แร่หนักในตะกอนสึนามิ ปี พ.ศ. 2547: การแปลผลรูปแบบ และทิศทางการเคลื่อนที่ เกาะพระทอง จังหวัดพังงา

นายโชติมันต์ วัดเวียงคำ

งานวิจัยนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรบัณฑิต ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 HEAVY MINERALS IN 2004 TSUNAMI DEPOSITS: MODE OF TRANSPORTATION AND FLOW DIRECTION INTERPRETATION AT PHRA THONG ISLAND, CHANGWAT PHANG NGA

CHOTIMUNT WADWIANGKAM

A REPORT IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF THE BACHELOR OF SCIENCE DEPARTMENT OF GEOLOGY, FACULTY OF SCIENCE CHULALONGKORN UNIVERSITY

2015

วันที่ส่ง/.....

วันที่อนุมัติ/.....

.....

(อาจารย์ ดร. เครือวัลย์ จันทร์แก้ว)

อาจารย์ที่ปรึกษาโครงงาน

แร่หนักในตะกอนสึนามิ ปี พ.ศ. 2547: การแปลผลรูปแบบและทิศทางการเคลื่อนที่ เกาะพระทอง จังหวัดพังงา

โชติมันต์ วัดเวียงคำ และ เครือวัลย์ จันทร์แก้ว ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อีเมล์: chotimunt.wd@hotmail.com

บทคัดย่อ

การศึกษาแร่หนักในตะกอนสึนามิ ปี พ.ศ. 2547 เพื่อระบุว่าตะกอนที่สะสมเป็นการตกสะสมเนื่องมาจากการ เคลื่อนที่ตามพื้นผิว (bedload) หรือการแขวนลอย (suspension) และระบุทิศทางการเคลื่อนที่ได้ว่าเกิดจากกระแส ใหลท่วม (inflow) หรือไหลกลับ (outflow) จะช่วยให้เราประเมินความหนาของชั้นตะกอนที่ตกจากคลื่นสึนามิจากแต่ ละเหตุการณ์ได้ และช่วยให้การคำนวณความรุนแรงของคลื่นทำได้ง่ายขึ้น โดยโครงงานวิจัยนี้ทำการวิเคราะห์ชนิดและ ้ปริมาณของแร่หนักที่พบในตะกอนสึนามิ ปี พ.ศ. 2547 เพื่อดูความสัมพันธ์ระหว่างแร่หนักที่พบกับรูปแบบการ เคลื่อนที่ของตะกอนสึนามิและทิศทางการเคลื่อนที่ของคลื่นสึนามิ บริเวณเกาะพระทอง อำเภอคระบรี จังหวัดพังงา โดยทำการเก็บตัวอย่างตะกอนสีนามิ ปี พ.ศ. 2547 ทั้งหมด 30 ตัวอย่าง จาก 17 จุดศึกษา แบ่งเป็นตะกอน suspension 11 ตัวอย่าง ตะกอน bedload 14 ตัวอย่าง และตะกอนที่ถูกเก็บรวมทั้งชั้น (bulk sample) 5 ตัวอย่าง ได้ทำการแยกขนาดตะกอนแบบแห้ง (dry sieving) เพื่อนำไปวิเคราะห์การกระจายตัวของขนาดตะกอน และวิเคราะห์ เชิงคุณภาพและปริมาณของแร่หนักโดยใช้เครื่อง X-Ray Diffractometer ด้วยวิธี Powder XRD ผลการศึกษาพบว่า ตะกอน bedload มีร้อยละโดยมวลของแร่หนักมากกว่าตะกอน suspension และแร่หนักที่พบทั้งในตะกอน bedload และ suspension ได้แก่ แร่สคอร์ล แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ โดย ในตะกอน bedload มีปริมาณแร่สคอร์ล และแร่อะนาเทส มากกว่า แต่มีปริมาณแร่มัสโคไวต์น้อยกว่าตะกอน suspension และตะกอน bedload ของกระแสไหลกลับ ซึ่งในการออกภาคสนามนั้นเราไม่สามารถแยกตะกอนที่มี ปริมาณแร่หนักแตกต่างกันเพียง 0.5-1 % และตะกอนที่มีแร่มัสโคไวต์ในปริมาณที่แตกต่างกันไม่มากได้ ดังนั้นข้อมูล ชนิดและปริมาณของแร่หนักในตะกอนสึนามิเพียงอย่างเดียว อาจจะไม่สามารถใช้ในการระบุรูปแบบการเคลื่อนที่ของ ตะกอนสึนามิ และทิศทางการเคลื่อนที่ของคลื่นสึนามิได้

<mark>คำสำคัญ</mark>: ตะกอนสึนามิ, แร่หนัก, รูปแบบการเคลื่อนที่, ทิศทางการเคลื่อนที่, ตะกอนที่มีรูปแบบการเคลื่อนที่ตาม พื้นผิว, ตะกอนที่มีรูปแบบการเคลื่อนที่ในลักษณะการแขวนลอย

HEAVY MINERALS IN 2004 TSUNAMI DEPOSITS: MODE OF TRANSPORTATION AND FLOW DIRECTION INTERPRETATION AT PHRA THONG ISLAND, CHANGWAT PHANG NGA

<u>Chotimunt Wadwiangkam</u>^{1,*} and Kruawun Jankaew² ^{1,2}Department of Geology, Faculty of Science, Chulalongkorn University ^{*}Corresponding author e-mail: chotimunt.wd@hotmail.com

ABSTRACT

Heavy minerals in tsunami deposits may help in identifying mode of transportation of sediments (bedload or suspension load) and identifying flow direction (inflow or outflow), correctly identify bedload and suspension load thickness deposited from each event is important in calculating tsunami flow speed. In this study, quantify amount and identify types of heavy minerals found in bedload and suspension load sediments of 2004 tsunami deposits from Phra Thong Island, Changwat Phang Nga. We collected a total of 30 samples of 2004 tsunami from 17 locations along the transect, containing 11 suspension deposits samples, 14 bedload deposits samples and 5 bulk samples. The samples were analyzed for grain size distribution and X-Ray Diffractometer (XRD; using Powder XRD). The results show that bedload deposits have a greater heavy minerals content than suspension deposits and bedload deposit from the outflow. Schorl, rutile, anatase, ilmenite, magnesite, and muscovite are found in both of bedload and suspension deposits but ilmenite was not found in the bedload deposit of the outflow. Bedload deposits have more schorl and anatase but less muscovite than suspension deposits and the bedload deposit of the outflow. In field observation, it is not possible to distinguish bedload from suspension load based on their small difference in heavy minerals content (0.5-1%) and in amounts of muscovite. Thus heavy minerals assemblages and contents alone cannot effectively be used in identifying mode of transportation of 2004 tsunami deposits and flow direction at Phra Thong Island.

Keywords: tsunami deposits, heavy minerals, mode of transportation, flow direction, bedload deposits, suspension deposits

กิตติกรรมประกาศ

รายงานวิจัยฉบับนี้เป็นส่วนหนึ่งของวิชาโครงงานวิทยาศาสตร์ (Senior project) เพื่อให้นิสิต ชั้นปีที่ 4 ได้เรียนรู้และเสริมสร้างประสบการณ์จากการทำงานวิจัย

การทำโครงงานวิจัยครั้งนี้เสร็จสิ้นไปได้ด้วยดี เนื่องด้วยได้รับความช่วยเหลือ คำแนะนำ และ การสนับสนับ จากบุคคลหลายท่าน จึงขอขอบพระคุณ อาจารย์ ดร. เครือวัลย์ จันทร์แก้ว อาจารย์ที่ ปรึกษาในการทำโครงงานวิจัยครั้งนี้ ที่ได้ให้ความช่วยเหลือ และคำแนะนำ ตั้งแต่ก่อนเริ่มโครงงานวิจัย การออกภาคสนาม การศึกษาในห้องปฏิบัติการ การวิเคราะห์และสรุปผลข้อมูล รวมไปถึงการจัดทำ รายงานวิจัยฉบับนี้

ขอขอบคุณ รองศาสตราจารย์ สมศักดิ์ สายสินธุ์ชัย อาจารย์ประจำภาควิชาวิศวกรรมเหมืองแร่ และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความอนุเคราะห์และคำแนะนำ สำหรับการใช้โต๊ะแยกแร่

ขอขอบคุณอาจารย์ ทุกท่านในภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ได้ให้ความรู้ ประสบการณ์ในหลากหลายด้าน และคำแนะนำต่างๆ เพื่อนำมาพัฒนาตนเองและ ประยุกต์ใช้กับโครงงานวิจัยครั้งนี้ และขอขอบคุณพี่บุคลากรในภาควิชาธรณีวิทยาทุกท่าน โดยเฉพาะ อย่างยิ่ง พี่จิระประภา และพี่บรรจง ที่ได้ให้ความช่วยเหลือ และคำแนะนำตลอดการศึกษาใน ห้องปฏิบัติการ

ขอขอบคุณ นายกัมปนาท จันทร์คำ และ นายธนพ ศิริวัฒนานุรักษ์ เป็นอย่างยิ่ง ที่ให้ความ ช่วยเหลืออย่างเต็มที่ในการออกภาคสนามและเก็บตัวอย่างตะกอน ขอขอบคุณ นายรณกฤษฏิ์ รัตนศรี-อำไพพงศ์ นายชาญวิทย์ แตงอ่อน และนางสาวภาวินีย์ เขื่อนเพชร สำหรับคำแนะนำ ความช่วยเหลือ และกำลังใจที่ดี และขอขอบคุณเพื่อนๆ GEO'56 และน้องๆธรณีทุกคน ที่คอยเป็นกำลังใจและให้ความ ช่วยเหลือเสมอมา

สารบัญ

หัวข้อภาษาไทย	ก
หัวข้อภาษาอังกฤษ	ဈ
บทคัดย่อภาษาไทย	ণ
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ର
สารบัญ	গ
สารบัญตาราง	ស
สารบัญรูป	ស្វ
บทที่ 1 บทนำ	1
1.1 ข้อความเบื้องต้น	1
1.2 นิยามปัญหา	2
1.3 วัตถุประสงค์	2
1.4 สมมติฐาน	2
1.5 ขอบเขตการศึกษา	2
1.6 พื้นที่ศึกษา	2
1.7 ผลที่คาดว่าจะได้รับ	4
1.8 ข้อมูลพื้นฐานทางธรณีวิทยาของเกาะพระทอง	4
1.9 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	6
บทที่ 2 ระเบียบวิธีวิจัย	8
2.1 ศึกษาข้อมูลพื้นฐานและวิธีการศึกษาเบื้องต้น	10
2.1 สำรวจภาคสนาม	10
2.2 ศึกษาในห้องปฏิบัติการ	17
บทที่ 3 ผลการศึกษาและการตีความข้อมูล	23
3.1 การวิเคราะห์ขนาดตะกอน	24
3.2 การวิเคราะห์เชิงคุณภาพและเชิงปริมาณของแร่หนัก	28
บทที่ 4 อภิปรายและสรุปผลการศึกษา	33
4.1 อภิปรายผลการศึกษา	33
4.2 สรุปผล	37
4.3 ข้อเสนอแนะ	38

หน้า

	หน้า
เอกสารอ้างอิง	39
ภาคผนวก	42

สารบัญตาราง

ตาราง	2.1	ข้อมูลตำแหน่งที่ทำการเก็บตัวอย่างตะกอน	15
ตาราง	3.1	ตารางแสดงตัวอย่างที่ทำการวิเคราะห์แบบต่างๆ	23
ตาราง	3.2	ชนิดของแร่หนักที่ได้จากกว่าวิเคราะห์เชิงคุณภาพโดยเครื่อง XRD	
		และโปรแกรม MAUD	28
ตาราง	3.3	ร้อยละโดยน้ำหนัก (weight percent) ของแร่หนักชนิดต่างๆที่ได้จาก	
		การวิเคราะห์โดยใช้เครื่อง XRD และโปรแกรม MAUD	31

