การศึกษาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมในรีเจเนอเรเตอร์แบบโครงอิฐทนไฟ

นาย จิรชนม์ เสรีวิชยสวัสดิ์

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-13-0362-9 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

A STUDY ON OPTIMUM TIME CYCLE OF A FIRECLAY BRICK REGENERATOR

Mr. Jirachon Sereewichayasawad

สถาบนวทยบรการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Mechanical Engineering Department of Mechanical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2000 ISBN 974-13-0362-9

หัวข้อวิทยานิพนธ์ เ	าารศึกษาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมในรีเจเนอเรเตอร์
	แบบโครงอิฐทนไฟ
โดย	นาย จิรชนม์ เสรีวิชยสวัสดิ์
สาขาวิชา	วิศวกรรมเครื่องกล
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

.....คณบดี คณะวิศวกรรมศาสตร์

(ศาสตราจารย์ ดร. สมศักดิ์ ปัญญาแก้ว)

คณะกรรมการสอบวิทยานิพนธ์

..... ประธานกรรมการ (รองศาสตราจารย์ ดร. พงษ์ธร จรัญญากรณ์)

APDIN SUNSILS

..... อาจารย์ที่ปรึกษา

(ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล)

..... กรรมการ

(รองศาสตราจารย์ ดร. มานิจ ทองประเสริฐ)

.....กรรมการ

(อาจารย์ ดร. เชิดพันธ์ วิทูราภรณ์)

จิรชนม์ เสรีวิชยสวัสดิ์ : การศึกษาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมในรีเจเนอเรเตอร์ แบบโครงอิฐทนไฟ. (A STUDY ON OPTIMUM TIME CYCLE OF A FIRECLAY BRICK REGENERATOR) อ. ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล , 170 หน้า. ISBN 974-13-0362-9

งานวิจัยนี้กล่าวถึงการศึกษา วัฏจักรการถ่ายเทความร้อนที่เหมาะสมใน Regenerator แบบโครงอิฐทน ไฟ โดยสร้างแบบจำลองทางคณิตศาสตร์เพื่อทำนายการกระจายอุณหภูมิอากาศและก๊าซเสีย ตลอดจนโครงอิฐ ทนไฟใน Regenerator ที่ตำแหน่งและเวลาใดๆ และมีการทดสอบแบบจำลองฯด้วยการเปรียบเทียบกับผลการ ทดลอง ซึ่งปรากฏว่า แนวโน้มค่าต่างๆเป็นไปในทิศทางเดียวกัน โดยค่าอุณหภูมิอากาศและอุณหภูมิก๊าซเสียที่ ไหลออกจาก Regenerator จากค่าในแบบจำลองทางคณิตศาสตร์ได้มีความเบี่ยงเบนค่อนข้างสูงจากค่าที่ ตรวจวัด เนื่องจากความร้อนสะสมในอุปกรณ์วัด , ตำแหน่งในการวัด , การประมาณค่าอุณหภูมิโดยใช้การเฉลี่ย และปัจจัยภายนอกที่ไม่สามารถควบคุมได้ นอกจากนี้ยังพบว่า วัฏจักรที่ทำการตรวจวัดซึ่งใช้เวลาในวัฏจักร 30 นาทียังไม่เข้าสู่ Cyclic Equilibrium และ Thermal Ratio ใน Heating Period มีค่ามากกว่าใน Cooling Period

จากนั้นได้ทำการเปรียบเทียบเพื่อหาแนวโน้มเวลาที่เหมาะสมซึ่งแต่ละวัฏจักรต้องใช้ในการสะสมหรือ ถ่ายเทความร้อนของ Regenerator ในเตาถลุงดีบุก อันจะทำให้ได้ปริมาณความร้อนนำกลับมาใช้สูงสุด โดย เทียบผลที่ได้จากแบบจำลองที่ใช้เวลาในวัฏจักรต่างๆกันเมื่อวัฏจักรเข้าสู่ Cyclic Equilibrium พบว่า ถ้าใช้เวลา น้อยลงกว่าปัจจุบัน (30 นาที) จะทำให้ได้พลังงานความร้อนนำกลับมาใช้มากขึ้น แต่ถ้าใช้เวลาน้อยเกินไป (4 นาทีลงไป) พลังงานความร้อนนำกลับมาใช้จะมีค่าลดลง โดยวัฏจักรที่ทำให้ได้พลังงานความร้อนนำกลับมาใช้ สูงสุดคือ วัฏจักรที่ใช้เวลาในการกลับทิศการไหลของอากาศและก๊าซเสียทุกๆ 529 วินาที หรือ ประมาณ 8.82 นาที ซึ่งสามารถนำพลังงานความร้อนกลับมาใช้ใหม่ได้มากกว่าวัฏจักรที่ดำเนินการในปัจจุบัน (30 นาที) เป็น 478,415,436 J/hr หรือเทียบเท่ากับเชื้อเพลิงน้ำมันเตา Type C ที่ประหยัดได้จำนวน 105,378.9 Litre/yr และ ค่า Thermal Ratio ของ Cooling Period มีค่ามากกว่าของ Heating Period ในทุกวัฏจักรเนื่องจากอัตราการ ไหลโดยมวลและความจุความร้อนจำเพาะที่ความดันคงที่ของอากาศน้อยกว่าก๊าซเสีย แต่พลังงานความร้อนที่ สะสมจากการที่ก๊าซเสียถ่ายเทให้โครงอิฐทนไฟในช่วง Heating Period มีค่าเท่ากับความร้อนที่โครงอิฐทนไฟ ถ่ายเทกลับให้อากาศ

จุฬาลงกรณ์มหาวิทยาลย

ภาควิชา วิศวกรรมเครื่องกล สาขาวิชา <u>วิศวกรรมเครื่องกล</u> ปีการศึกษา <u>2543</u>

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

٩

4170253121 : MAJOR MECHANICAL ENGINEERING

KEY WORD : REGENERATOR / TIME CYCLE / OPTIMUM

JIRACHON SEREEWICHAYASAWAD : A STUDY ON OPTIMUM TIME CYCLE OF A FIRECLAY BRICK REGENERATOR. THESIS ADVISOR : ASSI. PROF. MINGSAK TANGTAKUL , 170 pp. ISBN 974-13-0362-9

This study is related to the seek for optimum time cycle of fireclay brick regenerator. The mathematical model was proposed in order to simulate the temperature distribution of air , flue gas and fireclay brick in regenerator. In addition, the direct measurements were done. The developed mathematical model was verified by comparing its results with the measured values. The comparison found that the trend of them is the same. Although, their results were highly fluctuated to each other. There are four reasons why the simulation results were highly different from the measured values namely, Heat accumulation in measuring apparatus , the position of measuring , the use of arithmetic mean in estimation the average value and the external uncontrollable factors. Moreover, from measured values, the present cycle that lasts 30 minutes have not reached "Cyclic Equilibrium ". Also, thermal ratio in heating period was higher than that in cooling period.

After that , the trend of optimum time cycle was discovered by comparing the simulation results which reached Cyclic Equilibrium at different times. The results revealed that if the time cycle is less than present (30 minutes) , it will gain more heat recovery. Nevertheless, it should not be so less (4 minutes down) that it would cause heat recovery reduced. Furthermore, the cycle that obtained highest heat recovery had to switch the direction of air and flue gas flow in every 529 seconds or about 8.82 minutes. Additionally, when compare with the present cycle (30 minutes) , it will achieve heat recovery more than 478,415,436 J/hr or 105,378.9 Litre/yr equivalent to furnace oil type C . Besides, from which mass flow rate and specific heat at constant pressure of air are less than gas's , the heat accumulation of fireclay brick form gas in heating period is equal to the heat dissipation of firclay brick to air as well . Therefore, the thermal ratio in heating period was lower than that in cooling period.

Department	Mechanical Engineering
Field of study	Mechanical Engineering
Academic year	2543

Student's signature	
Advisor's signature	
Co-advisor's signatu	re

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้ได้รับทุนอุดหนุนการวิจัยจากกองทุนเพื่อส่งเสริมการอนุรักษ์ พลังงาน โดยการวิจัยสำเร็จลุล่วงไปได้ ด้วยความช่วยเหลืออย่างดียิ่งของบุคคลหลายท่านดังนี้ ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล อาจารย์ที่ปรึกษา ผู้ชี้แนะหัวข้อและแนวทางวิจัยตลอดจน คำปรึกษามากมายที่เป็นประโยชน์ต่อการวิจัย พร้อมทั้งสนับสนุนเครื่องมือวัดต่างๆที่ใช้ในการวิจัย ทุกอย่าง

ขอกราบขอบพระคุณ รองศาสตราจารย์ ดร. พงษ์ธร จรัญญากรณ์ รอง ศาสตราจารย์ ดร. มานิจ ทองประเสริฐ และ อาจารย์ ดร. เชิดพันธ์ วิทูราภรณ์ ที่กรุณาให้ คำแนะนำและถ่ายทอดประสบการณ์ความรู้ต่างๆ ที่เป็นประโยชน์อย่างยิ่งต่อวิทยานิพนธ์

ขอขอบพระคุณสถาบันวิจัยพลังงาน จุฬาลงกรณ์มหาวิยาลัย และเจ้าหน้าที่ที่ เกี่ยวข้องทุกท่าน ในการดำเนินการเป็นธุระและให้คำแนะนำเรื่องการขอทุนอุดหนุนการวิจัย ตลอดจนขั้นตอนการเบิกจ่ายทุกประการ

ขอขอบพระคุณ ผู้บริหาร พี่ๆวิศวกร และพนักงาน โรงงานไทยแลนด์สเมลติ้ง แอนด์รีไฟนิ่ง (Thai-Sarco) ทุกๆท่านที่ให้การต้อนรับและอำนวยความสะดวกในการตรวจวัด ระหว่างการวิจัยอย่างเต็มที่

ขอขอบคุณหน่วยวิจัยพลังงานจุฬาลงกรณ์มหาวิทยาลัยที่ได้ให้โอกาสใน การศึกษาค้นคว้า สะสมประสบการณ์ และ เอื้ออำนวยอุปกรณ์ต่างๆ ที่เป็นจำเป็นอย่างสูงในการ วิจัย รวมทั้ง คุณพี่อัมพา เกลี้ยงสิน ที่ช่วยในงานธุรการต่างๆที่เกี่ยวกับงานวิจัยนี้ คุณประพจน์ ชัยวรวิทย์กุล คุณ ณัฐเดช เฟื่องวรวงศ์ คุณ ประพันธ์ พิกุลทอง และ คุณ บุญลาภ ดานะสถิตย์ ถาวร ที่ช่วยให้คำแนะนำที่เป็นประโยชน์ในการทำวิจัย

ท้ายที่สุดนี้ผู้วิจัยขอกราบขอบพระคุณบิดา มารดา และ ครอบครัว ที่ให้การ สนับสนุนผู้วิจัยทั้งในด้านค่าใช้จ่าย อำนวยความสะดวก และกำลังใจมาโดยตลอด ทำให้งานวิจัย นี้สำเร็จลุล่วงไปได้ด้วยดี

จิรชนม์ เสรีวิชยสวัสดิ์

สารบัญ

บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ନ୍ଥ
สารบัญตาราง	ผ
สารบัญรูปภาพ	ល្
รายการสัญลักษณ์	รี

บทที่

1. บทน้ำ

1.1 ความสำคัญและที่มาของวิทยานิพนธ์	1
1.2 จุดประสงค์ของวิทยานิพนธ์	2
1.3 ขอบเขตของวิทยานิพนธ์	2
1.4 ขั้นตอนการทำวิทยานิพนธ์	2
1.5 ประโยชน์ที่คาดว่าจะได้รับ	3

2. ผลงานวิจัยที่ผ่านมา

3. ทฤ	ษฎีที่เกี่ยวข้อง	
	3.1 กระบวนการถลุงดีบุก	6
	3.2 ความรู้พื้นฐานของ Regenerator	12
	3.3 กฎข้อที่ 1 ทางเทอร์โมไดนามิค	14
	3.4 กฏสี่เหลี่ยมคางหมู	14
	3.5 การถดถอยแบบพหุนาม	15
	3.6 Logarithmic Mean Temperature Difference	17
	3.7 การถ่ายเทความร้อน	19
	3.8 ไซโครเมตริกส์	29

3.9 แบบจำลองทางคณิตศาสตร์ของ Regenerator	31
3.10 Modified Heat transfer coefficient	40
3.11 คุณสมบัติของก๊าซผสม	44
3.12 พลังงานความร้อนนำกลับมาใช้	44
4. การด้าเนินการวิจัย	
4.1 แบบจำลองทางคณิตศาสตร์ของการถ่ายเทความร้อนใน Regenerator	45
4.2 การทดลองวัดข้อมูลของ Regenerator	52
4.3 การหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสม	56
5. ผลการทดลอง วิเคราะห์ และ การหาวักจักรการถ่ายเทความร้อนที่เหมาะสม	
ใน Regenerator แบบโครงคิฐทนไฟราไปล่องไฟสี่เหลี่ยม	
5.1 ผลการทดลองในการตรวจวัดข้อมูลต่างๆของ Regenerator.	
5.2 แลการจำลองแบบทางคณิตศาสตร์ของ Regenerator	68
5.3 การหาวักจักรการก่ายเทดวามร้อมที่เหมาะสมใบ Regenerator	75
	70
6. สรุปและเสนอแนะผลงานวิจัย	
6.1 สรุปผลงานวิจัย	81
6.2 เสนอแนะผลงานวิจัยต่อไป	82
รายการอ้างอิง	83
ภาคผนวก	
ภาคผนวก ก. โปรแกรมคอมพิวเตอร์	86
ภาคผนวก ข. ข้อมูลการทดลองของการถ่ายเทความร้อนใน Regenerator	
แบบโครงอิฐทนไฟ	93
ภาคผนวก ค. ข้อมูลและผลการจำลองแบบจากโปรแกรมคอมพิวเตอร์	102
ประวัติผู้เขียน	170

สารบัญตาราง

ตาราง		หน้า
1	แสดงข้อมูลเบื้องต้นของการถลุงแร่ดีบุก	58
2	แสดงองค์ประกอบก๊าซเสียจากการเผาไหม้	59
3	แสดงอัตราการไหลโดยปริมาตรของอากาศที่ใช้ในการเผาไหม้	61
4	แสดงอัตราการไหลโดยมวลของน้ำมันที่ใช้ในการเผาไหม้	61
5	แสดงอุณหภูมิของโครงอิฐท <mark>นไฟกับ</mark> อากาศหรือก๊าซเสียในแต่ละ Period	62

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญรูปภาพ

รูปภาพ		หน้า
1	แผนผังการถลุงแร่ดีบุกแบบสองขั้น	7
2	แสดงลักษณะของเตานอน	9
3	ภาพตัดขวางของ Regenerator ที่ติด <mark>ต</mark> ั้งคู่กับเตาถลุง	10
4	Fixed two-bed regenerator system	13
5	แสดงการประมาณค่าอินทิกรัลโดยใช้กฎสี่เหลี่ยมคางหมู	14
6	แสดงการถดถอยแบบ <mark>พหุนามโดย</mark> การประดิษฐ์ฟังก์ชันพหุนาม	
	จากชุดของข้อมูลที่ก <mark>ำหนด</mark>	15
7	แสดงการกระจายอุณหภูมิของเครื่องแลกเปลี่ยนความร้อนแบบ Parallel-Flow	17
8	แสดงการพัฒนาของ Velocity Boundary Layer ของของไหลที่ไหลภายในท่อ	21
9	การพัฒนาของ Thermal Boundary Layer ของของไหลที่ไหลภายในท่อ	21
10	แสดง Emissivity ของ H ₂ O ที่ Total Pressure 1 atm และ	
	Partial Pressure ใกล้ศูนย์	26
11	แสดง Emissivity ของ CO ₂ ที่ Total Pressure 1 atm และ	
	Partial Pressure ใกล้ศูนย์	27
12	แสดง Correction Factor , C, ของ $arepsilon_w$ ที่ Total Pressure p atm	27
13	แสดง Correction Factor , C _c ของ $arepsilon_c$ ที่ Total Pressure p atm	28
14	แสดง Correction Factor for Overlap , $\Delta arepsilon$ สำหรับก๊าซของผสมที่มีทั้ง ไอน้ำ	
	และ คาร์บอนไดออกไซด์	28
15	ภาพตัดแนวยาวของโครงอิฐทนไฟใน Regenerator (Front View)	31
16	ภาพตัดขวางของโครงอิฐทนไฟส่วนบน Regenerator (Top View)	32
17	แสดง Control Volume ของโครงอิฐทนไฟ	33
18	Finite difference mesh for the numerical solution of	
	the regenerator equation	36
19	แสดงอุณหภูมิของอิฐทนไฟและของไหลที่หน้าตัดใดๆของ	
	Regenerator กับ เวลา	40
20	แสดงการเปลี่ยนแปลงอุณหภูมิภายในอิฐทนไฟที่เวลาใดๆ	41
21	แสดงส่วนประกอบต่างๆของเตาถลุงดีบุก	52

สารบัญรูปภาพ (ต่อ)

รูปภาพ

22	ตำแหน่งการติดตั้งเทอร์โมคัปเปิ้ลใน Regenerator	55
23	แสดงหน้าตัดขวางและรูปร่างของโครงอิฐทนไฟใน Regenerator	58
24	แสดงแนวโน้มของข้อมูลในตารางที่ 2	59
25	แสดงแนวโน้มของข้อมูลใน <mark>ตารางที่ 2 (ต่อ</mark> 1)	60
26	แสดงแนวโน้มของข้อมูล <mark>ในตารางที่</mark> 2 (ต่อ 2)	60
27	แสดงอัตราการไหลโ <mark>ดยปริมาตรขอ</mark> งอากาศที่ใช้ในการเผาไหม้	61
28	แสดงอัตราการไหลโดยมวลของน้ำมันที่ใช้ในการเผาไหม้	62
29	แสดงการกระจายอุณหภูมิของไหลและอิฐทนไฟใน Regenerator	
	ตลอด 12 ชั่วโมง	63
30	แสดงผลจากการแผ่รังสีที่มีต่ออุปกรณ์วัดที่ด้านบน Regenerator	65
31	แสดงผลจากการแผ่ <mark>รั</mark> งสีที่มีต่ออุปกรณ์วัดที่ด้านล่าง Regenerator	66
32	แสดงการกระจายอุณหภูมิของไหลและอิฐทนไฟใน Regenerator	
	เมื่อคำนึงถึงผลจาก Radiation ที่มีต่อเครื่องมือวัด	68
33	แสดงการกระจายอุณหภูมิต่า <mark>งๆจากผลการจำลอ</mark> งแบบ Regenerator	69
34	แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิของไหล	
	ด้านบน regenerator	70
35	แสดงการเปรียบเที <mark>ย</mark> บผลการวัดและการจำลองอุณหภูมิของไหล	
	ด้านล่าง regenerator	70
36	แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิอิฐทนไฟ	
	ด้านบน regenerator	71
37	แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิอิฐทนไฟ	
	ด้านล่าง regenerator	71
38	แสดงการกระจายอุณหภูมิในอิฐทนไฟ	73
39	แสดงสมดุลความร้อนของ regenerator ในช่วง Cooling Period	74
40	แสดงสมดุลความร้อนของ regenerator ในช่วง Heating Period	75
41	แสดง Thermal Ratio ของ Regenerator ที่ Cyclic Equilibrium	
	ใน Heating Period	76

สารบัญรูปภาพ (ต่อ)

รูปภาพ		หน้า
42	แสดง Thermal Ratio ของ Regenerator ที่ Cyclic Equilibrium	
	ໃน Cooling Period	77
43	แสดงปริมาณ Heat Recovery ที่เวลา 1 ชั่วโมงของวัฏจักรต่างๆ	78
44	ปริมาณ Heat Recovery ที่ <mark>เวลา 1 ชั่วโมงของว</mark> ัฏจักรต่างๆ	
	เมื่อเทียบกับวัฏจักร 30 น <mark>าที</mark>	79

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

รายการสัญลักษณ์

สัญลักษณ์	คำอธิบาย	หน่วย
A	Heat transfer surface area	m ²
С	Specific heat at constant pressure	kJ/kg K
\overline{h}	Modified heat transfer coefficient	W/m ² K
h	Surface heat-transfer coefficient	W/m ² K
k	Thermal conductivity	W/m ² K
L	Length of unit	m
Μ	Total mass of storage material	kg
m_{f}	Mass of fluid in storage channels	kg
\dot{m}_f	Mass rate of flow	kg/s
Р	Duration of Heating or Cooling period for regenerator	S
R	Resistance	Ω
S	Cross-sectional Area	m ²
Т	Nondimensional temperature	-
t	Temperature	°C,K
W	Semi-thickness of storage material for heat storage units	m
х	Axial coordinate	m

Greek

η	Nondimensional time	-
$\eta_{\scriptscriptstyle REG}$	Thermal ratio, dimensionless	0 I
Λ	Reduced length $(-\overline{h}A)$	Ľ
	$m_f c_f$	
ξ	Nondimensional axial distance	-
	$\overline{h}A\left(P-\frac{m_{f}}{M}\right)$	
П	Reduced period , dimensionless $\left(\frac{m_f}{m_f}\right)$)	-
ρ	Density	kg/m ³

ϕ	Overall heat transfer correction factor	-
τ	Time	S

Subscripts

cond	Conduction
conv	Convection
rad	Radiation
1	Heating Period
2	Cooling Period
f	Fluid
fi	Fluid at entrance to unit
fo	Fluid at exit of one unit
m	Storage material
S	Surface

Superscripts

٤	Heating period for regenerator
"	Cooling period for regenerator

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่1

บทนำ

1.1 <u>ความสำคัญและที่มาของวิทยานิพนธ์</u>

ในปัจจุบันการประหยัดพลังงานเป็นสิ่งสำคัญที่ต้องพิจารณาในการดำเนินงานทางวิศวกรรม เพราะค่าใช้จ่ายในด้านพลังงานนั้นสูงมาก โดยเฉพาะกรณีที่เชื้อเพลิงที่ใช้คือน้ำมัน ซึ่งต้องนำเข้า จากต่างประเทศ อุตสาหกรรมต่างๆในประเทศจึงต้องมีการปรับปรุงประสิทธิภาพของเครื่องจักร และใช้พลังงานอย่างคุ้มค่าที่สุด

อุตสาหกรรมการถลุงแร่ดีบุก เป็นหนึ่งในหลายๆอุตสาหกรรมที่ใช้น้ำมันเป็นเชื้อเพลิงหลักใน การถลุง เตาถลุงดีบุกต้องใช้ปริมาณความร้อนสูงในการหลอมแร่ให้เหลวเพื่อแยกเอาโลหะดีบุกที่ บริสุทธิ์ออกมาจากสินแร่ โ<mark>ดยได้รับความร้อนจากการเผาไหม้ของน้ำมันและอากาศช</mark>่วยในการเผา ใหม้ อากาศเมื่อผ่านการเผาใหม้แล้วจะเปลี่ยนเป็นก๊าซเสีย โดยก๊าซเสียที่ออกจากเตามีอุณหภูมิ เพื่อเป็นการประหยัดพลังงานจึงมีการติดตั้งอุปกรณ์แลกเปลี่ยนความร้อน สูงถึง 1,350 °C สำหรับถ่ายเทความร้อนจากก๊าซเสียที่ออกจากเตาให้กับอากาศที่ช่วยในการเผาไหม้ แต่ด้วย สภาพของอุณหภูมิก๊าซเสียที่สูง และความดันแตกต่างอย่างมากระหว่างอากาศและก๊าซเสีย อาจ ก่อให้เกิดการกัดกร่อนของพื้นผิวแลกเปลี่ยนความร้อน ทำให้การใช้อุปกรณ์แลกเปลี่ยนความร้อน แบบ Recuperative Heat Exchanger จึงแทบเป็นไปไม่ได้และมีราคาสูงมาก ดังนั้น Thermal Regenerator หรือ Regenerative Heat Exchanger ซึ่งสามารถทนต่อสภาพดังกล่าวได้ จึงถูก น้ำมาใช้งานเพื่อถ่ายเทพลังงานความร้อนจากก๊าซเสียที่มีอุณหภูมิสูงมาสะสมในโครงอิฐทนไฟ (Checkerwork of Fireclay Brick) ใน Regenerator เมื่อก๊าซเสียหลังจากใช้ในการเผาไหม้ไหล ผ่าน Regenerator เป็นเวลาหนึ่งแล้วจึงสลับให้อากาศที่ช่วยในการเผาไหม้ที่มีอุณหภูมิต่ำกว่าไหล ผ่าน ทำให้อากาศมีอุณหภูมิสูงขึ้น โดยโครงอิฐทนไฟจะทำหน้าที่เป็นตัวกลางในการถ่ายเทความ ร้อนระหว่างอากาศที่ช่วยในการเผาไหม้ กับ ก๊าซเสีย หากอากาศที่ช่วยในการเผาไหม้มีอุณหภูมิ สูงเท่าใด ก็จะประหยัดเชื้อเพลิงได้มากเท่านั้น

การจะทำให้อากาศที่ช่วยในการเผาไหม้มีอุณหภูมิสูงมากขึ้นนั้น เมื่อพิจารณาถึงผลกระทบ ต่อกระบวนการการทำงานของเตาหลอมและเงินลงทุนที่ต้องใช้ การศึกษาเรื่องการปรับเวลาที่ใช้ ในการถ่ายเทความร้อนทำให้เกิดปัญหาดังกล่าวน้อยและสามารถทำได้สะดวกที่สุด รวมทั้งไม่ต้อง ใช้เงินลงทุนใดๆเพิ่มเติม จึงมีการศึกษาวิจัยทางด้านเวลาที่ใช้ในการถ่ายเทความร้อน ในการทำให้ อากาศที่ช่วยในการเผาไหม้เมื่อผ่าน Regenerator มีอุณหภูมิสูงมากที่สุด หรือ ให้ได้ก๊าซเสียหลัง จากการเผาใหม้เมื่อผ่าน Regenerator มีอุณหภูมิต่ำมากที่สุด เพื่อให้มีปริมาณความร้อน นำกลับมาใช้ (Heat Recovery) มากที่สุด

1.2 <u>จุดประสงค์ของวิทยานิพนธ์</u>

- ศึกษาและวิเคราะห์การถ่ายเทความร้อนระหว่างอากาศและก๊าซเสียกับโครงอิฐ ทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator ของเตาถลุงดีบุก
- สร้างวิธีการหาอุณหภูมิของอากาศที่ใช้ในการเผาไหม้หรือก๊าซเสียจากการเผา ใหม้ที่ใหลออกจาก Regenerator และ อุณหภูมิของโครงอิฐทนไฟเมื่อเวลาผ่าน ไปตามต้องการได้ ตลอดจนปริมาณความร้อนที่อากาศได้รับจาก Regenerator
- วิเคราะห์หาเวลาที่เหมาะสมที่ใช้ในการถ่ายเทความร้อนของ Regenerator เพื่อ เป็นการปรับปรุง Effectiveness of Regenerator

1.3 <u>ขอบเขตของวิทยานิพนธ์</u>

- ศึกษาและวิเคราะห์การทำงานของ Regenerator แบบโครงอิฐทนไฟรูปปล่องไฟ พื้นที่หน้าตัดสี่เหลี่ยมจัตุรัสโดยใช้ Regenerator ในเตาถลุงดีบุกของบริษัท ไทยแลนด์ สเมลติ้งแอนด์รีไฟนิ่ง ที่จังหวัดภูเก็ต โดยครอบคลุมรายละเอียดดังนี้
 - 1.1 การถ่ายเทความร้อนระหว่างอากาศและก๊าซเสียกับโครงอิฐทนไฟรูป ปล่องไฟพื้น ที่หน้าตัดสี่เหลี่ยมจัตุรัสใน Regenerator
 - 1.2 Effectiveness of Regenerator แสดงในรูปของ Thermal Ratio
 - 1.3 เวลาที่เหมาะสมในการถ่ายเทความร้อนเพื่อปรับปรุง Thermal Ratio
- ทำการตรวจวัดและหาข้อมูลต่างๆของ Regenerator เพื่อน้ำมาใช้ประกอบใน การวิเคราะห์ และเปรียบเทียบกับผลที่ได้จากการวิเคราะห์กับผลการตรวจวัดจริง เพื่อ นำมาปรับปรุงให้ได้ผลที่ถูกต้องมากขึ้นประกอบด้วย อุณหภูมิของอากาศที่ช่วยในการ เผาใหม้และอุณหภูมิของก๊าซเสียหลังจากการเผาใหม้ทั้งขาเข้าและออกจากโครงอิฐ ทนไฟ และค่าอื่นๆที่ใช้ประกอบการวิเคราะห์

1.4 <u>ขั้นตอนการทำวิทยานิพนธ์</u>

1. ศึกษาและรวบรวมข้อมูลของ โครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator

ของเตาถลุงดีบุก

- ศึกษาค้นคว้าหาทฤษฎีและสมการเชิงอนุพันธ์ของสมดุลความร้อนที่ใช้กับ โครง
 อิฐทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator
- สึกษาค้นคว้าหาระเบียบวิธีเชิงตัวเลขที่ใช้ในการแก้สมการเชิงอนุพันธ์ของสมดุล ความร้อนที่ใช้กับ โครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator
- 4. พัฒนาโปรแกรมคอมพิวเตอร์จากระเบียบวิธีเชิงตัวเลขเพื่อหาคำตอบของสมการ เชิงอนุพันธ์ของสมดุลความร้อนที่ใช้กับ โครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator
- 5. วิเคราะห์ผลจากโปรแกรมคอมพิวเตอร์เพื่อหาเวลาที่เหมาะสมสำหรับใช้ในการ ถ่ายเทความร้อนของ Regenerator เพื่อปรับปรุงการใช้พลังงานของเตา
- ดำเนินการตรวจวัดค่าต่างๆที่ระบุไว้ในขอบเขตของวิทยานิพนธ์ของโครงอิฐทนไฟ รูปปล่องไฟสี่เหลี่ยมในRegenerator จริงที่โรงงานถลุงดีบุกของบริษัท ไทย แลนด์สเมลติ้งแอนด์รีไฟนิ่ง ที่จังหวัดภูเก็ต แล้วนำค่าที่ได้มาเปรียบเทียบกับผล จากการวิเคราะห์ เพื่อหาข้อสรุป
- จัดทำรายงานเพื่อนำเสนอข้อมูลและผลสรุปที่ทำการศึกษา พร้อมแจ้งผลการ
 วิเคราะห์ไปยังโรงงานเพื่อเป็นแนวทางเลือกปฏิบัติของผู้ประกอบการต่อไป

1.5 <u>ประโยชน์ที่คาดว่าจะได้รับ</u>

- สามารถนำเวลาที่เหมาะสมสำหรับในการถ่ายเทความร้อนของ Regeneratorไป เป็นข้อมูลประกอบการตัดสินใจในการปรับเปลี่ยนการควบคุมการทำงานของ Regenerator ภายในโรงงานเพื่อการประหยัดพลังงานได้
- สามารถน้ำเอาแนวทางเดียวกันนี้ไปใช้กับโครงอิฐทนไฟรูปแบบอื่นๆเพื่อพัฒนา เป็นโปรแกรมคอมพิวเตอร์ไว้วิเคราะห์ปรับปรุงการควบคุมการทำงานของ Regenerator ในโรงงานที่ใช้เตาหลอมแบบเดียวกัน
- 3. 9 ทำให้ทราบวิธีการอนุรักษ์พลังงานใน Regenerator และเป็นแนวทางปฏิบัติเพื่อ การประหยัดพลังงานต่อไป

บทที่ 2

ผลงานวิจัยที่ผ่านมา

หลายปีที่ผ่านมามีการตื่นตัวทางด้านการประหยัดพลังงาน เพื่อหาแนวทางลดต้นทุนการ ผลิต ดังนั้นงานวิจัยจึงเป็นสิ่งสำคัญที่จะพัฒนาความเป็นไปได้ในการหาแนวทางในการ ประหยัดพลังงานนี้ ต่อไปนี้คือผลงานวิจัยที่ผ่านมาของทฤษฎีที่ใช้ใน Regenerator

F.W. Schmidt และ A.J. Willmott (1981) นำเสนอ วิธีปฏิบัติในการแสดงความ ด้านทานการถ่ายเทความร้อน ภายในโครงอิฐทนไฟ โดยใช้ lumed heat-transfer coefficients ซึ่ง ความต้านทานนี้จะถูกบวกเพิ่มเข้าไปในความต้านทานระหว่าง ก๊าซ และ ของแข็ง ที่ผิวของโครง อิฐทนไฟ ซึ่งหัวข้อนี้ได้อธิบายถึงผลของการเปลี่ยนแปลงตามเวลาของการนำความร้อนใน ของแข็งตามแนวนอนที่จะแสดงในรูปของ lumed heat-transfer coefficients โดยใน ช่วงกลาง ของ Regenerator อุณหภูมิของ solid จะเปลี่ยนแปลงตามเวลาแบบ linear ทั้งใน Heating และ Cooling Period ถึงแม้ว่าอุณหภูมิของ solid จะเปลี่ยนแปลงแบบ nonlinear เมื่อเทียบกับเวลา ที่ตำแหน่งทางเข้าของ Regenerator เนื่องมาจากอุณหภูมิของ fluid ขาเข้าไม่เปลี่ยนแปลง

และกล่าวถึงการหา Transient Response ของ Solid sensible heat storage unit ที่มี ช่องการไหลของก๊าซเป็นรูปทรงกระบอกและทำงานในสภาพ Single-blow โดยใช้วิธี Finiteconductivity- model เพื่อหาผลลัพธ์จากการไหล 2 แบบ กรณีแรก fluid ไหลผ่านผิวทรงกระบอก ด้านในโดยพิจารณาให้ผิวทรงกระบอกด้านนอกเป็น Adiabatic ในกรณีที่ 2 fluid ไหลผ่านผิวนอก ของทรงกระบอกโดย พิจารณาให้ผิวทรงกระบอกด้านในเป็น Adiabatic ผลที่ได้พบว่าสามารถ ทำนายสมรรถนะของ heat storage unit ได้หลายชนิด ที่เวลาใดๆ Response ของ Storage unit ประกอบด้วย series ของช่องทรงกระบอกที่แบ่งเป็นส่วนๆที่มีขนาดเท่าๆกันสามารถทำนายได้โดย การประกอบกันของ series ของช่องทรงกระบอกที่มีผิวภายนอกเป็น Adiabatic และ fuid ไหล ผ่านผิวด้านใน

นอกจากนั้นมีการแสดง Transient Response ของ Solid sensible heat storage unit ซึ่ง รับความร้อนมาจาก single flowing fluid ตัว storage unit ประกอบไปด้วยช่องที่มีพื้นที่หน้าตัด เป็นรูปสี่เหลี่ยมผืนผ้าสำหรับ fluid ไหลผ่าน คั่นด้วยวัสดุสะสมความร้อน จากนั้นแก้สมการ พลังงานของ fluid และ transient conduction ของตัวสะสมความร้อนโดยใช้ Finite difference method ผลลัพธ์ที่เหมาะสมในการทำนายอัตราของอุณหภูมิของ Heat storage และ fluid ขาออก จาก storage unit จะแสดงในรูปของ function ของ พารามิเตอร์ไร้มิติ J. Schofield, P. Butterfield และ P. A. Young (1961) เป็นการอธิบายทางกายภาพ ของทฤษฎี regenerator ของ Hausen รวมทั้งทำการวัดเพื่อเปรียบเทียบกับทฤษฎี และยังมีการใช้ ทฤษฎีของ Hausen ในการทำนาย dome temperature, stack temperature รวมถึง Optimum cycle time ด้วย รวมทั้งมีการเปรียบเทียบระหว่าง three- and four- stove system

J. Schofield, P. Butterfield และ P. A. Young (1963) จากข้อสรุปของทฤษฎี regenerator ของ Hausen พบว่าใช้ได้กับ uniform stove conditions และในกรณีของ non-linear time variations ในอุณหภูมิของโครงอิฐทนไฟ จึงมีการศึกษาต่อในกรณีของ Non-uniform เช่น การถ่ายเทความร้อนจากการแผ่รังสี, รูปร่างของโครงอิฐ, สัมประสิทธิ์การนำความร้อน และ ความจุความร้อน โดยในพื้นฐานของทฤษฏีจะมีการเปรียบเทียบต้นทุนระหว่าง Three- and fourstove systems, และระหว่างโครงอิฐรูปตารางหมากรุกหลายๆแบบ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 3

ทฤษฎีที่เกี่ยวข้อง

3.1 กระบวนการถลุงดีบุก (Tin Smelting Process)

ดีบุกเป็นโลหะที่มีราคาแพงเมื่อเทียบกับโลหะพื้นฐานอื่นๆ เช่นทองแดง ตะกั่ว และสังกะสี แหล่งแร่ดีบุกเกิดอย่างจำกัดตามส่วนต่างๆของโลก ในเปลือกโลกประกอบด้วยดีบุกเพียงสามส่วน ในล้านส่วน ในขณะที่มีทองแดงและสังกะสี 70 และ 80 ส่วนในล้านส่วนตามลำดับ อย่างไรก็ตาม ดีบุกก็มีความสำคัญต่อเศรษฐกิจการเมืองของโลกไม่น้อย และยังเป็นโลหะชนิดเดียวเท่านั้นที่ผลิต ขึ้นภายใต้ความตกลงระหว่างประเทศ

ปัจจุบันการใช้โลหะดีบุกภายในประเทศมีปริมาณเพิ่มสูงขึ้นเรื่อยๆ ประมาณ 40 % ใช้ใน อุตสาหกรรมเคลือบแผ่นเหล็กเพื่อทำแผ่นเหล็กวิลาส 18 % ใช้ในอุตสาหกรรมตะกั่วบัดกรี และ ส่วนที่เหลือใช้ในการผลิตคอมพิวเตอร์และอื่นๆ โลหะดีบุกบริสุทธิ์ 99.9+ % ที่ผลิตในประเทศไทย ส่วนใหญ่จะถูกส่งออกไปจำหน่ายในประเทศอุตสาหกรรมต่างๆเพื่อใช้ในการผลิตแผ่นเหล็กวิลาส สำหรับทำกระป้องบรรจุอาหารและเครื่องดื่ม และเป็นภาชนะบรรจุสิ่งอื่นๆ ใช้ในการผลิตตะกั่ว บัดกรีสำหรับอุตสาหกรรมอิเลคโทรนิคส์และคอมพิวเตอร์ใช้ในอุตสาหกรรมเคมีภัณฑ์ เช่น เพื่อทำ สารประกอบอินทรีย์ดีบุกสำหรับผลิตพีวีซี ยาฆ่าเห็ดรา และเพื่อถนอมเนื้อไม้ และใช้ในการผลิต โลหะผสมเพื่อทำฝาประกับเพลา

แร่ดีบุกส่วนใหญ่ที่นำมาถลุงให้เป็นโลหะคือ สแตนิกออกไซด์ หรือ แคสซิเทอไรต์ มีสูตร ทางเคมีว่า SnO₂ ซึ่งจะพบในแหล่งแร่ 2 ชนิดคือ แหล่งลานแร่กับสายแร่ โดยแร่ดีบุกที่ได้จาก แหล่งลานแร่จะมีปริมาณเนื้อดีบุกสูงกว่าและปริมาณมลทินปนอยู่ต่ำ โลหะดีบุกที่นำไปใช้งาน ควรมีเกรดสูงกล่าวคือมีเนื้อดีบุกบริสุทธิ์มากที่สุด จึงต้องมีการแต่งทำความสะอาดแร่ด้วย ซึ่งตาม มาตรฐาน ASTM พบว่าโลหะดีบุกที่ผลิตทั้งหมดประมาณ 80-90 % อยู่ในเกรด A คือมีปริมาณ เนื้อดีบุกไม่ต่ำกว่า 99.8 % โดยมีผู้ผลิตรายใหญ่ได้แก่ มาเลเซีย โบลิเวีย อินโดนีเซีย และประเทศ ไทย

นอกจากแร่ดีบุกแล้ว วัตถุดิบที่ใช้ในการถลุงคือ ถ่านหิน ถ่านโค้ก น้ำมันและก๊าซธรรมชาติ วัตถุดิบดังกล่าวใช้เป็นทั้งเชื้อเพลิงและตัวลดออกซิเจน ถ่านหินที่ใช้เป็นเชื้อเพลิงควรบดให้มี ขนาดเล็กเพื่อประสิทธิภาพในการสันดาปสูงเวลาพ่นผ่านหัวเผาพร้อมอากาศ ซึ่งจะเกิดเปลวไฟ ภายในคล้ายกับการใช้น้ำมันหรือก๊าซเชื้อเพลิง แต่การใช้ผงถ่านหินจะสกปรกกว่า ส่วนถ่านโค๊ก ผลิตขึ้นด้วยวิธีการเผาถ่านหินในที่ซึ่งไม่มีอากาศเพื่อกำจัดสารระเหยออกไปให้ได้เนื้อคาร์บอน สูงขึ้น มีคุณสมบัติเกาะเป็นก้อนแข็งไม่แตกร่วนเพราะต้องรับน้ำหนักของวัตถุประจุที่กดอยู่ข้างบน และต้องช่วยให้มีช่องว่างภายในเตาอย่างเพียงพอเพื่อให้ก๊าซผ่านขึ้นจากส่วนล่างของเตาได้ สะดวก และมีวัตถุดิบอีกชนิดหนึ่งคือสารเชื้อ ที่สำคัญคือหินปูน (CaCO₃) เมื่อนำไปใช้จะ สลายตัวเป็นปูนขาวหรือ (CaO และ CO₂) ที่อุณหภูมิสูง

ในขบวนการถลุงแร่ นอกจากจะได้โลหะออกมาแล้วยังมีส่วนประกอบอื่นที่ไม่ถูกลด ออกซิเจนให้เป็นโลหะซึ่งจะรวมตัวกันเป็นตะกรันของพวกโลหะออกไซด์ ซิลิเกต และอาจมีซัลไฟด์ คาร์ไบด์หรือเฮไลด์ ตะกรันควรมีจุดหลอมตัว ความถ่วงจำเพาะ และความหนืดต่ำเพื่อให้เม็ดโลหะ แยกตัวออกได้เร็วและไหลออกจากเตาถลุงได้สะดวก ซึ่งทำได้โดยการผสมสารเชื้อในวัตถุประจุ เพื่อให้มีคุณสมบัติดังกล่าวนั่นเอง

รูปที่ 1 แผนผังการถลุงแร่ดีบุกแบบสองขั้น (ชาคร จารุพิสิฐธร,2525) กรรมวิธีการถลุงที่ใช้เป็นแบบสองขั้น คือจะทำการผสมหัวแร่ให้เข้ากับตัวลดออกซิเจน (ใช้ประมาณ 15 ถึง 20 % ของน้ำหนักหัวแร่) สารเชื้อ (2 % ของน้ำหนักหัวแร่) กากโลหะ หมุนเวียน ฝุ่นดีบุก (จากอุปกรณ์เก็บฝุ่น) และโลหะผสมเหล็ก-ดีบุก จากการถลุงขั้นที่สองหรือ ถลุงตะกรันขั้นแรก แล้วประจุวัตถุดิบทั้งหมดเข้าเตาถลุงขณะที่ปฏิกิริยาดำเนินอยู่นั้นจะทำการ เจาะเตาถลุงให้น้ำโลหะดีบุกที่เกิดขึ้นไหลออกจากเตาลงสู่เบ้าเมื่อวัตถุประจุภายในเตาเริ่มหลอม ละลายรวมกันจึงอุดรูเจาะของเตาไว้ รอจนกระทั่งทุกอย่างภายในเตาละลายจนหมดแล้ว จึงเจาะ เตาอีกครั้งหนึ่ง ปล่อยให้น้ำโลหะดีบุกและตะกรันไหลออกมาลงสู่เบ้าที่ซึ่งโลหะจะแยกตัวจาก ตะกรัน ตะกรันนี้เรียกว่าตะกรันแรก จะถูกทำให้มีขนาดเล็กพอเหมาะสำหรับการถลุงใหม่ในขั้นที่ สองต่อไป เพราะยังมีดีบุกเหลืออยู่มากประมาณ 15-20 % ส่วนโลหะดีบุกที่ได้จะนำไปทำให้ บริสุทธิ์ ก่อนที่จะหล่อเป็นแท่งเพื่อส่งจำหน่ายต่อไป ในการถลุงขั้นที่สองหรือขั้นถลุงตะกรันแรก จะทำการผสมตะกรันแรกให้เข้ากับตัวลดออกซิเจนและสารเชื้อแล้วประจุเข้าเตา ซึ่งจะถลุงให้ได้ ตะกรันสุดท้ายที่มีดีบุกต่ำ (ประมาณ 1 %) สามารถทิ้งไปได้

ในการถลุงจะเกิดปฏิกิริยาเคมีพื้นฐานของการถลุงประกอบด้วยการลดออกซิเจนจากแร่ แคสซิเทอไรต์ด้วยคาร์บอน ตามสมการ

 C
 +
 CO2
 =
 2CO
 2CO
 (3.2)

 (คาร์บอน)
 (คาร์บอนไดออกไซด์)
 (คาร์บอนมอนนอกออกไซด์)
 (คาร์บอนโมนอกไซด์ที่ได้จะทำปฏิกิริยาที่ผิวของเม็ดแร่แคสซิเทอไรต์ๆได้โลหะดีบุกและ

 คาร์บอนไดออกไซด์

СО SnO SnO (สแตนนิกออกไซด์) (คาร์บอนโมนอกไซด์) (สแตนนัสออกไซด์) (คาร์บอนไดออกไซด์) 2FeO CO₂.....(3.5) Fe₂O₂ + CO = +(เฟอร์ริกออกไซด์) (คาร์บอนโมนอกไซด์) (เฟอร์รัสออกไซด์)(คาร์บอนไดออกไซด์) เมื่ออุณหภูมิเตาสูงขึ้น สแตนนัสออกไซด์และเฟอร์รัสออกไซด์ที่เกิดจากปฏิกิริยา (3.4) และ (3.5) จะหลอมรวมกับสารเชื้อและมลทินอื่นๆที่อยู่ภายในเตากลายเป็นตะกรันเหลว ถึงช่วงนี้ก๊าซ คาร์บอนโมนอกไซด์จะทำหน้าที่ดึงเอาส่วนประกอบต่างๆที่อยู่ในตะกรันออกมาในสภาพโลหะได้ ้ช้า ในขณะที่คาร์บอนที่อยู่ในสภาพของแข็งจะทำหน้าที่แยกเอาดีบุกและเหล็กออกจากตะกรันได้ดี เหล็กที่ได้นี้กับเหล็กซึ่งมีอยู่ในวัตถุประจุ (เช่นเหล็กในโลหะผสมเหล็ก-ดีบุก) ก็ทำหน้าที่ดึงดีบุก

ออกจากตะกรันได้เช่นกัน ซึ่งเมื่อปฏิกิริยาถึงภาวะสมดุลและวัตถุประจุละลายหมดแล้ว ก็เจาะเอา โลหะและตะกรันออกจากเตาได้ ปฏิกิริยาระหว่างชั้นของโลหะกับชั้นของตะกรันที่ภาวะสมดุลแทน ได้ด้วยสมการ

 SnO
 +
 Fe
 =
 FeO
 +
 Sn
 Sn
 (3.6)

 (สแตนนัสออกไซด์)
 (เหล็ก)
 (เฟอร์รัสออกไซด์)
 (ดีบุก)

เตาที่ใช้ทำปฏิกิริยามีหลายแบบ ปัจจัยสำคัญในการเลือกเตาพิจารณาจากลักษณะของ หัวแร่และชนิดเชื้อเพลิงที่มีอยู่ ตลอดจนประสิทธิภาพในการเก็บโลหะและอัตราการผลิต โดยเตาที่ ใช้ในงานวิจัยนี้เป็นเตานอน (Reverberatory Furnace)

รูปที่ 2 แสดงลักษณะของเตานอน (ชาคร จารุพิสิฐธร,2525)

เตานอนนี้มีลักษณะเป็นรูปทรงสี่เหลี่ยม หลังคาโค้ง พื้นเตาลาดเอียงเล็กน้อยไปยังรูเจาะ

สร้างด้วยวัสดุทนไฟ เป็นเตาที่ออกแบบให้ปล่อยน้ำโลหะออกจากเตาได้ทันทีที่เกิดขึ้น เชื้อเพลิง

สำหรับให้ความร้อนภายในเตาใช้ทั้งถ่านหิน น้ำมัน และก๊าซธรรมชาติ เตานอนสมัยใหม่ มักจะเผาด้วยน้ำมันหรือก๊าซธรรมชาติ และมีอุปกรณ์ถ่ายเทความร้อน (Heat Regenerator) ประกอบอยู่ด้วย Heat Regenerator ทำด้วยอิฐทนไฟ จะรับความร้อนของก๊าซเสียจากเตาถลุง แล้วถ่ายเทให้แก่อากาศเย็นที่จะผ่านเข้าไปในเตาเพื่อสันดาปกับเชื้อเพลิงอีกต่อหนึ่ง เป็นการนำ ความร้อนในก๊าซเสียมาใช้ให้เกิดประโยชน์ช่วยประหยัดเชื้อเพลิงที่เตาถลุงต้องใช้ ในการทำงาน จะปล่อยให้ regenerator รับความร้อนจากก๊าซเสียที่ออกจากเตาจนร้อนถึงระดับที่ต้องการ จากนั้นจึงค่อยผ่านอากาศเย็นเข้าไปใน regenerator ดังกล่าวแทน ทำให้อากาศร้อนขึ้น ในขณะที่ ก๊าซเสียจะเปลี่ยนไปถ่ายเทความร้อนให้แก่ Regenerator อีกตัวหนึ่งดังนั้นเตานอนจึงต้องมีหัวเผา และ Regenerator ติดตั้งสองชุดที่ปลายทั้งสองด้านของเตา โดยหัวเผาดังกล่าวจะสลับกันทำงาน ครั้งละประมาณครึ่งชั่วโมง เช่นเดียวกับ Regenerator แต่ละตัวที่ทำหน้าที่รับความร้อนและ ถ่ายเทความร้อนสลับกันไป

รูปที่ 3 ภาพตัดขวางของ Regenerator ที่ติดตั้งคู่กับเตาถลุง (Nicholas P. Cheremisinoff)

ด้านข้างของตัวเตาจะมีรูเจาะ ส่วนช่องหรือประตูสำหรับประจุวัตถุดิบอาจทำไว้ที่หลังคา เตาหรือด้านข้างของเตาซึ่งอยู่ตรงข้ามกับรูเจาะก็ได้ ตัวเตาคาดด้วยเหล็กหรือแถบเหล็กเพื่อให้เตา ทรงรูปอยู่ได้ และตั้งอยู่บนคานเหล็กรองรับด้วยเสาเหล็ก ส่วนล่างของเตาเป็นพื้นโล่ง เตานอนมี ขนาดต่างๆกัน ขนาดเล็กประจุแร่ได้ครั้งละ 4 - 5 เมตริกตัน ขนาดใหญ่ประจุแร่ได้ครั้งละ 60 - 70 เมตริกตัน วัตถุดิบที่ประจุภายในจะได้รับความร้อนจากเปลวไฟที่หัวเผาโดยตรงกับความร้อนที่ สะท้อนมาจากหลังคาเตาและผนังเตา เตาถลุงต้องเผาให้ร้อนก่อนที่จะประจุแร่ซึ่งผสมกับ ตัวลดออกซิเจนและสารเชื้อแล้ว

การประจุแร่อาจประจุสองครั้งโดยแบ่งแร่ออกเป็นสองส่วนให้ส่วนแรกมากกว่าส่วนที่สอง หลังจากประจุแร่ส่วนแรกอีกราวสองชั่วโมงจึงค่อยประจุส่วนที่เหลือ พยายามเกลี่ยวัตถุประจุให้แผ่ ไปทั่วเตา หลังการประจุแล้วเตาจะเย็นลงชั่วขณะหนึ่ง เพราะส่วนผสมนั้นดึงความร้อนเข้าตัวไป บ้าง ระหว่างนี้จะทำการเร่งอุณหภูมิเตาให้สูงขึ้นถึงจุดที่ต้องการโดยการบังคับหัวเผา หลังการ ประจุเตาแล้วประมาณหนึ่งชั่วโมง วัตถุประจุจะเริ่มหลอมละลายอย่างช้าๆ เมื่อเวลาผ่านไปสี่ ชั่วโมง การหลอมละลายจะเร็วขึ้นมาก การกวนเตาอาจจะทำทุกชั่วโมงเพื่อให้ปฏิกิริยาเคมีภายใน เตาเกิดได้อย่างทั่วถึง ภายในแปดชั่วโมง วัตถุประจุจะละลายหมดและสามารถนำโลหะและ ตะกรันออกจากเตาได้ เมื่อเจาะเตาเรียบร้อยแล้ว ปิดรูเจาะด้วยดินทนไฟ เตาก็พร้อมที่จะรับการ ประจุแร่ต่อไป ในกรณีที่เตานอนมีขนาดใหญ่ เช่นประจุแร่ได้ครั้งละ 30 – 40 เมตริกตัน จะต้องใช้ เวลาถลุงแต่ละครั้งนานประมาณ 20 – 24 ชั่วโมง แต่โดยปกติหลังจากป้อนแร่เข้าเตาแล้ว ประมาณ 8 ชั่วโมง ก็สามารถเจาะเตาได้ เมื่อน้ำโลหะที่เกิดขึ้นไหลออกมาจนหมดจึงปิดรูเจาะ และจะเจาะอีกครั้งหนึ่งเมื่อทุกอย่างภายในเตาละลายหมดแล้ว เพื่อเอาโลหะที่เกิดขึ้นอีกกับ ตะกรันเหลวออกจากเตาให้หมด โดยจะปล่อยให้ตะกรันเหลวไหลลงสู่บ่อซึ่งมีน้ำฉีดอยู่ตลอดเวลา เพื่อให้ตะกรันที่แข็งตัวมีขนาดเล็กเหมาะสำหรับการถลุงต่อไป

ตัวอย่างปริมาณวัตถุดิบแต่ละตัวที่ใช้ในการถลุงแร่มีดังนี้

แร่ดีบุก (เนื้อดีบุก 74 %)		100 หน่วยน้ำหนัก	
ถ่านโค้ก	20	"	
หินปูน 🔍 👝 🦳	2	"	
โลหะผสมเหล็ก-ดีบุก	8	"	
ฝุ่นดีบุก	5	"	
กากโลหะ	1	"	

สำหรับวัตถุประจุในการถลุงตะกรันประกอบด้วย

ตะกรันแรก (มีดีบุกประมาณ 20 %)		100 หน่วยน้ำหนัก		
ถ่าน	20	"		
หินปูน	4	"		

เมื่อผสมตะกรันแรกเข้ากับถ่านและหินปูนแล้วจึงประจุเข้าเตานอน และเผาในลักษณะ เดียวกันกับการถลุงแร่ ตะกรันเมื่อร้อนก็จะเริ่มเหนียว ดีบุกในตะกรันจะเริ่มลดลงเรื่อยๆ จนกระทั่ง เหลืออยู่เพียงประมาณร้อยละ 1 หลังจากตะกรันเหลวดีแล้ว จึงเปิดรูเจาะให้ของเหลวภายในเตา ใหลออกมาจนหมด ผลผลิตที่ได้มาจากเตาถลุงตะกรันแรกมีโลหะผสมเหล็ก-ดีบุก และตะกรัน สุดท้าย โลหะผสมดังกล่าวจะนำไปถลุงใหม่ในเตาถลุงแร่ ส่วนตะกรันสุดท้ายทิ้งไปได้ถ้าไม่มี สารประกอบที่มีค่าเจือปนอยู่

การใช้เตานอนถลุงแร่นั้นจะมีฝุ่นดีบุกเกิดขึ้น และฟุ้งออกมาพร้อมกับก๊าซเสีย ปริมาณ ดีบุกในฝุ่นอาจมีมากถึงร้อยละ 4 ของปริมาณดีบุกทั้งหมดที่ป้อนเข้าเตา ฝุ่นดังกล่าวจะถูกเก็บไว้ ด้วยอุปกรณ์เก็บฝุ่นที่มีประสิทธิภาพ แล้วนำมาทำเป็นก้อนขนาดพอเหมาะที่จะนำกลับไปถลุงใหม่ พร้อมกับแร่อีก

3.2 ความรู้พื้นฐานของ Regenerator (Regenerator Fundamentals)

Thermal Regenerator หรือ Regenerative Heat Exchanger เป็นอุปกรณ์แลกเปลี่ยน ความร้อนระหว่างของไหล 2 ชนิด (ส่วนมากเป็น ก๊าซ) โดยมีโครงร่างของวัสดุที่เป็นของแข็ง (Chequerwork) เป็นตัวกลางในการถ่ายเทความร้อน การทำงานของ Regenerator จะแบ่งเป็น 2 ช่วงเรียกว่า ช่วงสะสมความร้อน (Heating Period)และ ช่วงคายความร้อน (Cooling Period)

ในช่วง Heating Period ก๊าซที่มีอุณหภูมิสูงกว่าจะไหลผ่านโครงร่างของตัวกลางซึ่งเป็น ของแข็งด้วยอัตราการไหลและอุณหภูมิค่าหนึ่ง พร้อมกับถ่ายเทความร้อนให้กับตัวกลางสะสมไว้ เป็นระยะเวลาหนึ่ง จากนั้นในช่วงปลายของ Period จึงทำการกลับทิศ (Reversal) เพื่อเข้าสู่ช่วง Cooling Period โดยตัดการไหลของก๊าซที่มีอุณหภูมิสูงดังกล่าว แล้วสลับให้ก๊าซที่มีอุณหภูมิต่ำ กว่าไหลผ่านตัวกลางดังกล่าวแทนในทิศสวนทางกับการไหลของก๊าซในช่วง Heating Period ความร้อนที่สะสมในตัวกลางจึงถ่ายเทไปสู่ก๊าซที่มีอุณหภูมิต่ำดังกล่าว เมื่อเวลาผ่านไปสักระยะ หนึ่งจึงทำการกลับทิศเพื่อเข้าสู่ช่วง Heating Period อีกครั้ง แล้วดำเนินการเป็นวัฏจักรเช่นนี้ไปจน จบการทำงาน

การควบคุมการทำงานของ Regenerator จะใช้ valve ในการเปิดปิดการไหลของอากาศที่ ช่วยในการเผาไหม้ และ ก๊าซเสียจากการเผาไหม้ โดยจะสลับให้ของไหลทั้ง 2 ไหลผ่าน Regenerator ทั้งซ้ายและขวาตามลำดับดังนี้ เปิด-ปิด valve ให้ก๊าซเสียจากการเผาไหม้ที่มี อุณหภูมิสูงไหลเข้าทาง Regenerator ทางด้านขวา ในขณะเดียวกันให้อากาศที่ช่วยในการเผาไหม้ ที่มีอุณหภูมิต่ำไหลผ่าน Regenerator ทางด้านซ้าย เมื่อใช้เวลาช่วงหนึ่งจึงสลับให้ก๊าซเสียจาก การเผาไหม้ที่มีอุณหภูมิสูงไหลเข้าทาง Regenerator ทางด้านซ้าย

