

ข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจร

นางสาวเบญจพรรณ กวีเลิศพจนา

วิทยานิพนธน้ีเปนสวนหน่ึงของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา ภาควิชาคณิตศาสตรและวิทยาการ

คอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2556

ลิขสิทธ์ิของจุฬาลงกรณมหาวิทยาลัย

วิทยานิพนธน้ีเปนสวนหน่ึงของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา

ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2556

ลิขสิทธ์ิของจุฬาลงกรณมหาวิทยาลัย

HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM

Miss Benjapun Kaveelerdpotjana

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

Thesis Title HALF-ORBITAL EXTREME POLE CLUSTERING
ALGORITHM

By Miss Benjapun Kaveelerdpotjana
Field of Study Applied Mathematics and Computational

Science
Thesis Advisor Boonyarit Intiyot, Ph.D.
Thesis Co-Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 Chairman

(Petarpa Boonserm, Ph.D.)

 Thesis Advisor

(Boonyarit Intiyot, Ph.D.)

 Thesis Co-Advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

 Examiner

(Arthorn Luangsodsai, Ph.D.)

 External Examiner

(Assistant Professor Montri Maleewong, Ph.D.)

Thesis Title HALF-ORBITAL EXTREME POLE CLUSTERING
ALGORITHM

By Miss Benjapun Kaveelerdpotjana
Field of Study Applied Mathematics and Computational Science

Thesis Advisor Boonyarit Intiyot, Ph.D.
Thesis Co-advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

 Thesis Co-advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

 iv

T HAI ABST RACT

เบญจพรรณ กวีเลิศพจนา : ข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจร.
(HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM) อ.ที่ปรึกษา
วิทยานิพนธหลัก: ดร.บุญฤทธ์ิ อินทิยศ, อ.ที่ปรึกษาวิทยานิพนธรวม: ผศ. ดร.กรุง สิน
อภิรมณสราญ, 51 หนา.

วิทยานิพนธน้ีนําเสนอข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจร ข้ันตอน
วิธีการจัดกลุมขอมูลแบบใหมที่ถูกนําเสนอไดประยุกตแนวคิดของการเลือกข้ัวสุดขีดในการแบง
ขอมูลออกเปนกลุม ความแปรปรวนรวมถูกใชเปนเครื่องมือในการวัดประสิทธิภาพของข้ันตอนวิธี
ที่เสนอกับข้ันตอนวิธีที่ถูกนํามาเปรียบเทียบซึ่งไดแก ข้ันตอนวิธีการจัดกลุมแบบ k-means และ
k-medoids ข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจรไดแกไขจุดดอยสามจุดของ
ข้ันตอนวิธีที่ถูกนํามาเปรียบเทียบ คือ การระบุจํานวนของกลุมขอมูลกอนเริ่มข้ันตอนวิธี การ
คํานวนระยะหางระหวางขอมูลกับเซนทรอยดในทุกการวนซ้ํา และการใหผลลัพทสุดทายของการ
จัดกลุมตางกันเมื่อกําหนดเซนทรอยดเริ่มตนที่ตางกัน

ภาควิชา คณิตศาสตรและวิทยาการ
คอมพิวเตอร

สาขาวิชา คณิตศาสตรประยุกตและวิทยาการ
คณนา

ปการศึกษา 2556

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ที่ปรึกษาวิทยานิพนธหลัก

ลายมือช่ือ อ.ที่ปรึกษาวิทยานิพนธรวม

วิทยานิพนธน้ีนําเสนอข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจร ข้ันตอน
วิธีการจัดกลุมขอมูลแบบใหมที่ถูกนําเสนอไดประยุกตแนวคิดของการเลือกข้ัวสุดขีดในการแบง
ขอมูลออกเปนกลุม ความแปรปรวนรวมถูกใชเปนเครื่องมือในการวัดประสิทธิภาพเพื่อใช
เปรียบเทียบข้ันตอนวิธีที่เสนอกับข้ันตอนวิธีการจัดกลุมแบบ k-means และ k-medoids
ข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจรไดแกไขจุดดอยสามจุดของข้ันตอนวิธีที่ถูก
นํามาเปรียบเทียบ คือ การไมจําเปนตองระบุจํานวนของกลุมขอมูลกอนเริ่มข้ันตอนวิธี การใช
ระยะหางระหวางขอมูลโดยไมตองคํานวณซ้ํา และการใหผลลัพธของการจัดกลุมเหมือนกันทุกครั้ง
สําหรับชุดขอมูลเดียว

เบญจพรรณ กวีเลิศพจนา : ข้ันตอนวิธีการเกาะกลุมขอมูลแบบข้ัวสุดขีดครึ่งวงโคจร.
(HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM) อ.ที่ปรึกษา
วิทยานิพนธหลัก: ดร.บุญฤทธ์ิ อินทิยศ, อ.ที่ปรึกษาวิทยานิพนธรวม: ผศ. ดร.กรุง สิน
อภิรมณสราญ, 54 หนา.

คณิตศาสตร์ประยุกต์และ

วิทยาการคณนา

 v

ENGLISH ABST RACT

5472015023 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS: EXTREME POLE / VECTOR CORE / CLUSTERING ALGORITHM

BENJAPUN KAVEELERDPOTJANA: HALF-ORBITAL EXTREME POLE
CLUSTERING ALGORITHM. ADVISOR: BOONYARIT INTIYOT, Ph.D., CO-
ADVISOR: ASST. PROF. KRUNG SINAPIROMSARAN, Ph.D., 51 pp.

This thesis proposes the half-orbital extreme pole clustering algorithm.
The new proposed clustering algorithm applies the idea of the farthest pair to
partition instances into groups. The total variance is used as the performance
measure to compare proposed algorithm with the compared algorithms which are
k-means and k-medoids clustering algorithms. Half-orbital extreme pole clustering
algorithm can rectify the three drawbacks of compared algorithms which are the
number of clusters is identified initially, the algorithms need to calculate the
distances between instances and centroids in every iteration and the algorithms
give the different final clusters when different initial centroids are selected.

Department: Mathematics and
Computer Science

Field of Study: Applied Mathematics
and Computational
Science

Academic Year: 2013

Student's Signature

Advisor's Signature

Co-Advisor's Signature

Co-advisor's Signature

This thesis proposes the half-orbital extreme pole clustering algorithm.
The new proposed clustering algorithm applies the idea of the farthest pair to
partition instances into groups. The total variance is used as the performance
measure to compare proposed algorithm with k-means and k-medoids clustering
algorithms. Half-orbital extreme pole clustering algorithm can rectify the three
drawbacks of compared algorithms which are ignoring the number of clusters,
using the original distances in every iteration and producing the same final clusters
for a given dataset.

5472015023 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS: EXTREME POLE / VECTOR CORE / CLUSTERING ALGORITHM

BENJAPUN KAVEELERDPOTJANA: HALF-ORBITAL EXTREME POLE
CLUSTERING ALGORITHM. ADVISOR: BOONYARIT INTIYOT, Ph.D., CO-
ADVISOR: ASST. PROF. KRUNG SINAPIROMSARAN, Ph.D., 54 pp.

 vi

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. Boonyarit Intiyot
and my co-advisor Assistant Professor Dr. Krung Sinapiromsaran for many helpful
discussions and suggestions. When I faced with many obstacles in my life, they
always gave me a lot of encouragement throughout the Master degree program, not
only the research methodologies but also many other methodologies in life. I could
not complete this thesis without their support.

Next, I would like to thank Dr. Petarpa Boonserm, Dr. Arthorn Luangsodsai
and Associate Professor Dr. Montri Maleewong my thesis committees for their
comments and suggestions.

Moreover, I wish to thank Applied Mathematics and Computational Science
Program in the Department of Mathematics and Computer Science, Faculty of
Science, Chulalongkorn University and The Development and Promotion of Science
and Technology Talents project (DPST) for financial and technical support. They
provided me several precious moments of my life and gave me a chance to educate
in the most reputable university in Thailand.

Furthermore, I am thankful to my family and my friends especially
Wacharasak Siriseriwam, Suebkul Kanchanasuk, Panote Songwattanasiri,Chareonchai
Sirisomboonrat and Nattorn Buthong for all their support throughout the period of
this research.

I would like to express my sincere thanks to my advisor Dr. Boonyarit Intiyot
and my co-advisor Assistant Professor Dr. Krung Sinapiromsaran for many helpful
discussions and suggestions. When I faced with many obstacles in my life, they
always gave me a lot of encouragement throughout the Master degree program, not
only the research methodologies but also many other methodologies in life. I could
not complete this thesis without their support.

Next, I would like to thank Dr. Petarpa Boonserm, Dr. Arthorn Luangsodsai
and Associate Professor Dr. Montri Maleewong my thesis committees for their
comments and suggestions.

Moreover, I wish to thank Applied Mathematics and Computational Science
Program in the Department of Mathematics and Computer Science, Faculty of
Science, Chulalongkorn University and The Development and Promotion of Science
and Technology Talents project (DPST) for financial and technical support. They
provided me several precious moments of my life and gave me a chance to educate
in the most reputable university in Thailand.

Furthermore, I am thankful to my family and my friends especially
Wacharasak Siriseriwam, Suebkul Kanchanasuk, Panote Songwattanasiri, Chareonchai
Sirisomboonrat and Nattorn Buthong for all their support throughout the period of
this research.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES... x

CHAPTER I INTRODUCTION ... 1

1.1 Motivation and literature surveys ... 1

1.2 Research objective ... 3

1.3 Thesis overview .. 3

CHAPTER II BACKGROUND KNOWLEDGE ... 4

2.1 Metric .. 4

2.2 Clustering algorithm... 5

2.2.1 K-means algorithm .. 5

2.2.2 K-medoids algorithm ... 8

2.3 Performance measure ... 11

2.3.1 Total Variances ... 11

2.4 Pre-processing ... 13

2.5 Literature review .. 13

2.5.1 Multi-attributed frame .. 13

2.5.2 Multi-attributed lens ... 14

2.6 Background concept .. 15

2.6.1 The farthest pair in clustering ... 16

2.6.2 Dispersion .. 16

 viii

2.6.2.1 Sturge’s formula .. 17

CHAPTER III HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM 19

3.1 The notations for Half-Orbital Extreme Pole algorithm 19

3.2 Half-Orbital Extreme Pole algorithm .. 20

3.3 The pseudo code of HOEP algorithm .. 23

CHAPTER IV EXPERIMENTS AND RESULTS.. 26

4.1 Dataset description .. 26

4.1.1 Iris dataset .. 26

4.1.2 Seed dataset.. 27

4.1.3 E.coli dataset ... 28

4.1.4 Wine dataset .. 29

4.2 Results of the experiments .. 30

CHAPTER V CONCLUSION .. 39

REFERENCES ... 41

APPENDIX .. 44

APPENDIX : RESULTS FROM HALF-ORBITAL ALGORITHM .. 45

VITA .. 54

 ix

LIST OF TABLES

Page

Table 1 The statistical information of iris dataset ... 26

Table 2 The statistical information of seed dataset ... 27

Table 3 The statistical information of E.col dataset ... 28

Table 4 The statistical information of wine dataset.. 29

Table 5 Dataset Description ... 30

Table 6 Results of iris dataset from HOEP algorithm .. 31

Table 7 Comparison of the total variance of iris dataset .. 32

Table 8 Results of seed dataset from HOEP algorithm .. 33

Table 9 Comparison of the total variance of seed dataset... 34

Table 10 Results of E.coli dataset from HOEP algorithm ... 35

Table 11 Comparison of the total variance of E.coli dataset .. 36

Table 12 Results of wine dataset from HOEP algorithm .. 37

Table 13 The comparison of the total variance of wine dataset 38

Table 14 The results from iris dataset ... 45

Table 15 The results from seed dataset ... 48

Table 16 The results from E.coli dataset ... 51

Table 17 The results from wine dataset.. 52

 x

LIST OF FIGURES

 Page

Figure 1 Three regions are partitioned into a frame by a vector core. 14

Figure 2 All instances having the same target class with the extreme poles lie in the

lens. ... 15

Figure 3 Positively skewed curve, normal curve and negatively skewed curve

respectively .. 17

Figure 4 The examples of dispersion in nonhomogeneous... 17

Figure 5 The vector core is divided into ݊ intervals of equal width 21ߙ

Figure 6 ݌ଵ is chosen as the center of balls with several determined radiuses. 21