หน้า

สารบัญรูปภาพ

	หน้า
รูป 1.1 ภาพถ่ายดาวเทียม เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา	
(ภาพถ่ายดาวเทียมจาก Google earth, เก็บภาพวันที่ 8 เดือน มกราคม พ.ศ. 255	9) 3
รูป 1.2 แผนที่ภูมิประเทศ ระวาง 462711 ลำดับชุด L7018 "อำเภอคุระบุรี"	
มาตราส่วน 1:50,000 (กรมแผนที่ทหาร, 2543)	3
รูป 1.3 ลักษณะทางภูมิศาสตร์ของเกาะพระทอง (Brill et al., 2012)	4
รูป 1.4 แผนที่ธรณีวิทยาเกาะพระทอง มาตราส่วน 1:250,000 (กรมทรัพยากรธรณี, 2550)	5
รูป 2.1 ตำแหน่งของจุดศึกษาที่ทำการเก็บตัวอย่างตะกอนบริเวณเกาะพระทอง	
(ภาพถ่ายดาวเทียมจาก Google earth, เก็บภาพวันที่ 8 เดือน มกราคม พ.ศ. 2559	9) 11
รูป 2.2 หลุมขุดของจุดศึกษาที่ 2 แสดงตะกอนที่มีรูปแบบการเคลื่อนที่แตกต่างกัน	
จากลักษณะโครงสร้างตะกอน (ก.) โดยใช้ข้อมูล grain size profile	
ช่วยในการเปรียบเทียบ (ข.)	12
รูป 2.3 หลุมขุดของจุดศึกษาที่ 17 แสดงชั้นตะกอนโคลน (mud layer) ซึ่งตกตะกอน	
จากการแขวนลอย และลักษณะการวางชั้นเฉียงระดับ ซึ่งเกิดจากกระแสไหลกลับ	
(backwash current) อย่างชัดเจน (ถ่ายภาพโดย อ.ดร. เครือวัลย์ จันทร์แก้ว	
เมื่อปี พ.ศ. 2552)	13
รูป 2.4 หลุมขุดของจุดศึกษาที่ 17 แสดงลักษณะการวางชั้นเฉียงระดับไม่ชัดเจน	14
รูป 2.5 หลุมขุดของจุดศึกษาที่ 8 ซึ่งไม่สามารถแยกตะกอนที่มีรูปแบบการเคลื่อนที่	
แตกต่างกันได้	14
รูป 2.6 การคัดแยกขนาดตะกอนแบบแห้ง โดยใช้เครื่อง Retch	17
รูป 2.7 การทำความสะอาดตะกอนด้วยไฮโดรเจนเปอร์ออกไซด์ เพื่อกำจัดสารอินทรีย์	18
รูป 2.8 การทำความสะอาดตะกอนด้วยกรดไฮโดรคลอริก เพื่อกำจัดสารประกอบคาร์บอเนต	18
รูป 2.9 ส่วนสำคัญของโต๊ะแยกแร่	19
รูป 2.10 ทิศทางของแรงจากการเคลื่อนที่ของโต๊ะและน้ำที่เกิดขึ้นกับเม็ดแร่หนัก	
และทรายบนโต๊ะ	20
รูป 2.11 อุปกรณ์ที่ใช้ในขั้นตอนการแยกแร่หนัก ได้แก่ A. ขาตั้งกรวย, B. กรวยแยก,	
C. กระดาษกรอง, D. กรวยกรอง และ E. ขวดรูปชมพู่	21

สารบัญรูปภาพ (ต่อ)

	หน้า
รูป 2.12 แร่หนักที่จมตัวลงสู่ก้นกรวยแยก เนื่องจากมีความหนาแน่นมากกว่าโบรโมฟอร์ม	21
รูป 2.13 แร่หนักที่ได้จากการแยกตัวอย่างตะกอน	22
รูป 2.14 แป้นอัดตัวอย่าง (Sample holder) ที่ใช้อัดตัวอย่างให้แน่นเพื่อนำไปวิเคราะห์	
ด้วยเครื่อง XRD แบบ Power XRD	22
รูป 3.1 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่	
ตามพื้นผิว ซึ่งอยู่ห่างจากแนวชายทะเล น้อยกว่า 400 เมตร	24
รูป 3.2 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่	
ตามพื้นผิว ซึ่งอยู่ห่างจากแนวชายทะเล มากกว่า 400 เมตร	25
รูป 3.3 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่	
ในลักษณะการแขวนลอย	26
รูป 3.4 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิที่ถูกเก็บรวมทั้งชั้น	27
รูป 3.5 แผนภาพใยแมงมุมแสดงปริมาณแร่หนักในตะกอน bedload	29
รูป 3.6 แผนภาพใยแมงมุมแสดงปริมาณแร่หนักในตะกอน suspension	29
รูป 3.7 แผนภาพใยแมงมุมแสดงเปรียบเทียบปริมาณแร่หนักในตะกอน bedload และ	
suspension	30
รูป 3.8 แผนภาพใยแมงมุมแสดงเปรียบเทียบปริมาณแร่หนักในตะกอน bedload	
ที่ตกสะสมตัว Inflow (1 st Bedload17) และ Outflow (2 nd Bedload17)	30
รูป 3.9 แผนภูมิแสดงร้อยละโดยน้ำหนักของแร่หนักในตัวอย่างตะกอน	32
รูป 4.1 การเปรียบเทียบกราฟกราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ	
ที่มีรูปแบบการเคลื่อนที่ตามพื้นผิว ซึ่งพบว่าตะกอนมีความละเอียดมากขึ้น	
ตามระยะทางจากชายหาด	33
รูป 4.2 แสดงร้อยละโดยน้ำหนักของแร่หนักในตะกอน bedload และ suspension	
ของจุดศึกษาที่ 2,10,12,14 และ17 (ดัดแปลงจาก Jankaew et al., 2011)	35
รูป 4.3 แผนภาพจำลองทางความคิด แสดงองค์ประกอบของตะกอนสึนามิชั้นเดียว ได้แก่	
ตะกอน bedload และ suspension ซึ่งแสดงลักษณะโครงสร้างตะกอนและ	

สารบัญรูปภาพ (ต่อ)

	หน้า
ปริมาณแร่หนักที่แตกต่างกัน	36
รูป 4.4 การเปลี่ยนแปลงในแนวดิ่ง (Vertical change) ของปริมาณแร่หนักในตะกอนสึนามิ	
เกาะคอเขา จังหวัดพังงา (Jagodzinski et al., 2009)	37

บทที่ 1

บทน้ำ (Introduction)

1.1 ข้อความเบื้องต้น

สึนามิเป็นธรณีพิบัติภัยที่ก่อให้เกิดความเสียหายต่อชีวิตและทรัพย์สินอย่างมหาศาล เหตุการณ์สึนามิ เมื่อวันที่ 26 ธันวาคม 2547 ส่งผลกระทบตลอดแนวชายฝั่งอันดามันของประเทศไทย ทั้งหมด 6 จังหวัด ได้แก่ ระนอง พังงา ภูเก็ต กระบี่ สตูล และตรัง ด้วยเหตุนี้จึงทำให้ประเทศไทย ตระหนักถึงอันตรายของธรณีพิบัติภัยสึนามิและความสำคัญของการศึกษาตะกอนสึนามิ

เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา เป็นพื้นที่ที่ได้รับผลกระทบจากเหตุการณ์คลื่นสึนามิ เมื่อวันที่ 26 ธันวาคม 2547 คลื่นสึนามิ ปี 2547 ไหลเข้าท่วมที่ราบแนวสันทรายของเกาะพระทองเป็น ระยะ 2 กิโลเมตร และพบตะกอนสึนามิสะสมตัวปกคลุมทั้งสันทรายและที่ลุ่มระหว่างสันทรายแต่ละสัน โดยทั่วไปตะกอนมีความหนาประมาณ 5-20 เซนติเมตร (Jankaew et al., 2008) และตะกอนสึนามิที่ เกาะพระทอง มีขนาดเฉลี่ยเม็ดตะกอนเปลี่ยนแปลงไปตามระยะทางที่เพิ่มขึ้น โดยเปลี่ยนจากทราย ขนาดปานกลางที่ใกล้กับชายฝั่งทะเลเป็นทรายขนาดละเอียดที่ตำแหน่ง 1,300 เมตร (Fujino et al., 2010)

เนื่องจากพื้นที่บริเวณเกาะพระทองยังขาดข้อมูลแร่หนักในตะกอนสึนามิและความเข้าใจ เกี่ยวกับความเร็วคลื่นสึนามิ การศึกษารูปแบบการเคลื่อนที่ของคลื่นสึนามิ (mode of transportation) การศึกษาทิศทางการเคลื่อนที่ของคลื่นสึนามิ (flow direction) และความเร็วของ คลื่นสึนามิ โดยอาศัยข้อมูลตะกอน อาจช่วยให้เราเข้าใจอุทกพลศาสตร์ของคลื่นสึนามิมากขึ้น ทั้งนี้แร่ หนักที่พบในตะกอนสึนามิ อาจช่วยให้เราทราบว่าตะกอนที่สะสมเป็นการตกสะสมเนื่องมาจากการ เคลื่อนที่ตามพื้นผิว (bedload transport) หรือการแขวนลอย (suspension transport) และระบุทิศ ทางการเคลื่อนที่ (flow direction) ได้ ซึ่งจะช่วยให้เราประเมินความหนาของขั้นตะกอนที่ตกสะสมตัว จากคลื่นสึนามิจากแต่ละเหตุการณ์ (การเคลื่อนที่ตามพื้นผิว หรือการแขวนลอย หรือกระแสไหลกลับ) ทำให้การคำนวณความรุนแรงของคลื่นทำได้ง่ายขึ้น

1.2 นิยามปัญหา

ปัจจุบันยังไม่การศึกษารูปแบบและทิศทางการเคลื่อนที่ของคลื่นสึนามิ จากข้อมูลแร่หนักใน ตะกอนสึนามิ ในพื้นที่เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา

1.3 วัตถุประสงค์

 1.31 ทดสอบว่าชนิดและปริมาณของแร่หนักในตะกอนสึนามิ สามารถใช้ในการแปลผล รูปแบบการเคลื่อนที่ของแร่หนักในตะกอนสึนามิได้หรือไม่

 1.32 ทดสอบว่าชนิดและปริมาณของแร่หนักในตะกอนสึนามิ สามารถใช้ในการแปลผลทิศ ทางการเคลื่อนที่ของคลื่นสึนามิได้หรือไม่

1.4 สมมุติฐาน

ตะกอนสึนามิ ปี พ.ศ. 2547 บริเวณพื้นที่ เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา มีแร่หนัก เป็นองค์ประกอบ ซึ่งชนิดและปริมาณแร่หนักที่พบสามารถใช้ในการระบุรูปแบบการเคลื่อนที่ของแร่ หนักในตะกอนสึนามิ และแปลผลทิศทางการเคลื่อนที่ของคลื่นสึนามิ

1.5 ขอบเขตการศึกษา

วิเคราะห์ชนิดและปริมาณแร่หนักในตะกอนสึนามิ ปี พ.ศ. 2547 บริเวณพื้นที่เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา เพื่อระบุรูปแบบการเคลื่อนที่ของแร่หนักในตะกอนสึนามิ และแปลผลทิศ ทางการเคลื่อนที่ของคลื่นสึนามิ โดยเครื่องมือที่ใช้วิเคราะห์คือ X-Ray Diffractometer

1.6 พื้นที่ศึกษา

พื้นที่ศึกษาตั้งอยู่ที่เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา ในแผนที่ภูมิประเทศ ระวาง 4627II "อำเภอคุระบุรี" มาตราส่วน 1:50,000 พื้นที่ศึกษาตั้งอยู่ในตำแหน่งลองติจูด E 98° 15' 35.51" ถึง E 98° 15' 52.45" และละติจูด N 9° 08' 04.78" ถึง N 9° 07' 47.39" โดยทาง ตะวันตกติดกับทะเลอันดามัน (รูป 1.1 ภาพถ่ายดาวเทียม เกาะพระทอง และ 1.2 แผนที่ภูมิประเทศ อำเภอคุระบุรี)

รูป 1.1 ภาพถ่ายดาวเทียม เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา (ภาพถ่ายดาวเทียมจาก Google earth, เก็บภาพวันที่ 8 เดือน มกราคม พ.ศ. 2559)

รูป 1.2 แผนที่ภูมิประเทศ ระวาง 4627II ลำดับชุด L7018 "อำเภอคุระบุรี" มาตราส่วน 1:50,000 (กรมแผนที่ทหาร, 2543)

1.7 ผลที่คาดว่าจะได้รับ

 1.71 ทราบว่าชนิดและปริมาณของแร่หนักในตะกอนสึนามิ สามารถใช้ระบุการเคลื่อนที่ของ ตะกอนสึนามิในคลื่นสึนามิในลักษณะการเคลื่อนที่ตามพื้นผิว หรือการแขวนลอย ได้หรือไม่

 1.72 ทราบว่าชนิดและปริมาณของแร่หนักในตะกอนสึนามิ สามารถใช้ระบุทิศทางการ เคลื่อนที่ของคลื่นสึนามิ ได้หรือไม่

