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CHAPTER 1

INTRODUCTION

We study two interesting statistics on the symmetric group 5, called descent
and inversion. These statistics are used in considering some properties of a uni-
formly distributed random permutation 7 of the set {1,2,...,n}. The number
of descents of m, denoted by des (), is defined as the number of pairs (7,7 + 1)
with 1 <i<n—1and 7w (i) >n(i+1). It is closely related to Eulerian number
A (n,m), the number of permutations in the symmetric group S,, having exactly
m + 1 descents. The number of inversions of 7, denoted by inv (7), is defined
as the number of pairs (7,7) with 1 <i < 7 <mn and 7 (¢) > 7 (j). The number
of permutations m € S, in which exactly k elements are greater than the next
element can be calculated as

k
Z(—l)i(" ; 1) (k+1-0)
i=0
and the number of permutations with £ inversions is expressed by the coefficient
of z* in the expansion of the product
m—1

Iy«

m=1 i
([4] pp. 8,43). The distribution of the number of descents can be approximated
by the standard normal distribution function ® which can be found in Pitman
([18]) and Tanny ([22]). Proofs of the asymptotic normality for the number of
inversions was also shown in Bender([3]) and Diaconis ([10]).

In 2004, uniform bounds for normal approximation for the number of descents



and the number of inversions were given by Fulman ([11]). He used an exchange-

able pair and Rinott and Rotar’s Theorem ([19]) to give the following results,

C
Ades(7r >~ T = and Ainv(w) < \/_% (11)

QI

where Ades(fr - Sup Ades (m),2 Amv () ‘= Sup Ainv(w),za

o des (m) — E (des (m)) B
Ades(7r),z = |P ( Var (des (7]')) < Z) q)( )

and

Ainv(w),z =

. (z’nv (7) — J«;(mv (1) . Z) o).
Var (inv (7))

Following the arguments of Fulman ([11]), the constants C; and Cy in (1.1) are

1096 and 5421, respectively. In our work, we use the technique from Neammanee
and Rattanawong ([13]) to improve the constants C; and Cy. Our constants are

12.44 and 14.24, respectively. The following are our results.

Theorem 1.1.
12.44

N

Ades(ﬂ') <

Theorem 1.2.
14.24

N

Moreover we use exchangeable pair given by Fulman ([11]) and Stein’s method

Az"rw(ﬂ') <

to find non-uniform bounds. In this thesis, we present two types of non-uniform
bounds. The first type is of the polynomial form, which is called polynomial non-
uniform bounds. The second type is of the exponential form.

Theorem 1.3 and Theorem 1.4 are our main results for polynomial non-uniform

bounds.

Theorem 1.3. For sufficiently large n and z € R,

1756

Acles7r ),z | 3 ~—~
(1+ Eheva



Theorem 1.4. For sufficiently large n and z € R,

12160
Ainv(ﬂ),z < o N3 -~
(L+[=)"v/n

Table 1.1 compares the constants of uniform and polynomial non-uniform

bounds.
uniform polynomial bounds
bounds | z =4.2 | 2 =8.5 z =100 z = 1000 z = 10000
12.44 12.44 2.05 1.71x 1073 | 1.76 x 107 | 1.76 x 107?
Descent
\/n Vn Vn VD N \/n
. 14.24 86.49 1424 | 1.19x 1072 [ 1.22x107° | 1.22 x 10°®
Inversion
N Vn Vn NG VD N

Table 1.1: Constants of uniform and polynomial non-uniform bounds.

In Table 1.1, we give an example to show our polynomial non-uniform bound is
smaller than a uniform bound for large z.

The last part of our work, we give an exponential non-uniform bound. In fact,
exponential bounds have been considered since 1975 by Petrov ([16]). He used
Fourier transform and focused on independent and identically distributed random
variable X7, ..., X, with mean zero and variance one such that Fe!X1l < oo for

some t > 0 to show that

2

g < G+
[P(W<2)—2(2) < NG

9

Xi+--+ X,
Voo

Throughout this work we reserve the notation C' for a constant with assuming

where W =

that the value may not be the same. However, in 2013 Chen, Fang and Shao ([8])
presented a result called Cramer-type moderate deviation result for dependent
random variables. The result concerns with the Stein’s method which is simpler

than Fourier transform. In this thesis, we use the idea from Chen, Fang and



Shao ([8]) and exchangeable pairs given by Fulman ([11]) to give exponential

non-uniform bounds. Theorem 1.5 and Theorem 1.6 are our main results.

Theorem 1.5. For z € R,

23 3 4.62 3 L62
1061 + (1265 + 3.78¢ 7 ) et (V%) 4 87063 (147
7\/5

Acles(7r),z <

3

®

Moreover for sufficiently large n,

51.25
Ades(ﬂ'),z <

4

N

Bl

®

Theorem 1.6. For z € R,

6

0.008 + <1.388 + 0.466ﬁ> A0+%) L g 5ges (1+35)

=]
1

Ainv(ﬂ),z <

D

B

Moreover for sufficiently large n,

792.71
e%\/ﬁ.

Table 1.2 compares the constants of uniform and exponential non-uniform

Ainv(Tr),z <

bounds.
uniform exponential bounds
bounds | z=5.6 | 2 = 16.1 z =100 z = 1000
12.44 12.44 0.92 712 x 10710 [ 1.37 x 107107
Descent
4D V/n Vn Vn 4D
I . 14.24 196 14.24 1.11 x 1078 | 2.12 x 107106
nversion —
4D D Vn Vn V/n

Table 1.2: Constants of uniform and exponential non-uniform bounds.

Table 1.3 and Table 1.4 compare the constants of polynomial and exponential
non-uniform bounds for the number of descents and the number of inversions,

respectively.



2=10| 2=25 2 =50 2z =100 2 = 1000

Polynomial bounds 1.32 010 [ 1.33x1072 ] 1.71 x107% | 1.76 x 10°°
Vn Vn Vn Vn Vn

Exponential bounds 4.21 0.10 [ 1.91x107* [ 7.12x 1071 | 1.37 x 107107
Vn Vn Vn Vn Vn

Table 1.3: Constants of polynomial and exponential bounds for the number of

descents.

z2=10| z =44 z="170 z = 100 z = 1000
9.14 0.14 34x1072 [ 1.2 x 1072 1.22 x 107°

/i | n NG NG NG
65.07 0.14 2x107° 1.11 x 1078 | 2.12 x 107106

Vo | yn V1 V1 V1

Table 1.4: Constants of polynomial and exponential bounds for the number of

Polynomial bounds

Exponential bounds

inversions.

Exponential bounds in Theorem 1.5 and Theorem 1.6 are much sharper than
polynomial bounds in Theorem 1.3 and Theorem 1.4 in case of z > 25 and z > 44,
respectively.

This thesis is organized into 8 chapters as follows. After this introduction
chapter, we give preliminary results in Chapter 2. Exchangeable pairs in the
Stein’s method for normal approximation are obtained in Chapter 3. Moments of
the number of Descents and Inversions are given in Chapter 4. Uniform bounds
are presented in Chapter 5. Polynomial and exponential non-uniform bounds are
presented in Chapter 6 and Chapter 7 respectively. The last chapter contains

discussion on further research.



CHAPTER II

PRELIMINARIES

In this chapter, we give basic concepts in probability which will be used in

our work. The proofs are omitted but can be found in [1], [2], [20] and [21].

2.1 Probability Space and Random Variables

Let €2 be a nonempty set and F be a o-algebra of subsets of €2 .
Let P : F — [0,1] be a measure such that P(Q2) = 1. Then (2, F, P) is called a
probability space and P, a probability measure. The set (2 is the sample
space and the elements of F are called events. For any event A, the value P(A)
is called the probability of A.

Let (Q, F, P) be a probability space. A function X : Q@ — R is said to be a

random variable if for every Borel set B in R,
X' B)={weQ: X(w)e B} eF.

We shall usually use the notation P(X € B) in stead of P({w € Q| X (w) € B}).
In the case where B = (—o00,al or [a,b], P(X € B) is denoted by P(X < a) or
P(a < X <)), respectively.

Let X be a random variable. A function F': R — [0, 1] which is defined by
F(z)=P(X <2

is called the distribution function of X.



Let X be a random variable with the distribution function F'. X is said to be
a discrete random variable if the image of X is countable and X is called a

continuous random variable if F' can be written in the form

F(l’):/_x f(t)dt for xR

for some nonnegative integrable function f on R. In this case, we say that f is
the probability density function of X.

We will give some examples of random variable. We say that X is a nor-
mal random variable with parameter p and o2, written as X ~ N (u, 0?), if its

probability density function is defined by

f(x)zﬁexp(—%ﬂ(x—uf) for x € R.