Figure 7 The desirable layer containing a splitting point is specified by parameter

gamma. ... 22

Figure 8 The ball ݌)ܤଵ;
(ଶ௝ିଵ)

ଶ
 is created and all instances are divided into two (ߙ

groups which are instances inside and outside the ball. 22

Figure 9 All instances in the ball lie on a half of ball with side along vector core. 23

Figure 10 The flowchart of HOEP algorithm.. 25

Figure 11 Iris dataset .. 26

Figure 12 Seed dataset .. 27

Figure 13 E.coli dataset ... 28

Figure 14 Wine dataset .. 29

Figure 15 Result of iris dataset from HOEP algorithm with the first transformed

function and the gamma value as 0.25 .. 46

Figure 16 Result of iris dataset from HOEP algorithm with the second transformed

function and the gamma value as 0.35 .. 46

Figure 17 Result of iris dataset from k-means algorithm (k = 3) 47

Figure 18 Result of iris dataset from k-medoids algorithm (k = 3) 47

Figure 19 Result of seed dataset from HOEP algorithm with the first transformed

function and the gamma value as 0.10 .. 49

Figure 20 Result of seed dataset from k-means algorithm (k = 4) 49

Figure 21 Result of seed dataset from k-medoids algorithm (k = 4) 49

 xi

Figure 22 Result of seed dataset from HOEP algorithm with the second transformed

function and the gamma value as 0.1 .. 50

Figure 23 Result of seed dataset from k-means algorithm (k = 2) 50

Figure 24 Result of seed dataset from k-medoids algorithm (k = 2) 50

Figure 25 Results of E.coli dataset from three algorithms are the same. 53

Figure 26 Results of wine dataset from three algorithms are the same. 53

CHAPTER I

INTRODUCTION

1.1 Motivation and literature surveys

Nowadays, the technology of data warehouse is rapidly developed. There are
billions of information available to be archived. As the result of numerous data, data
mining can help us to discover information or knowledge which is hidden in a
database. Data mining, which has known in terms of the knowledge discovery in
database (KDD), is the process of discovering hidden information or hidden
knowledge from large databases. Data mining can be applied in many areas of
research, such as market basket analysis in business; biomedical, bioinformatics, and
genetics in area of sciences; and wireless sensor network in engineering.

Data mining can be separated into two major types which are supervised
learning and unsupervised learning. The supervised learning concerns with a dataset
whose target class of instances is given. This type of learning consists of two
processes which are the training step and the predicting step. In the training step, the
training dataset is used to construct the model to capture characteristics or patterns
that lead to a given target class. Then, the constructed model is used to predict the
target class of unknown instances in predicting step. In other word, the supervised
learning tries to construct model from known instances in order to classify unknown
instances. There are several techniques in the supervised learning, such as decision
tree [1], k-nearest neighbors [2], naive Bayesian algorithm [3], and support vector
machine (SVM) [4]. On the other hand, the unsupervised learning does not need the
target class. It finds the hidden structure in the unlabeled instances. There are
several approaches in the unsupervised learning, such as principal component
analysis (PCA) [5], self-organizing map (SOM) [6], and clustering algorithm. In this
thesis, we propose a clustering algorithm.

A clustering algorithm is a procedure to organize instances into groups
(clusters), such that instances in the same group are more similar to one another
than instances in other groups. There are several techniques in clustering such as k-
means [7, 8, 9], PAM [10], CLARA [11] and CLARANS [12]. However, k-means algorithm
is one of the widely used techniques because of its efficiency and simplicity.

K-means algorithm was first proposed by Lloyd in 1957 but it was published
in 1982 [9]. However, MacQueen is the first one who used the term “k-means” in
1967. In the beginning, MacQueen proposed k-means algorithm [7] that each cluster

 2

is represented by the center of the cluster (centroid). There are several weaknesses
of this algorithm. For example, it is sensitive to outliers. So the existence of outliers
could strongly affect the result of clustering. Another drawback is that the number of
clusters is required to be determined in advance. In addition, the algorithm is not
suitable for discovering clusters with non-convex shapes. Moreover, computing the
centroid is not reasonable for categorical variables. Later, k-medoids or Partition
around medoids (PAM) introduced by Kaufman and Rousseeuw in 1987 [10] was
proposed to fix the problem in the aspect of interpretation categorical data by
changing the representative of a cluster from centroid to be one of the instances in
the cluster called medoid. Furthermore, PAM is more robust than k-means with
respect to outliers because outliers or other extreme values have less influenced on
a medoid than a centroid.

However, PAM is not effective for large datasets. Hence, in 1990, Kaufman and
Rousseeuw suggested the Clustering for LARge Applications algorithm (CLARA) [11] for
dealing with the large dataset. Instead of finding medoids for the entire dataset,
CLARA draws samples from the dataset, and then applies the PAM algorithm on each
sample and gives the best clustering as the output. Even though CLARA can deal
with the large dataset, one weakness of CLARA is that the efficiency of the algorithm
depends on the sample size. Another weakness is that a good clustering based on
samples might not lead to a good clustering of the whole dataset if the samples are
biased.

Admittedly, k-means and k-medoids clustering are very simple and reasonably
fast algorithms [13]. However, they have three major disadvantages. First, the number
of clusters must be predetermined. Second, the distances between every instance
and centroids have to be recalculated in every iteration. Third, the different initial
centroids can result in different final clusters.

In this thesis, we propose a new clustering algorithm called Half-Orbital Extreme
Pole (HOEP), which is proposed to rectify these drawbacks. HOEP algorithm applies
the idea of the farthest pair from “Network intrusion detection by using multi-
attributed frame decision tree” [14] and “Breast Cancer Diagnosis using Multi-
Attributed Lens Recursive Partitioning Algorithm” [15]. Even though both papers dealt
with decision tree which is a technique for classification, but the concept of the
farthest pair is also applicable for clustering.

 3

1.2 Research objective

 The goal of this research is to obtain a new clustering algorithm called Half-
Orbital Extreme Pole (HOEP). The proposed algorithm is implemented and its
performance (total variance) is compared with ones from k-means and k-medoids
clustering algorithms.

1.3 Thesis overview

The rest of the thesis is organized as follows.

In Chapter II, we present the background knowledge which includes k-means
algorithm, k-medoids algorithm, performance measure, literature reviews and
background concepts. Then, the half-orbital extreme pole clustering algorithm is
presented in Chapter III. In Chapter IV, the experiments and results are shown. In
Chapter V, we discuss the results and draw conclusions. Some future research ideas
are also suggested in this chapter.

 4

CHAPTER II
BACKGROUND KNOWLEDGE

In this chapter, we discuss the background knowledge that is important to this
thesis. We divide this chapter into six main parts. First, the definition of metric is
defined. Second, we introduce the concept of clustering algorithm and algorithms
which are used to compare with our algorithm. Third, we introduce the total variance
which is the performance measure used in this thesis. Fourth, we show the formula
that is used in data pre-processing. Fifth, we review the literature that inspires the
idea of this work. Finally, we state the background concepts of our algorithm
including the farthest pair in clustering and dispersion.

2.1 Metric

Definition Let ܦ be an arbitrary set. A function መ݀ : ܦ × ܦ → 	ℝ	 ∪ {∞} is a
metric on ܦ if the following conditions are satisfied for all	ݔ, ,ݕ 	ݖ ∈ .ܦ

1. Positiveness: መ݀(ݔ, (ݕ > 0 if	ݔ ≠ ,ݔ)and መ݀ ,ݕ (ݔ = 0.

2. Symmetry: መ݀(ݔ, (ݕ = መ݀(ݕ, .(ݔ

3. Triangle inequality: መ݀(ݔ, (ݖ ≤ መ݀(ݔ, (ݕ + መ݀(ݕ, .(ݖ

A metric space is a set with a metric on it. In other words, a metric space is a
pair (ܦ, መ݀) where መ݀ is a metric on	ܦ. Elements of ܦ are called instances. መ݀(ݔ, (ݕ
is referred to the distance between instances ݔ and ݕ.

 Let ݔ and ݕ be the instances in	ܦ which is a set of the ݀-dimensional real-
value vectors.

1. Manhattan distance is defined by

	݀ଵ෢(ݔ, 	(ݕ = 	 ∑ ௜ݔ| − ௜|ௗݕ
௜ୀଵ 	 (2.1)

2. Euclidean distance is defined by

 ݀ଶ෢(ݔ, (ݕ = ට∑ ൫ݔ௜ − ௝൯ݕ
ଶௗ

௜ୀଵ (2.2)

Both Manhattan distance and Euclidean distance are metrics or distance
functions in	ℝ.

If ܦ is a set of discrete metric space, the discrete metric is defined by

݀ଷ෢(ݔ, (ݕ = 	 ൜
ݔ	݂݅				1 ≠ 	ݕ
ݔ	݂݅				0 = ݕ (2.3)

 5

2.2 Clustering algorithm

In this section, we describe a concept of clustering algorithm, k-means and k-
medoids algorithms which are used to compare with the half-orbital extreme pole
clustering algorithm.

Clustering algorithm is the procedure for organizing instances into clusters
such that the instances in the same cluster are more similar to one another than the
instances in other clusters. In other words, clustering algorithm tries to form instances
into clusters with high intra-cluster similarity (low intra-cluster distances) and low
inter-cluster similarity (high inter-cluster distances).

The words “high intra-cluster similarity” means that the instances in the same
cluster have low intra-cluster distances. The intra-cluster distance of a cluster is
measured in several ways, such as the summation of distances between every
instance in the cluster and its center, the maximal distance between any pair of
instances in the cluster, and the summation of variances in the cluster. While the
intra-cluster distance is used to measure similarity in the cluster, inter-cluster
distance is used to measure similarity between clusters. The inter-cluster distance
can also be measured in various ways, such as the smallest distance between an
instance in one cluster and an instance in the other cluster (single link), the largest
distance between an instance in one cluster and an instance in the other cluster
(complete link) and the average distance between an instance in one cluster and an
instance in the other (average link).

The representative of each cluster formed by clustering algorithm is called
the center. However, in different clustering algorithms, centers of clusters are
computed in different methods. For example, k-means algorithm computes a center
from mean value of all instances in a cluster and each center is called centroid. K-
medoids algorithm selects one of instances as center and calls its center a medoid.

In this research, we used k-means and k-medoids algorithms to compare with
our algorithm.

2.2.1 K-means algorithm

Although there are several k-means clustering algorithms [16], the concept of
k-means algorithms is the same. All k-means algorithms aim to organize instances
into ݇ clusters, where ݇ is the number of clusters that is initially given.

The definition of centroid is defined as follows.