1.8 ข้อมูลพื้นฐานทางธรณีวิทยาของเกาะพระทอง

1.8.1 ลักษณะภูมิประเทศ

เกาะพระทอง ตั้งอยู่บนชายฝั่งทะเลอันดามัน ภาคใต้ของประเทศไทย มีความยาว 15 กิโลเมตร และความกว้าง 8 กิโลเมตร ถูกแบ่งออกจากพื้นแผ่นดินโดยร่องน้ำซึ่งได้รับอิทธิพลจากน้ำขึ้นน้ำลง (tidal channels) เกาะพระทองเกิดจากการก่อตัวของสันทรายที่วางตัวขนานกับชายฝั่ง โดย ภูมิประเทศฝั่งตะวันตกแสดงลักษณะสันทรายสลับกับที่ลุ่มระหว่างสันทราย (swales) ส่วนฝั่งตะวันออก ลักษณะเป็นที่ราบลุ่มที่ถูกปกคลุมอย่างหนาแน่นด้วยต้นโกงกางและพืชพรรณน้ำกร่อยชนิดอื่นๆ (รูป 1.3) (Brill et al., 2012)

รูป 1.3 ลักษณะทางภูมิศาสตร์ของเกาะพระทอง (Brill et al., 2012)

1.8.2 ลักษณะธรณีวิทยาของพื้นที่

จากการศึกษาธรณีวิทยาจากแผนที่ธรณีวิทยาของจังหวัดพังงา มาตราส่วน 1:250,000 จาก กรมทรัพยากรธรณีวิทยา พบว่าเกาะพระทองประกอบด้วยหน่วยหิน 2 หน่วย ได้แก่ หน่วยหินตะกอน ซึ่งพบเฉพาะทางตะวันออกของเกาะพระทองเท่านั้น และหน่วยตะกอนซึ่งครอบคลุมพื้นที่ส่วนใหญ่ของ เกาะพระทอง (รูป 1.4) เรียงอายุจากแก่ไปอ่อนได้ดังต่อไปนี้

1) หินยุคคาร์บอนิเฟอรัส

หน่วยหินนี้ประกอบไปด้วย หินโคลนปนกรวด หินดินดาน หินทรายแป้ง หินเชิร์ต หิน ทรายเนื้อภูเขาไฟ หินทรายเนื้อซิลิกา สีเทา เทาเขียว และน้ำตาล มีซากหอยแบรคิโอพอด ไบรโอซัว และไครนอยด์

2) หินตะกอนควอเทอร์นารี

หน่วยหินนี้ประกอบไปด้วย ตะกอนชายฝั่งทะเลโดยอิทธิพลของน้ำขึ้นน้ำลง ดินเหนียว ทรายแป้ง และทรายละเอียดของที่ลุ่มราบน้ำขึ้นถึง ที่ลุ่มชื้น และที่ลุ่มน้ำขังป่าชายเลน และ ชะวากทะเล

รูป 1.4 แผนที่ธรณีวิทยาเกาะพระทอง มาตราส่วน 1:250,000 (กรมทรัพยากรธรณี, 2550)

1.9 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

การศึกษาแร่หนัก สามารถประยุกต์ใช้กับตะกอนสึนามิได้หลายวัตถุประสงค์ เช่น การหา แหล่งที่มาของตะกอนสึนามิ (tsunami sediment provenance) (ดังตัวอย่างใน Jagodzinski et al., 2009; Nakamura et al., 2012; Jagodzinski et al., 2012; Khueanphet, 2012; Cascalho et al., 2016) การระบุรูปแบบการเคลื่อนที่ของตะกอน (mode of transportation) (ดังตัวอย่างใน Jagodzinski et al., 2009; Nakamura et al., 2012; Jagodzinski et al., 2012; Cascalho et al., 2016) การแยกความแตกต่างระหว่างตะกอนสึนามิกับตะกอนชายหาดและดิน (เช่น Jagodzinski et al., 2009) และการประยุกต์ใช้กับการศึกษาตะกอนสึนามิโบราณ (ดังตัวอย่างใน Nakamura et al., 2012; Cascalho et al., 2016)

แร่หนักที่พบในตะกอนสึนามิ ปี 2547 ที่เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา ได้แก่ แร่ เซอร์คอน แร่รูไทล์ แร่ทัวร์มาลีน แร่ทึบแสง แร่มัสโคไวต์ แร่บรูไคต์ ปริมาณมากไปน้อยตามลำดับ (Khueanphet, 2012) ซึ่งสอดคล้องกับแร่หนักส่วนใหญ่ที่พบบริเวณเกาะคอเขา ซึ่งอยู่ใต้เกาะพระทอง ได้แก่ แร่ทัวร์มาลีน แร่เซอร์คอน แร่มัสโคไวต์ แร่ไบโอไทต์ แร่ลิมโมไนต์ และแร่ทึบแสง (Jagodzinski et al., 2009)

โดยทั่วไปการระบุรูปแบบการเคลื่อนที่ของตะกอนสึนามินั้น ใช้หลักฐานทางตะกอนวิทยา โดย หลักฐานทางตะกอนวิทยาที่บ่งบอกถึงการเคลื่อนที่ตามพื้นผิว (bedload transport) ได้แก่ ลักษณะ โครงสร้างชั้นตะกอนแบบเรียงขนาดจากเล็กขึ้นไปใหญ่ (coarsening upward) (ดังตัวอย่างใน Moore et al., 2011; Szczucinski et al., 2012; Putra et al., 2013a; Putra et al., 2013b) และลักษณะ ชั้นบางของแร่หนัก ซึ่งสัมพันธ์กับลักษณะเป็นชั้นตะกอนหนา (massive) (เช่น Putra et al., 2013a) ส่วนหลักฐานทางตะกอนวิทยาที่บ่งบอกถึงการแขวนลอย (suspension transport) ได้แก่ ลักษณะ โครงสร้างชั้นตะกอนแบบเรียงขนาดจากใหญ่ขึ้นไปเล็ก (fining upward) (ดังตัวอย่างใน Gelfenbuam and Jeffe, 2003; Moore et al., 2006; Hawkes et al., 2007; Srisutum and Wagner, 2009; Moore et al., 2011; Szczucinski et al., 2012; Putra et al., 2013a; Putra et al., 2013b) ส่วน หลักฐานที่บ่งบอกกระแสไหลกลับของคลื่นสึนามิ (backwash current) ได้แก่ ลักษณะการวางชั้นเฉียง ระดับ (cross bedding) (ดังตัวอย่างใน Jankaew et al., 2011; Bahlburg and Spiske, 2012) การ ช้อนเกย (imbrications) และรอยริ้วคลื่น (ripple marks) ซึ่งเป็นหลักฐานของการเคลื่อนที่ตามพื้นผิว (เช่น Bahlburg and Spiske, 2012) ซึ่งหลักฐานทางตะกอนวิทยาเหล่านี้มีความสำคัญอย่างยิ่งในการ ใช้แยกความแตกต่างของตะกอนที่ตกสะสมตัวจากการเคลื่อนที่ตามพื้นผิวหรือการแขวนลอยเพื่อเก็บ ตัวอย่างตะกอนสึนามิในภาคสนาม

การแยกแร่หนักออกจากตะกอนสึนามินั้น โดยส่วนใหญ่จะแยกโดยใช้ของเหลวหนัก (heavy liquid) เช่น โบรโมฟอร์ม (bromoform) (ดังตัวอย่างใน Khueanphet, 2012; Cascalho et al., 2016) สารละลายโซเดียมโพลีทังสเตต (dissolved sodium polytungstate) (ดังตัวอย่างใน Jagodzinski et al., 2009; Jagodzinski et al., 2012) การเลือกใช้สารเคมีในการแยกแร่หนักมี ความสำคัญ เนื่องจากโบรโมฟอร์ม เป็นสารที่เป็นพิษหากสูดดมเข้าไปอย่างต่อเนื่อง หรือสัมผัสกับ ร่างกาย ในขณะที่สารละลายโซเดียมโพลีทังสเตตนั้น มีความปลอดภัยมากกว่า แต่ราคาสูง

บทที่ 2

ระเบียบวิธีวิจัย (Methodology)

ขั้นตอนการศึกษาที่ใช้ในงานวิจัยนี้ แบ่งออกได้เป็น 6 ขั้นตอน ดังต่อไปนี้

- 1. ศึกษาข้อมูลพื้นฐานและวิธีการศึกษาเบื้องต้น
 - 1.1 ศึกษาธรณีวิทยาทั่วไปของพื้นที่ศึกษา
 - 1.2 ศึกษารายงานและงานวิจัยที่เคยมีผู้ศึกษามาแล้ว
 - 1.3 ศึกษาการเก็บตัวอย่างตะกอนสึนามิ การวิเคราะห์แร่หนัก และการใช้เครื่องมือวิเคราะห์ ตัวอย่าง X-Ray Diffractometer
- 2. สำรวจภาคสนาม
 - 2.1 ศึกษาลักษณะทางธรณีวิทยาของพื้นที่ศึกษา และเก็บข้อมูลพื้นที่โดยรวม
 - 2.2 เก็บตัวอย่างตะกอนสึนามิ ปี พ.ศ. 2547 ตามตำแหน่งที่กำหนดไว้ โดยเก็บแยกตะกอนที่ เคลื่อนที่ตามพื้นผิวและตะกอนที่ตกจากการแขวนลอย
- ศึกษาในห้องปฏิบัติการ
 - 3.1 เตรียมตัวอย่างตะกอนเพื่อทำการวิเคราะห์
 - 3.2 วิเคราะห์ขนาดตะกอน
 - 3.3 คัดแยกแร่หนักออกจากตัวอย่างตะกอน
 - 3.4 วิเคราะห์เชิงคุณภาพหาชนิดของแร่หนัก โดยใช้เครื่องวิเคราะห์ตัวอย่าง X-Ray Diffractometer
 - 3.5 วิเคราะห์เชิงปริมาณหาปริมาณของแร่หนัก โดยใช้เครื่องวิเคราะห์ตัวอย่าง X-Ray Diffractometer
- 4. รวบรวมและวิเคราะห์ข้อมูล เพื่อตีความ
- 5. อภิปรายและสรุปผลการศึกษา
- 6. นำเสนอในรูปแบบสัมมนาและจัดทำรูปแบบรายงาน

ขั้นตอนการศึกษา

2.1 ศึกษาข้อมูลพื้นฐานและวิธีการศึกษาเบื้องต้น

2.1.1 ศึกษาธรณีวิทยาทั่วไปของพื้นที่ศึกษา

ค้นคว้าข้อมูล ศึกษาธรณีวิทยาทั่วและธรณีวิทยาของพื้นที่ศึกษา เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา จากหนังสือธรณีวิทยาประเทศไทย และรายงานการสำรวจธรณีวิทยา โดยกรมทรัพยากร และ รวบรวมข้อมูลอื่นๆที่เกี่ยวข้อง เช่น ภาพถ่ายจาก google earth, แผนที่ภูมิประเทศ, แผนที่ธรณีวิทยา และ แผนที่แร่

2.1.2 ศึกษารายงานและงานวิจัยที่เคยมีผู้ศึกษามาแล้ว

ศึกษารายงานและงานวิจัยที่เกี่ยวข้องจากผู้ที่เคยศึกษามาแล้วในเรื่องตะกอนสึนามิ องค์ประกอบ ของตะกอนสึนามิ การศึกษาแร่หนักในตะกอนสึนามิและการประยุกต์ใช้กับตะกอนสึนามิในวัตถุประสงค์ ต่างๆ หลักฐานทางธรณีวิทยาที่บ่งบอกรูปแบบการเคลื่อนที่ของตะกอนสึนามิ การแยกขนาดตะกอนโดย การร่อนแบบแห้ง การแยกแร่หนักออกจากตะกอนสึนามิ การวิเคราะห์หาชนิดและปริมาณของแร่หนักซึ่ง เป็นส่วนประกอบในตะกอนสึนามิ เพื่อนำมาใช้ในการวางแผนการดำเนินงานวิจัยในทั้งการออกภาคสนาม และการศึกษาในห้องปฏิบัติการ

2.1.3 ศึกษาการวิเคราะห์แร่หนัก และการใช้เครื่องมือวิเคราะห์ตัวอย่าง X-Ray Diffraction