Moreover, if X ~ N(0,1) then X is said to be the standard normal random

variable.
1
We say that X is a uniform random variable on {xy, o, ..., 2, } if P (X = z;) = —
n

foralli=1,2,...,n.

2.2 Independence

Let (€2, F, P) be a probability space and F, be sub o-algebras of F for all a € A.
We say that {F,|a € A} is independent if and only if for any subset J =

{j1.72, .-,y of Aand A,, € F;, form=1,....k,

k k
P <ﬂ Am> = [ P(An).
m=1 m=1
A set of random variables {X,| @ € A} is independent if {o(X,)| a € A} is

independent, where 0(X) = o({X'(B) | B is a Borel subset of R}). ~ We say

that X, Xo,..., X, are independent if {X;, X5,..., X,,} is independent.



Theorem 2.1. Random wvariables X1, Xs, ..., X, are independent if and only
iof for any Borel sets By, Bs, ..., B, we have
P (ﬂ{Xi c B,}) =[P € By).
i=1 i=1
Proposition 2.2. If X;;;1 = 1,2,...,n;5 = 1,2,...,m; are independent and
fi + R™ — R are measurable, then {f; (X1, Xio,.. ., Xim,),0=1,2,...,n} is

independent.

2.3 Expectation and Variance

Let X be a random variable on a probability space (€2, F, P).

If / | X|dP < oo, then we define its expected value to be
Q

E(X) = / XdP,
0
Proposition 2.3. Let X be a random variable and E|X| < oc.

1. If X is a discrete random variable, then E(X) = Z zP(X = x).

xelmX

2. If X 1is a continuous random variable with probability density function f,

then

B(X) = /R of (x)dz.

Let X be a random variable with E(]X|*) < co. Then E(|X|*) is called the
k-th moment of X about the origin and F[X — E(X)]* is called the k-th
moment of X about the mean.

We call the second moment of X about the mean, the variance of X and

denoted by Var(X). Then

Var(X) = E[X — E(X)).



Note that
1. Var(X) = E(Xz)—EQ(X),

2. if X ~ N(p,0?), then E(X) = p and Var(X) = o2

Proposition 2.4. If X1, Xs, ..., X,, are independent and E|X;| < oo fori=1,2,...

then
1. B(X1 Xz X,) = B(X1)E(X,) - E(X,),

2. Var(a1 X1 +as Xo++ - -+0a,X,) = aiVar(Xy)+a3Var(Xy)+- - +a2Var(X,)

for any real numbers ay,as, ..., a,.
The following inequalities are useful in our work.
1. Holder’s inequality :
E(IXY]) < B# (| XI")Es(|Y]")

1 1
where 0 < p,q < 00, — 4 — =1 and E(|X|?) < o0, E(]Y]?) < c0.
P q

2. Chebyshev’s inequality :

Var(X)

5 forall e >0
€

P({|X — E(X)| 2 &}) <

where F(X?) < oc.
Let X be a random variable on a probability space (€2, F, P) with E | X| < oo

and D a sub g-algebra of F. Define a probability measure Pp : D — [0, 1] by

and sign-measure Qx : D — R by

Ox(A) = /A XdP.



10

Then Qx is absolutely continuous with respect to Pp and there exists a unique

measurable function EP(X) on (€, F, D) such that
/ EP(X)dPp = Qx(A) = / XdP for any A € D.
A A

We will say that EP(X) is the conditional expectation of X with respect

to D.
Moreover, for any random variables X and Y on the same probability space

(Q, F, P) such that E(|X]|) < oo, we will denote E°Y)(X) by EY (X).

Theorem 2.5. Let X be a random variable on probability space (2, F, P) such

that E(|X|) < oco. Then the followings hold for any sub o-algebra D of F:
1. If X is random variable on (Q, D, Pp), then EP(X) = X a.s.[Pp],
2. E7(X) =X a.s.[P],

3. If o(X) and D are independent, then EP(X) = E(X) a.s.[Pp].



CHAPTER III

EXCHANGEABLE PAIR IN STEIN’S METHOD

One outstanding method in finding a Berry-Esseen bound is the Stein’s
method which is provided in 1972 by Stein ([20]). His method does not use
Fourier transformation. It starts with the differential equation which is called the

Stein’s equation for normal approximation, i.e.,
g (w) —wg (w) =L oz (w) — P (2) forall z €R, (3.1)
where g : R — R is continuous and piecewise differentiable function and

1 ifw <z,
]I(—oo,z] (w) -
0 ifw>z.

The solution g, of (3.1) is given by

\/%ewTQCD (w)[1 =@ (2)] fw<z,
gy = 32)
V2me T @ (2)[1 — @ (w)] ifw > 2.

Hence,
1—®(2)] [1 + \/%wewéfb (w)] if w < z,
g (w) = 2 (33)
(z) [—1 +V2mwe > (1 — @ (w))] ifw> z,
([6], pp. 252).

In our work, we need the following properties of ¢.:

1) (w1) — ¢, (we)] <1 for all wy,wy € R, (3.4)

g (w)] <1 for all w € R, (3.5)
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([1], pp. 10).

From (3.1), for any random variable W, we have
Eq(W)—EWg,(W)=P(W <z2)—®(2). (3.6)
Then we can bound
|Eg. (W) — EWg. (W)

instead of

[P (W <2)—@(2)]

This technique is called the Stein’s method.

The important technique in order to bound |Eg¢.(W)— EW g.(W)] is rewriting
EWg,(W) in a suitable form. There are three approaches called exchangeable
pair ([7],[19],[21]), size bias ([7],[12]) and zero bias ([7],[12]). In our work, we use

exchangeable pair technique. The pair (W, W’) is an exchangeable pair if
P(W <wy, W <wy) =P (W <wy, W < wyp) for wy,wy €R.

Many authors (see for examples [7], pp.23) constructed an exchangeable pair W’

of W which has the property that
EV (W' —W)=-AW with A€ (0,1). (3.7)
If (W, W) satisfies (3.7), then we have the following lemma.

Lemma 3.1. ([7], pp.22) Let (W, W') be an exchangeable pair satisfying (3.7).

Then for a continuous and piecewise continuously differentiable function g : R — R,

we have
EWg(W):E/ g (W +1t)K (t)dt
where
1
K(t) =g (W =WHIO <t <W' =W) —T(W' =W < ¢ <0)}
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and I(A) is given by

1 ifwe A,
I(4) (w) =

0 ifw¢gA.
The exchangeable pair technique can be used to give uniform bounds and
non-uniforms bound in normal approximation.
In 1997, Rinott and Rotar ([19]) used this technique and the Stein’s method
to give a theorem for normal approximation. Theorem 3.2 is one of their main

results.

Theorem 3.2. ([19]) Let W be a random variable with EW = 0 and E (W?) = 1.
Let W' be an exchangeable pair of W satisfying (3.7). Suppose in addition that

|[W'—W| < A for some constant A. Then for z € R,

|P@vgzy—@@ng%§¢vm(mvmﬂ—w0%+4$§+87§

At the end of this chapter, we present some examples of an exchangeable pair.

Example 3.3. ([7], pp.23) Let X3, ..., X,, be independent random variables and
X{,...,X] be an independent copy of Xi,...,X,. Let I be a uniform ran-
dom variable on {1,...,n} which is independent to Xi,..., X, X],..., X/. Let
W = z”: X;. Define

i=1

W' =W - X, + X}

1
Then (W, W’) is an exchangeable pair satisfying (3.7) with A = —.
n

Example 3.4. ([21], pp. 38-39) Let {a;;},, <, De an array of real numbers.

For a random permutation 7 on {1,2,...,n}, define

W = Z aiﬂ-(i).
=1
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Let (J, K) be a uniformly distributed random variable of the set

{(J, k)11 < j,k <mn,j#k} sothat J and K are independent of .