 6

Let ܦ = ,ଵݔ} ,ଶݔ . . .		 , ,ே} be a set of the ݀-dimensional real-value vectorsݔ

௜ݔ = ௜భݔ) , ௜మݔ , . . .		 , ,ܦ ௜೏) be the ݅୲୦ instance inݔ

,ଵܥ ,ଶܥ … , ,where ݇ is the number of clusters ܦ ௞ be the clusters inܥ

 ܿ௧ 	= (ܿ௧భ, ܿ௧మ , … , ܿ௧೏) be the centroid of the cluster ܥ௧,

 ݈௧ be the number of instances in ܥ௧ for ݐ = 1,2, … , ݇.

The components of centroid ܿ௧ are defined by

ܿ௧ೕ =
∑ ௫೔ೕ
೗೟
೔సభ

௟೟
 (2.4)

for ݆ = 1,2,… , ݀

This research used Lloyd’s algorithm [9], which is a k-means clustering
algorithm, as the comparative algorithm. Lloyd’s algorithm is described as follows.

Lloyd’s algorithm

INPUT: ݇ is the number of clusters,

ܦ = ,ଵݔ} ,ଶݔ . . .		 , ,ே} is a set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 , ܦ ௜೏) be the ݅୲୦ instance inݔ

OUTPUT: A set of ݇ clusters

STEP 1 Choose randomly ݇ centroids ܿଵ, ܿଶ, … , ܿ௞ from	ܦ as centers of clusters
,ଵܥ ,ଶܥ … , ௞ܥ

STEP 2 For all instances ݔ௜ for	݅ = 1,2, … , ܰ

- Assign instance ݔ௜ to a cluster ܥ௟ where

STEP 3 Compute new centroids of clusters

STEP 4 Go back to STEP 2 until all instances do not change their groups.

An Example of Lloyd’s algorithm

In this example, we organize the following instances into three clusters using Lloyd’s

algorithm.

 ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ
Point (2, 10) (2, 5) (8, 4) (5, 8) (7, 5) (6, 4) (1, 2) (4, 9)

መ݀(ݔ௜ , ܿ௟) = min
௝ୀଵ,ଶ,…,௞

൛ መ݀൫ݔ௜ , ௝ܿ൯ൟ.

 7

Initial centroids of clusters are given by	ݔଵ = ସݔ ,(2,10) = (5,8)	and	7ݔ =
(1,2).

Start with calculating distances from centroids to each instance using

Manhattan distance (2.1).

For instance	ݔଵ,

 መ݀(ݔଵ, (ଵݔ = –ଵభݔ| |ଵభݔ + –ଵమݔ| |ଵమݔ = |2	– 2| + |10	– 10| = 0

መ݀(ݔଵ, (ସݔ	 = หݔଵభ– ସభหݔ + หݔଵమ– ସమหݔ = |2	– 5| + |10	– 8| = 5

መ݀(ݔଵ, (଻ݔ	 = –ଵభݔ| |଻భݔ + –ଵమݔ| |଻మݔ = |2	– 1| + |10	– 2| = 9

The minimum distance from ݔଵ to each cluster is 0, so ݔଵ is assigned to the

cluster that has ݔଵ as the centroid.

Iteration 1

Point
(2, 10)

Distance
(5, 8)

Distance
(1, 2)

Distance
Cluster

 ଵ (2, 10) 0 5 9 1ݔ
 ଶ (2, 5) 5 6 4 3ݔ
 ଷ (8, 4) 12 7 9 2ݔ
 ସ (5, 8) 5 0 10 2ݔ
 ହ (7, 5) 10 5 9 2ݔ
 ଺ (6, 4) 10 5 7 2ݔ
 ଻ (1, 2) 9 10 0 3ݔ
 2 10 2 3 (9 ,4) ଼ݔ

From above table,

Cluster 1: {ݔଵ}, Cluster 2: {ݔଷ, ,ସݔ ,ହݔ ,଺ݔ ,ଶݔ} :and Cluster 3 ,{଼ݔ 	.{଻ݔ

The new centroids of clusters are calculated.

For cluster 1, there is only one instance	ݔଵ, so the centroid remains the same.

For cluster 2, the centroid is	ቀ(଼ାହା଻ା଺ାସ)
ହ

, (ସା଼ାହାସାଽ)
ହ

ቁ 	 = 	(6, 	6).

For cluster 3, the centroid is	ቀଶାଵ
ଶ
, ହାଶ
ଶ
ቁ 	 = 	(1.5, 	3.5).

 8

Iteration 2

Point
(2, 10)

Distance
(6, 6)

Distance
(1.5, 3.5)
Distance

Cluster

 ଵ (2, 10) 0 8 9 1ݔ
 ଶ (2, 5) 5 5 2 3ݔ
 ଷ (8, 4) 12 4 7 2ݔ
 ସ (5, 8) 5 3 8 2ݔ
 ହ (7, 5) 10 2 7 2ݔ
 ଺ (6, 4) 10 4 5 2ݔ
 ଻ (1, 2) 9 9 2 3ݔ
 1 7 5 3 (9 ,4) ଼ݔ

From above table,

Cluster 1: {ݔଵ, ,ଷݔ} :Cluster 2 ,{଼ݔ ,ସݔ ,ହݔ ,ଶݔ} :଺}, and Cluster 3ݔ 	.{଻ݔ

Repeat algorithm until no changing.

The Lloyd’s algorithm stops with

Cluster 1: {ݔଵ, ,ସݔ ,ଷݔ} :Cluster 2 ,{଼ݔ ,ହݔ ,ଶݔ} :଺}, Cluster 3ݔ .{଻ݔ

2.2.2 K-medoids algorithm

K-medoids algorithm is the clustering algorithm that also aims to partition
instances into ݇ clusters, where ݇ is the number of clusters that is initially given,
like k-means algorithm. The difference of these two algorithms is the center selecting
scheme to form clusters. K-means algorithm uses mean value of instances in each
cluster as a center. Therefore, the center of k-means algorithm is not need to be
ones of instances. On the contrary, k-medoids algorithm uses one of the instances as
a center called medoid. Thus, k-medoids algorithm has the condition to identify
which instance should be the medoid in the next iteration.

The total cost value is the measurement for determining whether an instance
should be a medoid in the next iteration. The computation of the total cost value is
as follows.

Let ܦ = ,ଵݔ} ,ଶݔ . . .		 , ,ே} be the set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 , ,ܦ	௜೏) be the ݅୲୦ instance inݔ

݉ଵ, ݉ଶ, … ,݉௞ be the medoids of clusters ܥଵ, ,ଶܥ … , .௞ܥ

 9

1. Assume that clusters have been formed by assigning instances ݔ௜ to the
clusters with medoid ݉௟ if their distances are corresponding to the following
equation:

 (2.5)

2. Compute the total cost by

 (2.6)

In order to select a new medoid, the current medoid is tentatively replaced
by instances that are not currently medoids. The total cost value for each
replacement is then computed. The instance that gives the minimum total cost
value will actually replace the current medoid in next iteration.

This research study used Partition Around Medoids algorithm (PAM) [10],
which is one of k-medoid clustering algorithms, as a comparative algorithm. PAM
algorithm is described as follows.

Partition Around Medoids (PAM) algorithm

INPUT: ݇ is the number of clusters,

ܦ = ,ଵݔ} ,ଶݔ . . .		 , ,ே} is a set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 , ܦ ௜೏) is the ݅୲୦ instance inݔ

OUTPUT: A set of ݇ clusters
STEP 1 Choose randomly ݇ medoids ݉ଵ, ݉ଶ, … ,݉௞ from ܦ as centers of clusters

,ଵܥ ,ଶܥ … , ௞ܥ

STEP 2 For all instances ݔ௜ for	݅ = 1,2, … ,ܰ

- Assign instance ݔ௜ to a cluster ݉௟ according to equation (2.5)

STEP 3 Calculate the current total cost value

STEP 4 For all medoids ݉௟ for ݈ = 1,2,… , ݇

- For all instances ݔ௜ for ݅ = 1,2, … ,ܰ which ݔ௜ is not medoids
- Swap ݉௟ and ݔ௜ and compute the total cost

STEP 5 Replace ݉௟ with ݔ௜ which gives lowest total cost and that total cost value is
lower than current total cost value.

STEP 6 Go back to STEP 2 until there is no change in the medoids.

መ݀(ݔ௜, ݉௟) = min
௝ୀଵ,ଶ,…,௞
௫೔ஷ௠ೕ	∀௝

൛ መ݀൫ݔ௜ , ௝݉൯ൟ.

	ݐݏ݋ܿ	݈ܽݐ݋ݐ = 	∑ ∑ መ݀(ݔ௜ , ݉௟)௫೔∈஼೗
௞
௟ୀଵ .

 10

An Example of PAM algorithm

In this example, we organize the following instances into 2 clusters using PAM

algorithm.

 ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ

Point (2, 6) (3, 4) (3, 8) (4, 7) (6, 2) (6, 4) (7, 3) (7, 4) (8, 5) (7, 6)

STEP 1 Choose randomly two medoids ݉ଵ = ଶݔ = (3, 4)	and	݉2 = 8ݔ =
(7, 4) as centers of clusters ܥଵand ܥଶ

STEP 2 For all instances ݔ௜ for	݅ = 1,2, … ,10

- Assign instance ݔ௜ to a cluster ݉௟ according to equation (2.5)

Point
(3, 4)

Distance
(7, 4)

Distance
Cluster

 ଵ (2, 6) 3 7 1ݔ
 ଷ (3, 8) 4 8 1ݔ
 ସ (4, 7) 4 6 1ݔ
 ହ (6, 2) 5 3 2ݔ
 ଺ (6, 4) 3 1 2ݔ
 ଻ (7, 3) 5 1 2ݔ
 ଽ (8, 5) 6 2 2ݔ
 ଵ଴ (7, 6) 6 2 2ݔ

Since ݔଵ, ଶ, they are formed into oneݔ ସ are closer to medoidݔ ଷandݔ

cluster. The remaining instances, ݔହ, ,଺ݔ ,଻ݔ ,଼ݔ are closer to medoid ,10ݔ	and	ଽݔ

thus, they are formed into the other cluster.

Cluster 1: {ݔଵ, ,ଶݔ ,ଷݔ ,ହݔ} :ସ} and Cluster 2ݔ ,଺ݔ ,଻ݔ ,଼ݔ ,	ଽݔ .{ଵ଴ݔ

STEP 3 Calculate the current total cost value

So total cost = (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 	11 + 9 = 20.

STEP 4 For all medoids ݉௟ for ݈ = 1,2,… , ݇

- For all instances ݔ௜ for ݅ = 1,2, … ,ܰ which ݔ௜ is not medoids
- Swap ݉௟ and ݔ௜ and compute the total cost

 11

For	݉ଵ = ଶ, the total cost value is calculate for each replacement of ݉ଵݔ

by ݔଵ, ,ଷݔ ,ସݔ ,ହݔ ,଺ݔ ,଻ݔ .ଵ଴ݔ	and	ଽݔ

For	݉ଶ = the total cost value is calculate for each replacement of ݉ଶ ,଼ݔ
by ݔଵ, ,ଷݔ ,ସݔ ,ହݔ ,଺ݔ ,଻ݔ .ଵ଴ݔ	and	ଽݔ

For this example, we replace medoids ݉ଶ = ଼ݔ = (7, 4) with ݔ଻ =
(7, 3) while ݉ଵ = ଶ stays the same. Then, we compute the total costݔ

Point
(3, 4)

Distance
(7, 3)

Distance
Cluster

 ଵ (2, 6) 3 8 1ݔ
 ଷ (3, 8) 4 9 1ݔ
 ସ (4, 7) 4 7 1ݔ
 ହ (6, 2) 5 2 2ݔ
 ଺ (6, 4) 3 2 2ݔ
 2 1 4 (4 ,7) ଼ݔ
 ଽ (8, 5) 6 3 2ݔ
 ଵ଴ (7, 6) 6 3 2ݔ

Thus, total cost of	7ݔ which replaces ݉ଶ

= (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 	11 + 11 = 22.