ศึกษาการวิเคราะห์แร่หนักเพื่อนำมาประยุกต์ใช้ในการหารูปแบบการเคลื่อนที่ของตะกอนสึนามิ จากงานวิจัยของ Jagodzinski et al., 2009; Nakamura et al., 2012; Jagodzinski et al., 2012 และ Cascalho et al., 2016 และศึกษาการวิเคราะห์ชนิดแร่หนักในตะกอนสึนามิปี 2547 ที่พบในประเทศไทย จากงานวิจัยของ Jagodzinski et al., 2009 และ Khueanphet, 2012 รวมทั้งศึกษาการใช้ ข้อดี และ ข้อเสียของเครื่องมือวิเคราะห์ตัวอย่าง X-Ray Diffraction

2.2 สำรวจภาคสนาม

ออกภาคสนามเพื่อเก็บตัวอย่างตะกอนสึนามิ ปี 2547 ที่เกาะพระทอง อำเภอคุระบุรี จังหวัดพังงา ตั้งแต่วันพุธที่ 3 ถึงวันเสาร์ที่ 6 กุมภาพันธ์ 2559

2.2.1 ศึกษาลักษณะทางธรณีวิทยาของพื้นที่ศึกษา และเก็บข้อมูลโดยรวม

สำรวจภาคสนามและเก็บข้อมูลพื้นที่โดยรวม เพื่อเลือกจุดเก็บตัวอย่างตะกอนทั้งหมด เนื่องจากใน บางพื้นที่พบชั้นตะกอนสึนามิที่มีความหนาไม่มากและมีลักษณะร่วน เนื่องจากการกัดกร่อน (erosion) และ การรบกวนจากสิ่งมีชีวิต (bioturbation)

2.2.2 เก็บตัวอย่างตะกอนสึนามิ ปี พ.ศ. 2547 ตามตำแหน่งที่กำหนดไว้

เก็บตัวอย่างตะกอนสึนามิตามตำแหน่งที่กำหนดไว้ รวมทั้งหมด 30 ตัวอย่าง จากทั้งหมด 17 จุด

ศึกษา

孝 = จุดศึกษาที่สามารถแยกรูปแบบการเคลื่อนที่ของตะกอนได้

🕈 = จุดศึกษาที่ไม่สามารถแยกรูปแบบการเคลื่อนที่ของตะกอนได้

รูป 2.1 ตำแหน่งของจุดศึกษาที่ทำการเก็บตัวอย่างตะกอนบริเวณเกาะพระทอง

(ภาพถ่ายดาวเทียมจาก Google earth, เก็บภาพวันที่ 8 เดือน มกราคม พ.ศ. 2559)

โดยตัวอย่างตะกอนที่ทำการเก็บในภาคสนามมีรายละเอียด ดังต่อไปนี้

1) ตะกอนสึนามิ ปี พ.ศ. 2547 ซึ่งถูกเก็บแยกตามรูปแบบการเคลื่อนที่ของตะกอนสึนามิ

เก็บตัวอย่างตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิวแยกกับตะกอนที่มีรูปแบบการเคลื่อนที่ใน ลักษณะการแขวนลอย (รูป 2.3 ก.) ซึ่งหลักฐานทางตะกอนวิทยาที่บ่งบอกถึงการเคลื่อนที่ตามพื้นผิว (bedload transport) ได้แก่ ลักษณะโครงสร้างชั้นตะกอนแบบเรียงขนาดจากเล็กขึ้นไปใหญ่ (coarsening upward) และลักษณะชั้นบางของแร่หนัก ซึ่งสัมพันธ์กับลักษณะเป็นชั้นตะกอนหนา (massive) ส่วน หลักฐานทางตะกอนวิทยาที่บ่งบอกถึงการแขวนลอย (suspension transport) ได้แก่ ลักษณะโครงสร้าง ชั้นตะกอนแบบเรียงขนาดจากใหญ่ขึ้นไปเล็ก (fining upward) และใช้ข้อมูล grain size profile เปรียบเทียบกับชั้นตะกอนในภาคสนาม เพื่อช่วยในการแยกความแตกต่างของขนาดตะกอน (รูป 2.3 ข.) โดยจุดศึกษาที่เก็บตะกอนในลักษณะนี้มีทั้งหมด 12 จุด ได้แก่ จุดศึกษาที่ 1, 2, 3, 7, 10, 11, 12, 13, 14, 15, 16 และ17

ร**ูป 2.2** หลุมขุดของจุดศึกษาที่ 2 แสดงตะกอนที่มีรูปแบบการเคลื่อนที่แตกต่างกัน จากลักษณะโครงสร้าง ตะกอน (ก.) โดยใช้ข้อมูล grain size profile ช่วยในการเปรียบเทียบ (ข.)

นอกจากนี้หลักฐานที่บ่งบอกกระแสไหลกลับของคลื่นสึนามิ (backwash current) ได้แก่ ลักษณะ การวางชั้นเฉียงระดับ (cross bedding) การซ้อนเกย (imbrications) รอยริ้วคลื่น (ripple marks) ซึ่งเป็น หลักฐานของการเคลื่อนที่ตามพื้นผิว ซึ่งลักษณะการวางชั้นเฉียงระดับพบที่ จุดศึกษาที่ 17 จึงทำการเก็บ ตัวอย่างเก็บตัวอย่างที่จุดศึกษาที่ 17 (รูป 2.4) ซึ่งลักษณะดังกล่าวนั้นไม่แสดงให้เห็นอย่างชัดเจนในปัจจุบัน จึงจำเป็นต้องใช้ภาพถ่ายเมื่อ ปี พ.ศ. 2552 (อ.ดร. เครือวัลย์ จันทร์แก้ว) มาช่วยในการแยกความแตกต่าง ของตะกอนที่ตกตะกอนจากกระแสไหลท่วม หรือกระแสไหลกลับ

รูป 2.3 หลุมขุดของจุดศึกษาที่ 17 แสดงชั้นตะกอนโคลน (mud layer) ซึ่งตกตะกอนจากการแขวนลอย และลักษณะการวางชั้นเฉียงระดับ ซึ่งเกิดจากกระแสไหลกลับ (backwash current) อย่างชัดเจน (ถ่ายภาพโดย อ.ดร. เครือวัลย์ จันทร์แก้ว เมื่อปี พ.ศ. 2552)

รูป 2.4 หลุมขุดของจุดศึกษาที่ 17 แสดงลักษณะการวางชั้นเฉียงระดับไม่ชัดเจน

2) ตะกอนสึนามิ ปี พ.ศ. 2547 ซึ่งถูกเก็บรวมทั้งชั้น (bulk sample)

เก็บตัวอย่างตะกอนทั้งชั้นของตะกอนสึนามิ เนื่องจากไม่สามารถแยกความแตกต่างของตะกอนที่มี รูปแบบการเคลื่อนที่ตามพื้นผิวหรือในลักษณะการแขวนลอยได้จากในสนาม (รูป 2.2) โดยจุดศึกษาที่เก็บ ตะกอนในลักษณะนี้มีทั้งหมด 5 จุดศึกษา ได้แก่ จุดศึกษาที่ 4, 5, 6, 8 และ 9

รูป 2.5 หลุมขุดของจุดศึกษาที่ 8 ซึ่งไม่สามารถแยกตะกอนที่มีรูปแบบการเคลื่อนที่แตกต่างกันได้

ลำดับที่	ตัวอย่าง	รายละเอียด	ละติจูด	ลองจิจูด
1	Suspension01	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 1		
2	Bedload01	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 1	N 9° 07 54.7	E 98° 15 45.5
3	2 nd Bedload02	ตะกอนสึนามิช่วงที่ 2 ที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 2		
4	Suspension02	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 2	N 9° 07' 59.2"	E 98° 15' 41.0"
5	1 st Bedload02	ตะกอนสึนามิช่วงที่ 1 ที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 2		
6	2 nd Bedload03	ตะกอนสึนามิช่วงที่ 2 ที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 3	N 00 00' 00 7"	
7	1 st Bedload03	ตะกอนสึนามิช่วงที่ 1 ที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 3	N 9° 08 00.7	E 98° 15 39.1
8	Bulk04	ตะกอนสึนามิที่ไม่สามารถระบุรูปแบบการเคลื่อนที่ได้ ที่จุดศึกษาที่ 4	N 9° 08' 01.5"	E 98° 15' 37.9"
9	Bulk05	ตะกอนสึนามิที่ไม่สามารถระบุรูปแบบการเคลื่อนที่ได้ ที่จุดศึกษาที่ 5	N 9° 08' 02.1"	E 98° 15' 37.0"
10	Bulk06	ตะกอนสึนามิที่ไม่สามารถระบุรูปแบบการเคลื่อนที่ได้ ที่จุดศึกษาที่ 6	N 9° 08' 02.1"	E 98° 15' 36.5"
11	Suspension07	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 7	N 00 002 02 1"	
12	Bedload07	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 7	N 9° 08 03.1	E 98° 15 50.5
13	Bulk08	ตะกอนสึนามิที่ไม่สามารถระบุรูปแบบการเคลื่อนที่ได้ ที่จุดศึกษาที่ 8	N 9° 08' 03.6"	E 98° 15' 36.0"
14	Bulk09	ตะกอนสึนามิที่ไม่สามารถระบุรูปแบบการเคลื่อนที่ได้ ที่จุดศึกษาที่ 9	N 9° 08' 04.1"	E 98° 15' 35.5"
15	Suspension10	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 10		
16	Bedload10	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 10	N 9° 07 52.3	E 98° 15 47.6
17	Suspension11	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 11	N 00 072 F1 7"	
18	Bedload11	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 11	N 9° U/ 51./"	E 98° 15° 48.3°

19	Suspension12	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 12	N 00 07' 40 0"		
20	Bedload12	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 12	- 11 9° 07 49.9	E 70° 13 49.5	
21	Suspension13	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 13	N 00 07' 40 C"		
22	Bedload13	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 13	- 11 9° 07 49.6	E 98° 15 49.9	
23	Suspension14	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 14	N 00 07' 40 0"		
24	Bedload14	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 14	- N 9° 07 49.2	E 90° 15 50.5	
25	Suspension15	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 15	N 00 07' 49 0"		
26	Bedload15	ตะกอนสึนามิที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 15	- 11 9° 07 40.9	L 90- 13 - 30.0	
27	Suspension16	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 16	N 9° 07' 48.1"	E 98° 15' 51.6"	
20	2 nd Dedlaad17	ตะกอนสึนามิช่วงที่ 2 ที่เคลื่อนที่ตามพื้นผิว			
28	Z BEOLOGUI7	ซึ่งเกิดจากกระแสไหลกลับ (outflow) ที่จุดศึกษาที่ 17	N 00 07' 47 7"	F 000 1E' E1 0"	
29	Suspension17	ตะกอนสึนามิที่เคลื่อนที่ในลักษณะแขวนลอย ที่จุดศึกษาที่ 17	- N 9° 07 47.7	E 90° 13 31.0	
30	1 st Bedload17	ตะกอนสึนามิช่วงที่ 1 ที่เคลื่อนที่ตามพื้นผิว ที่จุดศึกษาที่ 17	-		

2.3 ศึกษาในห้องปฏิบัติการ

2.3.1 เตรียมตัวอย่างตะกอนเพื่อทำการวิเคราะห์

นำตะกอนตัวอย่างที่เก็บจากการออกภาคสนามรวมทั้งหมด 30 ตัวอย่าง มาทำความสะอาดโดย การเอาเศษพืชออก จากนั้นนำตัวอย่างตะกอนไปร่อนคัดขนาดตะกอนโดยการแยกขนาดตะกอนแบบแห้ง (Dry sieving) ด้วยเครื่อง Retch ใช้ตะแกรงขนาดมาตรฐานอเมริกัน (American Society for Testing and Materials: A.S.T.M.) ทั้งหมด 7 หมายเลข ได้แก่ ตะแกรงหมายเลข (mesh No.) 5, 10, 18, 35, 60, 120 และ 230 เทียบเท่ากับขนาดตะกอน (Phi class, **ф**) เท่ากับ -2, -1, 0, 1, 2, 3, และ 4 ตามลำดับ เพื่อ แยกตะกอนออกเป็นขนาดกรวดละเอียด, กรวดละเอียดมาก, ทรายหยาบมาก, ทรายหยาบ, ทรายขนาด ปานกลาง, ทรายละเอียด, ทรายละเอียดมาก และเท่ากับหรือเล็กกว่าทรายแป้งหยาบ โดยทำการร่อนเป็น เวลา 10 นาที ต่อหนึ่งตัวอย่าง จากนั้นนำตัวอย่างแต่ละขนาดที่ได้จากการร่อนแบบแห้งไปส่องภายใต้กล้อง จุลทรรศน์ เพื่อหาว่าขนาดตะกอนขนาดใดที่มีปริมาณของแร่หนักอยู่มากเพียงพอที่จะทำการแยกแร่หนัก ออกจากตะกอนสึนามิแล้วสามารถนำไปวิเคราะห์ในขั้นตอนต่อไปได้ โดยพบว่าตะกอนที่เหมาะสมที่สุดคือ ตะกอนขนาดทรายละเอียด