Define 7" by
(W(i) ifi¢ {J K},
() =7 (K) ifi=J
\7T(J) ifi=K.
Let

W = Z Qirr (i) = W + Q) + QR r(7) — Qn(]) — QK x(K)-
i=1

Then for all a,b € R, we have

P(W <a,W <b)

:Z Z P(ZailiSG,CLm+'“+ajl,€+---—|—aklj+---
—i_a/nln §b7(J7K):<.j7k)77T:(l17l27"'7ln)>

:Z Z P(ZailiSa,alll+"‘+ajlk+"'+aklj+"'
k- (,

+anln S b7 (J7K) = (],k’),

™= (117 cee ;ljflallmljJrla oy lea, ljalkJrl R 7ln>>

P(aul—|—~~—l—aﬂk+-~—|—aklj+-~+anlnga,

Zaili §b7(J7K):(.juk‘)uﬂ-:(ll?l%"wln))
—P(W' <a,W <b)

([15], pp.561-562). This implies that W’ is an exchangeable pair of W and satisfies
2

. ith A = .
(3.7) wi —
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Example 3.5. ([11], pp.68-70) Let

Xi(m)=>_ )" M)

i=1 j=it1
where 7 is a random permutation of the set {1,2,...,n} and (M;;) is areal n xn
matrix defined by

(1 i j=i+1,

Myg=491 ifj=i—1,

0 otherwise.
\

For a random permutation 7 on {1,2,...,n}, define

7 (7) ifi¢ {I[,I+1,...,n},

m(@)=SnG+1) ifie {I,IT+1,...,n—1}, (3.8)

7 (1) if i =mn,

where I is a uniformly distributed random variable on {1,2,...,n}. Then X; (7')

2
is an exchangeable pair of X () and satisfies (3.7) with A = —.

n
Example 3.6. ([11], pp.68-70) Let
Xo(m) =Y > Qeiris)
i=1 j=i+l
where 7 is a random permutation on {1,2,...,n} and (Q;;) is a real n X n matrix
defined by
(1 & j>i

Qij =941 ifj<i,

\O if 7 =1.

For 7’ defined by (3.8), we have X, (7’) is an exchangeable pair of X, (7) with

2
A=
n



CHAPTER IV

MOMENTS OF DESCENT AND INVERSION

In this chapter, we give auxiliary results of both the number of descents and the
number of inversions. Recall that for a uniformly distributed random permutation
7 of the set {1,2,...,n}, the number of descents of m, denoted by des (), is
defined as the number of pairs (i, 4+ 1) with 1 <i<n—1and 7 (i) > 7 (i + 1).
The number of inversions of 7, denoted by inv (), is defined as the number of
pairs (7,7) with 1 <14 < j <nand 7 (i) > 7 (j).

For each permutation 7,

let
U () = des (m) — E (des (m))
' Var (des (m))
and
V(r) = inv (m) — F (inv (7r))

Var (inv (m))
Fulman ([11], p.66) showed that

U(m) = —\/gf%l), (4.1)

where
Xi(m) =) > M)
i=1 j=it1
and (M;;) is a real n x n matrix defined by

(
1 ifj=i+1,
Mij=491 ifj=i—1,

0 otherwise.
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Moreover, he also showed that

18X, (!
Viry = 20 ) (12
Vn(n—1)(2n+5)
where
Xo ()= Y Qe
i=1 j=it1
and (Q;;) is a real n X n matrix defined by
(
1 if g >,
Q=91 ifj<i,
0 ifj=i
Note that
-1 1
E (des(m)) = o ,Var (des (m)) = i,
2 12
5 —1)(2 5
E (inv (7)) = Q and Var (inv (7)) = nn=1)@n+5)
2 72
([11], pp.71). For convenience, for m € S,,, let
U:=U(n), (4.3)
and
Vi=V(r). (4.4)

Then both (U’,U) and (V', V'), when U’ (7) := U (#') and V' (7) := V («') for «’

2
defined in (3.8), are exchangeable pairs satisfying (3.7) with A = —, i.e.
n

B (U —U) = —%U, (4.5)
E (V' - V) = —%v, (4.6)
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([11], pp.68-70). By the definition of U and V', we have the folowing facts.

EU)=0 (4.7)
E(V)=0 (4.8)
Var (U) = EU* =1 (4.9)
Var (V) =EV? = 1. (4.10)

From the construction of U’ and V', we have the folowing properties;

|w—mg%§ (4.11)
HW—W§;% (4.12)

([11], pp.72).

In Proposition 4.1 and Proposition 4.2, we give the bounds for the 4* moment

and 6" moment of U and V, respectively.

Proposition 4.1. Let U and V' be as in (4.3) and (4.4). Then

31.18 36
(i) BU* <9+ —— —
162 324

i) BV <27+ — 4+ —.
(i1) <27+ T + -
Proof. (i) Let g(x) = x®. Then, by Lemma 3.1 and (4.5), we have
ﬂﬂ:E/‘3W+0ﬁﬂﬂﬁ (4.13)
where

KM)==U -U){I(0<t<U -U)—1(U —U <t<0)}.

=13

By (4.13) and the fact that

./mtﬂzayﬁzzzaﬁrﬁ(Uh—Uf“, (4.14)

—00
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we obtain

EU4:3E/ UK (t) dt+6EU/ tK (1) dt+3E/ 2K (t)dt

3 6 3
- Z”EW U - U+ §EU U - U+ 1—ZE U - U)*.

From (4.9) and (4.11) we have

31.18 36

n n

EU* <9+

(ii) Using the same argument of (i), (4.6), (4.10) and (4.12), we complete the

proof. O]

Proposition 4.2. Let U and V be as in (4.3) and (4.4). Then for sufficiently

large n,
(i) EU® < 621.
(ii) BV < 1319.
Proof. (i) Similar to Proposition 4.1, we choose g () = x°. Then

EU6:5E/OO (U + ) K (t) dt

5 20 30
- Z”EU‘* U - U+ %EU:” U - U)* + 1—2"EU2 U - U)*
20n , 5 on y 6
Meuw - MW —u)P.
+ 5 BUW = U) + SE(U - U)

By using the Holder’s inequality, (4.9), (4.11) and Proposition 4.1(i) we can

show that for n > 10

104 1 1360 312 432
EUS < 15EU* + — (EU*)? (EU?)? + —FEU? + —— + —
< + ﬁ( )? (BU?)? + — todi T

< 621.

(ii) Using (4.10), (4.12), Proposition 4.1(ii) and the same argument of (i), we

can prove (ii). O



Proposition 4.3. Let U and V be as in (4.3) and (4.4).

20

48
DB —U) e 2
(1) EU-U) n(n+1)
1 (1296 23904
D BV V) = = _ — :
(W) BV =V) = < 25 1225(n —1) | 175(2n +5)  1225(2n + 5>>

Proof. (i) By the facts that, for each i

MM MF2 MR = 0 for all distinet i, 49, 45,

951 T g

RY

i1,i2=1

11712

§ 1122

i1,41,83=1

i1¢i2¢i3

E zlzg

11,21,23=1

i1 i is

we have

3o ( 3 )

j=l+1

:ZE ZM‘H)# +4 Z M2 s

=1 j=l+1

2
+3 ) MM

Gk=l+1
i#k

+ Z Mz @yr () M (yr () Mz 0y (m) M ym (9)

]7k7m7p:l+1
JkFEmED

=Y E| Y Mg

=1 j=1+1

2 2
+3 3 M2y M ace

k=141
J#k

13

l1l2 -

1123

1123

r)n(r) 6 Z

+4Z M2 e M.

=2(n—-2),

(4.15)

(4.16)

(4.17)

(4.18)

M ym (k) Mo (1) ()
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- n(n — 1 Z ( Z Z 74112 ’L17,2 ’0123
=1 J=l+1 i1,i2 j k=l+1 11,%1,%3
217612 J#k 11#2#3
3 n
2
—9 1192 M1113
3, k=Il+1 1,i1,i3
J#k  i1FiaAis
n+1
-2 (4.19)

From this fact and the fact that for each fixed 7, I,

n

X{(m) = X1 (1) = > —2Meuyn(i)s

j=I+1

we have

EU -U)*

B () U ()’

9 , 4
= (n+ 1)2E (Xi (m) — X1 (7))

9 T / o - 4
= (n+1)2EE (X7 (m) — X1 ()
T (z s
B 48
Cn(n+1)

(ii) We can prove (ii) by using the same argument of (i) together with the

following facts,

Z Quzg - n - 1)

11,22=1

i1#£02

= _nn—-1)(n—-2)
Z QiriyQiyis = 3 ;

11,i2,83=1

i1A407#13
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Z Qii,Qiiy =1 (n—1) (n —2),

11,81,i3=1
il;éig;ﬁig
nin—1)(n—2)(n—3
> QhQua, - 28,
1,01,22,03=1
i Fia i
= n(n—1)(n—-2)(n—3)(n—4)
Z Qiiy Qiiy Qiig Qiiy = 5 ;
1,21,12,13,04=1
il FlaFizFia
Xy = X (1) = 3 —2Qume) s

j=I+1
Proposition 4.4. Let U and V be as in (4.3) and (4.4). Then
2
(i) E (E“ (U — U)2> - % (1 te— (n8+ 1)).
2
(i) E <E“ = V)Z)
16 2064 2256 864 29688
( T T225(n—1) | 625n  R75(2n+5)7  30625(2n + 5))

n2

Proof. (i) From the fact that

ET (U -U) = o Y (Z Mi(iyn(s) ) (4.20)

Jj=i+1
([11], pp.72) and (4.19) we have

E (E” ' — U)2>2

n 2
S 1) Z (Z Mw(i)w(j))

2

i=1 \j=i+1
n 4
= Mﬂ' 2)mw(g
”+1 <zz=: <j:zi;1 v m)
+ ) (Z Mw(z’)wu)) (Z Mw(k)w(l)) )
ik=1 \j=i+1 l=k-+1
ik
144 1 - " gy i
n -+
= +EZ<ZM<'><'>> (ZM(@(;)>
) m(2)m(g (k)T
n*(n+1) 3 @1;:1 j=i+1 I=k+1
i#k

(4.21)



In order to calculate £ Z

n ( n
k=1 \j=i+1

itk

this sum as below.