After all total cost values are computed, if there is no the total cost value
that is lower than the current total cost, the algorithm will stop. In other case, if
there are the total cost values that are lower than the current total cost, the pair of
instance and medoid that gives the minimum total cost value will be selected. The
selected instance is set as the current medoid in next iteration.

2.3 Performance measure

There are several performance measures to evaluate clustering algorithms.
Total variance is one of the measures which are used in comparison with k-means
and k-medoids algorithms. The detail of total variance is explained as follows.

2.3.1 Total Variances

Total variance is used as a measure to compare performance between two
clustering algorithms. The total variance is calculated from the summation of
variance of each cluster. Because a variance value from a cluster shows how far the

 12

set of instances in the cluster disperse from its centroid, the total variance can imply
dispersion and aggregation of all instances in the dataset.

Let ܦ = ,ଵݔ} ,ଶݔ . . .		 , ,ே} be a set of the ݀-dimensional real-value vectorsݔ

௜ݔ = ௜భݔ) , ௜మݔ , . . .		 , ,ܦ ௜೏) be the ݅୲୦ instance inݔ

,ଵܥ ,ଶܥ … , ,where ݇ is the number of cluster ܦ ௞ be the clusters inܥ

 ܿ௧ 	= (ܿ௧భ, ܿ௧మ , … , ܿ௧೏) be the centroid of the cluster ܥ௧; ܿ௧೔ is computed
from equation (2.4)

 ݈௧ be the number of instances in ܥ௧ for ݐ = 1,2, … , ݇.

The variance of cluster ܥ௧ is then defined by

(௧ܥ)	ݎܽݒ =
	 ∑ ∑ ቀ௫೔ೕି௖೟ೕቁ

మ೏
ೕసభ

೗೟
೔సభ

௟೟ିଵ
. (2.7)

Hence, the total variance of ݇ clusters is defined by

Total variance = 	∑ ௞(௧ܥ)ݎܽݒ
௧ୀଵ (2.8)

The example of variance calculation

This example demonstrates how to compute the variance of a cluster.

 Let	ݔଵ,	ݔଶ, and	ݔଷ be the instances in a cluster where ݔଵ = (1,1),
ଶݔ = ଷݔ ,(1,2) = (3,3).

The centroid of a cluster is ܥ = (ܿଵ, ܿଶ) where

 ܿଵ =
∑ ௫೔భ
య
೔సభ

ଷ
= ଵାଵାଷ

ଷ
= ହ

ଷ
 ,

ܿଶ =
∑ ௫೔మ
య
೔సభ

ଷ
= ଵାଶାଷ

ଷ
= ଺

ଷ
= 2	.

Thus, the variance is computed by the equation (2.7).

(௧ܥ)	ݎܽݒ =
	∑ ∑ ൫ݔ௜௝ − ܿ௧௝൯

ଶௗ
௝ୀଵ

௟
௜ୀଵ

݈௧ − 1

=
∑ ቀݔ௜ଵ −

5
3ቁ

ଶ
ଷ
௜ୀଵ

3 − 1 +
∑ ௜ଶݔ) − 2)ଶଷ
௜ୀଵ

3 − 1

=
ቆቀ1 − 5

3ቁ
ଶ
+ ቀ1 − 5

3ቁ
ଶ
+ ቀ3 − 5

3ቁ
ଶ
ቇ

2 +
((1 − 2)ଶ + (2 − 2)ଶ + (3 − 2)ଶ)

2

 13

=
ቀ49 +

4
9 +

16
9 ቁ

2 +
(1 + 0 + 1)

2

=
7
3

2.4 Pre-processing

First, all instances in every dataset must be normalized. This step is very
important because the values of instances in different scales will be transformed into
the same scale. Specifically, we apply the normalization technique to scale all
numeric values into the range [0, 1] as seen in the following formula:

௜ೕݖ =
௫೔ೕି୫୧୬ೖቄ௫೔ೖቅ

୫ୟ୶ೖቄ௫೔ೖቅି୫୧୬ೖቄ௫೔ೖቅ
 (2.9)

where ݖ௜ೕ is the ݆୲୦ normalized component of the ݅୲୦ instance.

2.5 Literature review

In this part, we explain the literature that induces the idea of the farthest pair,
which is the main concept of this work. We begin with describing the multi-attributed
frame [14] and the multi-attributed lens [15] which both used the idea of farthest
pair. Although both papers are classification-related, the idea of farthest pair is also
applicable to clustering.

2.5.1 Multi-attributed frame

The idea of the multi-attributed frame is proposed in [14]. This paper suggests
the new approach to decision tree, which is one of the algorithms in classification.
This paper uses an idea of the farthest pair, which is a pair of two instances that have
the maximum distance, to limit the considered region.

The first step is finding the farthest pair which is called extreme poles. After
the farthest pair is obtained, the vector core is created from this pair. Consequently,
there are two planes that are perpendicular to the vector core at the borders and
the region of instances is partitioned into three sub regions: right region, middle
region, and left region. (See Figure 1)

 14

Figure 1 Three regions are partitioned into a frame by a vector core.

Since the vector core is generated from the two extreme poles that have the
largest distance, this guarantees that all instances lie in the middle region. After that,
all instances are projected onto this core. Hence, several attributes are reduced to
single attribute, and then the splitting point is found so that all instances in the
middle region will be divided into specified class and unspecified class. The
algorithm is conducted recursively with the unspecified class until the stopping
criteria are met.

The concept of the farthest pair can limit the considered region by choosing
the same type of target class of the farthest pair. For example, suppose that target
classes of all instances are positive and negative. If both poles are the positive, there
are no positive instances that lie in right and left regions: all instances in right and
left regions are negative instances. On the other hand, if both poles are negative,
there is also no negative instance that lies in right and left regions. Moreover, if the
target classes of two extreme poles are different, the target class in right and left
regions can be still guaranteed. By the properties of the farthest pair, the target class
of instances in right region is not the same as the target class of right pole. Similarly,
the target class of instances in left region is not the same as the target class of left
pole. In other words, we can always guarantee the target class of all instances in right
and left regions. So there is only the middle region left to be considered.

2.5.2 Multi-attributed lens

The idea of the farthest pair that is initially proposed in the multi-attributed
frame decision tree is also applied in [15] which also focused on the decision tree.
This paper improved the concept of considered regions from three regions to two
regions.

Although the multi-attributed frame lens and multi-attributed lens are both
decision tree algorithms using multi-attributed concept, there are some different
points between these two papers. Even though both algorithms start by finding the

Right region Middle region Left region

Extreme pole Extreme pole

 15

farthest pair and generating the vector core, the multi-attributed lens requires that
the target classes of extreme poles must be the same type. Furthermore, the
considered regions are changed from the frame to the lens as explained in the
following detail. After generating the vector core, the multi-attributed lens creates
two balls by setting the extreme poles as the centers of each ball and the length of
vector core as their radiuses. (See Figure 2)

Figure 2 All instances having the same target class with the extreme poles lie in the
lens.

Since the vector core, whose length is the maximum distance of two
instances, is set as the radius of the two balls, all instances with the same target
class as the extreme poles do not lie away from the extreme poles further than the
length of the vector core. In other words, all instances with the same target class as
the extreme poles lie in the intersection of two balls, which is called lens. The
shaded region in Figure 2 indicates an example of a lens. Therefore, the regions are
divided as the region inside the lens and the one outside the lens. Moreover, all
instances lying outside the lens are immediately identified with their target class.

After identifying the target class of all instances outside lens, instances inside
the lens are projected onto the vector core, and the splitting point can be found so
that all instances inside the lens should be partitioned into specified instances and
unspecified instances. The algorithm keeps finding the farthest pair of the unspecified
instances and repeats the process until the stopping criteria are met.

2.6 Background concept

Although both ideas from the papers, which are multi-attributed frame and
multi-attributed lens, are used in classification, the concept of the farthest pair is also

Extreme pole Extreme pole
Vector core

 16

applicable to clustering algorithm as well. In this section, we state how the farthest
pair is applied in clustering and describe the definitions of dispersion which includes
Sturges’ formula used in our algorithm.

2.6.1 The farthest pair in clustering

The concept of farthest pair is applied in our clustering algorithm due to the
following reasons. Since the farthest pair is a pair of instances that have the
maximum distance, the clustering of entire instances can be fallen in two possible
cases. The first case is that all can be in the same group if the dispersion of instances
along the vector core is homogeneous. The other case is that if the dispersion along
the vector core is nonhomogeneous, they should be in different groups. In case of
nonhomogeneous, the farthest pair is the first two considered instances lied in
different groups. Moreover, they are considered as the main points on partitioning
the rest of instances.

2.6.2 Dispersion

While we discuss about applying the farthest pair concept in our clustering
algorithm in the previous section, we have mentioned the dispersion along the
vector core used for specifying the cases of instances whether they are
homogeneous or nonhomogeneous. In this section, we formally define the words
dispersion, homogeneous and nonhomogeneous.

Since the objective of clustering algorithm is to partition instances into
groups, the dispersion will be used in our clustering algorithm as the criterion to
decide whether all instances should be partitioned. This research study uses
histogram as the tool for inspecting the dispersion of instances by the following
method. First, the farthest pair is found and set as the extreme poles. Then, the
vector core is constructed from these poles. After that, the histogram is created
along the vector core. The pattern of a chain of bins collecting from the frequency of
instances in this histogram will be called the dispersion along the vector core. The
dispersion along the vector core indicates whether a group of instances is
homogeneous or nonhomogeneous. A homogeneous group means all instances
should belong in the same group, therefore the partitioning does not occur in this
group. The examples of dispersion in this case are normal curve, positively skewed
curve or negatively skewed curve as shown in Figure 3.

 17

Figure 3 Positively skewed curve, normal curve and negatively skewed curve
respectively

On the other hand, a nonhomogeneous group suggests that the instances
should be partitioned into the different groups. Hence, the ball with an appropriate
radius of which center is one of extreme poles is built. The instances are partitioned
into two groups which are groups of instances inside the ball and outside the ball.
Figure 4 shows the examples of dispersion in this case.

Figure 4 The examples of dispersion in nonhomogeneous

2.6.2.1 Sturge’s formula

In order to form a histogram, we construct a set of non-overlapping intervals
called bins and count the number of instances in each bin. To compare the
frequency of bins, the bins should have the same width. In our study, the number of
bins is determined by Sturges’ formula, which was first proposed by Herbert A.
Sturges [17].

 ݊ = ⌈logଶ |ܵ| + 1⌉ (2.7)

where	݊ is the number of bins and 	S is the set of unspecified instances.

Sturges’s formula is widely recommended in many introductory statistics
textbooks and is often used in statistical packages in several programs as a default
method. Scott [18] interpreted Sturges’ formula by using the concept of binomial
coefficient in 1992 as follows. The first step is constructing the histogram with ݊ bins
with the equal width. In the second step, we assume the frequency of the ݇୲୦ bin

 18

as a binomial coefficient	ቀ	݊ − 1
݇ ቁ for	݇ = 0, 1, 2,… , ݊ − 1. As ݇ increases, the

histogram is tended to be the shape of normal distribution. Furthermore, the total
number of instances is

|ܵ| = 	∑ ቀ	݊ − 1
݇ ቁ௡ିଵ

௞ୀ଴ = (1 + 1)௡ିଵ = 2௡ିଵ (2.8)

by the binomial expansion. We find that equation (2.7) and (2.8) are corresponding.