รูปที่ 4 Fixed two-bed regenerator system (Frank W. Schmidt and A. John Willmott,1981)

แล้วให้อากาศที่ช่วยในการเผาไหม้ที่มีอุณหภูมิต่ำไหลผ่าน Regenerator ทางด้านขวา ทำเช่นนี้ เป็นวัฏจักร โดยเมื่อก๊าซเสียจากการเผาไหม้ที่มีอุณหภูมิสูงไหลเข้า Regenerator ความร้อนก็จะ ถ่ายเทและสะสมไว้ใน Regenerator จากนั้นเมื่อสลับให้อากาศที่ช่วยในการเผาไหม้ที่มีอุณหภูมิ ต่ำไหลผ่าน ความร้อนที่สะสมอยู่ใน Regenerator ก็จะถ่ายเทมาสู่อากาศซึ่งเป็นการทำให้อากาศ ที่ช่วยในการเผาไหม้มีอุณหภูมิสูงขึ้น

3.3 กฎข้อที่ 1 ทางเทอร์โมไดนามิค (First Law of Thermodynamics)

จากกฎข้อที่ 1 ทางเทอร์โมไดนามิค ระบบเปิดซึ่งมีมวลไหลตัดผ่านเส้นแบ่งขอบเขต ระหว่างระบบและสิ่งแวดล้อมสามารถเขียนกฎข้อที่ 1 ทางเทอร์โมไดนามิคได้ดังนี้

$$\Delta U_{c} + \Delta H_{f} + \Delta KE + \Delta PE = Q - W \dots (3.7)$$

- เมื่อ ΔU_c คือ การเปลี่ยนแปลงพลังงานภายในปริมาตรควบคุม
 - $\Delta {
 m H}_{
 m r}$ คือ การเปลี่ยนแปลงเอนธัลปีของกระแสการไหลของของไหล
 - ∆KE คือ การเปลี่ยนแปลงพลังงานจลน์
 - Δ PE คือ การเปลี่ยนแปลงพลังงานศักย์
 - Q คือ ความร้อนที่ถ่ายเทระหว่างผนังปริมาตรควบคุมกับสิ่งแวดล้อม
 - พ คือ งานเพลาที่แลกเปลี่ยนระหว่างผนังปริมาตรควบคุมกับสิ่งแวดล้อมรวมกับ
 งานจากการหดหรือขยายตัวของปริมาตรควบคุม

3.4 กฏสี่เหลี่ยมคางหมู (Trapezoidal rule)

การหาค่าอินทิกรัลของฟังก์ชั่นใดๆ เพื่อให้ได้ผลลัพธ์ออกมาเป็นตัวเลข สามารถทำได้โดย คำนวณมาจากพื้นที่สี่เหลี่ยมคางหมูดังแสดงในรูปที่ 5

รูปที่ 5 แสดงการประมาณค่าอินทิกรัลโดยใช้กฎสี่เหลี่ยมคางหมู (ปราโมทย์ เดชะอำไพ,2538)

จากลักษณะการกระจายของฟังก์ชัน f(x) ใดๆในช่วง a ≤ x ≤ b วัตถุประสงค์ คือการ หาค่าอินทิกรัล

 $I = \int_{a}^{b} f(x) dx$ (3.8)

แต่ค่าอินทิกรัลก็คือพื้นที่ใต้ฟังก์ชัน f(x) นั้นในที่นี้จะประมาณค่าอินทิกรัลดังกล่าวด้วย พื้นที่สี่เหลี่ยมคางหมู (พื้นที่ที่แสดงด้วยเส้นเฉียงในรูปที่ 5) นั่นคือ

$$I \approx (x_1 - x_0) \frac{f(x_0) + f(x_1)}{2}$$
$$I = \frac{h}{2} \left(f(x_0) + f(x_1) \right) \dots (3.9)$$

3.5 การถดถอยแบบพหุนาม (Polynomial Regression)

การถดถอยแบบพหุนามเป็นระเบียบวิธีที่ใช้ประดิษฐ์ฟังก์ชั่นพหุนามสำหรับข้อมูลที่มีการ กระจายโดยทั่วไปที่ไม่อยู่ในรูปแบบของเชิงเส้นหรือสมการกำลังดังในรูปที่ 6

รูปที่ 6 แสดงการถดถอยแบบพหุนามโดยการประดิษฐ์ฟังก์ชันพหุนามจากชุดของข้อมูลที่กำหนด (ปราโมทย์ เดชะอำไพ,2538)

ชุดข้อมูลนี้ประกอบด้วย x_i , y_i ; i = 1,2,...,n กล่าวคือมีจำนวนข้อมูลทั้งสิ้น n ข้อมูล ใน ที่นี้จะทำการประดิษฐ์ฟังก์ชันพหุนามอันดับ m สำหรับข้อมูลชุดนี้

 $g(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$(3.10)

โดย a₀,a₁,a₂,...,a_m เป็นค่าคงตัวที่ไม่รู้ค่าซึ่งจะคำนวณหาจากเงื่อนไขที่ว่า สมการพหุนาม ที่จะประดิษฐ์ขึ้นมานี้ก่อให้เกิดค่าความผิดพลาดโดยเฉลี่ยที่น้อยที่สุดจากข้อมูลทั้งหมดที่กำหนด มาให้ ขั้นตอนในการประดิษฐ์สมการพหุนามนี้ เริ่มจากการหาค่าความผิดพลาด E ทั้งหมดที่ เกิดขึ้นจาก n ข้อมูล ในรูปแบบดังนี้

$$\mathsf{E} = \sum_{i=1}^{n} [d(x_i)]^2 \dots (3.11)$$

้ซึ่งสามารถเขียนให้ประกอบด้วยฟังก์ชันพหุนามดังนี้

$$E = \sum_{i=1}^{n} [y_i - g(x_i)]^2$$
$$E = \sum_{i=1}^{n} [y_i - (a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m)]^2$$

ในการหาตัวไม่รู้ค่า a₀,a₁,a₂,...,a_m รวมทั้งสิ้น m+1 ค่านั้น จะใช้วิธีกำลังสองน้อยสุด (least-squares) ซึ่งทำจากวิธีการหาค่าต่ำสุด (minimization) ของค่าความผิดพลาด E โดย เกี่ยวข้องกับตัวไม่รู้ค่า ก่อให้เกิดระบบสมการที่ประกอบด้วย m+1 สมการย่อยนั่นคือ

$$\frac{\partial E}{\partial a_0} = 0, \frac{\partial E}{\partial a_1} = 0, \dots, \frac{\partial E}{\partial a_m} = 0$$

ดังตัวอย่างเช่น สมการแรกในระบบสมการนี้สามารถประดิษฐ์ได้ดังนี้

$$2\sum_{i=1}^{n} [y_i - (a_0 + a_1x_i + a_2x_i^2 + \dots + a_mx_i^m)](-1) = 0$$

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a_0 - \sum_{i=1}^{n} x_ia_1 - \sum_{i=1}^{n} x_i^2a_2 - \dots - \sum_{i=1}^{n} x_i^ma_m = 0$$

$$na_0 + (\sum_{i=1}^{n} x_i)a_1 + (\sum_{i=1}^{n} x_i^2)a_2 + \dots + (\sum_{i=1}^{n} x_i^m)a_m = \sum_{i=1}^{n} y_i$$

และเช่นเดียวกันกับสมการที่สอง

$$2\sum_{i=1}^{n} [y_{i} - (a_{0} + a_{1}x_{i} + a_{2}x_{i}^{2} + \dots + a_{m}x_{i}^{m})](-x_{i}) = 0$$

$$\sum_{i=1}^{n} y_{i}x_{i} - \sum_{i=1}^{n} x_{i}a_{0} - \sum_{i=1}^{n} x_{i}^{2}a_{1} - \sum_{i=1}^{n} x_{i}^{3}a_{2} - \dots - \sum_{i=1}^{n} x_{i}^{m+1}a_{m} = 0$$

$$(\sum_{i=1}^{n} x_{i})a_{0} + (\sum_{i=1}^{n} x_{i}^{2})a_{1} + (\sum_{i=1}^{n} x_{i}^{3})a_{2} + \dots + (\sum_{i=1}^{n} x_{i}^{m+1})a_{m} = \sum_{i=1}^{n} x_{i}y_{i}$$

และสมการอื่นๆที่เหลือก็สามารถทำได้ในทำนองเดียวกัน สมการทั้งหมดที่ประดิษฐ์ขึ้นมาได้นี้ สามารถเขียนให้อยู่ในรูปแบบของระบบสมการที่ประกอบด้วย m+1 สมการย่อยได้ดังนี้

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{2} & \cdots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \cdots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \sum_{i=1}^{n} x_{i}^{4} & \cdots & \sum_{i=1}^{n} x_{i}^{m+2} \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \sum_{i=1}^{n} x_{i}^{m+2} & \cdots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ \vdots \\ a_{m} \end{bmatrix} = \begin{cases} \sum_{i=1}^{n} x_{i} y_{i} \\ \sum_{i=1}^{n} x_{i}^{2} y_{i} \\ \vdots \\ \sum_{i=1}^{n} x_{i}^{m} y_{i} \end{bmatrix}$$

โดยเมตริกจัตุรัสขนาด (m+1)*(m+1) ทางด้านซ้ายของระบบสมการนี้เป็นเมตริกซ์ สมมาตรที่รู้ค่า และเวกเตอร์ขนาด (m+1)*1 ทางด้านขวาของระบบสมการก็รู้ค่าเช่นกันดังนั้นตัว ไม่รู้ค่า a₀,a₁,a₂,...,a_m รวมทั้งสิ้น m+1 ค่า สามารถคำนวณหาได้จากระบบสมการนี้

3.6 Logarithmic Mean Temperature Difference

พิจารณาเครื่องแลกเปลี่ยนความร้อนแบบ Parallel-Flow ใดๆที่มี Working Fluid 2 ชนิด คือ Hot Fluid และ Cold Fluid ตลอดหน้าสัมผัสของการถ่ายเทความร้อนจะมีการกระจาย อุณหภูมิของของไหลทั้ง 2 ชนิด โดยที่ทางเข้าของช่องการไหล ความต่างของอุณหภูมิทั้ง 2 จะมาก และจะลดลงอย่างรวดเร็วเมื่อระยะ x เพิ่มขึ้น แต่อุณหภูมิของ Cold Fluid จะไม่มีทางมากว่า อุณหภูมิของ Hot Fluid

รูปที่ 7 แสดงการกระจายอุณหภูมิของเครื่องแลกเปลี่ยนความร้อนแบบ Parallel-Flow (Frank P. Incropera and David P. Dewitt,1996) ในรูปที่ 7 Subscripts 1 และ 2 หมายถึงทางเข้าและทางออกของช่องการไหลตามลำดับ โดยสมดุลพลังงานของปริมาตรควบคุม (เส้นประ) และการวิเคราะห์ตั้งอยู่บนสมมติฐานว่า

1. มีการหุ้มฉนวนป้องกันการถ่ายเทความร้อนระหว่างเครื่องแลกเปลี่ยนความร้อนและ สิ่งแวดล้อม จนมีการถ่ายเทความร้อนเฉพาะกับ Hot และ Cold Fluid

- 2. ไม่คำนึงถึงการนำความร้อนตามทิศทางการไหลของ Fluid
- 3. ไม่คำนึงถึงการเปลี่ยนแปลงพลังงานศักย์และพลังงานจลน์
- 4. ความจุความร้อนจำเพาะของ Fluid มีค่าคงที่
- 5. Overall Heat Transfer Coefficient มีค่าคงที่

จึงสามารถเขียนสมการแสดงการถ่ายเทความร้อนได้ดังนี้

โดย Q คือ อัตราการถ่ายเทความร้อนของเครื่องแลกเปลี่ยนความร้อนแบบ Parallel-Flow (W)

- U คือ Overall Heat Transfer Coefficient (W/m² K)
- A คือ พื้นที่การถ่ายเทความร้อน (m²)
- Δt_{lm} คือ Logarithmic Mean Temperature Difference (K)

$$\Delta t_{lm} = \frac{\theta_2 - \theta_1}{\ln \frac{\theta_2}{\theta_1}} = \frac{\theta_1 - \theta_2}{\ln \frac{\theta_1}{\theta_2}} \dots (3.14)$$

สำหรับ Parallel-Flow จะได้ว่า $\theta_1 = t_{h,1} - t_{c,1} = t_{h,1} - t_{c,1}$ สำหรับทางเข้า และ $\theta_2 = t_{h,2} - t_{c,2} = t_{h,0} - t_{c,0}$ สำหรับทางออก

การถ่ายเทความร้อน (Heat Transfer)

3.7

การถ่ายเทความร้อนมักเกิดขึ้นเมื่อมีความแตกต่างของอุณหภูมิ (Temperature Gradient) ระหว่างตัวกลางชนิดเดียวกันหรือต่างชนิดก็ได้ ในกรณีของ Regenerator เนื่องจาก พื้นผิวภายนอกของมันเป็นอิฐทนไฟถึง 3 ชั้น ทำให้อุณหภูมิผิวภายนอกไม่ต่างจากสิ่งแวดล้อม มากนัก เมื่อเทียบกับอุณหภูมิภายใน Regenerator จึงถือว่าไม่มีการถ่ายเทความร้อนผ่านพื้น ผิวภายนอกนี้ ดังนั้นในการพิจารณาการถ่ายเทความร้อนของ Regenerator ในเรื่องวัฏจักรที่ เหมาะสมนี้ จะพิจารณาเฉพาะภายในโครงอิฐทนไฟ (Storage Unit) ที่มีอุณหภูมิสูงเป็นหลักซึ่ง แบ่งเป็น 3 รูปแบบคือ การนำ การพา และ การแผ่รังสีความร้อน

3.7.1 <u>การนำความร้อน</u> (Conduction Heat Transfer)

เป็นการถ่ายเทพลังงานจากการมีปฏิสัมพันธ์กันของอนุภาคที่มีพลังงานสูงไปสู่อนุภาคที่มี พลังงานต่ำกว่าที่อยู่ติดกัน การนำความร้อนสามารถเกิดขึ้นได้ในตัวกลางที่เป็นของแข็ง ของเหลว และ ก๊าซ ในกรณีของแข็ง การนำความร้อนเกิดจากการสั่นของโมเลกุลในโครงร่างผลึกของ ตัวกลาง พลังงานดังกล่าวจะถูกถ่ายเทโดยอิเลคตรอนอิสระ ส่วนกรณีของเหลวและก๊าซ การนำ ความร้อนจะเกิดจากการชนและการแพร่ของโมเลกุลที่เคลื่อนที่ไปมา อัตราการนำความร้อนผ่าน ตัวกลางขึ้นอยู่กับรูปร่าง,ความหนาและชนิดของตัวกลาง รวมทั้งความแตกต่างของอุณหภูมิด้วย ตามกฎของ Fourier สามารถเขียนเป็นสมการได้ว่า

$$\dot{Q} = -kA\frac{dt}{dx}$$
 (3.15)

โดย \dot{Q} คือ อัตราการถ่ายเทความร้อนจากการนำความร้อน (Watt)

k คือ ค่าความสามารถการนำความร้อนของตัวกลาง (Watt / (mK))

A คือ พื้นที่ที่ความร้อนไหลผ่าน (m²)

 <u>dt</u> คือ ความแตกต่างของอุณหภูมิต่อระยะทางที่ความร้อนถ่ายเทผ่าน (K/m)

 เครื่องหมายลบมีเพื่อให้การถ่ายเทความร้อนมีค่าเป็นบวกในทิศทางบวกของ x

3.7.2 <u>การพาความร้อน</u> (Convection Heat Transfer)

เป็นรูปแบบการถ่ายเทพลังงานระหว่างพื้นผิวของของแข็งกับของไหล (ของเหลว หรือ ก๊าซ) ที่อยู่ติดกัน และเกี่ยวข้องกับการนำความร้อนรวมถึงการเคลื่อนที่ของของไหลด้วย ของไหล ที่เคลื่อนที่เร็วกว่าจะพาความร้อนได้ดีกว่า ส่วนของไหลที่อยู่นิ่งจะมีเพียงการนำความร้อนเท่านั้น ตามกฎของ Newton สามารถเขียนเป็นสมการได้ว่า

$$\dot{Q}_{conv} = hA(t_s - t_{\alpha}) \dots (3.16)$$

โดย $\dot{Q}_{_{conv}}$ คือ อัตราการถ่ายเทความร้อนจากการพาความร้อน (Watt)

- h คือ ค่าสัมประสิทธิ์การพาความร้อน (Watt / (m² K))
- A คือ พื้นที่ที่ความร้อนไหลผ่าน (m²)
- t_s คือ อุณหภูมิพื้นผิว (เท่ากับอุณหภูมิของของไหลที่อยู่ติดกัน) ($^{\circ}\mathrm{C}$)
- t_{α} คือ อุณหภูมิของของไหล ณ ตำแหน่งห่างจากพื้นผิวไกลออกไป ($^{\circ}\mathrm{C}$)

ใน Regenerator ที่ทำการวิจัยการพาความร้อนที่เกิดขึ้นระหว่างผิวอิฐทนไฟกับก๊าซเสีย หรืออากาศจะเป็นแบบบังคับ (Forced Convection) มีพัดลมเป็นตัวขับดัน และเป็นการไหล ภายในท่อ (Internal Flow) โดยสัมประสิทธิ์การพาความร้อน h ขึ้นอยู่กับรูปแบบการพาความ ร้อนตลอดจนคุณสมบัติทางกายภาพของระบบ ดังนี้

- รูปแบบการใหลในท่อ (Flow Regimes in a Tube)

การไหลในท่อสามารถเป็นไปได้ทั้ง 2 แบบ คือ แบบราบเรียบ (Laminar) และ แบบ ปั้นป่วน (Turbulent) โดยถูกกำหนดด้วย Reynolds Number ดังนี้ (Yunus A. Cengel,1998)

$$\operatorname{Re} = \frac{v_m D_h}{v} = \frac{\dot{m} D_h}{A_c \mu} \dots (3.17)$$

โดย Re คือ Reynolds Number เมื่อ ${
m Re} < 2,300$ Laminar flow $2,300 \le {
m Re} \le 4,000$ Transition to Turbulence ${
m Re} > 4,000$ Turbulent Flow

 v_m คือ ความเร็วเฉลี่ยของของไหล (m/s) D_h คือ Hydraulic Diameter (m); $D_h = rac{4A_c}{p}; A_c = พื้นที่หน้าตัดของท่อ<math>p =$ เส้นรอบรูปของหน้าตัดท่อ

- 9~
 u คือ Kinematic Viscosity ของของไหล (m 2 /s)
 - \dot{m} คือ อัตราการไหลโดยมวลของของไหล (kg/s)
 - A คือ พื้นที่หน้าตัดการไหล (m²)
 - μ คือ Absolute Viscosity (kg/(m s))

- Hydrodynamic and Thermal Entry Lengths

พิจารณา fluid ที่ไหลในท่อ อนุภาคของของไหลในชั้นที่ติดกับพื้นผิวท่อจะหยุดนิ่ง ซึ่งจะ ทำให้อนุภาคของของไหลในชั้นถัดไปเคลื่อนไหวช้าลงจากแรงเสียดทาน เพื่อเป็นการชดเชย ความเร็วที่ลดลง ความเร็วของของไหลตรงกลางท่อต้องเพิ่มขึ้น เนื่องจากอัตราการไหลโดยมวลที่ คงที่ จึงเกิด Velocity Boundary layer ขึ้นตลอดความยาวท่อ ความหนาของ Boundary Layer จะเพิ่มขึ้นเรื่อยๆตามทิศทางการไหล จนมาบรรจบกันตรงกลางท่อดังรูปที่ 8 พื้นที่จากทางเข้าของ ท่อจนถึงจุดที่ Boundary Layer มาบรรจบกันเรียกว่า Hydrodynamic Entry Region และความ ยาวของพื้นที่นี้เรียกว่า Hydrodynamic Entry Length , L_h ส่วนพื้นที่ที่เลยจากนี้ไปซึ่ง Velocity Profile พัฒนาเต็มที่ และไม่เปลี่ยนแปลงอีกเรียกว่า Hydrodynamically Developed Region โดย Velocity Profile ในพื้นที่นี้จะเป็นรูปโค้งแบบ Parabolic สำหรับการไหลแบบ Laminar แต่จะแบน ราบกว่าสำหรับการไหลแบบ Turbulent

รูปที่ 8 แสดงการพัฒนาของ Velocity Boundary Layer ของของไหลที่ไหลภายในท่อ

(Yunus A. Cengel,1998)

เมื่อพิจารณาของไหลที่มีอุณหภูมิคงที่แบบ Uniform ไหลเข้าท่อที่มีอุณหภูมิสูงหรือต่ำกว่า อนุภาคของของไหลในชั้นที่ติดกับพื้นผิวท่อจะถือว่ามีอุณหภูมิเท่ากัน ซึ่งเป็นการเริ่มต้นการพา ความร้อนในท่อและการพัฒนา Thermal Boundary Layer ไปตามท่อ โดยความหนาของ Boundary Layer นี้จะเพิ่มขึ้นตามทิศการไหลจนมาบรรจบกันที่กลางท่อดังรูปที่ 9 พื้นที่จากที่ มี การไหลและ Thermal Boundary Layer พัฒนาขึ้นจนถึงจุดที่ Boundary Layer มาบรรจบกัน เรียกว่า Thermal Entry Region และความยาวของพื้นที่นี้เรียกว่า Thermal Entry Length , L_t ส่วนพื้นที่ที่เลยจากนี้ไปซึ่ง Profile ของ Dimesionless Temperature , $\frac{(t-t_s)}{(t_m-t_s)}$ คงที่ไม่ เปลี่ยนแปลงอีกเรียกว่า Thermally Developed Region

พื้นที่ที่เป็นทั้ง Hydrodynamically และ Thermally Developed จะเรียกว่า " Fully Developed Flow "

ในกรณีของการไหลแบบ Lanminar ค่า Prandtl number , Pr จะเป็นตัววัดความสัมพันธ์ กันของการพัฒนา Velocity และ Thermal Boundary Layer โดยของไหลที่เป็นก๊าซ (Pr ≈ 1) Boundary Layer ทั้งสองชนิดจะพัฒนาไปพร้อมๆกัน และสามารถประมาณ Hydrodynamic กับ Thermal Entry Lengths ได้ดังนี้ (Yunus A. Cengel,1998:377)

ในกรณีของการไหลแบบ Turbulent ค่า Hydrodynamic กับ Thermal Entry Lengths จะ ไม่ขึ้นอยู่กับ Re และ Pr จึงได้ว่า

ดังนั้นค่าสัมประสิทธิการพาความร้อนเฉลี่ยตลอดความยาวท่อ , $ar{h}_{conv}$ หาได้จากสมการ

โดย $ar{h}_{conv}$ คือ สัมประสิทธิการพาความร้อนเฉลี่ยตลอดความยาวท่อ (Watt / (m² K))

 D_h คือ Hydraulic Diameter (m)

k คือ ค่าความสามารถการนำความร้อนของของไหล (Watt / (m K))

 $\overline{N} u_{D_{*}}$ คือ ค่า Nusselt Number เฉลี่ยตลอดความยาวท่อซึ่งหาได้ดังนี้

สำหรับ Laminar Flow (Re < 2,300) หลังจากพิจารณาความยาวของท่อแล้วพบว่าสั้น กว่า L_h และ L_t รวมทั้งไม่มี Unheated Starting Length (ความยาวท่อส่วนที่มีอุณหภูมิเท่ากับ ของไหลที่ไหลผ่าน) นอกจากนั้นยังไม่ใช่ของไหลที่มีค่า Pr >> 1
เมื่อ $\left[\left(\frac{\operatorname{Re}_{D_h}\operatorname{Pr}}{\frac{L}{D_h}}\right)^{\frac{1}{3}}\left(\frac{\mu}{\mu_s}\right)^{0.14}\right] \ge 2$ ท่อที่พิจารณาจะอยู่ในช่วงของ Combined

(Thermal and Velocity) Entry Length $\max[t_s = \text{constant}]$, [0.48 < Pr < 16,700], [0.0044 < $(\frac{\mu}{\mu_s})$ < 9.75] (Frank P. Incropera and David P. Dewitt, 1996: 443-444)

$$\overline{N}u_{D_h} = 1.86(\frac{\text{Re}_{D_h} \text{Pr}}{\frac{L}{D_h}})^{\frac{1}{3}}(\frac{\mu}{\mu_s})^{0.14}\dots\dots(3.21)$$

เมื่อ $\left[\left(\frac{\operatorname{Re}_{D_h}\operatorname{Pr}}{\frac{L}{D_h}}\right)^{\frac{1}{3}}\left(\frac{\mu}{\mu_s}\right)^{0.14}\right] < 2$ และ $t_s = \operatorname{constant}$ พื้นที่ส่วนใหญ่ของท่อจะมีการ

ใหลแบบ Fully Developed

คุณสมบัติทุกอย่างที่ปรากฏในสมการหาได้ที่อุณหภูมิเฉลี่ยของของไหล , \bar{t}_f $\frac{(t_{f,in} + t_{f,out})}{2}$ ยกเว้น μ_s หาได้ที่อุณหภูมิผิวท่อ

สำหรับ Turbulent Flow ที่คุณสมบัติต่างๆมีการเปลี่ยนแปลงมาก สมการที่ใช้จึงต้องมี การประมาณที่ดี และสามารถใช้ได้กับสภาพ Uniform surface Temperature และ Uniform Heat Flux ดังนี้ (Frank P. Incropera and David P. Dewitt,1996:445)

สำหรับ [0.7 ≤ Pr ≤ 16,700] , [Re_{D_h} ≥ 10,000] , [$\frac{L}{D_h}$ ≥ 10] $Nu_{D_h} = 0.027 \operatorname{Re}_{D_h}^{\frac{4}{5}} \operatorname{Pr}^{\frac{1}{3}}(\frac{\mu}{\mu_s})^{0.14}$(3.23)

คุณสมบัติทุกอย่างที่ปรากฏในสมการหาได้ที่อุณหภูมิเฉลี่ยของของไหล , \bar{t}_f $\frac{(t_{f,in} + t_{f,out})}{2}$ ยกเว้น μ_s หาได้ที่อุณหภูมิผิวท่อ และสามารถใช้ประมาณค่าสัมประสิทธิ์เมื่อ 2,300 \leq Re \leq 4,000 ได้โดยเฉพาะอย่างยิ่งเมื่อ Re เข้าใกล้ 4,000

3.7.3 <u>การแผ่รังสีความร้อน</u> (Radiation Heat Transfer)

การแผ่รังสีคือการปล่อยพลังงานที่อยู่ในรูปของคลื่นแม่เหล็กไฟฟ้าอันเนื่องมาจากการ เปลี่ยนแปลงรูปแบบทาง electronic ของอะตอมหรือโมเลกุลออกมา โดยไม่ต้องอาศัยตัวกลาง และเป็นพลังงานที่ถ่ายเทได้เร็วที่สุด (เท่าความเร็วแสง)

จากกฎของ Stefan-Boltzmann สมการแสดงอัตราการแผ่รังสีความร้อนระหว่างพื้นผิว ใดๆกับสิ่งแวดล้อม คือ

$$\dot{Q}_{rad} = \varepsilon \sigma A(t_s^4 - t_{\infty}^4) \dots (3.24)$$

โดย $\dot{Q}_{\scriptscriptstyle rad}$ คือ อัตราการแผ่รังสีความร้อน (Watt)

- ε คือ Emissivity ของพื้นผิว ; $0 \le \varepsilon \le 1$
- σ คือ Stefan-Boltzmann constant มีค่า 5.67E-8 Watt/(${
 m m}^{2*}{
 m K}^4$)
- A คือ พื้นที่ผิวของการแผ่รังสี (m²)
- *t* , คือ อุณหภูมิสมบูรณ์ของพื้นผิว (K)
- t_{∞} คือ อุณหภูมิสมบูรณ์ของสิ่งแวดล้อม (K)

การแผ่รังสีความร้อนใน Regenerator เป็นการถ่ายเทความร้อนระหว่างอากาศ (Cooling Period) หรือ ก๊าซเสีย (Heating Period) กับพื้นผิวโครงอิฐทนไฟ องค์ประกอบในอากาศและ ก๊าซเสียที่เป็นหลักในการดูดซับหรือคายพลังงานความร้อนจากการแผ่รังสีคือ ก๊าซชนิดต่างๆ นั่นเอง แต่ที่มีคุณสมบัติโดดเด่นเป็น Polar Molecules มีขอบเขตของอุณหภูมิในการดูดซับหรือ คายพลังงานกว้าง และมีปริมาณมากคือ ไอน้ำ (H₂O)₉ และ ก๊าซคาร์บอนไดออกไซด์ (CO₂)

สมการ Heat Flux ของการแผ่รังสีความร้อนระหว่างโครงอิฐทนไฟกับอากาศหรือ ก๊าซเสีย จึงมีค่าเท่ากับ (Frank W. Schmidt and A. John Willmott,1981:164-166)

$$Q_{rad} = \sigma(\frac{\varepsilon_s + 1}{2})(\varepsilon_g t_f^4 - \alpha_g t_s^4) \dots (3.25)$$

รูปแบบของสมการ Heat Flux นี้เป็น nonlinear เพื่อความสะดวกสามารถประมาณให้ เป็น linear โดยใช้ Equivalent Radiative Heat Transfer Coefficient , *h_R* ว่า

$$Q_{rad} = h_{rad} (t_f - t_s) \dots (3.26)$$

โดย Q_{rad} คือ ปริมาณ Heat Flux ของการแผ่รังสีความร้อนระหว่างโครงอิฐทนไฟกับ อากาศหรือ ก๊าซเสีย (Watt/m²)

h_{rad} คือ Equivalent Radiative Heat Transfer Coefficient (W/m² K) เป็น
 ค่าประมาณของการเฉลี่ย สามารถใช้ได้ตลอดทั้ง Period สำหรับการจำลองการทำงานของ
 Regenerator โดยใช้ Linear Model หาได้จาก

$$h_{rad} = \sigma(\frac{\varepsilon_s + 1}{2})(\frac{\varepsilon_g t_f^4 - \alpha_g t_s^4}{t_f - t_s}) \dots (3.27)$$

- σ คือ Stefan-Boltzmann constant มีค่า 5.67E-8 (Watt/(m 2* K 4))
- ε_s คือ Emissivity ของพื้นผิวอิฐทนไฟ
- ε_{g} คือ Emissivity ของอากาศหรือก๊าซเสีย (($H_{2}O$)_g , CO_{2} เป็นหลัก)
- α_{g} คือ Absorptivity ของอากาศหรือก๊าซเสีย (($H_{2}O$)_g , CO_{2} เป็นหลัก)
- t f คือ Arithmetic Mean ของอุณหภูมิสมบูรณ์ของอากาศหรือก๊าซเสีย (K)
- t, คือ อุณหภูมิสมบูรณ์เฉลี่ยของพื้นผิวอิฐทนไฟ (K)

พจน์ของ $\frac{\varepsilon_s + 1}{2}$ ใช้ในกรณีที่ Emissivity ของพื้นผิวอิฐทนไฟมีค่าต่ำกว่า 1 ซึ่งบางส่วน ของการแผ่รังสีของก๊าซจะสะท้อนกลับมาจากพื้นผิวนั้นได้ โดยส่วนใหญ่จะไม่ซึมซับเข้าไปในก๊าซ นั้นอีก แต่จะถูกซึมซับโดยพื้นผิวรอบๆที่เหลือแทน (M. Fishenden & O.A. Saunders :25-26)

เมื่ออุณหภูมิของของไหลและอิฐทนไฟมีการเปลี่ยนแปลงอย่างต่อเนื่องตลอดพื้นที่การ ถ่ายเทความร้อน สามารถประมาณจากการใช้ Arithmetic Mean ของอุณหภูมิของไหลโดยเพิ่ม พจน์ของ Logarithmic Mean ของผลต่างอุณหภูมิเข้าไป จากการพิจารณาให้ Regenerator เสมือนเป็นเครื่องแลกเปลี่ยนความร้อนระหว่างอิฐทนไฟกับของไหล

โดย $heta_1$ คือ ผลต่างอุณหภูมิของไหลกับอิฐทนไฟที่ทางเข้าช่องการไหล

 $heta_2$ คือ ผลต่างอุณหภูมิของไหลกับอิฐทนไฟที่ทางออกช่องการไหล

Hottel, H. C.(1954) กล่าวว่าเมื่อองค์ประกอบของไอน้ำและคาร์บอนไดออกไซด์ปรากฏ อยู่ในรูปของผสมรวมกับก๊าซที่ไม่มีคุณสมบัติในการแผ่รังสีอื่นๆ การหาค่า ε_{g} ของอากาศ (Cooling Period) หรือ ก๊าซเสีย (Heating Period) ทำได้ได้ดังนี้

$$\varepsilon_g = C_w \varepsilon_w + C_c \varepsilon_c - \Delta \varepsilon \dots (3.29)$$

โดย Emissivity ของไอน้ำ ε_w และ คาร์บอนไดออกไซด์ ε_c หาได้จากกราฟที่ Plot ในรูปที่ 8 และ 9 ตามลำดับซึ่งขึ้นอยู่กับ

- อุณหภูมิ t_f ณ Total Pressure , p ของอากาศหรือก๊าซเสียที่ 1 atm

- Partial Pressure p_w ของใอน้ำ= Moles Fraction ของ H₂O * Total Pressure

" p_c ของคาร์บอนไดออกไซด์ = Moles Fraction ของ CO₂ * Total Pressure (Moles Fraction คือ อัตราส่วนโดยโมล หรือ %by Volume ของก๊าซชนิดนั้นต่อก๊าซทั้งหมด) - และ Effective Mean Beam Length , $L = 3.4 * \frac{volume}{area}$ สำหรับ Gas Enclosures ใดๆ

รูปที่ 10 แสดง Emissivity ของ H₂O ที่ Total Pressure 1 atm และ Partial Pressure ใกล้ศูนย์

รูปที่ 11 แสดง Emissivity ของ CO₂ ที่ Total Pressure 1 atm และ Partial Pressure ใกล้ศูนย์

รูปที่ 12 แสดง Correction Factor , C, ของ $arepsilon_{_w}$ ที่ Total Pressure $\,p$ atm

Correction Factor, C_w ของไอน้ำ และ C_c ของคาร์บอนไดออกไซด์ หาได้จากรูปที่ 12 และ 13 ตามลำดับ ใช้เมื่อ Total Pressure สูงหรือต่ำกว่า 1 atm โดย Emissivity ของก๊าซใดๆ ที่ Total Pressure, *p* คือ ผลคูณของ Correction Factor ที่ได้จากรูป กับ Emissivity ที่ Total Pressure 101.3 kPa

รูปที่ 13 แสดง Correction Factor , C ของ $arepsilon_c$ ที่ Total Pressure $\,p$ atm

ส่วน ∆ε คือ Correction Factor for Overlap ใช้เมื่อ ไอน้ำ และ คาร์บอนไดออกไซด์ รวมกันอยู่ในรูปก๊าซของผสม หาได้จากรูปที่ 14

รูปที่ 14 แสดง Correction Factor for Overlap , $\Delta \varepsilon$ สำหรับก๊าซของผสมที่มีทั้ง ไอน้ำ และ คาร์บอนไดออกไซด์

ในกรณีของ Absorptivity , $lpha_{_g}$ ของก้าซของผสมระหว่างไอน้ำและคาร์บอนไดออกไซด์ สามารถหาได้ดังนี้

$$\alpha_g = \alpha_w + \alpha_c - \Delta \alpha \dots (3.30)$$

$$\log \alpha_w = C_w (\frac{t_g}{t_s})^{0.45} \varepsilon_w (t_s, p_w L_e \frac{t_s}{t_g}) \quad \text{ where } \alpha_c = C_c (\frac{t_g}{t_s})^{0.65} \varepsilon_c (t_s, p_w L_e \frac{t_s}{t_g})$$

 $\varepsilon_w, \varepsilon_c$ หาได้จากรูปที่ 8 และ 9 ตามลำดับ แต่ใช้คุณสมบัติของ t_s แทน t_g และ ใช้ คุณสมบัติของ $p_w L_e rac{t_s}{t_g}$ กับ $p_c L_e rac{t_s}{t_g}$ แทน $p_w L_e$ กับ $p_c L_e$ C_w, C_c หาได้จากรูปที่ 10 และ 11 ตามลำดับโดยใช้คุณสมบัติเดิม $\Delta lpha = \Delta \varepsilon$ หาได้จากรูปที่ 12 โดยใช้คุณสมบัติเดิม

3.8 ไซโครเมตริกส์ (Psychrometric)

การศึกษาคุณสมบัติของอากาศชื้นหรืออากาศที่มีไอน้ำผสมอยู่ เพื่อใช้ในการวิเคราะห์หา ปริมาณไอน้ำที่อยู่ในอากาศก่อนเข้า Regenerator ซึ่งจำเป็นต่อการคำนวณหาอัตราการไหลโดย มวลและสัมประสิทธิ์การแผ่รังสีความร้อน ในทางปฏิบัติพบว่าสูตรต่างๆของก๊าซสมบูรณ์ใช้ได้ดี มาก โดยเฉพาะที่ความดันใกล้เคียงความดันบรรยากาศ (101.325 kPa หรือ 14.7 psi)

- สูตรก๊าซสมบูรณ์เบื้องต้น (ฤชากร จิรกาลวสาน,2541) 👘

โดย P คือ ความดันอากาศแห้ง, P_a หรือ ความดันไอน้ำ, P_w (kPa)

ความดันอากาศทั้งหมดมีค่าเท่ากับความดันของอากาศแห้งรวมกับความดันของไอน้ำใน อากาศ ไอน้ำที่อยู่ในอากาศจะมีปริมาตรเท่ากับปริมาตรอากาศ แต่ความดันของไอน้ำจะน้อยกว่า ความดันของอากาศแห้งมากเพราะมวลน้อยกว่ามาก มวลของไอน้ำในอากาศทั่วไปจะมีเพียง ประมาณ 1 – 2 % เท่านั้น

m คือ มวลของอากาศชื้น, m_a คือมวลของอากาศแห้ง , m_w คือมวลของไอน้ำ (kg)

- ความชื้นสัมพัทธ์ (Relative Humidity) (ฤชากร จิรกาลวสาน,2541)

- โดย ϕ คือ Relative Humidity
 - y, คือ สัดส่วนโ<mark>ดยโม</mark>ลของไอน้ำ
 - y " คือ สัดส่วนโดยโมลของไอน้ำอิ่มตัวที่อุณหภูมิและความดันเดิม

สำหรับก๊าซสมบูรณ์ จากพื้นฐานทางเทอร์โมไดนามิกส์ได้ว่า สัดส่วนโดยโมลของไอน้ำใน อากาศจะเท่ากับสัดส่วนของความดันไอน้ำ $y_{\nu} = \frac{n_{\nu}}{n} = \frac{P_{\nu}}{P}$ และ $y_{\nu s} = \frac{n_{\nu s}}{n} = \frac{P_{\nu s}}{P}$ จะได้ว่า $\frac{y_{\nu}}{y_{\nu s}} = \frac{P_{\nu}}{P_{\nu s}}$ ทำให้

โดย P_{v} คือ ความดันไอน้ำ (Pascal) = $P - P_{a} = \phi P_{vs}$

P_{vs} คือ ความดันไอน้ำอิ่มตัวที่อุณหภูมิเดิมของก๊าซผสมไอน้ำนั้น (Pascal) หาได้จาก ตารางไอน้ำหรือสูตรสำเร็จจากเอกสารไซโครเมตริกส์ ในรายการอ้างอิง ดังต่อไปนี้

้สำหรับช่วงอุณหภูมิ 0 $^{\circ}\mathrm{C}$ ถึง 200 $^{\circ}\mathrm{C}$ (ฤชากร จิรกาลวสาน,2541)

 $\ln(P_{vs}) = -\frac{5800.2206}{t} + 1.3914993 - 0.04860239t + (4.1764768E - 5)t^{2} \dots (3.34) - (1.445209E - 8)t^{3} + 6.5459673\ln t$

3.9 แบบจำลองทางคณิตศาสตร์ของ Regenerator

Regenerator ที่ทำการวิจัย เป็นอุปกรณ์แลกเปลี่ยนความร้อนที่ติดตั้งกับเตาหลอมดีบุก ของโรงงาน ไทยแลนด์สเมลติ้งแอนด์รีไฟนิ่ง จำกัด (ไทยซาร์โก้) จังหวัดภูเก็ต ทุกพื้นผิวใน Regenerator ประกอบขึ้นจากอิฐทนไฟก่อเรียงเป็นรูปปล่องไฟสี่เหลี่ยมรวมทั้งผนังที่ล้อมรอบ อิฐทนไฟจะทำหน้าที่สะสมและถ่ายเทความร้อนระหว่างของไหล 2 ชนิดที่ไหลผ่าน

รูปที่ 15 ภาพตัดแนวยาวของโครงอิฐทนไฟใน Regenerator (Front View)

รูปที่ 16 ภาพตัดขวางของโครงอิฐทนไฟส่วนบน Regenerator (Top View)

 A.J. WILLMOTT (1964) ได้เสนอแบบจำลองทางคณิตศาสตร์เพื่อหาการกระจาย อุณหภูมิของโครงอิฐทนไฟและ fluid ที่ไหลผ่านใน Regenerator โดยใช้วิธีจำลองแบบจาก บทความของ LAMBERTSON แต่มีการประยุกต์เอาระเบียบวิธีเชิงตัวเลขมาใช้ในการอินทิเกรต สมการเชิงอนุพันธ์เพิ่มเติม ซึ่งผลลัพธ์ที่ได้มาจากการคำนวณวนเป็นรอบๆ จนกระทั่งเข้าสู่สภาวะ คงที่ (Equilibrium)

อากาศที่ช่วยในการเผาไหม้และก๊าซเสียจะไหลผ่านโครงอิฐทนไฟโดยมีสมมติฐานดังนี้

- 1. ไม่คำนึงถึงผลจากการนำความร้อนของอิฐทนไฟและ fluid ในทิศทางการไหลของ fluid
- 2. ไม่คำนึงถึงผลจากการผสมกันของ fluid เก่าที่คงเหลืออยู่ใน Regenerator กับ fluid ใหม่ ที่เข้ามาแทนที่ในทิศทางตรงกันข้ามเมื่อเริ่มสลับทิศการไหล (Reversal)
- 3. ในแต่ละ Period อัตราการไหลโดยมวลของ fluid ทั้ง 2 ชนิดไม่มีการเปลี่ยนแปลง
- 4. อุณหภูมิของอากาศและก๊าซเสียที่ไหลเข้า Regenerator คงที่ทั้ง 2 Period (Heating / Cooling)

- การถ่ายเทความร้อนระหว่างของไหลกับอิฐทนไฟสามารถแทนได้ด้วยเทอมของ Overall Heat Transfer Coefficient ที่มีความสัมพันธ์กับอุณหภูมิของ fluid และอุณหภูมิเฉลี่ย ของโครงอิฐทนไฟ
- 6. สัมประสิทธิ์การถ่ายเทความร้อนรวมทั้งคุณสมบัติทางความร้อนของอิฐทนไฟ และ fluid ไม่เปลี่ยนแปลงในแต่ละ Period และยังมีค่าเท่ากันในทุกส่วนของ Regenerator ใน Period นั้นๆ
- 7. ไม่คำนึงถึงความร้อนที่ถ่ายเทออกทางด้านข้าง,ด้านบนและด้านล่างของ Storage Unit
- 8. ของไหลมีความเร็วคงที่ และ เป็น Uniform Flow
- 9. อุณหภูมิของโครงอิฐทนไฟและ fluid เปลี่ยนแปลงเป็นแบบ linear เทียบกับเวลา

จากสมมติฐานที่กล่าวมาจึงเลือกใช้ Control Volume โดยพิจารณาจากรูปที่ 17 เป็น ภาพตัดขวางใดๆของ Regenerator ซึ่งแบ่งช่องการไหลของ fluid เป็น element เล็กๆขนาดเท่ากัน ให้มีความสมมาตรตามแนวเส้นประ (ไม่มีการถ่ายเทความร้อนผ่านเส้นประ) ส่วนที่กั้นระหว่าง ช่องต่างๆคือเนื้ออิฐทนไฟ โดย a คือความกว้างของช่องการไหลของ fluid รูปสี่เหลี่ยมจัตุรัส และ b คือความกว้างของ element รูปสี่เหลี่ยมจัตุรัสที่มีความลึก Δ x เมตร เมื่อ Regenerator มีความ ยาว L เมตรจะมีจำนวน Control Volume รวม L / Δ x elements ต่อ 1 ช่องการไหล

รูปที่ 17 แสดง Control Volume ของโครงอิฐทนไฟ

3.9.1 <u>สมการเชิงอนุพันธ์</u> (The Differential Equations)

จาก Control Volume ในรูปที่ 17 เนื่องจากแต่ละช่องมีความสมมาตรกัน จึงพิจารณาช่อง การไหลใดๆเพียง 1 ช่องเพื่อเป็นต้นแบบ ดังนั้นจะได้สมการสมดุลทางความร้อนที่ต้องพิจารณา 2 สมการคือ <u>สมการสมดุลความร้อนของของไหล</u> คือ สมการเชิงอนุพันธ์ระหว่างอัตราการถ่ายเท ความร้อนระหว่างโครงอิฐทนไฟกับก๊าซเสียจากการเผาไหม้ (Heating Period) หรืออากาศที่ช่วย ในการเผาไหม้ (Cooling Period) กับ อัตราการถ่ายเทและสะสมความร้อน ในก๊าซเสียจากการ เผาไหม้หรืออากาศที่ช่วยในการเผาไหม้ เมื่อ L ในสมการ 3.35 คือความยาวของ element ที่ พิจารณา (Frank W. Schmidt and A. John Willmott, 1981)

โดย \overline{h} คือ Modified heat transfer Coefficient (W/m² K)

x คือ ระยะความยาวของโครงอิฐทนไฟ โดยวัดไปในทิศทางเดียวกันกับการไหล ของ fluid ใน Period นั้นๆ (m)

 <u>สมการสมดุลความร้อนของของแข็ง</u> คือ สมการเชิงอนุพันธ์ระหว่างอัตราการถ่ายความ ร้อนระหว่างโครงอิฐูทนไฟกับก๊าซเสียจากการเผาไหม้ (Heating Period) หรืออากาศที่ช่วยใน การเผาไหม้ (Cooling Period) กับ อัตราการถ่ายเทและสะสมความร้อนในโครงอิฐูทนไฟ

โดย M_m คือ มวลของ Storage Channel (kg)

เพื่อความสะดวกในการคำนวณจึงแปลงสมการ 3.35 และ 3.36 ให้อยู่ในรูปของตัวแปรไร้ มิติ (Dimensionless Variable) โดยกำหนดพารามิเตอร์ไร้มิติ (Dimensionless Parameter) ดังนี้ (Frank W. Schmidt and A. John Willmott,1981)

$$\begin{split} \xi &= \frac{hAx}{m_f \ c_f L} \dots (3.37) \quad \text{พารามิเตอร์ไร้มิติทางระยะทาง (ZETTA)} \\ \eta &= \frac{\bar{h}A}{M_m c_m} \Biggl(\tau - \frac{m_f x}{m_f \ L} \Biggr) \dots (3.38) \quad \text{พารามิเตอร์ไร้มิติทางเวลา (ETTA)} \\ \text{และตัวแปรไร้มิติดังนี้} \\ T_f &= \frac{t_f - t_f^{(i)}}{t_f \ i - t_f^{(i)}} \dots (3.39) \ \text{ตัวแปรไร้มิติของอุณหภูมิของของ} \\ \text{ไหล} \ T_m &= \frac{t_m - t_f^{(i)}}{t_f \ i - t_f^{(i)}} \dots (3.40) \ \text{ตัวแปรไร้มิติของอุณหภูมิของของแข็ง} \\ \text{จากสมการ } 3.37, 3.38, 3.39 \ \text{และ } 3.40 \ \text{ຈะได้สมการ } 3.35 \ \text{และ } 3.36 \ \text{etjlust}^{12}$$

$$\frac{\partial T_f}{\partial \xi} = T_m - T_f \dots (3.41)$$

$$\frac{\partial T_m}{\partial \eta} = T_f - T_m \dots (3.42)$$

นอกจากนั้นพารามิเตอร์ไร้มิติในสมการ 3.37 และ 3.38 ยังทำให้เกิด Dimensionless Groups อีก 2 กลุ่มดังนี้

เมื่อ x = L และ τ = P จะได้

$$\Lambda = \frac{\overline{h}A}{m_f c_f} = \text{``Reduced Length``.....(3.43)}$$
$$\Pi = \frac{\overline{h}A}{M_m c_m} \left(P - \frac{m_f}{m_f} \right) = \text{``Reduced Period``.....(3.44)}$$

จากสมการเชิงอนุพันธ์ 3.41 และ 3.42 เมื่ออินทิเกรตแล้วใช้การประมาณค่าอินทิกรัลด้วย พื้นที่สี่เหลี่ยมคางหมูก็จะได้ความสัมพันธ์ระหว่างอุณหภูมิของโครงอิฐทนไฟกับก๊าซเสียจากการ เผาไหม้หรืออากาศที่ช่วยในการเผาไหม้ที่เวลาใดๆซึ่งสามารถนำไปพัฒนาเป็นโปรแกรม คอมพิวเตอร์ได้

3.9.2 <u>เงื่อนไขขอบเขต</u> (Boundary Conditions)

จากสมการเชิงอนุพันธ์ทั้ง 2 สมการดังกล่าว มีเงื่อนไขขอบเขต 2 เงื่อนไขคือ

อุณหภูมิของอากาศและก๊าซเสียที่ไหลเข้า Regenerator คงที่ทั้ง 2 Period (Heating / Cooling)

อุณหภูมิของโครงอิฐทนไฟที่ตำแหน่งเดียวกันเมื่อสิ้นสุด Period ใดๆ (Heating/Cooling
 Period) จะเท่ากันกับเมื่อเริ่มต้น Period ถัดไป

3.9.3 <u>ระเบียบวิธีไฟในต์ดิฟเฟอเรนซ์</u> (Finite Difference Method)

ในการพิจารณาความสัมพันธ์ระหว่างอุณหภูมิของ fluid "T_f(r,s)" และโครงอิฐทนไฟ "T_m(r,s)" ใน Regenerator 1 ช่องการไหลที่ตำแหน่งและเวลาใดๆ เนื่องจากมีจำนวนจุดต่อที่ ต้องพิจารณาเป็นจำนวนมาก เพื่อความสะดวกจึงแบ่งจุดต่อของโครงอิฐทนไฟในRegenerator ออกเป็น 2 แกนเพื่อแสดงอุณหภูมิที่จุดต่อนั้นๆตามความละเอียดที่ต้องการ คือ แกน Nondimensional time (η) เป็นแกนของเวลาในการสะสมหรือคายความร้อนใน 1 Period จาก เริ่มต้น Period ไปจนสิ้นสุด Period (0 ถึง P)แบ่งเป็นช่วงๆละ $\Delta \eta$ ($=\frac{\Pi}{P}$) และแกน Nondimensional axial distance (ξ) เป็นแกนของตำแหน่งใดๆใน 1 ช่องการไหลของโครงอิฐ ทนไฟใน Regenerator จากทางเข้าของช่องการไหลไปยังทางออกของช่องการไหล (0 ถึง M) แบ่งเป็นช่วงๆละ $\Delta \xi$ ($=\frac{\Lambda}{M}$)โดยทิศทางของแกนระยะทางนี้จะอยู่ในทิศเดียวกับการไหลของ fluid ใน Period นั้นๆ (Frank W. Schmidt and A. John Willmott,1981)

Fluid

เมื่อพิจารณาจาก fluid ที่ไหลผ่านช่องการไหลจะได้ความสัมพันธ์ดังนี้

$$T_f(r+1,s+1) = T_f(r,s+1) + \int_r^{r+1} \frac{\partial T_f}{\partial \xi} d\xi$$
(3.45)

ใช้วิธีหาค่า Integral ด้วย Trapezoidal rule

$$T_{f}(r+1,s+1) = T_{f}(r,s+1) + \frac{\Delta\xi}{2} \left(\frac{\partial T_{f}}{\partial\xi}_{r+1} + \frac{\partial T_{f}}{\partial\xi}_{r}\right)$$
แทนค่าด้วยสมการที่ 3.41

ที่เวลาใดๆ s+1 ถ้าทราบ Solid Temperature และ Inlet GasTemperature จะสามารถ หา Gas Temperature ที่ตำแหน่งใดๆลงไปตามความยาวของโครงอิฐทนไฟได้

Solid

เมื่อพิจารณาจาก solid ที่ไหลผ่านช่องการไหลจะได้ความสัมพันธ์ดังนี้

ใช้วิธีหาค่า Integral ด้วย Trapezoidal rule

$$\begin{split} T_m(r+1,s+1) &= T_m(r+1,s) + \frac{\Delta \eta}{2} \left(\frac{\partial T_m}{\partial \eta}_{s+1} + \frac{\partial T_m}{\partial \eta_s} \right) \\ & \text{แทนค่าด้วยสมการที่ 3.42} \\ T_m(r+1,s+1) &= K_1 T_m(r+1,s) + K_2 T_f(r+1,s) \\ &+ K_3 T_m(r,s+1) + K_4 T_f(r,s+1) \\ & \dots (3.48) \end{split}$$

โดยที่
$$K_1 = \frac{B_1}{X}$$
 $K_2 = \frac{B_2}{X}$ $K_3 = \frac{A_2B_2}{X}$ $K_4 = \frac{A_1B_2}{X}$

$$\lim_{n \to \infty} B_1 = \frac{2 - \Delta \eta}{2 + \Delta \eta} \qquad B_2 = \frac{\Delta \eta}{2 + \Delta \eta} \qquad X = 1 - A_2 B_2$$

ที่ขณะใดๆ (r+1,s+1) ถ้าทราบอุณหภูมิของโครงอิฐทนไฟและของไหลที่ (r,s+1) และ (r+1,s) วงกลมแสดงในรูปที่ 18 จะหาอุณหภูมิของโครงอิฐทนไฟที่ (r+1,s+1) กากบาทแสดง ในรูปที่ 18 ได้

จากความสัมพันธ์ระหว่างอุณหภูมิของโครงอิฐทนไฟ กับ fluid ในสมการ ** จะหา อุณหภูมิของโครงอิฐทนไฟ ณ ตำแหน่งทางเข้าของช่องการไหล ที่เวลาใดๆได้ดังนี้

$$T_m(0,s+1) = B_1 T_m(0,s) + B_2 [T_f(0,s) + T_f(0,s+1)]$$
(3.49)

โดยที่ Fluid Temperature ขาเข้า $T_{f}(0,s)$ มีค่า 1 (Heating Period), 0 (Cooling Period)

3.9.4 <u>กระบวนการอินทิเกรต</u> (Integration Procedure)

ในการเริ่มต้นการอินทิเกรต จะต้องมีเงื่อนไขเริ่มต้น (Initial Condition) ซึ่งได้มาจาก เงื่อนไขขอบเขตว่า

1. ทราบค่า T_f(0,s) ซึ่งมีค่าคงที่สำหรับทุกๆเวลา s (s = 0,1,2,...,P) ใน Period ใดๆ

2. ณ เวลาเริ่มต้น Period แรก ทราบค่า T_m(r,0) ในทุกๆตำแหน่ง r (r = 0,1,2,...,M) และ เมื่อเริ่ม Period ถัดไป ค่า T(r,0) หาได้จากเงื่อนไขขอบเขต $T_m(x,0) = T_m(L-x,P)$; $0 \le x \le L$ (่หมายถึง Period ถัดไป)

ดังนั้นที่เวลาเริ่มต้นของ Period แรก เมื่อทราบการกระจายอุณหภูมิของโครงอิฐทนไฟที่ ตำแหน่งต่างๆ T_m(r,0); r = 0,1,2,...,M (M = $\frac{\Lambda}{\Delta\xi}$) และ อุณหภูมิของ fluid ที่ตำแหน่งทางเข้า ช่องการไหล T_f(0,0) แล้วนำมาใส่ในสมการ 3.46 ตามวิธีที่อธิบายดังกล่าว ก็จะได้การกระจาย อุณหภูมิของ fluid ครบทุกตำแหน่งที่เหลือ T_f(r,0); r = 1,2,...,M ซึ่งนำไปใช้หาการกระจาย อุณหภูมิของโครงอิฐทนไฟที่เวลาถัดไป T_m(r,1); r = 0,1,2,...,M จากสมการ 3.48 และสามารถ เริ่มต้นกระบวนการอินทิเกรตตามช่วงเวลาข้างต้นเป็นรอบๆจนจบ Period ได้ดังขั้นตอนต่อไปนี้

1. หาอุณหภูมิของโครงอิฐทนไฟ ณ ตำแหน่งทางเข้าช่องการไหลที่เวลาใดๆ ได้จาก

Heating Period : $T_m(0, s+1) = 2B_2 + B_1T_m(0, s)$ (3.50)

Cooling Period : $T_m(0, s+1) = B_1 T_m(0, s)$ (3.51)

2. หาอุณหภูมิของ fluid ณ ตำแหน่งใดๆจากการกระจายอุณหภูมิของโครงอิฐทนไฟที่ ตำแหน่งต่างๆ เมื่อเริ่มต้น Period จาก

$$T_f(r+1,s) = A_1 T_f(r,s) + A_2 [T_m(r,s) + T_m(r+1,s)] \dots (3.52)$$

3. จากนั้นหาอุณหภูมิของโครงอิฐทนไฟ ณ ตำแหน่งใดๆที่เวลาถัดไปได้จาก

 $T_m(r+1,s+1) = K_1 T_m(r+1,s) + K_2 T_f(r+1,s) + K_3 T_m(r,s+1) + K_4 T_f(r,s+1) \dots (3.53)$

4. หาอุณหภูมิของ fluid และ โครงอิฐทนไฟ ที่ตำแหน่งและเวลาใดๆที่เหลือจากการทำ ตามข้อ 2 และ 3 เป็นรอบๆจนครบทุกตำแหน่งและเวลาจนจบ Period

5. เมื่อเริ่มต้น Period ถัดไปการกระจายอุณหภูมิของโครงอิฐทนไฟที่ตำแหน่งต่างๆหาได้ จากเงื่อนไขขอบเขต T m(x,0) = Tm(L-x,P) ; 0 ≤ x ≤ L (่หมายถึง Period ถัดไป) แล้วจึงดำเนินการอินทิเกรตตามวิธีข้างต้น จนจบ Period จากนั้นจึงเริ่มต้น Period ถัดไปอีก ทำ เช่นนี้เป็นวัฏจักรจนกว่า Regenerator จะเข้าสู่ Cyclic Equilibrium