Mﬂ'(’L

n (
k=1 \j=i+1

i#

j=i+1

l=k+1

Jj=1+11=k+1

+Z ZMQ

Jj=t+11l,s=k+1
s#l

YD MM

I=k+1jm=i+1
m#]

+Z ZM

Jym=i+11,s=k+1

m#j 875l
n

ey (X Y
z,ll;:kl Jj=i+1l=k+1

+22 ZM

Jj=i+11,s=k+1
s;él

+Z ZM

Jym=i+11,s=k+1
j#m s#l

=: Biy + 2Ban + B

> Mo

23

2
)> , we expand

2 n
j)) <Z My
I=k+1

) (£ 1)

D Mo + Z Mir(iym(j) Mn(iym(m)

7j,m=i+1
m#j

Y Miuwny T D Mayety Mayncs

l,s=k+1
s#l

P32 % M

Mz (1m0
M (kyr (1) M (k) (s)
w(i)m () Mr(iyr(m)

M iy (m) Mrr(k)fr(l)Mfr(k)ﬂ'(s))

(Z 7T(J k’)fr( )

() Mo (yr )y M (kyr(s)

M (iyr(m) Mﬂ(k)fr(l)Mw(k)Tr(s))

(4.22)



From the facts that

n
2 2
E ]\/[1412-2]\/[1431-1
11,52,i3=1
i1#427#13
n
§ 2 2
11,52,i3=1
11742713
n
§ 2 2
11,12,i3=1
i1 #2713
n
§ 2 2
Milig Mi3i4

11,82,13,14=1

24

:2(71—2),

—2(2n—4)(n—3),

{176 Fia i
we have
Cases By
i=ULk#75,5#1 n22
i lLk=7,7#1 n22
iALk#5,7=1 2(n—2)
iFLkFG5# 1] (n=2)(n—=3)
This implies that
Biy = % - %n n?. (4.23)

Next we try to find Bsyys. From the facts that

n
2
Z MilizMishMisiQ =0,
i1,82,i3=1
i1A907#13
n
> M2, My, My, = =2 (n—3)
1112 371 134 9
11,12,13,i4=1
1112 A13 70
n
Z MzzligMisiQMi:sh =0,
11,82,i3=1
i1 740713
n
Z Mz'zligMi3i4Mi3i1 =2 (n - 3) >

11,02,13,14=1

i1A92F i3 A0
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n
2 _
E Mm2 M;,isM;,i, =0,
11,02,13,14=1

i1 A FisFis
n

> M2, My, My, = —2(n—3),

2112 1312 1314

11,02,13,14=1

i1A90F i3 A0,

Z M, Miyiy Migi, = =2 (n - 3) )

i1i2
11,12,13,54=1

i1 Al i3 Al
> M2, M, M, = —4(n—3)(n—4),
e
we obtain
Cases Bon
i=lLi#s,k#j,jF#l,j=s 0
i=lLiFsk# ] FLjFs -3
i #lLi=s,k#j,j=1,7F#s 0
iFLi=sk# ] FLjFs -
i # L1 #Fs,k=7,7F#1,]F#s 0
i#lLitEsk#5j=1j#s| —3(n—3)
iAlLitsk#j,j#Lj=s| —2(n-23)
i£LiEs k#jj#Lj#s | =8+ dn—2n?
Hence
Boy = —4 + %n — §n2. (4.24)

Finally we find Bs,;. By the fact that

n
E M igM; i, My, My, =0,
11,02,13,14,i5=1
11 Fi2#13F 14715
n
E M isM;, i, Mo My, =0,

11,82,13,14,i5=1

i1 i A1 14705



n

E Mi1i2Mi1i3Mi2i4Mi2i5 — O,
11 Fi2#£13F 14715

n

> M; iy M iy Migiy Miyis = 0,

i1l A1 14705

n
E M; i M; i, M, M, =0,
11,12,13,i4=1
11 £i2F 13 A0
n
E Mi1i2Mi1i3Mi4i2Mi4i5 =2 (n — 4) s

11 FG2£13 714 F 15

n
D My My, Miyi, M, = 0,
11,02,13,14=1
i1 ia s i
n
Z Mi1i2Mi1i3Mi4i5Mi4iz =2 (n - 4) )
i1 F£i2Ai3F14 705
n
Z My, Miyiy Miyiy Miyi = 2 (n—4)
11 £12 £ i3 F14 705
n
Z My, Miyig Miyis Miyiy = 2 (n— 4),
11 FG2£13 714 F 15

n

Z My iy M;, iy Miyis Miyig = 4 (20 — 9n 4 n?)

i1 £in FisAis FisFEie

we get the following results.

Cases Bsum

i=1i+#s 0

i £l i=s 0

1#£Li# s, k=g k+mk#1Lk#s 0

1 £ L1 # s, kFjk=mk#1Lk#s 0

i #lLiE s, kFm,j+m,j=1j#*sm#“Il,m=s 0
4

2.7&[72‘7&57]{7&].7]{7&”17‘7‘#m>j:l>j7é3am7élam7és
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Cases Bsum
1£Li# s, kFjk+Em,j#+m,j#lLj=s,m=I1m=#s 0
i#FlLi#tskFjkEmjEmj#lLj=sm#Im#s| 1(n—4
i#FLitEsk#jkEmjFEmj#lLjFsm=1lm#s| (-4
i#FLitEsk#jk#EmjFEmj#lLjFsm#ElLm=s| (n—4)
1#FLi# s, k#Fjk#Fm,j#Fm,j#1l,j#sm#Il,m#*s %—4n+%n2

This implies that

208 44 4
Bayy= — — — —n?. 4.25
M= T " T g (4.25)

Therefore, by (4.23)—(4.25)

n n 2 n 2
E Z <Z Mﬂ(i)ﬂ(j)) (Z Mﬂ(k)ﬂ'(l))

ik=1 \j=i+1 I=k+1

i#k

10  11n 9 10 2, 208 44 4
= — — — 21 -4+ —n— = _—— —

3 3+n—|— < +3n 3n)+45 15n—|—9n
2 n n?
45 15 9

Hence

E(E”(U’—U)2>2 - % <1+ﬁ>.

(ii) To prove (ii), we follow the proof of (i) by replacing (4.20), (4.21) and (4.22)

with

ET (V' — V) = e 17)2(2n 5 > ( > Qw(i)w(j)) ;

i=1 \j=i+1

n n 4
Z E ( Z QW(,)W(]-)> =n(n—1) (=764 + 961n — 249n> + 36n°)

=1 G=l+1
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Big+2Bsg+ Byg :=E Z ( Z Z Q?r(i)w(j)ng(k)W(l)

ik=1
i£k

2 D, Qo

j=i+11,s=k+1
s;él

+ 2: E:Q%m

jm=i+11l,s=k+1
i#m sl

j=t+11=k+1

])Qﬂ'

From the facts that

Z Qzllg 1381

11,81,i3=1

i1 ¢i2¢i3

Z Qzlzg Q2213 -

11,i1,i3=1

i1 ;éig;éig

Z Qzllz i3t2

21,01,03=1

i1 ;éiz;éz'g

n(n—1)(n-2),

n(n—1)(n-2),

n(n—1)(n-2),

Qw k)7 (s)

7r(7, m(m) QT( k)m(l) Qﬂ’ (k)m(s) )

Z Q’Lllg 7,314_ (n_]‘) (n_2) (n_3)7
i,
we have
Cases By

i—tkAjpl| oD
itlk=jjAr| D=2

) o nn—1)(n—2 3
ik g1 | T 22 d)

This implies that

(4.26)