 19

CHAPTER III
HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM

This chapter proposes the half-orbital extreme pole clustering algorithm (HOEP
algorithm). In order to understand the HOEP algorithm, first, the notations are
introduced. After that, the HOEP algorithm will be proposed and described.
Moreover, the pseudo code and flowchart of algorithm are provided later in this
chapter.

3.1 The notations for Half-Orbital Extreme Pole algorithm

Let

- ܰ be the number of all instances;

௜ݔ - = ൫ݔ௜భ , ௜మݔ , … , ௜೏൯ be the ݅୲୦ instance, which is a ݀-dimensionalݔ
vector of real numbers for all ݅ = 	1, 2, … , ܰ;

ܦ - = ,ଵݔ} ,ଶݔ … , ;ே} be the set of all instancesݔ

- ܵ be the set of the considered instances;

ܣ̅ - = ൣܽ௜௝൧ be the distance matrix where ܽ௜௝ is the Euclidean distance from
the ݅୲୦ instance to the ݆୲୦ instance;

 ;ଶ be the farthest pair of all instances called extreme poles݌	and	ଵ݌ -

 ;be a vector core generated by the extreme poles ݒ⃑ -

 ;be the width of intervals used for constructing the histogram bins ߙ -

- ݊ be the number of intervals with the length ߙ used for constructing the
histogram bins;

;ܿ)ܤ - ;ݎ be the ball (orbit) with a center ܿ and a radius (ݎ

- ௜݂ be the number of instances that lie between ܤ(ܿ; (݅ − and (ߙ(1
;ܿ)ܤ ;(ߙ݅

- ௜݂
∗ be the transformed value of ௜݂ into the range [0, 1];

 .be the parameter for determining the cluster splitting point	ߛ -

 20

3.2 Half-Orbital Extreme Pole algorithm

INPUT: ܦ = ,ଵݔ} ,ଶݔ … , ே} is the set of ݀-dimension real vector, whereݔ

௜ݔ = ൫ݔ௜భ , ௜మݔ , … , ,௜೏൯ is the ݅୲୦ instanceݔ

parameter ߛ.

OUTPUT: Clusters of instances

First, HOEP algorithm sets	ܵ = The HOEP algorithm runs on ܵ instead of .ܦ
 so that the algorithm should stop when the number of considered instances is too ܦ
small.

Second, the distance matrix	̅ܣ = ൣܽ௜௝൧ is created where ܽ௜௝ is the Euclidean
distance from ݔ௜ and ݔ௝ . The Euclidian distance is calculated as indicated in the

formula (3.1):

 ܽ௜௝ = ට∑ ൫ݔ௜೟ − ௝೟൯ݔ
ଶௗ

௧ୀଵ (3.1)

where ݔ௜ = ൫ݔ௜భ , ௜మݔ , … , ௝ݔ and	௜೏൯ݔ = ൫ݔ௝భ , ௝మݔ , … , .௝೏൯ݔ

Third, the extreme poles ݌ଵ and	݌ଶ are identified by the index of the
maximum value of elements in the distances matrix	̅ܣ. In other word, if	ܽ௜ᇲ௝ᇲ , which

is an element in the distance matrix	̅ܣ, has the largest value among of all elements in
 .ଶ respectively݌	ଵ and݌	௝ᇲ are set to be the extreme polesݔ	௜ᇲ andݔ then ,ܣ̅

Fourth, the vector core	⃑ݒ	is generated from the extreme poles,	݌ଵ and	݌ଶ,
with magnitude	‖⃑ݒ‖, where

‖ݒ⃑‖ 		= ට∑ ଵ௜݌) − ଶ௜)ଶௗ݌
௜ୀଵ 	 (3.2)

Next, the vector core ⃑ݒ is divided into ݊ equal width intervals. So the length
of intervals	ߙ is

ߙ = ‖௩ሬ⃑ ‖
௡
	 (3.3)

where the number of intervals	݊ is calculated from Sturges’ formula (Sturges 1926)

 ݊ = ⌈logଶ |ܵ| + 1⌉. (3.4)

This formula has already been explained in previous chapter.

 21

Figure 5 The vector core is divided into ࢔ intervals of equal width ࢻ.

Fifth, 	pଵ is chosen as the center of the balls (orbits) which are constructed
with different radiuses, each of which is a multiple of	ߙ (See Figure 6). Then,
instances in each layer of a ball are counted to creat87e a histogram. ௜݂

∗ is the
transformed frequency for the ݅୲୦ layer. If ௜݂ is the number of instances that lie

between	ܤ(ܿ; (݅ − ;ܿ)ܤ	and (ߙ(1 ௜݂ ,(ߙ݅
∗ is calculated from one of two

transformed functions:

the first transformed function

 ௜݂
∗ 		= ݃ଵ(௜݂) = 	

௙೔
|ௌ|

 (3.5)

the second transformed function

௜݂
∗ 	= ݃ଶ(௜݂) = 	

௙೔ି୫୧୬ೕ ௙ೕ
୫ୟ୶ೕ ௙ೕି୫୧୬ೕ ௙ೕ

. (3.6)

Thus, ௜݂
∗ is the normalized value of ௜݂ into the range [0, 1].

Figure 6 ࢖૚ is chosen as the center of balls with several determined radiuses.

In order to partition instances into two groups, the splitting point is
determined by the following method. In the beginning, the parameter ߛ is set as the
indicator for determining a layer with a splitting point. After that, the	݆୲୦ layer

 ଶ݌ ଵ݌

 ଶ݌ ଵ݌

 22

contains a splitting point if	݂݆
∗ 	< ௝݂ାଵ ,ߛ

∗ > and ௥݂	ߛ
∗ > ݎ for all 	ߛ < ݆. Figure 7

illustrates an example of such layer containing a splitting point.

Figure 7 The desirable layer containing a splitting point is specified by parameter

gamma.

Consequently, the midpoint of the ݆୲୦ layer is set as the splitting point and

the distance from selected pole ݌ଵ to the splitting point is	ቀଶ௝ିଵ
ଶ
ቁߙ. This value is

set to be the radius of a ball with ݌ଵ as its center. In other words, the ball

ܤ ቀ݌ଵ;
ଶ௝ିଵ
ଶ
 ቁ is created. Therefore, the instances are partitioned into two groupsߙ

which are instances inside the ball and outside the ball. (See Figure 8) The instances
inside the ball form a cluster.

Figure 8 The ball ࡮ቀ࢖૚;
૛ି࢐૚
૛
 ቁ is created and all instances are divided into twoࢻ

groups which are instances inside and outside the ball.

Then, the algorithm repeats on instances outside the ball if the number of
instances that are outside the ball is not larger than ninety percent of the size of
input dataset. Otherwise, the algorithm terminates.

 23

Figure 9 All instances in the ball lie on a half of ball with side along vector core.

 In case such a splitting point does not exist, the center of the balls is
switched to the other extreme pole and new layers are created. A histogram is
reconstructed and a splitting point is identified in a similar manner. If the algorithm
still cannot partition the instances, then all instances are assigned to one group and
the algorithm is terminated.

According to HOEP algorithm, when we run our algorithms several times with
the same parameter	ߛ, the final clusters do not change. In the beginning of the
algorithm with the same dataset, it is obvious that the first farthest pairs that are
found in different runs are the same pair. Therefore, the bins that correspond with
splitting criterion in different runs are the same bin. Thus, the balls that are created
to partition instances in the first time are also the same center and the same
radiuses. Hence, the instances that are partitioned by these balls are the same. Thus,
in the next iteration, the results from different runs do not change. Therefore, HOEP
gives the same final clusters in different runs. Moreover, in the beginning of our
algorithm, the number of clusters is not specified.

The pseudo code and flowchart of HOEP algorithm are provided here.

3.3 The pseudo code of HOEP algorithm

INPUT: ܦ = ,ଵݔ} ,ଶݔ … , ே} is the set of ݀-dimension real vector, whereݔ

௜ݔ = ൫ݔ௜భ , ௜మݔ , … , ,௜೏൯ is the ݅୲୦ instanceݔ

parameter ߛ.

OUTPUT: Clusters of instances: ܥଵ, ,ଶܥ … , ௞ܥ

STEP 1: ܵ = ,ܦ ݇ = 0 and ܥ଴ = 	∅

STEP 2: Create distance matrix

 24

STEP 3: Find extreme poles ݌ଵ and ݌ଶ in ܵ

STEP 4: Construct a vector core ⃑ݒ, calculate the number of intervals	݊, and divide it
into ݊ intervals

STEP 5: Set ܿ = ଵ as the center of the balls݌

STEP 6: For ݅ = 1,… , ݊. determine ௜݂ and	݂݅
∗

STEP 7: If there exists an interval ݆	such that ௝݂
∗ < and ௝݂ାଵ ߛ

∗ > and ௥݂	ߛ
∗ > 	ߛ

for all	ݎ < ݆ {
 - Create ball ܤ ቀܿ, ቀଶ௝ିଵ

ଶ
ቁߙቁ

- ݇ = ݇ + 1
- Set ܥ௞ = set of the instances that belong to the inside ball

 - If |ܥ௞	|	 = 1	{

 - Combine ܥ௞	and	ܵ	
 - Algorithm stops
 }else{

- Set ܵ = set of the instances that belong to the outside ball
 - If |ܵ| < 0.1 ∙ } |ܦ|
 - ݇ = ݇ + 1

௞ܥ - = 	ܵ	
- Algorithm stops

 }else{

 - Go back to Step 3
 }

}

}else{

 - If poles have been swapped {

- ݇ = ݇ + 1
- Set	ܥ௞ = ܵ

 - Algorithm stops
 }else{

- Set ܿ = ଶ as the center of the balls݌	
 - Go back to Step 6

 }

}

 25

Figure 10 The flowchart of HOEP algorithm

Set ܵ = ,ܦ ݇ = 0, ଴ܥ = 	∅

 |ܵ| < 0.1 ∗ ?|ܦ|

Create distance matrix.

Find poles ݌ଵand ݌ଶ in ܵ.
Calculate the number of intervals, ݊.

Construct a vector core and divide it into ݊ intervals.
Set ܿ = .ଵ as the center of the balls݌

݇ = ݇ + 1.
Create ܤ ቀܿ, ቀଶ௝ିଵ

ଶ
ቁ .ቁߙ

For i = 1,… , ݊. determine ௜݂ and ௜݂
∗.

Create histogram using ௜݂
∗.

There exists an interval ݆	

such that ௝݂
∗ < ݂ and ߛ ௝ାଵ

∗ > and ௥݂	ߛ
∗ > > for all r 	ߛ ݆ ?

Set ܥ௞ = set of the instances

that belong to the inside ball.

	|	݇ܥ| = 1	?

Stop.

Set ܵ = set of the instances

that belong to the outside ball.

Set ܿ = ଶ݌	
as the center
of the balls

 Poles have been swapped?

݇ = ݇ + ௞ܥ .1 = ܵ.

Stop.

Combine ܥ௞	and ܵ.

yes

yes

yes

no

no

no

yes

no

Set ݇ = ݇ + 1

௞ܥ = ܵ.

