In many cases, the detection windows will be rejected by the first detector. With harder samples

and positive samples, more detectors are required. Thus, a detection score is employed to

accumulate the results obtained from all of these activated detectors. All subregion hypotheses

along the hierarchical framework to the deepest activated detector are accumulated. Let B be

the set of activated detectors, w be the weight of each detector defined by the square of level

of visible region as shown in Table 3.2, and h be the accumulative hypothesis of activated

subregion. The detection score D is computed by:

D =
∑

iwihi where i ∈ B

The objective of region weight is to set the priority for each hypothesis from each region. Based

on the level of visibility of each region, detector of region with high level of visibility should

have higher priority than the one with lower visibility level. So the proposed framework uses the

level of visibility of each region as the base value. The accumulative hypothesis value should be

moderately small because it serves as the suggested hypothesis value of the deepest activated

detector. Squared of the level of visibility is used as weight for each subregion hypothesis.

Computational results will be summarized in the experiments.
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(a)

(b)

(c)

Figure 3.3: An example of pedestrian region schemes. (a) Occlusion scenarios as shown in occlusion
statistics reported by Dollár et al. [66] including seven types of occlusion level. The upper numbers
represent the level of visibility and the lower numbers show the proportion of occurrence in the video
frames. (b) The proposed appearance-based pedestrian regions scheme along with level of visibility. (c)
An example with actual regions when applied with the pedestrian image.
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Figure 3.4: An example of uLBP process.

Figure 3.5: A structure of boosted decision tree with n decision tree.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Examples of horizontal node label and path label process with three-depth decision tree. (a)
A full decision tree. (b) Decision nodes. (c) Transforming feature to pixel location represented as (row,
column). (d) Horizontal location of each node based on row value of pixel location. (e) Examples of
decision path and assigning node label according to the related region. (f) Assigning path label for each
path. The path label is the biggest region in the decision path.
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Figure 3.7: An overview of the hierarchical region structure.



CHAPTER IV

EXPERIMENTAL RESULTS

This section describes the details of datasets, experimental setting, and performance

statistics. Some noteworthy issues are also discussed.

4.1 Dataset

There are many pedestrian datasets that provide standard input for this research such

as INRIA person dataset [18], Caltech pedestrian detection benchmark [66], ETH Pedestrian

Dataset [67], TUD-Brussels Pedestrian Dataset [26], and Daimler Mono Pedestrian Detection

Benchmark Dataset (DPDB) [1]. Each dataset has a specific setting and environment. The

most popular and challenging dataset is Caltech pedestrian detection benchmark (CPDB). The

CPDB is a very large pedestrian dataset consisting of 10 hours of recording time. Each frame

is captured at 30 Hz with dimension of 640x480 pixels. The total number of frames is over

240,000 frames from urban environments. There are approximately 2,300 unique pedestrians

in the dataset with a total of 350,000 pedestrian bounding boxes (BB). The occluded pedestrians

are bounded with occlusion label for testing reason. With this large data, the dataset is divided

in to 11 sets. Each set is composed of image sequences running between 6-13 minutes. The

first 6 sets are for training and last 5 sets are for testing purposes. Result summaries of the

CPDB are shown in Table 4.1. The sample images from this dataset are displayed in Figure 4.1

and the positive samples are shown in Figure 4.2. The environment and setting of the CPDB

dataset is the best matched with the objective and scope of this dissertation. Thus the proposed

framework is trained and tested in the CPDB dataset.

Table 4.1: Characteristics of the Caltech pedestrian detection benchmark dataset.

All images Skip Sampling image Positive samples

Training set 128,382 4 32,077 24,498
Testing set 120,720 30 4,024 4,885
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(a)

(b)

Figure 4.1: Example of images from the Caltech pedestrian detection benchmark dataset. (a) Images
from training dataset. (b) Images from testing dataset.
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Figure 4.2: Positive samples from the Caltech pedestrian detection benchmark dataset.