Since

n
2
Z Qilig Qi?,il Qi3i2
i1,12,i13=1

i1792713

n
2
Z Qil’iz C21’31'1 Qi3i4
11,02,3,14=1

i1 FlaF i3 70y

n
2
Z Qil’iz QiSi2 Qigil
11,82,43=1

174013

n
2
Z Qiliz Qi3i4 Qiail
i1,02,i3,ia=1

11 F£i2F£ 1370

n
2
Z Qi1i2 Qi2’i3 Qi2i4
11,i2,i3,44=1

i1 M2 A3 704

n
2
Z Qil’iz Qloﬂ? QZ5Z4
11,02,3,14=1

i1 FlaF i3 70

n
Z Q?l’ig QiBi4 Qigig

i1,i2,i3,i4=1

29

intisis s
Zl  Qui Oy = MO D 2?2 (n=3)(n =)
i1 i isFiatis

we obtain

Cases B,
i=litsk#jitLi=s nln= D=2
i=litskAjjAlits| - D020
iAli=s kA g=1]4s nln= D=2
itli=sk#j it j#s n(n—l)(7124—2)(n_3)
itlitsk=jj#Lj#s ”(”—U(T;G—?)(n—iﬂ)

i ALt kA=l 5n(n—1)(7712—2)(n—3)
it it s k£ jALj=s 5"("—1)(7;2—2)(71—3)
L lids kA Al A n<n—1)(n—21)8(n—3)(n—4)




Therefore

n(n—1)(n—2)(2n*—-5n+1)
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11 £l FAi3F14 705

n
Z QiliQ Qilia Qi4i2 Qi4i3
11,22,03,14=1
i1 A9 i3 A0
n
Z Qiliz Qi1i3 Q’i4i2 Qi4i5

i1 FioFisFiaFis

n
> QiiaQinis Qs Qi
11,12,3,04=1
i1A90Fi3 Al
n
Z Qilig Qilig Qi4i5 Qi4i2
i1 A9 A i3 FiaF s
n
Z Qi1i3 QiliQ Qi4i2 Qi4i5
i1 £l AigAiaFis
n
Z Qi1i3 Qiliz Qi4i5 Qi4i2
i1 2o i Eiais

n

Z Qilig Qili4 Q’igi5 Qigie

i1 FiaFi3£14 #1516

we get the following results,

Bop = . 4.27
2Q 26 (4.27)
Finally we find Bsg. By the fact that
a nn—1)(n—2)(n—3)(n—4)
Z Qi1i2Qi1i3Qi4i1 Qi4i5 15 )
11,12,13,04,i5=1
i1 FioFi3F14F0s
- nn—1)n—-2)(n—3)(n—4
Z Qiriy Qiris Qigis Qigin ( A 1)5< A )>
01,690 ,ia,i5=1
i1 FioFiz Fia iy
- nn—1)MnNn—-2)(n—3)(n—4
Z Qinir Qigis Qirin Qivis ( ) 1>5< ) )7
i1,69,05,i4,05=1
i1 £l FAi3Fia 05
= nn—1)(n—2)(n—3)(n—4)
Z Qinis Qisir Qiris Qivio 15 )

2n(n—1)(n—2)(n—3)(n—4)
15 7

2n(n—1)(n—2)(n—3)(n —4)
15 ’

2n(n—1)(n—2)(n—3) (n —4)
15 ’

nn—1)(n—2)(n—3)(n—4)(n—>5)

9
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Cases Bs
, . nn—1)(n—2)(n—3)(n—4)
= P TR IR
1 #lLi=s 5%
i#Li# s k=jk#m, nn—1)(n—2)(n—3)(n—4)
k4Lk+s 225
i# LiF s k# g k=m n(n—1)(n—2)(n—3)(n—4)
k41 k+s 225

i # L sk #Fm, g #m,

j=bLj#sm#lLm=s

n(n—1)(n—2)(n—23)
18

i #F Li# s, k# G k#Fm,j#m,
j=LiFsm#FlLm#s

dnn—1)(n—2)(n—3)(n—4)
225

i # Li# s, k# g kFm, g #m,

j#l,jzs,m:l,m%s

n(n—1)(n—2)(n—23)
18

i # Li# s, k#j k#Fm, g #m,
j%laj:&m#l?m%s

dn(n—1)(n—2)(n—3)(n—4)
225

Z%Z,Z%S,l{?ﬁj,k’%m,]#m,
jFELFsm=Ilm#*s

Inn—1)(n—2)(n—3)(n—4)
225

i FLiF sk F gk Fm, g Fm,
j#l,j#s,m#l,m:s

dnn—1)(n—2)(n—3)(n—4)
225

1£Li#£ s, k£ j kF£m,]#£m,
J#EL#Fsm#ELmMFESs

nn—1)(n—2)(n—3)(n—4)(n—75)

81

Therefore

nn—1)(n—2)(n—3)(5n* —9n+1)

B3Q -

This completes the proof.

. 4.28
405 (4.28)

]




CHAPTER V

UNIFORM BOUNDS

In this chapter, we first study about uniform bounds for the number of descents
and the number of inversions. In 2004, uniform bounds for normal approximation
for these random variables was given by Fulman ([11]). He used an exchangeable

pair and Rinott and Rotar’s Theorem ([19]). Fulman’s results are shown below.

Theorem 5.1. ([11]) There exists a positive constant Cy such that

C
Ades () < — .

vn

Theorem 5.2. ([11]) There exists a positive constant Cy such that

5.1 Fulman’s Constants

Our goal in this section is to calculate the constant C; in Theorem 5.1 and
the constant Cy in Theorem 5.2. Fulman ([11]) proved Theorem 5.1 and Theorem

5.2 by using Theorem 5.3 of Rinott and Rotar ([19]).

Theorem 5.3. ([19]) Let W be a random variable with EW = 0 and E (W?) = 1.
Let W' be an exchangeable pair of W satisfying (3.7). Suppose in addition that

W' —W| < A for some constant A. Then for z € R,

12 A3 A?
P(W<z2)—®(2) < =\/Var (EW (W' —W)?) + 48— +8—.
|P (W < 2) (z)|_)\\/ ar (EW ( )7) + 8)\+8\/X



Fulman ([11]) showed that

2 2
BV = <1_E>U’ U —U| < \/ﬁland Var(E“(U'—U)2> <

n +

for some constant Bj.

Hence by Theorem 5.3,

Agesm),z < 6n\/Var (E7r (U’ — U)z) + 24n (ﬁ) +4vV2v/n <%—)

N
6\/ 1 9977 67.9

S TR e
6\/ 1 10656
R
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By

n3

(5.1)

We see that the constant C'; in Theorem 5.1 are provided when the constant B

is obtained. Now, we will calculate the constant B;. By Proposition 4.4 and the

fact that
/ 2 4
EU -U) =~ (5.2)
([11], pp.68-70), we have
Var (E“ (U’ — U)2>
2 2
-y (E” (U — U)2> - (EE“ U — U)2)
16, 8 16
- n? 5(n+1)) n?
25.6
<5 (5.3)
By (5.1) and (5.3), we obtain C} = 1096, i.e
1096
A es(m),z S =
d ( ) \/ﬁ
Moreover, for the number of inversions, Fulman ([11]) showed that
2 6
EVV' = (1 - —) V[V — V| < V201 Var (E“ (V' — V)2> <
n Vn(n—1)(2n+5)

By

n3
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for some constant Bs.
To calculate the constant By, we describe the process below. By proposition 4.4

and the fact that
! 2 4
E(V' =V) = - (5.4)
([11], pp.68-70), we obtain
Var (E7r (V' — V)2>

—E (B (v - V)2)2 - (BE" (V' - V)2>2

16 2064 N 2256 864 20688 16
~ n2 1225(n — 1)~ 625n  875(2n +5)2  30625(2n + 5) n2
16/ 2004 N 2256 864 29688
Con2\ 1225(n—1)  625n  875(2n+5)2  30625(2n + 5)
30.8
<2 (5.5)

By similar argument to the descent case, we obtain

Aoz < 6n\/Var (B7 (V' = V)?) + 24n ( \/ﬁ> +4v2y/n (%)

GM 5184 204
Vn \/_ \/_

5421
\/_

It seems that the constant C; and Cy are large. Thus, it is reasonable to find

better constants. In Theorem 5.4 and Theorem 5.5, we improve the constants by

reducing them to be 12.44 and 14.24, respectively.

5.2 Bound for the Number of Descents

In this section, we prove the following theorem.

Theorem 5.4.
12.44

N

Ades(rr) <



35

To prove Theorem 5.4, we need some properties of U and U’ proved in Chapter

4.

Proof of Theorem 5.4

Proof. From Lemma 3.1 and (4.5), we use the argument in ([13]) and then we

obtain
Bucsim = |EG. (V) — E (V) . (V)]
_ ‘Eg;(U) _E/:g;(UH)K(t)dt‘
<l -ri@) [ K
tp [T - dw ko
T+ Tl 5.6

where g, is the solution of the Stein’s equation defined by (3.2).

First we will bound |73|. From (5.2) and Proposition 4.4(i) we note that

B(1- 2B (U - U)2>2

2

—1- gE U — U+ %E (E” (U — U)2>2
=1+ B (E"(U' - U)2)2
8
“ St D) (5.7)

From (3.5), (4.14) and (5.7) we have

1= |Bo W) - B ) [ K0 dt\

— |Eg () (1—/_2K(t)dt>'
~ |Bg. @) (1= Z W - vy?)]