3.9.5 Cyclic Equilibrium

วัฏจักรการทำงาน 1 รอบของ Regenerator ประกอบด้วย Period หนึ่ง (Heating / Cooling) ตามด้วยอีก Period หนึ่ง (Cooling / Heating) ในแต่ละ Period จะมีค่า Reduced Length (Λ), Reduced Period (Π) และ อุณหภูมิ fluid ขาเข้าที่คงที่ เป็นของตัวเอง หลังจาก Regenerator ทำงานเป็นวัฏจักรไปเป็นเวลาหนึ่ง ผลลัพธ์ที่ได้จากกระบวนการอินทิเกรต สมการเชิงอนุพันธ์ข้างต้น จะไม่เปลี่ยนแปลงไปตามอุณหภูมิของโครงอิฐทนไฟที่เป็นเงื่อนไข เริ่มต้นอีกต่อไป ซึ่งเรียกสภาวะเช่นนี้ว่า " Cyclic Equilibrium " นั่นคือผลลัพธ์ดังกล่าวจะลู่เข้าสู่ ค่าคงที่ค่าหนึ่ง ไม่ว่าจะทำงานต่อไปเป็นเวลานานเท่าใด การเข้าสู่ " Cyclic Equilibrium " หรือไม่ จะพิจารณาจากการคำนวณ Pseudo-Thermal Ratio เมื่อสิ้นสุด Cooling Period ดังนี้

เมื่อ $\Phi(n) - \Phi(n-1)$ หรืออีกแง่หนึ่งคือผลต่างอุณหภูมิ fluid ขาออกของ Cooling Period น้อยกว่าค่าที่ยอมรับได้ วัฏจักรที่ n จะถือว่าเข้าสู่ Cyclic Equilibrium และจะ สามารถคำนวณค่า Thermal Ratio $\eta_{\rm reg}$ ได้ทั้ง 2 Period จาก (A. J. Willmott,1964)

$$\eta'_{REG} = rac{t_{fi} - t_{fo}}{t_{fi} - t_{fi}} = 1 - T_{fo}$$
 สำหรับ Heating Period......(3.55)

ท"_{REG} =
$$\frac{t_{fo} - t_{fi}}{t_{fi} - t_{fi}} = T_{fo}$$
 สำหรับ Cooling Period......(3.56)

โดยค่า Thermal Ratio เหล่านี้จะเป็นตัววัดว่า Regenerator ทำงานมีประสิทธิผลเช่นไร

3.10 Modified Heat transfer coefficient

ใน Regenerator ที่ทำมาจากโลหะ ณ ตำแหน่ง , เวลา หรือ Period ใดๆ สามารถ พิจารณาให้เป็น Uniform Temperature ภายในเนื้อโลหะได้ ในกรณีนี้ผลจากความต้านทานการ ถ่ายเทความร้อนระหว่างของไหลกับโลหะจะเกิดขึ้นที่พื้นผิวของโลหะ จึงพิจารณาการถ่ายเทความ ร้อนเฉพาะการพาความร้อนและการแผ่รังสีความร้อนเท่านั้น โดยอุณหภูมิภายในโลหะและที่ผิว โลหะจะเป็นค่าเดียวกัน แต่สำหรับ Regenerator แบบโครงอิฐทนไฟที่มีส่วนของเนื้ออิฐในการ สะสมความร้อนค่อนข้างหนา และมีค่าสัมประสิทธิ์การนำความร้อนต่ำ ความต้านทานการถ่ายเท ความร้อนทั้งภายในและที่ผิวของอิฐทนไฟจะมีความสำคัญพอกัน J. Schofield , P. A. Young และ P. Butterfield (1961) ได้กล่าวถึงการใช้สัมประสิทธิ์การถ่ายเทความร้อนสำหรับกรณีนี้ว่า

รูปที่ 19 แสดงอุณหภูมิของอิฐทนไฟและของไหลที่หน้าตัดใดๆของ Regenerator กับ เวลา

จากรูปที่ 19 อุณหภูมิของของไหลกับอิฐทนไฟจะเปลี่ยนไปตามตำแหน่งและเวลา ในช่วง Heating Period (P₁) อุณหภูมิของ gas , T₁ จะสูงกว่าอุณหภูมิของอิฐทนไฟ , t₁ รวมถึง อุณหภูมิเฉลี่ยตามเวลาของอิฐทนไฟ , t_mด้วย ความสัมพันธ์ระหว่างอุณหภูมิของ gas กับเวลา เป็นแบบ Linear ยกเว้นช่วงแรกของ Period แต่ก็จะกลับเข้าสู่ความเป็น linear อีกครั้งอย่าง รวดเร็ว ใน Cooling Period (P₂) ก็เช่นเดียวกัน การกระจายของอุณหภูมิอิฐทนไฟในช่วง P₁ สามารถแสดงได้ในรูปที่ 20 (a) ส่วนช่วง P₂ แสดงในรูปที่ 20 (b) ซึ่งรูปจะกลับกัน โดยในช่วง ต่อระหว่าง Period รูปแบบการกระจายจะมีการเปลี่ยนเว้าเพื่อเข้าสู่อีรูปแบบหนึ่ง จึงสามารถ สมมติได้ว่า ความสัมพันธ์ระหว่างอุณหภูมิของอิฐทนไฟกับเวลาเป็นแบบ Linear

รูปที่ 20 แสดงการเปลี่ยนแปลงอุณหภูมิภายในอิฐทนไฟที่เวลาใดๆ

เมื่อพิจารณาแผ่นระนาบใดๆที่ไม่มีแหล่งกำเนิดความร้อนภายใน จะได้ว่าสมการ Heat Conduction Equation อยู่ในรูป

$$\frac{\partial t}{\partial \tau} = \alpha \frac{\partial^2 t}{\partial x^2} \dots (3.57)$$

 $lpha_{_m}$ คือ Thermal Diffusivity ของอิฐทนไฟ มีค่าเท่ากับ $rac{k}{c_{_p}
ho}$ (m²/s) ; k =

Thermal Conductivity (W/m K) , c_p = Specific Heat at Constant Pressure (J/kg K) และ ρ = Density (kg/m³)

t คือ อุณหภูมิอิฐทนไฟเฉลี่ยตามเวลา ($^{\circ}\mathrm{C}$)

ถ้าความสัมพันธ์ระหว่างอุณหภูมิของอิฐทนไฟกับเวลาเป็นแบบ Linear จะได้ว่า $\frac{\partial t}{\partial \tau}$ = ค่าคงที่ ดังนั้นทำให้ $\frac{\partial^2 t}{\partial x^2}$ = ค่าคงที่ด้วย นั่นหมายความว่าความสัมพันธ์ระหว่างอุณหภูมิของอิฐ ทนไฟกับพิกัด x จะเป็นแบบพาราโบลา

ดังนั้นจากการใช้อุณหภูมิของโครงอิฐทนไฟเป็นค่าเฉลี่ยของในแต่ละ Cross Section ที่ เวลาใดๆ, \bar{t}_m เมื่อต้องการหาอัตราการถ่ายเทความร้อนระหว่างโครงอิฐทนไฟกับของไหล ค่า สัมประสิทธิ์การถ่ายเทความร้อนจึงต้องมีการปรับปรุงให้สามารถนำมาใช้กับอุณหภูมิเฉลี่ยของ โครงอิฐทนไฟได้ดังสมการต่อไปนี้ (J. Schofield, P. A. Young and P. Butterfield,1961)

$$\frac{1}{\bar{h}} = \frac{1}{h_s} + \phi_1 \frac{w}{3k} \dots (3.58)$$

โดย \overline{h} คือ Modified Heat Transfer Coefficient (W/m 2 K)

 h_s คือ Surface Heat Transfer Coefficient (W/m²K) หาได้จากผลรวมระหว่าง สัมประสิทธิ์การพาความร้อน, h_{conv} กับ Equivalent Radiative Heat Transfer Coefficient ,

 h_{rad}

w คือ Semi -Thickness มีค่าเท่ากับ (b²-a²) / 4a สำหรับโครงอิฐทนไฟรูปปล่อง
 ไฟสี่เหลี่ยม (m) (J. Schofield , P. A. Young และ P. Butterfield,1963)

k คือ Conductivity (W/mK)

Ø₁ คือ ค่าเฉลี่ยผลของการเบี่ยงเบนการกระจายอุณหภูมิภายในอิฐทนไฟไปจากรูป
 Parabola ระหว่าง Reversal Effect เพื่อให้ใช้ค่า Modified Heat Transfer Coefficient นี้ได้
 ตลอดช่วงของการพิจารณาหาได้ดังนี้ (Frank W. Schmidt and A. John Willmott.,1981)

$$\begin{split} \vec{u} & \frac{w^2}{\alpha_m} (\frac{1}{P_1} + \frac{1}{P_2}) \leq 5 \\ \phi &= 1 - \frac{w^2}{15\alpha_m} (\frac{1}{P_1} + \frac{1}{P_2}) \dots (3.59) \\ \vec{u} & \frac{w^2}{\alpha_m} (\frac{1}{P_1} + \frac{1}{P_2}) > 5 \end{split}$$

$$\phi = \frac{2.142}{\sqrt{0.3 + \frac{4w^2(\frac{1}{P_1} + \frac{1}{P_2})}{2\alpha_m}}} \dots (3.60)$$

พจน์ $\phi_1 \frac{\Delta}{3k}$ คือ ค่าความต้านทานเฉลี่ยของการถ่ายเทความร้อนภายในอิฐทนไฟ โดยที่ ค่า $\frac{\Delta}{3k}$ ได้จากการประมาณการกระจายอุณหภูมิภายในอิฐทนไฟที่เป็นรูป Parabola มาเป็น ค่าเฉลี่ย \overline{t}_{m_2} จากรูปที่ 14

ปริมาณความร้อนที่ถ่ายเทจากภายในอิฐูสู่ผนัง = ปริมาณความร้อนจาก Convection ...(3.61)

$$\frac{Q}{P} = -kA_s \left(\frac{\partial t}{\partial x}\right)_{x=0} \Rightarrow \frac{Q}{A_s} \left(\frac{d}{2kP}\right) = \frac{d}{2} \left(\frac{\partial t}{\partial x}\right)_{x=0}$$

เนื่องจากความสูงของ Parabola คือ $\frac{l}{2}$ และระยะ Δt_2 (เท่ากับความสูงของ \bar{t}_{m2}) มีค่าเป็น 2 ใน 3 ของความสูง Parabola จะได้ $\Delta t_2 = \bar{t}_{m2} - \bar{t}_2 = \frac{2}{3} \left(\frac{l}{2}\right) = \frac{l}{3} \Longrightarrow l = 3(\bar{t}_{m2} - \bar{t}_2)$

$$\frac{\partial t}{\partial x}_{x=0} = \frac{l}{\left(\frac{d}{2}\right)} = \frac{3(\bar{t}_{m2} - \bar{t}_2)}{\left(\frac{d}{2}\right)}$$

แทนค่ากลับจะได้

$$(\bar{t}_{m2} - \bar{t}_2) = \frac{Q}{A_s} \left(\frac{d}{6kP}\right)$$

ในที่นี้ A_s คือพื้นที่การถ่ายเทความร้อนจากรูปที่ 21 จะมี 2 ด้าน เมื่อนำมาใช้กับ Control Volume ในรูปที่ 17 A_sจะมีเพียง 1 ด้าน ดังนั้น

$$(\bar{t}_{m2} - \bar{t}_2) = \frac{Q}{A_s} \left(\frac{d}{3kP}\right)$$

จะได้ว่า $(\frac{d}{3k})$ คือ Internal Thermal Resistant (d = w = Semi-Thickness)

3.11 คุณสมบัติของก้าชผสม (Thermal Properties of Mixed Gas)

ของไหลที่ไหลผ่าน Regenerator ไม่ว่าจะเป็น ก๊าซเสียในช่วง (Hot Period) หรือ อากาศ ในช่วง (Cold Period) มักปรากฏอยู่ในรูปของก๊าซหลายๆชนิดผสมกันอยู่ ซึ่งก๊าซแต่ละชนิดจะมี คุณสมบัติทางความร้อนแตกต่างกันไป ถ้าก๊าซชนิดใดมีปริมาณมากคุณสมบัติของก๊าซชนิด ดังกล่าวก็จะเด่นมากกว่าก๊าซที่มีปริมาณน้อยกว่า มีดังนั้นในการพิจารณาคุณสมบัติทางความ ร้อนของของไหล จึงต้องพิจารณาปริมาณของก๊าซชนิดต่างๆที่อยู่ในของไหลด้วยดังนี้

ถ้าให้ของไหลประกอบไปด้วยก๊าซ 3 ชนิด ชนิดแรกมีปริมาณ x₁ kg/s ชนิดที่ 2 มีปริมาณ x₂ kg/s ชนิดที่ 3 มีปริมาณ x₃ kg/s เมื่อต้องการหาความหนาแน่นของของไหล , ρ_f จะหาได้ดังนี้

$$\rho_f = \left(\frac{x_1}{x_1 + x_2 + x_3}\right)\rho_1 + \left(\frac{x_2}{x_1 + x_2 + x_3}\right)\rho_2 + \left(\frac{x_3}{x_1 + x_2 + x_3}\right)\rho_3 \dots (3.62)$$

โดย ho_{f} คือ ความหนาแน่นของของไหล (kg/m 3)

- ho_1 คือ ความหนาแน่นของก๊าซชนิดแรก (kg/m 3)
- ho_2 คือ ความหนาแน่นของก๊าซชนิดที่สอง (kg/m³)
- ho_3 คือ ความหนาแน่นของก๊าซชนิดที่สาม (kg/m 3)

สำหรับคุณสมบัติอื่นๆก็สามารถหาได้เช่นเดียวกัน

3.12 พลังงานความร้อนนำกลับมาใช้ (Heat Recovery)

พลังงานความร้อนน้ำกลับมาใช้คือพลังงานความร้อนที่อากาศได้รับจากการไหลผ่านโครง อิฐูทนไฟในช่วง (Cooling Period) เพื่อเป็นการอุ่นตัวเองให้มีอุณหภูมิสูงสำหรับเผาไหม้ต่อไป สามารถหาได้จากสมการดังนี้

$$Q = \dot{m}c_{p}dt \dots (3.63)$$

โดย Q คือ ปริมาณความร้อนน้ำกลับมาใช้ (kJ)

 \dot{m} คือ อัตราการใหลโดยมวลของอากาศ (kg/s)

 c_p ศืข Specific Heat at Constant Pressure (kJ/kg K)

dt คือ อุณหภูมิที่เพิ่มขึ้นจากการรับความร้อนจากอิฐทนไฟ (⁰ C)

<u>บทที่ 4</u>

การดำเนินการวิจัย

ในการดำเนินการวิจัยสามารถแบ่งได้เป็น 2 ส่วนคือ การสร้างแบบจำลองทาง คณิตศาสตร์ของการถ่ายเทความร้อนใน Regenerator แบบโครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยม และ การทดลองวัดการทำงานของ Regenerator จริงเพื่อหาข้อมูลต่างๆที่จำเป็นในการจำลอง แบบทางคณิตศาสตร์ รวมทั้งเปรียบเทียบผลที่ได้จากการวัดกับแบบจำลองทางคณิตศาสตร์

4.1 แบบจำลองทางคณิตศาสตร์ของการถ่ายเทความร้อนใน Regenerator

แบบจำลองทางคณิตศาสตร์นี้ทำขึ้นเพื่อคำนวณหาการกระจายอุณหภูมิของโครงอิฐทน ไฟกับของไหล ในที่นี้คือ อากาศ (Cooling Period) หรือ ก๊าซเสียจากการเผาไหม้ (Heating Period) ณ ตำแหน่ง และ เวลาใดๆ, ปริมาณความร้อนนำกลับมาใช้ รวมถึง ประสิทธิผลทาง ความร้อน เมื่อ Regenerator ทำงานจนเข้าสู่สภาวะ Cyclic Equilibrium ในวัฏจักรการทำงานที่มี เวลาจำกัดค่าหนึ่ง ผลที่ได้ดังกล่าวจากแบบจำลองทางคณิตศาสตร์นี้จะนำมาวิเคราะห์ร่วมกับ ข้อมูลอื่นๆของ Regenerator ในการหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมต่อไปได้

ในการคำนวณหาการกระจายอุณหภูมิใน Regenerator จะพิจารณาจากการถ่ายเทความ ร้อนร่วมกับทฤษฎีอื่นๆที่เกี่ยวข้อง อันประกอบไปด้วยสมการต่างๆ ซึ่งแสดงไว้ในบทที่ 3 โดย ทฤษฏีต่างๆมีที่มาจากหนังสือ ตำราภาษาอังกฤษ และ วารสารที่สั่งสำเนาจากต่างประเทศ เนื่องจากมีสมการและข้อมูลที่ต้องพิจารณามาก รวมถึงกระบวนการอินทิเกรตสมการเข้ามา เกี่ยวข้องด้วย เพื่อความสะดวกในการใช้งาน และให้ได้ค่าที่ถูกต้องแม่นยำประหยัดเวลาในการ คำนวณ จึงจัดทำแบบจำลองทางคณิตศาสตร์ดังกล่าวเป็นโปรแกรมคอมพิวเตอร์ ซึ่งเขียนโดยใช้ ภาษา Visual Basic และสามารถใช้งานร่วมกับโปรแกรมไมโครซอฟท์ Excel ที่มีอยู่ใน ไมโครคอมพิวเตอร์ทั่วไป โดยการอ่านข้อมูลและการแสดงผลจะกระทำผ่านทางโปรแกรม Excel ส่วนการคำนวณจะใช้โปรแกรม Visual Basic ซึ่งเป็นเครื่องมือที่อยู่ในโปรแกรม Excel เป็นตัว ประมวลผล ดังสามารถแสดงกระบวนการทำงานได้ตาม Flow Chart ต่อไปนี้

4 5 6 แปลงตัวแปรและพารามิเตอร์ที่จะใช้ในการอินทิเกรตสมการที่ 7 และ 8 ในหัวข้อ 3.9 ให้อยู่ในภูป Dimensionless , RL, RP,A1, A2, B1, B2, X, K1, K2, K3, K4, DZ, DE JR=2,JS=1 จริง เท็จ $JR \leq M+1$ คำนวณการกระจาย Dimensionless Fluid Temperature ณ เวลาเริ่มต้น Heating Period , $T_{Fh}(JR,JS)$ JR=JR+1 JR=1,JS=2 จริง เท็จ $JS \leq P+1$ คำนวณการกระจาย Dimensionless Solid Temperature ที่ตำแหน่งทางเข้าช่องการใหล ณ เวลาใดๆ , T_{мh}(JR,JS) JR=2 จริง เท็จ $JR \leq M+1$

7 8 9 10

11

12

13

4.2 การทดลองวัดข้อมูลของ Regenerator

การทดลองวัดการทำงานของ Regenerator มีจุดประสงค์ในการหาข้อมูลต่างๆที่จำเป็น ในการถ่ายเทความร้อนมาใส่ในแบบจำลองทางคณิตศาสตร์ โดย Regenerator ที่ทำการตรวจวัด เป็น Regenerator แบบโครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยมในเตาถลุงดีบุก ของโรงงานถลุงดีบุก บริษัท ไทยแลนด์สเมลติ้งแอนด์รีไฟนิ่ง จำกัด (ไทยซาร์โก้) ซึ่งตั้งอยู่ที่ ถนนศักดิเดช อำเภอเมือง ตู้ ป.ณ.2 จังหวัด ภูเก็ต 83000 โทรศัพท์ (076)-391111-7 การทดลองแบ่งได้เป็นหัวข้อดังนี้

4.2.1 <u>การศึกษาการทำงานของ Regenerator แบบโครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยม</u>

รูปที่ 21 แสดงส่วนประกอบต่างๆของเตาถลุงดีบุก

Regenerator ในโรงงานถลุงดีบุกไทยซาร์โก้นี้มีหลักการทำงานคือ พัดลมจะดูดอากาศ จากภายนอกแล้วเป่าผ่านวาล์วกลับทิศทางด้านล่างซึ่งทำหน้าที่เปลี่ยนทิศทางการไหลของอากาศ ให้ผ่านไปยังRegenerator ด้านขวาที่ทำงานอยู่ในช่วง Cooling Period (ในขณะเดียวกัน ก๊าซเสียจาก Regenerator ด้านซ้ายที่ทำงานอยู่ในช่วง Heating Period ก็จะไหลผ่านวาล์วกลับ ทิศออกไปยังอุปกรณ์เก็บฝุ่นได้) อากาศเมื่อได้รับความร้อนจากโครงอิฐทนไฟรูปปล่องไฟ สี่เหลี่ยมใน Regenerator จะไหลเข้าไปช่วยในการเผาไหม้น้ำมันที่ฉีดออกมาจาก Burner ซึ่ง น้ำมันจะถูกอุ่นให้มีอุณหภูมิสูงด้วย Heater ประกอบกับอุณหภูมิภายในเตาที่สูงมากจะทำให้ น้ำมันติดไฟได้ทันที เตาถลุงที่พิจารณานี้เป็นแบบเตานอน (Reverberatory Furnace) ดังแสดง ในหัวข้อที่ 3.1 เมื่อน้ำมันสันดาปกับอากาศแล้วจะคายความร้อนให้กับแร่ดีบุกและตัวเตา ก๊าซ เสียที่เกิดขึ้นจะไหลออกจากเตาแล้วผ่านไปยัง Regenerator ทางด้านซ้ายซึ่งทำงานอยู่ในช่วง Heating Period ความร้อนจากก๊าซเสียจะถ่ายเทให้กับโครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยมใน Regenerator จากนั้นจึงไหลออกไปยังวาล์วกลับทิศ วัฏจักรการทำงานดำเนินไปเป็นระยะเวลา หนึ่ง เมื่อสิ้นสุด Heating Period จึงหมุนวาล์วกลับทิศให้อากาศไหลเข้าไปในทิศสวนทางกับการ ไหลของก๊าซเสียเดิมและเป็นการเริ่มต้นการทำงานในช่วง Cooling Period ของ Regenerator ด้านซ้าย การควบคุมการทำงานจะทำโดยผู้ปฏิบัติการที่ประจำอยู่ภายในห้องควบคุม

4.2.2 <u>ข้อมูลที่ต้องตรวจวัดและรวบรวม</u>

ข้อมูลต่างๆที่ต้องตรวจวัดและรวบรวมเพื่อใช้ในแบบจำลองทางคณิตศาสตร์มีดังนี้

- 1. อุณหภูมิและความชื้นสัมพัทธ์ของอากาศอ้างอิง (สิ่งแวดล้อม)
- อุณหภูมิอากาศและอิฐทนไฟ ณ ตำแหน่งทางเข้าช่องการไหลของโครงอิฐทนไฟในช่วง
 Cooling Period
- อุณหภูมิอากาศและอิฐทนไฟ ณ ตำแหน่งทางออกช่องการไหลของโครงอิฐทนไฟในช่วง
 Cooling Period
- อุณหภูมิก๊าซเสียและอิฐทนไฟ ณ ตำแหน่งทางเข้าช่องการไหลของโครงอิฐทนไฟในช่วง Heating Period
- 5. อุณหภูมิก๊าซเสียและอิฐทนไฟ ณ ตำแหน่งทางออกช่องการไหลของโครงอิฐทนไฟในช่วง Heating Period
- 6. เวลาที่ใช้ในแต่ละ Period (มีค่าเท่ากัน)
- 7. อัตราการใหลของอากาศโดยปริมาตร
- 8. อัตราการไหลโดยมวลและอุณหภูมิของน้ำมัน
- 9. Flue Gas Analysis (องค์ประกอบของก้าซเสีย)

10. <u>เครื่องมือวัดที่ใช้ในการเก็บข้อมูล</u>

เครื่องมือดังต่อไปนี้ ข้อ 1-4 ได้จัดซื้อจาก บริษัทแสงชัยมิเตอร์ จำกัด 694/23-26 ถ. พหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพฯ 10400 โทร.616-8031 ข้อ 5-6 ได้จองที่ หน่วย วิจัยพลังงานจุฬาลงกรณ์มหาวิทยาลัย ห้องพลังงาน ชั้น 4 ตึกฮันส์บันตลิ ภาค เรื่องกล คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โทร. 218-6642 ส่วนข้อ 7-8 ทางโรงงานถลุงดีบุก บริษัท ไทยแลนด์สเมลติ้งแอนด์รีไฟนิ่ง จำกัด (ไทยซาร์โก้) ซึ่งตั้งอยู่ที่ ถนนศักดิเดช อำเภอเมือง ตู้ ป.ณ.2 จังหวัด ภูเก็ต 83000 โทรศัพท์ (076)-391111-7 ได้มีการติดตั้งไว้อยู่แล้ว โดยได้รับเงิน ทุนอุดหนุนการวิจัยจาก กองทุนอนุรักษ์พลังงานทดแทน สำนักงานคณะกรรมการนโยบาย พลังงานแห่งชาติ 394/14 ถ. สามเสน เขตดุสิต กรุงเทพฯ 10300 โทร 612-1555

 เทอร์โมคัปเปิล TYPE R ขนาด15*800 mm PR 13 % รุ่น JB-35C หุ้มด้วยเซรามิกใช้วัด อุณหภูมิก๊าซเสียที่ไหลเข้าโครงอิฐทนไฟ (Heating Period) และอากาศที่ไหลออกจากโครงอิฐทน ไฟ (Cooling Period) โดยวัดอุณหภูมิได้ถึง 1,600 ⁰C

 เทอร์โมคัปเปิล TYPE K ขนาด15.9*1000 mm CA รุ่น JB-35 หุ้มด้วยสแตนเลสใช้วัด อุณหภูมิก๊าซเสียที่ไหลออกจากโครงอิฐทนไฟ (Heating Period) และอากาศที่ไหลเข้าโครงอิฐทน ไฟ (Cooling Period) โดยวัดอุณหภูมิได้ถึง 700 ⁰C

 3. ไส้เทอร์โมคัปเปิล TYPE K ขนาด 3.2 mm หุ้มด้วยเซรามิกกระดูกงูใช้วัดอุณหภูมิทางเข้า โครงอิฐูทนไฟเมื่อก๊าซเสียไหลผ่าน (Heating Period) และทางออกโครงอิฐูทนไฟเมื่ออากาศไหล ผ่าน (Cooling Period) โดยวัดอุณหภูมิได้ถึง 1,200 ⁰C

 4. ไส้เทอร์โมคัปเปิล TYPE K ขนาด 1.6 mm หุ้มด้วยเซรามิกกระดูกงูใช้วัดอุณหภูมิทางออก โครงอิฐทนไฟเมื่อก๊าซเสียไหลผ่าน (Heating Period) และทางเข้าโครงอิฐทนไฟเมื่ออากาศไหล ผ่าน (Cooling Period) โดยวัดอุณหภูมิได้ถึง 700 ⁰C

5. เครื่องอ่านและบันทึกข้อมูล (Hybrid Recorder) ยี่ห้อ YOKOGAWA HR1300 Model 3750 ใช้อ่านและบันทึกข้อมูลอุณหภูมิในข้อ 1-4 ตลอดทั้ง Heating และ Cooling Period

6. Flue Gas Analysis ยี่ห้อ Testo รุ่น 350 ประกอบไปด้วย Probe Flue gas + เทอร์ โมคัปเปิ้ลในตัว , Condensate trap และ The Analyser Unit สามารถวัดก๊าซเสียได้ในช่วง อุณหภูมิ ลบ40 ถึง + 1,200 ⁰C และจำแนกองค์ประกอบก๊าซเสียได้ 6 ชนิดได้แก่ O₂ (ถึง 21% โดยปริมาตร) , CO₂ (จากการคำนวณปริมาณ O₂ ที่ลดลง), CO (ถึง 10,000 ppm) , NO (ถึง 3,000 ppm) , NO₂ (ถึง 500 ppm) , SO₂ (ถึง 5,000 ppm) โดยใช้ Electrochemical Meas. Cell เป็นตัววัด แสดงผลด้วยตัวเลข 7. เครื่องวัดอัตราการไหลของอากาศโดยปริมาตร ใช้หลักการของ Orifice plate โดยวัด ความดันแตกต่างเมื่ออากาศไหลผ่าน Orifice plate เพื่อนำไปแปลงเป็นสัญญาณแสดงผลยัง ตัวเขียนกราฟวงกลม Fofboro / Yeuu ยี่ห้อ YOKOGAWA ในห้องควบคุม ซึ่งค่าที่แสดงในกราฟ เมื่ออ่านได้แล้วนำมาคูณด้วย 100 จะได้อัตราการไหลโดยปริมาตรของอากาศมีหน่วยเป็น m³/hr

8. เครื่องวัดอัตราการใหลโดยมวลและอุณหภูมิของน้ำมันใช้ Turbine Flowmeter และมี D/p cell วัดความดันของที่แตกต่างกันของน้ำมันมีขอบเขตการวัดระหว่าง 3 ถึง 15 psi เพื่อนำไปแปลง เป็นสัญญาณแสดงผลยังตัวเขียนกราฟวงกลม Fofboro / Yeuu ยี่ห้อ YOKOGAWA ใน ห้องควบคุม ซึ่งค่าที่แสดงในกราฟเมื่ออ่านได้แล้วนำมาคูณด้วย 10 จะได้อัตราการไหลโดย ปริมาตรของน้ำมันมีหน่วยเป็น Litre/hr จากนั้นจึงแปลงเป็นอัตราการไหลโดยมวลมีหน่วยเป็น kg/hr (น้ำมันเตา type C มีความหนาแน่น 898.8 kg/m³ ที่ 100 ⁰C)

4.2.3 <u>ขั้นตอนการทดลอง</u>

เดินทางไปยังโรงงานเพื่อเก็บข้อมูลเบื้องต้นและกำหนดจุดวัดรวมทั้งสภาพการวัด
 เนื่องจาก Regenerator ทั้ง 2 ด้านในรูปที่ 21 มีความสมมาตรกันจึงเลือกตรวจวัดเพียงด้านเดียว
 คือด้านซ้าย

2. จัดซื้อ,จองและสอบเทียบเครื่องมือต่างๆตามหัวข้อ 4.2.3

 เดินทางไปยังโรงงานเพื่อเก็บข้อมูลโดยละเอียด โดยติดตั้งเทอร์โมคัปเปิ้ลและไส้เทอร์ โมคัปเปิ้ล ระหว่างที่เตาถลุงหยุดซ่อมบำรุงตามตำแหน่งต่างๆดังรูปที่ 22 เทอร์โมคัปเปิ้ลและไส้จะ ต่อ Extension Wire มายังเครื่องบันทึกข้อมูลซึ่งเมื่อเริ่มเดินเตาจะเก็บค่าทุกๆ 1 นาที ตลอดการ ถลุงแร่ 1 รอบ (12 ชั่วโมง)

4. ติดตั้ง Flue Gas Analysis พร้อมหัววัดตามตำแหน่งในรูปที่ 22 โดยเมื่อเริ่มเดินเตาจะทำ การเก็บค่าในช่วง Heating Period ทุกๆ ครึ่งชั่วโมง เป็นเวลา 8 ชั่วโมง เพื่อหาค่าเฉลี่ย

5. อ่านค่าอัตราการไหลของอากาศโดยปริมาตรที่ใช้พัดลมขับจากกราฟที่บันทึกค่าบน Chart
 วงกลมในห้องควบคุม ตลอดช่วงการถลุงแร่ 1 เที่ยว (12 ชั่วโมง) เพื่อหาค่าเฉลี่ย

6. อ่านค่าอัตราการไหลโดยมวลและอุณหภูมิของน้ำมันที่ใช้ใน Burner จากกราฟซึ่งบันทึก
 ค่าบน Chart วงกลมในห้องควบคุม ตลอดช่วงการถลุงแร่ 1 เที่ยว (12 ชั่วโมง) เพื่อหาค่าเฉลี่ย

4.3 การหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสม

เมื่อได้ข้อมูลต่างๆจากการตรวจวัดแล้ว จึงนำข้อมูลเหล่านั้นมาใส่ในแบบจำลองทาง คณิตศาสตร์ในหัวข้อ 4.1 เพื่อจำลองการถ่ายเทความร้อนใน Regenerator โดยแสดงการกระจาย ของอุณหภูมิอากาศหรือก๊าซเสีย กับโครงอิฐทนไฟ ที่ตำแหน่งและเวลาใดๆ ใน 1 วัฏจักรการ ถ่ายเทความร้อน (Heating Period + Cooling Period) พร้อมทั้งเปรียบเทียบกับผลการตรวจวัด และ เวลาที่ใช้ใน 1 วัฏจักร ซึ่งทำให้ได้ประสิทธิผลทางความร้อนของ Regenerator รวมทั้ง ปริมาณความร้อนนำกลับมาใช้สูงสุด

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 5

ผลการทดลอง วิเคราะห์ และ การหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสม ใน Regenerator แบบโครงอิฐทนไฟรูปปล่องไฟสี่เหลี่ยม

ในบทนี้จะแสดงผลการทดลองในการตรวจวัดข้อมูลต่างๆของ Regenerator แบบโครงอิฐ ทนไฟรูปปล่องไฟสี่เหลี่ยม ที่จำเป็นต่อการจำลองแบบทางคณิตศาสตร์ ในโรงงานถลุงดีบุกไทย ซาร์โก้ และแสดงผลการจำลองแบบทางคณิตศาสตร์ รวมทั้งเปรียบเทียบผลจากการวัดและผล จากการจำลองแบบ ตลอดจนหาวัฏ<mark>จักรที่เหมาะสมในการถ่า</mark>ยเทความร้อนด้วย

5.1 ผลการทดลองในการตรวจวัดข้อมูลต่าง ๆของ Regenerator

ในการตรวจวัดข้อมูลต่างๆที่จำเป็นต่อการจำลองแบบทางคณิตศาสตร์ดังแสดงในหัวข้อ 4.2 ได้ทำการเก็บข้อมูลระหว่างการถลุงดีบุกของ Regenerator ด้านทิศเหนือในเตาน้ำมันเบอร์ 4 (Rf 4) โดยเดินทางไปยังโรงงานถลุงดีบุก บริษัท ไทยแลนด์สเมลติ้งแอนด์รีไฟนิ่ง จำกัด (ไทยซาร์ โก้) ซึ่งตั้งอยู่ที่ ถนนศักดิเดช อำเภอเมือง ตู้ ป.ณ.2 จังหวัด ภูเก็ต 83000 โทรศัพท์ (076)-391111-7 จำนวน 2 ครั้ง ครั้งแรกระหว่างวันที่ 15 ตุลาคม พ.ศ. 2542 เพื่อเก็บข้อมูลเบื้องต้นอันได้แก่ ขนาด , รูปร่าง ของ Regenerator รวมทั้งอุปกรณ์วัดบางส่วนที่ทางโรงงานมีการติดตั้งอยู่แล้ว พร้อมกำหนดจุดวัดและสภาพการวัดต่างๆ เพื่อเตรียมจัดซื้อและจองเครื่องมือวัด จากนั้นในครั้งที่ 2 ระหว่างวันที่ 4-8 กันยายน พ.ศ. 2543 เพื่อเก็บข้อมูลโดยละเอียด โดยได้ทำการติดตั้งเครื่องมือ ต่างๆในช่วงท้ายของการปิดซ่อมบำรุงรักษาและเก็บข้อมูลเมื่อเริ่มเดินเตาน้ำมันเบอร์ 4

ข้อมูลต่างๆที่ได้ทำการตรวจวัดมีดังต่อไปนี้

5.1.1 <u>ข้อมูลเบื้องต้น</u>

รายละเอียดและรูปร่างของ Regenerator ได้แสดงไว้แล้วในหัวข้อที่ 3.9 รูปที่ 15 และ 16 ส่วนโครงอิฐทนไฟที่อยู่ภายในมีลักษณะเป็นรูปปล่องไฟสี่เหลี่ยม หน้าตัดขวางเป็นรูปสี่เหลี่ยม จัตุรัส โครงอิฐทนไฟนี้ทำมาจาก Super-Duty Fireclay Brick ASTM C 27-93, Regular Type รุ่น K 43 TSR 47 ขนาด 18'' X 9'' X 3'' เรียงประกอบสลับกันจากตรงกลางให้มีช่องว่างขนาด 0.18 X 0.18 (a X a) เมตรจำนวน 15 X 8 (120) ช่อง ส่วนที่เป็นกำแพงรอบนอกจะเติมเต็มด้วย TSR 48 ขนาด 10.5'' X 9'' X 3'' ซึ่งเป็นเนื้ออิฐเดียวกัน มีความสูง (L) 5.04 เมตร แต่ละช่องมีขนาด 0.26 X 0.26 เมตร (b X b แบ่งตาม Symmetry line) ดังรูปที่ 23

รูปที่ 23 แสดงหน้าตั<mark>ดขวางและรูปร่างของโครงอิฐ</mark>ทนไฟใน Regenerator

ในการถลุงแร่ดีบุกจะแบ่งเป็นรอบ แต่ละรอบใช้เวลารวมทั้งปริมาณแร่เท่ากัน โดยข้อมูล การถลุงมีดังนี้

วัน เดือน ปี	เวลา	<mark>เตาถลุง</mark>	เชื้อเพลิง	ชั่วโมงการถลุ _่	<mark>ม</mark> ปริมาณแร่แห้	ง ความชื้นแร่
	8		440000	(ชั่วโมง)	(ตัน)	(% แร่เปียก)
4 ก.ย. 2543	10.00-22.00 น	Rf 4	น้ำมันเต _ิ าC	12	23	7.52

ตารางที่ 1 แสดงข้อมูลเบื้องต้นของการถลุงแร่ดีบุก

การชั่งแร่ก่อนประจุลงเตาจะชั่งเป็นน้ำหนักแร่แห้ง 23 ตัน (น้ำหนักแร่เปียกลบด้วย ความชื้น 7.52 %) แล้วผสมกับวัตถุประจุอีกเล็กน้อย (ไม่มีความชื้น) แบ่งใส่เป็น 2 ช่วงคือ เวลา 10.00 น. ใส่ 16 ตันแร่ และ เวลา 13.00น.ใส่อีก 7 ตันแร่ การสลับรอบ Regenerator ทำทุกๆ 30 นาที

5.1.2 <u>ข้อมูลโดยละเอียด</u>

ประกอบด้วยข้อมูลขององค์ประกอบของก๊าซเสีย , อากาศที่ใช้ในการเผาไหม้,เชื้อเพลิงที่ ใช้ในการเผาไหม้ และอุณหภูมิของโครงอิฐทนไฟกับอากาศหรือก๊าซเสียที่ทางเข้าและออกในแต่ละ Period ที่ทำการตรวจวัดในวันที่ 4 กันยายน พ.ศ. 2543 ระหว่างเวลา 10.00 – 22.00 น. ดังนี้
องค์ประกอบของก๊าซเสีย คือองค์ประกอบของก๊าซเสียจากการเผาไหม้ที่ออกมา จากเตาถลุงก่อนไหลเข้า Regenerator ทำการวัดทุกๆ 30 นาทีที่ Regenerator ทำงานอยู่ในช่วง Heating Period เป็นเวลา 8 ชั่วโมง จนค่าต่างๆเริ่มคงที่ ซึ่งประกอบด้วยก๊าซชนิดต่างๆดังนี้

เวลา	8.50	9.45	10.45	11.45	13.45	14.52	15.45	17.00	เฉลี่ย	หน่วย
T _{เตาถลุง}	1,378	1,384	1,209	1,158	1,159	1,250	1,280	1,300	1,265	°C
Р	0	-0.1	-0.1	-0.1	-0.1	0	0	-0.1	0	mmWA
T _{oil}	122	120	112	123	125	115	113	114	118	°C
T _{ref}	35	40	39	39	38	39	38	38	38	°C
T _{flue gas}	753	613	636	603	674	686	678	738	673	⁰ C
0 ₂	4.40	2.50	4.60	4.40	<mark>9.5</mark> 0	2.70	3.40	5.40	4.61	% vol
CO ₂	12.50	14.00	12.40	12.50	8.60	13.70	13.20	11.70	12.33	% vol
СО	987	307	59	588	108	118	283	569	377	ppm
NO	142	145	163	137	131	125	86	49	122	ppm
NO ₂	0	0	0	0	0	0	0	0	0	ppm
SO ₂	4,014	3,414	80 <mark>5</mark>	334	430	125	119	140	1,173	ppm

ตารางที่ 2 แสดงองค์ประกอบก๊าซเสียจากการเผาไหม้

รูปที่ 24 แสดงแนวโน้มของข้อมูลในตารางที่ 2

รูปที่ 25 แสดงแนวโน้มของข้อมูลในตารางที่ 2 (ต่อ 1)

รูปที่ 26 แสดงแนวโน้มของข้อมูลในตารางที่ 2 (ต่อ 2)

อากาศที่ใช้ในการเผาไหม้ มาจากอากาศภายนอกที่มีอุณหภูมิเฉลี่ย 38 °C
ความขึ้นสัมพัทธ์เฉลี่ย 80 % ไหลผ่าน Regenerator ข้อมูลอัตราการไหลโดยปริมาตรของอากาศ
ทำการวัดต่อเนื่องตลอดช่วงการถลุงซึ่งใช้เวลา 12 ชั่วโมง ทำให้ข้อมูลจำนวนมากจึงทำการเฉลี่ย
เป็นรายชั่วโมงแสดงดังนี้

เวลา	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	น.
ชั่วโมง	0	1	2	3	4	5	6	7	8	9	10	11	12	ชั่วโมง
อัตราการไหล	4,650	4,650	4,800	4,750	4,840	4,850	4,920	4,910	5,210	5,190	5,200	5,190	5,200	(m ³ /hr)
เฉลี่ย	4,951	(m³/hr)												

ตารางที่ 3 แสดงอัตราการไหลโดยปริมาตรของอากาศที่ใช้ในการเผาไหม้

รูปที่ 27 แสดงอัตราการไหลโดยปริมาตรของอากาศที่ใช้ในการเผาไหม้

เชื้อเพลิงที่ใช้ในการเผาไหม้ คือน้ำมันเตาชนิด C ซึ่งผ่านการอุ่นโดยใช้ Heater
ไฟฟ้าจนมีอุณหภูมิสูงถึง 100 ° C ข้อมูลอัตราการไหลโดยมวลของน้ำมันทำการวัดต่อเนื่องตลอด
ช่วงการถลุงซึ่งใช้เวลา 12 ชั่วโมง ทำให้ข้อมูลจำนวนมากจึงทำการเฉลี่ยเป็นรายชั่วโมงแสดงดังนี้

เวลา	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	น.
ชั่วโมง	0	1	2	3	4	5	6	7	8	9	10	11	12	ชั่วโมง
อัตราการไหล	250	255	255	250	265	270	275	270	275	275	285	290	290	(kg/hr)
เฉลี่ย	270	(kg/hr)												

ตารางที่ 4 แสดงอัตราการไหลโดยมวลของน้ำมันที่ใช้ในการเผาไหม้

รูปที่ 28 แสดงอัตราการไหลโดยมวลของน้ำมันที่ใช้ในการเผาไหม้

อุณหภูมิของโครงอิฐทนไฟกับอากาศหรือก๊าซเสียที่ทางเข้าและออกในแต่ละ
Period เนื่องจากทำการบันทึกข้อมูลอุณหภูมิทุกนาทีจึงทำให้มีข้อมูลปริมาณมาก ดังนั้นเพื่อ
ความสะดวกจึงทำการเฉลี่ยข้อมูลเพื่อใช้เป็นตัวแทนของแต่ละ Period สามารถแสดงได้ดังนี้

Heating Period	อุณหภูมิก๊าซเสียขาเข้า (ด้านบน) Regenerator เฉลี่ย	1,052	O
	อุณหภูมิก๊าซเสียขาออก (ด้านล่าง) Regenerator เฉลี่ย	434	O
	อุณหภูมิโครงอิฐทนไฟด้านบน Regenerator เฉลี่ย	907	O
6	อุณหภูมิโครงอิฐทนไฟด้านล่าง Regenerator เฉลี่ย	420	O
Cooling Period	อุณหภูมิอากาศขาเข้า (ด้านล่าง) Regenerator เฉลี่ย	241	O
9	อุณหภูมิอากาศขาออก (ด้านบน) Regenerator เฉลี่ย	751	O
	อุณหภูมิโครงอิฐทนไฟด้านบน Regenerator เฉลี่ย	402	O
	อุณหภูมิโครงอิฐทนไฟด้านล่าง Regenerator เฉลี่ย	890	°C

ตารางที่ 5 แสดงอุณหภูมิของโครงอิฐทนไฟกับอากาศหรือก๊าซเสียในแต่ละ Period

รูปที่ 29 แสดงการกระจายอุณหภูมิของไหลและอิฐทนไฟใน Regenerator ตลอด 12 ชั่วโมง

จากรูปในช่วงครึ่งชั่วโมงแรกของแต่ละชั่วโมง Regenerator จะอยู่ในช่วง Cooling Period ก่อนแล้วตามด้วยช่วง Heating Period เมื่อทำงานเข้าสู่ครึ่งชั่วโมงถัดไปของแต่ละชั่วโมง ในช่วง 2 – 3 ชั่วโมงแรกของรอบการถลุง จะมีการปิดพัดลมเป็นพักๆเพื่อใส่แร่และกวนเตาทำให้การเผา ใหม้ในช่วงนี้ไม่ต่อเนื่อง ตลอดจนการกลับทิศการไหลของอากาศหรือก๊าซเสียก็จะไม่เป็นระบบ อย่างสม่ำเสมอทุกครึ่งชั่วโมง ดังนั้นอุณหภูมิที่วัดได้จึงไม่มีรูปแบบที่แน่นอน จนเมื่อเริ่มเข้าสู่ชั่วโมง ที่ 4 จึงจะเข้าสู่กระบวนการตามปกติ เมื่อถลุงมาจนถึงชั่วโมงที่ 9 อุณหภูมิในเตาจะเพิ่มสูงขึ้น เนื่องจากแร่ที่อยู่ในเตาได้รับความร้อนจากก๊าซเสียในการเผาไหม้มาเต็มที่แล้ว ความร้อนจากการ เผาไหม้จะถ่ายเทให้กับแร่และตัวเตาน้อยลง ก๊าซเสียที่ออกมาจากเตาจึงมีอุณหภูมิสูงขึ้น รวมทั้งมี การเร่งอุณหภูมิของเตาให้สูงจากการปรับเพิ่มปริมาณน้ำมันและอากาศในการเผาไหม้ เพื่อให้

ปฏิกิริยาเคมีในเตาเกิดขึ้นอย่างสมบูรณ์ หลังจากนั้นเมื่อเข้าสู่ชั่วโมงสุดท้ายจึงเริ่มเจาะ เตาเพื่อน้ำแร่ดีบุกบริสุทธิ์ออกมา ในช่วง Cooling Period ของไหลที่ด้านบน Regenerator คือ ้อากาศร้อนที่ไหลออกจาก Regenerator เข้าไปช่วยเผาไหม้ในเตาถลุง ซึ่งจะมีอุณหภูมิต่ำกว่าอิฐ ทนไฟที่ด้านบน Regenerator โดยในช่วงแรกอุณหภูมิอากาศวัดได้สูงกว่าอิฐทนไฟเนื่องจาก ้อุปกรณ์วัดยังมีความร้อนสะสมอยู่ในตัว ค่าที่วัดได้จึงเบี่ยงเบนไป หลังจากนั้นอุณหภูมิจึงลดลงจน ้ต่ำกว่าอิฐทนไฟ เมื่อดูจากแนวโน้มอุณหภูมิอากาศพบว่ายังคงลดลงอย่างต่อเนื่องและมีอัตราการ ูลดลงที่ค่อนข้างมากจึงพอสรุปได้ว่า ค่าที่วัดออกมายังไม่ใช่อุณหภูมิที่แท้จริงของอากาศแต่เป็น ค่าที่วัดโดยรวมเอาผลจากความร้อนสะสมในอุปกรณ์วัดไว้ด้วย ในการวัดจนได้อุณหภูมิที่แท้จริง ซึ่งมีแนวโน้มต่ำลงกว่าค่าต่ำสุดนี้อีกเล็กน้อยจะทำให้ใช้เวลาวัดเกินกว่าเวลาใน 1 Period (30 นาที) จึงใช้ค่าต่ำสุดในแต่ละ Period มาเฉลี่ยเป็นค่าอุณหภูมิอากาศที่ออกจาก Regenerator ้ส่วนของไหลด้านล่าง Regenerator ก็คืออากาศเช่นเดียวกันซึ่งจะไหลเข้า Regenerator เพื่อรับ ความร้อนจากอิฐทนไฟที่มีอุณหภูมิสูงกว่า ค่าที่ได้มีความเบี่ยงเบนในลักษณะเดียวกับอากาศ ทางด้านบน Regenerator โดยก่อนหน้านี้พัดลมจะดูดอากาศภายนอกแล้วเป่าผ่านท่อนำลมที่หุ้ม ภายในด้วยอิฐทนไฟซึ่งรับความร้อนมาจากก๊าซเสียที่ใหลผ่านเมื่อ Regenerator ทำงานอยู่ใน Heating Period ที่แล้ว ท่อนี้จึงประพฤติตัวเสมือนเป็น Regenerator ด้วย โดยความร้อนในอิฐทน ้ไฟที่หุ้มภายในจะถ่ายเทให้กับอากาศมาตลอดทางจนอากาศมีอุณหภูมิถึง 241 °C โดยเฉลี่ย ที่ ปากทางเข้าด้านล่าง Regenerator

ในช่วง Heating Period ของไหลที่ด้านบน Regenerator คือ ก๊าซเสียอุณหภูมิสูงที่ไหล ออกจากเตาถลุงเข้าสู่ Regenerator เพื่อถ่ายเทความร้อนให้กับอิฐทนไฟที่มีอุณหภูมิต่ำกว่า โดย ค่าที่วัดได้ในช่วงแรกมีการเบี่ยงเบนเนื่องจากอุปกรณ์วัดมีความจุความร้อนในตัวเองทำให้ต้องใช้ เวลามากกว่านี้ในการวัดอุณหภูมิให้มีความแม่นยำ อุณหภูมิที่วัดได้สูงสุดคือ 1052° C โดยเฉลี่ยที่ ปากทางเข้าด้านบน Regenerator ส่วนของไหลด้านล่าง Regenerator คือก๊าซเสียที่ไหลออกมา หลังจากถ่ายเทความร้อนให้กับอิฐทนไฟแล้ว โดยอุณหภูมิของก๊าซเสียส่วนใหญ่วัดได้ต่ำกว่าอิฐทน ไฟที่ด้านล่าง Regenerator เนื่องจากตำแหน่งที่ทำการวัดอุณหภูมิก๊าซเสียอยู่ห่างจากปากช่อง การไหล ก๊าซเสียที่ออกมาอาจถ่ายเทความร้อนบางส่วนให้กับสิ่งแวดล้อม รวมทั้งผลที่เกิดจาก ความจุความร้อนในอุปกรณ์วัดด้วย แต่อย่างไรก็ดีค่าที่วัดได้ก็เป็นค่าที่มีลักษณะเดียวกับอุณหภูมิ ก๊าซเสียที่ด้านบน Regenerator โดยรวมแล้วจากข้อมูลที่ทำการตรวจวัดพบว่ากระบวนการถลุง ดีบุกในช่วงเวลาดังกล่าวยังไม่เข้าสู่ Cyclic Equilibrium เนื่องจากมีความแตกต่างของอุณหภูมิ อากาศร้อนที่ออกจาก Regenerator ระหว่าง Cooling Period ใดๆอยู่ อนึ่งเนื่องจากในการวัดอุณหภูมิของไหลที่มีอุณหภูมิสูงด้วยอุปกรณ์เทอร์โมคัปเปิ้ล ผล จากการแผ่รังสีระหว่างอุปกรณ์วัดและผนังอิฐทนไฟจึงมีค่อนข้างมาก ดังนั้นเมื่อคำนึงถึงการแผ่ รังสีจะได้ว่า

Cooling Period ด้านบน Regen.