4.2 Performance Evaluation

Evaluation in this dissertation follows the CPDB dataset standard described in [66]. The

detection system gets an image as an input, performs calculation in multiple-scale, and re-

ports a set of answers including detection bounding boxes (BBd) and corresponding detection

confidence values. Some outputs may undergo the non-maximum suppression algorithm if nec-

essary. A calculation of matching value (MP ) between BBd with ground truth bounding box

(BBg) is based on PASCAL object detection measure defined as follows:

MP = area(BBd∩BBg)
area(BBd∪BBg)

> 0.5

The MP values over 50% are counted as correct matched. Each mismatched BBd is counted

as false positive and unmatched BBg is counted as false negative. Each BBd and BBg can

be matched only once. If there are many BBd candidates for each BBg, the BBd with the

highest detection confident value will be matched first. The overall result is shown with the miss

rate against false positive per image (FPPI) in log-log plot using varied threshold on detection

confident values. The log average miss rate (LAMR) is an average miss rate of various FPPI

rate in the range 10−2 to 100. Normally, the LAMR is the same as the performance at FPPI

equals to 10−1. The lower LAMR value is, the better performance evaluation becomes.

Due to the size of dataset, evaluation is performed on every 30th frame in the test set to

minimize high computations on all the detectors being compared. So there are 4,024 frames in

total for testing. Most experiments utilize a reasonable test set that contains the ground truth of

pedestrian over 50-pixel tall with unoccluded or partially occluded scenarios.

There are some noteworthy issues about how to compare the results with other detec-

tors. First, to avoid any issues about other detectors that may be bias such as parameter tuning

or incomplete implementation. There is no reimplementation of other detectors. Second, all

detectors have to used the same evaluation code provided by the original dataset. Third, the
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Table 4.2: Details of size and features for each region.

Region Width Height Number of channels Number of features

Full 16 32 10+59 35,328
H75 16 24 10+59 26,496
H50 16 16 10+59 17,664
H30 16 10 10+59 11,040
VL 10 32 10+59 22,080
VR 10 32 10+59 22,080

comparison has to use online detection results provided by the original authors of each detector.

4.3 Experimental Setting

Details of the experiment setting are described below.

Training data: The training data are dense sampling from the CPDB dataset. The train-

ing images are sampled from every fourth frames of the training set. A total of 32,077 image

samples are collected. Positive examples are extracted from these data provided by the associ-

ated annotations from the dataset. The sampling rate of the training set affects the performance

of the detector. With dense sampling with not more than every ten frames is preferred because

there are more positive samples for training process. However, too low of dense sampling rate

such as every one or two frames may result in overfitting detector. Negative samples are ran-

domly generated from the training set with the size of 25,000 samples in the first round. In each

round, bootstrapping process is performed to collect hard negative examples for the next round.

There are 50,0000 accumulated negative samples after the second round of the training process.

Channel feature: The channel features of each regions are composed of 69 channels

including 10 channels of ACF (3 channels from LUV color space, 1 channel of gradient mag-

nitude, and 6 channels of six orientation bins of gradient histogram) and 59 channels of spatial

uLBP. A total of 35,328 features are used per one fully detection window. The details about

number of features for each region are shown in Table 4.2. The spatial uLBP calculation is per-

formed on the luminance channel of LUV color space with the cell size of 3× 3 pixels. Overlap

stride between each consecutive cell is 1 pixel in both horizontal and vertical directions. For

each pixel, the uLBP can be determined using its 8 neighbors.
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Boosted decision tree: The boosted decision tree is trained with Adaboost in 4 rounds,

each round is composed of different number of weak decision trees, such as 64, 256, 1,024,

and 4,096, respectively. More number of training rounds will construct the detector with more

fitting to the training set. More number of weak decision trees will have more accuracy but take

longer time in both training and testing process. Each individual decision tree is a 4-depth tree.

The depth of the tree is also one factor that affects the overall result. With more depth, each

decision tree becomes more complicated and uses more combination of features to determine

the hypothesis. However, for Adaboost approach each decision tree should be a weak classifier.

So the decision tree with depth of 3 to 5 are the reasonable options.

Detector: The detector is designed with detection window of size 64 pixels in height and

32 pixels in width to support the pedestrian with 50-pixel tall. The detection window is shrunk

with a scale factor of 2 to 32 pixels in height and 16 pixels in width to reduce computation load.

The details for each region are shown in Table 4.2.

Detection strategy: The detectors are fixed in size but the input image is resampled in

multiple scale for multiple scale detection purpose. The detection process is performed in 7

scales with additional 8 refinement scales per octave, for a total of 55 scales per image. A stride

for each detection window is 4 pixels wide in both horizontal and vertical directions. While

perform detection, the input image is resampled in 55 scales. The detectors perform in each

resampled image for multi-scale detection that will support many size of pedestrian in the video

frames, thereby smaller objects such as children can be handled accordingly.