รูป 2.6 การคัดแยกขนาดตะกอนแบบแห้ง โดยใช้เครื่อง Retch

จากนั้นนำตะกอนทรายละเอียดที่ได้จากการแยกขนาดตะกอน ไปทำความสะอาดด้วยไฮโดรเจน เปอร์ออกไซด์ (H₂O₂) เข้มข้น 10% และกรดไฮโดรคลอริก (HCl) เข้มข้น 10% เพื่อกำจัดสารอินทรีย์ (organic matter) และสารประกอบคาร์บอเนต (carbonate compounds) ออกจากตัวอย่างตะกอน ตามลำดับ

รูป 2.7 การทำความสะอาดตะกอนด้วยไฮโดรเจนเปอร์ออกไซด์ เพื่อกำจัดสารอินทรีย์

รูป 2.8 การทำความสะอาดตะกอนด้วยกรดไฮโดรคลอริก เพื่อกำจัดสารประกอบคาร์บอเนต

2.3.2 วิเคราะห์ขนาดตะกอน

นำตะกอนแต่ที่ได้จากการร่อนแต่ละขนาดของทุกตัวอย่างตะกอนไปชั่งน้ำหนักด้วยเครื่องชั่ง วิทยาศาสตร์ (Scientific balance) เพื่อดูการลักษณะการกระจายตัวของขนาดเม็ดตะกอน

2.3.3 คัดแยกแร่หนักออกจากตัวอย่างตะกอนสึนามิ

นำตะกอนทรายละเอียดที่ทำความสะอาดแล้ว ไปแยกแร่ควอตซ์ออกจากตะกอนให้ได้ในปริมาณ มากที่สุด โดยใช้โต๊ะแยกแร่ (shaking table) ซึ่งเป็นอุปกรณ์แต่งแร่โดยอาศัยความแตกต่างของความ ถ่วงจำเพาะระหว่างเม็ดแร่ โต๊ะแร่ที่ใช้เป็นแบบเปียก ซึ่งใช้น้ำเป็นตัวกลางในการแยกแร่ โดยทำให้ชั้นน้ำ บางๆ (thin film) ไหลผ่านลงบนพื้นราบที่มีลูกคั่น (riffle) มีการเคลื่อนไหวไป-มา ที่ระยะไม่เท่ากัน (asymmetric reciprocating motion) ด้วยกลไกลขับเคลื่อน (head motion) (รูป 2.9) ทำให้เม็ดแร่หนัก จะเคลื่อนไปด้านข้างได้ไกลกว่าเม็ดแร่เบาและทรายจะถูกพัดพาออกมาทางหางแร่ (tailing side) ส่วนแร่ หนักหรือหัวแร่จะออกตรงปลายอีกด้านหนึ่งของโต๊ะ (concentrate end) (รูป 2.10) ซึ่งขั้นตอนนี้มี ความสำคัญ เพราะช่วยแยกแร่ควอตซ์ซึ่งเบากว่าแร่หนักออกไปได้บางส่วน ทำให้ช่วยประหยัดของเหลว หนัก (heavy liquid) ที่จะใช้แยกแร่หนักทั้งหมดออกจากตัวอย่างตะกอนในลำดับต่อไป

รูป 2.9 ส่วนสำคัญของโต๊ะแยกแร่

รูป 2.10 ทิศทางของแรงจากการเคลื่อนที่ของโต๊ะและน้ำที่เกิดขึ้นกับเม็ดแร่หนักและทรายบนโต๊ะ

จากนั้นนำหัวแร่ที่ได้จากการแยกแร่โดยใช้โต๊ะแร่มาแยกแร่หนักออกจากแร่ควอตซ์ที่ยังปะปนอยู่ โดยใช้สารโบรโมฟอร์ม (Bromoform) ซึ่งมีความหนาแน่นเท่ากับ 2.85 g/cm³ การแยกแร่หนักด้วยสาร โบรโมฟอร์มนี้ อาศัยหลักการแยกแร่โดยอาศัยความแตกต่างของความหนาแน่นของแร่ โดยแร่หนักซึ่งมี ความหนาแน่นมากกว่าสารโบรโมฟอร์ม จะจมตัวลงสู่กันกรวยแยก ส่วนแร่ควอตซ์ซึ่งมีความหนาแน่นน้อย กว่า จะลอยตัวอยู่ส่วนบนของกรวยแยก (รูป 2.12) อุปกรณ์ในการแยกแร่หนักประกอบด้วย ขาตั้งกรวย กรวยแยก กรวยกรอง กระตาษกรอง และบีกเกอร์ วิธีการแยกแร่หนักเริ่มจากจัดวางอุปกรณ์ (รูป 2.11) จากนั้นเท สารโบรโมฟอร์มลงในกรวยแยก แล้วเทตะกอนตัวอย่างลงในกรวยแยก ใช้แท่งแก้วคนตะกอนให้ เข้ากับสารโบโมฟอร์มเพื่อให้แร่หนักจมตัวลงได้ง่ายขึ้น และทิ้งไว้จนแร่หนักจมตัวลงจนหมดหรือคนตะกอน อีก 1-2 ครั้งเพื่อให้มั่นใจว่าแร่หนักจมตัวลงทั้งหมด จากนั้นเปิดกรวยกรองให้เฉพาะแร่หนักที่ก้นของกรวย กกรองไหลลงสู่กรวยกรองซึ่งมีกระดาษกรอง องอยู่ และล้างแร่หนักที่ปนเปื้อนสารโบรโมฟอร์มด้วยอะซี โตน (CO(CH₃)₂) บนกระดาษกรอง แล้วทิ้งให้แห้งที่อุณหภูมิห้อง โดยขั้นตอนการแยกแร่หนักด้วยสาร โบรโมฟอร์มต้องปฏิบัติภายในตู้ดูดควันทุกขั้นตอน

รูป 2.11 อุปกรณ์ที่ใช้ในขั้นตอนการแยกแร่หนัก ได้แก่ A. ขาตั้งกรวย, B. กรวยแยก, C. กระดาษกรอง, D. กรวยกรอง และ E. ขวดรูปชมพู่

รูป 2.12 แร่หนักที่จมตัวลงสู่ก้นกรวยแยก เนื่องจากมีความหนาแน่นมากกว่าโบรโมฟอร์ม

รูป 2.13 แร่หนักที่ได้จากการแยกตัวอย่างตะกอน

2.3.4 การวิเคราะห์เชิงคุณภาพของแร่หนักโดยเครื่องมือ X-Ray Diffraction

การวิเคราะห์เชิงคุณภาพของแร่หนักโดยเครื่องมือ X-Ray Diffraction ซึ่งใช้เครื่อง X-Ray Diffractometer รุ่น D8 Advance และใช้วิธี Powder XRD หรือ Random โดยนำแร่หนักที่แยกออกมา ได้จากตัวอย่างตะกอนไปบดให้ละเอียดด้วยครกอเกท (agate mortar) จากนั้นใส่ลงในแป้นอัดตัวอย่าง (sample holder) และอัดให้ผิวของตัวอย่างเรียบ (รูป 2.14)

รูป 2.14 แป้นอัดตัวอย่าง (sample holder) ที่ใช้อัดตัวอย่างให้แน่นเพื่อนำไปวิเคราะห์ด้วยเครื่อง XRD แบบ Power XRD

บทที่ 3

ผลการศึกษาและการตีความข้อมูล (Result and Interpretation)

ผลการวิเคราะห์จากห้องปฏิบัติการ แบ่งออกได้เป็น 3 ส่วน ได้แก่ ผลการวิเคราะห์การกระจายตัว ขนาดเม็ดตะกอน ผลการวิเคราะห์เชิงคุณภาพและเชิงปริมาณของแร่หนักในตัวอย่างตะกอนทั้งหมด 10 ตัวอย่าง (ตาราง 3.1)

			Analysis Method	
No.	Sample	Curin sine analysis	XI	RD
		Grain size analysis	Qualitative	Quantitative
1	Suspension01	\checkmark	-	-
2	Bedload01	\checkmark	-	-
3	2 nd Bedload02	\checkmark	-	-
4	Suspension02	\checkmark	\checkmark	\checkmark
5	1 st Bedload02	\checkmark	\checkmark	\checkmark
6	2 nd Bedload03	\checkmark	-	-
7	1 st Bedload03	\checkmark	-	-
8	Bulk04	\checkmark	-	-
9	Bulk05	\checkmark	-	-
10	Bulk06	\checkmark	-	-
11	Suspension07	\checkmark	-	-
12	Bedload07	\checkmark	-	-
13	Bulk08	\checkmark	-	-
14	Bulk09	\checkmark	-	-
15	Suspension10	\checkmark	\checkmark	\checkmark
16	Bedload10	\checkmark	\checkmark	\checkmark
17	Suspension11	\checkmark	-	-
18	Bedload11	\checkmark	-	-
19	Suspension12	\checkmark	\checkmark	\checkmark
20	Bedload12	\checkmark	\checkmark	\checkmark
21	Suspension13	\checkmark	-	-
22	Bedload13	\checkmark	-	-
23	Suspension14	\checkmark	\checkmark	\checkmark
24	Bedload14	\checkmark	\checkmark	\checkmark
25	Suspension15	\checkmark	-	-
26	Bedload15	\checkmark	-	-
27	Suspension16	\checkmark	-	-
28	2 nd Bedload17	\checkmark	\checkmark	\checkmark
29	Suspension17	\checkmark	\checkmark	\checkmark
30	1 st Bedload17	\checkmark	\checkmark	\checkmark

ตาราง 3.1 ตารางแสดงตัวอย่างที่ทำการวิเคราะห์แบบต่างๆ

(หมายเหตุ: 🗸 = ได้ทำการวิเคราะห์, - = ไม่ได้ทำการวิเคราะห์)

3.1 การวิเคราะห์ขนาดตะกอน

ผลการวิเคราะห์ปริมาณตะกอนขนาดต่างๆของแต่ละตัวอย่าง (ภาคผนวก ตาราง ก. และ ตาราง ข.) โดยการร่อนคัดขนาดตะกอนแบบแห้ง ได้ตะกอนขนาดต่างๆ ได้แก่ กรวดละเอียด, กรวดละเอียดมาก, ทรายหยาบมาก, ทรายหยาบ, ทรายขนาดปานกลาง, ทรายละเอียด, ทรายละเอียดมาก และตะกอนเท่ากับ หรือเล็กกว่าทรายแป้งหยาบ โดยจะแยกอธิบายผลการกระจายตัวของตะกอนออกเป็นกลุ่มดังต่อไปนี้

3.1.1 ตะกอนสึนามิ ปี พ.ศ. 2547 ซึ่งถูกเก็บแยกตามรูปแบบการเคลื่อนที่ของตะกอนสึนามิ

 ตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิว (bedload) ของจุดศึกษาที่อยู่ห่างจากแนว ชายทะเล (shoreline) น้อยกว่า 400 เมตร ได้แก่จุดศึกษาที่ 2, 3 และ 7

ตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิวในกลุ่มนี้ มีลักษณะการกระจายตัวขนาดเม็ดตะกอนใน ลักษณะสองกลุ่ม (bimodal distribution) โดยตะกอนส่วนใหญ่มีขนาดทรายขนาดปานกลาง (**φ** = 2) และ ขนาดทรายละเอียดมาก (**φ** = 4) (รูป 3.1) ซึ่งตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิวของจุดศึกษาที่ 7 (Bedload07) มีปริมาณตะกอนขนาดทรายขนาดปานกลางมากที่สุด (ตะกอนหยาบมากกว่า) และอยู่ใกล้ แนวชายทะเลมากที่สุดเมื่อเทียบกับจุดศึกษาอื่นในกลุ่มนี้

รูป 3.1 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่ตามพื้นผิว ซึ่งอยู่ห่างจากแนวชายทะเล น้อยกว่า 400 เมตร

 2) ตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิว ของจุดศึกษาที่อยู่ห่างจากแนวชายทะเล (shoreline) มากกว่า 400 เมตร ได้แก่ จุดศึกษาที่ 1, 10-15 และ 17