รูปที่ 30 แสดงผลจากการแผ่รังสีที่มีต่ออุปกรณ์วัดที่ด้านบน Regenerator (Yunus A. Cengel,1998:549-551)

พิจารณาการวัดที่ด้านบน Regenerator ในช่วง Cooling Period ของไหลที่วัดในขณะนี้ คืออากาศที่ได้รับความร้อนจาก Regenerator อุณหภูมิที่เทอร์โมคัปเปิ้ล ,T_{tc} วัดได้จะมีค่าสูงกว่า อุณหภูมิอากาศจริง , T_f เนื่องจากในสภาวะดังรูปที่ 30 การถ่ายเทความร้อนของอุปกรณ์วัดจะอยู่ ในรูปแบบดังนี้ สมมติให้อุณหภูมิผนังอิฐทนไฟ , T_w มีค่าคงที่ ผนังอิฐทนไฟซึ่งมีอุณหภูมิสูง เนื่องจากรับความร้อนจากก๊าซเสียในช่วง Heating Period ที่แล้วจะแผ่รังสีความร้อนไปลู่ อุปกรณ์วัดซึ่งมีอุณหภูมิต่ำกว่าในขณะที่อากาศจะพาความร้อนไปจากอุปกรณ์วัดจึงทำให้ อุณหภูมิของอากาศที่วัดได้มีค่าต่ำลงเรื่อยๆจนจบ Period ที่ขณะใดๆ Heat flux ของการแผ่รังสีความร้อนกับการพา ความร้อนมีค่าเท่ากัน จะหาอุณหภูมิของอากาศที่แท้จริงได้ดังนี้

T_w คืออุณหภูมิผนังอิฐทนไฟมีค่าประมาณ 1153 K

ε_{tc} คือ Emissivity ของอุปกรณ์วัดมีค่าประมาณ 0.3

 σ คือ Stefan-Boltzmann constant มีค่า 5.67E-8 (Watt/($m^{2*}K^4$))

h คือค่าสัมประสิทธิ์การพาความร้อนเฉลี่ยสำหรับ Forced Convection flow across Cylinder มีค่าประมาณ 62.02 (W/m² K) หาจาก

$$Nu_{cyl} = \frac{hD}{k} = 0.3 + \frac{0.62 * \text{Re}^{1/2} * \text{Pr}^{1/3}}{\left[1 + \left(0.4 / \text{Pr}\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{\text{Re}}{28,200}\right)^{5/8}\right]^{4/5} \dots (5.2)$$

โดย k คือ ค่าความสามารถการนำความร้อนของของไหล (Watt / (m K))

D คือ diameter ของ Cylinder (m)

Re คือ Reynolds number

Pr คือ Prandtl number

คุณสมบัติทุกชนิดในสมการ 5.1 และ 5.2 หาที่ T_{film} =
$$\frac{(t_{fluid} + t_{surface})}{2}$$

เมื่อแทนค่าต่างๆลงในสมการ 5.1 จะได้ T_f = 678.84 ^oC ซึ่งมีค่าต่ำกว่าอุณหภูมิที่เทอร์ โมคัปเปิ้ลวัดได้ T_{tc} = 800 ^oC ดังนั้นจึงทำให้อุณหภูมิที่วัดได้สูงกว่าอุณหภูมิของของไหลจริงจาก การแผ่รังสี

รูปที่ 31 แสดงผลจากการแผ่รังสีที่มีต่ออุปกรณ์วัดที่ด้านล่าง Regenerator (Yunus A. Cengel,1998:549-551) พิจารณาการวัดที่ด้านล่าง Regenerator ในช่วง Heating Period ของไหลที่วัดในขณะนี้คือ ก๊าซเสียที่ไหลออกจากโครงอิฐทนไฟ อุณหภูมิที่เทอร์โมคัปเปิ้ล ,T_{ic} วัดได้จะมีค่าต่ำกว่าอุณหภูมิ อากาศจริง , T_f เนื่องจากในสภาวะดังรูปที่ 31 การถ่ายเทความร้อนของอุปกรณ์วัดจะอยู่ในรูปแบบ ดังนี้ สมมติให้อุณหภูมิผนังอิฐทนไฟ , T_w มีค่าคงที่ ผนังอิฐทนไฟซึ่งมีอุณหภูมิต่ำเนื่องจากถ่ายเท ความร้อนให้กับอากาศในช่วง Cooling Period ที่แล้ว อุปกรณ์วัดซึ่งมีอุณหภูมิสูงกว่าจะแผ่รังสี ความร้อนไปสู่ผนังอิฐทนไฟ ในขณะที่อากาศจะพาความร้อนมาสู่อุปกรณ์วัดจึงทำให้อุณหภูมิของ อากาศที่วัดได้มีค่าสูงขึ้นเรื่อยๆจนจบ Period ที่ขณะใดๆ Heat flux ของการแผ่รังสีความร้อน กับการพาความร้อนมีค่าเท่ากัน จะหาอุณหภูมิของอากาศที่แท้จริงได้ดังนี้

โดย T_{tc} คืออุณหภูมิที่เทอร์โมคัปเปิ้ลวัดได้มีค่าประมาณ 673 K

T_w คืออุณหภูมิผนังอิฐทนไฟมีค่าประมาณ 473 K

 ${m \mathcal E}_{_{tc}}$ คือ Emissivity ของอุปกรณ์วัดมีค่าประมาณ 0.25

 σ คือ Stefan-Boltzmann constant มีค่า 5.67E-8 (Watt/($m^{2*}K^4$))

h คือค่าสัมประสิทธิ์การพาความร้อนเฉลี่ยสำหรับ Forced Convection flow across Cylinder มีค่าประมาณ 26.24 (W/m² K) หาจากสมการ 5.2

เมื่อแทนค่าต่างๆลงในสมการ 5.3 จะได้ T_r = 483.79 ⁰C ซึ่งมีค่าสูงกว่าอุณหภูมิที่เทอร์โมคัปเปิ้ล วัดได้ T_{tc} = 400 ⁰C ดังนั้นจึงทำให้อุณหภูมิที่วัดได้ต่ำกว่าอุณหภูมิของของไหลจริงจากการแผ่รังสี

ดังนั้นจากรูปที่ 29 เมื่อมีการคำนึงถึงผลจากการแผ่รังสีระหว่างเทอร์โมคัปเปิ้ลกับผนังอิฐ ทนไฟใน Regenerator ทำให้ค่าอุณหภูมิของอากาศที่วัดได้ที่ด้านบน Regenerator ในช่วง Cooling Period มีค่าต่ำลงประมาณ 121.16 ⁰C ขณะที่อุณหภูมิของก๊าซเสียที่วัดได้ที่ด้านล่าง Regenerator ในช่วง Heating Period มีค่าสูงขึ้นประมาณ 83.79 ⁰C จึงสามารถอธิบายได้ถึง สาเหตุที่อุณหภูมิก๊าซเสียที่ออกมาจาก Regenerator ในช่วง Heating Period มีค่าต่ำกว่า อุณหภูมิของอิฐทนไฟ โดยสามารถแสดงค่าแนวโน้มอุณหภูมิที่ได้มีการคำนึงถึงผลจากการแผ่รังสี ความร้อนต่อเครื่องมือวัดอุณหภูมิดังรูปที่ 32 เนื่องจากในช่วง 3 ชั่วโมงแรกการกลับทิศการไหล ของของไหลใน regenerator ยังไม่เป็นวัฏจักรที่ต่อเนื่องสม่ำเสมอ เนื่องจากมีการหยุดเตาถลุงและ ปิดพัดลมระหว่างการใส่แร่ จึงแสดงค่าตั้งแต่ชั่วโมงที่ 3 เป็นต้นไป

รูปที่ 32 แสดงการกระจายอุณหภูมิของไหลและอิฐทนไฟใน Regenerator เมื่อคำนึงถึงผลจาก Radiation ที่มีต่อเครื่องมือวัด

5.2 ผลการจำลองแบบทางคณิตศาสตร์ของ Regenerator

ในการจำลองแบบการทำงานของ Regenerator ได้จัดทำเป็นโปรแกรมคอมพิวเตอร์เพื่อ ช่วยให้ทำการคำนวณได้สะดวกขึ้น โดยเมื่อใส่ข้อมูลต่างๆที่ทำการตรวจวัดในหัวข้อ 5.1 พร้อมทั้ง ค่าแบ่งความละเอียดแกนความยาวและแกนเวลา เป็น 20 และ 40 ตามลำดับ ,ค่าความยอมรับได้ (Pseudo-Thermal Ratio) เป็น 15 (อุณหภูมิอากาศขาออก Regenerator ในช่วง Cooling Period ต่างจาก Cooling Period ที่แล้วไม่เกิน 15 องศาเซลเซียส) เนื่องจากยังไม่เป็น Cyclic Equilibrium) รวมถึงค่า Emissivity ของอากาศและก๊าซเสีย เป็น 0.034 และ 0.133 กับค่า Absorptivity ของอากาศและก๊าซเสีย เป็น 0.0299 และ 0.1189 ซึ่งคำนวณจากวิธีการตามหัวข้อ 3.7.3 โดยให้ในแต่ละชั่วโมงมีการเปลี่ยนแปลงค่าอัตราการไหลโดยมวลของอากาศ , อุณหภูมิ ของก๊าซเสียขาเข้า Regenerator ในช่วง Heating Period และ อุณหภูมิอากาศขาเข้า Regenerator ในช่วง Cooling Period แล้วแสดงผลในรูปแบบเดียวกับรูปที่ 32 ซึ่งจะได้ผลดังนี้

รูปที่ 33 แสดงการกระจายอุณหภูมิต่างๆจากผลการจำลองแบบ Regenerator

จากรูปพบว่าวัฏจักรเริ่มต้นที่ Heating Period ที่ด้านบน Regenerator ของไหลคือ ก๊าซ เสียที่ไหลเข้า Regenerator จะอุณหภูมิสูงกว่าอิฐทนไฟและค่าทั้งสองมีแนวโน้มสูงขึ้นเล็กน้อยเมื่อ เวลาผ่านไป โดยอิฐทนไฟจะมีอุณหภูมิสูงขึ้นจากพลังงานความร้อนที่ได้รับจากก๊าซเสีย ส่วนที่ ด้านล่าง Regenerator อุณหภูมิของก๊าซเสียที่ออกมาจะมีอุณหภูมิสูงกว่าอิฐทนไฟ และค่า อุณหภูมิทั้งสองมีแนวโน้มเพิ่มขึ้นเมื่อเวลาผ่านไป เนื่องจากอิฐทนไฟได้รับพลังงานความร้อนจาก ก๊าซเสีย ในขณะที่ก๊าซเสียจะถ่ายเทพลังงานความร้อนให้อิฐทนไฟได้น้อยลงเมื่อเวลาผ่านไป ก๊าซ เสียที่ออกจึงมีอุณหภูมิสูงขึ้นจนจบ Period

เมื่อครบ 30 นาที วัฏจักรจึงเข้าสู่ Cooling Period ที่ด้านล่าง Regenerator ของไหลคือ อากาศที่ไหลเข้ามีอุณหภูมิต่ำกว่าอิฐทนไฟและค่าทั้งสองมีแนวโน้มลดลงเมื่อเวลาผ่านไป โดยอิฐ ทนไฟจะมีอุณหภูมิลดลงเนื่องจากถ่ายเทความร้อนให้กับอากาศที่มีอุณหภูมิต่ากว่า ส่วนที่ด้านบน regenerator อุณหภูมิอากาศที่ออกมาจะมีอุณหภูมิต่ำกว่าอิฐทนไฟ และค่าอุณหภูมิทั้งสองมี แนวโน้มลดลงเมื่อเวลาผ่านไป เนื่องจากอิฐทนไฟถ่ายเทความร้อนให้กับอากาศที่มีอุณหภูมิต่ำกว่า ส่วนอากาศก็ได้รับพลังงานความร้อนจากอิฐทนไฟน้อยลงด้วย

พบว่าแนวโน้มค่าอุณหภูมิจากการจำลองแบบของ ของไหลและอิฐทนไฟใน Regenerator ทั้งสอง Period เป็นไปในทิศทางเดียวกันกับค่าที่ได้จากการวัด โดยสามารถแยกเปรียบเทียบ อุณหภูมิต่างๆได้ดังนี้

รูปที่ 34 แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิของไหลด้านบน regenerator

รูปที่ 35 แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิของไหลด้านล่าง regenerator

รูปที่ 36 แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิอิฐทนไฟด้านบน regenerator

รูปที่ 37 แสดงการเปรียบเทียบผลการวัดและการจำลองอุณหภูมิอิฐทนไฟด้านล่าง regenerator

จากรูปที่ 34 ที่ด้านบน Regenerator พบว่าในช่วง Heating Period อุณหภูมิก๊าซเสียที่วัด ได้จะเพิ่มสูงขึ้นอย่างรวดเร็วในตอนแรกเนื่องจาก Response time ของเทอร์โมคัปเปิ้ล ที่ใน Period ที่แล้วเป็นการวัดอากาศที่อุ่นแล้วซึ่งมีอุณหภูมิต่ำ จึงต้องใช้เวลาพอสมควรกว่าจะวัดค่าได้ ใกล้เคียงกับก๊าซเสียจริง โดยจะใช้เป็นค่าเริ่มต้น (Input) ในการจำลองแบบ ส่วนในช่วง Cooling Period ของไหลที่วัดและจำลองคืออากาศที่ออกมาจาก Regenerator โดยจะต้องใช้เวลา พอสมควรกว่าที่ค่าที่ได้จากการวัดจะค่อนข้างคงที่ โดยยังมีแนวโน้มที่ลดลงอยู่ นอกจากนี้เมื่อ เวลาผ่านไปแต่ละชั่วโมงค่าอุณหภูมิอากาศที่จำลองแบบจะมีค่าสูงขึ้น เนื่องจากแนวโน้มของ อุณหภูมิก๊าซเสียที่ไหลเข้า Regenerator ที่มีค่าสูงขึ้น โดยความแตกต่างระหว่างอุณหภูมิอากาศ จากการจำลองที่ออกจาก Regenerator มีค่าคลาดเคลื่อนจากค่าที่วัดได้ประมาณ 8.33 %

จากรูปที่ 35 ที่ด้านล่าง Regenerator พบว่าในช่วง Cooling Period ของไหลที่วัดและ จำลองคืออากาศที่ไหลเข้า Regenerator ซึ่งต้องใช้เวลาพอสมควรกว่าที่ค่าอุณหภูมิที่ได้จากการ วัดจะค่อนข้างคงที่ ค่าดังกล่าวจะใช้เป็นค่าเริ่มต้น (Input) โดยยังมีแนวโน้มที่ลดลงอยู่ ในช่วง Period อุณหภูมิก๊าซเสียที่วัดได้จะเพิ่มสูงขึ้นอย่างรวดเร็วในตอนแรกเนื่องจาก Heating Response time ของเทอร์โมคัปเปิ้ล ที่ใน Period ที่แล้วเป็นการวัดอากาศที่ไหลเข้า Regenerator ซึ่งมีอุณหภูมิต่ำ จึงต้องใช้เวลาพอสมควรกว่าจะวัดค่าได้ใกล้เคียงกับก๊าซเสียจริง ส่วนในการ จำลองแบบอุณหภูมิก๊าซเสียที่ไหลออกมาจะมีค่าเพิ่มขึ้น นอกจากนี้เมื่อเวลาผ่านไปแต่ละชั่วโมง ค่าอุณหภูมิอากาศที่จำลองแบบจะมีค่าสูงขึ้น เนื่องจากแนวโน้มของอุณหภูมิก๊าซเสียที่ไหลเข้า Regenerator ที่มีค่าสูงขึ้น โดยความแตกต่างระหว่างอุณหภูมิก๊าซเสียจากการจำลองที่ออกจาก Regenerator มีค่าคลาดเคลื่อนจากค่าที่วัดได้ในช่วงแรกต่ำแต่จะเพิ่มสูงขึ้นเมื่อเข้าสู่ชั่วโมงที่ 11 ซึ่งมีค่าประมาณ 20 % เมื่อพิจารณาจากแนวโน้มของก๊าซเสียที่ไหลเข้า regenerator ทางด้านบน ซึ่งมีค่าเพิ่มขึ้นเมื่อเวลาผ่า<mark>น</mark>ไปในแต่ละชั่วโมง แต่อุณหภูมิก๊าซเสี<mark>ยที่ไหลออกจาก Regenerator</mark> ทางด้านล่างที่วัดได้กลับมีค่าค่อนข้างคงที่ ทั้งนี้มีสาเหตุมาจากการที่ตำแหน่งที่ติดตั้งอุปกรณ์วัดที่ ด้านล่างอยู่ในจุดอับและอยู่ห่างจากปากช่องการไหลที่ทำการจำลอง ซึ่งทำให้ไม่ได้วัด flow การ ใหลของช่องการไหลตรงกลางโดยตรง โดยถ้ามีการติดตั้งเครื่องมือให้อยู่ในตำแหน่งที่เป็น down stream ทางด้านตรงข้ามจะทำให้วัดค่าอุณหภูมิได้สูงขึ้นซึ่งทำให้ความคลาดเคลื่อนลดลงด้วย

จากรูปที่ 36 พบว่าแนวโน้มของค่าอุณหภูมิอิฐทนไฟจากการวัดและการจำลองจะเป็นไป ในทิศทางเดียวกันคือเพิ่มสูงขึ้นในแต่ละชั่วโมง โดยอุณหภูมิจะเพิ่มขึ้นในช่วง Heating Period และลดลงในช่วง Cooling Period ซึ่งมีค่าความคลาดเคลื่อนประมาณ 10.5 %

จากรูปที่ 37 พบว่าแนวโน้มของค่าอุณหภูมิอิฐทนไฟจากการวัดและการจำลองก็เป็นไปใน ทิศทางเดียวกันคือเพิ่มสูงขึ้นในแต่ละชั่วโมง โดยอุณหภูมิจะเพิ่มขึ้นในช่วง Heating Period และ ลดลงในช่วง Cooling Period ซึ่งมีค่าความคลาดเคลื่อนประมาณ 11 %

รูปที่ 38 แสดงการกระจายอุณหภูมิในอิฐทนไฟ (Frank W. Schmidt and

A. John Willmott, 1981:131)

ค่าความคลาดเคลื่อนของอิฐทนไฟและของไหลจากการจำลองแบบมาจากการตั้งสมมติฐานที่ว่า ไม่มีการนำความร้อนในทิศทางการไหลของของไหลในอิฐทนไฟ และ การประมาณการนำความ ร้อนในทิศทางตั้งฉากการไหลของของไหลในอิฐทนไฟ โดยเมื่อพิจารณาถึงการกระจายอุณหภูมิใน อิฐทนไฟพบว่าในช่วงเริ่ม Cooling Period ที่แกนกลางของอิฐทนไฟจะมีอุณหภูมิต่ำกว่าที่ผิวด้าน นอกทั้งสองด้านของอิฐทนไฟ ดังนั้นอุณหภูมิที่แกนกลางจะไม่ลดลงทันทีแต่จะเพิ่ม ขึ้นจากการนำความร้อนเข้าสู่แกนกลาง ก่อนที่ผิวด้านนอกของอิฐทนไฟจะมีอุณหภูมิต่ำลงจากนั้น อุณหภูมิที่แกนกลางจึงมีค่าลดลง นอกจากนี้ยังมีการนำความร้อนในทิศทางการไหล จากทาง ด้านบนซึ่งมีอุณหภูมิสูงกว่าด้วย ค่าความคลาดเคลื่อนนี้มีผลมากเนื่องจากเมื่อพิจารณาค่าของ มวลและความจุความร้อนจำเพาะของอิฐทนไฟ จะมีค่ามากกว่ามวลและความจุความร้อนจำเพาะ ของของไหลมาก ปริมาณความร้อนจำนวนนี้จึงทำให้ค่าที่วัดได้มีความคลาดเคลื่อนพอสมควร ใน กรณีของ Heating Period ก็เช่นเดียวกัน และยังพบว่าอิฐทนไฟมีความหนามากไปเนื่องจาก ในช่วง Cooling Period อุณหภูมิของอิฐทนไฟที่วัดได้ลดลงน้อยมาก

เมื่อพิจารณาถึงสมดุลความร้อนของ Regenerator ทั้งสอง Period จากการจำลองแบบที่ element ใดๆ พบว่ามีความสมดุลดังรูปที่ 39 และ 40 โดยมีความคลาดเคลื่อนเล็กน้อยจากเลข นัยสำคัญ

Cooling Period

0.013464*1083.024*(411.31-392.5) +(0.075223/20) *1083.024*(411.06-411.31)/45 = 274.26 Watt....(5.4) (400.828/20)*1051*(711.28-711.87)/45 = - 276.16 Watt...(5.5)

รูปที่ 39 แสดงสมดุลความร้อนของ regenerator ในช่วง Cooling Period

Heating Period

สมการ 5.6 = สมการ 5.7 0.015195*1284*(771.76-796.57)+(0.060156/20)*1284* (772.75-771.76)/45 = -483.97 Watt....(5.6) (400.828/20)*1047.5*(704.32-703.28)/45 = 485.18 Watt....(5.7)

รูปที่ 40 แสดงสมดุลความร้อนของ regenerator ในช่วง Heating Period

นอกจากนี้ผลการจำลองแบบเมื่อพิจารณาจาก Thermal Ratio ใน Heating และ Cooling Period $(\eta'_{REG} = \frac{t'_{fi} - t'_{fi}}{t'_{fi} - t'_{fi}}$ และ $\eta''_{REG} = \frac{t'_{fo} - t'_{fi}}{t'_{fi} - t'_{fi}}$ ตามลำดับ) พบว่า η'_{REG} มีค่าประมาณ 0.64 ซึ่ง มากกว่า η'_{REG} ที่มีค่าเพียง 0.473 นั่นหมายถึงในช่วง Heating Period อุณหภูมิของก๊าซเสียจะ ลดลงมากกว่าอุณหภูมิของอากาศที่เพิ่มขึ้นเมื่อไหลผ่าน Regenerator ในช่วง Cooling Period เนื่องมาจาก ความร้อนที่สะสมจากการที่ก๊าซเสียถ่ายเทให้โครงอิฐทนไฟในช่วง Heating Period มี ค่า 17.9 MJ มากกว่าความร้อนที่โครงอิฐทนไฟถ่ายเทกลับให้อากาศซึ่งมีค่า 10.0 MJ วัฏจักร ดังกล่าวจึงยังไม่เข้าสู่ Cyclic Equilibrium รวมทั้งผลจากอัตราการไหลโดยมวลและความจุความ ร้อนจำเพาะที่ความดันคงที่ของก๊าซเสียมีค่ามากกว่าอากาศ นอกจากนั้นค่าของทั้ง 2 Period จะ ค่อยๆลดลงเหมือนกัน

5.3 การหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมใน Regenerator

ในการพิจารณาหาวัฏจักรการถ่ายเทความร้อนที่เหมาะสมของ Regenerator อันเป็นวัฏ จักรที่สามารถนำความร้อนกลับมาใช้ได้สูงสุด ได้ทำการเปรียบเทียบวัฏจักรหลายๆวัฏจักรที่ใช้ เวลาในการกลับทิศการไหลของอากาศหรือก๊าซเสียไม่เท่ากัน ดังนี้

5.3.1 <u>การหาแนวโน้มของวัฏจักรการถ่ายเทความร้อนที่เหมาะสม</u>

จากแบบจำลองทางคณิตศาสตร์ที่จัดทำเป็นโปรแกรมคอมพิวเตอร์เมื่อใส่ข้อมูลต่างๆใน หัวข้อ 5.1 และ 5.2 แล้วให้โปรแกรมคำนวณหาการกระจายอุณหภูมิของอากาศกับก๊าซเสียและ โครงอิฐทนไฟที่ตำแหน่งต่างๆใน 1 ช่องการไหลของ Regenerator โดยเปลี่ยนเวลาในการกลับทิศ การไหล (Time Cycle) จำนวน 11 ค่า ซึ่งจะได้วัฏจักรที่มีผลการกระจายของอุณหภูมิต่างๆ ดังกล่าวจำนวน 11 วัฏจักร ในการพิจารณาเปรียบเทียบวัฏจักรการถ่ายเทความร้อนแต่ละวัฏจักร ของ Regenerator วัฏจักรดังกล่าวจะต้องดำเนินจนเข้าสู่ Cyclic Equilibrium กล่าวคือไม่ว่าวัฏ จักรเหล่านั้นจะดำเนินต่อไปนานเพียงใด อุณหภูมิของอากาศที่ออกมาจาก Regenerator ในช่วง Cooling Period ใดๆจะไม่เปลี่ยนแปลง คาบการแกว่งของอุณหภูมิต่างๆใน Regenerator จะมี ความคงที่ นอกจากนั้นยังไม่ขึ้นกับอุณหภูมิเริ่มต้นของโครงอิฐทนไฟในแต่ละ Period ด้วย ซึ่ง สามารถจำลองแบบจากโปรแกรมคอมพิวเตอร์ที่จัดทำขึ้น โดยตั้งค่าความยอมรับได้ (Pseudo-Thermal Ratio) ไว้ที่ 0.001 ก่อนการคำนวณ ซึ่งผลลัพธ์ที่ได้ของวัฏจักรต่างๆสามารถ เปรียบเทียบไต้ดังนี้

รูปที่ 41 แสดง Thermal Ratio ของ Regenerator ที่ Cyclic Equilibrium ใน Heating Period

จากรูปที่ 41 ค่า Thermal Ratio ของ Regenerator ที่ Cyclic Equilibriumใน Heating Period มีแนวโน้มลดลงเมื่อเวลาผ่านไปทุกวัฏจักร เพราะอุณหภูมิก๊าซเสียที่ออกจาก Regenerator จะมีค่าเพิ่มขึ้นเนื่องจากก๊าซเสียถ่ายเทความร้อนให้โครงอิฐทนไฟได้น้อยลง นอกจากนั้นวัฏจักรยิ่งใช้เวลาน้อยค่า Thermal Ratio จะยิ่งน้อยด้วย หรืออีกนัยหนึ่งคืออุณหภูมิ ก๊าซเสียที่ออกมาจาก Regenerator มีค่าสูงขึ้นเมื่อเวลาที่ใช้ในวัฏจักรน้อยลง เนื่องจากโครงอิฐทน ไฟมีเวลาสะสมความร้อนน้อยลง และเมื่อเข้าสู่ Cooling Period โครงอิฐทนไฟก็จะมีเวลาถ่ายเท ความร้อนให้กับอากาศน้อยลงทำให้อุณหภูมิตัวมันเองลดลงไม่มากเทียบกับวัฏจักรที่ใช้เวลา มากกว่า เมื่อกลับเข้ามาสู่ Heating Period อีกครั้งโครงอิฐทนไฟก็จะรับความร้อนได้อีกไม่มาก เช่นเดียวกัน

รูปที่ 42 แสดง Thermal Ratio ของ Regenerator ที่ Cyclic Equilibrium ใน Cooling Period

จากรูปที่ 42 ค่า Thermal Ratio ของ Regenerator ที่ Cyclic Equilibriumใน Cooling Period มีแนวโน้มลดลงเมื่อเวลาผ่านไปทุกวัฏจักร เพราะอุณหภูมิอากาศที่ออกจาก Regenerator จะมีค่าลดลงเนื่องจากอากาศรับความร้อนจากโครงอิฐทนไฟได้น้อยลง นอกจากนั้นยังพบว่าวัฏ จักรที่ใช้เวลาตั้งแต่ 1,200 s ขึ้นไป ยิ่งใช้เวลาน้อยค่า Thermal Ratio จะยิ่งน้อยเนื่องจากโครงอิฐ ทนไฟมีเวลาถ่ายเทความร้อนให้กับอากาศน้อยลง แต่วัฏจักรที่ใช้เวลาน้อยกว่า 1,200 s (20 นาที) ลงมายิ่งใช้เวลาน้อยค่า Thermal Ratio จะยิ่งมาก อัตราการไหลโดยมวล กับความจุความร้อนจำเพาะที่ความดันคงที่ของอากาศมีค่าน้อยกว่าก๊าซเสีย และ ผลที่เกิดจาก การสะสมความร้อนในช่วง Heating Period

จากการเปรียบเทียบค่า Thermal Ratio ระหว่าง Heating กับ Cooling Period ยังพบอีก ว่า Thermal Ratio ของ Cooling Period มีค่ามากกว่าของ Heating Period เนื่องจากที่ Cyclic Equilibrium ความร้อนที่ก๊าซเสียถ่ายเทให้กับอิฐทนไฟใน Heating Period ต้องมีปริมาณเท่ากับ ความร้อนที่อากาศได้รับจากอิฐทนไฟใน Cooling Period แต่อัตราการไหลโดยมวลและความจุ ความร้อนจำเพาะที่ความดันคงที่ของอากาศมีค่าน้อยกว่าก๊าซเสีย ดังนั้นความแตกต่างของ อุณหภูมิอากาศใน Cooling Period จึงมากกว่าความแตกต่างของอุณหภูมิก๊าซเสียใน Heating Period ซึ่งทำให้ Thermal Ratio มีค่ามากกว่าด้วย

รูปที่ 43 แสดงปริมาณ Heat Recovery ที่เวลา 1 ชั่วโมงของวัฏจักรต่างๆ ในการพิจารณาเรื่องความร้อนนำกลับมาใช้ จากรูปที่ 43 เป็นการเปรียบเทียบปริมาณ ความร้อนนำกลับมาใช้ (Heat Recovery) ของ Regenerator ที่วัฏจักรต่างๆสามารถทำได้ เมื่อ ดำเนินเข้าสู่ Cyclic Equilibrium เป็นเวลา 1 ชั่วโมง พบว่าแนวโน้มปริมาณความร้อนนำกลับมาใช้ มีค่าต่ำสำหรับวัฏจักรที่ใช้เวลาน้อยและจะเพิ่มขึ้นด้วยอัตราค่อนข้างมากเมื่อใช้เวลามากขึ้นจนถึง จุดสูงสุดจากนั้นปริมาณความร้อนนำกลับมาใช้จะค่อยๆลดลงเมื่อใช้เวลามากไปกว่านี้ เมื่อ เปรียบเทียบกับวัฏจักรที่ใช้เวลา 30 นาทีซึ่งมีเวลาเท่ากับวัฏจักรที่ Regenerator ดำเนินการอยู่ จากการ ตรวจวัดจึงสรุปได้ว่าถ้าใช้เวลาในวัฏจักรให้น้อยลงก็จะได้ปริมาณความร้อนนำกลับมาใช้ มากขึ้นแต่ต้องไม่น้อยไปกว่าประมาณ 4 นาที ในขณะเดียวกันถ้าใช้เวลามากกว่า 30 นาทีจะได้ ปริมาณความร้อนนำกลับมาใช้ลดลง เนื่องจากถ้าใช้เวลาน้อยเกินไปในช่วง Heating Period โครง อิฐทนไฟจะสะสมความร้อนได้น้อยมาก และถ่ายเทความร้อนให้กับอากาศในช่วง Cooling Period ได้น้อยมากเช่นกัน ในขณะที่เมื่อใช้เวลามาก ถึงแม้ว่าในช่วงแรกๆของ Period โครงอิฐทนไฟจะ สะสมหรือถ่ายเทความร้อนได้ดีแต่เมื่อเข้าสู่ช่วงปลาย Period การถ่ายเทความร้อนจะต่ำมากถ้า เทียบกับวัฏจักรที่ใช้เวลาน้อยกว่า

5.3.2 <u>การหาเวลาที่เหมาะสมเพื่อให้ได้ความร้อนน้ำกลับมาใช้มากที่สุด</u>

เมื่อทราบแนวโน้มของเวลาที่เหมาะสมแล้วจึงทำการเปรียบเทียบวัฏจักรที่เข้าสู่ Cyclic Equilibrium จำนวน 10 วัฏจักรที่ใช้เวลาน้อยกว่า 30 นาทีกับวัฏจักรที่ Regenerator ดำเนินการ อยู่ซึ่งใช้เวลา 30 นาที เพื่อหาวัฏจักรที่ได้ปริมาณความร้อนนำกลับมาใช้สูงสุดดังนี้

รูปที่ 44 ปริมาณ Heat Recovery ที่เวลา 1 ชั่วโมงของวัฏจักรต่างๆเมื่อเทียบกับวัฏจักร 30 นาที

จากรูปพบว่า วัฏจักรที่ได้ปริมาณความร้อนน้ำกลับมาใช้มากที่สุดใน 1 ช่องการไหลของ Regenerator เมื่อเวลาผ่านไป 1 ชั่วโมงคือ วัฏจักรที่ใช้เวลาในการกลับทิศการไหลของอากาศและ ก๊าซเสียทุก (Time Cycle) 529 วินาที หรือ ประมาณ 8.82 นาที ซึ่งมีปริมาณความร้อนที่สะสมได้ ในช่วง Heating Period เท่ากับปริมาณความร้อนนำกลับมาใช้ในช่วง Cooling Period เป็น 3,533,601.5 J/Cycle เมื่อเทียบกับวัฏจักรที่ดำเนินการในปัจจุบัน (30 นาที) ซึ่งสามารถนำความ ร้อนกลับมาใช้ได้ 10,008,594 J/Cycle ในเวลา 1 ชั่วโมงเท่ากัน (24,003,983 – 20,017,188 J/hr) จะได้ปริมาณความร้อนนำกลับมาใช้มากกว่าประมาณ 3,986,795 J/hr คิดเป็นอัตราส่วน 19.92 % ของวัฏจักร 30 นาที นอกจากนี้ เมื่อคิดรวมช่องการไหลทั้งหมด 120 ช่อง จะได้ปริมาณ ความร้อนนำกลับมาใช้มากขึ้นทั้งสิ้นเป็น 478,415,436 J/hr หรือเทียบเท่ากับเชื้อเพลิงน้ำมันเตา Type C ที่ประหยัดได้จำนวน 12.0296 Litre/hr (ค่าความร้อนของน้ำมันเตา Type C คือ 39.77 MJ/Litre) หรือ 105,378.9 Litre/yr ในขณะเดียวกันวัฏจักรที่ใช้เวลาตั้งแต่ 5 -20 นาที ก็มีปริมาณ ความร้อนนำกลับมาใช้อยู่ในเกณฑ์ที่พอใช้ได้ โดยที่เวลา 20 นาทีจะประหยัดเชื้อเพลิงมากขึ้น 102,753 Litre/yr ที่เวลา 15 นาทีจะประหยัดเชื้อเพลิงมากขึ้น 104,261.6 Litre/yr และที่เวลา 10 นาทีจะประหยัดเชื้อเพลิงมากขึ้น 105,302.9 Litre/yr ทั้งนี้เวลาที่ไม่น้อยจนเกินไปจะทำให้การ กลับทิศการไหลของอากาศและก๊าซเสียกระทำได้ง่ายและสะดวกกว่า

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 6

สรุป และเสนอแนะผลงานวิจัย

ในบทนี้จะเป็นการสรุปผลการวิจัยเป็นหัวข้อ และมีการเสนอแนะแนวทางการวิจัยต่อไป ด้วย ดังนี้

6.1 สรุปผลงานวิจัย

 การลดเวลาในการกลับทิศการไหลของอากาศและก๊าซเสียลงจะได้พลังงานความ ร้อนนำกลับมาใช้มากขึ้น แต่ต้องไม่ต่ำไปกว่า 4 นาที ในขณะที่การเพิ่มเวลาจะได้พลังงานความ ร้อนนำกลับมาใช้น้อยลง โดยวัฏจักรการถ่ายเทความร้อนที่เหมาะสมใน Regenerator แบบโครง อิฐทนไฟรูปปล่องไฟสี่เหลี่ยม ซึ่งจะทำให้ได้พลังงานความร้อนนำกลับมาใช้สูงที่สุดคือ วัฏจักรที่ Regeneratorใช้เวลาในการกลับทิศการไหลของอากาศและก๊าซเสียทุกๆ 529 วินาที หรือ ประมาณ 8.82 นาที ซึ่งสามารถนำพลังงานความร้อนกลับมาใช้ใหม่ได้มากกว่าวัฏจักรที่ ดำเนินการในปัจจุบัน (30 นาที) เป็น 478,415,436 J/hr หรือเทียบเท่ากับเชื้อเพลิงน้ำมันเตา Type C ที่ประหยัดได้จำนวน 105,378.9 Litre/yr

วัฏจักรที่ใช้ในการกลับทิศการใหลของอากาศและก๊าซเสียทุกๆ 10 ,15 และ 20 นาที ก็มีปริมาณความร้อนนำกลับมาใช้อยู่ในเกณฑ์ที่พอใช้ได้ ขึ้นอยู่กับความสะดวกในการกำ เนินการของผู้ควบคุม

3. วัฏจักรที่ดำเนินการในปัจจุบัน (30 นาที) ยังไม่เข้าสู่ Cyclic Equilibrium เนื่องจากคาบการแกว่งของอุณหภูมิก๊าซเสียและอากาศขาเข้า Regenerator รวมถึง อัตราการไหล โดยมวลของก๊าซเสียและอากาศ ไม่คงที่มีการเปลี่ยนแปลงที่ไม่สามารถกำหนดรูปแบบได้

4. ผลการจำลองแบบทางคณิตศาสตร์โดยใช้โปรแกรมคอมพิวเตอร์สามารถทำนาย แนวโน้มการกระจายอุณหภูมิก๊าซเสียและอากาศ ตลอดจนโครงอิฐทนไฟที่ตำแหน่งและเวลาใดๆ ได้ โดยมีความคลาดเคลื่อนของข้อมูลเล็กน้อยซึ่งเกิดจากปัจจัยภายนอกที่ไม่สามารถตรวจวัดได้ เช่น ปริมาณฝุ่นดีบุกและถ่านที่ออกมาพร้อมก๊าซเสียจากเตาถลุงซึ่งมีผลต่อค่าอัตราการไหลโดย มวลของก๊าซเสีย , ความชื้นของแร่และถ่านหินก่อนประจุเข้าเตาซึ่งมีผลต่อค่าอัตราการไหลโดย มวลของก๊าซเสีย และการถ่ายเทความร้อนจากการแผ่รังสีของทั้งอากาศกับก๊าซเสีย , เวลาที่ทำการ กลับทิศการไหลไม่แม่นยำเกินหรือขาดไปบ้าง เนื่องจากกระบวนการการถลุงและการควบคุมของผู้ ปฏิบัติการ รวมทั้งความร้อนสะสมในอุปกรณ์วัดและความไวในการวัดต่ออุณหภูมิที่เปลี่ยนแปลง อย่างมากจากการกลับทิศการไหลทำให้ค่าที่วัดได้ไม่แม่นยำ นอกจากนี้สมมติฐานของ การจำลองแบบที่ไม่คำนึงถึงการนำความร้อนในอิฐทนไฟในทิศทางการไหลและการประมาณการ นำความร้อนของอิฐทนไฟในทิศตั้งฉากการไหลก็เป็นอีกสาเหตุหนึ่ง นอกจากนั้นยังมีผลจาก ตำแหน่งการติดตั้งเครื่องมือวัดที่ห่างจากตำแหน่งจริง และสุดท้ายผลของการแผ่รังสีความร้อนที่มี ต่ออุปกรณ์วัด

5. เมื่อวัฏจักรเข้าสู่ Cyclic Equilibrium พบว่า Thermal Ratio ของ Cooling Period มีค่ามากกว่าของ Heating Period เนื่องจากอัตราการไหลโดยมวลและความจุความร้อน จำเพาะที่ความดันคงที่ของอากาศน้อยกว่าก๊าซเสีย

ในขณะที่วัฏจักรยังไม่เข้าสู่ Cyclic Equilibrium ค่า Thermal Ratio ใน Heating
Period จะมากกว่าใน Cooling Period เนื่องจากความร้อนที่สะสมจากการที่ก๊าซเสียถ่ายเทให้
โครงอิฐทนไฟในช่วง Heating Period มีค่ามากกว่าความร้อนที่โครงอิฐทนไฟถ่ายเทกลับให้อากาศ
และอัตราการไหลโดยมวลและความจุความร้อนจำเพาะที่ความดันคงที่ของอากาศน้อยกว่าก๊าซ
เสีย

 ส่วนใหญ่การไหลของอากาศและก๊าซเสียในโครงอิฐทนไฟจะเป็นแบบราบเรียบ (Laminar) โดยความร้อนจะถ่ายเทในรูปแบบของการแผ่รังสีมากกว่าการพาความร้อน และ สัมประสิทธิ์การถ่ายเทความร้อนในช่วง Heating Period มีค่ามากกว่า Cooling Period อัน เนื่องมาจากปริมาณของไอน้ำและก๊าซคาร์บอนไดออกไซด์ซึ่งมีคุณสมบัติเด่นในการดูดซับหรือ ถ่ายเท พลังงานความร้อนจากการแผ่รังสีในก๊าซเสียมีมากกว่าในอากาศ

6.2 เสนอแนะผลงานวิจัยต่อไป

 ควรมีการใช้ Mathematical Model ในการจำลองแบบการถ่ายเทความร้อนของ Regenerator ที่เป็นแบบ Nonlinear คือ สามารถทำนายเมื่ออัตราการไหลโดยมวลของก๊าซเสีย กับอากาศ, สัมประสิทธิ์การพาความร้อน มีการเปลี่ยนแปลงตามเวลา รวมทั้งเมื่อความร้อน จำเพาะของก๊าซเสียกับอากาศเปลี่ยนไปตามอุณหภูมิ และมีการคำนึงถึงการนำความร้อนของอิฐ ทนไฟในทิศทางการไหลและตั้งฉากการไหลด้วย เพื่อเปรียบเทียบผลกับ Linear Model

 ควรมีการศึกษาถึงขนาดความหนาของอิฐทนไฟที่เหมาะสมเพื่อให้ได้ความร้อน นำกลับมาใช้สูงสุด

3. ควรศึกษาการถ่ายเทความร้อนของ Regenerator เมื่อโครงอิฐทนไฟที่อยู่ภายใน เป็นรูปแบบอื่นนอกจากรูปปล่องไฟสี่เหลี่ยม

รายการอ้างอิง

<u>ภาษาไทย</u>

- ชาคร จารุพิสิฐธร. 2525. <u>ถลุงแร่ดีบุก</u>. กรุงเทพมหานคร: ภาคโลหะการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- ปราโมทย์ เดชะอำไพ. 2538. <u>ระเบียบวิธีเชิงตัวเลขในงานวิศวกรรม</u>. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร:โรงพิมพ์จุฬาล<mark>งกรณ์มหาวิทย</mark>าลัย
- ฤซากร จิรกาลวสาน. 2541. <u>ไซโครเมตริกส์</u>. กรุงเทพมหานคร: ภาคเครื่องกล คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

<u>ภาษาอังกฤษ</u>

A. J. Willmott. 1964. Digital Computer Simulation of A Thermal Regenerator. <u>Int.J. Heat</u> <u>Mass Transfer</u>. 7: 1291-1303.

Frank P. Incropera and David P. Dewitt. 1996. <u>Fundamentals of Heat and Mass</u> <u>Transfer</u>. 4th ed. New York: John Wiley & Sons

Frank W. Schmidt and A. John Willmott. 1981. <u>Thermal Energy Storage and</u> <u>Regeneration.</u> New York: McGraw-Hill.

- Hottel, H. C. 1954. Radiant-Heat Transmission. <u>Heat Transmission</u>. 3rd ed. New York: McGraw-Hill
- J. Schofield , P. Butterfield and P.A. Young. 1961. Hot blast stoves. <u>Journal of the Iron</u> <u>and Steel Institute</u>. 199: 229 – 240.
- J. Schofield , P. Butterfield and P.A. Young 1963. Hot blast stoves : part 2. <u>Journal of</u> <u>the Iron and Steel Institute</u>. 201: 497 – 508.
- M. Fishenden & O.A. Saunders. <u>An Introduction to Heat transfer</u>. New York: McGraw-Hill
- Nicholas P. Cheremisinoff and Paul N. Cheremisinoff. <u>Heat Transfer Equipment</u>. New York: McGraw-Hill
- Yunus A. Cengel. 1998. <u>Heat Transfer A Practical Approach.</u> International ed. New York: McGraw-Hill.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก.

โปรแกรมคอมพิวเตอร์

<u>วิธีใช้โปรแกรม Simulation for Thermal Regenerator</u>

- 1. เปิดโปรแกรมด้วย Microsoft Excel กรอกข้อมูลเริ่มต้นในแผ่นงาน Input_data
- 2. สั่งดำเนินการโปรแกรมด้วย Visual Basic ที่อยู่บน Microsoft Excel
- 3. ผลการคำนวณค่าพารามิเตอร์ต่างๆจะแสดงอยู่ในแผ่นงาน Input_data ด้วย
- ผลการจำลองแบบการกระจายอุณหภูมิต่างๆใน Regenerator จะแสดงในแผ่นงาน tf_dis.h, tf_dis.c, tm_dis.h, tm_dis.c, th.ratio_dis โดย Hot Period คือ Heating Period และ Cold Period คือ Cooling Period

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

solid temperature distribution hat period (degree C)

regenerator entrance

	0	45	90	135	120	225	270	315	360	405	450	495	<u>5</u> 40	585	630	675	720	765	810	855	900	945	. 990	1,035	1,020	1,125	1,170	1,215	9,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800	time
٥	93Z	933	935	936	937	938	940	941	942	943	945	946	947	948	949	950	952	953	954	955	956	957	958 -	959	960	961	962	963,	964	965	966	967	968	969	970	971	97Z	97Z	973 -	974	975	(6)
Ģ	906	907	908	910	911	91Z	913	915	916	.917	918	919	920	922	923	9Z4	925	926	9Z7	928	929	930	932	933	934	.935	936	937	938	939	940	941	94Z	943	944	945	945	946	947	948	949	
1	220	- 221	883	884	885	886	887	829	290	- 291	892	893	894	896	897	898	899	900	901	90Z	903	904	905	906	902	909	910	911	91Z	913 .	914-	915	916	917	912	919	920	921	922	922	923	
ì	855	856	857	858	260	861	86Z	863	864	865	866	868	869	870	871	872	873	874	875	876	877	879	880	881	882	883	884	885	886	887	888	889	890	891	89Z	893	894	895	896	897	898	
1	830	- 831	83Z	833	834	835	837	838	839	- 840	841	84Z	843	844	845	847	848	- 249	850	851	85Z	853 .	854	855	856	857	858	859	860	861	862	864	265	266	267	262	869	870	871	87Z	873	
ì	805	806	807	808	809	810	81Z	813	814	815	816	817	818	819	820	821	822	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	8 <u>4</u> 2	843	844	845	846	847	
z	780	781	78Z	783	784	786	787	788	789	790	791	79Z	793	794	795	796	797	799	800	801	80Z	803 .	804-	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	
z	755	757	758	759	760	761	762	763	764	765	766	767	768	769	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	794	795	796	797	792	
z	731	732	733	734	735	736	737	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	760	761	762	763	764	765	766	767	768	769	770	771	772	773	
z	707	708	709	710	711	71Z	713	714	715	716	717	718	719.	720	721	722	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	
3	68Z	624	685	626	627	622	629	690	691	69Z	693	694	695	696	697	698	699	700	701	70Z	703	704	705	706	707	702	709	711	71Z	713	714-	715	716	717	712	719	720	721	722	723	724	
3	658	659	660	661	66Z	664	665	666	667	663	669	670	671	672	673	674	675	676	677	672	679	620	621	682	683	684	685	626	687	622	629	690	691	69Z	693	694	695	696	697	698	699	
3	634	635	636	637	638	639	640	641	642	644	645	646	647	643	649	650	651	65Z	653	654	655	656	657	658	659	660	661	66Z	663	664	665	666	667	662	669	670	671	67Z	673 -	674	675	
3	610	611	612	613	614	615	616	617	618	619	620	622	623	624	625	626	627	622	629	630	631	632	633	634	635	636	637	638	639	640	641	64Z	643	644	645	646	647	642	649	650	651	
4	586	587	588	589	590	591	592	593	594	595	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	
4	562	564	565	566	567	568	569	570	571	572	573	574	575	576	.577	578	579	580	581	582	583	584	585	586	587	.588	589	590	591	59Z	593	594	595	596	597	598	599	600	601	60Z	603	
4	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	
4	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	54Z	543 <u>-</u>	544	545	546	547	548	549	550	551	552	553	554	555	
5	491	49Z	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	51 Z	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	
5	468	469	470	471	472	473	474	475	A76	477	478	479	420	481	482	483	484	485	486	487	488	489	490	491	491	492	493	494	495	496	497	492	499	500	501	502	503	504	505	506	507	
5	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458 -	459	460	461	462	463	464	465	466	467	468	469	470	471	47Z	473 .	474	475	476	477	478	479	480	481	482	483	484	
Length	(m)																			. Le Be	nċrətor	e×it																				
																tin	ne to e;	celie eq	uilibriu	m,	2	hr																				
ж	nt of pc	riod															He	st stors	35	17	,909,03	33	0																	cni	of period	
																	He	rt recov	EIV.	10	1,054,61	32	J																			

Longth (m)

88

fluid temperature distribution hat period (degree C)

regenerator exit

	0	45	90	135	120	225	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990	1,035	1,020	1,125	1,170	1,215	1,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800	time
0	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	(r)
٥	1,021	1,021	1,021	1,022	1,022	1,022	1,022	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,025	1,025	1,025	1,025	1,026	1,026	1,026	1,027	1,027	1,027	1,027	1,027	1,028	1,028	1,028	1,028	1,029	1,029	1,029	1,029	1,030	1,030	1,030	1,030	1,030	1,031	1,031	
1	991	991	99Z	99Z	993	993	994	994	995	995	996	996	997	997	992	992	999	999	999	1,000	1,000	1,001	1,001	1,00Z	1,00Z	1,003	1,003	1,003	1,004	1,004	1,005	1,005	1,005	1,006	1,006	1,007	1,007	1,007	1,002	1,002	1,009	
1	96Z	962	963	964	964	965	966	966	967	962	962	969	970	970	971	971	972	973	973	974	974	975	976	976	977	977	972	979	979	920	920	981	981	982	982	983	983	984	985	925	926	
1	934	934	935	936	937	938	938	939	940	941	941	94Z	943	944	944	945	946	947	947	948	949	949	950	951	951	952	953	953	954	955	956	956	957	957	958	959	959	960	961	961	962	
1	906	907	902	909	910	911	911	91Z	913	914	915	916	916	917	912	919	9Z0	9Z1	9Z1	92Z	923	924	925	925	926	9Z7	928	9Z8	929	930	931	931	93Z	933	934	934	935	936	937	937	938	
z	879	880	881	882	883	884	885	826	887	888	229	229	890	891	892	893	894	895	896	896	897	898	299	900	901	902	902	903	904	905	906	907	907	902	909	910	911	911	91Z	913	914	
z	853	854	855	856	857	858	859	860	861	862	863	864	865	866	866	867	868	869	870	871	872	873	874	875	876	876	877	878	879	880	881	882	883	883	884	885	886	887	888	888	889	
z	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	84Z	843	844	845	846	847	848	849	849	850	851	852	853	854	855	856	857	858	859	859	260	861	86Z	863	864	265	
z	80Z	803	804	805	206	807	202	809	810	811	812	813	814	815	816	817	818	819	820	821	822	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	838	839	840	
3	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	79Z	793	794	795	796	797	798	799	200	200	801	802	803	804	805	806	807	808	809	810	811	81Z	813	814	815	816	
3	75Z	753	754	755	756	757	758	759	760	761	76Z	763	764	765	766	767	762	769	770	771	77Z	773	774	775	776	777	772	779	720	781	78Z	783	784	785	785	726	787	788	789	790	791	
3	727	728	729	730	731	73Z	733	734	735	736	737	738	739	740	741	74Z	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	76Z	763	764	765	766	767	
3	70Z	703	704	705	706	707	708	709	710	711	71Z	713	714	715	716	717	718	719	721	722	723	724	725	726	727	728	729	730	731	73Z	733	734	735	735	736	737	738	739	740	741	74Z	
4	678	679	620	621	682	683	624	685	626	627	688	629	690	691	69Z	693	694	695	696	697	698	699	700	701	70Z	703	704	705	706	707	708	709	710	711	71Z	713	714	715	716	717	718	
4	653	654	655	656	658	659	660	661	66Z	663	664	665	666	667	662	669	670	671	67Z	673	674	675	676	677	678	679	620	681	682	683	624	685	626	687	622	629	690	691	69Z	693	694	
4	629	630	631	632	633	634	635	636	637	638	639	640	641	64Z	643	644	645	646	647	648	649	651	652	653	654	655	656	657	658	659	660	661	66Z	663	664	665	666	667	662	669	670	
4	605	606	607	603	609	610	611	61Z	613	614	615	616	617	612	619	620	621	6ZZ	623	624	625	626	627	628	629	630	631	63Z	633	634	635	636	637	638	639	640	641	64Z	643	644	645	
5	581	582	583	584	585	586	587	588	529	590	591	59Z	593	594	595	596	597	598	599	600	601	60Z	603	604	605	606	607	602	609	610	611	61Z	613	614	615	616	617	612	619	620	621	
5	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	59Z	593	594	595	596	597	
5	533	534	535	536	537	538	539	540	541	54Z	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	
	7																																									
Len gth	(m)																																									
																				regene	rater en	trance																				
ъ	nt of pc	nad																																						Ent	d of period	

Longth (m)

68

fluid temperature distribution cold period (degree C)

Length	(m)																			re ge	ncrator	exit																			
4																																									
5	625	624	624	623	623	6ZZ	6ZZ	6ZZ	621	621	620	620	619	619	618	618	618	617	617	616	616	615	615	615	614	614	613	613	61Z	61Z	61Z	611	611	610	610	609	609	609	608	602	607
5	603	60Z	602	601	601	601	600	600	599	599	598	598	598	597	597	596	596	595	595	595	594	594	593	593	593	59Z	592	591	591	590	590	590	589	589	588	588	588	587	587	586	526
5	581	580	580	580	579	579	578	578	578	577	577	576	576	576	575	575	574	574	574	573	573	572	57Z	572	571	571	570	570	570	569	569	568	568	568	567	567	566	566	566	565	565
4	559	559	559	558	558	557	557	557	556	556	555	555	555	554	554	554	553	553	55Z	55Z	55Z	551	551	550	550	550	549	549	549	548	548	547	547	547	546	546	545	545	545	544	544
4	538	538	537	537	537	536	536	536	535	535	534	534	534	533	533	533	53Z	53Z	531	531	531	530	530	530	529	529	528	528	528	527	527	527	526	526	526	525	525	525	524	524	523
4	517	517	516	516	516	515	515	515	514	514	514	513	513	513	51Z	51Z	511	511	511	510	510	510	509	509	509	508	502	508	507	507	507	506	506	506	505	505	505	504	504	503	503
4	496	496	496	495	495	495	494	494	494	493	493	493	49Z	49Z	49Z	491	491	491	490	490	490	489	489	489	488	488	488	487	487	487	426	486	486	485	485	485	484	484	484	483	483
3	476	476	475	475	475	474	474	474	473	473	473	473	47Z	472	47Z	471	471	471	470	470	470	469	469	469	463	468	462	467	467	467	467	466	466	466	465	465	465	464	464	464	463
3	456	456	455	455	455	454	454	454	453	453	453	453	452	452	452	451	451	451	450	450	450	450	449	449	449	448	448	448	448	447	447	447	446	446	446	446	445	445	445	444	444
3	436	436	435	435	435	435	434	434	434	433	433	433	433	43Z	43Z	43Z	43Z	431	431	431	430	430	430	430	429	429	429	429	428	428	428	427	427	427	427	426	426	426	426	425	425
3	416	416	416	416	415	415	415	415	414	414	414	414	413	413	413	413	41 Z	41 Z	41Z	41Z	411	411	411	411	410	410	410	410	409	409	409	409	402	408	402	408	407	407	407	407	406
z	397	397	397	396	396	396	396	396	395	395	395	395	394	394	394	394	393	393	393	393	392	392	392	39Z	392	391	391	391	391	390	390	390	390	390	389	389	389	389	388	388	388
z	378	378	378	378	377	377	377	377	377	376	376	376	376	375	375	375	375	375	374	374	374	374	374	373	373	373	373	373	372	372	372	372	372	371	371	371	371	371	370	370	370
z	360	359	359	359	359	359	359	358	358	358	358	358	357	357	357	357	357	356	356	356	356	356	356	355	355	355	355	355	354	354	354	354	354	354	353	353	353	353	353	35Z	352
z	341	341	341	341	341	341	340	340	340	340	340	340	340	339	339	339	339	339	339	338	338	338	338	338	338	337	337	337	337	337	337	336	336	336	336	336	336	336	335	335	335
1	324	324	323	323	323	323	323	323	323	322	322	322	322	322	322	322	321	321	321	321	321	321	321	320	320	320	320	320	320	320	320	319	319	319	319	319	319	319	318	318	318
1	306	306	306	306	306	306	306	305	305	305	305	305	305	305	305	305	304	304	304	304	304	304	304	304	304	303	303	303	303	303	303	303	303	303	302	302	302	302	302	302	302
1	289	289	289	289	289	289	289	289	289	288	288	288	288	288	288	288	288	288	288	288	288	287	287	287	287	287	287	287	287	287	287	287	287	286	286	286	286	286	286	286	226
1	273	273	273	272	272	272	272	272	272	272	272	272	272	272	272	272	272	272	272	272	27Z	271	271	271	271	271	271	271	271	271	Z71	271	271	271	271	Z71	271	Z71	271	270	270
٥	257	257	257	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	255	255	255
٥	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	241 time																
	0	45	90	135	180	225	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990	1,035	1,020	1,125	1,170	1,215	1,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800 (7)

start of period

จุฬาลงกรณะเทาวิทยาลัย

end of period

00

Longth (m) resencestor exit 975 974 973 972 972 971 970 969 962 967 967 966 965 964 963 963 962 961 961 961 960 959 959 959 957 956 955 955 955 953 953 953 952 951 951 950 949 948 948 5 5 949 948 948 947 946 946 945 944 944 943 942 941 940 940 939 938 938 938 936 936 935 934 933 932 932 931 930 930 929 928 928 927 926 926 925 924 924 923 922 923 923 922 921 921 920 919 919 918 917 917 917 916 915 914 913 913 913 912 911 910 909 909 908 907 907 906 905 905 904 903 902 901 901 901 900 299 298 298 297 5 898 897 897 896 895 894 893 893 892 891 891 890 889 888 887 887 886 885 884 883 883 882 881 881 880 879 878 878 877 876 876 875 874 874 873 872 872 d. 873 872 871 871 870 869 868 867 867 866 865 865 864 863 863 862 862 861 860 859 858 857 856 856 855 854 854 853 852 852 851 851 850 849 849 848 847 847 d. 847 846 846 845 844 844 843 842 842 841 840 840 839 838 838 837 836 835 835 835 834 833 833 832 831 830 829 828 827 826 826 826 825 824 824 823 823 823 4 793 787 786 786 796 794 794 793 787 775 776 787 789 789 782 782 782 782 786 786 785 784 783 783 783 783 781 781 781 780 789 783 787 775 776 776 775 775 774 773 773 3 3 3 748 748 747 746 746 745 745 744 743 742 742 742 741 740 740 739 739 739 737 737 736 736 735 734 734 733 733 732 731 731 730 730 729 728 727 727 727 726 725 725 724 3 699 698 698 697 697 696 695 695 694 694 693 692 691 691 690 629 629 628 628 627 627 626 625 624 624 623 623 622 621 621 620 620 679 679 672 677 677 676 z 675 675 674 673 672 672 671 671 670 669 669 668 668 667 666 665 665 664 663 663 662 661 661 660 659 659 659 657 657 656 655 655 654 654 653 653 z 651 650 650 649 648 648 647 646 645 645 645 644 644 643 642 642 641 641 640 640 639 639 633 637 636 636 635 635 634 634 633 633 632 631 631 630 630 629 629 z 627 626 625 625 624 624 623 622 622 621 621 620 620 619 619 613 617 617 616 616 615 615 614 613 613 613 612 611 610 610 609 609 608 608 607 607 606 605 z 603 602 601 601 600 600 599 599 599 597 597 596 596 595 595 594 593 593 592 597 590 590 529 523 523 523 527 526 526 525 525 524 524 523 523 523 522 522 1 579 578 578 577 577 576 576 575 575 574 574 573 573 573 571 571 570 569 569 568 568 567 567 566 565 565 565 564 563 563 562 561 561 560 560 559 559 559 1 1 555 555 554 553 552 552 551 551 550 549 549 548 542 547 547 546 546 545 545 544 543 543 542 541 541 540 540 539 539 532 532 537 537 536 536 535 535 1 531 531 530 530 529 528 528 527 527 526 526 525 525 524 524 523 523 522 522 521 521 520 519 519 518 518 517 516 516 515 515 514 514 513 513 513 512 512 0 507 507 506 506 505 505 505 504 504 503 502 502 501 501 500 500 499 499 492 492 497 496 496 495 495 494 494 494 493 493 492 492 491 491 490 490 429 422 422 484 483 483 482 482 481 481 480 480 479 479 479 478 478 477 477 476 476 475 474 474 473 473 473 472 472 471 471 470 470 469 469 468 468 468 466 466 465 0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 945 990 1,035 1,080 1,125 1,170 1,215 1,260 1,305 1,350 1,350 1,351 1,440 1,485 1,530 1,575 1,620 1,665 1,710 1,755 1,800

resencestor entrance

rtart of period

solid temperature distribution cold period (degree C)

and of pariod

thermal ratio distribution hat period ((tilh tigh) (tilh tic) or NH1

0.640 0.632 0.637 0.636 0.635 0.633 0.632 0.631 0.630 0.628 0.627 0.626 0.625 0.622 0.621 0.620 0.619 0.617 0.616 0.615 0.614 0.612 0.611 0.610 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.500 0.500 0.598 0.598 0.594 0.593 0.591 0.590

time 0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 945 990 1,035 1,080 1,125 1,170 1,215 1,260 1,305 1,350 1,395 1,440 1,485 1,530 1,575 1,620 1,665 1,710 1,755 1,800 (x)end of period start of period

thermal ratio distribution cold period ((ther the)' (this the) or NC1)

0.473 0.473 0.472 0.471 0.471 0.471 0.470 0.469 0.465 0.465 0.465 0.467 0.466 0.465 0.465 0.465 0.464 0.463 0.462 0.462 0.461 0.461 0.460 0.459 0.458 0.458 0.458 0.457 0.456 0.455 0.455 0.454 0.453 0.453 0.453 0.452 0.452 time 0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 945 990 1,035 1,080 1,125 1,170 1,215 1,260 1,305 1,350 1,350 1,440 1,485 1,530 1,575 1,620 1,665 1,710 1,755 1,800 (r)start of period end of period

ภาคผนวก ข

ข้อมูลการทดลองของการถ่ายเทความร้อนใน Regenerator แบบโครงอิฐทนไฟ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

เวลา	T1	T2	T3	T4	เวลา	T1	T2	Т3	T4	เวลา	T1	T2	Т3	T4
0.00	1109.3	963.9	412.6	491.8	0.31	905.6	974.6	282.2	526.5	1.01	902.3	971.8	306.5	547
0.01	1093.6	964.9	413.2	495.2	0.32	951.2	975.3	300.6	523	1.02	906.5	972	307.1	544.6
0.02	1105.6	966.7	413.2	498.7	0.33	982.5	975.3	319.8	523	1.03	908.3	971.8	307.7	541.8
0.03	1102.9	970.2	412.9	500.8	0.34	1005.1	974.8	337.3	517.4	1.04	908.4	971.4	307.7	539.4
0.04	1084.2	970.2	413.3	504.3	0.35	1019.7	974.1	362.1	515.5	1.05	907.5	970.9	307.4	536.6
0.05	1062.6	971.1	414.1	508	0.36	1029	973.7	364.5	514.6	1.06	906.4	970.4	307	533.8
0.06	1041.8	972	415	511.5	0.37	1035.6	973	374.9	514.3	1.07	905.3	969.8	306.5	531.1
0.07	1023.6	973.1	416.1	515	0.3 <mark>8</mark>	1040.4	972.4	383.5	<u>514.5</u>	1.08	902	968.9	305.2	528.6
0.08	1007.4	974.4	417.5	518.6	0.39	1043.7	971.6	390.6	515.2	1.09	885.8	965.8	300.2	526.2
0.09	994.9	975.5	418.4	522.2	0.4	1045.3	971.1	396.7	516.5	1.1	867.3	963.9	293	523.6
0.1	985.2	976.7	419.2	525.5	0.41	1044.9	970.9	401.8	517.9	1.11	856.4	962.6	286.1	521.1
0.11	970.9	978.1	420.9	529.2	0.42	1044.8	970.5	405.9	519.7	1.12	849.3	961.4	279.9	518.5
0.12	957.2	979.1	422.5	532.4	0.43	1046.1	970.6	409.5	521.8	1.13	843.8	960.4	274.6	515.4
0.13	947.3	979.8	42 <mark>3.6</mark>	<u>535.7</u>	0.44	1046.8	970.7	412.7	524.2	1.14	839.2	959.3	270.1	512.6
0.14	944	980.3	424.2	538.7	0.45	1047	970.8	41 <mark>5.4</mark>	526.7	1.15	835.3	958.5	266.1	509.6
0.15	940.9	981	424.7	541.8	0.46	1047.1	971	417.8	529.3	1.16	831.6	957.4	262.6	506.5
0.16	936.1	980.5	415.1	544.2	0.47	1047.1	971.4	419.9	532.1	1.17	828.6	956.4	259.4	503.4
0.17	920.2	979.3	396.2	<mark>54</mark> 6.6	0.48	1047.4	971.8	421.8	534.8	1.18	825.7	955	256.4	500.2
0.18	905	978.9	375.8	549	0.49	1047.9	972	423.4	537.5	1.19	823.2	953.4	253.4	497
0.19	893.9	978.5	356.2	550.6	0.5	1048.6	972.2	424.9	540.4	1.2	820.8	952.1	250.8	493.9
0.2	885.2	978.5	340.3	551.2	0.51	1044	972.4	426.2	543.5	1.21	818.4	950.8	248.7	490.6
0.21	878.3	978.1	327.6	551	0.52	1002.5	969.3	413.3	546.1	1.22	816.2	949.5	246.8	487.3
0.22	872.4	977.7	316.7	550.3	0.53	963.5	968	392.9	548.5	1.23	814.2	948.1	245	484.1
0.23	867	977.5	307.5	549	0.54	936.8	967.6	372.8	550.7	1.24	812.3	946.9	243.4	481
0.24	862.6	976.9	299.6	547	0.55	917.6	967.6	353.7	652.2	1.25	810.4	945.5	241.8	477.8
0.25	858.7	976.3	292.6	544.8	0.56	902.1	967.6	337	552.8	1.26	808.6	943.9	240.2	474.6
0.26	865	975.7	286.4	542.3	0.57	891.7	967.9	325.3	552.8	1.27	806.8	942.2	238.8	471.4
0.27	851.6	974.9	281.3	539.7	0.58	883.1	968	315.1	552.2	1.28	804.9	940.6	237.7	468.6
0.28	848.3	973.9	276.5	536.6	0.59	884.8	969.4	308.2	550.8	1.29	803.2	939.2	236.5	465.5
0.29	844.9	973.2	272.5	533.2	l ₁ d	894.7	970.9	306.5	549	1.3	801.4	937.7	235.2	462.6
0.30	848.1	973.1	270.7	529.8	ขั่วโมง	°C	°C	°C	°C	ขั่วโมง	"C	°c	°C	°c
ขั่วโมง	°c	°c	°c	°c										