MSPT construction details: The MSPT in this work is constructed using 1,280 pedes-

trian images. More number of pedestrian images are preferred to cover pedestrian variation.

Each image is manually labeled to pedestrian shape silhouette image. Each silhouette image is

modified to 10 minor variation silhouette images by using one pixel translation in four direc-

tions and flipped as shown in Figure 4.3a. The objective of this process is to increase the number

of the silhouette images to handle more posture variations. Thus, there are 12,180 pedestrian

silhouette images for MSPT construction. The MSPT is shown in Figure 4.3b.

Baseline detector: A baseline detector is the strong detector that is used to compare with

the proposed detector. The baseline detector [61] is the modified version of ACF detector [31]

trained with deeper decision tree (depth 5) with dense data sampling. This baseline detector

called ACF-Caltech+ is ranked fifth in CPDB reasonable dataset.
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(a) (b)

Figure 4.3: (a) Each pedestrian silhouette image is shifted and flipped. (b) Visualization of MSPT.

4.4 Experimental Results

The experimental results obtained from CPDB dataset are grouped into four categories

to denote the representative effectiveness of the proposed framework in feature evaluation and

effect of MSPT approach, performance of region detectors, comparative statistics results of

proposed framework with other methods, and run-time performance.

4.4.1 Feature Evaluation and Effect of MSPT Approach

In this section, the channel features are analyzed in details with the effect of MSPT on

the type of selected ACF features. As mentioned earlier, ACF is composed of 10 channel fea-

tures that include 3 channels of LUV color, 1 channel of gradient magnitude, and 6 channels

of gradient orientations. The power of each channel is explored based on the features being

selected by Adaboost in training process. The overall results of each region are illustrated in

Figure 4.4 and 4.5. In each figure, the left most figure represents features in baseline detec-

tors without applying MSPT and the middle figure represents features in the proposed detector

applying MSPT.

In case of individual feature comparison, the luminance channel of LUV color space is

the top feature selected by Adaboost. The proportion of luminance channel being selected is

approximately 15% of the total selected features, yielding the same results for every regions.

This means that luminance channel is very informative and important feature for pedestrian

classification. The runner-up feature is gradient magnitude feature. The U and V channels of

LUV color are the least informative features. After applying MSPT, the number of selected

features is different from the baseline detector but the projection is the same. The luminance
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Figure 4.4: Proportion of feature channels in full and vertical regions. (a) ACF without MSPT in full
region. (b) MSPT applied in full region. (c) Proportion between ACF and uLBP in full region.(d) ACF
without MSPT in VL region. (e) MSPT applied in VL region. (f) Proportion between ACF and uLBP
in VL region. (g) ACF without MSPT in VR region. (h) MSPT applied in VR region. (i) Proportion
between ACF and uLBP in VR region.

channel is still the popular channel followed by gradient magnitude channel. The use of MSPT

does not effect the type of selected features directly and the proportion of selected features

change slightly. In contrast, MSPT approach affects the distribution of selected features in

spatial domain. Visualization of selected feature distribution is displayed in Figure 4.6 and

Figure 4.7. In each figure, the baseline detectors are shown in the left and the proposed detector

with MSPT applied is shown in the right. From the experimental results, selected features using

MSPT are more relevant to the pedestrian shape. As seen on the results of baseline detectors,

many selected features are outside the pedestrian shape but some main features are in the same

area as the proposed detectors. In the full region, the most attractive features are human face

and shoulder. The results are the same in other regions. In addition, for small region such as
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Figure 4.5: Proportion of feature channels in horizontal regions. (a) ACF without MSPT in H75 region.
(b) MSPT applied in H75 region. (c) Proportion between ACF and uLBP in H75 region.(d) ACF without
MSPT in H50 region. (e) MSPT applied in H50 region. (f) Proportion between ACF and uLBP in H50
region. (g) ACF without MSPT in H30 region. (h) MSPT applied in H30 region. (i) Proportion between
ACF and uLBP in H30 region.