— |Bg. () (1~

)
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< E@uWVJEO—gEMW—UVY (5.8)
< 1—\/257 (5.9)

Next, we will give a bound for |T3| by following the arguments of Neammanee and

Rattanawong ([13], pp. 20-23). By the fact that

(

1 fw+s<zyw+t>z,
g (w+s) =gl (w+t) < (|w|+@)(|s|+|t|) it s>,

0 otherwise,

\

(See [6], pp. 247), yields

:E[%wuw—gau%anﬁ

SE/U<z dt+E/ <|Uy+—>!t|K() dt

U+t>z

=. Ml -+ MQ.

For ¢ := |U’ — U| and z € R, define a function fs: R — R by

(

—35 if t <z —26,

Jo@) =9 -122—-68)+t ifz—-25<t<z+34,

1
2

35 if t > 2 +9.

\

It is not difficult to see that

3
[fs ()] < 50 forallt €R, (5.10)

and

/ 1 ifz—20<t<z+9,
5 (1) = (5.11)
0 ift<z—20ort>z+09.



Therefore,

By Lemma 3.1, (4.5) and (5.12), we have that

EAQ}@—5<U<zﬂﬂwﬁ§E/;ﬁHU+wK@Mt
=EUf (U).

Note that K (t) > 0 and K (t) =0 for |t| > |U' — U]|.

Thus we conclude from (5.2), (5.10), (5.12) and (5.13) that

(z—t<U<z)K(t)dt

/t>0
/ (z—t<U<z) K (t)dt
g

<FE
= I(z—t<U<z2)K(t)dt
Ul
< / [(z—|U'~U| <U < 2)K (t)dt
t|<|U"—U|
< EU fiyr—u (U)

< E|U| ‘fIU’—U\ (U)‘
§§EWWW—W

v E|U -UJ?

[\) I

IN

E_
N
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(5.12)

(5.13)

(5.14)



Next we try to bound M,.

ng4<m+¥?>mK@m
NoT

:MWAMK@ﬁ+erAMK@ﬁ

= M21 + MQQ.
From the fact that

| mr =g -or,

o0

Proposition 4.1(i) and Proposition 4.3(i), we have

Mﬁ:gEWWW—WS

3
n 1

<2 (B (B0 -vl)

A8\
n2

e

< g(76.18)

6.7

=~

and

S e A

fzngg(EMW-Uﬁ>i

9rn 48\ 1

32 n?
1.43

< 2

IN

9

Combining (5.14), (5.16) and (5.17), we get

11.17
v

1T <

38

(5.15)

(5.16)

(5.17)

(5.18)
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By the same argument as in (5.18) by using the fact that

)
-1 ifw+s>z,w+t<z,

g (wt ) =g (wH1) 2 ) — (Jw| + ¥) (5| + |t) ifs<t,

| 0 otherwise,

(See [6], pp. 247), we can show that

—11.17
T, > . (5.19)
Vn
From (5.6), (5.9), (5.18) and (5.19), we get
12.44
Acles('n') < . O
Vn

5.3 Bound for the Number of Inversions

Theorem 5.5.
14.24

N

Proof. For the the proof of Theorem 5.5, we can follow an argument of the proof

Aim;(fr) <

of Theorem 5.4 by using Proposition 4.1(ii), Proposition 4.3(ii) and Proposition
4.4(i1).

Similar to (5.6) we note that
Bt < B0 )~ BL V) [~ K ()
H|o [T - v ko
=: |Th| + |T3| .

From (3.5), (4.12), (4.14), (5.5) and (5.8) we have
i< B WP B (- vy
1.39

Wa

IN
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and

TQ_E/_m (6L (V)— g (V+ O} K (t)di

_E/ K(t)dt+E/ <|V|+@> [t| K (t)dt

N

V<z
V4it>z

gE/ I[(z—t<V<z)K(t)dt+E]V|/|t\K(t)dt
t>0 R

+ @E/Ruu((t) dt

L 3
< g\/EV%/E V-V + % (EIVIY)? (E V- V\4) :

L Yomn (E\V’ — V|4>‘3‘

4 8
< 3 n 8.33 n 1.52
—Vvnoono n
< 12.85
p— \/ﬁ .
Similarly we can show that
12.85
T > — .
2 =2 Jn

From these facts, we complete the proof. O



CHAPTER VI

POLYNOMIAL NON-UNIFORM BOUNDS

In this chapter, we give polynomial non-uniform bounds for the number of

descents and inversions. These are our main results.

Theorem 6.1. For sufficiently large n and z € R,

1756
<
(L+[2])"vn

Theorem 6.2. For sufficiently large n and z € R,

Ades(7r),z

12160
Aim)(w),z < o N3 -~
(1+z)" v/

Table 6.1 compares the constants of uniform and polynomial non-uniform

bounds.
uniform polynomial bounds
bounds | 2 =4.2 | 2 =8.5 z =100 z = 1000 z = 10000
12.44 12.44 2.05 1.71x 1072 | 1.76 x 107 | 1.76 x 107
Descent
V/n Vn Vn Vn 4D V/n
. 14.24 86.49 1424 [ 119x 1072 [ 1.22x107° | 1.22x 1078
Inversion
\V/n D Vn VD Vn V/n

Table 6.1: Constants of uniform and polynomial non-uniform bounds.

In fact Theorem 6.1 and Theorem 6.2 are more efficient than Theorem 5.4
and Theorem 5.5 in the case of z > 4.2 and z > 8.5, respectively. This chapter
is organized into 2 sections. The results for the number of descents and for the

number of inversions are in Section 6.1 and Section 6.2, respectively.
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6.1 Bound for the Number of Descents

To find a non-uniform bound, Chen and Shao ([6], pp. 248) show that for any

random variable W such that EW = 0 and EW? = 1,

C
(14 2)°

Elg. (W)l <

when z > 0 and ¢. is defined by (3.3). In our work, we use their argument to find

the explicit constant as in the following proposition.

Proposition 6.3. Let W be either U or V. Then for z > 4.2, we have

1
Elg, (W) < 5 (562 + 1.89E (1 +W)°) .
(1+2)

Proof. Note that

[1—®(z2)] [1 + \/%wew;@ (w)] if w < z,
g (w) = 2 (6.1
@@w_u-zmﬁ%u_@mﬂ it w > z,

([6], pp. 252).

This implies that

9
Bl O)F = Bl W10V <0+ Bl )P (0w < 35

9
+Elg. (W)PI (W > Z)

10
= Rl + RQ + Rg.
From
0<g(w)<1—®(z) forw<0 (6.2)
([6], pp. 252) and
z2
e 2
1-®(2) < for z >0 (6.3)

2\ 21
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([1], pp. 11), we obtain

2 2
Ry < Blg (W) < ( 2 ) .
2\ 2m
22
Since 1 (z) := (14 2)* e~ 7 is decreasing on [4.2, ),
7 13e7 _13m(42) 001
< < T = 3.
z 1+2 (1+2) (14 2)
Therefore
0.01
Ry < 5 (6.4)
(14 2)

Next we will bound Ry. From (6.1) we have

OV21 8122 9z
10

200 | for 0 < w < —.
ze or w 10

0<gi(w) < (1-2(2)) <1+

Thus

22 22
Since both 75 (2) == (14 2)* e~ 200 and r3 (2) := (1 + z)?e 20 are decreasing on

4.2, 00),
N (4.2)3 _ 26.3237
(1+2) (1+2)
and
e~ 3% g 13¢50 _L3rs(42) 001
T 14z T (1427 (1+2)*
Therefore
562
Ry < (6.5)

(1+2)%



By (3.5) and Chebyshev’s inequality, we have

Rs

N

<—— _E(14+W)°
(1+%)

1.89
(1+ 2)6

< EQ+W)°.
Combining (6.4)—(6.6), we complete the proof.

Proposition 6.4. Let 2 > 4.2 and h : R — R be defined by

(\/%(1 T w?)e [1— @ (w)] — w) O(z) ifw> 2,

h(w) =
(@(1 +w?)e’T ® (w) + w) 1-®(2) ifw<z.
Then
. 15.44 .
(i) h(w) < 12y forw < .

(it) h(w) < 1.001(1+ 2) for £ <w < 2.

(i1i) h(w) < < 1.001 (1 + z) forw > z.

4
(1+2)° ~

Proof. 1. For w < ?jf, since h is increasing and non-negative, we obtain

922\ o2 e‘é
h(w)<(V2r |14+ — e 4z
16 2/ 21

< <\/%(1+z2)e%+z> (6 Zj)

2/ 27

7z2 z2

(14 2% e 52 LT

4 \ 2T

1z 0.01
<(1+2z)e 32 + 3
(1+2)

15.44

<
T (1+2)

where the last two inequalities come from the fact that both (1 + 2)4 e

22
and (1 + 2)* e~ 7 are decreasing on [4.2, 00).