*T1 = อุณหภูมิของไหลที่ด้านบน Regenerator T2 = อุณหภูมิอิฐทนไฟที่ด้านบน Regenerator

T3 = อุณหภูมิของไหลที่ด้านล่าง Regenerator T4 = อุณหภูมิอิฐทนไฟที่ด้านล่าง Regenerator
เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4
1.31	799.6	936	234	459.6	2.01	923	927.6	382.2	510.6	2.31	835.6	911.2	245.4	449.4
1.32	824.2	936.9	239	456.8	2.02	901.8	927.5	363.4	513	2.32	882.8	911.7	263.7	446.8
1.33	877.3	937.3	255.6	454.1	2.03	886.6	927.3	345.7	514.6	2.33	910.7	911.1	284.2	444.3
1.34	911.7	936.6	276.6	451.4	2.04	875	927.4	332	515.7	2.34	885.2	907.4	291.8	442.4
1.35	932.2	935.8	296.9	449	2.05	865.7	927.6	320.6	516	2.35	857.7	904.9	287.3	441
1.36	945.3	934.8	314.9	447.5	2.06	857.6	927.6	310.7	515.4	2.36	835.3	902.9	279.3	440.2
1.37	953.5	933.9	330.4	446.6	2.07	850.6	927.6	302	514.6	2.37	820.1	901.3	271.3	439.5
1.38	960.1	932.9	343.4	446.5	2.08	845.1	927.4	294.3	513.1	2.38	809.3	900	264.2	438.8
1.39	965.3	931.8	354.2	447	2.09	840.3	927.3	287.9	511.3	2.39	801.4	898.7	258.3	438
1.4	969.5	930.9	363.2	448.2	2.1	835.9	927.3	282.5	509.2	2.4	795.6	897.4	252.9	436.9
1.41	972.8	930.1	370.8	449.8	2.11	832.2	926.9	277.5	506.8	2.41	791.3	896.1	248.4	435.5
1.42	975.3	929.3	377.1	451.8	2.12	2.12 829 926.6 2.13 825.7 926		273	504.3	2.42	787.8	895.2	244.4	434.1
1.43	976.9	928.9	382.7	454.2	2.13	825.7	926	269	501.6	2.43	784.5	894.2	241	432.4
1.44	978.7	928.4	387.3	457	2.14	822.8	925.3	265.4	498.9	2.44	781.8	893	238	430.6
1.45	980.3	927.8	3 <mark>9</mark> 1	459.8	2.15	820.1	924.9	262.3	496.2	2.45	779.4	892	235	428.6
1.46	981.8	927.7	394.4	462.7	2.16	817.5	924.2	259.4	493.2	2.46	777.1	890.8	232.4	426.6
1.47	983.5	927.7	397.2	465.8	2.17	815.1	923.3	256.6	490.2	2.47	775.1	889.7	230.2	424.6
1.48	985.2	927.5	399.8	469. <mark>1</mark>	2.18	812.7	922.4	254.5	487.1	2.48	773.1	888.5	228.3	422.2
1.49	986.3	927.4	402.1	472.2	2.19	810.4	921.6	252.2	484.1	2.49	771.1	887.4	226.5	419.9
1.5	987.8	927.7	404.2	475.8	2.2	808.4	920.5	250.1	481.1	2.5	769.3	886.3	225	417.6
1.51	988.7	928	406.1	479	2.21	806.3	919.4	248.3	478.2	2.51	767.8	885	223.2	415.3
1.52	989.8	928.4	407.8	482.6	2.22	804.3	918.3	246.5	475.3	2.52	766	883.8	221.8	413
1.53	990.9	928.7	409.4	485.8	2.23	802.5	917.2	244.8	472.5	2.53	764.5	882.5	220.6	411
1.54	991.5	928.9	410.8	489	2.24	800.7	916.1	243.2	469.4	2.54	763.1	881.4	219.6	408.8
1.55	992.5	929.3	412.2	492.2	2.25	798.8	914.9	241.8	466.5	2.55	761.5	880.3	218.6	406.7
1.56	993.2	929.7	413.4	495.4	2.26	797.3	913.7	240.2	463.6	2.56	760.2	879	217.4	404.3
1.57	994	930.2	414.6	498.4	2.27	795.6	912.5	239	460.8	2.57	758.6	877.9	216.1	402.1
1.58	994.6	930.9	415.8	501.6	2.28	794	911.4	237.8	458	2.58	757.3	876.6	215.3	400.1
1.59	989.3	931	415.7	504.7	2.29	792.5	910.1	236.5	455	2.59	765.9	875.3	214.3	397.8
2	954.1	928.4	401.4	507.6	2.3	791.9	909.4	235.5	452.1	3	754.5	874	213.2	395.4
ขั่วโมง	"C	"C	°C	°C	ชั่วโมง	"C	"С	"C	°C	ชั่วโมง	"C	°C	"C	°C

เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4	เวลา	T1	T2	Т3	T4
3.01	757.8	873.5	212.8	393.3	3.31	752	842.3	206.2	350.2	4.01	898.8	850.1	360.7	421
3.02	757.8	872	212.2	391.2	3.32	751.4	841.4	205.6	349	4.02	867.1	850.1	342.6	424.6
3.03	756.4	870.6	211.6	389.4	3.33	750.5	840.5	205	347.7	4.03	844.8	850.6	325.3	427.8
3.04	754.7	869.3	211	387.4	3.34	752.5	840.3	205.4	346.3	4.04	828.3	851.2	309.8	430.2
3.05	752.8	868	210.2	385.4	3.35	801.9	842.1	215.2	345	4.05	816.2	851.9	295.5	432
3.06	751	866.5	209.5	383.3	3.36	847.5	842.4	232	343.7	4.06	806.5	852.6	284.2	433
3.07	751.9	865.8	209.1	381.3	3.37	878.3	842.3	250.7	342.6	4.07	798.8	853.3	274.6	433.1
3.08	761.5	865.6	211	379.3	3.38	899.2	842.1	268.6	342.2	4.08	792.5	853.9	266.2	432.8
3.09	791.8	866.2	215.8	377.4	3.39	913.2	841.7	284.6	342.2	4.09	787.1	854.1	259.3	432.2
3.1	836.8	865.3	229.4	375.6	3.4	922.3	841.5	298.7	343	4.1	782.4	854.5	253.4	431.2
3.11	813.2	862.3	234.5	374	3.41	928.4	841.3	310.7	344.6	4.11	778.3	854.5	248.1	429.8
3.12	796.4	860.5	234	372.6	3.42	933.1	841.2	320.9	346.7	4.12	774.4	854.6	243.5	428.2
3.13	785.9	859.5	231.7	371.9	3.43	937	841.1	329.6	349.4	4.13	771.1	854.8	239.3	426.3
3.14	779	858.5	228.7	371.1	3.44	940.3	841	337.1	352.6	4.14	768	854.9	235.5	424.5
3.15	774.1	857.3	22 <mark>6</mark>	370.3	3.45	844	841.2	343.4	356.2	4.15	765	854.6	232.2	422.4
3.16	770.6	856.2	223.7	369.4	3.46	947.1	841.4	348.8	360	4.16	762.3	854.2	229	420.2
3.17	767.6	855	221.5	368.3	3.47	949.6	841.7	353.4	363.8	4.17	759.8	854.1	226.2	417.8
3.18	765.7	854.1	219.4	367.1	3.48	951.8	842.5	357.4	368 <mark>.1</mark>	4.18	757.3	853.7	223.7	415.4
3.19	764.1	853.3	217.8	366	3.49	954.3	843.2	361	372.6	4.19	754.7	853	221.3	413
3.2	762.5	852.5	216.2	364.8	3.5	946.9	843.2	363.8	377	4.2	752.6	852.5	219.4	410.6
3.21	761.2	851.5	214.9	363.6	3.51	939	843.7	366.2	381.5	4.21	750.4	851.9	217.5	408.6
3.22	760	850.5	213.6	362.3	3.52	933	844.1	368	385.8	4.22	748.5	851.2	215.8	406.1
3.23	759	849.7	212.5	361	3.53	932.9	845.2	369.7	390	4.23	746.5	850.5	214.2	403.8
3.24	758	848.9	211.5	359.8	3.54	940.5	846.6	371.4	394.1	4.24	744.7	849.7	212.7	401.5
3.25	757.1	847.9	210.6	358.5	3.55	947	847.9	373.1	398	4.25	742.9	848.9	211.2	399
3.26	756	846.8	209.7	357	3.56	952	849.2	374.9	401.8	4.26	741.3	848.1	209.8	396.6
3.27	765.3	846	209	355.6	3.57	3.57 955.6 850.0		376.6	405.8	4.27	739.7	847.2	208.6	394.2
3.28	754.5	845	208.1	354.2	3.58	958.5	851.7	378.2	409.4	4.28	738.1	846.4	207.4	391.8
3.29	753.6	844.1	207.4	352.8	3.59	960.8	852.9	379.6	413.1	4.29	736.4	845.3	206.2	389.4
3.3	752.8	843.2	206.8	351.4	1.4 4 941.7		851.7	376.4	416.9	4.3	734.7	844.1	205.2	387.1
ขั่วโมง	С	°C	°c	°c	ชั่วโมง	°C	°C	°c	°c	ขั่วโมง	С	"с	"с	С

เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4
4.31	733.4	843.3	204.2	385	5.01	996.2	863.9	385.7	448.7	5.31	930.6	867.4	289.3	415
4.32	768.9	845.3	209.8	382.7	5.02	996.3	865.3	386.8	452.1	5.32	944.3	866.9	303.4	414.7
4.33	826.6	846.7	225	380.6	5.03	956.7	863.3	377.8	455.4	5.33	953.4	866.6	315.8	414.6
4.34	866.9	847	243.6	378.6	5.04	912.3	862.5	360	458.7	5.34	960.1	866.1	326.5	414.9
4.35	893.9	846.9	262	377.1	5.05	880.8	862.9	342.1	461.4	5.35	965.3	865.8	335.4	415.9
4.36	912.4	846.5	279	376.1	5.06	858	863.6	325.5	463.4	5.36	969.9	865.8	343	417.4
4.37	925.1	846.1	293.9	375.9	5.07	841	864.5	310.8	464.9	5.37	973.6	865.7	349.6	419
4.38	934.7	845.8	306.6	376.3	5.08	827.7	865.4	297.8	465.8	5.38	977.5	865.7	355	421
4.39	942	845.5	317.5	377.1	5.09	817.8	866.1	286.7	466	5.39	981.1	865.9	359.7	423.4
4.4	947.4	845.3	326.7	378.6	5.1	809.5	866.9	276.6	465.4	5.4	984.8	866.1	363.7	426.2
4.41	952.3	845	334.6	380.7	5.11	802.7	867.6	268.6	464.2	5.41	987.3	866.6	367.2	429
4.42	956.4	845.2	341.3	383.3	5.12	796.5	868.2	261.8	462.8	5.42	990.6	867.3	370.3	432
4.43	959.6	845.3	347	386	5.13	791.3	868.7	256.2	461.2	5.43	993.5	868	373	435
4.44	962.5	845.3	351.8	389	5.14	786.7	868.7	251	459.1	5.44	996.3	868.6	375.4	437.9
4.45	965.1	845.7	356.1	39 <mark>2.</mark> 2	5.15	782.2	869	246.3	456.8	5.45	998.6	869.7	377.5	440.8
4.46	967.7	846.1	359.7	395.7	5.16	778.2	869.1	242.1	454.3	5.46	1000.7	870.7	379.4	443.8
4.47	970	846.7	362.7	3 <mark>9</mark> 9.2	5.17	774.6	868.9	238.4	451.9	5.47	1002.7	871.6	381.2	446.9
4.48	972.2	847.3	365.5	402.7	5.18	771.4	868.5	235.1	449.4	5.48	1004.4	872.7	382.8	449.8
4.49	974.5	848.3	368	406.2	5.19	768.4	868.2	232.2	446.8	5.49	1006.2	874.1	384.2	452.8
4.5	976.6	849.3	370.1	410	5.2	765.5	868	229.4	444	5.6	1007.7	875.3	385.4	455.7
4.51	978.7	850.3	372	413.6	5.21	762.7	867.4	226.6	441.2	5.51	1009.3	876.5	386.6	458.7
4.52	980.9	851.4	373.8	417	5.22	760	866.9	224.4	438.5	5.52	1010.7	877.9	388	461.8
4.53	983.2	852.6	375.4	420.6	5.23	767.5	866.1	222.1	435.6	6.53	1012.4	879.5	389.2	464.7
4.54	985.4	853.9	376.9	424.2	5.24	755.1	865.3	220.2	432.9	5.54	1013.6	880.9	390.3	467.7
4.55	987.2	855.3	378.4	427.8	6.25	752.8	864.5	218.5	430.2	6.65	1014.7	882.5	391.3	470.4
4.56	989.3	856.7	379.6	431.3	5.26	760.7	863.7	217	427.3	5.56	1015.6	884	392.2	473.1
4.57	990.8	858.1	380.9	434.8	5.27 786.2 86		865.7	222.1	424.6	5.57	1016.3	885.4	393.3	476.1
4.58	992.4	859.3	382.2	438.5	5 5.28 843.7 8		867	236.6	421.6	5.58	1017.1	887	394.2	478.8
4.59	993.8	860.8	383.5	3.5 441.9 5.29 883.9		883.9	867.6	254.7	419.2	5.69	1018	888.8	395.3	481.5
5	995.1	862.5 384.6 445.4 5.3 911.8		867.6	272.7	417	6	1019	890.4	396.2	484.2			
ขั่วโมง	°c	°c	"c	"c	ขั่วโมง	°c	"c	"c	"c	ขั่วโมง	°c	°c	°c	°c

เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4	เวลา	T1	T2	T3	T4
6.01	1019.8	891.9	397.2	486.8	6.31	794.5	887.6	234.2	444	7.01	1040.3	901	397.8	478
6.02	996.9	891.4	393.4	489.7	6.32	792.9	886.5	232.9	441.5	7.02	1018.8	900.1	395	481
6.03	956.5	890.9	378.6	492.2	6.33	791.4	885.5	231.9	439	7.03	967.3	898	379	484
6.04	926.5	891.3	361.8	494.4	6.34	789.9	884.6	230.9	436.4	7.04	928.1	897.7	360.5	486.8
6.05	904.9	891.9	346.6	496.3	6.35	813.6	885.5	234.5	433.8	7.05	897.9	898.4	341.5	489.2
6.06	888.5	892.6	332.8	497.6	6.36	872.3	886.3	247.8	431.4	7.06	873.1	899.1	325.2	490.5
6.07	876.2	893.5	320.7	498.2	6.37	922.7	886.6	265	429.2	7.07	859.5	900.2	312.7	491
6.08	866.8	894.5	310.2	498.2	6.38	952.2	886.5	282.6	427.4	7.08	849	900.9	300.2	491.5
6.09	859.2	895.4	301.4	497.5	6.39	970.2	885.7	298.6	426.2	7.09	839.4	901.5	289.9	490.9
6.1	852.7	896.3	293.7	496.4	6.4	9 83	885.3	312.7	425.5	7.1	831.4	902.1	281.3	489.6
6.11	847.1	896.9	286.9	494.9	6.41	992	885.1	325	425.5	7.11	824.3	902.6	273.4	487.9
6.12	842.2	897.2	281	493	6.42	998.5	884.7	335.3	426	7.12	818.2	902.9	266.5	485.9
6.13	837.7	897.3	27 <mark>5.</mark> 9	491.2	6.43	1003.5	884.5	344	427.1	7.13	812.6	903.1	260.5	483.8
6.14	833.8	897.5	271.4	488.9	6.44	1007.9	884.4	351.4	428.8	7.14	807.5	903.1	255.4	481.3
6.15	830.4	897.7	267.2	486.6	6.45	1011.7	884.6	357.7	430.8	7.15	803	903	250.9	478.5
6.16	827	897.8	263.7	484	6.46	1014.5	884.9	363	433	7.16	798.8	902.6	247.1	475.8
6.17	823.8	897.7	260.5	481.5	6.47	1017.2	885.3	367.8	435.8	7.17	794.7	902.1	243.8	473
6.18	820.9	897.4	257.4	478.6	6.48	1019.2	885.8	371.8	438.4	7.18	791.2	901.6	240.5	470.1
6.19	818.2	896.9	254.6	476.1	6.49	1021.1	886.6	375.4	441.3	7.19	787.8	901.2	237.6	467.4
6.2	815.9	896.6	251.9	473.4	6.5	1022.9	887.2	378.5	444.4	7.2	784.4	900.5	234.9	464.4
6.21	813.3	896.1	249.6	470.6	6.51	1024.8	887.9	381.4	447.5	7.21	781.3	899.8	232.5	461.4
6.22	811	895.7	247.7	467.8	6.52	1026.5	888.9	383.8	450.6	7.22	778.3	898.9	230.3	458.5
6.23	808.9	894.8	245.8	465.2	6.53	1028.5	889.9	385.9	453.7	7.23	775.7	898	228.4	455.6
6.24	806.9	894.1	243.9	462.6	6.54	1030	891	387.8	456.6	7.24	773.1	896.9	226.5	452.6
6.25	804.9	893.3	242.5	460 🔾	6.55	1 <u>031.5</u>	892.3	389.7	459.8	7.25	770.6	895.8	224.6	449.8
6.26	803	892.5	241	457.4	6.56	1033.1	893.5	391.3	463	7.26	768.4	894.6	223.2	446.8
6.27	801.1	891.6	239.4	454.6	54.6 6.57 1034		894.9	392.8	466.1	7.27	766.4	893.4	221.6	443.9
6.28	799.3	890.6	238.2	451.7 6.58 1036		1036.2	896.5	394.2	469.1	7.28	764.5	892.2	220.1	441
6.29	797.7	889.7	236.9	449.2	449.2 6.59 1037.		897.8	395.4	472	7.29	762.5	890.9	218.7	438
6.3	796	888.7	235.8	446.6	7	1038.7	899.3	396.7	475.1	7.3	760.8	889.4	217.5	435.1
ขั่วโมง	С	°C	°c	"c	ขั่วโมง	С	°c	°c	"c	ขั่วโมง	С	°c	°c	°c

เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo
7.31	758.9	888.1	216.3	432.2	8.01	1033.4	882.2	382.9	438.3	8.31	751.6	877.5	209.5	415
7.32	757	886.6	215	429.4	8.02	1034.9	883.6	384.6	441.8	8.32	843.2	880.9	219.4	412.3
7.33	755.1	885.3	214	426.6	8.03	1036.7	885.2	386.2	445.1	8.33	918.4	882.1	236.3	409.8
7.34	753.4	883.8	212.8	424.1	8.04	1016	884.6	383.9	448.6	8.34	971.4	882.7	255	407.6
7.35	751.5	882.2	211.8	421.4	8.05	965.6	882.3	369.3	451.9	8.35	1009.3	882.8	273	405.8
7.36	749.8	880.8	210.7	418.6	8.06	921.3	881.4	351.3	455	8.36	1033.1	882.7	289.1	404.6
7.37	748.1	879.4	209.8	416.1	8.07	889.4	881.8	333.9	457.6	8.37	1050.5	882.7	303.3	404.2
7.38	746.2	877.7	208.7	413.4	8.08	865.8	882.2	318	459.4	8.38	1064	882.7	315.5	404.6
7.39	744.6	876.3	207.8	411	8.09	848.3	883.1	303.8	460.8	8.39	1074.7	882.9	326	405.6
7.4	757.5	876.9	209.5	408.4	8.1	834.7	884.1	291.2	461.4	8.4	1084.1	883.3	335	407
7.41	817	878.1	221.6	405.9	8.11	823.8	884.7	280.7	461.2	8.41	1091.5	883.7	342.6	408.9
7.42	870.6	878.6	239.6	403.6	8.12	814.9	885.3	271.5	460.5	8.42	1098.6	884.4	349.1	411.1
7.43	909.9	878.4	25 <mark>8.6</mark>	401.5	8.13	807.5	885.9	263.4	459.4	8.43	1105.6	885.5	354.9	413.8
7.44	937.4	877.7	276.5	399.9	8.14	801.1	886.4	257	457.8	8.44	1112.2	886.8	359.6	416.6
7.45	956.4	877.2	292.5	399	8.15	795.4	886.6	251.1	456	8.45	1116.8	888.1	363.8	419.6
7.46	969.4	876.6	306.3	399	8.16	790.4	886.8	246.1	454.1	8.46	1120.2	889.7	367.5	422.9
7.47	979.1	876.1	318.2	3 <mark>99</mark> .4	8.17	785.8	886.8	241.4	451.8	8.47	1125.6	891.3	370.7	426.2
7.48	987.1	875.5	328.4	400.4	8.18	781.7	886.6	237.2	449.3	8.48	1130.5	893.4	373.5	429.5
7.49	993.5	875.2	337.1	402	8.19	777.7	886.2	233.5	446.8	8.49	1134.3	895.3	376	433
7.5	999.2	875	344.5	404.1	8.2	774	885.9	230.4	444.4	8.5	1138.2	897.6	378.2	436.4
7.51	1004.2	874.7	350.8	406.3	8.21	770.7	885.5	227.6	441.9	8.51	1142.6	900	380.4	439.9
7.52	1008.4	875	356.3	409	8.22	767.5	885	225	439.4	8.52	1145.4	902.3	382.2	443.2
7.53	1012	875.2	360.8	411.8	8.23	764.4	884.4	222.6	436.6	8.53	1149.8	905	383.9	446.6
7.54	1015.8	875.7	365	415	8.24	761.7	883.5	220.4	434	8.54	1152.2	907.8	385.5	450.1
7.55	1019	876.2	368.5	418.1	8.25	759.1	882.5	218.2	431.1	8.55	1155.3	910.8	387	453.4
7.56	1021.7	876.8	371.6	421.3	8.26	756.3	881.7	216.4	428.5	8.56	1158.3	913.7	388.4	457
7.57	1024.3	877.7	374.4	424.6	8.27	753.9	880.6	214.5	425.8	8.57	1160.7	916.5	389.6	460.1
7.58	1026.6	878.6	376.9	428	8.28	751.6	879.5	212.9	422.9	8.58	1166.1	919.5	390.8	463.3
7.59	1029.1	879.7	379	431.5	8.29	749.2	878.3	211.2	420.2	8.59	1171.8	922.9	392.2	466.6
8	1031.3	880.9	381	435	8.3	747.1	877.1	209.7	417.5	9	1175.1	926.1	393.4	469.9
ขั่วโมง	"C	"C	"c	°c	ขั่วโมง	"C	"C	"c	°c	ขั่วโมง	"с	"c	"c	°c

เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo
9.01	1176.3	926.5	394.6	473.1	9.31	777.3	924	209.4	429	10.01	1183.9	956.7	392.8	469
9.02	1141.7	926.6	392.5	476.3	9.32	774.6	922.5	208.1	426.2	10.02	1176.6	958.7	393.5	472
9.03	1067	923.4	377	479.3	9.33	783.3	922.9	208.8	423.4	10.03	1104.9	952.9	382.5	475
9.04	1010.4	923.8	358.1	482.2	9.34	863.3	924.9	219.7	420.6	10.04	1041.6	951.9	364	477.8
9.05	969.9	925.3	340	484.6	9.35	946.6	926.2	236.6	418	10.05	995.7	952.5	345.5	480.1
9.06	940.6	927.3	323.8	486.2	9.36	1004.1	926.5	255.2	415.6	10.06	962.5	953.6	328.4	481.9
9.07	918.4	928.9	309.8	487.3	9.37	1042.2	926.6	273.4	413.8	10.07	938.3	955.2	313.2	483.1
9.08	901	930.5	297.9	487.6	9.38	1065.8	926.3	289.7	412.7	10.08	920	956.7	300.5	483.6
9.09	887.3	932	287	487.1	9.39	1082.5	925.8	303.9	412.2	10.09	905.6	958.1	289	483.3
9.1	875.8	933.3	277.4	486.2	9.4	1097.1	925.7	316.2	412.3	10.1	893.6	959.3	278.8	482.5
9.11	866.1	934.7	269.7	484.7	9.41	1107.6	925.7	326.8	413.1	10.11	883.3	960.3	270.4	481
9.12	857.7	935.7	262.7	482.8	9.42	1116	925.6	335.9	414.3	10.12	874.5	961.2	263	479.4
9.13	850.3	936.5	25 <mark>6.8</mark>	480.7	9.43	1124.1	925.7	343.5	416.1	10.13	866.6	961.6	256.7	477.4
9.14	843.2	937	251.4	478.3	9.44	1132.1	926.1	350.2	418.1	10.14	859.8	962.1	251.2	475.1
9.15	837.2	937.4	24 <mark>6</mark> .8	475.8	9.45	1137.2	926.9	355.8	420.5	10.15	853.2	962.5	246.5	472.7
9.16	831.5	937.7	242.7	473	9.46	1141.4	927.3	360.5	422.9	10.16	847.2	962.4	242.2	470
9.17	826.3	937.6	238.9	<mark>470</mark> .2	9.47	1145.8	928.1	364.6	425.6	10.17	841.7	962.1	238	467.3
9.18	821.5	937.5	235.5	467. <mark>4</mark>	9.48	1150.4	929.3	368.5	428.5	10.18	836.8	961.8	234.4	464.6
9.19	816.9	937.1	232.3	464. <mark>5</mark>	9.49	1155.1	930.4	371.7	431.5	10.19	832.1	961.4	231.4	461.7
9.2	812.6	936.9	229.4	461.4	9.5	1161.4	932.4	374.5	434.6	10.2	827.6	960.6	228.3	458.7
9.21	808.6	936.1	226.8	458.4	9.51	1165.6	934	377	437	10.21	823.5	959.7	225.6	455.8
9.22	804.7	935.4	224.4	455.4	9.52	1168.5	935.7	379.3	441	10.22	819.5	958.5	223.4	452.8
9.23	801.1	934.5	222.4	452.3	9.53	1170.9	937.7	381.3	444.2	10.23	815.7	957.7	221.1	449.8
9.24	797.7	933.7	220.2	449.4	9.54	1173.6	939.4	383	447.3	10.24	812.3	956.5	219.1	447
9.25	794.6	932.5	218.3	446.4	9.55	1176.9	941.6	384.6	450.4	10.25	808.8	955.4	217.4	444.2
9.26	791.4	931.3	216.6	443.4	9.56	1179.1	944.3	386	453.6	10.26	805.5	954.1	215.8	441.3
9.27	788.5	929.9	215	440.6	9.57	1180.6	946.5	387.5	456.8	10.27	802.5	952.7	213.9	438.3
9.28	785.7	928.6	213.6	437.7	9.58	1182.2	948.9	388.9	459.9	10.28	799.3	951.1	212.2	435.3
9.29	782.7	927.1	212.1	434.6	9.59	1183.1	951.4	390.3	463	10.29	796.4	949.3	210.6	432.4
9.3	780.1	925.6	210.7	431.8	10	1183.3	953.9	391.5	466	10.3	793.5	947.9	209.4	429.6
ขั่วโมง	С	°C	°C	"c	ขั่วโมง	С	°C	°C	"c	ขั่วโมง	С	°C	С	°c

เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo	เวลา	1) Tfi	2) Tmi	3) Tfo	4) Tmo
10.31	790.7	946.1	208	426.6	11.01	1112.7	963.1	398.7	475.8	11.31	795.7	946.9	211.5	436.4
10.32	788	944.1	206.9	423.8	11.02	1113.9	964.9	399.8	479	11.32	870.6	949.5	222.1	433.5
10.33	818.7	945.9	210.6	420.9	11.03	1079.9	961.7	395	482.2	11.33	931.6	950.1	239.4	430.7
10.34	897.7	947.4	224.5	418.2	11.04	1021.7	959.3	377.9	485.4	11.34	972.6	950.1	258.9	428.2
10.35	953.8	948	243.2	415.7	11.05	978.4	959	358.8	488.2	11.35	998.3	949.8	278.1	426.5
10.36	990.7	947.6	262.3	413.6	11.06	947.5	959.8	341.3	490.8	11.36	1016.2	949	295	425.2
10.37	1015.8	946.9	280.4	412.1	11.07	924.4	960.2	325.3	492.4	11.37	1030.3	948.2	309.5	424.7
10.38	1033.2	946.1	296.3	411.1	11.08	906.6	960.9	311	493.2	11.38	1041.8	947.4	322.2	425.2
10.39	1045.8	945.5	310.2	411	11.09	892.9	961.8	299	493.4	11.39	1051.5	946.9	332.8	426.2
10.4	1055.5	944.7	322.3	411.6	11.1	882	962.4	288.3	493	11.4	1059.2	946.5	341.8	427.8
10.41	1062.4	944.3	332.5	412.7	11.11	872.6	963.1	279.1	492	11.41	1065.8	946.2	349.6	429.9
10.42	1068.6	943.7	341.3	414.4	11.12	864	963.6	270.6	490.3	11.42	1071.8	946.1	356.3	432.5
10.43	1073.6	943.5	34 <mark>8.7</mark>	416.5	11.13	856.8	964	263.6	488.6	11.43	1067.2	945.5	362	435.3
10.44	1077.8	943.4	355.2	419	11.14	849.4	963.7	257.4	486.2	11.44	1056.5	945.3	366.2	438.2
10.45	1081.7	943.7	360.7	421.8	11.15	842.9	963.6	251.8	483.7	11.45	1041.3	944.9	369.7	441.3
10.46	1085.4	944.1	365.5	424.7	11.16	837.6	963.3	247	481	11.46	1024.4	945.3	372.2	444.6
10.47	1088.5	944.6	369.7	427.9	11.17	832.9	962.8	242.6	478.1	11.47	1034.7	945.3	374.5	448.1
10.48	1091.3	945.3	373.4	431. <mark>3</mark>	11.18	828.8	962.1	238.7	475.2	11.48	1028.2	945.1	377.1	451.7
10.49	1094.1	945.9	376.6	434.6	11.19	824.8	961.4	235	472.2	11.49	1017.4	944.8	380.1	455.7
10.5	1096.5	946.8	379.4	438.1	11.2	820.7	960.5	231.8	469.1	11.5	998.7	944.9	382.8	459.8
10.51	1099.4	948	382.2	441.7	11.21	817	959.4	228.9	466	11.51	981.2	945.2	385	464
10.52	1101.4	949.3	384.7	445.2	11.22	813.5	958.3	226	463	11.52	962.6	945.2	386.9	468.2
10.53	1103.1	950.7	386.8	448.6	11.23	810	957.1	223.6	459.9	11.53	948	945.5	388.8	472.3
10.54	1104.6	952.1	388.8	452.1	11.24	806.8	966.9	221.4	457	11.54	933.6	945.8	390.9	476.6
10.55	1105.9	953.7	390.5	455.7	11.25	803.7	954.7	219.2	453.9	11.55	920	945.8	392.4	480.6
10.56	1107	954.9	392.1	459	11.26	801	953.3	217.5	451	11.56	904.1	946.1	393.8	484.6
10.57	1108.2	956.4	393.4	462.3	11.27	798.4	951.7	216.1	447.9	11.57	891.7	946.1	395	488.6
10.58	1109.4	957.9	395	465.8	11.28	795.6	950.1	214.3	445	11.58	886.3	946.1	395.9	492.3
10.59	1110.4	969.7	396.4	469.2	11.29	792.9	948.8	212.6	442.1	11.59	883.4	946.4	397	496
11	1111.7	961.6	397.6	472.5	11.3	790.6	947	211.2	439.2	12	887.1	946.1	396.4	499.4
ขั่วโมง	С	С	°c	С	ขั่วโมง	С	°C	°c	"с	ขั่วโมง	°c	°C	"с	С

ภาคผนวก ค

ข้อมูลและผลการจำลองแบบจากโปรแกรมคอมพิวเตอร์

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

time cycle (s)	2400	1800	1200	600	565	531	529	527	450	300	60	ACC=0.001
Heat storage (1 ch)	16,003,655	12,037,649	8,062,969	4,048,158	3,812,360	3,582,875	3,569,694	3,556,166	3,035,776	2,019,163	379,098	J/cycle
Heat recovery (1 ch)	15,946,925	11,994,464	8,033,716	4,033,547	3,798,499	3,570,045	3,556,469	3,543,032	3,024,721	2,011,217	376,897	J/cycle
Heat recovery in 1 hour (1 ch)	23,920,387	23,988,929	24,101,149	24,201,279	24,202,826	24,203,692	24,202,810	24,202,878	24,197,768	24,134,606	22,613,795	J/hr
compare wih 1800s (1 ch)	-68542	0	112220	212351	213897	214763	213881	213949	208839	145677	-1375134	J/hr
compare wih 1800s (1 ch)	-0.2857	0.0000	0.4678	0.8852	0.8916	0.8953	0.8916	0.8919	0.8706	0.6073	-5.7324	%
Heat storage (120 ch)	1,920,438,564	1,444,517,856	967,556,3 <mark>3</mark> 5	485,778,939	457,483,161	429,945,000	428,363,260	426,739,878	364,293,132	242,299,516	45,491,732	J/cycle
Heat recovery (120 ch)	1,913,630,972	1,439,335,730	964,045,965	484,025,590	455,819,883	428,405,344	426,776,222	425,163,893	362,966,518	241,346,061	45,227,589	J/cycle
Heat recovery in 1 hour (120 ch)	2,870,446,458	2,878,671,460	2,892,137,894	2,904,153,538	2,904,339,075	2,904,443,014	2,904,337,239	2,904,345,381	2,903,732,145	2,896,152,730	2,713,655,350	J/hr
compare wih 1800s (120 ch)	-8,225,002	0	13, <mark>466,433</mark>	25,482,077	25,667,615	25,771,553	25,665,779	25,673,921	25,060,685	17,481,270	-165,016,110	J/hr
compare wih 1800s (120 ch)	-0.2857	0	0.46 <mark>78</mark>	0.8852	0.8916	0.8953	0.8916	0.8919	0.8706	0.6073	-5.7324	%
oil saving (120 ch)	-0.2068	0	0.3386	0.6407	0.6454	0.6480	0.6454	0.6456	0.6301	0.4396	-4.1493	Litre/hr
	-1811.69	0.00	2966.20	5612.85	5653.72	5676.61	5653.31	5655.11	5520.03	3850.54	-36347.53	Litre/yr
time cycle (s)	1800	1200	900	600	565	531	529	527	450	300	60	ACC=0.001
Heat storage (1 ch)	17,909,033	8,062,969	6,062,231	4,048,158	3,812,360	3,582,875	3,569,694	3,556,166	3,035,776	2,019,163	379,098	J/cycle
Heat recovery (1 ch)	10,054,682	8,033,716	6,039,756	4,033,547	3,798,499	3,570,045	3,556,469	3,543,032	3,024,721	2,011,217	376,897	J/cycle
Heat recovery in 1 hour (1 ch)	20,109,364	24,101,149	24,159,025	24,201,279	24,202,826	24,203,692	24,202,810	24,202,878	24,197,768	24,134,606	22,613,795	J/hr
compare wih 1800s (1 ch)	0	3,991,785	4,049,660	4,091,915	4,093,461	4,094,327	4,093,446	4,093,514	4,088,403	4,025,242	2,504,430	J/hr
compare wih 1800s (1 ch)	0	19.85	20.14	20.35	20.36	20.36	20.36	20.36	20.33	20.02	12.45	%
Heat storage (120 ch)	2,149,083,996	967,556,335	727, <mark>467,7</mark> 14	485,778,939	457,483,161	429,945,000	428,363,260	426,739,878	364,293,132	242,299,516	45,491,732	J/cycle
Heat recovery (120 ch)	1,206,561,869	964,045,965	724,770,741	484,025,590	455,819,883	428,405,344	426,776,222	425,163,893	362,966,518	241,346,061	45,227,589	J/cycle
Heat recovery in 1 hour (120 ch)	2,413,123,738	2,892,137,894	2,899,082,965	2,904,153,538	2,904,339,075	2,904,443,014	2,904,337,239	2,904,345,381	2,903,732,145	2,896,152,730	2,713,655,350	J/hr
compare wih 1800s (120 ch)	0	479,014,156	485,959,228	491,029,800	491,215,337	491,319,276	491,213,501	491,221,643	490,608,407	483,028,992	300,531,612	J/hr
compare wih 1800s (120 ch)	0	19.85 🔍	20.14	20.35	20.36	20.36	20.36	20.36	20.33	20.02	12.45	%
oil saving (120 ch)	0	12.04	12.22	12.35	0 12.35	12.35	12.35	12.35	12.34	12.15	7.56	Litre/hr
ACC 1800 = 15	0	105510.79	107040.55	108157.43	108198.30	108221.19	108197.89	108199.69	108064.61	106395.12	66197.06	Litre/yr
		9		100	NOON 1		10	TOTL				

1.) Input	size of squai Top view	re check	er in regener	ator			3D v	iew	
	c d	in } ↓ ↓ ↓ ↓	ternal brick su mmetry line	rface		Air flow			L
						time Batcl	=	12	Hr
	с	=	0.18	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input	heat transfei	r data							
	time mean :	ambient t	emperature ,	,ta		=	38	°c	
	time mean i	relative h	umidity			=	80	%	
	deviding Le	ngth	=	20 0	deviding	Time	=	40)
	time mean f	fluid temp	erature (in)) , tfih		=	1052	°c)	
	time mean f	fluid temp	erature (ou	t), tfoh		=	434	°c (hot period
	time mean :	solid tem	perature (in), tmih		=	907	°c (norpenoa
	time mean :	solid tem	perature (o	ut), tmc	h	=	420	°c j	
	time mean f	fluid temp	erature (in)), tfic		=	241	°c)	
	time mean f	fluid temp	erature (ou	t),tfoc		=	751	°c (cold period
	time mean :	solid tem	perature (in), tmic		=	402	°c (
	time mean :	solid tem	perature (o	ut), tmo	с	=	890	°c j	
	Time cycle	, PE 🎂				=	300	s	
	Dry weight	ore =	23000 kg		%Η ₂ Ο	=	7.52	% by We	t weight
	Accuracy,	ACC				เรา	0.001		
	Fluid volum	e flow rat	e (cold peri	od)		-	4950	m³/hr	
	Oil mass flo	w rate				ควา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	of fluid (hot period)		со	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity o	f gas hot	period, Eg			=	0.133		
	Absorptivity	of gas h	ot period, Ag	I		=	0.1189		
	Emissivity o	f gas col	d period, Eg			=	0.034		
	Absorptivity	of gas c	old period, A	g		=	0.0299		

solid temperature distribution hat period (degree C)

regenerator entrance

1 v v v v v v v v v v v v v v v v v v v	
 	293 300 t ime
1 1 0 </th <th>,006 1,006 (*)</th>	,006 1,006 (*)
 n vi vi	990 990
 1 or 1 or	975 975
 1 </th <th>959 959</th>	959 959
 1 vi vi	942 943
 2 85 85 85 86 <l< th=""><th>926 926</th></l<>	926 926
 2 12 12 12 12 12 12 12 12 12 12 12 12 12	909 909
 2 1 1<	892 893
1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	875 875
1 Si	858 858
A 10 1 10 10 10 10 10 10 10 10 10 10 10 1	840 840
A 50 50 50 50 50 50 50 50 50 50 50 50 50	822 823
A 181 781 781 781 781 781 781 782 782 782 782 782 782 782 782 782 782	804 804
4 672 675 <p< th=""><th>786 786</th></p<>	786 786
4 14 14 14 14 14 14 14 14 14 14 14 14 14	767 767
4 724 724 724 725 725 725 725 725 725 725 725 725 725	748 748
4 705	729 729
5 625 625 625 625 625 625 625 625 625 62	710 710
5 665 665 665 665 665 665 665 665 666 666 666 666 666 666 666 666 666 667	690 690
5 644 644 645 645 645 645 645 645 645 64	670 670
Length (m) regenerator exit	650 650
Length (m) regeneratorexit	
time to cyclic equilibrium 274 hr	

2,019,163 J 2,011,217 J

Heat storage Heat recovery

Longth (m)

rtart of period

105

fluid temperature distribution hat period (degree C)

regenerator exit

	٥	8	15	23	30	38	45	53	60	62	75	83	90	98	105	113	120	128	135	143	150	158	165	173	120	188	195	203	Z10	Z18	ZZ5	233	Z40	Z48	255	263	270	278	285	293	300	time
٥	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,05Z	1,05Z	1,052	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	(c)
٥	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,022	1,022	1,022	1,022	1,0ZZ	1,022	1,022	1,022	1,02Z	1,022	1,022	1,022	1,022	1,022	1,022	1,022	1,022	1,022	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	
1	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	
1	990	990	990	990	990	990	990	990	990	990	991	991	991	991	991	991	991	991	991	991	991	991	991	99Z	99Z	992	992	99Z	99Z	992	99Z	992	99Z	99Z	992	992	992	993	993	993	993	
1	974	974	974	974	974	974	974	975	975	975	975	975	975	975	975	975	975	975	975	976	976	976	976	976	976	976	976	976	976	976	976	977	977	977	977	977	977	977	977	977	977	
z	958	958	952	952	958	952	952	952	959	959	959	959	959	959	959	959	959	959	959	960	960	960	960	960	960	960	960	960	960	960	961	961	961	961	961	961	961	961	961	961	961	
z	94Z	94Z	942	942	942	942	942	942	942	94Z	943	943	943	943	943	943	943	943	943	943	943	944	944	944	944	944	944	944	944	944	944	945	945	945	945	945	945	945	945	945	945	
z	925	925	925	925	925	926	926	926	926	9Z6	926	926	926	926	926	927	927	927	927	927	927	927	927	927	9Z7	928	928	928	928	928	9Z8	928	928	928	928	929	929	929	929	929	929	
z	902	902	909	909	909	909	909	909	909	909	909	910	910	910	910	910	910	910	910	910	910	911	911	911	911	911	911	911	911	911	911	91Z	91Z	91Z	91Z	912	912	912	912	912	913	
3	891	89Z	89Z	892	89Z	89Z	892	89Z	892	89Z	89Z	893	893	893	893	893	893	893	893	893	894	894	894	894	894	894	894	894	894	895	895	895	895	895	895	895	895	895	895	896	896	
3	874	874	874	875	875	875	875	875	875	875	875	875	876	876	876	876	876	876	876	876	876	877	877	877	877	877	877	877	877	877	878	878	878	878	878	878	878	878	878	879	279	
3	857	857	857	857	857	857	858	858	858	858	858	858	858	858	858	859	859	859	859	859	859	859	859	859	260	260	860	260	860	860	860	860	260	861	861	861	861	861	861	861	861	
3	839	839	839	840	840	840	840	840	840	840	840	840	841	841	841	841	841	841	841	841	841	84Z	843	843	843	843	843	843	843	843	844	844	844									
4	821	821	822	822	822	822	822	822	822	822	822	823	823	823	823	823	823	823	823	823	824	824	824	824	824	824	824	824	825	825	825	825	825	825	825	825	825	826	826	826	826	
4	803	803	803	803	804	804	804	804	804	804	804	804	805	805	805	805	805	805	805	805	805	206	806	806	806	806	806	806	806	807	807	807	807	807	807	807	807	202	202	202	808	
4	785	785	785	785	785	785	785	786	786	786	726	786	786	786	726	787	787	787	787	787	787	787	787	787	788	788	788	788	788	788	788	788	789	789	789	789	789	789	789	789	790	
4	766	766	766	766	767	767	767	767	767	767	767	767	767	768	762	768	762	768	768	768	762	769	769	769	769	769	769	769	769	770	770	770	770	770	770	770	770	771	771	771	771	
5	747	747	747	747	748	748	748	748	748	748	748	748	749	749	749	749	749	749	749	749	750	750	750	750	750	750	750	750	751	751	751	751	751	751	751	751	752	752	752	752	75Z	
5	728	728	728	728	728	728	729	729	729	729	729	729	729	730	730	730	730	730	730	730	730	731	731	731	731	731	731	731	731	732	732	73Z	73Z	73Z	73Z	732	732	733	733	733	733	
5	708	708	709	709	709	709	709	709	709	710	710	710	710	710	710	710	710	711	711	711	711	711	711	711	711	712	712	712	712	712	712	712	71Z	713	713	713	713	713	713	713	713	
	7																																									

Longth (m)

start of period

	•																																									
5	1,006	1,006	1,006	1,006	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,004	1,004	1,004	1,004	1,004	1,004	1,004	1,004	1,004	1,004	1,003	1,003	1,003	1,003	1,003	1,003	1,003	1,003	1,003	1,003	1,002	1,002	1,002	1,002	1,002	1,002	1,002	
5	990	990	990	990	990	990	990	990	990	989	929	989	989	989	989	929	929	989	929	988	988	988	922	922	922	988	988	988	988	987	987	927	987	987	987	987	987	987	926	926	926	
5	975	975	974	974	974	974	974	974	974	974	974	974	973	973	973	973	973	973	973	973	973	97Z	97Z	97Z	97Z	97Z	972	97Z	97Z	97Z	97Z	971	971	971	971	971	971	971	971	971	971	
4	959	959	959	958	958	958	958	958	958	958	958	958	957	957	957	957	957	957	957	957	957	956	956	956	956	956	956	956	956	956	956	955	955	955	955	955	955	955	955	955	954	
4	943	94Z	941	941	941	941	941	941	941	941	941	940	940	940	940	940	940	940	940	940	940	939	939	939	939	939	939	939	939	939	938	938	938									
4	926	926	926	926	926	926	925	925	925	925	925	925	925	925	925	924	924	9Z4	9Z4	924	9Z4	924	9Z4	924	924	923	923	923	923	923	923	923	923	923	922	922	922	922	92Z	922	922	
4	909	909	909	909	909	909	909	909	909	902	902	902	902	908	902	902	902	902	907	907	907	907	907	907	907	907	907	906	906	906	906	906	906	906	906	906	906	905	905	905	905	
3	893	892	892	89Z	892	89Z	892	89Z	892	892	891	891	891	891	891	891	891	891	891	890	890	890	890	890	890	890	890	890	889	889	889	889	889	889	889	889	889	888	888	888	888	
3	875	875	875	875	875	875	875	875	875	874	874	874	874	874	874	874	874	874	873	873	873	873	873	873	873	873	872	872	872	872	872	872	872	872	872	871	871	871	871	871	871	
3	858	858	858	858	858	857	857	857	857	857	857	857	857	857	856	856	856	856	856	856	856	856	856	855	855	855	855	855	855	855	855	855	854	854	854	854	854	854	854	854	853	
3	840	840	840	840	840	840	840	840	840	839	839	839	839	839	839	839	839	838	838	838	838	838	838	838	838	838	837	837	837	837	837	837	837	837	836	836	836	836	836	836	836	
z	823	822	822	822	822	822	822	822	822	822	821	821	821	821	821	821	821	821	820	820	820	820	820	820	820	820	819	819	819	819	819	819	819	819	819	818	818	818	818	818	818	
z	804	804	804	804	804	804	804	804	803	803	803	803	803	803	803	803	803	802	802	802	802	802	802	802	802	801	801	801	801	801	801	801	801	800	800	800	800	800	800	800	200	
2	767	767	767	767	767	767	767	767	766	766	766	765	765	764	766	766	765	765	765	765	765	765	765	765	764	764	764	764	764	764	764	764	767	767	767	767	767	767	767	767	767	
1	748	748	748	748	748	748	748	748	747	747	747	747	747	747	747	747	746	746	746	746	746	746	746	746	745	745	745	745	745	745	745	745	744	744	744	744	744	744	744	744	743	
1	729	729	729	729	729	729	729	728	728	728	728	728	728	728	727	727	727	727	727	727	727	727	726	726	726	726	726	726	726	726	725	725	725	725	725	725	725	725	724	724	724	
1	710	710	710	709	709	709	709	709	709	709	709	702	702	702	702	702	702	702	707	707	707	707	707	707	707	707	706	706	706	706	706	706	706	706	705	705	705	705	705	705	705	
1	690	690	690	690	690	629	629	629	629	689	629	689	688	622	622	622	622	622	622	622	687	687	687	687	687	627	687	687	626	626	636	626	626	626	626	685	685	685	685	685	685	
٥	670	670	670	670	669	669	669	669	669	669	669	669	662	662	662	662	662	662	662	662	667	667	667	667	667	667	667	666	666	666	666	666	666	666	666	665	665	665	665	665	665	
٥	650	650	649	649	649	649	649	649	649	649	648	648	648	648	648	648	648	647	647	647	647	647	647	647	646	646	646	646	646	646	646	646	645	645	645	645	645	645	645	644	644	time
	0	8	15	Z3	30	38	45	53	60	62	75	83	90	98	105	113	120	128	135	143	150	158	165	173	180	188	195	203	Z10	Z18	225	Z33	Z40	Z48	255	Z63	270	Z78	Z85	Z93	300	• (7)
ж	art of period regenerator entrance																								CNI	l of period																

Longth (m)

rolid temperature distribution cold period (degree C)

regenerator exit

Longth (m) researcher sxit 5 5 5 4 4 4 4 3 3 3 3 2 z z z 1 1 1 1 п П 8 15 23 30 32 45 53 60 68 75 83 90 98 105 113 120 128 135 143 150 158 165 173 180 188 195 203 210 218 225 233 240 248 255 263 270 278 285 293 300 0

resencestor entrance

start of period

fluid temperature distribution cold period (degree C)

108

(1)

thermal ratio distribution hat period ((tfih-tfah)' (tfih-tfie) or NH1)

0.424 0.424 0.423 0.423 0.423 0.423 0.423 0.423 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.420 0.420 0.420 0.420 0.420 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.418

1.) Inpu	t size of squa Top view	ire checl	ker in regenera	tor			3D vi	ew	
	c d		internal brick surf symmetry line	ace		Air flow			L L
						time Batcl	=	 12	Hr
	с	=	0.18	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Inpu	it heat transfe	r data							
	time mean	ambient	temperature ,ta	э		=	38	С	
	time mean	relative	humidity			=	80 '	%	
	deviding L	ength	=	20 c	leviding	Time	=	40)
	time mean	fluid terr	perature (in) ,	tfih		=	1052	ိပါ	
	time mean	fluid terr	perature (out), tfoh		=	434	°c (hotporiod
	time mean	solid ter	mp <mark>e</mark> rature (in), tmih		=	907	°c (not penou
	time mean	solid ter	mper <mark>atu</mark> re (out	:), tmo	h	=	420	°c	
	time mean	fluid terr	perature (in) ,	tfic		=	241	ີດ ໂ	
	time mean	fluid terr	perature (out)) , tfoc		=	751	°c (cold period
	time mean	solid ter	mperature (in), tmic		=	402	°c (
	time mean	solid ter	mperature (out	:) , tmo	с	=	890	°c J	
	Time cycle	, PE				=	450 :	5	
	Dry weight	ore =	23000 kg	9	6H₂O	=	7.52	% by We	t weight
	Accuracy ,	ACC				ษรก	0.001		
	Fluid volum	ne flow ra	ate (cold perio	3)		-	4950	m³/hr	
	Oil mass fl	ow rate				กาง	270	kg/hr	
					CO2	=	12.33	(% vol.)	1
	componen	t of fluid	(hot period)		со	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity (of gas ho	t period, Eg			=	0.133		
	Absorptivit	y of gas	hot period, Ag			=	0.1189		
	Emissivity (of gas co	old period, Eg			=	0.034		
	Absorptivit	y of gas	cold period, Ag			=	0.0299		

solid temperature distribution hat period (degree C)

regenerator entrance

	٥	11	Z3	34	45	56	68	79	90	101	113	124	135	146	158	169	120	191	203	Z14	Z25	Z36	Z48	259	270	281	293	304	315	326	338	349	360	371	383	394	405	416	428	439	450	time
٥	1,000	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,001	1,002	1,00Z	1,00Z	1,00Z	1,00Z	1,002	1,00Z	1,003	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	Γ(r)
٥	984	984	924	985	985	985	985	985	985	926	926	926	926	926	926	926	927	927	987	927	927	927	922	922	922	922	922	922	922	929	929	929	929	929	929	990	990	990	990	990	990	
1	968	968	969	969	969	969	969	969	970	970	970	970	970	970	971	971	971	971	971	971	971	97Z	97Z	972	972	972	972	973	973	973	973	973	973	974	974	974	974	974	974	974	975	
1	95Z	95Z	953	953	953	953	953	953	954	954	954	954	954	954	955	955	955	955	955	955	956	956	956	956	956	956	956	957	957	957	957	957	957	958	958	958	958	952	952	958	959	
1	936	936	936	937	937	937	937	937	937	938	938	938	938	938	932	938	939	939	939	939	939	939	940	940	940	940	940	940	941	941	941	941	941	941	94Z							
1	920	920	920	920	920	920	921	921	9Z1	921	9Z1	921	922	92Z	92Z	922	922	922	923	923	923	923	923	923	924	924	924	924	9Z4	9Z4	924	925	925	925	925	925	925	926	926	926	926	
z	903	903	903	903	904	904	904	904	904	904	905	905	905	905	905	905	906	906	906	906	906	906	907	907	907	907	907	907	908	902	902	902	902	902	908	909	909	909	909	909	909	
z	886	886	886	886	887	887	887	887	887	887	888	888	888	888	888	888	229	889	229	889	889	229	890	890	890	890	890	890	891	891	891	891	891	891	89Z	89Z	89Z	892	892	89Z	893	
z	869	869	869	869	869	870	870	870	870	870	870	871	871	871	871	871	871	872	87Z	87Z	872	87Z	872	873	873	873	873	873	873	874	874	874	874	874	875	875	875	875	875	875	876	
z	851	851	852	852	852	852	852	852	853	853	853	853	853	854	854	854	854	854	854	855	855	855	855	855	855	856	856	856	856	856	856	857	857	857	857	857	857	858	858	858	858	
3	834	834	834	834	834	834	835	835	835	835	835	836	836	836	836	836	836	837	837	837	837	837	837	838	838	838	838	838	839	839	839	839	839	839	840	840	840	840	840	840	841	
3	816	816	816	816	816	817	817	817	817	817	817	818	818	818	818	818	819	819	219	819	819	819	820	820	820	820	820	820	821	821	821	821	821	822	822	822	822	822	822	823	823	
3	797	792	798	792	792	792	799	799	799	799	799	799	200	200	200	200	800	801	201	801	201	801	801	802	802	80Z	802	802	803	803	803	803	803	803	804	804	804	804	204	205	805	
3	779	779	779	780	720	780	780	780	781	781	781	781	781	781	782	782	782	782	782	783	783	783	783	783	783	784	784	784	784	784	785	785	785	785	785	785	786	786	726	726	786	
4	760	761	761	761	761	761	761	762	762	762	762	762	763	763	763	763	763	763	764	764	764	764	764	765	765	765	765	765	766	766	766	766	766	766	767	767	767	767	767	762	762	
4	741	747	747	747	747	747	747	743	747	743	747	743	744	744	744	744	744	745	745	745	745	745	746	746	746	746	746	746	747	747	747	747	747	742	742	742	742	742	749	749	749	
4	777	777	777	772	777	772	772	772	774	774	774	774	774	775	775	775	775	775	776	776	776	776	776	777	777	777	777	777	777	772	772	772	772	772	779	779	779	779	779	730	770	
	707	702	702	702	702	704	704	704	704	704	705	705	705	705	705	700	785	700	706	700	700	702	702	202	202	202	209	709	209	709	709	700	700	700	700	700	74.0	740	74.0	740	74.0	
-	103	103	103	103	103	684	-	684	684			103		103	103					100	100									100	100	105	105	105	105	105					(D4	
5	683	683	683	683	684	684	684	684	684	685	685	685	685	685	686	686	686	686	686	687	687	687	687	687	688	688	688	688	688	689	689	689	689	689	690	690	690	690	690	690	691	
5	663	663	663	663	664	664	664	664	664	665	665	665	665	665	666	666	666	666	666	667	667	667	667	667	668	668	663	668	663	669	669	669	669	669	670	670	670	670	670	671	671	
5	642	643	643	643	643	643	644	644	644	644	644	645	645	645	645	645	646	646	646	646	646	647	647	647	647	647	642	648	648	642	648	649	649	649	649	649	650	650	650	650	650	
Longth	(m)																			rege	ncrətor	e×it																				
																tin	1 6 10 C	yelie eq	uilibriu	m	19Z	hr																				