H50 and H30, the experimental results of detector without MSPT yield slightly better results

than applying MSPT. From experimental observation, the feature selection process is forced

to select small portion of candidate features based on MSPT which are very small due to the

region size and feature availability. So the selected features are often chosen repeatedly with

different combinations. This may limit the capability of the small region detector. Thus, MSPT

is not applied with small regions. When combine ACF with uLBP, the proportion of 2 types

of features selected by Adaboost are established. The last column of Figure 4.4 and Figure 4.5

show the experimental findings. Most regions report relatively the same proportion of ACF and

uLBP being selected by Adaboost. In the small region detectors such as H30 and H50, ACF

features are selected more than those of the uLBP. From the experiment, the MSPT approach
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organizes Adaboost to select the semantic features that corresponds to pedestrian shape without

the proportion of selected features. The ACF and uLBP are selected at the same proportion by

Adaboost means both ACF and uLBP are important features.
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Figure 4.6: Visualization of feature distribution selected by Adaboost in full and vertical regions. (a) ACF
without MSPT in full region. (b) MSPT applied in full region. (c) ACF without MSPT in VL region. (d)
MSPT applied in VL region. (e) ACF without MSPT in VR region. (f) MSPT applied in VR region.

4.4.2 Performance of Region Detectors

In order to investigate the performance of each pedestrian appearance region detectors,

all six region detectors are trained with training dataset and tested on CPDB reasonable dataset

to compare the experimental results. Each region detector is train by using the same positive

sample but difference in terms of size according to the region size. The ground truths of training

and testing data are adjusted based on the size of the region detector for comparable purpose.

From the results in Figure 4.8, the region having the highest performance is the full
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Figure 4.7: Visualization of feature distribution selected by Adaboost in horizontal regions. (a) ACF
without MSPT in H75 region. (b) MSPT applied in H75 region. (c) ACF without MSPT in H50 region.
(d) MSPT applied in H50 region. (e) ACF without MSPT in H30 region. (f) MSPT applied in H30
region.

appearance region at 25% LAMR, followed by the VL at 41%, H75 at 41%, VR at 43%, H50 at

66%, and H30 at 79%, respectively. From experimental observations, the experimental results

exhibit a direct variation with the area of pedestrian appearance regions in the image. In a

larger region, the features can capture the essential information representing the pedestrian and

the detector can learn from more areas of pedestrian. As expected, the smaller regions have

the high LAMR and tends to generate more false positive results that worsen the performance

of the system. This experiment supports the assumptions about part weights when the level of

visibility decreases, the performance of individual detector also decreases. So reducing weight

of small region detectors as proposed is acceptable and have to combine the hypothesis with

other bigger region detectors to arrive at the final results.

4.4.3 Proposed Framework Results and Comparison with Other Methods

The proposed framework is composed of 3 enhancement approaches in both training time

and testing time, namely, MSPT approach, the ACF-uLBP combination approach, and hierar-

chical approach. The experimental results of the enhancement are displayed in Figure 4.9. The

custom ACF detector is the baseline result with 30% LAMR. The first MSPT approach enhance

the result of baseline detector nearly 2% LAMR and does not affect in speed because it is ap-

plied in training process. The testing time enhancement using combination of ACF-uLBP is



49

Figure 4.8: Experimental results with different pedestrian appearance regions.

applied which boosts the result by approximately 3% LAMR. After applying hierarchical ap-

proach to ensemble all region detectors, the result is slightly better by 0.15% but the framework

becomes capable of handling partial occlusion problem. In this scenario, Mathias et al. [60]

pointed out that the CPDB test set contained very low number of partial occlusion cases. So

the effect of hierarchical framework is not boosted as expected. There is virtually no dataset

that focuses directly on partial occlusion problem. This experimental results show that all 3

enhancements of the proposed method can speed up the overall performance of the baseline

detector in nearly 5% LAMR from the baseline detector.

For comparative purpose, the proposed framework is compared with multiple methods.

The results of 46 methods are reported on CPDB dataset and available online for comparison.

In each experiment, only 8 results are displayed in the graph in terms of 6 best performance

algorithms and standard HOG [18] and VJ [25] algorithms as two common baselines. There are

7 experiments tested on the CPDB dataset including reasonable, overall, near scale, medium

scale, far scale, no occlusion, and partial occlusion experiments.