ตะกอนที่มีรูปแบบการเคลื่อนที่ตามพื้นผิวในกลุ่มนี้ ส่วนใหญ่มีลักษณะการกระจายตัวขนาดเม็ด ตะกอนแบบ bimodal โดยตะกอนส่วนใหญ่มีขนาดทรายละเอียดมาก (ϕ = 4) และทรายขนาดปานกลาง (ϕ = 2) แต่มีตะกอน 2 ตัวอย่างที่มีลักษณะการกระจายตัวขนาดเม็ดตะกอนในลักษณะกลุ่มเดียว (unimodal distribution) ได้แก่ 1st Bedload17 และ 2nd Bedload17 ซึ่งตะกอนส่วนใหญ่มีขนาดทราย ละเอียดมาก (ϕ = 4) โดยตะกอน 2nd Bedload17 เป็นตะกอนที่ตกสะสมตัวจาก outflow (รูป 3.2)

นอกจากนี้ตัวอย่างตะกอนในกลุ่มนี้มีสัดส่วนตะกอนขนาดทรายละเอียดมากเพิ่มมากขึ้น เมื่อเทียบ กับตะกอนกลุ่มที่อยู่ห่างจากแนวชายทะเลน้อยกว่า 400 เมตร หรือกล่าวได้ว่าตะกอนที่ตำแหน่งที่อยู่ไกล จากชายฝั่งมากขึ้นมีความละเอียดมากขึ้น

รูป 3.2 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่ตามพื้นผิว ซึ่งอยู่ห่างจากแนวชายทะเล มากกว่า 400 เมตร

3) ตะกอนที่มีรูปแบบการเคลื่อนที่ในลักษณะการแขวนลอย ได้แก่จุดศึกษาที่ 1, 2, 7, 10-17 ตะกอนที่มีรูปแบบการเคลื่อนที่ในลักษณะการแขวนลอยในกลุ่มนี้ มีลักษณะการกระจายตัวขนาด เม็ดตะกอนแบบ unimodal โดยตะกอนส่วนใหญ่มีขนาดทรายละเอียดมาก (**¢** = 4) (รูป 3.3) แต่มีเพียง ตะกอน Suspension01 ที่ตะกอนส่วนใหญ่มีขนาดทรายละเอียด (**¢** = 3) ซึ่งสาเหตุน่าจะมาจากการเก็บ ตะกอนในจุดศึกษานี้ ไม่มีข้อมูล grain size profile ประกอบ และตะกอนตัวอย่างนี้อาจเกิดจากการตก สะสมจากหลายเหตุการณ์ ทำให้ลักษณะการกระจายตัวขนาดตะกอนแตกต่างจากตัวอย่างตะกอนอื่น

รูป 3.3 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการเคลื่อนที่ในลักษณะ การแขวนลอย

3.1.2 ตะกอนสึนามิ ปี พ.ศ. 2547 ซึ่งถูกเก็บรวมทั้งชั้น (Bulk sample)

ตะกอนสึนามิที่ถูกเก็บรวมทั้งชั้น มีลักษณะการกระจายตัวขนาดเม็ดตะกอนแบบ unimodal โดยพบว่าตะกอน Bulk08 และ Bulk06 ตะกอนส่วนใหญ่มีขนาดทรายขนาดปานกลาง (ϕ = 2) และ ตะกอน Bulk09 และ Bulk05 ตะกอนส่วนใหญ่มีขนาดทรายละเอียด (ϕ = 3) ส่วนตัวอย่างตะกอนBulk04 ตะกอนส่วนใหญ่มีขนาดทรายขนาดปานกลาง (ϕ = 4) ซึ่งสาเหตุที่ตัวอย่างตะกอนในกลุ่มนี้มีสัดส่วนของ ตะกอนขนาดต่างๆที่แตกต่างกัน อาจจะเป็นเพราะตะกอนตกสะสมตัวจากเหตุการณ์เดียวหรือหลาย เหตุการณ์ ทำให้มีลักษณะการกระจายตัวขนาดเม็ดตะกอนที่แตกต่างกัน

รูป 3.4 กราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิที่ถูกเก็บรวมทั้งชั้น

3.2 การวิเคราะห์เชิงคุณภาพและเชิงปริมาณของแร่หนัก

3.2.1 การวิเคราะห์เชิงคุณภาพ

การวิเคราะห์เชิงคุณภาพและปริมาณของแร่นั้น จำเป็นต้องเลือกวิเคราะห์บางตัวอย่างเท่านั้น เนื่องจากสารโบรโมฟอร์มที่ใช้ในการแยกแร่หนักมีปริมาณจำกัด โดยผลการวิเคราะห์ชนิดของแร่หนัก จำนวน 11 ตัวอย่าง พบว่าแร่หนักที่พบได้แก่ แร่สคอร์ล แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ (ตาราง 3.2)

แร่หนักที่พบในทั้งตะกอน bedload และ suspension ได้แก่ แร่สคอร์ล แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ แต่มีแร่หนักบางชนิดที่พบในบางตัวอย่างตะกอนเท่านั้น เช่น แร่อิลเมไนต์ไม่พบในตะกอน bedload ที่ตกสะสมตัวจาก outflow

Sample	Schorl	Rutile	Anatase	Ilmenite	Magnesite	Muscovite	Quartz
Suspension02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
1 st Bedload02	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Suspension10	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-
Bedload10	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
Suspension12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Bedload12	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
Suspension14	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Bedlod14	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
2 nd Bedload17	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Suspension17	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
1 st Bedload	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark

ตาราง 3.2 ชนิดของแร่หนักที่ได้จากกว่าวิเคราะห์เชิงคุณภาพโดยเครื่อง XRD และโปรแกรม MAUD (หมายเหตุ: ✓ = พบ, - = ไม่พบ)

ผลการวิเคราะห์ปริมาณของแร่หนักชนิดต่างๆ โดยใช้โปรแกรม MAUD ในการวิเคราะห์ (ตาราง 3.3) พบว่าตะกอน bedload ส่วนใหญ่ประกอบด้วยแร่สคอร์ล แร่อะนาเทส และแร่รูไทล์ และ ประกอบด้วยแร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ เป็นส่วนน้อย (รูป 3.5) ส่วนตะกอน suspension นั้น ส่วนใหญ่ประกอบด้วยแร่สคอร์ล แร่มัสโคไวต์ แร่อะนาเทส และแร่รูไทล์ และประกอบด้วย แร่อิลเมไนต์ แร่แมกนีไซต์ เป็นส่วนน้อย (รูป 3.6)

รูป 3.5 แผนภาพใยแมงมุมแสดงปริมาณแร่หนักในตะกอน bedload

รูป 3.6 แผนภาพใยแมงมุมแสดงปริมาณแร่หนักในตะกอน suspension

นอกจากนี้พบว่าตะกอน bedload มีปริมาณแร่สคอร์ล แร่อะนาเทสมากกว่า แต่มีปริมาณแร่ มัสโคไวต์ น้อยกว่าตะกอน suspension (รูป 3.7) และตะกอน bedload ที่ตกสะสมตัวจาก inflow มีปริมาณแร่ สคอร์ล และแร่อะนาเทสมากกว่า แต่มีปริมาณแร่มัสโคไวต์ น้อยกว่าตะกอน bedload ที่ตก สะสมตัวจาก outflow (รูป 3.8)

รูป 3.7 แผนภาพใยแมงมุมแสดงเปรียบเทียบปริมาณแร่หนักในตะกอน bedload และ suspension

รูป 3.8 แผนภาพใยแมงมุมแสดงเปรียบเทียบปริมาณแร่หนักในตะกอน bedload ที่ตกสะสมตัวจาก Inflow (1st Bedload17) และ Outflow (2nd Bedload17)

Sample	Schorl	Rutile	Anatase	Ilmenite	Magnesite	Muscovite	Quartz	Total (%)
Suspension02	17.553	21.321	16.285	4.775	13.915	26.152	-	100
1 st Bedload02	30.280	17.683	23.403	14.985	-	6.251	7.397	100
Suspension10	56.982	13.896	18.757	-	10.365	-	-	100
Bedload10	53.097	15.802	27.691	3.410	-	-	-	100
Suspension12	45.172	18.826	17.546	3.579	3.533	11.344	-	100
Bedload12	48.543	11.590	19.801	8.657	-	-	11.410	100
Suspension14	20.418	4.279	20.043	8.120	-	41.939	5.201	100
Bedlod14	54.180	11.318	22.400	5.171	6.930	-	-	100
2 nd Bedload17	55.134	11.624	14.698	-	-	11.650	6.894	100
Suspension17	43.520	11.606	17.351	2.121	-	19.227	6.174	100
1 st Bedload	58.779	11.568	18.946	2.532	-	-	8.175	100

ตาราง 3.3 ร้อยละโดยน้ำหนัก (weight percent) ของแร่หนักชนิดต่างๆที่ได้จากการวิเคราะห์โดยใช้เครื่อง XRD และโปรแกรม MAUD

3.2.1 การวิเคราะห์เชิงปริมาณ

ร้อยละโดยน้ำหนัก (weight percent) ของแร่หนักในตะกอนสึนามิ ซึ่งได้จากการแยกโดย ความหนาแน่นแล้วนำมาชั่งน้ำหนักโดยเครื่องชั่งวิทยาศาสตร์ (ภาคผนวก ตาราง ค.) พบมีว่าร้อยละโดย น้ำหนักของแร่หนักในตะกอน bedload มากกว่าในตะกอน suspension และร้อยละโดยน้ำหนักของ แร่หนักในตะกอน bedload ที่ตกสะสมตัวจาก inflow มากกว่าตะกอน bedload ที่ตกสะสมตัวจาก outflow (รูป 3.9)

รูป 3.9 แผนภูมิแสดงร้อยละโดยน้ำหนักของแร่หนักในตัวอย่างตะกอน

บทที่ 4

อภิปรายและสรุปผล (Discussion and Conclusion)

4.1 อภิปรายผลการศึกษา

จากผลการวิเคราะห์การกระจายตัวขนาดตะกอน การวิเคราะห์เชิงคุณภาพและเชิงปริมาณโดย เครื่อง XRD และโปรแกรม MAUD สามารถอภิปรายผลการศึกษาได้ดังต่อไปนี้

4.1.1 การกระจายตัวขนาดตะกอน

ตะกอน bedload ของจุดศึกษาที่อยู่ห่างจากแนวชายทะเล น้อยกว่า 400 เมตร พบว่าตะกอนส่วน ใหญ่มีขนาดทรายขนาดปานกลาง และขนาดทรายละเอียดมาก ในขณะที่ตะกอน bedload ของจุดศึกษาที่ อยู่ห่างจากแนวชายทะเล มากกว่า 400 เมตร พบว่าตะกอนส่วนใหญ่มีขนาดทรายละเอียดมาก และขนาด ทรายขนาดปานกลางเช่นกัน แต่มีสัดส่วนของตะกอนขนาดทรายละเอียดมากมากขึ้น หรือกล่าวได้ว่า ตะกอน bedload มีความละเอียดมากขึ้นเมื่ออยู่ไกลจากแนวชายทะเลออกไป (รูป 4.1) สอดคล้องกับ หลายงานวิจัยที่พบว่าตะกอนสึนามิมีความละเอียดมากขึ้นเมื่อระยะทางในการสะสมตัวเพิ่มขึ้น ในพื้นที่ เกาะพระทอง และพื้นที่เขาหลัก จังหวัดพังงา (ดังตัวอย่างใน Fujino et al., 2008; 2010) เนื่องจากเม็ด ตะกอนขนาดละเอียดมากสามารถถูกพัดพาเข้าแผ่นดินได้ไกลกว่าเม็ดตะกอนที่มีขนาดหยาบกว่า

ร**ูป 4.1** การเปรียบเทียบกราฟลักษณะการกระจายตัวขนาดตะกอนของตะกอนสึนามิ ที่มีรูปแบบการ เคลื่อนที่ตามพื้นผิว ซึ่งพบว่าตะกอนมีขนาดละเอียดมากขึ้นตามระยะทางจากชายหาด