3,035,776 J 3,024,721 J

Heat Abrage Heat recovery

Longth (m)

rtart of period

111

fluid temperature distribution hat period (degree C)

regenerator exit

	٥	11	23	34	45	56	68	79	90	101	113	124	135	146	158	169	180	191	203	Z14	225	Z36	248	259	270	281	Z93	304	315	326	338	349	360	371	383	394	405	416	428	439	450	time
٥	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	- (c)
٥	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,022	1,0ZZ	1,0ZZ	1,022	1,022	1,022	1,022	1,0ZZ	1,022	1,0ZZ	1,022	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	
1	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,009	1,009	
1	989	929	929	989	990	990	990	990	990	990	990	990	990	991	991	991	991	991	991	991	991	991	99Z	99Z	99Z	992	992	99Z	992	99Z	99Z	993	993	993	993	993	993	993	993	993	994	
1	973	973	973	974	974	974	974	974	974	974	974	975	975	975	975	975	975	975	975	976	976	976	976	976	976	976	976	977	977	977	977	977	977	977	977	978	978	978	978	978	978	
z	957	957	957	957	952	958	958	958	958	958	958	959	959	959	959	959	959	959	959	960	960	960	960	960	960	960	961	961	961	961	961	961	961	961	96Z							
z	941	941	941	941	941	941	94Z	943	943	943	943	943	943	943	944	944	944	944	944	944	944	945	945	945	945	945	945	945	946	946	946	946	946	946	946							
z	9Z4	924	925	925	925	925	925	925	925	926	926	926	926	926	926	9Z6	927	927	927	927	927	927	928	928	928	928	928	928	928	929	929	929	929	929	929	929	930	930	930	930	930	
z	907	908	902	902	902	908	902	909	909	909	909	909	909	910	910	9 <mark>10</mark>	910	910	910	910	911	911	911	911	911	911	91Z	913	913	913	913	913	913	914	914							
3	891	891	891	891	891	891	89Z	893	893	893	893	893	893	894	894	894	894	894	894	895	895	895	895	895	895	896	896	896	896	896	896	896	897	897	897							
3	873	874	874	874	874	874	874	875	875	875	875	875	875	876	876	876	876	876	876	877	877	877	877	877	877	878	878	878	878	878	878	878	879	879	279	879	879	879	880	880	880	
3	856	856	856	856	857	857	857	857	857	858	858	858	858	858	858	859	859	859	859	859	859	260	260	860	860	260	860	861	861	861	261	861	861	86Z	86Z	86Z	86Z	86Z	86Z	863	863	
3	838	839	839	839	839	839	839	840	840	840	840	840	840	841	841	841	841	841	841	84Z	84Z	84Z	84Z	842	84Z	843	843	843	843	843	844	844	844	844	844	844	845	845	845	845	845	
4	820	821	8Z1	821	8Z1	821	822	822	822	822	822	822	823	823	823	823	823	823	824	824	824	824	824	824	825	825	825	825	825	826	826	826	826	826	826	827	827	827	827	827	827	
4	80Z	803	803	803	803	803	803	804	804	804	804	804	804	805	805	805	805	805	806	206	806	806	806	806	807	807	807	807	807	808	202	808	808	202	202	809	809	809	809	209	809	
4	784	784	784	785	785	785	785	785	785	786	786	786	786	786	786	787	787	787	787	787	788	788	788	788	788	788	789	729	789	789	789	790	790	790	790	790	790	791	791	791	791	
4	765	766	766	766	766	766	766	767	767	767	767	767	762	762	762	762	762	768	769	769	769	769	769	770	770	770	770	770	770	771	771	771	771	771	77Z	77Z	772	772	772	772	773	
5	746	747	747	747	747	747	748	748	748	748	748	748	749	749	749	749	749	750	750	750	750	750	751	751	751	751	751	751	752	752	75Z	75Z	75Z	753	753	753	753	753	754	754	754	
5	727	727	728	728	728	728	728	729	729	729	729	729	730	730	730	730	730	730	731	731	731	731	731	73Z	73Z	73Z	73Z	73Z	733	733	733	733	733	734	734	734	734	734	734	735	735	
5	708	708	702	702	709	709	709	709	709	710	710	710	710	710	711	711	711	711	711	711	71Z	71Z	71Z	712	712	713	713	713	713	713	714	714	714	714	714	715	715	715	715	715	715	

Longth (m)

start of period

fluid temperature distribution cold period (degree C)

Len gti	(m)																			- C 3 C	nerator	e xit																				
	•																																									
5	699	699	699	692	692	698	692	698	692	698	692	697	697	697	697	697	697	697	697	697	696	696	696	696	696	696	696	696	695	695	695	695	695	695	695	695	694	694	694	694	694	
5	679	679	679	679	672	678	672	678	678	678	672	678	677	677	677	677	677	677	677	677	677	676	676	676	676	676	676	676	676	675	675	675	675	675	675	675	675	674	674	674	674	
5	659	659	659	658	658	658	658	658	658	658	658	657	657	657	657	657	657	657	657	656	656	656	656	656	656	656	656	656	655	655	655	655	655	655	655	655	654	654	654	654	654	
4	638	638	638	638	638	638	638	637	637	637	637	637	637	637	637	637	636	636	636	636	636	636	636	636	635	635	635	635	635	635	635	635	635	634	634	634	634	634	634	634	634	
4	618	617	617	617	617	617	617	617	617	616	616	616	616	616	616	616	616	616	615	615	615	615	615	615	615	615	615	614	614	614	614	614	614	614	614	614	613	613	613	613	613	
4	596	596	596	596	596	596	596	596	596	595	595	595	595	595	595	595	595	595	594	594	594	594	594	594	594	594	594	593	593	593	593	593	593	593	593	593	5 92	59Z	592	59Z	59Z	
4	575	575	575	575	575	575	574	574	574	574	574	574	574	574	574	573	573	573	573	573	573	573	573	573	57Z	57Z	572	57Z	57Z	572	57Z	57Z	57Z	57Z	571	571	571	571	571	571	571	
3	553	553	553	553	553	553	553	553	553	552	552	552	552	552	55Z	552	552	552	551	551	551	551	551	551	551	551	551	551	550	550	550	550	550	550	550	550	550	550	549	549	549	
3	531	531	531	531	531	531	531	531	531	530	530	530	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	528	528	528	528	527	
3	509	509	509	509	509	509	508	508	508	508	508	508	508	508	502	508	508	507	507	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	506	506	506	505	505	505	
3	486	426	426	486	486	486	486	486	426	486	486	485	485	485	485	485	485	485	485	485	485	485	484	484	484	484	424	424	484	484	484	484	484	483	483	483	483	483	483	483	483	
z	463	463	463	463	463	463	463	463	463	463	463	463	462	462	46Z	462	462	462	462	462	462	462	462	46Z	461	461	461	461	461	461	461	461	461	461	461	461	460	460	460	460	460	
z	440	440	440	440	440	440	440	440	440	439	439	439	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	
z	416	416	416	416	416	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	414	
z	392	39Z	392	392	392	392	392	392	392	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	
1	368	368	368	368	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	342	342	342	342	342	342	34Z	342	342	342	342	342	342	342	342	342	342	34Z	34Z	
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	
1	293	293	293	293	293	293	293	293	293	Z93	293	293	293	293	293	Z93	293	293	Z93	293	292	29Z	292	29Z	292	292	292	292	29Z	292	29Z	292	29Z	292	29Z	292	292	292	292	29Z	292	
٥	267	267	267	267	267	267	267	267	267	Z67	Z67	267	267	267	Z67	Z67	267	Z67	Z67	267	Z67	Z67	Z67	Z67	Z67	267	267	Z67	267	Z67	267	267	267	267	267	267	267	267	Z67	267	267	
٥	Z41	Z41	Z41	Z41	Z41	Z41	241	Z41	241	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	241	Z41	Z41	Z41	Z41	Z41	241	241	Z41	Z41	Z41	Z41	Z41	Z41	Z41	241	time								
	٥	11	Z3	34	45	56	68	79	90	101	113	124	135	146	158	169	180	191	203	214	225	Z36	Z48	259	270	281	293	304	315	326	338	349	360	371	383	394	405	416	428	439	450	(7)
75	nt of po	riad																		regene	rster cr	trance																		cnd	f of period	

113

Length	(m)																			re ge	ncrətor	e×it																				
4	•																																									
5	1,006	1,006	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,004	1,004	1,004	1,004	1,004	1,004	1,003	1,003	1,003	1,003	1,003	1,003	1,003	1,00Z	1,00Z	1,00Z	1,002	1,002	1,00Z	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,000	1,000	1,000	1,000	1,000	1,000	
5	990	990	990	990	990	990	989	929	929	989	929	929	988	988	988	922	922	922	987	927	927	927	927	927	927	986	986	986	926	926	926	985	985	985	985	925	985	985	924	924	984	
5	975	974	974	974	974	974	974	973	973	973	973	973	973	973	97Z	97Z	97Z	97Z	97Z	97Z	971	971	971	971	971	971	970	970	970	970	970	970	970	969	969	969	969	969	969	968	962	
4	959	958	958	958	958	958	952	958	957	957	957	957	957	957	956	956	956	956	956	956	955	955	955	955	955	955	955	954	954	954	954	954	954	953	953	953	953	953	953	952	952	
4	94Z	94Z	94Z	94Z	94Z	94Z	942	941	941	941	941	941	941	940	940	940	940	940	940	939	939	939	939	939	939	938	938	938	938	938	938	937	937	937	937	937	937	937	936	936	936	
4	926	926	926	926	925	925	925	925	925	925	9Z4	9Z4	9Z4	924	9Z4	9Z4	923	923	923	923	923	923	92Z	92Z	922	922	922	922	92Z	9Z1	921	9Z1	921	921	921	920	920	920	920	920	920	
4	909	909	909	909	909	909	902	902	902	902	902	902	907	907	907	907	907	907	906	906	906	906	906	906	905	905	905	905	905	905	905	904	904	904	904	904	904	903	903	903	903	
3	893	89Z	89Z	89Z	89Z	89Z	892	891	891	891	891	891	891	890	890	890	890	890	890	889	889	889	889	889	889	888	888	888	888	888	888	887	887	887	887	887	887	886	886	886	886	
3	876	875	875	875	875	875	874	874	874	874	874	874	873	873	873	873	873	873	872	872	87Z	872	87Z	872	871	871	871	871	871	871	870	870	870	870	870	870	269	869	869	269	869	
3	858	858	858	858	857	857	857	857	857	857	856	856	856	856	856	856	855	855	855	855	855	855	854	854	854	854	854	854	853	853	853	853	853	852	852	852	852	852	852	851	851	
3	841	840	840	840	840	840	840	839	839	839	839	839	838	838	838	838	838	838	837	837	837	837	837	837	836	836	836	836	836	836	835	835	835	835	835	834	834	834	834	834	834	
z	823	823	822	822	822	822	822	822	821	821	821	821	821	820	820	820	820	820	820	819	819	819	819	819	818	818	818	818	818	818	817	817	817	817	817	817	816	816	816	816	816	
z	805	805	804	804	804	804	804	803	803	803	803	803	803	802	802	802	802	80Z	801	801	801	801	801	801	800	200	800	200	800	799	799	799	799	799	799	798	798	798	798	798	797	
z	786	786	786	786	726	785	785	785	785	785	785	784	784	784	784	784	783	783	783	783	783	782	782	782	78Z	782	782	781	781	781	781	781	780	720	780	720	720	720	779	779	779	
z	768	768	767	767	767	767	767	766	766	766	766	766	766	765	765	765	765	765	764	764	764	764	764	763	763	763	763	763	763	762	762	762	762	762	761	761	761	761	761	761	760	
1	749	749	749	748	748	748	748	748	747	747	747	747	747	746	746	746	746	746	745	745	745	745	745	745	744	744	744	744	744	743	743	743	743	743	74Z	74Z	74Z	74Z	74Z	74Z	741	
1	730	730	729	729	729	729	729	728	728	728	728	728	727	727	727	727	727	727	726	726	726	726	726	725	725	725	725	725	724	724	724	724	724	723	723	723	723	723	723	722	722	
1	710	710	710	710	710	709	709	709	709	709	702	702	702	702	702	707	707	707	707	707	706	706	706	706	706	706	705	705	705	705	705	704	704	704	704	704	703	703	703	703	703	
1	691	690	690	690	690	690	689	629	689	689	629	629	688	622	622	622	688	687	687	687	687	687	626	626	626	626	636	685	685	685	685	685	684	624	684	624	684	683	683	683	683	
٥	671	671	670	670	670	670	670	669	669	669	669	669	662	663	663	663	663	667	667	667	667	667	666	666	666	666	666	665	665	665	665	665	664	664	664	664	664	663	663	663	663	
٥	650	650	650	650	650	649	649	649	649	649	648	648	648	648	648	647	647	647	647	647	646	646	646	646	646	645	645	645	645	645	644	644	644	644	644	643	643	643	643	643	642	time •
	٥	11	23	34	45	56	62	79	90	101	113	124	135	146	158	169	120	191	203	214	225	236	248	259	270	281	293	304	315	326	338	349	360	371	383	394	405	416	428	439	450	(7)
л	tofoc	riad																		reache	רזלוסר כח	trancc																		5.00	of ocried	

(r)

114

rolid temperature distribution cold period (degree C)

thermal ratio distribution hat period ((tfih-tfah)'(tfih-tfie) or NH1)

1.) Inpu	It size of squa Top view	ire checl	ker in regenera	itor			3D vi	ew	
	c d		internal brick surf symmetry line	ace		Air flow			↓
						time Batcl	=	/ 12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Inpu	ıt heat transfe	er data							
	time mean	ambient	temperature ,t	a		=	38	С	
	time mean	relative	humidity			=	80 '	%	
	deviding L	ength	=	20	deviding	Time	=	40)
	time mean	fluid tem	perature (in)	, tfih		=	1052	ိပါ	
	time mean	fluid tem	perature (out) , tfoh	1	=	434	°c (hot pariod
	time mean	solid ter	mperature (in), tmih	1	=	907	°c (norpenou
	time mean	solid ter	mperature (ou	t),tm	ioh	=	420	°c	
	time mean	fluid tem	perature (in)	, tfic		=	241	င် ၁	
	time mean	fluid tem	perature (out), tfoc		=	751	°c (cold period
	time mean	solid ter	mperature (in) , tmic	:	=	402	°c (
	time mean	solid ter	mperature (ou	t),tm	юс	=	890	°c J	
	Time cycle	, PE				=	527 :	B	
	Dry weight	ore =	23000 kg		%H ₂ O	=	7.52	% by We	t weight
	Accuracy ,	ACC				151	0.001		
	Fluid volum	ne flow ra	ate (cold perio	d)		-	4950	m³/hr	
	Oil mass fl	ow rate				าวา	270	kg/hr	
					CO2	=	12.33	(% vol.)	1
	componen	t of fluid	(hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity (of gas ho	t period, Eg			=	0.133		
	Absorptivit	y of gas l	hot period, Ag			=	0.1189		
	Emissivity (of gas co	old period, Eg			=	0.034		
	Absorptivit	y of gas	cold period, Ag			=	0.0299		

solid temperature distribution hat period (degree C)

regenerator entrance

	0	13	Z6	40	53	66	79	9Z	105	119	132	145	158	171	184	198	Z11	ZZ4	Z37	250	Z64	277	290	303	316	329	343	356	369	382	395	402	422	435	448	461	474	487	501	514	527	time
٥	999	999	999	999	999	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,001	1,00Z	1,00Z	1,00Z	1,00Z	1,00Z	1,00Z	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	Γ (r)
٥	983	983	983	924	924	984	984	984	985	985	985	985	985	985	986	926	926	926	926	927	927	987	987	927	987	922	988	988	988	988	929	929	929	929	929	929	990	990	990	990	990	
1	967	967	968	968	968	968	968	969	969	969	969	969	970	970	970	970	970	970	971	971	971	971	971	97Z	97Z	97Z	972	97Z	97Z	973	973	973	973	973	974	974	974	974	974	974	975	
1	951	951	952	95Z	952	952	952	953	953	953	953	953	954	954	954	954	954	954	955	955	955	955	955	956	956	956	956	956	956	957	957	957	957	957	958	952	958	958	958	959	959	
1	935	935	935	936	936	936	936	936	937	937	937	937	937	937	938	938	938	938	938	939	939	939	939	939	940	940	940	940	940	940	941	941	941	941	941	94Z	94Z	94Z	94Z	942	943	
1	919	919	919	919	919	919	920	920	920	920	920	921	921	9Z1	9Z1	921	922	922	922	922	922	923	923	923	923	923	924	924	924	924	924	924	925	925	925	925	925	926	926	926	926	
z	90Z	90Z	90Z	90Z	903	903	903	903	903	904	904	904	904	904	905	905	905	905	905	906	906	906	906	906	906	907	907	907	907	907	902	902	902	902	902	909	909	909	909	909	910	
z	885	885	885	885	226	886	886	886	886	887	887	887	887	887	888	888	888	888	888	229	889	889	889	889	890	890	890	890	890	891	891	891	891	891	89Z	89Z	89Z	892	89Z	893	893	
z	868	868	262	868	262	869	269	269	869	869	870	870	870	870	870	871	871	871	871	871	87Z	872	872	87Z	87Z	873	873	873	873	873	874	874	874	874	874	875	875	875	875	875	876	
z	850	850	851	851	851	851	851	852	852	852	852	852	853	853	853	853	853	854	854	854	854	855	855	855	855	855	856	856	856	856	856	857	857	857	857	857	858	858	858	858	858	
3	833	833	833	833	833	834	834	834	834	834	835	835	835	835	835	836	836	836	836	836	837	837	837	837	837	838	838	838	838	839	839	839	839	839	840	840	840	840	840	841	841	
3	815	815	815	815	815	816	816	816	816	817	817	817	817	817	818	818	212	818	818	819	819	819	819	819	820	820	820	820	820	8Z1	8Z1	821	821	822	822	82Z	82Z	822	823	823	823	
3	796	797	797	797	797	798	798	792	792	792	799	799	799	799	799	200	800	200	200	200	201	201	801	201	802	802	802	802	802	803	803	803	803	803	804	804	804	804	804	805	805	
3	778	778	778	779	779	779	779	780	780	780	780	780	781	781	781	781	781	782	782	782	782	783	783	783	783	783	784	784	784	784	784	785	785	785	785	786	786	786	786	786	787	
4	759	760	760	760	760	760	761	761	761	761	762	76Z	762	762	762	763	763	763	763	763	764	764	764	764	765	765	765	765	765	766	766	766	766	766	767	767	767	767	762	768	763	
4	740	741	741	741	741	741	74Z	74Z	74Z	74Z	743	743	743	743	743	744	744	744	744	745	745	745	745	745	746	746	746	746	747	747	747	747	747	748	748	748	748	749	749	749	749	
4	721	721	722	722	722	722	72Z	723	723	723	723	724	724	724	724	725	725	725	725	725	726	726	726	726	727	727	727	727	727	728	728	728	728	729	729	729	729	729	730	730	730	
4	702	70Z	702	70Z	703	703	703	703	703	704	704	704	704	705	705	705	705	706	706	706	706	706	707	707	707	707	702	702	702	702	702	709	709	709	709	710	710	710	710	710	711	
5	627	627	687	623	627	623	683	624	624	624	624	624	625	625	685	625	626	626	626	626	626	627	627	627	627	622	622	622	622	689	689	689	629	689	690	690	690	690	691	691	691	
5	667	662	662	663	663	663	663	663	664	664	664	664	665	665	665	665	666	666	666	666	667	667	667	667	667	662	662	662	662	669	669	669	669	670	670	670	670	670	671	671	671	
5	647	647	647	647	647	647	647	647	647	644	644	644	644	645	645	645	645	646	646	646	646	646	647	647	647	647	642	649	649	649	649	649	649	649	650	650	650	650	650	651	654	
1		245							-13	-11	-14	-14															-10				245		240	245								
	•																																									
	(14)																Ч		0	-sc		Exit																				
																tin	(0.00.0)	colic cqi	uilibnu	m	167	hr																				

M 167 hr 3,556,166 J 3,543,032 J

Heat storage Hestresovery

Longth (m)

rtart of period

117

fluid temperature distribution hat period (degree C)

regenerator exit

	٥	13	26	40	53	66	79	9Z	105	119	132	145	158	171	184	198	Z11	ZZ4	237	250	Z64	277	290	303	316	329	343	356	369	382	395	408	42Z	435	448	461	474	487	501	514	527	time
٥	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	· (c)
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,02Z	1,0ZZ	1,022	1,0ZZ	1,022	1,022	1,022	1,022	1,022	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	
1	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,009	1,009	1,009	1,009	1,009	
1	989	929	929	989	929	989	990	990	990	990	990	990	990	990	991	991	991	991	991	991	991	992	99Z	99Z	99Z	992	992	992	992	993	993	993	993	993	993	993	993	994	994	994	994	
1	973	973	973	973	973	974	974	974	974	974	974	974	975	975	975	975	975	975	975	976	976	976	976	976	976	976	977	977	977	977	977	977	977	978	978	978	978	978	978	978	979	
z	957	957	957	957	957	957	958	952	958	958	958	952	959	959	959	959	959	959	959	960	960	960	960	960	960	961	961	961	961	961	961	962	96Z	962	96Z	96Z	96Z	962	963	963	963	
z	940	940	941	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	94Z	943	943	943	943	943	943	944	944	944	944	944	944	945	945	945	945	945	945	946	946	946	946	946	946	947	947	947	
z	9Z4	9Z4	924	924	924	925	925	925	925	925	926	926	926	926	926	9Z6	927	9Z7	927	927	927	927	928	9Z8	928	9Z8	928	929	929	929	929	929	929	930	930	930	930	930	930	931	931	
z	907	907	907	902	902	908	908	908	909	909	909	909	909	909	910	910	910	910	910	911	911	911	911	911	911	912	912	91Z	912	912	913	913	913	913	913	913	914	914	914	914	914	
3	890	890	890	891	891	891	891	891	892	89Z	892	892	892	893	893	893	893	893	893	894	894	894	894	894	895	895	895	895	895	896	896	896	896	896	896	897	897	897	897	897	898	
3	873	873	873	874	874	874	874	874	874	875	875	875	875	875	876	876	876	876	876	877	877	877	877	877	878	878	878	878	878	879	879	279	879	879	279	880	880	880	880	880	881	
3	856	856	856	856	856	857	857	857	857	857	858	858	858	858	858	859	859	859	859	859	260	260	260	260	860	260	861	861	861	261	261	862	862	862	86Z	86Z	863	863	863	863	863	
3	838	838	838	839	839	839	839	839	840	840	840	840	840	841	841	841	841	841	84Z	842	84Z	842	842	843	843	843	843	843	844	844	844	844	844	845	845	845	845	845	846	846	846	
4	820	820	820	821	821	821	821	821	822	822	822	822	823	823	823	823	823	824	824	824	824	824	825	825	825	825	825	826	826	826	826	826	827	827	827	827	827	828	828	828	828	
4	802	802	802	803	803	803	803	803	804	804	804	804	804	805	805	805	805	805	806	206	806	806	807	807	807	807	807	808	808	808	808	808	809	809	809	809	809	810	810	810	810	
4	784	784	784	784	784	785	785	785	785	785	786	786	786	726	787	787	787	787	787	788	788	788	788	788	729	729	729	729	790	790	790	790	790	791	791	791	791	791	79Z	79Z	79Z	
4	765	765	765	766	766	766	766	766	767	767	767	767	762	768	762	762	762	769	769	769	769	769	770	770	778	770	771	771	771	771	771	772	772	772	772	772	773	773	773	773	774	
5	746	746	747	747	747	747	747	748	748	748	748	748	749	749	749	749	750	750	750	750	750	751	751	751	751	752	752	752	752	752	753	753	753	753	753	754	754	754	754	755	755	
5	727	727	727	728	728	728	728	728	729	729	729	729	730	730	730	730	730	731	731	731	731	732	73Z	732	732	732	733	733	733	733	734	734	734	734	734	735	735	735	735	736	736	
5	708	702	702	702	702	709	709	709	709	710	710	710	710	710	711	711	711	711	71Z	712	712	712	712	713	713	713	713	714	714	714	714	714	715	715	715	715	716	716	716	716	717	
٦	7																																									

Longth (m)

start of period

fluid temperature distribution cold period (degree C)

Length	(m)																			re 90	nerator	e×it																				
4																																										
5	699	698	692	692	692	698	698	698	697	697	697	697	697	697	697	696	696	696	696	696	696	695	695	695	695	695	695	695	694	694	694	694	694	694	694	693	693	693	693	693	693	
5	679	679	672	678	672	678	678	678	678	677	677	677	677	677	677	677	676	676	676	676	676	676	676	675	675	675	675	675	675	675	674	674	674	674	674	674	674	673	673	673	673	
5	658	658	658	658	658	658	658	657	657	657	657	657	657	657	657	656	656	656	656	656	656	656	655	655	655	655	655	655	655	654	654	654	654	654	654	654	653	653	653	653	653	
4	638	638	638	638	637	637	637	637	637	637	637	636	636	636	636	636	636	636	636	635	635	635	635	635	635	635	634	634	634	634	634	634	634	633	633	633	633	633	633	633	633	
4	617	617	617	617	617	617	616	616	616	616	616	616	616	616	615	615	615	615	615	615	615	614	614	614	614	614	614	614	614	613	613	613	613	613	613	613	61Z	61Z	61Z	61Z	61Z	
4	596	596	596	596	596	596	595	595	595	595	595	595	595	594	594	594	594	594	594	594	594	593	593	593	593	593	593	593	593	59Z	591	591	591	591								
4	575	575	575	574	574	574	574	574	574	574	574	573	573	573	573	573	573	573	573	572	572	572	572	572	572	57Z	572	571	571	571	571	571	571	571	571	570	570	570	570	570	570	
3	553	553	553	553	553	553	552	552	552	552	552	552	552	552	551	551	551	551	551	551	551	551	550	550	550	550	550	550	550	550	550	549	549	549	549	549	549	549	549	548	548	
3	531	531	531	531	531	531	530	530	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	528	528	527	527	527	527	527	527	527	527	527	
3	509	509	509	509	508	508	508	508	508	508	508	508	508	507	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	506	505	505	505	505	505	505	505	505	505	504	
3	486	486	486	486	426	426	426	485	485	485	485	485	485	485	485	485	485	484	484	484	484	424	484	484	484	424	484	483	483	483	483	483	483	483	483	483	48Z	48Z	482	48Z	482	
z	463	463	463	463	463	463	463	463	462	462	462	462	462	462	46Z	462	462	462	462	461	461	461	461	461	461	461	461	461	461	460	460	460	460	460	460	460	460	460	460	459	459	
z	440	440	440	440	440	440	439	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	437	437	437	437	437	437	436	
z	416	416	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	414	414	413	413	413	413	413	
z	392	392	392	392	392	392	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	390	390	390	390	390	329	
1	368	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	342	341	341	341	341	
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	
1	293	293	293	293	293	293	293	293	293	293	293	293	293	293	293	293	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	
	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	
u	291	241	241	291	241 57	241	241	241	105	110	177	145	469	171	194	107	241	241	241	241	241	241	291	241	241	241	241	241	241	241	241	409	477	475	241	461	474	497	291	514	E77	• •••••
		13	20	40				25	103		136	143	130	·		155				0	204		290	303		369	343	0	305	300	373	400	466	433	445	401		461	301	314	321	(7)
ф	t of oc	riad																		macac	and the state of t	trance																			of acried	

119

reserver and ance

solid temperature distribution cold period (degree C)

Longth (m)

start of acried

20

thermal ratio distribution hat period ((tilh-tigh)(tilh-tile) or NH1)

start of period

thermal ratio distribution cold period ((the the) (thin the) or NC1)

0.564 0.564 0.564 0.563 0.563 0.563 0.563 0.563 0.562 0.562 0.562 0.562 0.562 0.561 0.561 0.561 0.561 0.561 0.560 0.560 0.560 0.560 0.559 0.559 0.559 0.559 0.559 0.553 0

														A.																										im
0 13	Z6	40	53	66	79	9Z	105	119	132	145	158	171	184	198	Z11	ZZ4	Z37	250	Z64	277	290	303	316	329	343	356	i 369	382	395	408	422	435	448	461	474	487	501	514	527	
rtant of (period																																					nd of pc	riad	

1.) Inpu	ut size of squa Top view	are chec	ker in regenera	tor			3D vi	ew	
	c d		internal brick surf: symmetry line	ace		Air flow			L
						∟ time Batcl	=	/ 12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Inpi	ut heat transfe	er data							
	time mean	i ambient	temperature ,ta	a		=	38	°c	
	time mean	ı relative	humidity			=	80 '	%	
	deviding L	ength.	=	20 de	eviding	Time	=	40)
	time mean	ı fluid ten	nperature(in),	tfih		=	1052	°င)	
	time mean	ı fluid ten	nperature (out), tfoh		=	434	°c (1
	time mean	ı solid te	mperature (in) , tmih		=	907	°c (not perioa
	time mean	ı solid te	mperature (out	:) , tmoł	1	=	420	°c	
	time mean	ı fluid ten	nperature (in) ,	tfic		=	241	°c)	
	time mean	fluid ten	nperature (out)) , tfoc		=	751	°c (cold period
	time mean	i solid te	mperature (in), tmic		=	402	°c (cola pelloa
	time mean	ı solid te	mperature (out	:) , tmoo	-	=	890	°c j	
	Time cycle	e, PE				=	529 :	s	
	Dry weight	t ore =	23000 kg	%	H₂O	=	7.52	% by We	t weight
	Accuracy	, ACC				ษรก	0.001		
	Fluid volur	ne flow r	ate (cold period	4)		-	4950	m³/hr	
	Oil mass fl	low rate				ควา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	componer	nt of fluid	(hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity	of gas ho	ot period, Eg			=	0.133		
	Absorptivit	y of gas	hot period, Ag			=	0.1189		
	Emissivity	of gas co	old period, Eg			=	0.034		
	Absorptivit	y of gas	cold period, Ag			=	0.0299		

solid temperature distribution hat period (degree C)

regenerator entrance

	٥	13	Z6	40	53	66	79	93	106	119	132	145	159	172	185	198	Z1 Z	225	Z38	251	Z65	278	291	304	317	331	344	357	370	384	397	410	423	436	450	463	476	489	503	516	529	time
0	999	999	999	999	999	1,000	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,00Z	1,002	1,00Z	1,00Z	1,00Z	1,00Z	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	· (7)
0	983	983	983	924	924	984	984	984	985	985	985	985	985	985	986	926	926	926	926	927	927	927	927	927	987	922	922	922	922	922	929	929	929	929	929	929	990	990	990	990	990	
1	967	967	968	968	968	968	968	969	969	969	969	969	970	970	970	970	970	970	971	971	971	971	971	972	972	972	972	97Z	97Z	973	973	973	973	973	974	974	974	974	974	974	975	
1	951	951	95Z	95Z	95Z	95Z	95Z	953	953	953	953	953	954	954	954	954	954	954	955	955	955	955	955	956	956	956	956	956	956	957	957	957	957	957	958	958	958	958	952	959	959	
1	935	935	935	936	936	936	936	936	937	937	937	937	937	937	932	938	938	932	938	939	939	939	939	939	940	940	940	940	940	940	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	943	
1	918	919	919	919	919	919	920	920	920	920	920	921	921	9Z1	9Z1	921	922	922	922	92Z	922	923	923	923	923	923	924	924	9Z4	9Z4	924	924	925	925	925	925	925	926	926	926	926	
z	90Z	90Z	90Z	90Z	903	903	903	903	903	904	904	904	904	904	905	905	905	905	905	906	906	906	906	906	906	907	907	907	907	907	902	902	902	902	908	909	909	909	909	909	910	
z	885	885	885	885	886	886	886	226	226	887	887	887	887	887	888	888	888	888	222	229	889	229	889	889	890	890	890	890	890	891	891	891	891	891	89Z	89Z	89Z	89Z	892	893	893	
z	868	868	868	868	868	869	869	269	869	869	870	870	870	870	870	871	871	871	871	871	872	872	872	87Z	872	873	873	873	873	873	874	874	874	874	874	875	875	875	875	875	876	
z	850	850	851	851	851	851	851	852	852	852	852	852	853	853	853	853	853	854	854	854	854	854	855	855	855	855	856	856	856	856	856	857	857	857	857	857	858	858	858	858	858	
3	833	833	833	833	833	834	834	834	834	834	835	835	835	835	835	836	836	836	836	836	837	837	837	837	837	838	838	838	838	839	839	839	839	839	840	840	840	840	840	841	841	
3	815	815	815	815	815	816	816	216	816	816	817	817	817	817	818	818	818	818	818	819	819	219	819	819	820	820	820	820	820	821	821	821	821	822	822	822	822	822	823	823	823	
3	796	797	797	797	797	797	792	792	792	792	799	799	799	799	799	200	800	200	200	200	201	201	201	801	802	802	802	802	802	803	803	803	803	803	204	804	804	804	804	805	805	
3	778	778	778	779	779	779	779	780	780	780	780	720	781	781	781	781	781	782	782	782	782	783	783	783	783	783	784	784	784	784	784	785	785	785	785	726	726	726	786	786	787	
4	759	760	760	760	760	760	761	761	761	761	761	762	762	762	767	763	763	763	763	763	764	764	764	764	765	765	765	765	765	766	766	766	766	766	767	767	767	767	762	762	763	
4	740	741	741	741	741	741	747	747	747	747	747	743	743	743	743	744	744	744	744	745	745	745	745	745	746	746	746	746	747	747	747	747	747	742	742	742	742	749	749	749	749	
4	771	771	777	777	777	777	777	772	772	772	772	774	774	774	774	774	775	775	775	775	776	776	776	776	777	777	777	777	777	772	772	772	772	779	779	779	779	779	770	770	730	
	707	707	702	702	702	702	702	702	702	704	704	704	704	705	705	705	705	706	786	706	700	706	702	702	202	707	209	709	209	709	709	700	700	700	700	74.0	74.0	740	740	740	744	
-	102	102	102	102	103	103	103	103	103	684	684	104		103	103	103	103	100		100	100	100			687					100	100	105	105	105	103		600					
5	682	682	682	683	683	683	683	683	684	684	684	684	685	685	685	685	686	686	686	686	686	687	687	687	687	688	633	688	688	689	689	689	689	689	690	690	690	690	691	691	691	
-	662	662	662	663	663	663	663	663	664	664	664	664	665	665	665	665	666	666	666	666	667	667	667	667	667	663	663	668	663	669	669	669	669	670	670	670	670	670	6/1	6/1	671	
5	642	642	642	642	642	643	643	643	643	644	644	644	644	645	645	645	645	646	646	646	646	646	647	647	647	647	648	648	648	642	649	649	649	649	650	650	650	650	651	651	651	
Longth	(m)																			re ge	ncrator	c×it																				
																tin	10 10 0;	yelie eq	uilibriu	m	167	hr																				

Longth (m)

rtart of period

n 16f hr 3,569,694 J 3,556,469 J Heat storage Heatrecovery

end of period

123

fluid temperature distribution hat period (degree C)

regenerator exit

	٥	13	26	40	53	66	79	93	106	119	132	145	159	172	185	198	212	225	Z38	251	265	278	291	304	317	331	344	357	370	384	397	410	423	436	450	463	476	489	503	516	529	time
٥	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,05Z	1,05Z	1,052	1,052	1,05Z	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	(e)
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,0ZZ	1,0ZZ	1,022	1,0ZZ	1,022	1,0ZZ	1,022	1,022	1,0ZZ	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	
1	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,002	1,008	1,002	1,002	1,008	1,008	1,008	1,002	1,002	1,008	1,009	1,009	1,009	1,009	1,009	
1	929	989	929	989	929	929	990	990	990	990	990	990	990	990	991	991	991	991	991	991	991	99Z	99Z	99Z	99Z	99Z	992	992	992	993	993	993	993	993	993	993	993	994	994	994	994	
1	973	973	973	973	973	974	974	974	974	974	974	974	975	975	975	975	975	975	975	976	976	976	976	976	976	976	977	977	977	977	977	977	977	978	978	978	978	978	978	978	979	
z	957	957	957	957	957	957	952	952	958	958	952	952	959	959	959	959	959	959	959	960	960	960	960	960	960	961	961	961	961	961	961	96Z	96Z	962	96Z	96Z	96Z	96Z	963	963	963	
z	940	940	941	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	94Z	943	943	943	943	943	943	944	944	944	944	944	944	945	945	945	945	945	945	946	946	946	946	946	946	947	947	947	
z	924	9Z4	9Z4	9Z4	9Z4	925	925	925	925	925	926	926	926	926	926	9Z6	9Z7	927	927	927	927	927	928	928	928	928	928	929	929	929	929	929	929	930	930	930	930	930	930	931	931	
z	907	907	907	908	908	908	908	902	909	909	909	909	909	909	910	910	910	910	910	911	911	911	911	911	911	91Z	912	91Z	912	912	913	913	913	913	913	913	914	914	914	914	914	
3	890	890	890	891	891	891	891	891	892	892	892	892	89Z	893	893	893	893	893	893	894	894	894	894	894	895	895	895	895	895	896	896	896	896	896	896	897	897	897	897	897	898	
3	873	873	873	874	874	874	874	874	874	875	875	875	875	875	876	876	876	276	876	877	877	877	877	877	878	878	878	878	878	279	879	879	879	879	279	880	880	880	880	880	881	
3	856	856	856	856	856	857	857	857	857	857	858	858	858	858	858	859	859	859	859	859	860	860	260	260	860	860	861	261	861	861	861	86Z	862	862	862	862	863	863	863	863	863	
3	838	838	838	839	839	839	839	839	840	840	840	840	840	841	841	841	841	841	84Z	84Z	84Z	84Z	84Z	843	843	843	843	843	844	844	844	844	844	845	845	845	845	845	846	846	846	
4	820	820	820	821	821	821	821	821	822	822	822	822	823	823	823	823	823	824	824	824	824	824	825	825	825	825	825	826	826	826	826	826	827	827	827	827	827	828	828	828	828	
4	80Z	802	802	803	803	803	803	803	804	804	804	804	804	805	805	805	805	805	806	806	806	806	807	807	807	807	807	808	808	808	808	808	809	809	809	809	809	810	810	810	810	
4	784	784	784	784	784	785	785	785	785	785	786	786	786	726	787	787	787	787	787	788	788	788	788	788	729	729	729	729	790	790	790	790	790	791	791	791	791	791	79Z	79Z	79Z	
4	765	765	765	766	766	766	766	766	767	767	767	767	768	768	762	762	762	769	769	769	769	769	770	770	770	770	771	771	771	771	771	772	772	772	772	772	773	773	773	773	774	
5	746	746	746	747	747	747	747	748	748	748	748	748	749	749	749	749	750	750	750	750	750	751	751	751	751	75Z	752	752	752	752	753	753	753	753	754	754	754	754	754	755	755	
5	727	727	727	728	728	728	728	728	729	729	729	729	730	730	730	730	730	731	731	731	731	73Z	73Z	73Z	73Z	73Z	733	733	733	733	734	734	734	734	734	735	735	735	735	736	736	
5	707	702	702	702	702	709	709	709	709	710	710	710	710	710	711	711	711	711	712	712	71Z	71Z	712	713	713	713	713	714	714	714	714	715	715	715	715	715	716	716	716	716	717	
	7																																									

Longth (m)

start of period

fluid temperature distribution cold period (degree C)

Length (m)																		- C 3 C	nerator	e xit																						
	^																																									
5	699	692	692	692	692	698	692	698	697	697	697	697	697	697	696	696	696	696	696	696	696	695	695	695	695	695	695	695	694	694	694	694	694	694	694	693	693	693	693	693	693	
5	679	672	672	672	672	672	672	678	677	677	677	677	677	677	677	676	676	676	676	676	676	676	675	675	675	675	675	675	675	674	674	674	674	674	674	674	673	673	673	673	673	
5	658	658	658	658	658	658	658	657	657	657	657	657	657	657	656	656	656	656	656	656	656	656	655	655	655	655	655	655	655	654	654	654	654	654	654	654	653	653	653	653	653	
4	638	638	638	638	637	637	637	637	637	637	637	636	636	636	636	636	636	636	636	635	635	635	635	635	635	635	634	634	634	634	634	634	634	633	633	633	633	633	633	633	633	
4	617	617	617	617	617	617	616	616	616	616	616	616	616	615	615	615	615	615	615	615	615	614	614	614	614	614	614	614	613	613	613	613	613	613	613	613	61Z	612	61Z	61Z	61Z	
4	596	596	596	596	596	596	595	595	595	595	595	595	595	594	594	594	594	594	594	594	594	593	593	593	593	593	593	593	593	59Z	591	591	591	591	591							
4	575	575	575	574	574	574	574	574	574	574	574	573	573	573	573	573	573	573	573	57Z	572	572	57Z	57Z	57Z	57Z	572	571	571	571	571	571	571	571	571	570	570	570	570	570	570	
3	553	553	553	553	553	553	552	552	552	552	552	552	55Z	552	551	551	551	551	551	551	551	551	550	550	550	550	550	550	550	550	549	549	549	549	549	549	549	549	549	548	548	
3	531	531	531	531	531	531	530	530	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	528	528	527	527	527	527	527	527	527	527	527	
3	509	509	509	509	508	502	508	508	502	508	502	508	502	507	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	506	505	505	505	505	505	505	505	505	505	504	
3	486	486	486	486	486	486	486	485	485	485	485	485	485	485	485	485	485	484	484	424	424	424	424	484	484	484	484	483	483	483	483	483	483	483	483	483	48Z	482	48Z	482	48Z	
z	463	463	463	463	463	463	463	463	46Z	46Z	462	462	462	46Z	46Z	462	46Z	46Z	462	461	461	461	461	461	461	461	461	461	461	460	460	460	460	460	460	460	460	460	460	459	459	
z	440	440	440	440	440	440	439	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	437	437	437	437	437	436	436	
z	416	416	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	414	413	413	413	413	413	413	
z	392	392	392	392	392	392	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	390	390	390	390	390	390	389	
1	368	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	34Z	342	342	342	34Z	34Z	342	34Z	342	342	34Z	341	341	341	341										
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	
1	293	293	293	293	293	293	293	293	293	Z93	293	293	293	293	Z93	293	Z92	29Z	29Z	29Z	Z92	Z92	29Z	29Z	Z92	292	292	29Z	29Z	29Z	29Z	29Z	29Z	Z92	29Z	29Z	Z92	Z92	29Z	29Z	292	
0	267	267	267	267	267	267	267	Z67	Z67	Z67	Z67	267	267	Z67	Z67	Z67	Z67	Z67	267	Z67	Z67	Z67	267	Z67	267	Z67	Z67	Z67	267	Z67	Z67	267	267	267	267	Z67	Z67	Z67	267	Z67	267	
0	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	time
	0	13	Z6	40	53	66	79	93	106	119	132	145	159	172	185	198	Z1Z	225	238	Z51	Z65	278	291	304	317	331	344	357	370	384	397	410	423	436	450	463	476	489	503	516	529	(7)
ж	nt of po	riod																		regene	rator cr	tonce																		c n 0	of period	

125

reserver and ance

solid temperature distribution cold period (degree C)

Longth (m)

start of acried

26

thermal ratio distribution hat period ((tfih-tfah)'(tfih-tfie) or NH1)

1.) Input	t size of squa Top view	ire checl	ker in regene	rator			3D vi	iew	
	c d		nternal brick su symmetry line	urface		Air flow			L
						time Batcl	=	/ 12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input	t heat transfe	r data							
	time mean	ambient	temperature	,ta		=	38	°c	
	time mean	relative	numidity			=	80	%	
	deviding Le	ength	=	20) deviding	Time	=	40)
	time mean	fluid tem	perature (in) , tfih		=	1052	°c)	
	time mean	fluid tem	perature (ou	it), tfo	h	=	434	°c (hot poriod
	time mean	solid ter	mp <mark>e</mark> rature (ir	n),tm	ih	=	907	°c (not penou
	time mean	solid ter	mperature (o	ut),ti	moh	=	420	°c j	
	time mean	fluid tem	perature (in), tfic		=	241	°c)	
	time mean	fluid tem	perature (ou	it), tfo	D	=	751	°c (cold period
	time mean	solid ter	mperature (ir	n),tm	ic	=	402	°c (cola pelloa
	time mean	solid ter	mperature (o	ut),ti	noc	=	890	°c j	
	Time cycle	, PE				=	531	s	
	Dry weight	ore =	23000 kç		%H ₂ O	=	7.52	% by We	t weight
	Accuracy ,	ACC				ะรถ	0.001		
	Fluid volum	ne flow ra	ate (cold peri	od)		-	4950	m³/hr	
	Oil mass fle	ow rate				าวา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	componen	t of fluid	(hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity o	of gas ho	t period, Eg			=	0.133		
	Absorptivity	y of gas l	not period, Ag)		=	0.1189		
	Emissivity o	of gas co	ld period, Eg			=	0.034		
	Absorptivity	y of gas	cold period, A	g		=	0.0299		

solid temperature distribution hat period (degree C)

regenerator entrance

	0	13	Z7	40	53	66	80	93	106	119	133	146	159	173	186	199	Z1Z	ZZ6	239	Z52	Z66	279	292	305	319	33Z	345	358	37Z	385	398	41Z	425	438	451	465	478	491	504	518	531	time
٥	999	999	999	999	999	1,000	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,00Z	1,002	1,00Z	1,00Z	1,00Z	1,00Z	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	Γ (c)
٥	983	983	983	984	984	924	924	984	985	985	985	985	985	985	986	986	926	926	926	927	987	987	987	927	927	922	988	988	988	922	929	929	929	929	929	929	990	990	990	990	990	
1	967	967	968	968	968	962	968	969	969	969	969	969	970	970	970	970	970	970	971	971	971	971	971	972	972	97Z	972	97Z	97Z	973	973	973	973	973	974	974	974	974	974	974	975	
1	951	951	95Z	95Z	95Z	95Z	952	953	953	953	953	953	954	954	954	954	954	954	955	955	955	955	955	956	956	956	956	956	957	957	957	957	957	957	952	952	958	952	958	959	959	
1	935	935	935	936	936	936	936	936	937	937	937	937	937	937	938	938	938	938	938	939	939	939	939	939	940	940	940	940	940	941	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	943	
1	918	919	919	919	919	919	920	920	920	920	920	9Z1	921	921	9Z1	921	922	922	922	922	922	923	923	923	923	923	924	924	9Z4	9Z4	924	924	925	925	925	925	925	926	926	926	926	
z	90Z	90Z	90Z	90Z	903	903	903	903	903	904	904	904	904	904	905	905	905	905	905	906	906	906	906	906	906	907	907	907	907	907	902	902	902	902	902	909	909	909	909	909	910	
z	885	885	885	885	226	226	886	226	226	887	887	887	887	887	888	888	888	888	888	229	229	229	889	889	890	890	890	890	890	891	891	891	891	891	892	892	892	892	892	893	893	
-	262	262	262	262	262	269	269	269	269	269	270	870	870	870	870	871	871	871	871	871	872	872	872	877	872	873	873	873	873	873	874	274	874	874	274	875	875	875	875	875	276	
-	***	250	954	954	954	954	954	967	867	967	957	957	957	957	957	957	957	754	754	954	754					966	956	956	956	956	956	967	957	957	957	967	000	000	050	000	050	
,	830	030	827	831	831	874	874	874	836	874	876	875	975	975	835	876	876	874	076	076	077	077	877	877	070	070	070	070	070	070	070	970	978	978	240	240	240	240	240	844	244	
-	845	845	845	845	845	834	844	844	844	849	222	843	843	643		040	0.50	0.00	0.50	010	848	848	848	848	030	020	020	020	020 070	839	835	835	835	833	840	840 833	840	840 833	840			
																							-	a19	820	820	820	820	820	821	821	ac 1	821						825	865		
-	196	191				198	198	198	198	198	199	199	199	199	199	200	200	200	200	200	201	501	801	201	802	802	502	802	502	803	203	202	202	202	504	504	204	504				
<u>د</u>	118	112	611					r80	r80	r80	r80	180	181	181	181	181	181	182	182	182	182	183	183	183	183	183	184	r84	r84	r84	124	185	185	185	185	186	188	186	128	188	181	
4	759	760	760	760	760	760	761	761	761	761	762	762	762	762	762	763	763	763	763	763	764	764	764	764	765	765	765	765	765	766	766	766	766	767	767	767	767	767	768	768	762	
4	740	741	741	741	741	741	742	74Z	74Z	74Z	743	743	743	743	743	744	744	744	744	745	745	745	745	745	746	746	746	746	747	747	747	747	747	748	748	748	748	749	749	749	749	
4	721	721	722	722	722	722	722	723	723	723	723	724	724	724	724	725	725	725	725	725	726	726	726	726	727	727	727	727	727	728	728	728	728	729	729	729	729	729	730	730	730	
4	782	782	702	702	703	703	703	703	703	704	784	704	704	705	705	705	705	706	706	706	706	706	707	707	707	707	702	702	782	782	702	709	709	709	709	710	710	710	710	711	711	
5	68Z	682	682	683	683	683	683	684	684	684	684	684	685	685	685	685	686	626	626	626	687	687	687	687	687	622	688	688	688	689	689	689	689	690	690	690	690	690	691	691	691	
5	66Z	66Z	66Z	663	663	663	663	663	664	664	664	664	665	665	665	665	666	666	666	666	667	667	667	667	667	663	662	663	662	669	669	669	669	670	670	670	670	671	671	671	671	
5	64Z	64Z	64Z	64Z	64Z	643	643	643	643	644	644	644	644	645	645	645	645	646	646	646	646	647	647	647	647	647	642	648	648	648	649	649	649	649	650	650	650	650	651	651	651	
	7																																									
.cn gth	(m)																				ncrator	e×it																				
																tin	ne to e;	yelie eq	uilibriu	m	166	hr																				

3,522,875 J 3,570,045 J

Heat Abrage Heat recovery

Longth (m)

rtart of period

129

fluid temperature distribution hat period (degree C)

regenerator exit

	٥	13	27	40	53	66	80	93	106	119	133	146	159	173	186	199	212	226	Z39	252	266	279	292	305	319	33Z	345	358	372	385	398	41Z	425	438	451	465	478	491	504	518	531	time
٥	1,05Z	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,05Z	1,05Z	1,052	- G
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,0ZZ	1,0ZZ	1,022	1,022	1,022	1,022	1,0ZZ	1,022	1,022	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	
1	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,009	1,009	1,009	1,009	1,009	
1	989	989	989	989	989	989	990	990	990	990	990	990	990	991	991	991	991	991	991	991	991	99Z	99Z	99Z	99Z	99Z	992	99Z	992	993	993	993	993	993	993	993	993	994	994	994	994	
1	973	973	973	973	973	974	974	974	974	974	974	974	975	975	975	975	975	975	975	976	976	976	976	976	976	976	977	977	977	977	977	977	977	978	978	978	978	978	978	978	979	
z	957	957	957	957	957	957	958	958	958	958	958	952	959	959	959	959	959	959	959	960	960	960	960	960	960	961	961	961	961	961	961	96Z	963	963	963							
z	940	940	941	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	94Z	943	943	943	943	943	944	944	944	944	944	944	945	945	945	945	945	945	946	946	946	946	946	946	947	947	947	947	
z	9Z4	9Z4	924	9Z4	924	925	925	925	925	925	926	926	926	926	926	9Z6	927	927	927	927	927	927	928	928	928	928	928	929	929	929	929	929	929	930	930	930	930	930	930	931	931	
z	907	907	907	902	902	902	902	902	909	909	909	909	909	909	910	9 <mark>10</mark>	910	910	910	911	911	911	911	911	911	91Z	91Z	91Z	91Z	91Z	913	913	913	913	913	913	914	914	914	914	914	
3	890	890	890	891	891	891	891	891	89Z	89Z	89Z	89Z	89Z	893	893	893	893	893	894	894	894	894	894	894	895	895	895	895	895	896	896	896	896	896	897	897	897	897	897	897	898	
3	873	873	873	874	874	874	874	874	875	875	875	875	875	875	876	876	876	876	876	877	877	877	877	877	878	878	878	878	878	879	879	879	879	879	880	880	880	220	880	880	881	
3	856	856	856	856	856	857	857	857	857	857	858	858	858	858	858	859	859	859	859	859	260	260	260	860	260	261	861	861	861	261	86Z	862	862	86Z	86Z	86Z	863	863	863	863	863	
3	838	838	838	839	839	839	839	839	840	840	840	840	840	841	841	841	841	841	84Z	84Z	84Z	84Z	84Z	843	843	843	843	843	844	844	844	844	844	845	845	845	845	845	846	846	846	
4	820	820	820	8Z1	821	821	821	822	822	822	822	822	823	823	823	823	823	824	824	824	824	824	825	825	825	825	825	826	826	826	826	826	827	827	827	827	827	828	828	828	828	
4	80Z	80Z	80Z	803	803	803	803	803	804	804	804	804	804	805	805	805	805	806	806	806	806	806	807	807	807	807	807	808	808	202	202	808	809	809	209	809	809	810	810	810	810	
4	784	784	784	784	784	785	785	785	785	786	786	786	786	786	787	787	787	787	787	788	788	788	788	788	789	789	789	789	790	790	790	790	790	791	791	791	791	791	79Z	79Z	79Z	
4	765	765	765	766	766	766	766	766	767	767	767	767	762	762	762	762	762	769	769	769	769	770	770	770	770	770	771	771	771	771	771	772	772	772	77Z	773	773	773	773	773	774	
5	746	746	747	747	747	747	747	748	748	748	748	749	749	749	749	749	750	750	750	750	750	751	751	751	751	75Z	752	752	752	752	753	753	753	753	754	754	754	754	754	755	755	
5	727	727	727	728	728	728	728	729	729	729	729	729	730	730	730	730	731	731	731	731	731	73Z	73Z	73Z	73Z	733	733	733	733	733	734	734	734	734	735	735	735	735	735	736	736	
5	702	702	702	702	702	709	709	709	709	710	710	710	710	710	711	711	711	711	71Z	712	71Z	71Z	713	713	713	713	713	714	714	714	714	715	715	715	715	715	716	716	716	716	717	

Longth (m)

start of period

##
Len gti	(m)																			re 94	:ncrator	r exit																				
5	699	698	692	698	698	698	692	698	697	697	697	697	697	697	696	696	696	696	696	696	696	695	695	695	695	695	695	695	694	694	694	694	694	694	694	693	693	693	693	693	693	
5	679	679	672	678	678	678	672	678	677	677	677	677	677	677	677	676	676	676	676	676	676	676	675	675	675	675	675	675	675	674	674	674	674	674	674	674	673	673	673	673	673	
5	658	658	658	658	658	658	658	657	657	657	657	657	657	657	656	656	656	656	656	656	656	656	655	655	655	655	655	655	655	654	654	654	654	654	654	654	653	653	653	653	653	
4	638	638	638	638	637	637	637	637	637	637	637	636	636	636	636	636	636	636	636	635	635	635	635	635	635	635	634	634	634	634	634	634	634	633	633	633	633	633	633	633	633	
4	617	617	617	617	617	617	616	616	616	616	616	616	616	615	615	615	615	615	615	615	615	614	614	614	614	614	614	614	613	613	613	613	613	613	613	613	61Z	61Z	61Z	612	61Z	
4	596	596	596	596	596	596	595	595	595	595	595	595	595	594	594	594	594	594	594	594	594	593	593	593	593	593	593	593	593	59Z	591	591	591	591	591							
4	575	575	575	574	574	574	574	574	574	574	574	573	573	573	573	573	573	573	573	57Z	57Z	57Z	57Z	572	572	57Z	572	571	571	571	571	571	571	571	571	570	570	570	570	570	570	
3	553	553	553	553	553	553	552	55Z	552	552	552	552	552	55Z	551	551	551	551	551	551	551	551	550	550	550	550	550	550	550	550	549	549	549	549	549	549	549	549	549	548	548	
3	531	531	531	531	531	531	530	530	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	528	528	527	527	527	527	527	527	527	527	527	
3	509	509	509	509	508	508	508	508	508	508	508	508	508	507	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	506	505	505	505	505	505	505	505	505	505	504	
3	486	486	426	486	426	486	486	485	485	485	485	485	485	485	485	485	485	484	484	484	424	484	484	424	484	484	484	483	483	483	483	483	483	483	483	483	482	482	48Z	48Z	482	
z	463	463	463	463	463	463	463	463	462	462	462	462	46Z	462	46Z	462	46Z	46Z	462	461	461	461	461	461	461	461	461	461	461	460	460	460	460	460	460	460	460	460	460	459	459	
z	440	440	440	440	440	440	439	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	437	437	437	437	437	436	436	
z	416	416	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	414	413	413	413	413	413	413	
z	39Z	39Z	392	392	392	39Z	392	392	392	392	392	39Z	392	391	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	390	390	390	390	390	390	389	
1	368	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	342	342	34Z	34Z	34Z	34Z	342	342	34Z	342	34Z	342	341	341	341	341									
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	
1	Z93	Z93	293	293	293	Z93	293	293	293	293	293	293	293	293	293	293	Z92	29Z	Z92	29Z	29Z	29Z	Z92	29Z	Z92	29Z	292	29Z	29Z	29Z	29Z	29Z	29Z	Z92	29Z	29Z	Z92	Z92	29Z	29Z	29Z	
0	Z67	267	267	267	267	267	267	Z67	267	267	267	267	267	267	Z67	Z67	Z67	267	Z67	Z67	267	267	Z67	267	267	Z67	267	267	267	267	267	267	Z67	Z67	Z67	Z67	267	267	267	267	267	
0	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	time
	0	13	27	40	53	66	80	93	106	119	133	146	159	173	186	199	Z1Z	226	239	25Z	266	279	29Z	305	319	33Z	345	358	372	385	398	41Z	425	438	451	465	478	491	504	518	531	Γ (r)
-	rt of po	riad																		regene	anattar cr	monce																		cno	of period	

reserver and ance

zolid temperature distribution cold period (degree C)

Longth (m)

start of acried

132

thermal ratio distribution hat period ((tfih-tfah)'(tfih-tfie) or NH1)

0.425 0.424 0.424 0.424 0.424 0.424 0.423 0.423 0.423 0.423 0.422 0.422 0.422 0.421 0.421 0.421 0.421 0.420 0.420 0.419 0.419 0.419 0.419 0.418 0.418 0.418 0.417 0.417 0.417 0.416 0.416 0.416 0.416 0.416 0.415 0.415 0.415 0.414 0.414 0.414 0.414