The reasonable test set is the most standard test set of CPDB dataset. All algorithms

have to test and report the result of this dataset for standard comparison purpose. The rea-

sonable dataset is tested on the pedestrian with size at least 50-pixel with non-occlusion and
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Figure 4.9: Experimental results show the enhancement of the proposed framework.

partial occlusion. The results of the proposed detector compare with other methods are dis-

played in Figure 4.10. The proposed method is ranked fourth in CPDB reasonable dataset after

Spatialpoolng+ [50], Katamari [5], and LDCF [61], respectively. The proposed detector boosts

the LAMR from the baseline detector shown as ACF-Caltech+ with an additional 5% LAMR.

From the investigation, this boost up is resulted from MSPT and ACF-uLBP combination while

the effect on hierarchical framework is small.

The example of detection results in reasonable dataset is shown in Figure 4.11. A green

BB represents matched BBd. A red BB represent mismatched BBd or false positive. A yellow

BB stands for unmatched BBg or false negative. A cyan BB means missing ground truth, and

a white BB is ground truth BBg. Figure 4.12 shows more examples of the matched BBd or

true positive samples, while false positive samples are shown in Figure 4.13. There are some

missing ground truth in the samples that affect in the overall results of the proposed results.

False negative samples are displayed in Figure 4.14. In terms of missing ground truth, this is a

crucial mistake of the dataset that may affect the overall results of the proposed detector because

there is a pedestrian in the BBd reported by the detector but there is no ground truth to support

it. So the evaluation process will count this BBd as false positive and degrades the performance

of the proposed detector.
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Figure 4.10: Experimental results on the CPDB reasonable dataset.

For detail evaluation on the CPDB dataset, the reasonable dataset is decomposed to 6

additional scenarios, namely, all dataset, large scale dataset, medium scale dataset, near dataset,

non-occlusion dataset, and partial occlusion dataset. The proposed detector is tested on these

additional test sets. The all dataset tests on all pedestrian annotated in the test dataset. The large

scale dataset focuses on pedestrian of at least 100-pixel image. The medium scale dataset tar-

gets on pedestrian of 30 to 80-pixel image. The near dataset tests on at least 80-pixel pedestrian

image. The non-occlusion dataset focuses on 50-pixel pedestrian image with no occlusion, and

the partial occlusion dataset aims to the 50-pixel pedestrian image with partial occlusion. The

experimental results are shown in Figure 4.15(a) - 4.15(f).

In all datasets, all detectors perform worse over 70% LAMR. The proposed framework is

ranked fourth with 73% LAMR. In the large scale dataset, the result of the proposed framework

is ranked first with only 5% LAMR. Some false negative samples of large scale dataset is shown

in Figure 4.16. In addition, the large scale dataset corresponding to the size of pedestrian

appears suddenly in the video frame and causes the accident. For medium scale dataset, all

detectors perform at over 60% LAMR. The proposed detector is ranked fifth with 65% LAMR.

In near dataset, the proposed framework is fourth ranked with 11% LAMR and ranked third

with 21% LAMR on non-occlusion dataset.

For the partial occlusion dataset, the result of proposed method is ranked sixth. The detail
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Table 4.3: Top pedestrian detectors with associate LAMR and reported BBd.

Detector Reasonable LAMR Number of Reported BBd

SDN [41] 37.8714 10,953
ACF-Caltech+ [61] 29.7591 106,855
Proposed 24.8877 14,890
LDCF [61] 24.7976 224,983
Katamari [5] 22.4898 104,732
SpatialPooling+ [50] 21.8875 44,548

of detection results on partial occlusion dataset is displayed in Figure 4.17-4.19. There are some

missing ground truths that should be considered as partial occlusion case and detected by the

proposed detector. These cases degrade the performance of the proposed detector as mentioned

earlier. One interesting observation about this experiment is that the top detectors are not de-

signed for partial occlusion problem but still yield good results in partial occlusion dataset. To

investigate this issue, the results of other top detectors are evaluated with some examples shown

in Figure 4.20. From the observation, those detectors report many false positive windows as

shown in table 4.3. In real world applications such as driven assistance system, the number of

false positives is very sensitive. An ideal system should report as low number of false positive

as possible.

Other performance evaluation methods focusing on the number of false positives are also

added. The average precision (AP) or average ratio of matched BBd and reported BBd describe

the situation of the detector that reports too many false positive BB. The methods are defined

below.