ตะกอน suspension ทั้ง 11 ตัวอย่าง มีลักษณะการกระจายตัวขนาดเม็ดตะกอนแบบ unimodal ซึ่งตะกอนส่วนใหญ่มีขนาดทรายละเอียดมาก เนื่องจากลักษณะ unimodal distribution นี้ บ่งบอกถึงการ ตกสะสมตัวจาก suspension (ดังตัวอย่างใน Jaffe et al., 2011; 2012) แต่ตะกอน bedload 2 ตัวอย่าง ได้แก่ 1st Bedload17 และ 2nd Bedload17 มีลักษณะการกระจายตัวขนาดเม็ดตะกอนแบบ unimodal เช่นเดียวกับตะกอน suspension นั้น อาจะเกิดจากตัวอย่างตะกอน 1st Bedload17 อยู่ในตำแหน่งของจุด ศึกษาที่อยู่ไกลจากแนวชายทะเลมากที่สุด และมีสัดส่วนตะกอนละเอียดเพิ่มมากขึ้นเมื่อระยะทางในการ สะสมตัวเพิ่มขึ้น เนื่องจากตะกอนหยาบได้ตกตะกอนจาก bedload เกือบทั้งหมดแล้วก่อนจะเคลื่อนที่ มาถึงบริเวณนี้ ทำให้โดยส่วนใหญ่ตะกอนละเอียดซึ่งถูกพัดพาไปได้ไกลกว่า จึงตกสะสมจาก bedload ใน บริเวณนี้ ส่วนตัวอย่างตะกอน 2nd Bedload17 นั้น ตกสะสมเนื่องจาก outflow ซึ่งอาจเกิดจากการกัด กร่อนเอาตะกอน suspension ที่ตกสะสมตัวจาก inflow และตะกอนในพื้นที่ลึกเข้าไปในแผ่นดิน แล้วพัด พามาสะสมในอีกบริเวณหนึ่งที่เป็นร่องน้ำ (channel) ทำให้ตะกอนส่วนใหญ่ที่ตกสะสมตัวจาก bedload ของ outflow เป็นตะกอนละเอียดและแสดงลักษณะการวางชั้นเฉียงระดับ

4.1.2 การวิเคราะห์เชิงคุณภาพและเชิงปริมาณของแร่หนัก

ชนิดแร่หนักที่พบ ได้แก่ แร่สคอร์ล (แร่ทัวร์มาลีนชนิดหนึ่ง ที่มีสีดำ ไม่โปร่งแสงและโปร่งใส) แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ มีความสออดคล้องกับงานวิจัยในพื้นที่ เกาะพระทอง จังหวัดพังงา ซึ่งพบแร่แร่สคอร์ล แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ และแร่มัสโคไวต์ เช่นกัน (Khuenphet, 2012) และในพื้นที่เกาะคอเขา จังหวัดพังงา ซึ่งพบแร่ทัวร์มาลีน แร่มัสโคไวต์ และแร่รูไทล์ เช่นกัน (Jagodzinski et al., 2009)

แร่อิลเมไนต์พบเฉพาะในตะกอน bedload และตะกอน suspension ที่ตกสะสมตัวจาก inflow เท่านั้น ไม่พบในตะกอน bedload ที่ตกสะสมตัวจาก outflow อาจเป็นเพราะแร่อิลเมไนต์ เป็นแร่หนักที่มี ความหนาแน่นมากที่สุด (bulk density = 4.55 g/cm³) เมื่อเทียบกับแร่หนักชนิดอื่นที่พบในตะกอนสึนามิ ทำให้แร่อิลเมไนต์ตกสะสมตัวจนหมดจาก inflow ที่ไหลท่วมเข้ามา จึงทำให้ไม่พบแร่อิลเมไนต์ในตะกอนที่ ตกสะสมตัวจาก outflow การที่มีร้อยละโดยน้ำหนักของแร่หนักในตะกอน bedload มากกว่าในตะกอน suspension และ ร้อยละโดยน้ำหนักของแร่หนักในตะกอน bedload ที่ตกสะสมตัวจาก inflow มากกว่าตะกอน bedload ที่ตกสะสมตัวจาก outflow (รูป 4.2) อาจเป็นเพราะแร่หนัก (Bulk density > 2.75 g/cm³) หนักกว่า องค์ประกอบอื่นๆในตะกอนสึนามิ ซึ่งส่วนใหญ่ประมาณ 90% คือแร่ควอตซ์ ทำให้ในขณะที่ตะกอนสึนามิ ถูกพัดพามา แร่หนักส่วนใหญ่จึงเคลื่อนที่มาและตกสะสมตัวพร้อมกับตะกอนหยาบในลักษณะ bedload แต่แร่หนักส่วนใหญ่นั้นหนักเกินกว่าที่จะเคลื่อนที่และตกสะสมตัวในลักษณะ suspension จึงทำให้พบ ปริมาณแร่หนักในตะกอน bedload มากกว่าในตะกอน suspension (รูป 4.3) ส่วนกรณีของตะกอน bedload ที่ตกสะสมตัวจาก outflow นั้น อาจเป็นเพราะแร่หนักส่วนใหญ่ได้ตกสะสมตัวจาก inflow แล้ว ทำให้เหลือเพียงแร่หนักบางส่วนที่ตกสะสมตัวจาก outflow จึงพบปริมาณแร่หนักแร่หนักในตะกอน bedload ที่ตกสะสมตัวจาก inflow มากกว่า outflow

ร**ูป 4.2** แสดงร้อยละโดยน้ำหนักของแร่หนักในตะกอน bedload และ suspension ของจุดศึกษาที่ 2, 10, 12, 14 และ 17 (ดัดแปลงจาก Jankaew et al., 2011)

รูป 4.3 แผนภาพจำลองทางความคิด แสดงองค์ประกอบของตะกอนสึนามิชั้นเดียว ได้แก่ ตะกอน bedload และ suspension ซึ่งแสดงลักษณะโครงสร้างตะกอนและปริมาณแร่หนักที่แตกต่างกัน

การที่พบว่าตะกอน suspension ซึ่งส่วนใหญ่ประกอบด้วยตะกอนขนาดทรายละเอียดมาก มี ปริมาณแร่มัสโคไวต์ มากกว่าตะกอน bedload ซึ่งแร่มัสโคไวต์มักพบตกสะสมตัวอยู่ด้านบนของขั้นตะกอน suspension เนื่องจาก shape sorting ซึ่งผลที่ได้นี้พบว่าสอดคล้องกับงานวิจัยในพื้นที่เกาะคอเขา จังหวัด พังงา (Jagodzinski et al., 2009) โดยแร่มัสโคไวต์จะมีปริมาณเพิ่มมากขึ้นในตะกอนส่วนบน (uppermost part) ของขั้นตะกอนสึนามิ ซึ่งตะกอนส่วนใหญ่เป็นตะกอนที่มีขนาดทรายละเอียด และแสดง ขั้นตะกอนที่ลักษณะโครงสร้างขั้นตะกอนแบบเรียงขนาดแบบ fining upward ลักษณะเหล่านี้บ่งบอกถึง การตกสะสมตัวของตะกอนจาก suspension ในทางกลับกัน แร่มัสโคไวต์มีปริมาณลดน้อยลง หรือไม่พบใน ขั้นตะกอนส่วนล่าง (lowermost part) ของขั้นตะกอนสึนามิ บ่งบอกถึงการตกสะสมตัวของตะกอนจาก bedload (Jagodzinski et al., 2009) (รูป 4.4) ส่วนปริมาณแร่มัสโคไวต์ในตะกอน bedload ของ outflow อาจจะเกิดจากลักษณะคล้ายกัน โดยเกิดจากการกัดกร่อนเอาตะกอน suspension ที่ตกสะสมตัว จาก inflow ซึ่งมีแร่มัสโคไวต์ปริมาณมาก แล้วพัดพามาสะสมในบริเวณที่เป็นร่องน้ำ ทำให้พบปริมาณ แร่มัสโคไวต์ในตะกอน bedload ที่ตกสะสมตัวจาก outflow มากกว่า inflow

ร**ูป 4.4** การเปลี่ยนแปลงในแนวดิ่ง (verrtical change) ของปริมาณแร่หนักในตะกอนสึนามิ บริเวณเกาะ คอเขา จังหวัดพังงา (Jagodzinski et al., 2009)

แร่หนักที่พบประกอบด้วยแร่สคอร์ล (แร่ทัวร์มาลีน) เป็นส่วนใหญ่ ซึ่งอาจจะผุพังมาจากหินต้น กำเนิด (parents rock) ได้หลายชนิด เช่น แกรนิต ไดโอไรต์ แกบโบร เพกมาไทต์ สการ์น และสายแร่ ควอตซ์

4.2 สรุปผลการศึกษา

จากการศึกษาพบว่าแร่หนักที่พบได้แก่ แร่สคอร์ล แร่รูไทล์ แร่อะนาเทส แร่อิลเมไนต์ แร่แมกนีไซต์ และแร่มัสโคไวต์ ซึ่งชนิดของแร่หนักที่พบทั้งหมด พบทั้งในตะกอน bedload และsuspension เหมือนกัน แต่ในตะกอน bedload ที่ตกสะสมตัวจาก outflow นั้นไม่พบแร่อิลมิไนต์ ซึ่งในภาคสนามเราไม่สามารถ แยกความแตกต่างของชั้นตะกอนที่พบและไม่พบแร่อิลเมไนต์ได้ ดังนั้นชนิดของแร่หนักที่พบในตะกอนสึนา มิ ปี พ.ศ. 2547 ในพื้นที่เกาะพระทอง จึงไม่สามารถใช้ระบุรูปแบบการเคลื่อนที่ของแร่หนักในตะกอนสึนา มิได้

งานวิจัยนี้พบว่าแร่หนักในตะกอน bedload มีปริมาณมากกว่าในตะกอน suspension 0.5-1 % โดยประมาณ และตะกอน suspension มีปริมาณแร่มัสโคไวต์ มากกว่าตะกอน bedload และตะกอน bedload ที่ตกสะสมตัวจาก outflow มีปริมาณแร่มัสโคไวท์มากกว่าตะกอน bedload ที่ตกสะสมตัวจาก inflow แต่ในออกภาคสนามเราไม่สามารถแยกความแตกต่างของตะกอนที่มีปริมาณแร่หนักแตกต่างกัน 0.5-1 % โดยประมาณได้ และไม่สามารถแยกปริมาณแร่มัสโคไวต์ที่แตกต่างกันไม่มากได้ ดังนั้นปริมาณของ แร่หนักที่พบในตะกอนสึนามิจากการสังเกตในภาคสนามเพียงอย่างเดียว อาจจะไม่มีประสิทธิภาพหรือมี ความถูกต้องไม่มากพอในการใช้ระบุทิศทางการเคลื่อนที่ของคลื่นสึนามิ

4.3 ข้อเสนอแนะ

4.3.1 การวิเคราะห์เชิงคุณภาพของแร่หนักของงานวิจัย ยังขาดการระบุชนิดของแร่หนักในบาง peak ของกราฟที่ได้จากการวิเคราะห์โดยเครื่อง XRD ด้วยโปรแกรม MAUD ซึ่งอาจจะส่งผลให้ไม่สามารถ แยกความแยกต่างของตะกอน bedload และ suspension ด้วยชนิดของแร่หนักที่พบได้ และอาจทำให้ การวิเคราะห์เชิงปริมาณของแร่หนักในแต่ละตัวอย่างตะกอนมีความคลาดเคลื่อนได้ ดังนั้นการศึกษาแร่หนัก ควรใช้การวิเคราะห์เชิงคุณภาพและเชิงปริมาณด้วยวิธีการอื่นเพิ่มเติมด้วย เช่น การวิเคราะห์เคมีของแร่ หนัก

4.3.2 เนื่องจากไม่สามารถแยกความแตกต่างของตะกอน bedload และ suspension โดยใช้ ชนิดและปริมาณของแร่หนักที่พบได้ ดังนั้นในการศึกษาตะกอนสึนามิเพื่อใช้ในการประเมินความรุนแรงของ คลื่นสึนามิ ในแง่ของความเร็วคลื่น จึงควรใช้ข้อมูล grain size profile มาช่วยในการศึกษาด้วย

4.3.3 แร่ควอตซ์ที่พบในการวิเคราะห์แร่หนักด้วย XRD อาจจะเป็นเพราะตอนเปิดกรวยแยก เพื่อให้แร่หนักไหลออกมายังกระดาษกรอง มีแร่ควอตซ์บางส่วนไหลปนออกมา ดังนั้นจึงควรค่อยๆเปิดกรวย แยกอย่างระมัดระวัง เพื่อไม่ให้แร่ควอตซ์ไหลปนออกมากับแร่หนัก

เอกสารอ้างอิง

กรมทรัพยากรธรณี. แผนที่ธรณีวิทยาจังหวัดพังงา มาตราส่วน 1:250,000 จังหวัดพังงา [ออนไลน์]. 2550. แหล่งที่มา: http://www.dmr.go.th/download/pdf/South/Pangnga.pdf [1 กุมภาพันธ์ 2559]

กองธรณีวิทยา. 2543. แผนที่ภูมิประเทศ มาตราส่วน 1:50,000 อำเภอคุระบุรี ระวาง 462711. พิมพ์ครั้งที่ 2. กรมแผนที่ทหาร: กองธรณีวิทยา กรมทรัพยากรธรณี.