1.) Input si	ize of square Top view	checker	in regener	ator			3D vi	iew	
	c d	inter	nal brick su netry line	rface		Air flow			L
						time Batcl	=	12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input h	eat transfer d	ata							
1	time mean am	nbient tem	perature ,	ta		=	38	°c	
1	time mean rel	ative hum	nidity			=	80	%	
	deviding Leng	yth	=	20 d	eviding	Time	=	40)
1	time mean flui	id temper	ature (in)	, tfih		=	1052	°c)	
1	time mean flui	id temper	ature (out	:),tfoh		=	434	°c (hotporiod
1	time mean sol	lid tempe	erature (in), tmih		=	907	°c (not penou
1	time mean sol	lid tempe	erature (ou	ut), tmol	h	=	420	°c	
1	time mean flui	id temper	ature (in)	, tfic		=	241	°c)	
1	time mean flui	id temper	ature (out	:),tfoc		=	751	°cl	cold period
1	time mean sol	lid tempe	erature (in), tmic		=	402	°c (cola pelloa
1	time mean sol	lid tempe	erature (ou	ut), tmo	C	=	890	°c j	
	Time cycle , F	PE				=	565	s	
I	Dry weight ore	e =	23000 kg	%	H ₂ O	=	7.52	% by We	t weight
,	Accuracy , AC	c				ปรก	0.001		
I	Fluid volume f	low rate (cold perio	od)		-	4950	m³/hr	
	Oil mass flow	rate				ควา	270	kg/hr	
					CO₂	=	12.33	(% vol.))
	component of	fluid (ho	ot period)		со	=	377	(ppm)	
					02	=	4.61	(% vol.))
I	Emissivity of g	as hot pe	eriod, Eg			=	0.133		
,	Absorptivity of	f gas hot	period, Ag			=	0.1189		
I	Emissivity of g	jas cold p	oeriod, Eg			=	0.034		
,	Absorptivity of	f gas colo	l period, A	g		=	0.0299		

regenerator entrance

	0	14	28	4Z	57	71	85	99	113	127	141	155	170	184	198	Z1Z	ZZ6	Z40	254	268	283	Z97	311	325	339	353	367	381	396	410	424	438	45Z	466	480	494	509	523	537	551	565	time
٥	998	998	999	999	999	999	999	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,002	1,00Z	1,00Z	1,00Z	1,00Z	1,00Z	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	Γω
٥	983	983	983	983	983	984	984	984	984	984	985	985	985	985	985	926	926	926	926	926	987	927	927	927	927	922	922	922	922	922	922	929	929	929	929	929	990	990	990	990	990	
1	967	967	967	967	968	962	962	962	962	969	969	969	969	969	970	970	970	970	970	971	971	971	971	971	97Z	97Z	972	97Z	972	973	973	973	973	973	974	974	974	974	974	974	975	
1	951	951	951	951	952	952	952	95Z	952	953	953	953	953	953	954	954	954	954	954	955	955	955	955	955	956	956	956	956	956	957	957	957	957	957	958	958	958	958	958	959	959	
1	935	935	935	935	935	936	936	936	936	936	937	937	937	937	937	938	938	938	938	938	939	939	939	939	939	940	940	940	940	940	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	943	
1	918	918	918	919	919	919	919	919	9Z0	920	920	920	921	9Z1	9Z1	9Z1	9Z1	922	9ZZ	92Z	922	922	923	923	923	923	923	924	9Z4	9Z4	9Z4	9Z4	925	925	925	925	925	926	926	926	926	
z	901	90Z	90Z	90Z	90Z	90Z	903	903	903	903	903	904	904	904	904	904	905	905	905	905	906	906	906	906	906	907	907	907	907	907	902	902	902	902	902	909	909	909	909	909	910	
z	884	885	885	885	885	885	886	886	886	886	887	887	887	887	887	888	888	888	888	888	889	889	889	889	889	890	890	890	890	891	891	891	891	891	892	89Z	892	892	892	893	893	
z	867	867	868	262	868	262	868	869	869	869	869	870	870	870	870	870	871	871	871	871	871	872	872	87Z	87Z	873	873	873	873	873	874	874	874	874	874	875	875	875	875	876	876	
z	850	850	850	850	851	851	851	851	852	852	852	852	852	853	853	853	853	853	854	854	854	854	855	255	855	855	855	856	856	856	856	856	857	857	857	857	858	858	858	858	858	
з	832	83Z	833	833	833	833	833	834	834	834	834	835	835	835	835	835	836	836	836	836	837	837	837	837	837	838	838	838	838	838	839	839	839	839	840	840	840	840	840	841	841	
з	814	814	815	815	815	815	816	816	816	816	816	817	817	817	817	818	818	818	212	818	819	819	819	819	820	820	820	820	820	8Z1	821	821	821	822	822	82Z	82Z	82Z	823	823	823	
з	796	796	796	797	797	797	797	792	792	792	792	792	799	799	799	799	200	200	200	200	801	201	801	801	801	80Z	802	882	80Z	803	803	803	803	803	804	804	804	804	805	805	805	
3	778	778	778	778	778	779	779	779	779	780	780	780	780	781	781	781	781	781	78Z	78Z	782	78Z	783	783	783	783	784	784	784	784	784	785	785	785	785	786	786	786	786	787	787	
4	759	759	759	760	760	760	760	761	761	761	761	761	762	762	762	76Z	763	763	763	763	764	764	764	764	764	765	765	765	765	766	766	766	766	767	767	767	767	767	762	762	762	
4	740	740	740	741	741	741	741	74Z	742	74Z	74Z	743	743	743	743	743	744	744	744	744	745	745	745	745	746	746	746	746	747	747	747	747	747	748	748	748	748	749	749	749	749	
4	721	721	721	721	72Z	722	722	722	723	723	723	723	724	724	724	724	725	725	725	725	726	726	726	726	726	727	727	727	727	728	728	728	728	729	729	729	729	730	730	730	730	
4	701	701	70Z	70Z	70Z	70Z	703	703	703	703	704	704	704	704	705	705	705	705	706	706	706	706	707	707	707	707	708	702	702	702	709	709	709	709	709	710	710	710	710	711	711	
5	681	68Z	68Z	682	68Z	683	683	683	683	684	684	684	684	685	685	685	685	626	626	626	626	687	687	687	687	622	622	688	688	689	629	689	689	690	690	690	690	691	691	691	691	
5	661	66Z	66Z	66Z	66Z	663	663	663	663	664	664	664	664	665	665	665	665	666	666	666	666	667	667	667	667	662	663	662	662	669	669	669	669	670	670	670	670	671	671	671	671	
5	641	641	64Z	64Z	64Z	64Z	643	643	643	643	644	644	644	644	645	645	645	645	646	646	646	646	647	647	647	647	648	648	642	642	649	649	649	649	650	650	650	650	651	651	651	
	Ļ																																									
Length	▼ (m)																			15.95	ncrator	c×it																				
	. ,															tin	15 10 5	velie en	uilibriu		157	hr																				

3,812,360 J 3,792,499 J

Heat Abrage Heat recovery

Longth (m)

rtart of period

135

regenerator exit

	0	14	28	4Z	57	71	85	99	113	127	141	155	170	184	198	21 Z	ZZ6	240	Z54	268	283	297	311	325	339	353	367	381	396	410	4Z4	438	452	466	480	494	509	523	537	551	565	time
٥	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	- (c)
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,020	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,0ZZ	1,022	1,02Z	1,022	1,0ZZ	1,022	1,0ZZ	1,0ZZ	1,0ZZ	1,022	1,0ZZ	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,024	
1	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,002	1,008	1,008	1,002	1,008	1,008	1,002	1,002	1,002	1,009	1,009	1,009	1,009	1,009	1,009	
1	929	929	929	929	929	929	929	990	990	990	990	990	990	990	991	991	991	991	991	991	991	992	99Z	99Z	99Z	992	992	99Z	993	993	993	993	993	993	993	993	994	994	994	994	994	
1	973	973	973	973	973	973	974	974	974	974	974	974	974	975	975	975	975	975	975	976	976	976	976	976	976	977	977	977	977	977	977	977	978	978	978	978	978	978	978	979	979	
z	956	957	957	957	957	957	957	958	958	958	958	958	958	959	959	959	959	959	959	960	960	960	960	960	961	961	961	961	961	961	962	962	962	962	962	962	962	963	963	963	963	
z	940	940	940	941	941	941	941	941	94Z	94Z	942	94Z	942	94Z	943	943	943	943	943	944	944	944	944	944	944	945	945	945	945	945	945	946	946	946	946	946	947	947	947	947	947	
z	9Z4	9Z4	9Z4	9Z4	9Z4	925	925	925	925	925	925	926	926	926	926	926	9Z7	9Z7	927	927	927	928	928	928	928	928	928	929	929	929	929	929	930	930	930	930	930	931	931	931	931	
z	907	907	907	907	902	902	902	902	902	909	909	909	909	909	910	910	910	910	910	911	911	911	911	911	91Z	91Z	912	91Z	91Z	913	913	913	913	913	913	914	914	914	914	914	915	
3	890	890	890	891	891	891	891	891	892	892	892	892	892	893	893	893	893	893	894	894	894	894	894	895	895	895	895	895	896	896	896	896	896	897	897	897	897	897	898	898	898	
3	873	873	873	873	874	874	874	874	874	875	875	875	875	875	876	876	876	876	876	877	877	877	877	878	878	878	878	878	879	279	879	279	279	880	880	880	880	880	881	881	881	
3	855	856	856	856	856	856	857	857	857	857	857	858	858	858	858	859	859	859	859	859	860	260	260	260	860	861	861	861	861	861	86Z	862	86Z	862	863	863	863	863	863	864	264	
3	838	838	838	838	839	839	839	839	839	840	840	840	840	841	841	841	841	841	84Z	84Z	84Z	84Z	84Z	843	843	843	843	844	844	844	844	844	845	845	845	845	845	846	846	846	846	
4	820	820	820	821	821	821	821	821	822	822	822	822	823	823	823	823	823	824	824	824	824	824	825	825	825	825	826	826	826	826	826	827	827	827	827	828	828	828	828	828	829	
4	802	802	802	802	803	803	803	803	804	804	804	804	804	805	805	805	805	206	806	806	806	806	807	807	807	807	808	808	808	808	808	809	809	809	809	810	810	810	810	810	811	
4	783	784	784	784	784	785	785	785	785	785	786	786	786	786	787	787	787	787	787	788	788	788	788	789	789	789	789	790	790	790	790	790	791	791	791	791	792	792	792	792	79Z	
4	765	765	765	765	766	766	766	766	767	767	767	767	762	768	762	768	762	769	769	769	769	770	770	770	778	771	771	771	771	771	772	772	77Z	772	773	773	773	773	774	774	774	
5	746	746	746	747	747	747	747	748	748	748	748	748	749	749	749	749	750	750	750	750	751	751	751	751	752	752	752	752	752	753	753	753	753	754	754	754	754	755	755	755	755	
5	727	727	727	727	728	728	728	728	729	729	729	729	730	730	730	730	731	731	731	731	73Z	73Z	73Z	73Z	73Z	733	733	733	733	734	734	734	734	735	735	735	735	736	736	736	736	
5	707	708	702	702	702	709	709	709	709	710	710	710	710	711	711	711	711	711	712	712	71Z	71Z	713	713	713	713	714	714	714	714	715	715	715	715	716	716	716	716	717	717	717	
٦	7																																									

Longth (m)

start of period

Lengt	(m)																			re 94	nerator	r exit																				
	ŧ.																																									
5	698	698	698	698	692	692	697	697	697	697	697	697	697	696	696	696	696	696	696	695	695	695	695	695	695	695	694	694	694	694	694	694	693	693	693	693	693	693	693	69Z	69Z	
5	679	678	678	678	672	678	678	677	677	677	677	677	677	677	676	676	676	676	676	676	675	675	675	675	675	675	675	674	674	674	674	674	674	673	673	673	673	673	673	673	672	
5	658	658	658	658	658	658	657	657	657	657	657	657	657	656	656	656	656	656	656	656	655	655	655	655	655	655	654	654	654	654	654	654	654	653	653	653	653	653	653	653	652	
4	638	638	638	637	637	637	637	637	637	637	636	636	636	636	636	636	636	635	635	635	635	635	635	635	634	634	634	634	634	634	634	633	633	633	633	633	633	632	632	632	632	
4	617	617	617	617	617	616	616	616	616	616	616	616	615	615	615	615	615	615	615	614	614	614	614	614	614	614	613	613	613	613	613	613	613	61Z	61Z	61Z	61Z	612	612	61Z	611	
4	596	596	596	596	596	595	595	595	595	595	595	595	594	594	594	594	594	594	594	593	593	593	593	593	593	593	59Z	591	591	591	591	591	591	591								
4	575	575	574	574	574	574	574	574	574	574	573	573	573	573	573	573	573	57Z	572	57Z	572	57Z	572	572	57Z	571	571	571	571	571	571	571	570	570	570	570	570	570	570	569	569	
3	553	553	553	553	553	552	552	552	552	552	552	552	552	551	551	551	551	551	551	551	550	550	550	550	550	550	550	550	549	549	549	549	549	549	549	549	548	548	548	548	548	
3	531	531	531	531	531	530	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	528	527	527	527	527	527	527	527	527	527	526	526	526	
3	509	509	509	508	508	508	508	508	508	508	508	507	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	505	505	505	505	505	505	505	505	505	504	504	504	504	
3	486	486	486	486	486	486	426	485	485	485	485	485	485	485	485	484	484	484	424	424	424	484	484	484	483	483	483	483	483	483	483	483	483	483	48Z	48Z	482	482	482	48Z	48Z	
z	463	463	463	463	463	463	463	46Z	46Z	462	462	462	46Z	46Z	46Z	462	46Z	461	461	461	461	461	461	461	461	461	461	460	460	460	460	460	460	460	460	460	459	459	459	459	459	
z	440	440	440	440	440	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	437	437	437	437	436	436	436	436	436	
z	416	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	414	413	413	413	413	413	413	413	413	
z	392	392	392	392	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	390	390	390	390	390	389	389	389	389	
1	368	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	365	365	365	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	342	34Z	342	34Z	342	34Z	342	34Z	34Z	34Z	342	34Z	342	34Z	34Z	342	34Z	34Z	341	341	341	341	341	341	341	
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	
1	293	293	293	Z93	293	293	293	293	293	293	293	293	293	293	293	292	292	29Z	29Z	29Z	292	29Z	292	29Z	29Z	29Z	292	29Z	29Z	Z92	29Z	29Z	29Z	292	29Z	292	29Z	Z92	292	29Z	Z92	
0	Z67	Z67	267	Z67	267	267	267	267	Z67	Z67	Z67	Z67	Z67	267	267	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	Z67	267	267	267	267	Z67	267	Z67	Z67	Z67	Z67	
0	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	time
	٥	14	28	4Z	57	71	85	99	113	127	141	155	170	184	192	Z12	226	240	Z54	Z68	Z83	297	311	325	339	353	367	381	396	410	424	438	452	466	480	494	509	523	537	551	565	· (r)
л .	rt of po	riad																		regena	rator cr	monce																		cno	l of period	

reserver and ance

solid temperature distribution cold period (degree C)

Longth (m)

start of acried

138

thermal ratio distribution hat period ((tfih-tfah)'(tfih-tfie) or NH1)

1.) Input	size of squar Top view	e check	er in regenei	rator			3D v	iew	
	c d		iternal brick su mmetry line	urface		Air flow			L
						∟ time Batcl	=	/ 12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input	heat transfer	data							
	time mean a	ambient t	emperature	,ta		=	38	°c	
	time mean r	elative h	umidity			=	80	%	
	deviding Le	ngth	=	20	deviding	Time	=	40)
	time mean f	luid temp	perature (in) , tfih		=	1052	°c)	
	time mean f	luid tem <mark>r</mark>	erature (ou	t),tfo	n	=	434	°c (hot period
	time mean s	olid tem	iperature (ir	n), tmi	n	=	907	°c (norpenoa
	time mean s	olid terr	iperature (o	ut), tn	noh	=	420	°c j	
	time mean f	luid temp	oerature (in), tfic		=	241	°c)	
	time mean f	luid temp	erature (ou	t), tfoc	13315	=	751	°c (cold period
	time mean s	solid terr	iperature (ir), tmi	2	=	402	°c (oola polloa
	time mean s	olid tem	perature (o	ut), tn	юс	=	890	°c j	
	Time cycle ,	, PE 🚽				=	600	S	
	Dry weight o	ore =	23000 kg		%H ₂ O	=	7.52	% by We	t weight
	Accuracy,	ACC				151	0.001		
	Fluid volume	e flow rat	e (cold peri	od)		-	4950	m³/hr	
	Oil mass flo	w rate				าวา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	of fluid (hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity of	f gas hot	period, Eg			=	0.133		
	Absorptivity	of gas h	ot period, Ag	ļ		=	0.1189		
	Emissivity of	f gas col	d period, Eg			=	0.034		
	Absorptivity	of gas c	old period, A	g		=	0.0299		

regenerator entrance

	٥	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	Z40	255	270	285	300	315	330	345	360	375	390	405	420	435	450	465	480	495	510	525	540	555	570	585	600
0	992	998	998	992	999	999	999	999	999	1,000	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,001	1,001	1,00Z	1,00Z	1,00Z	1,002	1,003	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,006	1,006
0	98Z	982	983	983	983	983	983	984	984	924	984	984	985	985	985	985	986	986	926	926	986	987	987	987	987	987	988	988	988	988	988	929	989	929	929	929	990	990	990	990	990
1	966	967	967	967	967	967	968	968	968	968	968	969	969	969	969	970	970	970	970	970	971	971	971	971	971	97Z	97Z	972	97Z	97Z	973	973	973	973	973	974	974	974	974	974	975
1	950	951	951	951	951	951	95Z	95Z	95Z	95Z	95Z	953	953	953	953	954	954	954	954	954	955	955	955	955	955	956	956	956	956	957	957	957	957	957	958	958	958	958	958	959	959
1	934	934	935	935	935	935	935	936	936	936	936	936	937	937	937	937	938	938	938	938	938	939	939	939	939	939	940	940	940	940	941	941	941	941	941	94Z	94Z	94Z	94Z	94Z	943
1	918	918	918	918	918	919	919	919	919	920	920	920	920	920	921	9Z1	9Z1	9Z1	922	922	922	9 2 2	922	923	923	923	923	9Z4	924	924	924	924	925	925	925	925	925	926	926	926	926
z	901	901	901	902	902	902	90Z	90Z	903	903	903	903	904	904	904	904	904	905	905	905	905	906	906	906	906	906	907	907	907	907	908	908	908	908	908	909	909	909	909	910	910
z	884	884	884	885	885	885	885	886	886	886	886	886	887	887	887	887	888	888	888	888	888	889	889	889	889	890	890	890	890	890	891	891	891	891	892	89Z	892	892	89Z	893	893
z	867	867	867	867	868	868	868	868	869	869	869	869	869	870	870	870	870	871	871	871	871	87Z	87Z	87Z	87Z	87Z	873	873	873	873	874	874	874	874	874	875	875	875	875	876	876
z	249	850	850	850	850	850	851	851	851	851	852	852	852	852	853	853	853	853	853	854	854	854	854	855	855	855	855	856	856	856	856	856	857	857	857	857	858	858	858	858	259
3	832	832	832	832	833	833	833	833	834	834	834	834	834	835	835	835	835	836	836	836	836	837	837	837	837	838	838	838	838	838	839	839	839	839	840	840	840	840	841	841	841
3	814	814	814	814	815	815	815	815	816	816	816	816	817	817	817	817	818	818	818	212	212	219	819	819	819	820	820	820	820	821	821	821	821	822	822	822	822	823	823	823	823
3	796	796	796	796	797	797	797	797	798	798	798	792	798	799	799	799	799	200	800	200	200	801	201	801	801	802	802	802	802	803	803	803	803	804	804	804	804	804	805	805	805
3	777	777	778	778	778	778	779	779	779	779	780	780	780	780	781	781	781	781	782	782	782	782	783	783	783	783	783	784	784	784	784	785	785	785	785	786	786	786	786	787	787
4	758	759	759	759	759	760	760	760	760	761	761	761	761	76Z	76Z	76Z	76Z	763	763	763	763	764	764	764	764	765	765	765	765	766	766	766	766	767	767	767	767	762	768	768	762
4	740	740	740	740	741	741	741	741	74Z	742	742	74Z	743	743	743	743	744	744	744	744	745	745	745	745	746	746	746	746	747	747	747	747	748	748	748	748	749	749	749	749	750
4	720	721	721	721	721	722	722	722	722	723	723	723	723	724	724	724	724	725	725	725	725	726	726	726	726	727	727	727	727	728	728	728	728	729	729	729	729	730	730	730	730
4	701	701	701	702	702	702	702	703	703	703	703	704	704	704	704	705	705	705	705	706	706	706	707	707	707	707	708	708	708	708	709	709	709	709	710	710	710	710	711	711	711
5	681	681	682	682	682	682	683	683	683	683	684	684	684	684	685	685	685	686	626	686	686	687	687	687	687	688	688	688	688	689	689	689	689	690	690	690	690	691	691	691	692
5	661	661	662	662	66Z	662	663	663	663	663	664	664	664	665	665	665	665	666	666	666	666	667	667	667	667	662	663	662	662	669	669	669	670	670	670	670	671	671	671	671	672
5	641	641	641	64Z	64Z	64Z	64Z	643	643	643	643	644	644	644	645	645	645	645	646	646	646	646	647	647	647	647	648	642	648	649	649	649	649	650	650	650	650	651	651	651	651
	7																																								
.cn gth	(m)																			rege	ncrator	exit																			

time to cyclic equilibrium 149 hr

Heat storage 4,048,158 J Heat scovery 4,033,547 J

Longth (m)

start of period

141

regenerator exit

	٥	15	30	45	60	75	90	105	120	135	150	165	120	195	210	225	Z40	255	270	285	300	315	330	345	360	375	390	405	420	435	450	465	480	495	510	525	540	555	570	585	600	time
٥	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,05Z	1,052	1,052	(c)
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	
1	1,020	1,020	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,022	1,022	1,022	1,02Z	1,022	1,02Z	1,022	1,022	1,022	1,022	1,022	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,024	1,024	
1	1,004	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,008	1,009	1,009	1,009	1,009	1,009	1,009	1,009	
1	988	929	929	989	929	929	929	990	990	990	990	990	990	990	991	991	991	991	991	991	991	99Z	99Z	99Z	992	992	992	99Z	993	993	993	993	993	993	993	994	994	994	994	994	994	
1	97Z	973	973	973	973	973	973	974	974	974	974	974	974	975	975	975	975	975	975	976	976	976	976	976	976	977	977	977	977	977	977	978	978	978	978	978	978	979	979	979	979	
z	956	956	957	957	957	957	957	958	958	958	958	958	952	959	959	959	959	959	960	960	960	960	960	960	961	961	961	961	961	961	96Z	96Z	96Z	96Z	96Z	963	963	963	963	963	963	
z	940	940	940	940	941	941	941	941	941	94Z	942	94Z	942	94Z	943	943	943	943	943	944	944	944	944	944	944	945	945	945	945	945	946	946	946	946	946	947	947	947	947	947	947	
z	923	9Z4	924	924	9Z4	9Z4	925	925	925	925	925	926	926	926	926	9Z6	927	927	927	927	927	928	928	928	928	928	929	929	929	929	929	930	930	930	930	930	931	931	931	931	931	
z	907	907	907	907	907	902	902	902	902	909	909	909	909	909	910	910	910	910	910	911	911	911	911	911	91Z	91Z	91Z	91Z	91Z	913	913	913	913	913	914	914	914	914	914	915	915	
3	890	890	890	890	891	891	891	891	891	89Z	89Z	892	892	893	893	893	893	893	894	894	894	894	894	895	895	895	895	895	896	896	896	896	897	897	897	897	897	898	898	898	898	
3	873	873	873	873	873	874	874	874	874	875	875	875	875	875	876	876	276	276	877	877	877	877	877	878	878	878	878	878	879	879	879	879	880	880	880	880	880	881	881	881	881	
3	855	855	856	856	856	856	857	857	857	857	857	858	858	858	858	859	859	859	859	859	260	860	260	860	861	861	861	261	861	862	862	862	862	863	863	863	863	863	864	864	864	
3	838	838	838	838	838	839	839	839	839	840	840	840	840	841	841	841	841	841	84Z	842	84Z	84Z	843	843	843	843	844	844	844	844	844	845	845	845	845	846	846	846	846	846	847	
4	820	820	820	820	821	821	821	821	822	822	822	822	823	823	823	823	823	824	824	824	824	825	825	825	825	826	826	826	826	826	827	827	827	827	828	828	828	828	829	829	829	
4	80Z	802	802	802	803	803	803	803	803	804	804	804	804	805	805	805	805	206	806	806	806	807	807	807	807	808	808	808	808	808	809	809	809	809	810	810	810	810	811	811	811	
4	783	783	784	784	784	784	785	785	785	785	786	786	786	786	787	787	787	787	788	788	788	788	789	729	789	729	790	790	790	790	790	791	791	791	791	79Z	79Z	79Z	79Z	793	793	
4	765	765	765	765	766	766	766	766	767	767	767	767	762	762	762	762	769	769	769	769	770	770	770	770	771	771	771	771	771	772	772	772	772	773	773	773	773	774	774	774	774	
5	746	746	746	747	747	747	747	748	748	748	748	749	749	749	749	750	750	750	750	751	751	751	751	751	752	752	752	752	753	753	753	753	754	754	754	754	755	755	755	755	756	
5	727	727	727	727	728	728	728	728	729	729	729	729	730	730	730	730	731	731	731	731	73Z	73Z	73Z	73Z	733	733	733	733	734	734	734	734	735	735	735	735	736	736	736	736	737	
5	707	702	708	708	702	709	709	709	709	710	710	710	710	711	711	711	711	712	712	712	712	713	713	713	713	714	714	714	714	715	715	715	715	716	716	716	716	717	717	717	717	
	7																																									

Longth (m)

start of period

Longth	(m)																			12.90	:ncrator	r exit																				
	^																																									
5	692	692	692	698	692	697	697	697	697	697	697	696	696	696	696	696	696	696	695	695	695	695	695	695	694	694	694	694	694	694	693	693	693	693	693	693	69Z	69Z	69Z	69Z	69Z	
5	678	672	672	672	672	678	677	677	677	677	677	677	676	676	676	676	676	676	676	675	675	675	675	675	675	674	674	674	674	674	674	673	673	673	673	673	673	67Z	67Z	67Z	672	
5	658	658	658	658	658	657	657	657	657	657	657	657	656	656	656	656	656	656	655	655	655	655	655	655	654	654	654	654	654	654	653	653	653	653	653	653	653	65Z	65Z	65Z	652	
4	638	638	638	637	637	637	637	637	637	636	636	636	636	636	636	635	635	635	635	635	635	635	634	634	634	634	634	634	633	633	633	633	633	633	633	632	632	632	632	632	632	
4	617	617	617	617	616	616	616	616	616	616	616	615	615	615	615	615	615	614	614	614	614	614	614	614	613	613	613	613	613	613	613	61Z	61Z	61Z	61Z	61Z	612	611	611	611	611	
4	596	596	596	596	595	595	595	595	595	595	595	594	594	594	594	594	594	594	593	593	593	593	593	593	59Z	59Z	592	59Z	59Z	59Z	59Z	591	591	591	591	591	591	591	590	590	590	
4	575	575	574	574	574	574	574	574	574	573	573	573	573	573	573	573	57Z	57Z	572	57Z	57Z	57Z	57Z	571	571	571	571	571	571	571	570	570	570	570	570	570	570	569	569	569	569	
3	553	553	553	553	552	552	55Z	552	552	552	552	551	551	551	551	551	551	551	551	550	550	550	550	550	550	550	549	549	549	549	549	549	549	548	548	548	548	548	548	548	548	
3	531	531	531	531	531	530	530	530	530	530	530	530	529	529	529	529	529	529	529	529	528	528	528	528	528	528	528	527	527	527	527	527	527	527	527	526	526	526	526	526	526	
3	509	509	502	502	508	508	502	508	508	508	507	507	507	507	507	507	507	507	506	506	506	506	506	506	506	506	505	505	505	505	505	505	505	505	504	504	504	504	504	504	504	
3	486	486	486	486	426	486	485	485	485	485	485	485	485	485	424	424	484	484	424	424	424	424	424	483	483	483	483	483	483	483	483	48Z	481									
z	463	463	463	463	463	463	463	46Z	462	462	462	462	462	46Z	46Z	462	461	461	461	461	461	461	461	461	461	460	460	460	460	460	460	460	460	460	459	459	459	459	459	459	459	
z	440	440	440	440	439	439	439	439	439	439	439	439	439	439	438	438	438	438	438	438	438	438	438	438	437	437	437	437	437	437	437	437	437	437	436	436	436	436	436	436	436	
z	416	416	416	416	416	416	416	416	416	415	415	415	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	414	414	414	414	413	413	413	413	413	413	413	413	413	413	
z	392	392	392	392	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	390	390	390	390	389	389	389	389	389	389	
1	368	368	368	368	368	368	368	368	367	367	367	367	367	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	366	366	366	366	365	365	365	365	365	
1	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	34Z	342	342	342	34Z	34Z	34Z	34Z	342	34Z	342	342	34Z	34Z	34Z	34Z	34Z	341	341	341	341	341	341	341	341	341	
1	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	316	
1	293	293	293	293	293	293	293	293	Z93	Z93	Z93	293	293	293	29Z	29Z	Z92	29Z	Z92	29Z	29Z	29Z	29Z	29Z	29Z	292	292	29Z	29Z	29Z	29Z	29Z	29Z	Z92	29Z	29Z	Z92	29Z	Z92	29Z	292	
٥	267	267	267	267	267	Z67	267	267	Z67	Z67	Z67	Z67	267	Z67	267	Z67	Z67	Z67	267	Z67	Z67	Z67	267	Z67	Z67	267	267	267	267	Z67	Z67	Z67	Z67	Z67	Z66							
0	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	time
	0	15	30	45	60	75	90	105	120	135	150	165	120	195	210	225	Z40	255	270	285	300	315	330	345	360	375	390	405	420	435	450	465	480	495	510	525	540	555	570	585	600	(7)
л -	nt of po	riad																		regena	anater cr	monce																		cno	of period	

reserver and ance

rolid temperature distribution cold period (degree C)

end of period

start of period

thermal ratio distribution hat period ((tfih-tfah)'(tfih-tfie) or NH1)

0.425 0.425 0.424 0.424 0.424 0.424 0.423 0.423 0.423 0.422 0.422 0.422 0.421 0.421 0.421 0.421 0.420 0.419 0.419 0.419 0.419 0.418 0.418 0.418 0.418 0.417 0.417 0.416 0.416 0.416 0.416 0.415 0.415 0.415 0.414 0.414 0.414 0.413 0.413 0.413 0.412

1.) Input	size of square Top view	e checke	r in regener	ator			3D vi	iew	
	c d	 → int syn	ernal brick su nmetry line	rface		Air flow			L
						time Batcl	=	12	Hr
	с	=	0.18	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input l	heat transfer	data 🧧							
	time mean a	mbient te	mperature ,	ta		=	38	°c	
	time mean re	elative hu	imidity			=	80	%	
	deviding Ler	ngth	=	20 d	eviding	Time	=	40)
	time mean fl	uid tempe	erature (in)), tfih		=	1052	°c)	
	time mean fl	uid tempe	erature (out	t), tfoh		=	434	°c (hot neriod
	time mean s	olid temp	perature (in) , tmih		=	907	°c (norpenoa
	time mean s	olid temp	perature (ou	ut), tmo	h	=	420	°c j	
	time mean fl	uid tempe	erature (in)), tfic		=	241	°c)	
	time mean fl	uid tempe	erature (out	t), tfoc		=	751	°c (cold period
	time mean s	olid temp	perature (in), tmic		=	402	°c (oola polloa
	time mean s	olid temp	perature (ou	ut), tmo	с	=	890	°c j	
	Time cycle ,	PE 🚽				=	900	s	
	Dry weight o	re =	23000 kg	%	H ₂ O	=	7.52	% by We	t weight
	Accuracy, A	NCC				เรา	0.001		
	Fluid volume	e flow rate	e (cold perio	(bc		-	4950	m³/hr	
	Oil mass flow	v rate				ควา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	of fluid (ł	not period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity of	gas hot į	period, Eg			=	0.133		
	Absorptivity	of gas ho	t period, Ag			=	0.1189		
	Emissivity of	gas cold	period, Eg			=	0.034		
	Absorptivity	of gas co	ld period, A	g		=	0.0299		

regenerator entrance

	0	23	45	62	90	113	135	158	120	203	225	Z48	270	293	315	338	360	383	405	428	450	473	495	518	540	563	585	602	630	653	675	692	720	743	765	788	810	833	855	878	900	time
0	994	994	995	995	995	996	996	996	997	997	997	998	998	992	999	999	999	1,000	1,000	1,000	1,000	1,001	1,001	1,001	1,00Z	1,00Z	1,002	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,006	1,006	1,006	6
0	978	979	979	979	920	920	920	981	921	921	98Z	98Z	982	983	983	983	924	924	924	985	985	925	926	926	926	926	927	927	987	922	922	922	929	929	929	929	990	990	990	991	991	
1	963	963	963	964	964	964	965	965	965	966	966	966	967	967	967	968	968	968	969	969	969	969	970	970	970	971	971	971	972	972	97Z	973	973	973	973	974	974	974	975	975	975	
1	947	947	947	948	942	948	949	949	949	950	950	950	951	951	951	952	95Z	95Z	953	953	953	954	954	954	954	955	955	955	956	956	956	957	957	957	958	958	958	959	959	959	959	
1	930	931	931	931	932	932	932	933	933	933	934	934	934	935	935	935	936	936	936	937	937	937	938	938	938	939	939	939	940	940	940	941	941	941	941	94Z	94Z	942	943	943	943	
1	914	914	915	915	915	916	916	916	917	917	917	918	918	918	91 <u>9</u>	919	919	920	920	920	921	921	9Z1	922	922	92Z	923	923	9Z3	9Z4	9Z4	924	925	925	925	925	9Z6	926	9Z6	927	927	
z	897	898	898	898	899	899	899	900	900	900	901	901	901	90Z	90Z	90Z	903	903	903	904	904	904	905	905	905	906	906	906	907	907	907	908	908	908	909	909	909	910	910	910	911	
z	880	881	881	881	882	882	882	883	883	883	884	884	884	885	885	885	886	886	886	887	887	887	888	888	888	889	889	890	890	890	890	891	891	891	89Z	89Z	892	893	893	893	894	
z	863	864	864	864	865	865	865	866	866	866	867	867	867	868	868	868	869	269	869	870	870	870	871	871	871	87Z	872	872	873	873	873	874	874	874	875	875	875	876	876	876	877	
z	846	846	847	847	847	848	848	848	849	849	849	850	850	850	851	851	851	852	85Z	852	853	853	853	854	854	854	855	855	856	856	856	857	857	857	858	858	858	859	859	859	260	
3	828	829	829	829	830	830	830	831	831	831	83Z	83Z	832	833	833	833	834	834	834	835	835	836	836	836	837	837	837	838	838	838	839	839	839	840	840	840	841	841	841	84Z	84Z	
3	810	811	811	811	81Z	81 Z	81Z	813	813	813	814	814	815	815	815	816	816	816	817	817	817	818	818	818	819	819	820	820	820	8Z1	8Z1	8Z1	82Z	82Z	82Z	823	8Z3	823	8Z4	8Z4	824	
3	79Z	79Z	793	793	794	794	794	795	795	795	796	796	796	797	797	798	798	798	799	799	799	200	800	200	801	801	801	802	802	803	803	803	804	804	804	805	805	805	206	806	807	
3	774	774	774	775	775	776	776	776	777	777	777	778	778	778	779	779	780	780	780	781	781	781	78Z	782	783	783	783	784	784	784	785	785	785	786	786	786	787	787	788	788	788	
4	755	755	756	756	757	757	757	758	758	758	759	759	760	760	760	761	761	761	76Z	762	76Z	763	763	764	764	764	765	765	765	766	766	767	767	767	768	768	768	769	769	769	770	
4	736	737	737	737	738	738	738	739	739	740	740	740	741	741	741	74Z	74Z	743	743	743	744	744	744	745	745	746	746	746	747	747	747	748	748	749	749	749	750	750	750	751	751	
4	717	717	718	718	719	719	719	720	720	720	721	721	722	722	722	723	723	723	724	724	725	725	725	726	726	727	727	727	728	728	728	729	729	730	730	730	731	731	731	73Z	73Z	
4	698	692	698	699	699	700	700	700	701	701	701	70Z	702	703	703	703	704	704	705	705	705	706	706	706	707	707	702	702	702	709	709	710	710	710	711	711	711	712	71Z	713	713	
5	678	678	679	679	679	680	620	681	681	681	682	682	683	683	683	684	684	685	685	685	626	626	636	687	687	622	633	622	689	689	690	690	690	691	691	69Z	69Z	692	693	693	693	
5	658	658	659	659	659	660	660	661	661	661	66Z	66Z	663	663	663	664	664	665	665	665	666	666	667	667	667	663	662	669	669	669	670	670	671	671	671	67Z	67Z	673	673	673	674	
5	638	638	638	639	639	640	640	640	641	641	64Z	64Z	64Z	643	643	644	644	644	645	645	646	646	646	647	647	648	648	648	649	649	650	650	650	651	651	652	652	652	653	653	654	
	,																																									
.cn gth	(m)																				ncrator	e×it																				
																tir	nc to c	yelie eq	uilibriu	m	105	hr																				

Longth (m)

rtart of period

Heat Abrage Heat recovery

6,062,231 J 6,039,756 J

regenerator exit

	٥	Z3	45	62	90	113	135	158	180	203	225	Z48	270	293	315	338	360	383	405	428	450	473	495	518	540	563	585	603	630	653	675	698	720	743	765	788	810	833	855	878	900	time
٥	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,05Z	1,052	1,05Z	1,05Z	1,05Z	1,05Z	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	- (c)
٥	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,039	1,039	1,039	
1	1,019	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,021	1,0ZZ	1,02Z	1,022	1,022	1,022	1,022	1,0ZZ	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,024	1,024	1,024	1,024	1,025	1,025	1,025	
1	1,003	1,004	1,004	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,007	1,008	1,008	1,002	1,008	1,008	1,008	1,009	1,009	1,009	1,009	1,009	1,009	1,010	1,010	1,010	1,010	1,010	1,011	
1	987	987	988	988	988	988	929	929	929	989	929	990	990	990	990	991	991	991	991	991	992	99Z	99Z	99Z	99Z	993	993	993	993	994	994	994	994	994	995	995	995	995	995	996	996	
1	971	971	972	972	972	972	973	973	973	973	974	974	974	974	975	975	975	975	975	976	976	976	976	977	977	977	977	978	978	978	978	979	979	979	979	980	980	980	980	980	981	
z	955	955	955	956	956	956	956	957	957	957	957	952	958	958	959	959	959	959	960	960	960	960	961	961	961	961	96Z	962	962	962	963	963	963	964	964	964	964	965	965	965	965	
z	938	939	939	939	939	940	940	940	941	941	941	94Z	94Z	94Z	94Z	943	943	943	943	944	944	944	945	945	945	945	946	946	946	947	947	947	947	948	948	948	948	949	949	949	950	
z	92Z	922	922	923	923	923	9Z4	924	924	924	925	925	925	926	926	9Z6	927	927	927	927	928	928	928	929	929	929	930	930	930	930	931	931	931	93Z	93Z	93Z	932	933	933	933	934	
z	905	905	906	906	906	907	907	907	902	902	902	902	909	909	909	9 <mark>10</mark>	910	910	911	911	911	91Z	91Z	91Z	91Z	913	913	913	914	914	914	915	915	915	915	916	916	916	917	917	917	
3	888	888	889	889	889	890	890	890	891	891	891	89Z	89Z	89Z	893	893	893	894	894	894	894	895	895	895	896	896	896	897	897	897	898	898	898	899	899	899	900	900	900	900	901	
3	871	871	87Z	87Z	87Z	873	873	873	874	874	874	875	875	875	876	876	876	877	877	877	877	878	878	878	879	879	879	880	880	880	881	881	881	88Z	88Z	88Z	883	883	883	884	884	
3	854	854	854	855	855	855	856	856	856	857	857	857	858	858	858	859	859	859	260	260	260	861	861	861	862	86Z	86Z	863	863	863	864	864	864	865	865	865	266	266	266	867	867	
3	836	836	837	837	837	838	838	838	839	839	839	840	840	840	841	841	841	84Z	84Z	84Z	843	843	844	844	844	845	845	845	846	846	846	847	847	847	848	848	848	849	849	849	850	
4	818	818	819	819	820	820	820	821	821	821	822	822	822	823	823	823	824	824	824	825	825	825	826	826	827	827	827	828	828	828	829	829	829	830	830	830	831	831	831	832	83Z	
4	200	800	801	801	80Z	802	802	803	803	803	804	804	804	805	805	805	806	806	806	807	807	808	808	808	809	809	809	810	810	810	811	811	811	81Z	81Z	81Z	813	813	814	814	814	
4	78Z	78Z	78Z	783	783	784	784	784	785	785	785	786	786	786	787	787	788	788	788	729	789	789	790	790	790	791	791	79Z	79Z	79Z	793	793	793	794	794	794	795	795	795	796	796	
4	763	764	764	764	765	765	765	766	766	767	767	767	762	762	762	769	769	769	770	770	771	771	771	77Z	772	772	773	773	773	774	774	775	775	775	776	776	776	777	777	777	778	
5	744	745	745	746	746	746	747	747	747	748	748	749	749	749	750	750	750	751	751	751	75Z	75Z	753	753	753	754	754	754	755	755	756	756	756	757	757	757	758	758	759	759	759	
5	725	726	726	726	727	727	728	728	728	729	729	730	730	730	731	731	731	73Z	73Z	733	733	733	734	734	734	735	735	736	736	736	737	737	737	738	738	739	739	739	740	740	740	
5	706	706	707	707	702	702	702	709	709	709	710	710	711	711	711	71Z	71Z	713	713	713	714	714	714	715	715	716	716	716	717	717	718	718	718	719	719	719	720	720	721	721	721	
٦																																										

Longth (m)

start of period

Length	(m)																			12.20	:ncrator	exit																			
1																																									
5	692	697	697	697	697	697	696	696	696	696	695	695	695	695	694	694	694	694	693	693	693	693	692	69Z	69Z	692	691	691	691	691	690	690	690	690	689	629	629	689	622	622	633
5	678	678	677	677	677	677	676	676	676	676	675	675	675	675	674	674	674	674	674	673	673	673	673	672	672	672	672	671	671	671	671	670	670	670	670	669	669	669	669	662	663
5	658	658	657	657	657	657	656	656	656	656	655	655	655	655	654	654	654	654	653	653	653	653	653	652	65Z	652	652	651	651	651	651	650	650	650	650	649	649	649	649	649	648
4	637	637	637	637	636	636	636	636	635	635	635	635	635	634	634	634	634	633	633	633	633	63Z	632	63Z	63Z	632	631	631	631	631	630	630	630	630	629	629	629	629	629	628	622
4	617	616	616	616	616	616	615	615	615	615	614	614	614	614	613	613	613	613	613	61Z	612	61Z	61Z	611	611	611	611	611	610	610	610	610	609	609	609	609	603	602	603	602	602
4	596	595	595	595	595	595	594	594	594	594	593	593	593	593	593	59Z	592	59Z	5 92	591	591	591	591	591	590	590	590	590	589	589	589	589	589	588	588	588	588	587	587	587	587
4	574	574	574	574	573	573	573	573	573	57Z	57Z	57Z	572	572	571	571	571	571	570	570	570	570	570	569	569	569	569	569	568	568	568	568	568	567	567	567	567	566	566	566	566
3	553	552	552	552	552	552	551	551	551	551	551	550	550	550	550	550	549	549	549	549	549	548	548	548	548	548	547	547	547	547	547	546	546	546	546	546	545	545	545	545	545
3	531	531	530	530	530	530	530	529	529	529	529	529	528	528	528	528	528	527	527	527	527	527	526	526	526	526	526	525	525	525	525	525	524	524	524	524	524	524	523	523	523
3	509	508	508	508	508	508	507	507	507	507	507	506	506	506	506	506	506	505	505	505	505	505	504	504	504	504	504	503	503	503	503	503	503	502	502	502	502	502	501	501	501
3	486	486	486	485	485	485	485	485	485	484	484	484	484	484	483	483	483	483	483	483	482	482	482	482	48Z	482	481	481	481	481	481	480	480	480	480	480	480	479	479	479	479
z	463	463	463	463	462	462	46Z	462	462	462	461	461	461	461	461	461	460	460	460	460	460	460	459	459	459	459	459	459	458	458	458	458	458	458	457	457	457	457	457	457	456
z	440	440	439	439	439	439	439	439	439	438	438	438	438	438	438	437	437	437	437	437	437	437	436	436	436	436	436	436	436	435	435	435	435	435	435	434	434	434	434	434	434
z	416	416	416	416	416	415	415	415	415	415	415	415	415	414	414	414	414	414	414	414	413	413	413	413	413	413	413	412	41Z	41Z	41 Z	41Z	41 Z	41Z	41Z	411	411	411	411	411	411
z	392	392	392	392	392	392	392	391	391	391	391	391	391	391	391	390	390	390	390	390	390	390	390	389	389	389	389	389	389	389	389	388	388	388	388	388	388	388	388	387	387
1	368	368	368	368	368	367	367	367	367	367	367	367	367	367	366	366	366	366	366	366	366	366	366	366	365	365	365	365	365	365	365	365	365	364	364	364	364	364	364	364	364
1	343	343	343	343	343	343	343	343	343	343	342	342	342	342	342	342	342	342	342	342	342	341	341	341	341	341	341	341	341	341	341	341	340	340	340	340	340	340	340	340	340
1	318	318	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	316	316	316	316	316	316	316	316	316	316	316	316	316	316
1	293	293	293	293	293	293	293	293	293	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	292	291	291	291	291	291	291	291	291	291	291	291
	261	267	261	261	261	261	267	267	261	261	261	261	261	267	261	261	261	261	267	267	267	267	267	267	267	267	267	266	266	266	266	266	266	266	266	266	266	266	266	266	266
•	241	241	45	241	241	117	175	467	190	241	241	241	241	241	241	241	241	241	405	479	450	477	495	547	541	567	595	241 cn9	670	667	675	241	241	241	241	241	241	241	241	070	800
	u	23	43	86	50	113	123	130	160	203	223	240	210	295	213	مدد	200	202	403	42.0	430	415	493	316	540	302	363	800	830	832	813	876	120	145	103	100	610	622	633	616	500
ф	t of oc	rind																		macor	and the second	thance																		50	d of ocried

time (x)

	•																																									
5	1,006	1,006	1,006	1,005	1,005	1,005	1,004	1,004	1,004	1,003	1,003	1,003	1,003	1,002	1,002	1,002	1,001	1,001	1,001	1,000	1,000	1,000	1,000	999	999	999	998	992	992	997	997	997	996	996	996	996	995	995	995	994	994	
5	991	991	990	990	990	929	929	929	922	988	922	987	987	987	927	926	926	926	985	985	985	924	984	924	983	983	983	98Z	98Z	98Z	98Z	921	921	981	980	920	980	979	979	979	978	
5	975	975	975	974	974	974	973	973	973	97Z	97Z	972	971	971	971	971	970	970	970	969	969	969	962	968	968	967	967	967	966	966	966	966	965	965	965	964	964	964	963	963	963	
4	959	959	959	958	958	958	957	957	957	957	956	956	956	955	955	955	954	954	954	953	953	953	952	95Z	952	951	951	951	951	950	950	950	949	949	949	948	948	948	947	947	947	
4	943	943	943	94Z	94Z	94Z	941	941	941	940	940	940	939	939	939	939	938	938	938	937	937	937	936	936	936	935	935	935	934	934	934	933	933	933	932	93Z	932	931	931	931	930	
4	927	927	926	926	926	925	925	925	924	924	924	923	923	923	922	922	922	921	921	921	921	920	920	920	919	919	919	918	918	918	917	917	917	916	916	916	915	915	915	914	914	
4	911	910	910	910	909	909	909	908	908	908	907	907	907	906	906	906	905	905	905	904	904	904	903	903	903	90Z	902	902	901	901	901	900	900	900	899	899	899	898	898	898	897	
3	894	893	893	893	89Z	89Z	892	891	891	891	890	890	890	889	889	889	888	888	888	887	887	887	886	886	886	885	885	885	884	884	884	883	883	883	882	882	882	881	881	881	880	
3	877	876	876	876	875	875	875	874	874	874	873	873	873	872	872	872	871	871	871	870	870	870	269	869	869	868	868	262	867	867	867	266	266	266	865	865	865	864	864	864	263	
3	860	859	859	859	858	858	858	857	857	856	856	856	855	855	855	854	854	854	853	853	853	852	852	852	851	851	851	850	850	850	849	849	849	848	848	848	847	847	846	846	846	
3	84Z	84Z	841	841	841	840	840	840	839	839	839	838	838	838	837	837	837	836	836	835	835	835	834	834	834	833	833	833	832	83Z	832	831	831	831	830	830	830	829	829	829	828	
z	824	824	824	823	823	823	822	822	822	821	821	821	820	820	819	819	819	818	818	818	817	817	817	816	816	816	815	815	814	814	814	813	813	813	812	812	812	811	811	811	810	
z	807	806	806	805	805	805	804	804	804	803	803	803	802	802	801	801	801	200	800	200	799	799	799	798	792	797	797	797	796	796	796	795	795	795	794	794	794	793	793	79Z	792	
z	788	788	788	787	787	786	786	786	785	785	785	784	784	784	783	783	782	782	782	781	781	781	780	780	780	779	779	778	778	778	777	777	777	776	776	776	775	775	774	774	774	
z	770	769	769	769	768	768	768	767	767	767	766	766	765	765	765	764	764	764	763	763	762	762	762	761	761	761	760	760	759	759	759	758	758	758	757	757	757	756	756	755	755	
1	751	751	750	750	750	749	749	749	748	748	747	747	747	746	746	745	745	745	744	744	744	743	743	742	742	742	741	741	741	740	740	740	739	739	738	738	738	737	737	737	736	
	132	732	121	747	744	730	730	730	729	729	728	728	728	727	727	726	726	726	725	725	725	724	724	723	725	723	722	722	722	721	721	720	720	720	799	(19	(19	(18	(18 (18			
	687	687	687	687	687	687	684	684	con	- CON	con	ru9 678	rua 678	rua 699	699	600	697	627	676	676	676	675	675	694	694	674	697	697	697	697	697	694	694	694	ruu 690	699	679	679	678	670	679	
	674	673	673	673	672	672	671	671	671	670	670	669	669	669	662	662	667	667	667	666	666	665	665	665	664	664	663	663	663	667	667	661	661	661	660	660	659	659	659	652	652	
0	654	653	653	652	652	652	651	651	650	650	650	649	649	643	648	643	647	647	646	646	646	645	645	644	644	644	643	643	642	64Z	642	641	641	640	640	640	639	639	638	638	638	time
-		23	45	62	90	113	135	158	180	203	225	248	270	293	315	338	360	383	405	428	450	473	495	518	540	563	585	602	630	653	675	698	720	743	765	788	810	833	855	878	900	۲. (ر)
л	nt of po	riod																		regene	rator cr	monce																		CN	d of period	

Longth (m) ▲

regenerator exit

rolid temperature distribution cold period (degree C)

(7)

thermal ratio distribution hat period ((thin theh)'(thin the) or NH1)

0.427 0.426 0.425 0.425 0.425 0.424 0.424 0.424 0.423 0.423 0.422 0.422 0.421 0.421 0.421 0.420 0.420 0.419 0.419 0.418 0.418 0.417 0.416 0.416 0.415 0.415 0.414 0.413 0.413 0.413 0.412 0.412 0.412 0.411 0.411 0.410 0.409 0.409 0.408

1.) Inpu	it size of squa Top view	re chec	ker in regenera	tor			3D vi	ew	
	c d		internal brick surf symmetry line	face		Air flow		7	L
						time Batcl	=	/ 12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Inpu	ıt heat transfe	r data							
	time mean	ambient	temperature ,t	a		=	38	°c	
	time mean	relative	humidity			=	80 '	%	
	deviding Le	ength	=	20 d	leviding	Time	=	40)
	time mean	fluid tem	perature (in)	, tfih		=	1052	°င)	
	time mean	fluid terr	perature (out), tfoh		=	434	°c (hot poriod
	time mean	solid te	mperature (in), tmih		=	907	°c (not penou
	time mean	solid te	mperature (ou	t), tmo	h	=	420	°c j	
	time mean	fluid terr	perature (in)	, tfic		=	241	°င)	
	time mean	fluid terr	perature (out), tfoc		=	751	°c (cold period
	time mean	solid te	mperature (in), tmic		-	402	°c (cold pollod
	time mean	solid te	mperature (ou	t), tmo	С	=	890 '	°c j	
	Time cycle	, PE				=	1200 :	S	
	Dry weight	ore =	23000 kg	%	6H₂O	=	7.52	% by We	t weight
	Accuracy ,	ACC				1-51	0.001		
	Fluid volum	ne flow ra	ate (cold perio	d)		=	4950	m³/hr	
	Oil mass flo	ow rate				າລາ	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	t of fluid	(hot period)		со	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity o	of gas ho	ot period, Eg			=	0.133		
	Absorptivity	/ of gas	hot period, Ag			=	0.1189		
	Emissivity o	of gas co	old period, Eg			=	0.034		
	Absorptivity	/ of gas	cold period, Ag			=	0.0299		

maconcriter outcoore

п 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1,020 1,050 1,080 1,140 1,170 1,200 0 1.4.3 975 976 976 976 977 977 978 978 979 979 920 920 921 921 922 922 922 923 923 924 924 925 925 925 926 926 927 927 927 922 922 929 929 929 929 990 990 991 991 992 п 959 960 961 961 961 962 962 963 963 963 964 964 965 965 966 966 966 967 967 968 969 969 969 970 970 971 971 971 972 972 973 973 973 974 974 975 975 975 976 976 1 1 943 944 945 945 946 946 946 947 947 947 948 949 949 949 950 950 950 951 951 957 953 953 953 954 954 955 955 955 955 955 957 957 957 952 958 959 959 959 950 960 960 960 927 928 928 929 929 929 930 930 931 931 931 932 932 933 933 933 934 934 935 935 936 936 936 937 937 938 938 939 939 939 940 940 941 941 941 942 942 943 943 944 944 944 1 911 912 913 913 913 913 914 914 915 915 916 916 917 917 917 918 918 919 919 920 920 921 921 922 922 923 923 923 924 924 925 925 926 926 926 926 927 927 928 928 1 z 294 295 295 295 296 296 297 297 292 292 299 299 299 299 900 900 901 901 902 902 903 903 903 904 904 905 905 906 907 907 907 907 902 902 909 909 910 910 910 911 911 912 877 878 878 879 879 880 880 881 881 882 883 883 883 883 884 884 885 885 886 887 887 888 888 888 889 889 890 891 891 892 892 893 893 894 894 895 895 z 860 861 861 861 862 863 863 864 864 865 865 866 866 866 867 867 867 868 869 869 869 870 870 870 871 871 872 873 873 874 874 875 875 875 876 876 877 877 877 878 878 z 843 844 844 844 845 845 846 846 847 847 848 848 849 849 850 850 850 851 851 852 853 853 854 854 855 855 856 856 856 857 857 858 858 859 859 860 860 861 861 z 825 825 826 826 827 827 828 828 829 829 829 830 831 831 832 832 832 833 834 834 835 835 836 836 837 837 838 839 839 839 839 840 840 841 842 842 843 843 844 3 807 808 809 809 809 809 810 811 811 812 812 813 814 814 815 815 816 817 817 818 818 818 819 819 820 821 821 821 822 823 823 824 824 824 825 825 825 7 3 729 729 729 720 791 791 792 792 793 793 794 794 795 795 796 796 797 797 798 798 799 200 201 201 201 201 201 202 203 203 204 204 205 206 206 207 207 202 202 3 4 752 752 753 754 754 755 755 756 756 757 757 758 758 759 759 769 760 760 761 761 762 762 763 764 764 765 765 765 766 767 767 768 768 769 769 770 771 771 772 733 734 734 735 735 736 737 737 738 738 739 739 740 740 741 741 742 742 743 743 744 744 745 745 746 746 746 747 747 748 748 749 749 750 750 751 751 752 752 753 753 4 714 714 715 715 716 717 718 718 718 719 719 720 720 721 721 722 722 723 723 724 724 725 725 726 726 727 727 727 728 728 729 730 730 731 731 732 732 733 733 734 734 4 4 695 695 696 697 697 698 699 699 700 701 701 702 702 703 703 704 704 705 705 706 706 707 703 703 709 710 711 711 712 713 713 714 714 715 715 675 675 676 676 677 673 673 679 679 680 681 681 682 682 683 683 684 684 685 685 686 686 687 683 688 689 689 690 691 691 692 693 693 694 694 695 695 696 5 655 656 657 657 652 652 659 659 660 661 661 662 662 663 663 664 665 666 666 667 667 668 668 669 670 670 671 671 672 673 673 673 674 674 675 675 676 5 625 625 626 626 627 627 628 629 629 640 640 641 641 642 642 643 643 644 644 645 645 646 647 647 648 648 649 649 650 650 651 651 652 652 653 653 654 655 655 655 656 5

resencestor exit

2,067,969

8.033.716

81 hr

л

time to cyclic equilibrium

Heat storage

Longth (m)

start of period

153

regenerator exit

	٥	30	60	90	120	150	120	210	Z40	270	300	330	360	390	420	450	480	510	540	570	600	630	660	690	720	750	780	810	840	870	900	930	960	990	1,020	1,050	1,020	1,110	1,140	1,170	1,200	time
٥	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	60
0	1,035	1,035	1,035	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,039	1,039	1,039	1,039	1,039	1,039	1,039	1,039	
1	1,019	1,019	1,019	1,019	1,019	1,020	1,020	1,020	1,020	1,020	1,021	1,021	1,021	1,021	1,021	1,021	1,0ZZ	1,022	1,0ZZ	1,022	1,0ZZ	1,023	1,023	1,023	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,024	1,024	1,025	1,025	1,025	1,025	1,025	1,025	1,026	1,026	
1	1,00Z	1,003	1,003	1,003	1,003	1,004	1,004	1,004	1,004	1,005	1,005	1,005	1,005	1,006	1,006	1,006	1,006	1,006	1,007	1,007	1,007	1,007	1,008	1,008	1,008	1,008	1,009	1,009	1,009	1,009	1,009	1,010	1,010	1,010	1,010	1,011	1,011	1,011	1,011	1,011	1,012	
1	986	926	987	987	987	987	922	988	922	929	929	929	990	990	990	990	991	991	991	99Z	99Z	99Z	992	993	993	993	993	994	994	994	995	995	995	995	996	996	996	996	997	997	997	
1	970	970	970	971	971	971	97Z	97Z	97Z	973	973	973	974	974	974	975	975	975	976	976	976	977	977	977	977	978	978	978	979	979	979	920	980	980	981	981	981	981	98Z	982	98Z	
z	953	954	954	954	955	955	955	956	956	957	957	957	958	958	952	959	959	959	960	960	960	961	961	961	96Z	962	962	963	963	964	964	964	965	965	965	966	966	966	966	967	967	
z	937	937	938	938	938	939	939	939	940	940	941	941	941	94Z	942	943	943	943	944	944	944	945	945	945	946	946	947	947	947	948	948	948	949	949	949	950	950	951	951	951	952	
z	920	921	921	921	922	922	923	923	923	924	9Z4	925	925	925	926	926	9Z7	927	927	928	928	929	929	929	930	930	930	931	931	93Z	93Z	93Z	933	933	934	934	934	935	935	935	936	
z	903	904	904	905	905	905	906	906	907	907	902	902	902	909	909	910	910	910	911	911	91Z	91Z	91Z	913	913	914	914	914	915	915	916	916	916	917	917	912	918	912	919	919	920	
3	886	887	887	888	888	889	889	889	890	890	891	891	89Z	892	892	893	893	894	894	895	895	895	896	896	897	897	897	898	898	899	899	900	900	900	901	901	90Z	902	902	903	903	
3	269	870	870	871	871	872	872	87Z	873	873	874	874	875	875	875	876	876	877	877	878	878	878	879	879	880	880	881	881	881	882	882	883	883	884	884	884	885	885	886	336	887	
3	852	852	853	853	854	854	855	855	856	856	856	857	857	858	858	859	859	260	260	860	861	861	862	862	863	863	864	864	864	865	865	266	866	867	867	267	868	262	269	269	870	
3	834	835	835	836	836	837	837	838	838	838	839	839	840	840	841	841	84Z	84Z	843	843	843	844	844	845	845	846	846	847	847	848	848	848	849	849	850	850	851	851	852	852	852	
4	817	817	818	818	818	819	819	820	820	821	821	822	822	823	823	824	824	824	825	825	826	826	827	827	828	828	829	829	830	830	830	831	831	83Z	83Z	833	833	834	834	835	835	
4	799	799	799	800	800	801	801	802	802	803	803	804	804	805	805	806	806	807	807	808	808	808	809	809	810	810	811	811	812	812	813	813	814	814	815	815	815	816	816	817	817	
4	780	781	781	782	782	783	783	784	784	785	785	786	726	787	787	787	788	788	789	789	790	790	791	791	792	792	793	793	794	794	795	795	796	796	797	797	797	798	798	799	799	
4	762	762	763	763	764	764	765	765	766	766	767	767	768	768	769	769	770	770	771	771	772	772	772	773	773	774	774	775	775	776	776	777	777	778	778	779	779	780	780	781	781	
5	743	744	744	745	745	745	746	746	747	747	748	748	749	749	750	750	751	751	752	752	753	753	754	754	755	755	756	756	757	757	758	758	759	759	760	760	761	761	762	762	763	
5	724	725	725	726	726	727	727	728	728	729	729	730	730	731	731	732	732	733	733	734	734	735	735	736	736	737	737	738	738	739	739	740	740	741	741	742	74Z	742	743	743	744	
5	705	705	706	706	707	707	708	708	709	709	710	710	711	711	712	712	713	713	714	714	715	715	716	716	717	717	718	718	719	719	720	720	721	721	722	722	723	723	724	724	725	