Precision = NumberofmatchedBBd+1
NumberofreportedBBd+1

AP =
∑N

i=1 Precisioni

N

where N is the number of test images.

One of the best detectors is a comparative technique to use LAMR for theoretical analysis

and AP for practical analysis. The results is shown in Table 4.4. By comparing these perfor-

mance measures, the proposed framework reports low number of BBd. The AP number is

ranked second after SDN. Taking LAMR into consideration, the proposed method outperforms
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Table 4.4: Top pedestrian detectors with associate LAMR and AP with standard deviation.

Detector Reasonable LAMR AP Standard deviation

SDN [41] 37.8714 0.4521 0.2799
ACF-Caltech+ [61] 29.7591 0.0514 0.0312
Proposed 24.8877 0.4023 0.2823
LDCF [61] 24.7976 0.0239 0.0153
Katamari [5] 22.4898 0.0546 0.0433
SpatialPooling+ [50] 21.8875 0.1229 0.0826

Table 4.5: Top pedestrian detectors with associate LAMR, running time, and machine.

Detector Reasonable LAMR Running time Machine

SDN [41] 37.8714 10 fps NVIDIA GTX 760 GPU
ACF-Caltech+ [61] 29.7591 30 fps Intel Core i7 CPU(3.4GHz)
Proposed 24.8877 4 fps Intel Core i7 CPU(3.4GHz)
LDCF [61] 24.7976 4 fps Intel Core i7 CPU(3.4GHz)
Informed Haar [5] 34.5980 0.625 fps Intel Core i7 CPU(3.5GHz)
SpatialPooling+ [50] 21.8875 0.172 fps (only scanning time) Parallelized quad core Intel Xeon processor

SDN by 13% LAMR. Thus, the proposed framework is a reasonable option for real world ap-

plication.

4.4.4 Running Time Performance

Most of the top detectors is based on channel features. The detectors perform on a very

large pool of features to enhance their performance. Strong powerful results come with more

features and computation time that in effect become the bottle neck of implementation in real

world applications. Balancing the trade-off between running time and performance has to be

carefully considered. For the proposed method, the performance is enhanced in 3 steps. First,

use MSPT in training step so that the running time during testing is not affected by this en-

hancement. Second, combine ACF and uLBP for feature representation. Third, apply hierar-

chical framework with more detectors to solving specific scenarios. In this case, performance

Table 4.6: Performance of variance enhancement of the proposed method.

Enhancement Reasonable LAMR Running time Number of Reported BBd AP

MSPT 27.94 30 fps 6,578 0.5404
ACF-uLBP [61] 25.04 4.5 fps 8,929 0.6314
Hierarchical framework 24.89 4 fps 14,890 0.4023
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of specific situations is enhanced but running time will be worsened due to more feature and

detector computations. It is hard to compare running time of each detector because the original

papers do not provide enough information of testing machine. The example of running time of

various detectors are shown in Table 4.5 along with the details of testing machine and LAMR.

From the Table 4.5, ACF-Caltech+ can run at 30 fps with an Intel Core i7 CPU (3.4GHz), while

SpatialPooling+ is just very slow (the reporting time of SpatialPooling+ is only scanning time

not including feature calculation and non-maximal suppression). This means that elegant re-

sults come from high computation time and very hard to implement in real applications. The

proposed method is tested on an Intel Core i7 CPU (3.4GHz). Table 4.6 shows the trade-off be-

tween running time and performance of the proposed framework. With each enhancement, the

LAMR is better, AP slightly increases but running time slows down considerably. Note that the

running time can be improved by using another search space reduction and tracking algorithm.

In so doing, the number of candidate windows will be reduced. With the various enhancements

of the proposed method, adopting applications can be fined tune to boost their performance.

Specially, the MSPT enhancement is best for speed; the ACF-uLBP is preferred for lower miss

rate and running time; and the hierarchical framework is an attractive enhancement for handling

specific scenarios like partial occlusion.
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Figure 4.11: Example of detection results in CPDB dataset.
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Figure 4.12: True positive detection results in reasonable CPDB dataset.
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Figure 4.13: False positive detection results in reasonable CPDB dataset.
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Figure 4.14: False negative detection results in reasonable CPDB dataset.
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Figure 4.15: Results on CPDB dataset in details. (a) All dataset. (b) Large scale dataset. (c) Medium
scale dataset. (d) Near dataset. (e) None occlusion dataset. (f) Partial occlusion dataset.