- Bahlburg, H., Spiske, M., 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example: Sedimentology 59 (3), 1063–1086.
- Cascalho, J., Costa, P., Dawson, S., Milne, F., Rocha, A., 2016. Heavy mineral assemblages of the storegga tsunami deposit. Sedimentary Geology 334, 21-33.
- Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., Charoentitirat, T., Chutakositkanon, V., Jankaew, K.,Kanjanapayont, P., Phantuwongraj, S., 2008. 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand, Marine Geology 248, 179-192.

Dawson, A., Shi, S., 2000. Tsunami deposits. Pure and Applied Geophysics 157, 875–897.

- Fujino, S., Naruse, H., Matsumoto, D., Sakakura, N., Suphawajruksakul, A., Jarupongsakul, T., 2010. Detailed measurements of thickness and grain size of a widespread onshore tsunami deposit in Phang-nga Province, southwestern Thailand. Island Arc 19, 389–398.
- Fujino, S., Naruse, H., Suphawajruksakul, A., Jarupongsakul, T., Murayama, M., Ichihara, N.,
 2008. Thickness and grain size distribution of Indian Ocean tsunami deposits at
 Khao Lak and Phra Thong Island, southwestern Thailand. In: Shiki, T., Tsuji, Y.,
 Yamazaki, T., Minoura, K. (Eds.), Tsunamites Features and implications. Elsevier,
 Berlin, pp. 123–132.
- Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 1969–1999.
- Jaffe, B. E., Buckley, M., Richmond, B., Strotz, L., Etienne, S., Clark, K., Watt, S., Gelfenbaum, G., and Goff, J., 2011. Flow speed estimated by inverse modeling of sandy sediment deposited by the 29 September 2009 tsunami near Satitoa, east Upolu, Samoa. Earth-Science Reviews 107, 23-37.

- Jaffe, B. E., Goto, K., Sugawara, D., Richmond, B., Fujino, S., and Nishimura, Y., 2012. Flow speed estimated by inverse modeling of sandy sediment deposits: results from the 11 March 2011 tsunami on the coastal plain near the Sendai Airport, Honshu, Japan. Sedimentary Geology 282, 90-109.
- Jagodzinski, R., Sternal, B., Szczucinski, W., Chague-Goff, C., Sugawara, D., 2012. Heavy minerals in the 2011 Tohoku-oki tsunami deposits—insights into sediment sources and hydrodynamics. Sedimentary Geology 282, 57-64
- Jagodzinski, R., Sternal, B., Szczucinski, W., Lorenc, S., 2009. Heavy Minerals in 2004 Tsunami Deposits on Kho Khao Island, Thailand, Polish Journal of Environmental Studies 18, 103-110
- Jankaew, K., Atwater B.F., Sawai, Y., Choowong, M., Charoentitirat T., Martin M.E., Prendergast, A., 2008. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand, Nature 455, 1228-1231
- Jankaew, K., Martin, M.E., Sawai, Y., Prendergast, A.L., 2011. Sand Sheets on a Beach-Ridge Plain in Thailand: Identification and Dating of Tsunami Deposits in a Far-Field Tropical Setting. The Tsunami Threat - Research and Technology, 299-324
- Khueanphet, P., 2012. Heavy mineral and clay mineral of paleotsunami sediments at Koh Phra Thong,Amphpe Kuraburi, Chang Wat Phang Nga. Senior project (Geology) Science Chulalongkorn University. 67 p.
- Moore, A., Goff, J., McAdoo, B.G., Fritz, H.M., Gusman, A., Kalligeris, N., Kalsum, K., Susanto, A., Suteja, D., Synolakis, C.E., 2011. Sedimentary deposits from the 17 July 2006 western Java tsunami, Indonesia: use of grain size analyses to assess tsunami flow depth, speed, and traction carpet characteristics. Pure and Applied Geophysics 168, 1951–1961.
- Nakamura, Y., Nishimura, Y., Putra, P.S., 2012. Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-okitsunami on the Misawa coast, Aomori, Japan. Sedimentary Geology 282, 216–227.

Rattanasriampaipong, R., 2012. Quantification of tsunami magnitude from sedimentation

modeling of re-occurring Indian Ocean tsunamiites at Phra Thong Island, Changwat Phang Nga, Thailand. Senior project (Geology) Science Chulalongkorn University. 63 p.

- Srisutam, C., Wagner, J.F., 2009. Multiple layer identification and transportation pattern analysis for onshore tsunami deposit as the extending tsunami data — a case study from the Thai Andaman Coast. Science of Tsunami Hazards 28, 205–217.
- Szczucinski, W., Kokocinski, M., Rzeszewski, M., Chague-Goff, C., Cachao, M., Goto, K.,
 Sugawara, D., 2012. Sediment source and sedimentation processes of 2011
 Tohoku-Oki tsunami deposits on the Sendai Plain, Japan insights from
 diatoms, nannoliths and grain size distribution. Sedimentary Geology 282, 40-56.

กราฟแสดงผลการวิเคราะห์ชนิดของแร่หนักโดยเครื่องมือวิเคราะห์ XRD เทคนิค Powder XRD

Sample	Grain size	Fine pebble	Granule	Very coarse sand	Coarse sand	Medium sand	Fine sand	Very fine sand	Silt-Clay	Total (g)
	Phi (ф)	-2	-1	0	1	2	3	4	-	
Susp	pension01	0	0	0	19.862	163.133	1876.523	337.885	84.460	2481.863
Be	dload01	0	0	2.542	82.603	554.928	494.529	1222.920	40.265	2397.787
2 nd E	Bedload02	0	0	17.127	187.432	639.162	318.456	458.965	20.678	1641.82
Susp	pension02	0	0	1.524	16.672	121.802	299.062	1742.191	40.961	2222.212
1 st E	Bedload02	0	0	44.245	419.709	1190.995	489.035	563.855	28.005	2735.844
2 nd E	Bedload03	0	1.073	12.967	130.729	987.565	657.155	983.215	27.174	2799.878
1 st E	Bedload03	0.152	1.511	17.702	126.822	971.844	746.435	1025.337	36.631	2926.434
E	Bulk04	0	0.773	7.761	83.291	706.763	804.074	1083.291	30.362	2716.315
E	Bulk05	0	0	3.794	47.351	473.095	1117.016	822.743	16.445	2480.444
E	Bulk06	0	0	5.121	106.145	831.248	865.005	762.871	13.094	2583.484
Susp	pension07	0	2.497	9.042	75.498	355.931	646.898	1396.892	42.756	2529.514
Be	dload07	0	1.395	18.548	351.477	1343.891	496.117	437.531	27.032	2675.991
E	Bulk08	0	0	10.823	201.593	1045.864	690.679	872.428	24.119	2845.506
E	Bulk09	0	0	7.809	83.657	649.209	1337.612	726.014	19.468	2823.769
Susp	pension10	0	0	0	5.757	62.437	288.057	2089.449	77.711	2523.411
Be	dload10	0	0	6.189	171.287	880.321	652.066	1010.122	35.251	2755.236
Susp	pension11	0	0	0	2.663	75.699	273.849	1871.371	69.577	2293.159
Be	dload11	0	0	1.142	46.435	590.61	645.001	1076.636	45.309	2405.133
Susp	pension12	0	0	0	5.649	88.236	338.962	1887.013	58.189	2378.049
Be	dload12	0	0	0	34.6	293.543	490.632	1485.492	62.592	2366.859
Susp	pension13	0	0	0	4.984	92.043	427.911	1654.704	76.075	2255.717
Be	dload13	0	0	0	37.242	424.147	583.293	1277.026	46.438	2368.146
Susp	pension14	0	0	0	3.738	84.812	405.157	2168.555	79.136	2741.398
Be	dload14	0	0	0	25.272	325.188	597.393	1859.483	41.057	2848.393
Susp	pension15	0	0	0	0.611	13.425	293.272	1824.027	93.523	2224.858
Be	dload15	0	0	0	17.708	213.075	507.596	1603.18	41.33	2382.889
Susp	pension16	0	0	0	5.715	90.571	491.647	1717.456	59.985	2365.374
2 nd E	Bedload17	0	0	1.158	5.991	96.441	462.741	2366.645	46.798	2979.774
Susp	pension17	0	0	0	0	15.619	218.314	2565.117	147.153	2946.203
1 st E	Bedload17	0	0	0	12.904	155.944	532.149	1504.608	55.661	2261.266

ตาราง ก. น้ำหนักเม็ดตะกอนขนาดต่างๆ ที่ได้จากการร่อนคัดขนาดตะกอนแบบแห้ง (dry sieving)

Sample	Grain size	Fine pebble	Granule	Very coarse sand	Coarse sand	Medium sand	Fine sand	Very fine sand	Silt - Clay	Total (%)
Phi (ф)		-2	-1	0	1	2	3	4	-	
Suspension01		0	0	0	0.800	6.573	75.609	13.614	3.403	100
Bedload01		0	0	0.106	3.445	23.143	20.624	51.002	1.679	100
2 nd Bedload02		0	0	1.043	11.416	38.930	19.397	27.955	1.259	100
Suspension02		0	0	0.069	0.750	5.481	13.458	78.399	1.843	100
1 st Bedload02		0	0	1.617	15.341	43.533	17.875	20.610	1.024	100
2 nd Bedload03		0	0.038	0.463	4.669	35.272	23.471	35.116	0.971	100
1 st Bedload03		0.005	0.052	0.605	4.334	33.209	25.507	35.037	1.252	100
Bulk04		0	0.028	0.286	3.066	26.019	29.602	39.881	1.118	100
Bulk05		0	0	0.153	1.909	19.073	45.033	33.169	0.663	100
Bu	ulk06	0	0	0.198	4.109	32.175	33.482	29.529	0.507	100
Suspe	ension07	0	0.099	0.357	2.985	14.071	25.574	55.224	1.690	100
Bed	load07	0	0.052	0.693	13.134	50.220	18.540	16.350	1.010	100
Bu	ulk08	0	0	0.380	7.085	36.755	24.273	30.660	0.848	100
Bu	ılk09	0	0	0.277	2.963	22.991	47.370	25.711	0.689	100
Suspe	ension10	0	0	0	0.228	2.474	11.415	82.803	3.080	100
Bed	load10	0	0	0.225	6.217	31.951	23.666	36.662	1.279	100
Suspe	ension11	0	0	0	0.116	3.301	11.942	81.607	3.034	100
Bed	load11	0	0	0.047	1.931	24.556	26.818	44.764	1.884	100
Suspe	ension12	0	0	0	0.238	3.710	14.254	79.351	2.447	100
Bed	load12	0	0	0	1.462	12.402	20.729	62.762	2.645	100
Suspe	ension13	0	0	0	0.221	4.080	18.970	73.356	3.373	100
Bed	load13	0	0	0	1.573	17.911	24.631	53.925	1.961	100
Suspe	ension14	0	0	0	0.136	3.094	14.779	79.104	2.887	100
Bed	load14	0	0	0	0.887	11.417	20.973	65.282	1.441	100
Suspe	ension15	0	0	0	0.027	0.603	13.182	81.984	4.204	100
Bed	load15	0	0	0	0.743	8.942	21.302	67.279	1.734	100
Suspension16		0	0	0	0.242	3.829	20.785	72.608	2.536	100
2 nd Bedload17		0	0	0.039	0.201	3.237	15.529	79.424	1.571	100
Suspension17		0	0	0	0	0.530	7.410	87.065	4.995	100
1 st Be	dload17	0	0	0	0.571	6.896	23.533	66.538	2.461	100

ตาราง ข. ความถี่สะสมของน้ำหนักเม็ดตะกอนขนาดต่างๆ (ในหน่วย %) ที่ได้จากการร่อนคัดขนาดตะกอนแบบแห้ง (dry sieving)

Camala	Sample weight (g)	Heavy minerals	Weight percent of heavy	
Sample	Sample weight (g)	weight (g)	minerals (%)	
Suspension02	165.289	2.000	1.210	
1 st Bedload02	220.096	4.853	2.204	
Suspension10	171.218	1.103	0.644	
Bedload10	293.816	4.838	1.647	
Suspension12	186.914	0.977	0.523	
Bedload12	168.676	2.005	1.189	
Suspension14	138.499	0.792	0.523	
Bedlod14	256.867	2.182	0.849	
2 nd Bedload17	183.267	0.512	0.279	
Suspension17	130.021	0.839	0.645	
1 st Bedload	256.867	4.838	1.883	

ตาราง ค. น้ำหนักของตัวอย่างตะกอน น้ำหนักแร่หนักที่แยกออกมาได้ และร้อยละโดยน้ำหนักของแร่หนัก

ในตัวอย่างตะกอน