 26

CHAPTER IV

EXPERIMENTS AND RESULTS

 In this chapter, we describe our experiments and compare our results with k-
means and k-medoids algorithms using the average value of total variance. In the
experiment, Half-Orbital Extreme Pole is written in R and performed on a PC with
Intel(R) Core(TM) i5-2430M 2.40 GHz CPU and 6GB of RAM on Microsoft Windows 7
Operating System.

4.1 Dataset description

In this experiment, we use 4 datasets which are iris, seed, E.coli and wine
datasets from UCI repository.

4.1.1 Iris dataset

 The iris dataset consists of three species of iris plants which are Setosa,
Virginica, and Versicolor. The iris dataset consists of 150 instances (50 instances for
each) and 4 attributes, which are sepal length, sepal width, petal length, and petal
width in centimeters, with no missing value. The target class of iris dataset is
excluded since it is irrelevant to the clustering task. The description of the iris dataset
is shown in Table 1 and Figure 11 shows a scatter plot of the iris dataset which is
plotted between two principal components axes.

Table 1 The statistical information of iris dataset

 Min Max Mean SD

sepal length 4.3 7.9 5.84 0.83

sepal width 2.0 4.4 3.05 0.43

petal length 1.0 6.9 3.76 1.76

petal width 0.1 2.5 1.20 0.76

Figure 11 Iris dataset

 27

4.1.2 Seed dataset

 The seed dataset is the description of three types of wheat kernels which are
Kama, Rosa and Canadian. The seed dataset consists of 210 instances (70 instances
for each type) and 7 attributes, which are area, perimeter, compactness, length of
kernel, width of kernel, asymmetry coefficient and length of kernel groove, with no
missing value. The target class of seed dataset is also ignored. The information of the
seed dataset is shown in Table 2 and Figure 12 shows a scatter plot of the seed
dataset which is plotted between two principal components axes.

Table 2 The statistical information of seed dataset

 Min Max Mean SD

area 10.59 21.18 14.85 2.909699

perimeter 12.41 17.25 14.56 1.305959

compactness 0.8081 0.9183 0.871 0.023629

length of kernel 4.899 6.675 5.629 0.443063

width of kernel 2.63 4.033 3.259 0.377714

asymmetry coefficient 0.7651 8.456 3.7002 1.503557

length of kernel groove 4.519 6.55 5.408 0.491481

Figure 12 Seed dataset

 28

4.1.3 E.coli dataset

 The E.coli dataset consists of 336 instances, and 8 attributes (7 predictive, 1
name) with no missing value. The name attribute and the target class are ignored.
Thus, there are 7 attributes left. The information of this dataset is shown in Table 3
and Figure 13 shows a scatter plot of the E.coli dataset which is plotted between
two principal components axes.

Table 3 The statistical information of E.col dataset

 Min Max Mean SD

mcg 0 0.89 0.5001 0.194634

gvh 0.16 1 0.5 0.148157

lip 0.48 1 0.4955 0.088495

chg 0.5 1 0.5015 0.027277

aac 0 0.88 0.5 0.122376

alm1 0.03 1 0.5002 0.215751

alm2 0 0.99 0.4997 0.209411

Figure 13 E.coli dataset

 29

4.1.4 Wine dataset

 The wine dataset is the description of three different types of wines. The
chemical analysis gives the quantities of thirteen compositions which are found in
each of three different cultivars of wines. The wine dataset consists of 178 instances,
and 13 attributes with no missing value. The statistical information of wine dataset is
shown in the following table and Figure 14 shows a scatter plot of the wine dataset
which is plotted between two principal components axes.

Table 4 The statistical information of wine dataset

 Min Max Mean SD

Alcohol 11.03 14.83 13 0.811827

Malic acid 0.74 5.8 2.336 1.117146

Ash 1.36 3.23 2.367 0.274344

Alcalinity of ash 10.6 30 19.49 3.339564

Magnesium 70 162 99.74 14.28248

Total phenols 0.98 3.88 2.295 0.625851

Flavanoids 0.34 5.08 2.029 0.998859

Nonflavanoid phenols 0.13 0.66 0.3619 0.124453

Proanthocyanins 0.41 3.58 1.591 0.572359

Color intensity 1.28 13 5.058 2.318286

Hue 0.48 1.71 0.9574 0.228572

OD280/OD315 of diluted wines 1.27 4 2.612 0.7099904

Proline 278 1680 746.9 314.9075

Figure 14 Wine dataset

 30

 The following table summarizes information of all datasets.

Table 5 Dataset Description

Dataset Attributes Instances

Iris 4 150

Seed 7 210

E.coli 7 336

Wine 13 178

4.2 Results of the experiments

 In this section, we compare the total variances of our clustering algorithm
with k-means and k-medoids algorithm. Since our algorithm gives the same final
clusters in different runs, the total variances in different runs are the same value. We
run 100 rounds of each compared algorithms and use the average values of total
variances to compare with our results.

 At the beginning, we set different values of gamma by varying from 0.05 to 1
with 0.05 increments. Then, we run HOEP algorithm only once for each gamma
value. We compare our algorithm with k-means and k-medoids algorithms by setting
the number of clusters of compared algorithms equal to the number of clusters from
our algorithm. We run 100 rounds of each compared algorithms to compare with our
result in each run of gamma value. Finally, we choose the gamma value that gives
the minimum total variance to be the appropriate gamma value of each dataset. The
results of experiments are shown as follows.

Iris dataset

The following table shows the number of clusters and the total variance from
HOEP algorithm. The values of gamma are varied from 0.05 to 1 with 0.05
increments. The result shows that the gamma values that give the minimum total
variance in HOEP algorithm for ݃ଵ(௜݂) is 0.25 and for ݃ଶ(௜݂) are 0.35 and 0.40.

 31

Table 6 Results of iris dataset from HOEP algorithm

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 ߛ
The

number
of clusters

Total
variance
HOEP

The
 number

of clusters

Total
variance
HOEP

0.05 1 0.274255 1 0.2742545

0.10 3 0.139462 1 0.2742545

0.15 2 0.270116 1 0.2742545

0.20 5 0.257964 5 0.1485446

0.25 3 0.137439 5 0.1485446

0.30 2 0.139887 6 0.2736472

0.35 1 0.274255 3 0.1394619

0.40 1 0.274255 3 0.1394619

0.45 1 0.274255 3 0.1433193

0.50 1 0.274255 4 0.1440115

0.55 1 0.274255 4 0.1440115

0.60 1 0.274255 4 0.1440115

0.65 1 0.274255 10 0.1926997

0.70 1 0.274255 2 0.2701162

0.75 1 0.274255 6 0.248374

0.80 1 0.274255 6 0.248374

0.85 1 0.274255 6 0.248374

0.90 1 0.274255 4 0.2418484

0.95 1 0.274255 5 0.2450899

1.00 1 0.274255 1 0.2742545

Table 7 shows the results from HOEP comparing with ones from k-means and
k-medoids algorithms. The number of clusters from the result of HOEP algorithm is
set as the predetermined value in the initial step of k-means and k-medoids
algorithms. Therefore, we compare the total variance of the same number of clusters
in each algorithm. The results from iris dataset show that the total variances from

 32

HOEP are lower than total variances from k-means and k-medoids algorithms in both
of normalized functions.

Table 7 Comparison of the total variance of iris dataset

௜݂
 ߛ ∗

The number
 of clusters

Total variance
HOEP k-means k-medoids

݃ଵ(௜݂) 0.25 3 0.137439 0.1483595 0.1398882

݃ଶ(௜݂)
0.35 3 0.1394619 0.1496138 0.1398587

0.40 3 0.1394619 0.1466788 0.1399226

Although the HOEP algorithm can definitely partition instances in class Setosa
after combining two final clusters, the HOEP cannot separate instances in class
Virginica from Versicolor. Because, in the third iteration, there are only one instance
which is one of extreme poles is partitioned from histogram, this means that this
pole is not close to some of the remaining instances enough to form another cluster.
Therefore, the algorithm terminates.

Seed dataset

Table 8 shows the number of clusters and the total variance of the seed
dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1 with
0.05 increments. The result shows that the gamma values that give the minimum
total variance in HOEP algorithm for ݃ଵ(௜݂) is 0.10 and for ݃ଶ(௜݂) are 0.10, 0.15,
0.20, 0.25, and 0.30.

 33

Table 8 Results of seed dataset from HOEP algorithm

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 ߛ
The

number
of clusters

Total
variance
HOEP

The
 number

of clusters

Total
variance
HOEP

0.05 2 0.418124 1 0.4237425

0.10 4 0.342573 2 0.4181241

0.15 3 0.386164 2 0.4181241

0.20 1 0.423743 2 0.4181241

0.25 1 0.423743 2 0.4181241

0.30 1 0.423743 2 0.4181241

0.35 1 0.423743 5 0.4499825

0.40 1 0.423743 5 0.4499825

0.45 1 0.423743 5 0.4499825

0.50 1 0.423743 13 0.4999935

0.55 1 0.423743 8 0.4359098

0.60 1 0.423743 8 0.4359098

0.65 1 0.423743 8 0.4978527

0.70 1 0.423743 7 0.4783967

0.75 1 0.423743 7 0.481209

0.80 1 0.423743 6 0.4822992

0.85 1 0.423743 6 0.4961151

0.90 1 0.423743 6 0.4961151

0.95 1 0.423743 4 0.4545432

1.00 1 0.274255 1 0.4237425

Table 9 shows the results from HOEP comparing with ones from k-means and
k-medoids algorithms. The number of clusters from the result of HOEP algorithm is
set as the predetermined value in the initial step of k-means and k-medoids
algorithms. Therefore, we compare the total variance of the same number of clusters

 34

in each algorithm. The results from normalized function	݃ଵ(௜݂) show that the total
variance from HOEP is lower than the total variance from both of k-means algorithm
and k-medoids algorithm. Considering normalized function	݃ଶ(௜݂), the total
variances from HOEP are higher than total variances from k-means and k-medoids
algorithms. This means that the normalized function ݃ଵ(௜݂) may be more suitable

for seed dataset than the normalized function	݃2൫݂݅൯. However, if we do not

consider the gamma value that gives the minimum total variance in HOEP, the
results of the total variances from HOEP may be lower than total variances from k-
means and k-medoids algorithms. (See Table 9)

Table 9 Comparison of the total variance of seed dataset

௜݂
 ߛ ∗

The number
 of clusters

Total variance
HOEP k-means k-medoids

݃ଵ(௜݂) 0.10 4 0.3425730 0.3555230 0.3434717

݃ଶ(௜݂)

0.10
0.15
0.20
0.25
0.30

2 0.4181241 0.3209425 0.3290560

0.55 8 0.4359098 0.4694328 0.4730751

0.60 8 0.4359098 0.4693166 0.4724625

E.coli dataset

Table 10 shows the number of clusters and the total variance of the E.coli
dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1 with
0.05 increments. The result shows that the gamma values that give the minimum
total variance in HOEP algorithm for normalized function ݃ଵ(௜݂) are 0.05, 0.90, 0.95
and 1.0 and for normalized function ݃ଶ(௜݂) are 0.05, 0.10, 0.15, 0.20 and 1.00.

 35

Table 10 Results of E.coli dataset from HOEP algorithm

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 ߛ
The

number
of clusters

Total
variance

HOEP

The
 number

of clusters

Total
variance

HOEP

0.05 1 0.223759 1 0.223759

0.10 2 0.241686 1 0.223759

0.15 6 0.365499 1 0.223759

0.20 5 0.377571 1 0.223759

0.25 7 0.401987 2 0.2416859

0.30 5 0.52312 2 0.2416859

0.35 4 0.510741 5 0.3362595

0.40 2 0.403802 9 0.4770188

0.45 2 0.403802 8 0.6150343

0.50 2 0.403802 5 0.3775712

0.55 2 0.403802 3 0.3564157

0.60 2 0.403802 3 0.3564157

0.65 2 0.403802 3 0.3564157

0.70 2 0.403802 3 0.3564157

0.75 2 0.403802 5 0.3853661

0.80 2 0.403802 14 0.7245408

0.85 2 0.403802 14 0.7245408

0.90 1 0.223759 12 0.6833156

0.95 1 0.223759 11 0.6846903

1.00 1 0.223759 1 0.223759

 36

From the above table, the calculated gamma values give the same number
of clusters which is only one cluster. This means that the values of total variance
from three algorithms are equal. However, when we choose other gamma values
which are not the gamma values that give the minimum total variance in HOEP, the
results from HOEP are better than the compared algorithms as seen in Table 11.

In Table 11, from the normalized function	݃ଵ(௜݂), we vary the values of
gamma varied from 0.05 to 0.25 with 0.05 incremental. The results show that the
total variance from HOEP is lower than the total variances from k-means and k-
medoids algorithms. This is the same result when we set the gamma values are
equal to 0.25, 0.30 and 0.35 using the normalized function	݃ଶ(௜݂).

Table 11 Comparison of the total variance of E.coli dataset

௜݂
 ߛ ∗

The number
 of clusters

Total variance

HOEP k-means k-medoids

݃ଵ(௜݂)

0.05 1 0.223759 0.223759 0.223759

0.10 2 0.241686 0.298999 0.291798

0.15 6 0.365499 0.501051 0.501281

0.20 5 0.377571 0.457003 0.474829

0.25 7 0.401987 0.538358 0.525647

݃ଶ(௜݂)

0.05
0.10
0.15
0.20

1 0.223759 0.223759 0.223759

0.25 2 0.241686 0.301083 0.291798
0.30 2 0.241686 0.298107 0.291798
0.35 5 0.336260 0.460839 0.462371
1.00 1 0.223759 0.223759 0.223759

Wine dataset

Table 12 demonstrates the number of clusters and the total variance of the
wine dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1
with 0.05 increments. The result shows that the gamma values that give the
minimum total variance in HOEP algorithm for normalized function ݃ଵ(௜݂) are 0.40,
0.45, 0.50, …, 1.0 and for normalized function ݃ଶ(௜݂) are 0.05 and 0.10.

 37

Table 12 Results of wine dataset from HOEP algorithm

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 ߛ
The

number
of clusters

Total
variance

HOEP

The
 number

of clusters

Total
variance

HOEP

0.05 3 0.826678 1 0.5370761

0.10 4 0.917629 1 0.5370761

0.15 4 1.010106 3 0.8266777

0.20 8 1.621768 4 0.9176289

0.25 8 1.790671 4 0.9176289

0.30 3 1.152957 4 0.9176289

0.35 2 0.815026 4 0.9176289

0.40 1 0.537076 4 1.0101061

0.45 1 0.537076 4 1.0101061

0.50 1 0.537076 10 1.8864756

0.55 1 0.537076 10 1.9952272

0.60 1 0.537076 10 1.9952272

0.65 1 0.537076 9 1.9096509

0.70 1 0.537076 8 1.8918815

0.75 1 0.537076 8 1.8918815

0.80 1 0.537076 8 1.7906712

0.85 1 0.537076 7 1.9546810

0.90 1 0.537076 6 1.8737017

0.95 1 0.537076 6 1.8737017

1.00 1 0.537076 1 0.5370761

 38

In Table 12, the provided gamma values give the same number of clusters
which is only one cluster in dataset. This means that the values of total variance
from three algorithms are equal because there is no partitioning of instances into
clusters. However, when we choose other gamma values which are not the gamma
values that give the minimum total variance in HOEP, the results from HOEP are
better than both k-means and k-medoids algorithms.

In Table 13, from the normalized function	݃ଵ(௜݂), we vary the values of
gamma from 0.05 to 0.20 with 0.05 incremental. The results show that the total
variance from HOEP is lower than the total variances from k-means and k-medoids
algorithms except at the gamma value equal to 0.05 and 0.15 the total variance from
k-means is lower than total variance from HOEP.

From the normalized function	݃ଶ(௜݂), the values of gamma are varied from
0.10 to 0.50 with 0.05 incremental. The results show that the total variances from
HOEP are lower than the total variances from k-means and k-medoids algorithms
except at the gamma value equal to 0.15 the total variance from k-means is lower
than total variance from HOEP.

Table 13 The comparison of the total variance of wine dataset

௜݂
 ߛ ∗

The number
 of clusters

Total variance
HOEP k-means k-medoids

݃ଵ(௜݂)

0.05 3 0.826678 0.826381 0.8378864

0.10 4 0.917629 1.03006 1.0201929

0.15 4 1.010106 1.037033 1.0177082

0.20 8 1.621768 1.686746 1.6869938

0.40 1 0.537076 0.537076 0.537076

݃ଶ(௜݂)

0.05 1 0.537076 0.537076 0.537076

0.10 1 0.537076 0.537076 0.537076

0.15 3 0.8266777 0.823341 0.8378864

0.20 4 0.9176289 1.0380546 1.0224664

0.25 4 0.9176289 1.0274516 1.0190927

0.30 4 0.9176289 1.0364914 1.0274369

0.35 4 0.9176289 1.0377276 1.0167909

0.40 4 1.0101061 1.0388452 1.0193632

0.45 4 1.0101061 1.0323878 1.0245189

0.50 10 1.8864756 1.9247291 1.9322233

 39

CHAPTER V

CONCLUSION

 The Half-orbital extreme pole algorithm is a clustering algorithm which uses a
concept of the farthest pair to partition instances into groups. The concept of the
farthest pair is derived from two papers in classification [14, 15]. In our experiment,
we compare our algorithm with k-means clustering algorithm and k-medoids
clustering algorithm using 4 datasets which are iris, E.coli, seed, and wine datasets.
The performance measure used in this thesis is total variance. We use an average
value of total variances from 100 rounds of experiments to compare the
performance of all three algorithms with respect to the same number of clusters.

Even though HOEP algorithm does not require the number of clusters in the
beginning, HOEP algorithm requires the value of parameter gamma. We suggest the
method to select a gamma value by the following technique. First, gamma values
are varied from 0.05 to 1 with 0.05 increments. Then, in every run, the total variances
are calculated and collected. Finally, the suggested gamma is the gamma value that
gives the minimum total variance.

Using the gamma selecting technique, the results of the Iris dataset show that
both transformed functions of our algorithm give the same three final clusters whose
the total variance is lower than those from both k-means and k-medoids algorithms.

For the results of the Seed dataset, the suggested gamma value is good for
the first transformed function because it provides the final clusters that their total
variance is lower than total variances from k-means and k-medoids algorithm. For the
second transformed function, the total variance from HOEP algorithm with respect to
the suggested gamma value is higher than those from k-means and k-medoids
algorithms.

In the E.coli and the Wine datasets, a suggested gamma value gives only one
final cluster. Since the cluster formed by all instances has the total variance lower
than the total variance from any partitioned clusters.

In conclusion, the HOEP algorithm tries to form instances into clusters by
starting from boundary. The visualization from Principal Component Analysis (PCA)
cannot demonstrate this fact in some datasets because PCA tries to visualize a
dataset which has several attributes into two-dimensional space. However, the
scatter plots of two attributes can show this fact. HOEP algorithm can perform well

 40

when the appropriate gamma value is chosen. The appropriate gamma value
provides the final clusters that have low total variance.

In the first iteration, if HOEP algorithm is terminated by the criterion that there
is only one instance which is partitioned, the outlier is first detected. As the result of
this criterion, HOEP algorithm is good for a dataset that contains outliers.
Furthermore, this algorithm can be used to detect the outliers of a dataset by
considering the number of instances from the cluster that is formed first.

Furthermore, HEOP algorithm is suitable for a dataset whose constructed
histogram is nonhomogeneous because if the appropriate gamma value is chosen,
the instances can be grouped into the appropriate clusters. Since each bin of
histogram is constructed from the frequency of instances in each layer, the
nonhomogeneous histogram is occurred when there is the middle region of layers of
ball that has the density of instances lower than the density of instances of its left
and its right regions of layers of ball.

HOEP algorithm has three major advantages. The first advantage is that the
number of clusters is not needed to be set by users. The second advantage is that
the distances between every instance and centroid are not needed to be re-
calculated after the first distance calculation. The other advantage is the finalized
clustering will be the same for different runs. These can rectify three drawbacks of k-
means and k-medoids algorithms which are the number of clusters is required to be
predetermined, the distances between instances and their centroids are needed to
be recalculated in every iteration and the different initial centroids can result in
different final clusters.

However, the HOEP algorithm cannot partition a cluster from a dataset that
the constructed histogram is homogeneous because the gamma value cannot find
the splitting point. Thus, our algorithm can be improved by using other methods to
split instances into clusters instead of using histogram. Furthermore, our algorithm
can also be improved by finding an appropriate way to determine the parameter
gamma or using different values of gamma in each iteration, because each iteration
might require its own gamma values to perform effectively.

REFERENCES

[1] Quinlan, J. R. (1993). C4.5: programs for machine learning, Morgan kaufmann.

[2] Cover, T. and P. Hart (1967). "Nearest neighbor pattern classification." Information
Theory, IEEE Transactions on 13(1): 21-27.

[3] John, G. H. and P. Langley (1995). "Estimating continuous distributions in Bayesian
classifiers." Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, Morgan Kaufmann Publishers Inc.

[4] Hearst, M. A., et al. (1998). "Support vector machines." Intelligent Systems and
their Applications, IEEE Transactions on 13(4): 18-28.

[5] Wold, S., et al. (1987). "Principal component analysis." Chemometrics and
intelligent laboratory systems 2(1): 37-52.

[6] Kohonen, T. (1990). "The self-organizing map." Proceedings of the IEEE 78(9): 1464-
1480.

[7] MacQueen, J. (1967). "Some methods for classification and analysis of multivariate
observations." Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, California, USA.

[8] Hartigan, J. A. and M. A. Wong (1979). "Algorithm AS 136: A k-means clustering
algorithm." Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28(1): 100-108.

[9] Lloyd, S. (1982). "Least squares quantization in PCM." Information Theory, IEEE
Transactions on 28(2): 129-137.

 42

[10] Kaufman, L. and P. Rousseeuw (1987). "Clustering by means of medoids." in

Statistical Data Analysis Based on the Lଵ–Norm and Related Methods,
edited by Y. Dodge, North-Holland, 405–416

[11] Kaufman, L. R. and P. Rousseeuw (1990). Finding groups in data: An introduction
to cluster analysis, Wiley Series in Probability and Mathematical Statistics.
Applied Probability and Statistics, New York.

[12] Ng, R. T. and J. Han (1994). "Efficient and Effective Clustering Methods for Spatial
Data Mining. " Proceedings of the twevelth conference on Very Large Data
Bases (VLDB), 144-155.

 [13] Park, H.-S. and C.-H. Jun (2009). "A simple and fast algorithm for K-medoids
clustering." Expert Systems with Applications 36(2): 3336-3341.

[14] Sinapiromsaran, K. and N. Techaval (2012). "Network intrusion detection using
multi-attributed frame decision tree." Proceedings of the Second conference
on Digital Information and Communication Technology and it's Applications
(DICTAP), 2012 the 10th International Conference on IEEE, 203-207

[15] Sirisomboonrat, C. and K. Sinapiromsaran (2012). "Breast cancer diagnosis using
multi-attributed lens recursive partitioning algorithm. " Proceedings of the
tenth conference on ICT and Knowledge Engineering (ICT & Knowledge
Engineering), 2012 the 10th International Conference on IEEE, 40-45

[16] Kanungo, T., et al. (2002). "An efficient k-means clustering algorithm: analysis and
implementation." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 24(7): 881-892.

[17] Sturges, H. A. (1926). "The choice of a class interval." Journal of the American
Statistical Association 21(153): 65-66.

 43

[18] Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley and Sons, New York: 47-48.

 44

APPENDIX

 45

APPENDIX : RESULTS FROM HALF-ORBITAL ALGORITHM

Iris dataset

Table 14 The results from iris dataset

 ௜݂
∗ = ݃ଵ(௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ(௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂

 ݇ ߛ
Total variance

݇
Total variance

HOEP k-means k-medoid HOEP k-means k-medoid

0.05 1 0.274255 0.274255 0.2742545 1 0.2742545 0.2742545 0.2742545

0.10 3 0.139462 0.147885 0.1399325 1 0.2742545 0.2742545 0.2742545

0.15 2 0.270116 0.139887 0.1398865 1 0.2742545 0.2742545 0.2742545

0.20 5 0.257964 0.153486 0.1530062 5 0.1485446 0.1541574 0.1519457

0.25 3 0.137439 0.147823 0.1398882 5 0.1485446 0.1526397 0.1519537

0.30 2 0.139887 0.139887 0.1398865 6 0.2736472 0.1623842 0.1623433

0.35 1 0.274255 0.274255 0.2742545 3 0.1394619 0.1496138 0.1398587

0.40 1 0.274255 0.274255 0.2742545 3 0.1394619 0.1466788 0.1399226

0.45 1 0.274255 0.274255 0.2742545 3 0.1433193 0.147432 0.1399522

0.50 1 0.274255 0.274255 0.2742545 4 0.1440115 0.147392 0.1490768

0.55 1 0.274255 0.274255 0.2742545 4 0.1440115 0.148028 0.1492465

0.60 1 0.274255 0.274255 0.2742545 4 0.1440115 0.1471689 0.1481208

0.65 1 0.274255 0.274255 0.2742545 10 0.1926997 0.1823195 0.1889037

0.70 1 0.274255 0.274255 0.2742545 2 0.2701162 0.1398865 0.1398865

0.75 1 0.274255 0.274255 0.2742545 6 0.248374 0.1623894 0.1631725

0.80 1 0.274255 0.274255 0.2742545 6 0.248374 0.1620667 0.1624493

0.85 1 0.274255 0.274255 0.2742545 6 0.248374 0.1612586 0.1621937

0.90 1 0.274255 0.274255 0.2742545 4 0.2418484 0.1461825 0.1486243

0.95 1 0.274255 0.274255 0.2742545 5 0.2450899 0.1553587 0.1519796

1.00 1 0.274255 0.274255 0.2742545 1 0.2742545 0.2742545 0.2742545

 46

Figure 15 Result of iris dataset from HOEP algorithm with the first transformed
function and the gamma value as 0.25

Figure 16 Result of iris dataset from HOEP algorithm with the second transformed

function and the gamma value as 0.35

 47

Figure 17 Result of iris dataset from k-means algorithm (k = 3)

Figure 18 Result of iris dataset from k-medoids algorithm (k = 3)

 48

Seed dataset

Table 15 The results from seed dataset

 ௜݂
∗ = ݃ଵ(௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ(௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂

 ݇ ߛ
Total variance

݇
Total variance

HOEP k-means k-medoid HOEP k-means k-medoid

0.05 2 0.418124 0.320801 0.3288243 1 0.4237425 0.4237425 0.4237425

0.10 4 0.342573 0.355523 0.3434717 2 0.4181241 0.3209425 0.3281293

0.15 3 0.386164 0.3151 0.3159005 2 0.4181241 0.3208924 0.3283609

0.20 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3207223 0.329056

0.25 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3209959 0.3258125

0.30 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3209675 0.3272025

0.35 1 0.423743 0.423743 0.4237425 5 0.4499825 0.3874692 0.3739612

0.40 1 0.423743 0.423743 0.4237425 5 0.4499825 0.388273 0.3733803

0.45 1 0.423743 0.423743 0.4237425 5 0.4499825 0.3892873 0.3738341

0.50 1 0.423743 0.423743 0.4237425 13 0.4999935 0.5606782 0.5821383

0.55 1 0.423743 0.423743 0.4237425 8 0.4359098 0.4694328 0.4730751

0.60 1 0.423743 0.423743 0.4237425 8 0.4359098 0.4693166 0.4724625

0.65 1 0.423743 0.423743 0.4237425 8 0.4978527 0.4710116 0.4703925

0.70 1 0.423743 0.423743 0.4237425 7 0.4783967 0.4477825 0.4419135

0.75 1 0.423743 0.423743 0.4237425 7 0.481209 0.447614 0.4415455

0.80 1 0.423743 0.423743 0.4237425 6 0.4822992 0.4182504 0.4093491

0.85 1 0.423743 0.423743 0.4237425 6 0.4961151 0.4189727 0.4101843

0.90 1 0.423743 0.423743 0.4237425 6 0.4961151 0.417759 0.4077891

0.95 1 0.423743 0.423743 0.4237425 4 0.4545432 0.3552202 0.3435858

1.00 1 0.423743 0.423743 0.4237425 1 0.4237425 0.4237425 0.4237425

 49

Figure 19 Result of seed dataset from HOEP algorithm with the first transformed
function and the gamma value as 0.10

Figure 20 Result of seed dataset from k-means algorithm (k = 4)

Figure 21 Result of seed dataset from k-medoids algorithm (k = 4)

 50

Figure 22 Result of seed dataset from HOEP algorithm with the second transformed
function and the gamma value as 0.1

Figure 23 Result of seed dataset from k-means algorithm (k = 2)

Figure 24 Result of seed dataset from k-medoids algorithm (k = 2)

 51

E.coli Dataset

Table 16 The results from E.coli dataset

 ௜݂
∗ = ݃ଵ(௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ(௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂

 ݇ ߛ
Total variance

݇
Total variance

HOEP k-means k-medoid HOEP k-means k-medoid

0.05 1 0.223759 0.223759 0.223759 1 0.223759 0.223759 0.223759

0.10 2 0.241686 0.298999 0.2917981 1 0.223759 0.223759 0.223759

0.15 6 0.365499 0.501051 0.5012805 1 0.223759 0.223759 0.223759

0.20 5 0.377571 0.457003 0.4748292 1 0.223759 0.223759 0.223759

0.25 7 0.401987 0.538358 0.5256469 2 0.2416859 0.2943786 0.2917981

0.30 5 0.52312 0.460468 0.4736863 2 0.2416859 0.2897843 0.2917981

0.35 4 0.510741 0.410694 0.4280872 5 0.3362595 0.4627097 0.4743868

0.40 2 0.403802 0.300095 0.2917981 9 0.4770188 0.596143 0.575553

0.45 2 0.403802 0.29122 0.2917981 8 0.6150343 0.5543817 0.5481004

0.50 2 0.403802 0.299561 0.2917981 5 0.3775712 0.4590082 0.4753218

0.55 2 0.403802 0.294654 0.2917981 3 0.3564157 0.3522067 0.3452243

0.60 2 0.403802 0.304923 0.2917981 3 0.3564157 0.3531643 0.3452243

0.65 2 0.403802 0.292763 0.2917981 3 0.3564157 0.3562084 0.3452243

0.70 2 0.403802 0.307255 0.2917981 3 0.3564157 0.3567013 0.3452243

0.75 2 0.403802 0.300702 0.2917981 5 0.3853661 0.4617241 0.4717096

0.80 2 0.403802 0.2933 0.2917981 14 0.7245408 NaN* 0.6959607

0.85 2 0.403802 0.295378 0.2917981 14 0.7245408 NaN* 0.6971183

0.90 1 0.223759 0.223759 0.223759 12 0.6833156 0.6636169 0.6512241

0.95 1 0.223759 0.223759 0.223759 11 0.6846903 0.6453578 0.6294429

1.00 1 0.223759 0.223759 0.223759 1 0.223759 0.223759 0.223759

*NaN in k-means algorithm means that the k-means algorithm does not converge to
the final clusters after 50 iterations.

 52

Wine dataset

Table 17 The results from wine dataset

 ௜݂
∗ = ݃ଵ(௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ(௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂

 ݇ ߛ
Total variance

݇
Total variance

HOEP k-means k-medoid HOEP k-means k-medoid

0.05 3 0.826678 0.826381 0.8378864 1 0.5370761 0.5370761 0.5370761

0.10 4 0.917629 1.03006 1.0201929 1 0.5370761 0.5370761 0.5370761

0.15 4 1.010106 1.037033 1.0177082 3 0.8266777 0.823341 0.8378864

0.20 8 1.621768 1.686746 1.6869938 4 0.9176289 1.0380546 1.0224664

0.25 8 1.790671 1.676395 1.6850448 4 0.9176289 1.0274516 1.0190927

0.30 3 1.152957 0.828306 0.8378864 4 0.9176289 1.0364914 1.0274369

0.35 2 0.815026 0.731775 0.7256739 4 0.9176289 1.0377276 1.0167909

0.40 1 0.537076 0.537076 0.5370761 4 1.0101061 1.0388452 1.0193632

0.45 1 0.537076 0.537076 0.5370761 4 1.0101061 1.0323878 1.0245189

0.50 1 0.537076 0.537076 0.5370761 10 1.8864756 1.9247291 1.9322233

0.55 1 0.537076 0.537076 0.5370761 10 1.9952272 1.9179555 1.9264655

0.60 1 0.537076 0.537076 0.5370761 10 1.9952272 1.9314268 1.9185647

0.65 1 0.537076 0.537076 0.5370761 9 1.9096509 1.7987976 1.787649

0.70 1 0.537076 0.537076 0.5370761 8 1.8918815 1.6660726 1.6764645

0.75 1 0.537076 0.537076 0.5370761 8 1.8918815 1.6854133 1.6781531

0.80 1 0.537076 0.537076 0.5370761 8 1.7906712 1.6856917 1.6846281

0.85 1 0.537076 0.537076 0.5370761 7 1.954681 1.5438785 1.5625041

0.90 1 0.537076 0.537076 0.5370761 6 1.8737017 1.3795635 1.3819696

0.95 1 0.537076 0.537076 0.5370761 6 1.8737017 1.3867941 1.3842947

1.00 1 0.537076 0.537076 0.5370761 1 0.5370761 0.5370761 0.5370761

 53

Figure 25 Results of E.coli dataset from three algorithms are the same.

Figure 26 Results of wine dataset from three algorithms are the same.

 54

VITA

Name Benjapun Kaveelerdpotjana

Date of Birth 3 October 1989

Place of Birth Bangkok, Thailand

Education B.Sc.(Mathematic), Kasetsart University, 2010

Scholarship The Development and Promotion of Science and Technology
Talents project (DPST)

Publication

Name Benjapun Kaveelerdpotjana

Date of Birth 3 October 1989

Place of Birth Bangkok, Thailand

Education B.Sc.(Mathematics), Kasetsart University, 2010

Scholarship The Development and Promotion of Science and
Technology Talents project (DPST)

Publication Benjapun Kaveelerdpotjana, Krung Sinapiromsaran,
Boonyarit Intiyot, Farthest Boundary Clustering
Algorithm: Half-orbital Extreme Pole, The seventeenth
International Computer Science and Engineering
Conference (ICSEC) (2013): 173-178