60

Figure 4.16: False negative detection results in large CPDB dataset.

Figure 4.17: True positive detection results in partial occlusion CPDB dataset.
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Figure 4.18: False positive detection results in partial occlusion CPDB dataset.

Figure 4.19: False negative detection results in partial occlusion CPDB dataset.
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(a)

(b)

Figure 4.20: Comparison of detection results in CPDB dataset.



CHAPTER V

DISCUSSION, CONCLUSION, AND FUTURE WORK

5.1 Discussion

There are some human and pedestrian datasets provided for research purposed. Each

dataset has specific setup of the camera and different in environment. Most of them do not

contain enough partial occlusion examples needed for this work. Thus, the CPDB having some

occulsion bounding boxes is the closest dataset to be adopted.

The proposed framework introduces 3 steps of enhancement for pedestrian detection.

These enhancements including both training and testing enhancements. For the first enhance-

ment which applied MSPT in feature selection process of Adaboost, this enhancement performs

in training time that does not affect the speed of the system. Thus, MSPT yields good results in

the experiment.

The second enhancement is the combination of ACF and spatial uLBP. From the experi-

mental results, by adding more features to the system, the overall performance of the system is

increased but the running time of the system drops considerably. This effect is found in other

top detectors, wherein combinations of the large set of features are used. To obtain elegant

results, they sacrifice the running time as a trade-off. The proposed method applies the combi-

nation of features as well but balances the trade-off to maintain the running time at 4 fps and

low LAMR. Nevertheless, this still cannot be applied in real applications.

The third enhancement is hierarchical framework for partial occlusion handling. Ex-

perimental results show that this scheme speeds up the overall results slightly. There are some

issues needed to be discussed. First, there are not enough partial occlusion samples in the CPDB

dataset for testing and evaluation. Second, there are some missing ground truths that should be

partial occlusion pedestrian. This issue degrades the performance of the proposed detector. In

the proposed framework, each region detector is designed to use feature and classifier which

require no calculation load in each region. All features are calculated once and used by every

region detectors, hence faster speed. Other methods use different architecture for each region
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detectors which makes it very time-consuming. This problem is handled by hardware solution.

The number of false negative produced by the system is an another important issue for

many applications. The ideal system should report false negative as low as possible but still

yields an acceptable result. The proposed framework is designed based on such objective yet

can be implemented in real applications. It maintains low LAMR, reports low number of false

negatives, and acceptable running time.

5.2 Conclusion

This dissertation proposes a pedestrian detection framework with partial occlusion han-

dling capability. The proposed framework is divided into three major enhancements, namely,

enhancement in training stage using MSPT, enhancement in features using a combination of

ACF and spatial uLBP as channel features, and handling partial occlusion problem with hierar-

chical structure of region detectors. The MSPT is created by using average pedestrian silhouette

images. By using MSPT as weighting for feature selection process of training a boosted deci-

sion tree via Adaboost technique, the selected features are located in area of pedestrian shape

and yield better classification results. The combination of ACF and spatial uLBP boosts the

overall results of the proposed framework. To handle partial occlusion problem, the ensem-

ble of specific region detectors in hierarchical fashion is proposed. Each region detector is

constructed based on an appearance-based approach which represents the visible portion of

pedestrian in detection window with different levels of visibility in both horizontal and vertical

schemes. All region detectors are running together via hierarchical framework. Lower level

region detectors of hierarchical framework are activated by the hidden region hypothesis value

extracted from the upper level region detectors and the detection score is calculated from the

hypothesis of all activated detectors. The results of the proposed framework performance on

the real world CPDB dataset are ranked fourth at 25% LAMR and running at 4 frames per

second with hierarchical framework and 30 frames per second with MSPT approach only. By

comparing the proposed detector with other top performance detectors via LAMR and AP, the

proposed detector is the reasonable option for real-time applications with low miss rate and less

false negative produced.

5.3 Future Work

There are some issues and interesting problems to be discovered in the future work.
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1. find the solutions to enhance the performance of region detectors.

2. increase the size of MSPT including the number of silhouette images and MSPTs.

3. find additional features to represent pedestrian with low computation time.
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