44

(6.8)

(6.9)

722

32
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2. For & < w < z, by (6.3) and (6.7) we have

h(w) < (M(Hz?)e?m) (1—®(2))

22

- 1+ 22 N e 7
-z \ 2T
< 1.001 (1 + 2) (6.10)

2

where we use the fact that z > 4.2 and 4= is decreasing on [4.2,00) in the

last inequality.

3. For w > z, Chen and Shao ([6], pp. 248-249) showed that

2

h < .
(w) < 1+ w3

We immediately obtain that

2
h(w) < <
1+237 (142)

5 < 1.001(1+2). (6.11)

Proof of Theorem 6.1

Proof. Suppose that z > 0. In case of z < 0 we use the fact that ® (z) = 1—-P (—2)

and then apply the result to —U.

140.61

Case 1. 0 < z < 4.2. By Theorem 5.4 and the fact that 1 < a )3 we have
+z

A < 12.44 < 1750
des(m),z > \/ﬁ > (1 n Z)3 \/ﬁ

Case 2. z > 4.2. Recall by (5.6) that

(6.12)

Bt < B0 0) - L) [ K @ at
e [T - dw o ko
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By (5.7), (5.8) and Proposition 6.3 we have

2
Ty| < 7)3 \/562 +1.89E (1+U)". (6.14)

(1+=z
Next we will bound |T3|. Using the fact that
g (w4 8) — g (w+ 1) —/ B (w + ) dul
t

<I(z—max(s,t) <w < z—min(s,t))

where h is defined as in (6.7) ([6], pp. 250-251) we have

LI<E [ HhW) g U+ KOl < T+ T (015
where

TglE/oo (2 — max (0,) < U < = — min (0, ) K (t) dt

Ty = E // (U + u) K (t) dudt.
From now on, we let § =: |U" — U].

We used the idea from Neammanee and Rattanawong ([14], pp. 38) to define

fs : R — R by

(

0 if t < z— 20,

Jo@)=q A +t+8°(t—2+2) ifz—20<t<z+25,

\45(1+t+5)3 if t > 2+ 20.

Then
fs ()] < 46 (1 + [t| +0)° for all t € R (6.16)
and
(1+2—10)7° ifz2—20<t<z+20,

5(t) > (6.17)
0 ift<z—20ort>z-+20.
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By Lemma 3.1, we have

E/oo FU+) K (t)dt = EUf; (U). (6.18)

From the facts that

K (t) =0 for [t| >4,
1.15(1 4z — 5)3 > (1+ 2)° for sufficiently large n,
(4.11), (6.16) — (6.18), we obtain
T < E/|<5]I(z— 1 < U < 2+ ) K (t) dt
<

gE/ I(z—0<U<z+0)K(t)dt
[t]<o

< (11'+1i)3E/|t§6<1+z—5>311(z—5 <U <2408 K(t)dt
< (11:;3E MS&fé(U-{-t}K(t) dt
_ (fji)gE | swsorma
- (11}13)3EW s0)
< <1i62)3E\Ur|U'—U|<1+\U|+\U’—U\>3
'
< %E\m (1 U] + 2—]5) . (6.19)

Next, we will estimate [Ths|. From (4.11), (5.15), Proposition 6.4(ii) and 0 < =+

for sufficiently large n, we obtain

00 0
E/ /h(U+u)K(t)]I(i—Z<U+u§z)dudt
—o0 Jit
00 0 3z
§1.001(1+Z)E/ /K(t)]l(U—i—u>Z>dudt
—o00 Jit
00 0 3z
§1.001(1+Z)E/ /K(t)H<U+5>Z)dudt
—o0 Jt

00 0 3 1
§1.001(1+Z)E/ /K(t)]l(U>ZZ—Zg )dudt
—o00 Jt
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_1 oo
§1.001(1+2)E]I<U 528 >/ | K (1) dt

< 1.001( ( )|U’ Ul
E(
<5.21(1+ ) — (6.20)
v (T4 5—)
8 8
From the fact that
o0 0 )
E/ / K (t) dudt < E/ K (1 de =SB0~ U, (6.21)
—o0 Jit —00

(4.11), (4.14), Proposition 6.4(i), Proposition 6.4(iii) and (6.20) we obtain

e 0 3
|T22|§E/ /h(U—i—u)K(t)]I(U—i—ugZzorU—l—u>z)dudt
—oo Jt

oo 0
+E/ /h(U+u)K(t)H<%<U+u§z)dudt

11‘:45 / / K (t) dudt +5.21 (1 + 2) \/1_]‘? c +5U)14
< m (80.23 + 34.15E (1 + U)"). (6.22)
From (6.19) and (6.22), we have
15.94 23\’
Ty| < mE‘m (1 + U]+ %)

Hence, by Proposition 4.1(i), Proposition 4.2(i), (4.11), (6.14) and (6.23), for

sufficiently large n, we obtain

1.27 6
Ades(n),z < 562 4+ 1.89E (1 + U
des(m), (1+Z)3\/ ( )
3
15.94 2/3
+ 2 _E|U 1+\U|+i
(1+2)°%/n vn
1 4
+———— (8023 +34.15E (1 + U
(1+z)3\/ﬁ( ( ')
_ (O B >
T+’ Vn (+2)%vn (1+2)°Vn
1756

< -
T (1+2)°vn
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6.2 Bound for the Number of Inversions

Using (4.12), Proposition 4.1(ii), Proposition 4.2(ii) and the argument of the proof

of Theorem 6.1, we can prove Theorem 6.2 as below.
140.61

(1+2)

Case 1. 0 < 2z <4.2. By Theorem 5.5 and the fact that 1 < we have

3

14.24 2003
Aim)(fr),z < < 3 .
Vo T (142 n

Case 2. z > 4.2.

1.39
(1+ 2)3

27.6
+— 2 RV (1+|V|+
(1+2)°vn

Aino(m),z < \/ 562 + 1.89F (1 +V)°

6 \3
Vn
1 4
+ —— (416.88 4+ 177 13E (1 +V
(1+2)°%n ( ( ")
110.07 1392.15 10657.21
< 3 + 3 + 3
(14+2)°vn  (1+2)°vn (14+2)0°vn
12159.53
<—F5——.
(14 2)"v/n

From above two cases Theorem 6.2 has been proved.




CHAPTER VII

EXPONENTIAL NON-UNIFORM BOUNDS

Most of non-uniform bounds, the denominator may be of the polynomial form.
In our work we make it to be exponential and give a better bound. In this chapter,
we give exponential non-uniform bounds for the number of descents and inversions.

These are main results.

Theorem 7.1. For z € R,

1061 + (1265 + 3780 ) o (37) 1 7003 04%)
Acles(7r),z < '

Moreover for sufficiently large n,

51.25
Ades(7r),z <

_— | z

4

B

®

Theorem 7.2. For z € R,

0.008 + (1.388 + 0.46¢ 77 ) 245 4 g 5ot ()

Ainv(w),z < |

3

5
H

Moreover for sufficiently large n,

792.71
e%\/ﬁ.

The exponential bounds in Theorem 7.1 and Theorem 7.2 are much sharper

Az'nv(Tr),z <

than the polynomial bounds in Theorem 6.1 and Theorem 6.2 in the case of z > 25

and z > 44 respectively.
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uniform exponential bounds
bounds | 2 =5.6 | z =16.1 z =100 z = 1000
12.44 12.44 0.92 712 x 10710 [ 1.37 x 107107
Descent
| ] 14.24 196 14.24 1.11 x 1078 | 2.12 x 107196
nversion —

Table 7.1: Constants of uniform and exponential non-uniform bounds.

Table 7.2 and Table 7.3 compare the constants of polynomial and exponential

non-uniform bounds for the number of descents and the number of inversions,

respectively.
z=10 | z=25 z =50 z =100 z = 1000
Polynomial bounds 132 0.10 | 133x 1072 | 1.71 x 10~° 1.76 x 107°
Exponential bounds 4.21 010 | 1.91x107" | 712 x 107" | 1.37 x 107"
N N B Vg N

Table 7.2: Constants of polynomial and exponential bounds for the number of

descents.

z=10 | z=44 z="70 z =100 z = 1000
Polynormial bounds 9.14 014 [34x107%2| 1.2x1072 1.22 x 107°
vn | n n n Vvn
Exponential bounds 65.07 0.14 2x107° 1.11 x 107% | 2.12 x 10106
vn | n Vvn Vvn Vvn

Table 7.3: Constants of polynomial and exponential bounds for the number of

inversions.

The proofs of Theorem 7.1 and Theorem 7.2 are separated into 2 sections as

described below.
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7.1 Bound for the Number of Descents

Before proving a non-uniform bound, we need Lemma 7.3 which gives an expo-

nential bound of EeV. The proof of Lemma 7.3 uses the idea from Lemma 5.1 of

[8].
Lemma 7.3. Forn > 12, EeV < e%<l+ﬁ).

Proof. For s € (0,00), let fs : R — R be defined by fs(u) = e and h: (0,00) — R

be defined by h(t) = Ee'V. From (4.11) and (4.14), we have
0o n ) )
/ K(t)dt:Z(U —-U)" <3.
From Lemma 3.1, (4.5) and K (t) = 0 for |[t| > § := |U" — U|, we obtain

R'(s) = EUeY

:E/Oo fi(U+t) K (t)dt

SE/ UK (t) dt

o0

sE / UK (t) dt
t<5

< SE/ UK (t) dt
1] <6

< 3se® Ee’V
< 3sFe’V + 3sEe’V ’es‘s — 1|

< 3sFe®V + 6520 Ee®Y

where we have used the inequality |e* — 1| < 2|z| for |z] < 1 to get the last
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inequality. Therefore

Hence EeV = h(1) < e%<1+4767?). O
Proof of Theorem 7.1

Proof. By the same reason of Theorem 6.1, it suffices to prove the Theorem 7.1

in case of z > 0. Note that 1 < for all 0 < z < 5.2. Hence, by Theorem 5.4

ei
we have
12.44  45.65
A es(m),z S S F3 . 71
wmE= T T iy (1)
Suppose that z > 5.2. By (5.6) we note that
Adesimys < \Eg; W)~ B w) [ K dt]
+\E/ {g;<U>—g;<U+t>}K<t>dt\
= |T1| + | T3] . (7.2)

By (3.3), (3.5) and (6.3), we have
Elg.(U)" < Elg. (U)]

:E|g;(U)]H<U§%>+E|9;(U)’H<U>g)

T - z
< Ze® _ od
_(1+\/g2’€8)(1 @(z))+P<U>2>

_Z2
zzezs) (e - ) +e 2BV
2 2/ 2m

z 3z

e 2 e~ s
221 2

»

N

< (2.68 x 107" + Ee¥) ez, (7.3)
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z 'z2 z 22
where we have applied the fact that e3e~% < 5.32x10 % and e3e~ 2 < 1.81 x 1075
on [5.2,00) to obtain the last inequality.

From (5.7), (5.8) and (7.3) we have

8 0.021+1.265 (EeV)?
e S 74

Next, we will give a bound of |T3|. From (6.15) we have

< B[ Hh@) g U+ KOl <Ta+ T (15)

where
T21:E/ I(z — max (0,£) < U < z — min (0, ¢)) K (¢) dt
o 0
—oo Jit

Let fs : R — R be defined by

/

0 ift<z-—26

fs(t) = e%(t—z+2(5) ifz2—-20<t<z+20

\4565 if t > 2z + 20.
Then
, es ifz2—20<t<z+26
5(t) > (7.6)
0 ift<z—20andt>z+ 20
and

If5 (t)] < 46ez  for all ¢ € R. (7.7)
Then by Lemma 3.1, (4.11), (7.6), (7.7) and the facts that

K (t) =0 for |t| > o,
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we obtain
]EﬂgE/ I(z—[t| < U < 2+ |t) K (t) dt
[t|<o

gE/ I(z=0<U<z45)K(t)dt
It]<6

2v/3
eV it
< — e [(z—0<U<z+0)K(t)dt
€2 |t|<s
2V3
evn ,
< —F f5(U +1) K (t)dt
€2 [t|<s
23
evn <
:—ZE/ fs(U+t) K (t)dt
ez oo
2v3
e vn
= —FEUf5(U)
e2
4&
< BUleE U - U
e2
13.86¢ Ve
. e vn 21 Ul
< E|UI")? (EeY)?
< S (B (B
2v/3 1
3.78¢ vn (EeY)2
e (BeT)" (7.8)
€44/MN

To bound |Th|, we note that for z > 5.2 and w < 22, by using (6.7) and (6.8) we

have

722 z

(1+2%)e 3 L€ 7 0.20
z \/ es

z

where we have used the fact that e3e™ 732 <0.037, ze2e™ 322 < 0.189 and

h(w) < (7.9)

z z

eze” 2 < 1.81 x 107° on [5.2, 00).
By (4.11), (4.14), (5.15), Proposition 6.4(ii), Proposition 6.4(iii) and 6 < % for

sufficiently large n, we have

o0 0
E/ /h(U—I—u) )]I(U—I—u>3z>dudt
—o0 Jt
') 0 3z
§1.001(1+2)E/ /K(t)]l(U+u>Z)dudt
—00 J it
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[e's) 0
§1.001(1+z)E/ /K(t)]I(U+5>3Z)dudt
- .
§1.001(1+2)E/ /K(t)H<U>§>dudt

< 1. ' 3

< 1001(1+z)8E11( )yU Ul
5.202 EeV

< 14225

=/ (1+2)

e3
From the fact that “; is decreasing on [5.2, 00) we obtain

o 0 T9EeY
E/ /h(U+u) )]I(U+u>3—)d dr < 30FC (7.10)
—oo Jt 4 e4ﬁ

Thus, from (6.21), (7.9) and (7.10) we obtain

00 0
|T22|§E/ /h(U+u)K(t)]1(U+u§%)dudt
—oo Jit
oo 0 3z
+FE h(U—I—u)K(t)]I Z<U+u dudt

O 20 / / K (t) dudt + 8.79FeV
64\/_
1.04 8.79FeV

< — + —= . 7.11
o 61\/5 61\/ﬁ ( )
From (7.5), (7.8) and (7.11) we have
1,04+ 3.78¢ V% (BeV)? + 8.79EeV
: : T9Ee
Tl < i . (7.12)
eivn

Hence, by Lemma 7.3, (7.1), (7.2), (7.4) and (7.12), the theorem is proved. [

7.2 Bound for the Number of Inversions

Proof of Theorem 7.2. Using (4.12) we can follow an idea of Lemma 7.3 to show
that Ee" < e%(H%). Then Theorem 7.2 can be proved by this fact and the

argument of Theorem 7.1 as described below. When z < 5.2 we can show that

14.24< 53
N ei\/ﬁ'

Ades(7r),z <
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Thus we suppose that z > 5.2. Similar to (5.6) we note that
Bt <[ 0) = B4 V) [~ K ()

+ ‘E/_Z {o. (V) —g. (VJFt)}K(t)dt‘

<|E ) - B ) [ K@

+E/ I(z—max(0,t) <V < z—min (0,t)) K (¢)dt

+ E/ / (V +u) K (t) dudt.
51.84 0.46¢ V% (Ee¥)? L 0.002 8.58E¢Y
<SVE@ (VY \/

— t———.
64\/_ eiy/n  eiyn
_ 0,006 +1.388 (EeY)? N 0.46¢ 7 (EeV)?  0.002 N 8.58 Ee”
- eiy/n eiy/n eiy/n eiyn

The proof of Theorem 7.2 is now complete.

1




CHAPTER VIII

FURTHER RESEARCH

In this thesis, the number of descents and the number of inversions must be
defined on a random permutation 7 of the set {1,2,...,n}. It involves one to one
property of function. In 2007, these two statistics have been generalized to reduce
one-to-one property. It is based on multiset in which Conger and Viswanath ([9])
used to analyze the arrangement of molecule in Human genome. The range of 7
in their work is a multiset generalized the Fulman’s work to random permutation

7:{1,2,...,n} = {1™ 2" . k™} when ny +ny + -+ + ng = n, here

{lnl,QnQ,...,k‘nk} = {]_1,]_2,...,1n1,21,22,...,2n2,...,k’1,k2,...,k5nk}.

They gave a bound for normal approximation to be rate of order \/Lﬁ An open

problem is “Can we improve it to be a non-uniform bound?”

Moreover these statistics can be generalized as described below. The number
of d-descents of 7, denoted by des, (7), is defined as the number of pairs (i, 7)
with i < j < i+ d and 7 (i) > 7 (j). In particular, 1-descents correspond to
descents in the traditional sense, and (n — 1)-descents correspond to inversions.
In 2008, Miklés Béna ([5]) used Janson’s dependency criterion to prove that the
distribution of d-descents of permutations of length n converge to a normal dis-
tribution as n goes to infinity. In 2011, John Pike ([17]) provided an explicit
formula for the mean and variance of these statistics and obtain bounds on the
rate of convergence using Stein’s method. His result shows that the distribution of

d-descents in a random permutation converges to the normal distribution on the
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order of \/Lﬁ when d is fixed. It is an open problem to find a non-uniform bound.
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