Longth (m)

start of period

Longth	(m)																			re ge	nerator	exit.																				
4																																										
5	698	697	697	697	696	696	696	695	695	695	694	694	694	693	693	693	69Z	692	69Z	691	691	691	690	690	690	629	629	629	622	688	622	627	627	687	626	626	626	685	685	685	685	
5	678	677	677	677	676	676	676	676	675	675	675	674	674	674	673	673	673	672	672	672	671	671	671	670	670	670	669	669	669	662	663	668	667	667	667	667	666	666	666	665	665	
5	658	657	657	657	656	656	656	655	655	655	655	654	654	654	653	653	653	652	652	652	651	651	651	650	650	650	649	649	649	649	648	648	643	647	647	647	646	646	646	645	645	
4	637	637	637	636	636	636	635	635	635	634	634	634	634	633	633	633	632	632	632	631	631	631	630	630	630	630	629	629	629	628	628	628	627	627	627	626	626	626	626	625	625	
4	617	616	616	616	615	615	615	614	614	614	614	613	613	613	61Z	61Z	612	611	611	611	611	610	610	610	609	609	609	602	602	602	608	607	607	607	606	606	606	605	605	605	605	
4	596	595	595	595	594	594	594	594	593	593	593	59Z	59Z	592	59Z	591	591	591	590	590	590	589	589	589	589	588	588	588	587	587	587	587	526	586	586	585	585	585	585	584	584	
4	574	574	574	573	573	573	573	572	572	572	571	571	571	571	570	570	570	569	569	569	569	568	568	568	568	567	567	567	566	566	566	566	565	565	565	564	564	564	564	563	563	
3	553	552	552	552	552	551	551	551	551	550	550	550	549	549	549	549	548	548	548	548	547	547	547	546	546	546	546	545	545	545	545	544	544	544	543	543	543	543	54Z	54Z	542	
3	531	531	530	530	530	529	529	529	529	528	528	528	528	527	527	527	527	526	526	526	526	525	525	525	525	524	524	524	524	523	523	523	522	522	522	522	521	521	521	521	520	
3	509	508	508	502	502	507	507	507	507	506	506	506	506	505	505	505	505	504	504	504	504	503	503	503	503	502	502	502	502	501	501	501	501	500	500	500	500	499	499	499	499	
3	486	486	486	485	485	485	485	484	484	484	484	483	483	483	483	482	482	482	482	482	481	481	481	481	480	480	480	480	479	479	479	479	479	478	478	478	478	477	477	477	477	
-	463	465	463	462	462	462	462	462	461	461	461	461	460	460	460	460	460	459	459	459	459	459	458	458	458	458	457	457	457	457	457	456	456	456	456	455	455	455	455	455	454	
2	440	440	439	459	439	435	439	430	430	436	430	436	457	457	457	457	437	430	430	438	430	438	433	433	433	433	455	434	454	454	454	454	455	455	455	433	455	452	452	432	452	
,	392	392	392	392	392	392	391	391	391	391	391	291	390	390	390	390	390	390	329	729	329	329	329	329	322	722	322	322	722	322	727	387	327	387	727	387	327	326	726	386	726	
1	368	368	368	368	368	367	367	367	367	367	367	367	366	366	366	366	366	366	366	365	365	365	365	365	365	365	364	364	364	364	364	364	364	363	363	363	363	363	363	363	362	
1	343	343	343	343	343	343	343	343	342	342	342	342	342	342	342	342	342	341	341	341	341	341	341	341	341	340	340	340	340	340	340	340	340	340	339	339	339	339	339	339	339	
1	318	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	317	317	317	316	316	316	316	316	316	316	316	316	316	316	315	315	315	315	315	315	315	315	315	
1	293	Z93	293	293	293	293	293	293	29 2	29Z	29Z	29Z	29Z	29Z	29Z	292	29 2	29 2	29 2	292	29 2	29 2	29 2	292	291	Z91	Z91	Z91	Z91	291	Z91	291	Z91	Z91	Z91	Z91	Z91	291	291	Z91	290	
٥	267	267	267	267	267	267	267	267	267	267	267	267	267	267	Z67	267	267	267	267	267	Z67	266	Z66	266	Z66	266	Z66	Z66	Z66	266	266	266	266	266	266	266	266	266	266	266	266	
٥	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	time
	٥	30	60	90	120	150	120	210	240	270	300	330	360	390	420	450	480	510	540	570	600	630	660	690	720	750	780	810	840	870	900	930	960	990	1,020	1,050	1,020	1,110	1,140	1,170	1,200	• (7)
њ	t of pc	riad																		regene	anater en	monce																		Ent	d of period	

5	1,007	1,006	1,006	1,006	1,005	1,005	1,004	1,004	1,004	1,003	1,003	1,00Z	1,00Z	1,00Z	1,001	1,001	1,000	1,000	1,000	999	999	992	992	998	997	997	996	996	995	995	995	994	994	993	993	993	99Z	99Z	991	991	991	
5	99Z	991	991	990	990	990	989	989	988	988	987	987	987	986	926	985	985	985	984	984	983	983	983	98Z	982	981	981	980	980	920	979	979	978	978	978	977	977	976	976	976	975	
5	976	976	975	975	974	974	974	973	973	97Z	972	971	971	971	970	970	969	969	969	968	962	967	967	966	966	966	965	965	964	964	964	963	963	962	96Z	961	961	961	960	960	959	
4	960	960	959	959	959	952	952	957	957	956	956	956	955	955	954	954	954	953	953	952	952	951	951	951	950	950	949	949	948	948	948	947	947	946	946	945	945	945	944	944	943	
4	944	944	943	943	943	94Z	94Z	941	941	940	940	940	939	939	938	938	937	937	937	936	936	935	935	934	934	934	933	933	93Z	93Z	931	931	931	930	930	929	929	928	928	928	927	
4	928	928	927	927	926	926	925	925	925	924	924	923	923	922	92Z	922	921	921	920	920	919	919	919	918	918	917	917	916	916	915	915	915	914	914	913	913	91Z	912	91Z	911	911	
4	91Z	911	911	910	910	909	909	909	908	908	907	907	906	906	905	905	905	904	904	903	903	902	902	90Z	901	901	900	900	899	899	898	898	898	897	897	896	896	895	895	894	894	
3	895	895	894	894	893	893	892	89Z	891	891	891	890	890	889	889	888	888	887	887	886	336	886	885	885	884	884	883	883	88Z	88Z	882	881	881	880	880	879	879	878	878	878	877	
3	878	878	877	877	876	876	875	875	874	874	874	873	873	872	87Z	871	871	870	870	869	269	869	868	868	867	867	866	866	865	865	864	864	864	863	863	862	862	861	861	260	860	
3	861	860	260	260	859	859	858	858	857	857	856	856	855	855	854	854	854	853	853	85Z	852	851	851	850	850	849	849	849	848	848	847	847	846	846	845	845	844	844	844	843	843	
3	844	843	843	84Z	84Z	841	841	840	840	839	839	838	838	837	837	837	836	836	835	835	834	834	833	833	832	83Z	831	831	831	830	830	829	829	828	828	8Z7	8Z7	826	826	825	825	
z	826	825	825	825	824	8Z4	823	823	822	822	8Z1	8Z1	820	820	819	819	818	818	817	817	816	816	816	815	815	814	814	813	813	81Z	81Z	811	811	810	810	809	809	202	202	202	807	
z	808	808	807	807	806	806	805	805	804	804	803	803	80Z	80Z	801	801	800	200	799	799	792	792	798	797	797	796	796	795	795	794	794	793	793	79Z	79Z	791	791	790	790	789	789	
z	790	790	729	789	788	788	787	787	786	726	785	785	784	784	783	783	78Z	782	781	721	780	780	779	779	772	778	777	777	776	776	775	775	774	774	773	773	773	772	772	771	771	
z	772	771	771	770	770	769	769	768	768	767	767	766	766	765	765	764	764	763	763	76Z	762	761	761	760	760	759	759	758	758	757	757	756	756	755	755	754	754	753	753	75Z	752	
1	753	753	752	752	751	751	750	749	749	748	748	747	747	746	746	745	745	744	744	743	743	742	74Z	741	741	740	740	740	739	739	738	738	737	737	736	736	735	735	734	734	733	
1	734	734	733	733	732	732	731	731	730	730	729	729	728	728	727	726	726	725	725	724	724	723	723	722	722	721	721	720	720	719	719	718	718	717	717	716	716	715	715	714	714	
1	715	715	714	713	713	71Z	712	711	711	710	710	709	709	708	708	707	707	706	706	705	705	704	704	703	703	70Z	70Z	701	701	700	700	699	699	698	698	697	697	696	696	695	695	
1	696	695	695	694	694	693	692	69Z	691	691	690	690	689	689	622	623	687	687	636	626	685	685	684	624	683	683	682	68Z	681	681	680	679	679	672	678	677	677	676	676	675	675	
0	676	675	675	674	674	673	673	672	672	671	671	670	670	669	669	663	667	667	666	666	665	665	664	664	663	663	66Z	66Z	661	661	660	660	659	659	658	658	657	657	656	655	655	
0	656	656	655	654	654	653	653	652	652	651	651	650	650	649	649	643	647	647	646	646	645	645	644	644	643	643	64Z	64Z	641	641	640	639	639	638	638	637	637	636	636	635	635	time
	0	30	60	90	120	150	120	Z10	Z40	270	300	330	360	390	420	450	420	510	540	570	600	630	660	690	720	750	780	810	840	870	900	930	960	990	1,020	1,050	1,020	1,110	1,140	1,170	1,200	Γ(r)
њ	rt of pc	riad																		regene	rater cr	trance																		CRE	l of period	

Longth (m) ▲

rolid temperature distribution cold period (degree C)

regenerator exit

(r)

thermal ratio distribution hat period ((tfih-tfah)' (tfih-tfie) or NH1)

0.428 0.428 0.427 0.426 0.426 0.425 0.424 0.424 0.423 0.423 0.422 0.421 0.421 0.421 0.420 0.419 0.419 0.418 0.413 0.416 0.416 0.416 0.414 0.413 0.413 0.413 0.411 0.411 0.410 0.409 0.409 0.408 0.408 0.408 0.406 0.406 0.405 0.404 0.404 0.403

0 30 eп 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 670 660 690 720 750 720 810 840 870 900 930 960 990 1,020 1,050 1,020 1,110 1,140 1,170 1,200 (x)end of period start of period thermal ratio distribution cold period ((ther the)' (this the) or NC1) 0.563 0.563 0.562 0.561 0.561 0.561 0.561 0.560 0.559 0.559 0.559 0.552 0.552 0.552 0.557 0.556 0.555 0.555 0.555 0.554 0.554 0.553 0.553 0.552 0.552 0.551 0.551 0.551 0.550 0.550 0.549 0.549 0.548 0.548 0.548 0.548 0.547 0.547 time 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1,020 1,050 1,080 1,110 1,140 1,170 1,200 (r)start of period end of period

time

1.) Input	size of square Top view	e check	er in regener	ator			3D vi	ew	
	c d		nternal brick su ymmetry line	rface		Air flow		7	L L
						time Batcl	=	12	Hr
	с	=	0. <mark>18</mark>	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input	heat transfer	data							
	time mean a	mbient	temperature ,	ta		=	38	°c	
	time mean re	elative ł	numidity			=	80	%	
	deviding Ler	ngth	=	20 d	eviding	Time	=	40)
	time mean fl	uid tem	perature (in)	, tfih		=	1052	°၀)	
	time mean fl	uid tem	perature (out	:),tfoh		=	434	°c (hot period
	time mean s	olid ter	nperature (in) , tmih		=	907	°c (norpenou
	time mean s	olid ter	nperature (ou	ut), tmol	h	=	420	°c j	
	time mean fl	uid tem	perature (in)	, tfic		=	241	°င)	
	time mean fl	uid tem	perature (out	:),tfoc		=	751	°c (cold period
	time mean s	olid ter	nperature (in), tmic		-	402	°c (
	time mean s	olid ter	nperature (ou	ut), tmo	с	=	890	°c∫	
	Time cycle ,	PE				=	1800 :	S	
	Dry weight o	re =	23000 kg	%	H ₂ O	=	7.52	% by We	t weight
	Accuracy, A	ACC				ปรก	0.001		
	Fluid volume	e flow ra	te (cold perio	od)		-	4950	m ³ /hr	
	Oil mass flow	w rate				าวา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	of fluid i	(hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity of	gas ho	t period, Eg			=	0.133		
	Absorptivity	of gas ł	not period, Ag			=	0.1189		
	Emissivity of	gas co	ld period, Eg			=	0.034		
	Absorptivity	of gas o	old period, A	g		=	0.0299		

regenerator entrance

		45	90	135	180	ZZ5	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990	1,035	1,080	1,125	1,170	1,215	1,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800	time
٥	984	985	986	987	987	988	929	929	990	991	991	99Z	993	993	994	995	995	996	997	997	998	998	999	1,000	1,000	1,001	1,001	1,002	1,002	1,003	1,003	1,004	1,005	1,005	1,006	1,006	1,007	1,007	1,008	1,008	1,009	(e) (
٥	969	970	970	971	97Z	97Z	973	974	975	975	976	977	977	978	972	979	920	920	921	982	982	983	983	924	985	985	986	926	987	922	988	929	929	990	990	991	991	99Z	99Z	993	993	
1	953	954	955	955	956	957	957	958	959	959	960	961	961	96Z	963	963	964	965	965	966	966	967	968	968	969	970	970	971	971	97Z	973	973	974	974	975	975	976	976	977	972	978	
1	937	938	939	939	940	941	941	94Z	943	943	944	945	945	946	947	947	948	949	949	950	951	951	95Z	95Z	953	954	954	955	956	956	957	957	958	959	959	960	960	961	961	96Z	963	
1	9Z1	922	922	923	924	925	925	926	927	927	928	929	929	930	931	931	93Z	932	933	934	934	935	936	936	937	938	938	939	939	940	941	941	94Z	943	943	944	944	945	946	946	947	
1	905	905	906	907	907	908	909	909	910	911	911	91Z	913	913	914	915	915	916	917	917	918	919	919	9Z0	9Z1	921	922	923	923	924	924	925	926	926	927	928	928	929	929	930	931	
z	888	889	229	890	891	891	89Z	893	894	894	895	896	896	897	292	898	299	900	900	901	90Z	90Z	903	904	904	905	905	906	907	907	902	909	909	910	911	911	91Z	91Z	913	914	914	
z	871	872	873	873	874	875	875	876	877	877	878	879	879	880	881	881	88Z	883	883	884	885	885	886	887	887	888	889	889	890	891	891	89Z	893	893	894	895	895	896	897	897	898	
z	854	855	855	856	857	858	858	859	860	860	861	86Z	86Z	863	864	864	865	866	366	867	363	262	869	870	870	871	872	87Z	873	874	874	875	876	876	877	878	878	879	880	880	881	
z	837	837	838	839	839	840	841	84Z	84Z	843	844	844	845	846	846	847	848	848	849	850	851	851	852	853	853	854	855	855	856	857	857	858	859	859	860	261	861	862	863	863	264	
3	819	820	820	821	822	823	823	824	825	825	826	827	828	828	829	830	830	831	83Z	832	833	834	835	835	836	837	837	838	839	839	840	841	841	84Z	843	843	844	845	845	846	847	
3	801	80Z	803	803	804	805	206	206	807	808	808	209	810	810	811	81Z	813	813	814	815	815	816	817	818	818	819	820	820	821	822	822	823	824	825	825	826	827	827	828	829	829	
3	783	784	785	785	786	787	787	788	789	790	790	791	79Z	793	793	794	795	795	796	797	792	798	799	200	800	801	802	803	803	804	805	805	806	807	807	202	809	810	810	811	81Z	
3	765	766	766	767	768	768	769	770	771	771	772	773	774	774	775	776	776	777	778	779	779	780	781	782	782	783	784	784	785	786	787	787	788	789	789	790	791	792	79Z	793	794	
4	746	747	748	748	749	750	751	751	752	753	754	754	755	756	757	757	758	759	759	760	761	762	76Z	763	764	765	765	766	767	762	768	769	770	770	771	77Z	773	773	774	775	776	
4	727	728	729	730	730	731	73Z	733	733	734	735	736	736	737	738	739	739	740	741	742	742	743	744	745	745	746	747	748	748	749	750	750	751	752	753	753	754	755	756	756	757	
4	708	709	710	711	711	71Z	713	714	714	715	716	717	717	718	719	720	720	721	722	723	723	724	725	726	726	727	728	729	729	730	731	73Z	73Z	733	734	735	735	736	737	738	738	
4	629	690	690	691	69Z	693	694	694	695	696	697	697	692	699	700	700	701	702	703	703	704	705	706	707	707	708	709	710	710	711	71Z	713	713	714	715	716	716	717	718	719	719	
5	669	670	671	672	67Z	673	674	675	676	676	677	678	679	679	620	681	682	683	683	684	685	686	636	687	688	689	689	690	691	692	693	693	694	695	696	696	697	698	699	699	700	
5	649	650	651	652	653	653	654	655	656	657	657	658	659	660	660	661	66Z	663	664	664	665	666	667	662	662	669	670	671	671	67Z	673	674	675	675	676	677	678	678	679	620	681	
5	629	630	631	632	63Z	633	634	635	636	636	637	638	639	640	640	641	64Z	643	644	644	645	646	647	648	648	649	650	651	652	652	653	654	655	656	656	657	658	659	659	660	661	
٦																																										
.cn gth	(m)																				nerster	e xit																				
																ti	vic to c	yelie eq	uilibriu	m	57	hr																				
ж	rt of per	iod															н	at stora		12	2,037,6	49	J																	EN	d of period	
																	He	at recov	ery .	11	,994,4	64	J																			

Longth (m)

159

regenerator exit

	0	45	90	135	180	225	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990	1,035	1,020	1,125	1,170	1,215	1,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800	time
٥	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,05Z	1,052	1,05Z	1,052	ω
٥	1,034	1,034	1,035	1,035	1,035	1,035	1,035	1,035	1,036	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,038	1,039	1,039	1,039	1,039	1,039	1,039	1,039	1,039	1,040	1,040	1,040	1,040	1,040	
1	1,017	1,017	1,018	1,018	1,018	1,019	1,019	1,019	1,019	1,020	1,020	1,020	1,020	1,021	1,021	1,021	1,0ZZ	1,022	1,0ZZ	1,022	1,023	1,023	1,023	1,023	1,024	1,024	1,024	1,024	1,025	1,025	1,025	1,025	1,025	1,026	1,026	1,026	1,026	1,027	1,027	1,027	1,027	
1	1,000	1,001	1,001	1,001	1,00Z	1,00Z	1,00Z	1,003	1,003	1,004	1,004	1,004	1,005	1,005	1,005	1,006	1,006	1,006	1,007	1,007	1,007	1,008	1,008	1,009	1,009	1,009	1,010	1,010	1,010	1,010	1,011	1,011	1,011	1,01Z	1,01Z	1,01Z	1,013	1,013	1,013	1,014	1,014	
1	983	984	984	985	985	986	986	987	987	988	988	988	929	989	990	990	991	991	991	99Z	992	993	993	993	994	994	995	995	995	996	996	997	997	997	992	998	998	999	999	1,000	1,000	
1	967	967	968	968	969	969	970	970	971	971	97Z	97Z	973	973	974	974	975	975	976	976	977	977	978	978	979	979	979	980	980	981	981	982	982	983	983	983	984	984	985	985	986	
z	950	951	951	952	952	953	954	954	955	955	956	956	957	957	958	958	959	959	960	960	961	961	96Z	962	963	963	964	964	965	965	966	966	967	967	962	962	969	969	970	970	971	
z	934	934	935	935	936	937	937	938	938	939	939	940	941	941	94Z	94Z	943	943	944	944	945	946	946	947	947	948	948	949	949	950	950	951	951	952	952	953	953	954	954	955	955	
z	917	918	918	919	919	920	921	921	922	922	923	924	924	925	925	9Z6	926	9Z7	928	928	929	929	930	931	931	93Z	932	933	933	934	934	935	936	936	937	937	938	938	939	939	940	
z	900	901	901	902	903	903	904	904	905	906	906	907	902	908	909	909	910	911	911	91Z	91Z	913	914	914	915	915	916	917	917	912	912	919	920	920	921	921	922	922	923	924	924	
3	883	884	884	885	886	886	887	888	888	889	890	890	891	891	892	893	893	894	895	895	896	896	897	898	898	899	900	900	901	901	902	903	903	904	904	905	906	906	907	907	902	
3	866	867	867	868	869	269	870	871	871	87Z	873	873	874	874	875	876	876	877	878	878	879	880	880	881	882	882	883	883	884	885	885	886	887	887	888	888	889	890	890	891	89Z	
3	849	849	850	851	851	852	853	853	854	855	855	856	857	857	858	859	859	260	861	261	862	863	863	864	865	865	266	866	867	868	868	869	870	870	871	872	872	873	874	874	875	
3	831	83Z	832	833	834	834	835	836	836	837	838	839	839	840	841	841	84Z	843	843	844	845	845	846	847	847	848	849	849	850	851	851	852	853	853	854	855	855	856	857	857	858	
4	813	814	815	815	816	817	817	818	819	820	820	821	822	822	823	824	824	825	826	826	827	828	828	829	830	831	831	832	833	833	834	835	835	836	837	837	838	839	839	840	841	
4	795	796	797	797	798	799	799	800	801	802	802	803	804	804	805	206	807	807	808	809	809	810	811	811	812	813	814	814	815	816	816	817	818	818	819	820	820	821	822	822	823	
4	777	778	778	779	780	781	781	782	783	783	784	785	786	786	787	788	788	789	790	791	791	792	793	793	794	795	796	796	797	798	798	799	800	200	801	802	803	803	804	805	805	
4	759	759	760	761	761	762	763	764	764	765	766	767	767	768	769	769	770	771	772	772	773	774	775	775	776	777	777	778	779	780	720	781	782	782	783	784	785	785	786	787	787	
5	740	741	741	742	743	744	744	745	746	747	747	748	749	749	750	751	752	752	753	754	755	755	756	757	758	758	759	760	760	761	762	763	763	764	765	766	766	767	768	768	769	
5	721	722	722	723	724	725	725	726	727	728	728	729	730	731	731	73Z	733	734	734	735	736	737	737	738	739	740	740	741	742	743	743	744	745	745	746	747	748	748	749	750	751	
5	702	70Z	703	704	705	706	706	707	702	709	709	710	711	71Z	712	713	714	715	715	716	717	718	718	719	720	721	721	722	723	724	724	725	726	727	727	728	729	730	730	731	73Z	
٦	7																																									

Longth (m)

start of period

Length	(m)																			re 54	:ncrate:	exit																				
	Ê.																																									
5	698	698	697	697	696	696	695	695	694	694	693	693	69Z	692	691	691	690	690	689	689	688	688	687	687	626	626	685	685	684	684	683	683	682	682	681	681	680	620	680	679	679	
5	678	678	677	677	676	676	675	675	674	674	673	673	67Z	672	671	671	671	670	670	669	669	662	662	667	667	666	666	665	665	664	664	663	663	66Z	66Z	661	661	661	660	660	659	
5	658	658	657	657	656	656	655	655	654	654	653	653	653	652	652	651	651	650	650	649	649	648	642	647	647	646	646	645	645	645	644	644	643	643	64Z	64Z	641	641	640	640	639	
4	638	637	637	636	636	636	635	635	634	634	633	633	63Z	632	631	631	630	630	630	629	629	628	628	627	627	626	626	625	625	624	624	624	623	623	622	622	621	621	620	620	620	
4	617	617	616	616	615	615	614	614	614	613	613	61Z	61Z	611	611	610	610	610	609	609	602	602	607	607	606	606	605	605	605	604	604	603	603	602	602	602	601	601	600	600	599	
4	596	596	595	595	594	594	594	593	593	59Z	59Z	591	591	591	590	590	589	529	588	588	587	587	587	586	586	585	585	584	584	584	583	583	582	582	581	581	581	580	580	579	579	
4	575	575	574	574	573	573	57Z	57Z	57Z	571	571	570	570	569	569	569	568	568	567	567	566	566	566	565	565	564	564	564	563	563	562	562	561	561	561	560	560	559	559	559	558	
3	553	553	553	552	55Z	551	551	550	550	550	549	549	548	548	548	547	547	546	546	546	545	545	544	544	544	543	543	54Z	54Z	54Z	541	541	540	540	540	539	539	538	538	538	537	
3	531	531	531	530	530	529	529	529	528	528	528	527	527	526	526	526	525	525	524	524	524	523	523	522	522	522	521	521	521	520	520	519	519	519	518	512	518	517	517	516	516	
3	509	509	508	508	508	507	507	507	506	506	505	505	505	504	504	504	503	503	503	50Z	50Z	501	501	501	500	500	500	499	499	499	498	492	497	497	497	496	496	496	495	495	495	
3	487	486	486	426	485	485	485	484	484	483	483	483	48Z	482	48Z	481	481	481	480	480	480	479	479	479	478	478	478	477	477	477	476	476	476	475	475	475	474	474	473	473	473	
z	464	463	463	463	462	46Z	462	461	461	461	460	460	460	459	459	459	458	458	458	458	457	457	457	456	456	456	455	455	455	454	454	454	453	453	453	452	452	452	451	451	451	
z	440	440	440	440	439	439	439	438	438	438	437	437	437	437	436	436	436	435	435	435	434	434	434	434	433	433	433	43Z	432	432	431	431	431	431	430	430	430	429	429	429	429	
z	417	417	416	416	416	415	415	415	415	414	414	414	414	413	413	413	41Z	412	41Z	412	411	411	411	411	410	410	410	409	409	409	409	402	408	408	408	407	407	407	407	406	406	
z	393	393	392	392	392	392	391	391	391	391	390	390	390	390	389	389	389	389	388	388	388	388	388	387	387	387	387	386	386	386	386	385	385	385	385	384	384	384	384	384	383	
1	369	368	368	368	368	367	367	367	367	367	366	366	366	366	366	365	365	365	365	365	364	364	364	364	363	363	363	363	363	362	362	362	362	362	361	361	361	361	361	360	360	
1	344	344	343	343	343	343	343	343	342	342	342	342	342	342	341	341	341	341	341	340	340	340	340	340	340	339	339	339	339	339	339	338	338	338	338	338	338	337	337	337	337	
1	319	319	318	318	318	318	318	318	318	317	317	317	317	317	317	317	317	316	316	316	316	316	316	316	315	315	315	315	315	315	315	315	314	314	314	314	314	314	314	313	313	
1	293	293	293	293	293	293	293	293	292	292	292	292	292	292	292	292	292	29Z	29Z	291	291	291	291	291	291	291	291	291	291	290	290	290	290	290	290	290	290	290	290	290	289	
0	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267	266	266	266	266	266	266	266	Z66	266	266	266	266	266	266	266	266	266	266	266	266	266	265	265	265	
0	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	Z41	► ^{time}																			
	0	45	90	135	120	225	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990	1,035	1,080	1,125	1,170	1,215	1,260	1,305	1,350	1,395	1,440	1,485	1,530	1,575	1,620	1,665	1,710	1,755	1,800	(*)

start of period

end of period

۸ 1,009 1,002 1,007 1,007 1,006 1,006 1,006 1,006 1,004 1,003 1,002 1,002 1,001 1,001 1,000 999 993 993 997 996 996 995 995 994 993 993 992 992 991 990 929 929 929 928 927 926 926 925 924 5 5 993 993 992 991 990 989 989 988 987 987 986 985 985 985 984 983 982 982 981 981 980 979 978 977 976 976 976 976 974 974 973 973 977 971 971 971 970 969 972 972 977 976 976 976 975 974 974 973 972 972 971 971 970 969 969 968 967 967 966 966 965 964 964 963 963 962 961 961 960 959 959 952 952 957 956 956 955 954 954 953 5 963 962 961 961 960 959 959 958 957 957 956 956 955 954 954 953 952 957 951 950 950 949 948 947 947 946 945 945 944 944 943 942 942 941 940 940 939 939 938 937 4 947 946 945 945 944 943 943 942 942 941 940 940 939 932 932 937 936 936 935 934 934 933 933 932 931 931 930 929 929 928 927 927 926 926 924 924 924 923 922 921 4 931 930 929 929 928 927 927 926 925 925 924 923 923 922 922 921 920 929 919 918 918 917 916 916 915 914 914 913 912 912 911 910 919 909 909 908 907 907 906 905 905 4 4 914 914 913 912 912 911 910 909 902 902 907 906 906 905 904 904 903 902 901 900 900 299 292 292 297 297 296 295 295 294 293 293 293 291 291 291 290 229 229 228 292 297 296 296 295 294 294 297 297 297 291 290 290 292 282 282 287 286 286 285 284 284 284 287 287 281 280 287 278 278 278 277 276 276 276 276 274 273 277 277 277 277 3 3 221 220 220 279 272 277 276 276 275 274 274 273 272 271 270 269 269 269 269 267 267 266 265 264 263 263 262 261 261 260 259 259 252 257 256 255 254 3 864 863 863 862 861 861 860 859 859 858 857 856 856 855 854 854 853 852 857 850 850 850 849 848 847 846 845 845 844 843 843 842 841 841 840 839 839 838 837 837 3 847 846 845 845 844 843 843 842 841 841 840 839 838 837 836 836 835 834 834 833 832 831 831 830 829 829 828 827 827 826 825 825 824 823 822 822 821 820 829 819 829 828 827 827 827 826 825 824 824 823 822 827 821 820 819 818 817 817 816 815 814 814 813 812 812 811 810 810 809 808 807 807 806 805 805 804 803 803 802 801 2 812 811 810 809 808 807 807 806 805 804 804 803 802 802 801 800 799 798 797 797 796 795 794 794 793 792 792 791 790 789 788 787 787 786 785 785 784 783 z z z 757 756 756 755 754 753 752 751 750 749 749 748 747 746 746 745 744 743 743 742 741 741 740 739 738 738 737 736 735 734 733 732 732 731 730 730 729 728 727 1 738 738 737 736 735 735 734 733 732 731 731 730 729 728 727 726 725 725 724 723 722 722 721 720 719 719 718 717 716 716 715 714 713 713 712 711 710 710 710 709 708 1 1 719 718 717 716 716 715 714 713 712 712 711 710 709 708 707 706 705 705 704 703 702 702 701 700 699 699 699 697 696 695 694 693 693 692 691 690 689 689 700 699 699 692 697 696 695 695 694 693 692 691 691 690 629 622 623 625 624 624 623 622 621 621 620 679 672 677 676 675 675 674 673 672 677 676 675 1 621 620 679 672 672 673 675 674 673 673 673 673 673 670 670 669 662 665 666 665 664 663 662 661 660 659 659 652 657 656 655 655 654 653 652 651 650 649 п П 661 660 659 659 658 657 656 655 654 653 652 651 650 650 649 648 647 646 645 644 643 642 641 640 639 639 638 637 636 635 635 634 633 632 632 631 630 629 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 945 990 1,035 1,080 1,125 1,170 1,215 1,260 1,305 1,350 1,395 1,440 1,485 1,530 1,575 1,620 1,665 1,710 1,755 1,800 0

reserver and ance

solid temperature distribution cold period (degree C) regenerator exit

Longth (m)

thermal ratio distribution hat period ((tfih-tfah)' (tfih-tfie) or NH1)

0.432 0.431 0.430 0.428 0.422 0.425 0.425 0.425 0.422 0.423 0.422 0.422 0.421 0.420 0.418 0.418 0.418 0.416 0.416 0.415 0.411 0.410 0.409 0.409 0.409 0.408 0.406 0.406 0.405 0.404 0.402 0.401 0.400 0.399 0.398 0.398 0.397 0.396 0.395

start of period

0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 945 990 1,035 1,080 1,125 1,170 1,215 1,260 1,305 1,350 1,359 1,440 1,425 1,530 1,575 1,620 1,665 1,710 1,755 1,800 (r)

and of pariod

time

thermal ratio distribution cold period ((thee the)'(thin the) or NC1)

0.564 0.563 0.562 0.561 0.560 0.560 0.559 0.559 0.559 0.557 0.557 0.556 0.556 0.555 0.554 0.553 0.553 0.552 0.551 0.551 0.550 0.548 0.548 0.548 0.548 0.547 0.546 0.545 0.545 0.544 0.544 0.544 0.542 0.542 0.541 0.541 0.540 0.540

u
45
90
125
120
225
270
315
360
405
540
525
630
675
720
765
810
855
900
1,035
1,080
1,125
1,170
1,215
1,260
1,305
1,350
1,355
1,620
1,665
1,710
1,755
1,800
1,755
1,800
1,755
1,800
1,715
1,800
1,125
1,170
1,215
1,260
1,305
1,350
1,355
1,620
1,665
1,710
1,755
1,800
1,755
1,800
1,755
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,715
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
1,800
<td

1.) Input	size of square Top view	e check	er in regener	ator			3D vi	ew	
	c d		nternal brick su ymmetry line	rface		Air flow		7	L
						time Batcl	=	12	Hr
	с	=	0.18	m		L	=	5.04	m
	d	=	0.26	m		channel	=	120.0	channel
2.) Input	heat transfer	data							
	time mean a	mbient	temperature ,	ta		=	38	°c	
	time mean re	elative ł	numidity			=	80 '	%	
	deviding Ler	ngth	=	20 d	eviding	Time	=	40)
	time mean fl	uid tem	perature (in)	, tfih		=	1052	°၀)	
	time mean fl	uid tem	perature (out	:),tfoh		=	434	°c (hot neriod
	time mean s	olid ten	nperature (in) , tmih		=	907	°c (norponoa
	time mean s	olid ten	nperature (ol	ut), tmol	h	=	420	°c j	
	time mean fl	uid tem	perature (in)	, tfic		=	241	°ေ)	
	time mean fl	uid tem	perature (out	:),tfoc		=	751	°c (cold period
	time mean s	olid ten	nperature (in), tmic		=	402	°c (
	time mean s	olid ten	nperature (ol	ut), tmo	с	=	890 '	°c j	
	Time cycle ,	PE				=	2400 :	S	
	Dry weight o	ire =	23000 kg	~ %	H ₂ O	=	7.52	% by We	t weight
	Accuracy, A	ACC				เรก	0.001		
	Fluid volume	e flow ra	te (cold perio) (bc		-	4950	m³/hr	
	Oil mass flow	w rate				าวา	270	kg/hr	
					CO2	=	12.33	(% vol.))
	component	of fluid ((hot period)		СО	=	377	(ppm)	
					02	=	4.61	(% vol.))
	Emissivity of	gas ho	t period, Eg			=	0.133		
	Absorptivity	of gas ł	not period, Ag			=	0.1189		
	Emissivity of	gas co	ld period, Eg			=	0.034		
	Absorptivity	of gas o	old period, A	g		=	0.0299		

regenerator entrance

	٥	60	120	180	Z40	300	360	420	480	540	600	660	720	780	840	900	960	1,020	1,080	1,140	1,200	1,260	1,320	1,380	1,440	1,500	1,560	1,620	1,680	1,740	1,800	1,860	1,920	1,980	2,040	2,100	2,160	2,220	2,280	2,340	2,400	time
0	979	980	981	982	983	984	985	986	987	988	989	990	990	991	99Z	993	994	995	996	996	997	992	999	999	1,000	1,001	1,002	1,00Z	1,003	1,004	1,005	1,005	1,006	1,007	1,007	1,008	1,002	1,009	1,010	1,010	1,011	6
0	963	964	965	966	967	968	969	970	971	97Z	973	974	975	976	977	977	978	979	920	981	98Z	98Z	983	924	985	985	986	987	988	988	929	990	991	991	99Z	993	993	994	995	995	996	
1	948	949	950	951	95Z	953	954	954	955	956	957	958	959	960	961	96Z	96Z	963	964	965	966	967	967	968	969	970	971	971	97Z	973	974	974	975	976	977	977	978	979	980	920	981	
1	93Z	933	934	935	936	937	938	938	939	940	941	94Z	943	944	945	946	946	947	948	949	950	951	95Z	95Z	953	954	955	956	956	957	958	959	960	960	961	962	963	963	964	965	966	
1	916	917	912	919	919	920	921	922	923	924	925	926	927	928	929	929	930	931	93Z	933	934	935	935	936	937	938	939	940	940	941	94Z	943	944	944	945	946	947	942	948	949	950	
1	899	900	901	90Z	903	904	905	906	907	902	909	909	910	911	91Z	913	914	915	916	917	917	918	919	920	9Z1	92Z	922	923	924	925	926	927	927	928	929	930	931	93Z	93Z	933	934	
z	883	884	885	226	886	887	888	889	890	891	89Z	893	894	895	896	896	297	898	899	900	901	90Z	903	903	904	905	906	907	902	909	909	910	911	91Z	913	914	914	915	916	917	912	
z	866	867	868	869	870	870	871	872	873	874	875	876	877	878	879	880	881	881	88Z	883	884	885	886	887	888	888	889	890	891	89Z	893	894	895	895	896	897	898	899	900	901	901	
z	849	850	851	852	852	853	854	855	856	857	858	859	860	861	86Z	863	863	864	865	366	867	868	269	870	871	872	872	873	874	875	876	877	878	879	880	880	881	88Z	883	884	885	
z	831	832	833	834	835	836	837	838	839	840	841	84Z	843	844	844	845	846	847	848	849	850	851	85Z	853	854	854	855	856	857	858	859	260	261	86Z	863	863	864	865	266	867	262	
3	814	815	816	817	818	818	819	820	8Z1	822	823	824	825	826	827	828	829	830	831	83Z	833	833	834	835	836	837	838	839	840	841	84Z	843	844	844	845	846	847	848	849	850	851	
3	796	797	798	799	800	801	802	803	804	804	805	806	807	808	809	810	811	81Z	813	814	815	816	817	818	819	820	820	821	822	8Z3	824	825	826	827	828	829	830	831	83Z	83Z	833	
3	778	779	720	781	782	783	784	785	786	786	787	788	789	790	791	792	793	794	795	796	797	798	799	200	801	802	803	804	805	206	806	807	808	809	810	811	81Z	813	814	815	816	
3	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	788	789	790	791	79Z	793	794	795	796	797	792	
4	741	74Z	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	76Z	76Z	763	764	765	766	767	768	769	770	771	77Z	773	774	775	776	777	772	779	720	
4	722	723	724	725	726	727	728	729	730	731	73Z	733	734	735	736	737	738	739	740	741	74Z	743	744	745	746	747	748	749	750	751	75Z	753	754	755	756	757	758	759	760	761	762	
4	703	704	705	706	707	708	709	710	711	71Z	713	714	715	716	717	718	719	720	721	72Z	723	724	725	726	727	728	729	730	731	73Z	733	734	735	736	737	738	739	740	741	74Z	743	
4	684	685	626	687	622	689	690	691	69Z	693	694	695	696	697	692	699	700	701	70Z	703	784	705	706	707	702	709	710	711	71Z	713	714	715	716	717	718	719	720	721	722	723	724	
5	664	665	666	667	668	669	670	671	67Z	673	674	675	676	677	672	680	681	68Z	683	684	685	686	687	688	689	690	691	69Z	693	694	695	696	697	698	699	700	701	70Z	703	704	705	
5	644	645	646	647	642	649	650	651	653	654	655	656	657	658	659	660	661	66Z	663	664	665	666	667	662	669	670	671	67Z	673	674	675	676	672	679	620	621	68Z	683	624	685	626	
5	6Z4	625	626	627	628	629	630	631	63Z	634	635	636	637	638	639	640	641	64Z	643	644	645	646	647	648	649	650	652	653	654	655	656	657	658	659	660	661	66Z	663	664	665	666	
٦																																										
Len gth	(m)																			rege	ncrator	e xit																				
																tir	1c to c;	relic cq	uilibriu	10	44	hr																				

m 44 hr 16,003,655 J 15,946,925 J

Heat storage Heat recovery

Longth (m)

rtart of period

165

regenerator exit

	0	60	120	180	Z40	300	360	420	420	540	600	660	720	780	840	900	960	1,020	1,020	1,140	1,200	1,260	1,320	1,380	1,440	1,500	1,560	1,620	1,680	1,740	1,800	1,260	1,920	1,980	2,040	2,100	Z,160	z,220	2,280	2,340	2,400	time
0	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,05Z	1,052	1,052	1,05Z	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	(r)
٥	1,033	1,034	1,034	1,034	1,034	1,034	1,035	1,035	1,035	1,035	1,036	1,036	1,036	1,036	1,036	1,037	1,037	1,037	1,037	1,037	1,038	1,038	1,038	1,038	1,038	1,038	1,039	1,039	1,039	1,039	1,039	1,039	1,040	1,040	1,040	1,040	1,040	1,040	1,041	1,041	1,041	
1	1,015	1,016	1,016	1,017	1,017	1,017	1,018	1,018	1,019	1,019	1,019	1,020	1,020	1,020	1,021	1,0Z1	1,021	1,022	1,0ZZ	1,022	1,023	1,023	1,023	1,024	1,024	1,024	1,025	1,025	1,025	1,026	1,026	1,026	1,027	1,027	1,027	1,027	1,028	1,028	1,028	1,028	1,029	
1	998	998	999	1,000	1,000	1,001	1,001	1,002	1,002	1,003	1,003	1,004	1,004	1,005	1,005	1,005	1,006	1,006	1,007	1,007	1,008	1,008	1,009	1,009	1,010	1,010	1,010	1,011	1,011	1,012	1,012	1,012	1,013	1,013	1,014	1,014	1,014	1,015	1,015	1,016	1,016	
1	981	981	982	983	983	984	985	985	926	986	987	987	988	989	929	990	990	991	991	992	993	993	994	994	995	995	996	996	997	997	992	998	999	999	1,000	1,000	1,001	1,001	1,002	1,002	1,002	
1	964	965	965	966	967	967	968	969	969	970	971	971	97Z	973	973	974	975	975	976	976	977	978	978	979	979	920	981	981	982	982	983	984	984	985	985	986	986	987	987	988	988	
z	947	948	949	949	950	951	952	952	953	954	954	955	956	957	957	952	959	959	960	961	961	96Z	963	963	964	965	965	966	967	967	962	969	969	970	970	971	97Z	97Z	973	973	974	
z	930	931	932	933	933	934	935	936	937	937	938	939	940	940	941	942	943	943	944	945	945	946	947	948	942	949	950	950	951	952	952	953	954	954	955	956	956	957	958	958	959	
z	913	914	915	916	917	917	918	919	920	921	922	922	923	924	925	925	9Z6	9Z7	928	929	929	930	931	93Z	932	933	934	935	935	936	937	937	938	939	940	940	941	94Z	94Z	943	944	
z	896	897	898	299	900	901	902	902	903	904	905	906	906	907	902	909	910	911	911	91Z	913	914	915	915	916	917	912	912	919	920	921	922	922	923	924	925	925	926	927	927	922	
3	879	880	881	882	883	884	885	885	886	887	888	889	890	891	891	892	893	894	895	896	896	897	898	899	900	900	901	902	903	904	904	905	906	907	908	902	909	910	911	91Z	91Z	
3	86Z	863	864	865	266	867	867	868	869	870	871	872	873	874	874	875	876	877	878	879	880	880	881	882	883	884	885	885	826	887	888	889	890	890	891	892	893	894	894	895	296	
3	845	846	847	847	848	849	850	851	852	853	854	855	856	856	857	858	859	260	861	862	863	863	864	865	266	867	868	269	269	870	871	872	873	874	875	875	876	877	878	879	880	
3	827	828	829	830	831	83Z	833	834	835	835	836	837	838	839	840	841	842	843	844	844	845	846	847	848	849	850	851	852	852	853	854	855	856	857	858	858	859	860	861	862	863	
4	809	810	811	81Z	813	814	815	816	817	818	819	820	821	821	822	823	824	825	826	827	828	829	830	831	831	832	833	834	835	836	837	838	839	840	840	841	84Z	843	844	845	846	
4	791	79Z	793	794	795	796	797	798	799	800	801	802	803	804	805	806	806	807	808	809	810	811	812	813	814	815	816	817	818	818	819	820	821	822	823	824	825	826	827	827	828	
4	773	774	775	776	777	778	779	780	781	78Z	783	784	785	786	787	788	788	789	790	791	79Z	793	794	795	796	797	798	799	800	801	802	803	803	804	805	806	807	808	809	810	811	
4	755	756	757	758	759	760	761	762	762	763	764	765	766	767	762	769	770	771	772	773	774	775	776	777	778	779	720	781	782	783	784	785	785	786	787	788	789	790	791	79Z	793	
5	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	
5	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	756	
5	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	
٦	7																																									

Longth (m)

start of period

##
fluid temperature distribution cold period (degree C)

Longth	(m)																			re ge	nerator	c×it																				
	ŧ.																																									
5	700	699	692	698	697	696	696	695	694	694	693	692	69Z	691	690	690	629	622	633	627	627	626	685	625	624	683	683	682	681	681	680	620	679	678	678	677	676	676	675	674	674	
5	620	679	679	678	677	677	676	675	675	674	673	673	672	671	671	670	670	669	662	662	667	666	666	665	664	664	663	663	66Z	661	661	660	659	659	658	652	657	656	656	655	655	
5	660	659	659	658	657	657	656	655	655	654	653	653	652	652	651	650	650	649	642	648	647	647	646	645	645	644	644	643	64Z	64Z	641	640	640	639	639	638	637	637	636	636	635	
4	639	639	638	638	637	636	636	635	635	634	633	633	632	631	631	630	630	629	628	628	6Z7	627	626	625	625	624	624	623	622	622	621	621	620	619	619	612	612	617	616	616	615	
4	619	618	618	617	616	616	615	615	614	613	613	612	612	611	610	610	609	609	603	607	607	606	606	605	604	604	603	603	602	601	601	600	600	599	599	598	597	597	596	596	595	
4	598	597	597	596	595	595	594	594	593	593	59Z	591	591	590	590	589	588	588	587	587	586	586	585	584	584	583	583	582	582	581	580	580	579	579	578	578	577	576	576	575	575	
4	577	576	575	575	574	574	573	573	572	571	571	570	570	569	569	568	567	567	566	566	565	565	564	564	563	562	562	561	561	560	560	559	559	558	558	557	556	556	555	555	554	
3	555	554	554	553	553	552	552	551	551	550	549	549	548	548	547	547	546	546	545	545	544	543	543	54Z	54Z	541	541	540	540	539	539	538	538	537	537	536	536	535	535	534	534	
3	533	532	532	531	531	530	530	529	529	528	528	527	527	526	526	525	525	524	524	523	523	522	522	521	520	520	519	519	518	518	517	517	516	516	515	515	514	514	513	513	512	
3	511	510	510	509	509	508	508	507	507	506	506	505	505	504	504	503	503	50Z	502	501	501	500	500	499	499	498	498	497	497	496	496	495	495	495	494	494	493	493	492	492	491	
3	488	488	487	487	426	486	485	485	484	484	483	483	482	482	481	481	481	420	430	479	479	478	478	477	477	476	476	475	475	475	474	474	473	473	47Z	472	471	471	471	470	470	
z	465	465	464	464	463	463	462	462	462	461	461	460	460	459	459	458	458	458	457	457	456	456	455	455	455	454	454	453	453	452	452	452	451	451	450	450	450	449	449	448	448	
z	442	441	441	440	440	440	439	439	438	438	438	437	437	436	436	436	435	435	434	434	434	433	433	432	432	432	431	431	431	430	430	429	429	429	428	428	427	427	427	426	426	
z	418	418	417	417	416	416	416	415	415	415	414	414	414	413	413	412	412	412	411	411	411	410	410	410	409	409	409	402	408	407	407	407	406	406	406	405	405	405	404	404	404	
z	394	394	393	393	393	392	392	392	391	391	391	390	390	390	329	389	389	388	388	388	387	387	387	386	386	386	385	385	385	385	384	384	384	383	383	383	382	382	382	381	381	
1	369	369	369	369	368	368	368	367	367	367	367	366	366	366	365	365	365	365	364	364	364	364	363	363	363	362	362	362	362	361	361	361	361	360	360	360	359	359	359	359	358	
1	345	344	344	344	344	343	343	343	343	342	342	342	342	341	341	341	341	341	340	340	340	340	339	339	339	339	339	338	338	338	338	337	337	337	337	337	336	336	336	336	335	
1	319	319	319	319	319	318	318	318	318	318	317	317	317	317	317	317	316	316	316	316	316	315	315	315	315	315	315	314	314	314	314	314	314	313	313	313	313	313	313	312	312	
1	294	293	293	293	293	293	293	293	293	292	292	292	292	292	292	292	292	291	291	291	291	291	291	291	291	290	290	290	290	290	290	290	290	290	289	289	289	289	289	289	289	
	268	261	261	267	267	267	261	267	261	261	261	267	261	267	267	261	266	266	266	266	266	266	266	266	266	266	266	266	266	266	266	266	265	265	265	265	265	265	265	265	265	
u	- 41	241	641	641	241	241	641	641	641	641	641	241	241	241	241	241	241	641	241	241	241	241	241	241	241	241	241	241	641	641	641	241	641	641	641	241	241	241	241	241	•	mE
	٥	60	120	120	240	300	360	420	480	540	600	660	720	780	840	900	960	1,020	1,020	1,140	1,200	1,260	1,320	1,380	1,440	1,500	1,560	1,620	1,620	1,740	1,800	1,860	1,920	1,980	2,040	2,100	Z,160	2,220	2,280	2,340	2,400 (1)

start of period

end of period

167

Longth (m) regenerator exit ٨ 1.011 1.010 1.009 1.009 1.009 1.000 1.005 1.005 1.005 1.004 1.004 1.004 1.002 1.001 1.000 1.000 999 992 997 996 996 995 994 993 992 992 991 990 929 922 922 927 926 925 924 924 923 922 921 920 920 979 5 5 996 995 994 993 992 991 990 929 929 922 927 926 925 925 924 923 922 921 920 920 979 972 977 976 976 975 974 973 972 971 971 970 969 962 967 966 965 964 963 921 920 979 978 978 977 976 975 974 973 972 971 970 969 968 968 967 966 965 964 963 963 962 961 960 959 958 958 957 956 955 954 954 953 952 951 950 949 949 948 5 966 965 964 963 967 961 960 969 952 957 956 955 954 954 953 957 951 950 949 949 945 946 945 944 944 944 944 947 946 939 939 939 937 936 935 934 934 933 932 4 950 949 948 947 946 946 945 944 943 942 941 940 940 939 938 937 936 935 934 934 933 932 931 930 929 928 928 927 926 925 924 923 922 922 921 920 919 918 917 917 916 4 934 933 932 931 930 930 929 928 927 926 925 924 923 923 922 921 920 919 918 917 916 916 915 914 913 912 911 910 909 908 907 906 905 904 904 903 902 901 900 899 4 4 912 917 916 915 914 913 912 912 911 910 909 902 907 906 905 904 904 903 902 901 900 299 292 297 296 295 294 293 292 291 290 229 222 227 226 225 224 224 223 901 900 900 999 292 297 296 294 293 297 291 291 291 290 229 222 226 227 226 227 221 220 279 272 277 276 275 274 273 277 271 270 269 262 262 267 266 3 225 224 223 222 221 220 279 272 277 276 276 275 274 273 272 271 270 269 262 267 266 265 264 263 262 261 260 259 252 257 256 255 254 253 252 251 250 249 3 3 868 867 866 865 864 863 862 861 860 859 859 858 857 856 855 854 853 852 851 850 849 848 847 846 845 844 843 842 841 840 839 839 838 837 836 835 834 833 832 831 851 850 849 848 847 846 845 844 843 842 841 840 839 838 838 837 836 835 834 833 832 831 830 829 828 827 826 825 824 823 822 821 820 819 818 817 816 816 815 814 3 833 832 831 830 839 828 827 826 825 824 823 822 821 820 819 818 817 816 815 814 813 812 811 810 809 808 807 806 805 804 803 802 801 800 800 799 798 797 796 2 216 215 214 213 212 211 210 209 202 207 206 205 204 203 202 201 200 799 792 797 796 796 795 794 793 792 791 790 729 722 721 726 725 724 723 722 721 721 720 779 772 z z 792 797 796 795 794 793 792 791 790 789 782 787 786 785 784 783 782 781 780 779 778 777 776 775 775 774 773 772 771 76 765 765 767 766 765 764 763 762 761 760 759 z 762 761 759 758 757 756 755 754 753 752 751 750 749 748 747 746 745 744 743 742 741 740 739 738 737 736 736 735 734 733 732 731 730 729 728 727 726 725 724 723 722 1 743 742 741 740 739 738 737 736 735 734 733 732 731 730 729 728 727 726 725 724 723 722 721 720 719 718 717 716 715 714 713 712 711 710 709 708 707 706 705 704 703 1 1 724 723 722 721 720 719 712 717 716 715 714 713 712 711 710 709 707 706 705 704 703 702 701 700 699 698 697 696 695 694 693 692 691 690 629 628 626 626 626 626 628 624 705 704 703 702 701 700 699 692 697 695 694 693 692 691 690 629 622 621 626 625 624 623 622 621 620 679 673 677 676 675 674 673 677 676 675 674 673 677 676 669 662 667 666 665 664 1 686 685 684 682 681 680 679 678 677 676 675 674 673 672 671 670 669 668 665 664 663 662 661 660 659 658 657 656 655 654 653 652 651 650 649 648 647 646 645 644 п П 666 665 664 663 662 661 660 653 657 656 655 654 653 652 651 650 649 642 647 646 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 625 624

reserver and ance

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1,020 1,080 1,140 1,200 1,260 1,320 1,380 1,440 1,500 1,560 1,620 1,680 1,740 1,800 1,920 1,980 2,040 2,100 2,160 2,220 2,280 2,340 2,400

start of acried

0

colid temperature distribution cold period (degree C)

80

end of period

thermal ratio distribution hat period ((tfih-tfah)/(tfih-tfie) or NH1)

0.437 0.435 0.434 0.433 0.432 0.430 0.429 0.428 0.427 0.425 0.424 0.423 0.422 0.420 0.419 0.418 0.417 0.415 0.414 0.413 0.412 0.411 0.409 0.408 0.406 0.404 0.403 0.402 0.401 0.399 0.398 0.397 0.396 0.393 0.392 0.391 0.390 0.389 0.387

start of period

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1,020 1,080 1,140 1,200 1,320 1,330 1,440 1,500 1,560 1,620 1,680 1,740 1,800 1,860 1,920 1,980 2,040 2,100 2,160 2,220 2,280 2,340 2,400 (r)

end of period

time

thermal ratio distribution cold period ((the the) (thin the) or NC1)

0.565 0.565 0.564 0.563 0.562 0.561 0.561 0.561 0.561 0.559 0.552 0.557 0.557 0.555 0.555 0.553 0.553 0.552 0.551 0.550 0.549 0.549 0.548 0.543 0.545 0.544 0.543 0.542 0.541 0.541 0.541 0.540 0.538 0.538 0.538 0.538 0.535 0.534 0.534

0
60
120
180
240
300
360
420
480
540
600
60
1,020
1,020
1,260
1,320
1,320
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620
1,620<

169

ประวัติผู้เขียนวิทยานิพนธ์

นายจิรชนม์ เสรีวิชยสวัสดิ์ เกิดวันที่ 12 มิถุนายน พ.ศ. 2520 ที่โรงพยาบาล หัว เฉียว กรุงเทพมหานคร สำเร็จการศึกษาปริญญาตรีวิศวกรรมศาสตร์บัณฑิต สาขา วิศวกรรมเครื่องกล ภาควิชา วิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2541 และเข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์มหาบัณฑิต ที่จุฬาลงกรณ์ มหาวิทยาลัย ในปีการศึกษา 2541 ระหว่างการศึกษาได้รับทุนอุดหนุนการวิจัยจากบัณฑิต วิทยาลัย และ กองทุนอนุรักษ์พลังงาน รวมทั้งทุนผู้ช่วยสอน นอกจากนี้ได้เข้าร่วมกับหน่วยวิจัย พลังงานจุฬาลงกรณ์มหาวิทยาลัย ในการตรวจสอบการใช้พลังงานเบื้องต้นของโรงงานควบคุม ระหว่างทำการศึกษา ด้วย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย