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CHAPTER I  

INTRODUCTION 

1.1 Motivation and literature surveys 

Nowadays, the technology of data warehouse is rapidly developed. There are 
billions of information available to be archived. As the result of numerous data, data 
mining can help us to discover information or knowledge which is hidden in a 
database. Data mining, which has known in terms of the knowledge discovery in 
database (KDD), is the process of discovering hidden information or hidden 
knowledge from large databases. Data mining can be applied in many areas of 
research, such as market basket analysis in business; biomedical, bioinformatics, and 
genetics in area of sciences; and wireless sensor network in engineering.  

Data mining can be separated into two major types which are supervised 
learning and unsupervised learning. The supervised learning concerns with a dataset 
whose target class of instances is given. This type of learning consists of two 
processes which are the training step and the predicting step. In the training step, the 
training dataset is used to construct the model to capture characteristics or patterns 
that lead to a given target class. Then, the constructed model is used to predict the 
target class of unknown instances in predicting step. In other word, the supervised 
learning tries to construct model from known instances in order to classify unknown 
instances. There are several techniques in the supervised learning, such as decision 
tree [1], k-nearest neighbors [2], naive Bayesian algorithm [3], and support vector 
machine (SVM) [4]. On the other hand, the unsupervised learning does not need the 
target class. It finds the hidden structure in the unlabeled instances. There are 
several approaches in the unsupervised learning, such as principal component 
analysis (PCA) [5], self-organizing map (SOM) [6], and clustering algorithm. In this 
thesis, we propose a clustering algorithm. 

A clustering algorithm is a procedure to organize instances into groups 
(clusters), such that instances in the same group are more similar to one another 
than instances in other groups. There are several techniques in clustering such as k-
means [7, 8, 9], PAM [10], CLARA [11] and CLARANS [12]. However, k-means algorithm 
is one of the widely used techniques because of its efficiency and simplicity.  

K-means algorithm was first proposed by Lloyd in 1957 but it was published 
in 1982 [9]. However, MacQueen is the first one who used the term “k-means” in 
1967. In the beginning, MacQueen proposed k-means algorithm [7] that each cluster 



 2 

is represented by the center of the cluster (centroid). There are several weaknesses 
of this algorithm. For example, it is sensitive to outliers. So the existence of outliers 
could strongly affect the result of clustering. Another drawback is that the number of 
clusters is required to be determined in advance. In addition, the algorithm is not 
suitable for discovering clusters with non-convex shapes. Moreover, computing the 
centroid is not reasonable for categorical variables. Later, k-medoids or Partition 
around medoids (PAM) introduced by Kaufman and Rousseeuw in 1987 [10] was 
proposed to fix the problem in the aspect of interpretation categorical data by 
changing the representative of a cluster from centroid to be one of the instances in 
the cluster called medoid. Furthermore, PAM is more robust than k-means with 
respect to outliers because outliers or other extreme values have less influenced on 
a medoid than a centroid. 

However, PAM is not effective for large datasets. Hence, in 1990, Kaufman and 
Rousseeuw suggested the Clustering for LARge Applications algorithm (CLARA) [11] for 
dealing with the large dataset. Instead of finding medoids for the entire dataset, 
CLARA draws samples from the dataset, and then applies the PAM algorithm on each 
sample and gives the best clustering as the output. Even though CLARA can deal 
with the large dataset, one weakness of CLARA is that the efficiency of the algorithm 
depends on the sample size. Another weakness is that a good clustering based on 
samples might not lead to a good clustering of the whole dataset if the samples are 
biased.  

Admittedly, k-means and k-medoids clustering are very simple and reasonably 
fast algorithms [13]. However, they have three major disadvantages. First, the number 
of clusters must be predetermined. Second, the distances between every instance 
and centroids have to be recalculated in every iteration. Third, the different initial 
centroids can result in different final clusters.  

In this thesis, we propose a new clustering algorithm called Half-Orbital Extreme 
Pole (HOEP), which is proposed to rectify these drawbacks. HOEP algorithm applies 
the idea of the farthest pair from “Network intrusion detection by using multi-
attributed frame decision tree” [14] and “Breast Cancer Diagnosis using Multi-
Attributed Lens Recursive Partitioning Algorithm” [15]. Even though both papers dealt 
with decision tree which is a technique for classification, but the concept of the 
farthest pair is also applicable for clustering.  
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1.2 Research objective 

 The goal of this research is to obtain a new clustering algorithm called Half-
Orbital Extreme Pole (HOEP). The proposed algorithm is implemented and its 
performance (total variance) is compared with ones from k-means and k-medoids 
clustering algorithms.    

1.3  Thesis overview 

The rest of the thesis is organized as follows. 

In Chapter II, we present the background knowledge which includes k-means 
algorithm, k-medoids algorithm, performance measure, literature reviews and 
background concepts. Then, the half-orbital extreme pole clustering algorithm is 
presented in Chapter III. In Chapter IV, the experiments and results are shown. In 
Chapter V, we discuss the results and draw conclusions. Some future research ideas 
are also suggested in this chapter. 
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CHAPTER II  
BACKGROUND KNOWLEDGE 

In this chapter, we discuss the background knowledge that is important to this 
thesis. We divide this chapter into six main parts. First, the definition of metric is 
defined. Second, we introduce the concept of clustering algorithm and algorithms 
which are used to compare with our algorithm. Third, we introduce the total variance 
which is the performance measure used in this thesis. Fourth, we show the formula 
that is used in data pre-processing. Fifth, we review the literature that inspires the 
idea of this work. Finally, we state the background concepts of our algorithm 
including the farthest pair in clustering and dispersion.  

2.1 Metric 

Definition Let ܦ be an arbitrary set. A function  መ݀ : ܦ × ܦ → 	ℝ	 ∪ {∞} is a 
metric on ܦ if the following conditions are satisfied for all	ݔ, ,ݕ 	ݖ ∈  .ܦ

1. Positiveness: መ݀(ݔ, (ݕ > 0 if	ݔ ≠ ,ݔ)and መ݀ ,ݕ (ݔ = 0.  

2. Symmetry: መ݀(ݔ, (ݕ = መ݀(ݕ,  .(ݔ

3. Triangle inequality: መ݀(ݔ, (ݖ ≤ መ݀(ݔ, (ݕ + መ݀(ݕ,  .(ݖ

A metric space is a set with a metric on it. In other words, a metric space is a 
pair (ܦ, መ݀) where መ݀ is a metric on	ܦ. Elements of ܦ are called instances. መ݀(ݔ,  (ݕ
is referred to the distance between instances ݔ and ݕ. 

 Let ݔ and ݕ be the instances in	ܦ which is a set of the ݀-dimensional real-
value vectors.  

1. Manhattan distance is defined by  

	݀ଵ෢(ݔ, 	(ݕ = 	 ∑ ௜ݔ| − ௜|ௗݕ
௜ୀଵ 	   (2.1) 

2. Euclidean distance is defined by 

 ݀ଶ෢(ݔ, (ݕ = ට∑ ൫ݔ௜ − ௝൯ݕ
ଶௗ

௜ୀଵ         (2.2) 

Both Manhattan distance and Euclidean distance are metrics or distance 
functions in	ℝ. 

If ܦ is a set of discrete metric space, the discrete metric is defined by  

݀ଷ෢(ݔ, (ݕ = 	 ൜
ݔ	݂݅				1 ≠ 	ݕ
ݔ	݂݅				0 = ݕ      (2.3) 
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2.2 Clustering algorithm  

In this section, we describe a concept of clustering algorithm, k-means and k-
medoids algorithms which are used to compare with the half-orbital extreme pole 
clustering algorithm.  

Clustering algorithm is the procedure for organizing instances into clusters 
such that the instances in the same cluster are more similar to one another than the 
instances in other clusters. In other words, clustering algorithm tries to form instances 
into clusters with high intra-cluster similarity (low intra-cluster distances) and low 
inter-cluster similarity (high inter-cluster distances).  

The words “high intra-cluster similarity” means that the instances in the same 
cluster have low intra-cluster distances. The intra-cluster distance of a cluster is 
measured in several ways, such as the summation of distances between every 
instance in the cluster and its center, the maximal distance between any pair of 
instances in the cluster, and the summation of variances in the cluster. While the 
intra-cluster distance is used to measure similarity in the cluster, inter-cluster 
distance is used to measure similarity between clusters. The inter-cluster distance 
can also be measured in various ways, such as the smallest distance between an 
instance in one cluster and an instance in the other cluster (single link), the largest 
distance between an instance in one cluster and an instance in the other cluster 
(complete link) and the average distance between an instance in one cluster and an 
instance in the other (average link). 

The representative of each cluster formed by clustering algorithm is called 
the center. However, in different clustering algorithms, centers of clusters are 
computed in different methods. For example, k-means algorithm computes a center 
from mean value of all instances in a cluster and each center is called centroid. K-
medoids algorithm selects one of instances as center and calls its center a medoid. 

In this research, we used k-means and k-medoids algorithms to compare with 
our algorithm. 

2.2.1 K-means algorithm 

Although there are several k-means clustering algorithms [16], the concept of 
k-means algorithms is the same. All k-means algorithms aim to organize instances 
into ݇ clusters, where ݇ is the number of clusters that is initially given.       

The definition of centroid is defined as follows. 
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Let  ܦ = ,ଵݔ} ,ଶݔ . . .		 ,  ,ே} be a set of the ݀-dimensional real-value vectorsݔ

௜ݔ  = ௜భݔ) , ௜మݔ , . . .		 ,  ,ܦ ௜೏) be the ݅୲୦ instance inݔ

,ଵܥ  ,ଶܥ … ,   ,where ݇ is the number of clusters ܦ ௞ be the clusters inܥ

 ܿ௧ 	= (ܿ௧భ, ܿ௧మ , … , ܿ௧೏) be the centroid of the cluster ܥ௧,  

 ݈௧ be the number of instances in ܥ௧ for ݐ = 1,2, … , ݇. 

The components of centroid ܿ௧ are defined by  

ܿ௧ೕ =
∑ ௫೔ೕ
೗೟
೔సభ

௟೟
   (2.4) 

for ݆ = 1,2,… , ݀  

This research used Lloyd’s algorithm [9], which is a k-means clustering 
algorithm, as the comparative algorithm. Lloyd’s algorithm is described as follows. 

Lloyd’s algorithm 

INPUT:  ݇  is the number of clusters, 

ܦ = ,ଵݔ} ,ଶݔ . . .		 ,  ,ே} is a set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 ,  ܦ ௜೏) be the ݅୲୦ instance inݔ

OUTPUT: A set of ݇ clusters  

STEP 1 Choose randomly ݇ centroids ܿଵ, ܿଶ, … , ܿ௞ from	ܦ as centers of clusters 
,ଵܥ ,ଶܥ … ,  ௞ܥ

STEP 2 For all instances ݔ௜ for	݅ = 1,2, … , ܰ  

- Assign instance ݔ௜ to a cluster ܥ௟ where  

 

STEP 3 Compute new centroids of clusters  

STEP 4 Go back to STEP 2 until all instances do not change their groups. 

An Example of Lloyd’s algorithm 

In this example, we organize the following instances into three clusters using Lloyd’s 

algorithm. 

 ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ 
Point (2, 10) (2, 5) (8, 4) (5, 8) (7, 5) (6, 4) (1, 2) (4, 9) 

   

መ݀(ݔ௜ , ܿ௟) = min
௝ୀଵ,ଶ,…,௞

൛ መ݀൫ݔ௜ , ௝ܿ൯ൟ. 
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Initial centroids of clusters are given by	ݔଵ = ସݔ ,(2,10) = (5,8)	and	7ݔ =
(1,2).  

Start with calculating distances from centroids to each instance using 

Manhattan distance (2.1). 

For instance	ݔଵ, 

 መ݀(ݔଵ, (ଵݔ = –ଵభݔ| |ଵభݔ + –ଵమݔ| |ଵమݔ = |2	– 2| + |10	– 10| = 0 

መ݀(ݔଵ, (ସݔ	 = หݔଵభ– ସభหݔ + หݔଵమ– ସమหݔ = |2	– 5| + |10	– 8| = 5 

መ݀(ݔଵ, (଻ݔ	 = –ଵభݔ| |଻భݔ + –ଵమݔ| |଻మݔ = |2	– 1| + |10	– 2| = 9 

The minimum distance from ݔଵ to each cluster is 0, so ݔଵ is assigned to the 

cluster that has ݔଵ as the centroid. 

Iteration 1 

 
 

Point 
(2, 10) 

Distance 
(5, 8) 

Distance 
(1, 2) 

Distance 
Cluster 

 ଵ (2, 10) 0 5 9 1ݔ
 ଶ (2, 5) 5 6 4 3ݔ
 ଷ (8, 4) 12 7 9 2ݔ
 ସ (5, 8) 5 0 10 2ݔ
 ହ (7, 5) 10 5 9 2ݔ
 ଺ (6, 4) 10 5 7 2ݔ
 ଻ (1, 2) 9 10 0 3ݔ
 2 10 2 3 (9 ,4) ଼ݔ

 

From above table,  

Cluster 1: {ݔଵ}, Cluster 2: {ݔଷ, ,ସݔ ,ହݔ ,଺ݔ ,ଶݔ} :and Cluster 3 ,{଼ݔ 	.{଻ݔ

The new centroids of clusters are calculated.  

For cluster 1, there is only one instance	ݔଵ, so the centroid remains the same. 

For cluster 2, the centroid is	ቀ(଼ାହା଻ା଺ାସ)
ହ

, (ସା଼ାହାସାଽ)
ହ

ቁ 	 = 	(6, 	6). 

For cluster 3, the centroid is	ቀଶାଵ
ଶ
, ହାଶ
ଶ
ቁ 	 = 	(1.5, 	3.5). 
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Iteration 2 

 
 

Point 
(2, 10) 

Distance 
(6, 6) 

Distance 
(1.5, 3.5) 
Distance 

Cluster 

 ଵ (2, 10) 0 8 9 1ݔ
 ଶ (2, 5) 5 5 2 3ݔ
 ଷ (8, 4) 12 4 7 2ݔ
 ସ (5, 8) 5 3 8 2ݔ
 ହ (7, 5) 10 2 7 2ݔ
 ଺ (6, 4) 10 4 5 2ݔ
 ଻ (1, 2) 9 9 2 3ݔ
 1 7 5 3 (9 ,4) ଼ݔ

From above table,  

Cluster 1: {ݔଵ, ,ଷݔ} :Cluster 2 ,{଼ݔ ,ସݔ ,ହݔ ,ଶݔ} :଺}, and Cluster 3ݔ 	.{଻ݔ

Repeat algorithm until no changing.  

The Lloyd’s algorithm stops with 

Cluster 1: {ݔଵ, ,ସݔ ,ଷݔ} :Cluster 2 ,{଼ݔ ,ହݔ ,ଶݔ} :଺}, Cluster 3ݔ  .{଻ݔ

2.2.2 K-medoids algorithm 

K-medoids algorithm is the clustering algorithm that also aims to partition 
instances into  ݇ clusters, where ݇ is the number of clusters that is initially given, 
like k-means algorithm. The difference of these two algorithms is the center selecting 
scheme to form clusters. K-means algorithm uses mean value of instances in each 
cluster as a center. Therefore, the center of k-means algorithm is not need to be 
ones of instances. On the contrary, k-medoids algorithm uses one of the instances as 
a center called medoid. Thus, k-medoids algorithm has the condition to identify 
which instance should be the medoid in the next iteration. 

The total cost value is the measurement for determining whether an instance 
should be a medoid in the next iteration. The computation of the total cost value is 
as follows.  

Let ܦ = ,ଵݔ} ,ଶݔ . . .		 ,  ,ே} be the set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 ,   ,ܦ	௜೏) be the ݅୲୦ instance inݔ

݉ଵ, ݉ଶ, … ,݉௞ be the medoids of clusters ܥଵ, ,ଶܥ … ,  .௞ܥ
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1. Assume that clusters have been formed by assigning instances ݔ௜ to the 
clusters with medoid ݉௟ if their distances are corresponding to the following 
equation: 

  (2.5) 

2. Compute the total cost by 

  (2.6) 

In order to select a new medoid, the current medoid is tentatively replaced 
by instances that are not currently medoids. The total cost value for each 
replacement is then computed. The instance that gives the minimum total cost 
value will actually replace the current medoid in next iteration.  

This research study used Partition Around Medoids algorithm (PAM) [10], 
which is one of k-medoid clustering algorithms, as a comparative algorithm. PAM 
algorithm is described as follows. 

Partition Around Medoids (PAM) algorithm 

INPUT:  ݇  is the number of clusters, 

ܦ = ,ଵݔ} ,ଶݔ . . .		 ,  ,ே} is a set of the ݀-dimensional real-value vectorsݔ
௜ݔ = ௜భݔ) , ௜మݔ , . . .		 ,  ܦ ௜೏)  is the ݅୲୦ instance inݔ

OUTPUT: A set of ݇ clusters  
STEP 1 Choose randomly ݇ medoids ݉ଵ, ݉ଶ, … ,݉௞ from ܦ as centers of clusters 

,ଵܥ ,ଶܥ … ,  ௞ܥ

STEP 2 For all instances ݔ௜  for	݅ = 1,2, … ,ܰ  

- Assign instance ݔ௜  to a cluster ݉௟ according to equation (2.5) 

STEP 3 Calculate the current total cost value 

STEP 4 For all medoids ݉௟ for ݈ = 1,2,… , ݇ 

- For all instances ݔ௜  for ݅ = 1,2, … ,ܰ which ݔ௜  is not medoids  
- Swap ݉௟ and ݔ௜  and compute the total cost  

STEP 5 Replace ݉௟ with ݔ௜ which gives lowest total cost and that total cost value is 
lower than current total cost value. 

STEP 6 Go back to STEP 2 until there is no change in the medoids. 

መ݀(ݔ௜, ݉௟) = min
௝ୀଵ,ଶ,…,௞
௫೔ஷ௠ೕ	∀௝

൛ መ݀൫ݔ௜ , ௝݉൯ൟ. 

	ݐݏ݋ܿ	݈ܽݐ݋ݐ = 	∑ ∑ መ݀(ݔ௜ , ݉௟)௫೔∈஼೗
௞
௟ୀଵ . 
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An Example of PAM algorithm 

In this example, we organize the following instances into 2 clusters using PAM 

algorithm. 

 ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ 

Point (2, 6) (3, 4) (3, 8) (4, 7) (6, 2) (6, 4) (7, 3) (7, 4) (8, 5) (7, 6) 
 

STEP 1 Choose randomly two medoids ݉ଵ = ଶݔ = (3, 4)	and	݉2 = 8ݔ =
(7, 4) as centers of clusters ܥଵand ܥଶ 

STEP 2 For all instances ݔ௜  for	݅ = 1,2, … ,10  

- Assign instance ݔ௜  to a cluster ݉௟ according to equation (2.5) 

 
 

Point 
(3, 4) 

Distance 
(7, 4) 

Distance 
Cluster 

 ଵ (2, 6) 3 7 1ݔ
 ଷ (3, 8) 4 8 1ݔ
 ସ (4, 7) 4 6 1ݔ
 ହ (6, 2) 5 3 2ݔ
 ଺ (6, 4) 3 1 2ݔ
 ଻ (7, 3) 5 1 2ݔ
 ଽ (8, 5) 6 2 2ݔ
 ଵ଴ (7, 6) 6 2 2ݔ

 

Since ݔଵ,  ଶ, they are formed into oneݔ ସ are closer to medoidݔ ଷandݔ

cluster. The remaining instances, ݔହ, ,଺ݔ ,଻ݔ  ,଼ݔ are closer to medoid ,10ݔ	and	ଽݔ

thus, they are formed into the other cluster.  

Cluster 1: {ݔଵ, ,ଶݔ ,ଷݔ ,ହݔ} :ସ} and Cluster 2ݔ ,଺ݔ ,଻ݔ ,଼ݔ ,	ଽݔ   .{ଵ଴ݔ

STEP 3 Calculate the current total cost value 

So total cost = (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 	11 + 9 = 20. 

STEP 4 For all medoids ݉௟ for ݈ = 1,2,… , ݇ 

- For all instances ݔ௜  for ݅ = 1,2, … ,ܰ which ݔ௜  is not medoids  
- Swap ݉௟ and ݔ௜  and compute the total cost  
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For	݉ଵ =  ଶ, the total cost value is calculate for each replacement of ݉ଵݔ

by ݔଵ, ,ଷݔ ,ସݔ ,ହݔ ,଺ݔ ,଻ݔ   .ଵ଴ݔ	and	ଽݔ

For	݉ଶ =  the total cost value is calculate for each replacement of ݉ଶ ,଼ݔ
by ݔଵ, ,ଷݔ ,ସݔ ,ହݔ ,଺ݔ ,଻ݔ  .ଵ଴ݔ	and	ଽݔ

For this example, we replace medoids ݉ଶ = ଼ݔ = (7, 4) with ݔ଻ =
(7, 3) while ݉ଵ =    ଶ stays the same. Then, we compute the total costݔ

 
 

Point 
(3, 4) 

Distance 
(7, 3) 

Distance 
Cluster 

 ଵ (2, 6) 3 8 1ݔ
 ଷ (3, 8) 4 9 1ݔ
 ସ (4, 7) 4 7 1ݔ
 ହ (6, 2) 5 2 2ݔ
 ଺ (6, 4) 3 2 2ݔ
 2 1 4 (4 ,7) ଼ݔ
 ଽ (8, 5) 6 3 2ݔ
 ଵ଴ (7, 6) 6 3 2ݔ

 

Thus, total cost of	7ݔ which replaces ݉ଶ 

= (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 	11 + 11 = 22. 

After all total cost values are computed, if there is no the total cost value 
that is lower than the current total cost, the algorithm will stop. In other case, if 
there are the total cost values that are lower than the current total cost, the pair of 
instance and medoid that gives the minimum total cost value will be selected. The 
selected instance is set as the current medoid in next iteration. 

2.3 Performance measure 

There are several performance measures to evaluate clustering algorithms. 
Total variance is one of the measures which are used in comparison with k-means 
and k-medoids algorithms. The detail of total variance is explained as follows.  

2.3.1 Total Variances  

Total variance is used as a measure to compare performance between two 
clustering algorithms. The total variance is calculated from the summation of 
variance of each cluster. Because a variance value from a cluster shows how far the 
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set of instances in the cluster disperse from its centroid, the total variance can imply 
dispersion and aggregation of all instances in the dataset.  

Let  ܦ = ,ଵݔ} ,ଶݔ . . .		 ,  ,ே} be a set of the ݀-dimensional real-value vectorsݔ

௜ݔ  = ௜భݔ) , ௜మݔ , . . .		 ,  ,ܦ ௜೏) be the ݅୲୦ instance inݔ

,ଵܥ  ,ଶܥ … ,   ,where ݇ is the number of cluster ܦ ௞ be the clusters inܥ

 ܿ௧ 	= (ܿ௧భ, ܿ௧మ , … , ܿ௧೏) be the centroid of the cluster ܥ௧; ܿ௧೔ is computed 
from equation (2.4) 

 ݈௧ be the number of instances in ܥ௧ for ݐ = 1,2, … , ݇. 

The variance of cluster ܥ௧ is then defined by 

(௧ܥ)	ݎܽݒ =
	 ∑ ∑ ቀ௫೔ೕି௖೟ೕቁ

మ೏
ೕసభ

೗೟
೔సభ

௟೟ିଵ
.    (2.7) 

Hence, the total variance of ݇ clusters is defined by 

Total variance = 	∑ ௞(௧ܥ)ݎܽݒ
௧ୀଵ    (2.8) 

The example of variance calculation 

This example demonstrates how to compute the variance of a cluster. 

 Let	ݔଵ,	ݔଶ, and	ݔଷ be the instances in a cluster where ݔଵ = (1,1), 
ଶݔ = ଷݔ ,(1,2) = (3,3). 

The centroid of a cluster is ܥ = (ܿଵ, ܿଶ) where 

 ܿଵ =
∑ ௫೔భ
య
೔సభ

ଷ
= ଵାଵାଷ

ଷ
= ହ

ଷ
 , 

ܿଶ =
∑ ௫೔మ
య
೔సభ

ଷ
= ଵାଶାଷ

ଷ
= ଺

ଷ
= 2	. 

Thus, the variance is computed by the equation (2.7).  

(௧ܥ)	ݎܽݒ =
	∑ ∑ ൫ݔ௜௝ − ܿ௧௝൯

ଶௗ
௝ୀଵ

௟
௜ୀଵ

݈௧ − 1
 

=
∑ ቀݔ௜ଵ −

5
3ቁ

ଶ
ଷ
௜ୀଵ

3 − 1 +
∑ ௜ଶݔ) − 2)ଶଷ
௜ୀଵ

3 − 1  

=
ቆቀ1 − 5

3ቁ
ଶ
+ ቀ1 − 5

3ቁ
ଶ
+ ቀ3 − 5

3ቁ
ଶ
ቇ

2 +
((1 − 2)ଶ + (2 − 2)ଶ + (3 − 2)ଶ)

2  
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=
ቀ49 +

4
9 +

16
9 ቁ

2 +
(1 + 0 + 1)

2  

=
7
3 

2.4 Pre-processing  

First, all instances in every dataset must be normalized. This step is very 
important because the values of instances in different scales will be transformed into 
the same scale. Specifically, we apply the normalization technique to scale all 
numeric values into the range [0, 1] as seen in the following formula: 

௜ೕݖ =
௫೔ೕି୫୧୬ೖቄ௫೔ೖቅ

୫ୟ୶ೖቄ௫೔ೖቅି୫୧୬ೖቄ௫೔ೖቅ
                           (2.9) 

where ݖ௜ೕ is the ݆୲୦ normalized component of the ݅୲୦ instance. 

2.5 Literature review 

In this part, we explain the literature that induces the idea of the farthest pair, 
which is the main concept of this work. We begin with describing the multi-attributed 
frame [14] and the multi-attributed lens [15] which both used the idea of farthest 
pair. Although both papers are classification-related, the idea of farthest pair is also 
applicable to clustering. 

2.5.1 Multi-attributed frame 

The idea of the multi-attributed frame is proposed in [14]. This paper suggests 
the new approach to decision tree, which is one of the algorithms in classification. 
This paper uses an idea of the farthest pair, which is a pair of two instances that have 
the maximum distance, to limit the considered region.  

The first step is finding the farthest pair which is called extreme poles. After 
the farthest pair is obtained, the vector core is created from this pair. Consequently, 
there are two planes that are perpendicular to the vector core at the borders and 
the region of instances is partitioned into three sub regions: right region, middle 
region, and left region. (See Figure 1)  
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Figure 1 Three regions are partitioned into a frame by a vector core. 

Since the vector core is generated from the two extreme poles that have the 
largest distance, this guarantees that all instances lie in the middle region. After that, 
all instances are projected onto this core. Hence, several attributes are reduced to 
single attribute, and then the splitting point is found so that all instances in the 
middle region will be divided into specified class and unspecified class. The 
algorithm is conducted recursively with the unspecified class until the stopping 
criteria are met.  

The concept of the farthest pair can limit the considered region by choosing 
the same type of target class of the farthest pair. For example, suppose that target 
classes of all instances are positive and negative. If both poles are the positive, there 
are no positive instances that lie in right and left regions: all instances in right and 
left regions are negative instances. On the other hand, if both poles are negative, 
there is also no negative instance that lies in right and left regions. Moreover, if the 
target classes of two extreme poles are different, the target class in right and left 
regions can be still guaranteed. By the properties of the farthest pair, the target class 
of instances in right region is not the same as the target class of right pole. Similarly, 
the target class of instances in left region is not the same as the target class of left 
pole. In other words, we can always guarantee the target class of all instances in right 
and left regions. So there is only the middle region left to be considered. 

2.5.2 Multi-attributed lens 

The idea of the farthest pair that is initially proposed in the multi-attributed 
frame decision tree is also applied in [15] which also focused on the decision tree. 
This paper improved the concept of considered regions from three regions to two 
regions.  

Although the multi-attributed frame lens and multi-attributed lens are both 
decision tree algorithms using multi-attributed concept, there are some different 
points between these two papers. Even though both algorithms start by finding the 

Right region  Middle region Left region 

Extreme pole  Extreme pole  
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farthest pair and generating the vector core, the multi-attributed lens requires that 
the target classes of extreme poles must be the same type. Furthermore, the 
considered regions are changed from the frame to the lens as explained in the 
following detail. After generating the vector core, the multi-attributed lens creates 
two balls by setting the extreme poles as the centers of each ball and the length of 
vector core as their radiuses. (See Figure 2) 

 

 

Figure 2 All instances having the same target class with the extreme poles lie in the 
lens. 

Since the vector core, whose length is the maximum distance of two 
instances, is set as the radius of the two balls, all instances with the same target 
class as the extreme poles do not lie away from the extreme poles further than the 
length of the vector core. In other words, all instances with the same target class as 
the extreme poles lie in the intersection of two balls, which is called lens. The 
shaded region in Figure 2 indicates an example of a lens. Therefore, the regions are 
divided as the region inside the lens and the one outside the lens. Moreover, all 
instances lying outside the lens are immediately identified with their target class.   

After identifying the target class of all instances outside lens, instances inside 
the lens are projected onto the vector core, and the splitting point can be found so 
that all instances inside the lens should be partitioned into specified instances and 
unspecified instances. The algorithm keeps finding the farthest pair of the unspecified 
instances and repeats the process until the stopping criteria are met.  

2.6 Background concept  

Although both ideas from the papers, which are multi-attributed frame and 
multi-attributed lens, are used in classification, the concept of the farthest pair is also 

Extreme pole Extreme pole 
Vector core 
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applicable to clustering algorithm as well. In this section, we state how the farthest 
pair is applied in clustering and describe the definitions of dispersion which includes 
Sturges’ formula used in our algorithm. 

2.6.1 The farthest pair in clustering 

The concept of farthest pair is applied in our clustering algorithm due to the 
following reasons. Since the farthest pair is a pair of instances that have the 
maximum distance, the clustering of entire instances can be fallen in two possible 
cases. The first case is that all can be in the same group if the dispersion of instances 
along the vector core is homogeneous. The other case is that if the dispersion along 
the vector core is nonhomogeneous, they should be in different groups. In case of 
nonhomogeneous, the farthest pair is the first two considered instances lied in 
different groups. Moreover, they are considered as the main points on partitioning 
the rest of instances.  

2.6.2 Dispersion 

While we discuss about applying the farthest pair concept in our clustering 
algorithm in the previous section, we have mentioned the dispersion along the 
vector core used for specifying the cases of instances whether they are 
homogeneous or nonhomogeneous. In this section, we formally define the words 
dispersion, homogeneous and nonhomogeneous.  

Since the objective of clustering algorithm is to partition instances into 
groups, the dispersion will be used in our clustering algorithm as the criterion to 
decide whether all instances should be partitioned. This research study uses 
histogram as the tool for inspecting the dispersion of instances by the following 
method. First, the farthest pair is found and set as the extreme poles. Then, the 
vector core is constructed from these poles. After that, the histogram is created 
along the vector core. The pattern of a chain of bins collecting from the frequency of 
instances in this histogram will be called the dispersion along the vector core. The 
dispersion along the vector core indicates whether a group of instances is 
homogeneous or nonhomogeneous. A homogeneous group means all instances 
should belong in the same group, therefore the partitioning does not occur in this 
group. The examples of dispersion in this case are normal curve, positively skewed 
curve or negatively skewed curve as shown in Figure 3. 
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Figure 3 Positively skewed curve, normal curve and negatively skewed curve 
respectively 

On the other hand, a nonhomogeneous group suggests that the instances 
should be partitioned into the different groups. Hence, the ball with an appropriate 
radius of which center is one of extreme poles is built. The instances are partitioned 
into two groups which are groups of instances inside the ball and outside the ball. 
Figure 4 shows the examples of dispersion in this case. 

 

Figure 4 The examples of dispersion in nonhomogeneous 

2.6.2.1 Sturge’s formula 

In order to form a histogram, we construct a set of non-overlapping intervals 
called bins and count the number of instances in each bin. To compare the 
frequency of bins, the bins should have the same width. In our study, the number of 
bins is determined by Sturges’ formula, which was first proposed by Herbert A. 
Sturges [17]. 

  ݊ = ⌈logଶ |ܵ| + 1⌉      (2.7) 

where	݊ is the number of bins and 	S is the set of unspecified instances. 

Sturges’s formula is widely recommended in many introductory statistics 
textbooks and is often used in statistical packages in several programs as a default 
method. Scott [18] interpreted Sturges’ formula by using the concept of binomial 
coefficient in 1992 as follows. The first step is constructing the histogram with ݊ bins 
with the equal width. In the second step, we assume the frequency of the  ݇୲୦ bin 
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as a binomial coefficient	ቀ	݊ − 1
݇ ቁ for	݇ = 0, 1, 2,… , ݊ − 1. As ݇ increases, the 

histogram is tended to be the shape of normal distribution. Furthermore, the total 
number of instances is 

|ܵ| = 	∑ ቀ	݊ − 1
݇ ቁ௡ିଵ

௞ୀ଴ = (1 + 1)௡ିଵ = 2௡ିଵ                   (2.8) 

by the binomial expansion. We find that equation (2.7) and (2.8) are corresponding.  
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CHAPTER III  
HALF-ORBITAL EXTREME POLE CLUSTERING ALGORITHM 

This chapter proposes the half-orbital extreme pole clustering algorithm (HOEP 
algorithm). In order to understand the HOEP algorithm, first, the notations are 
introduced. After that, the HOEP algorithm will be proposed and described. 
Moreover, the pseudo code and flowchart of algorithm are provided later in this 
chapter.   

3.1 The notations for Half-Orbital Extreme Pole algorithm  

Let  

- ܰ be the number of all instances; 

௜ݔ - = ൫ݔ௜భ , ௜మݔ , … ,  ௜೏൯ be the ݅୲୦ instance, which is a ݀-dimensionalݔ
vector of real numbers for all  ݅ = 	1, 2, … , ܰ; 

ܦ - = ,ଵݔ} ,ଶݔ … ,    ;ே} be the set of all instancesݔ

- ܵ be the set of the considered instances;   

ܣ̅ - = ൣܽ௜௝൧ be the distance matrix where ܽ௜௝ is the Euclidean distance from 
the ݅୲୦  instance to the ݆୲୦  instance; 

 ;ଶ be the farthest pair of all instances called extreme poles݌	and	ଵ݌ -

 ;be a vector core generated by the extreme poles ݒ⃑ -

 ;be the width of intervals used for constructing the histogram bins ߙ -

- ݊ be the number of intervals with the length ߙ used for constructing the 
histogram bins;  

;ܿ)ܤ -  ;ݎ be the ball (orbit) with a center ܿ and a radius (ݎ

- ௜݂ be the number of instances that lie between ܤ(ܿ; (݅ −  and (ߙ(1
;ܿ)ܤ  ;(ߙ݅

- ௜݂
∗ be the transformed value of ௜݂ into the range [0, 1]; 

  .be the parameter for determining the cluster splitting point	ߛ -
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3.2 Half-Orbital Extreme Pole algorithm 

INPUT: ܦ = ,ଵݔ} ,ଶݔ … ,  ே} is the set of ݀-dimension real vector, whereݔ

௜ݔ = ൫ݔ௜భ , ௜మݔ , … ,  ,௜೏൯ is the ݅୲୦ instanceݔ

parameter ߛ. 

OUTPUT: Clusters of instances 

First, HOEP algorithm sets	ܵ =  The HOEP algorithm runs on ܵ instead of .ܦ
 so that the algorithm should stop when the number of considered instances is too ܦ
small.  

Second, the distance matrix	̅ܣ = ൣܽ௜௝൧ is created where ܽ௜௝ is the Euclidean 
distance from ݔ௜ and ݔ௝ . The Euclidian distance is calculated as indicated in the 

formula (3.1):  

   ܽ௜௝ = ට∑ ൫ݔ௜೟ − ௝೟൯ݔ
ଶௗ

௧ୀଵ         (3.1) 

where ݔ௜ = ൫ݔ௜భ , ௜మݔ , … , ௝ݔ and	௜೏൯ݔ = ൫ݔ௝భ , ௝మݔ , … ,  .௝೏൯ݔ

Third, the extreme poles ݌ଵ and	݌ଶ are identified by the index of the 
maximum value of elements in the distances matrix	̅ܣ. In other word, if	ܽ௜ᇲ௝ᇲ , which 

is an element in the distance matrix	̅ܣ, has the largest value among of all elements in 
 .ଶ respectively݌	ଵ and݌	௝ᇲ are set to be the extreme polesݔ	௜ᇲ andݔ then ,ܣ̅

Fourth, the vector core	⃑ݒ	is generated from the extreme poles,	݌ଵ and	݌ଶ, 
with magnitude	‖⃑ݒ‖, where  

‖ݒ⃑‖   		= ට∑ ଵ௜݌) − ଶ௜)ଶௗ݌
௜ୀଵ 	                 (3.2) 

Next, the vector core ⃑ݒ is divided into ݊ equal width intervals. So the length 
of intervals	ߙ is 

ߙ   = ‖௩ሬ⃑ ‖
௡
	                               (3.3) 

where the number of intervals	݊ is calculated from Sturges’ formula (Sturges 1926) 

  ݊ = ⌈logଶ |ܵ| + 1⌉.                    (3.4) 

This formula has already been explained in previous chapter. 
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Figure 5 The vector core is divided into ࢔ intervals of equal width ࢻ. 

Fifth, 	pଵ is chosen as the center of the balls (orbits) which are constructed 
with different radiuses, each of which is a multiple of	ߙ (See Figure 6). Then, 
instances in each layer of a ball are counted to creat87e a histogram. ௜݂

∗ is the 
transformed frequency for the ݅୲୦ layer. If ௜݂ is the number of instances that lie 

between	ܤ(ܿ; (݅ − ;ܿ)ܤ	and (ߙ(1 ௜݂ ,(ߙ݅
∗ is calculated from one of two 

transformed functions: 

the first transformed function 

 ௜݂
∗ 		= ݃ଵ( ௜݂) = 	

௙೔
|ௌ|

    (3.5) 

the second transformed function 

௜݂
∗ 	= ݃ଶ( ௜݂) = 	

௙೔ି୫୧୬ೕ ௙ೕ
୫ୟ୶ೕ ௙ೕି୫୧୬ೕ ௙ೕ

.   (3.6) 

Thus, ௜݂
∗  is the normalized value of ௜݂ into the range [0, 1].  

 
Figure 6  ࢖૚ is chosen as the center of balls with several determined radiuses. 

In order to partition instances into two groups, the splitting point is 
determined by the following method. In the beginning, the parameter ߛ is set as the 
indicator for determining a layer with a splitting point. After that, the	݆୲୦ layer 

 ଶ݌ ଵ݌

 ଶ݌ ଵ݌
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contains a splitting point if	݂݆
∗ 	< ௝݂ାଵ ,ߛ

∗ > and ௥݂	ߛ
∗ > ݎ for all 	ߛ < ݆. Figure 7 

illustrates an example of such layer containing a splitting point. 

 
Figure 7 The desirable layer containing a splitting point is specified by parameter 

gamma. 

Consequently, the midpoint of the  ݆୲୦ layer is set as the splitting point and 

the distance from selected pole ݌ଵ to the splitting point is	ቀଶ௝ିଵ
ଶ
ቁߙ.  This value is 

set to be the radius of a ball with ݌ଵ as its center. In other words, the ball 

ܤ ቀ݌ଵ;
ଶ௝ିଵ
ଶ
 ቁ is created. Therefore, the instances are partitioned into two groupsߙ

which are instances inside the ball and outside the ball. (See Figure 8) The instances 
inside the ball form a cluster.  

 

Figure 8 The ball ࡮ቀ࢖૚;
૛ି࢐૚
૛
 ቁ  is created and all instances are divided into twoࢻ

groups which are instances inside and outside the ball. 

Then, the algorithm repeats on instances outside the ball if the number of 
instances that are outside the ball is not larger than ninety percent of the size of 
input dataset. Otherwise, the algorithm terminates. 
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Figure 9 All instances in the ball lie on a half of ball with side along vector core. 

 In case such a splitting point does not exist, the center of the balls is 
switched to the other extreme pole and new layers are created. A histogram is 
reconstructed and a splitting point is identified in a similar manner. If the algorithm 
still cannot partition the instances, then all instances are assigned to one group and 
the algorithm is terminated.   

According to HOEP algorithm, when we run our algorithms several times with 
the same parameter	ߛ, the final clusters do not change. In the beginning of the 
algorithm with the same dataset, it is obvious that the first farthest pairs that are 
found in different runs are the same pair. Therefore, the bins that correspond with 
splitting criterion in different runs are the same bin. Thus, the balls that are created 
to partition instances in the first time are also the same center and the same 
radiuses. Hence, the instances that are partitioned by these balls are the same. Thus, 
in the next iteration, the results from different runs do not change. Therefore, HOEP 
gives the same final clusters in different runs. Moreover, in the beginning of our 
algorithm, the number of clusters is not specified.   

The pseudo code and flowchart of HOEP algorithm are provided here. 

3.3 The pseudo code of HOEP algorithm  

INPUT: ܦ = ,ଵݔ} ,ଶݔ … ,  ே} is the set of ݀-dimension real vector, whereݔ

௜ݔ = ൫ݔ௜భ , ௜మݔ , … ,  ,௜೏൯ is the ݅୲୦ instanceݔ

parameter ߛ. 

OUTPUT: Clusters of instances: ܥଵ, ,ଶܥ … ,  ௞ܥ

STEP 1: ܵ = ,ܦ ݇ = 0 and ܥ଴ = 	∅  

STEP 2: Create distance matrix 
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STEP 3: Find extreme poles ݌ଵ and  ݌ଶ in ܵ 

STEP 4: Construct a vector core ⃑ݒ, calculate the number of intervals	݊, and divide it      
into ݊ intervals 

STEP 5: Set ܿ =  ଵ as the center of the balls݌

STEP 6: For ݅ = 1,… , ݊. determine ௜݂ and	݂݅
∗ 

STEP 7: If there exists an interval ݆	such that ௝݂
∗ < and ௝݂ାଵ ߛ

∗ > and ௥݂	ߛ
∗ >  	ߛ

for all	ݎ < ݆ { 
  - Create ball  ܤ ቀܿ, ቀଶ௝ିଵ

ଶ
ቁߙቁ  

- ݇ = ݇ + 1 
- Set ܥ௞ = set of the instances that belong to the inside ball 

  - If |ܥ௞	|	 = 1	{ 

   - Combine ܥ௞	and	ܵ	 
   - Algorithm stops 
  }else{ 

- Set ܵ = set of the instances that belong to the outside ball 
   - If |ܵ| < 0.1 ∙  } |ܦ|
    -  ݇ = ݇ + 1 

௞ܥ -     = 	ܵ	 
- Algorithm stops 

   }else{  

    -  Go back to Step 3 
   } 

} 

}else{  

   - If poles have been swapped { 

- ݇ = ݇ + 1 
- Set	ܥ௞ = ܵ  

   - Algorithm stops 
 }else{  

- Set ܿ =  ଶ as the center of the balls݌	
   - Go back to Step 6 

 } 

} 
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Figure 10 The flowchart of HOEP algorithm 

Set ܵ = ,ܦ ݇ = 0, ଴ܥ = 	∅ 

  |ܵ| < 0.1 ∗  ?|ܦ|

Create distance matrix. 

Find poles  ݌ଵand ݌ଶ in ܵ. 
Calculate the number of intervals, ݊. 

Construct a vector core and divide it into ݊ intervals. 
Set ܿ =  .ଵ as the center of the balls݌

݇ = ݇ + 1. 
Create ܤ ቀܿ, ቀଶ௝ିଵ

ଶ
ቁ   .ቁߙ

For i = 1,… , ݊. determine ௜݂ and ௜݂
∗. 

Create histogram using ௜݂
∗. 

  
There exists an interval ݆	 

such that ௝݂
∗ < ݂ and ߛ ௝ାଵ

∗ > and ௥݂	ߛ
∗ > > for all r 	ߛ ݆ ? 

Set ܥ௞ = set of the instances  

that belong to the inside ball. 

	|	݇ܥ|   = 1	? 

Stop.  

Set ܵ = set of the instances  

that belong to the outside ball. 

Set ܿ =   ଶ݌	
as the center  
of the balls 

  Poles have been swapped? 

݇ = ݇ + ௞ܥ .1 = ܵ.  

Stop.  

Combine ܥ௞	and ܵ. 

yes 

yes 

yes 

no 

no 

no 

yes 

no 

Set ݇ = ݇ + 1 

௞ܥ = ܵ. 
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CHAPTER IV  

EXPERIMENTS AND RESULTS 

 In this chapter, we describe our experiments and compare our results with k-
means and k-medoids algorithms using the average value of total variance. In the 
experiment, Half-Orbital Extreme Pole is written in R and performed on a PC with 
Intel(R) Core(TM) i5-2430M 2.40 GHz CPU and 6GB of RAM on Microsoft Windows 7 
Operating System.  

4.1  Dataset description 

In this experiment, we use 4 datasets which are iris, seed, E.coli and wine 
datasets from UCI repository.  

4.1.1 Iris dataset 

 The iris dataset consists of three species of iris plants which are Setosa, 
Virginica, and Versicolor. The iris dataset consists of 150 instances (50 instances for 
each) and 4 attributes, which are sepal length, sepal width, petal length, and petal 
width in centimeters, with no missing value. The target class of iris dataset is 
excluded since it is irrelevant to the clustering task. The description of the iris dataset 
is shown in Table 1 and Figure 11 shows a scatter plot of the iris dataset which is 
plotted between two principal components axes. 

Table 1 The statistical information of iris dataset 

 Min Max Mean SD 

sepal length 4.3 7.9 5.84 0.83 

sepal width 2.0 4.4 3.05 0.43 

petal length 1.0 6.9 3.76 1.76 

petal width 0.1 2.5 1.20 0.76 

 
Figure 11 Iris dataset 
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4.1.2 Seed dataset 

 The seed dataset is the description of three types of wheat kernels which are 
Kama, Rosa and Canadian. The seed dataset consists of 210 instances (70 instances 
for each type) and 7 attributes, which are area, perimeter, compactness, length of 
kernel, width of kernel, asymmetry coefficient and length of kernel groove, with no 
missing value. The target class of seed dataset is also ignored. The information of the 
seed dataset is shown in Table 2 and Figure 12 shows a scatter plot of the seed 
dataset which is plotted between two principal components axes. 

Table 2 The statistical information of seed dataset 

 Min Max Mean SD 

area  10.59 21.18 14.85 2.909699 

perimeter 12.41 17.25 14.56 1.305959 

compactness 0.8081 0.9183 0.871 0.023629 

length of kernel 4.899 6.675 5.629 0.443063 

width of kernel 2.63 4.033 3.259 0.377714 

asymmetry coefficient 0.7651 8.456 3.7002 1.503557 

length of kernel groove 4.519 6.55 5.408 0.491481 

 

 
Figure 12 Seed dataset 
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4.1.3 E.coli dataset 

 The E.coli dataset consists of 336 instances, and 8 attributes (7 predictive, 1 
name) with no missing value. The name attribute and the target class are ignored. 
Thus, there are 7 attributes left. The information of this dataset is shown in Table 3 
and Figure 13 shows a scatter plot of the E.coli dataset which is plotted between 
two principal components axes. 

 

Table 3 The statistical information of E.col dataset 

 Min Max Mean SD 

mcg 0 0.89 0.5001 0.194634 

gvh 0.16 1 0.5 0.148157 

lip 0.48 1 0.4955 0.088495 

chg 0.5 1 0.5015 0.027277 

aac 0 0.88 0.5 0.122376 

alm1 0.03 1 0.5002 0.215751 

alm2 0 0.99 0.4997 0.209411 

 

 
Figure 13 E.coli dataset 
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4.1.4 Wine dataset 

 The wine dataset is the description of three different types of wines. The 
chemical analysis gives the quantities of thirteen compositions which are found in 
each of three different cultivars of wines. The wine dataset consists of 178 instances, 
and 13 attributes with no missing value. The statistical information of wine dataset is 
shown in the following table and Figure 14 shows a scatter plot of the wine dataset 
which is plotted between two principal components axes. 

Table 4 The statistical information of wine dataset 

 Min Max Mean SD 

Alcohol 11.03 14.83 13 0.811827 

Malic acid 0.74 5.8 2.336 1.117146 

Ash 1.36 3.23 2.367 0.274344 

Alcalinity of ash 10.6 30 19.49 3.339564 

Magnesium 70 162 99.74 14.28248 

Total phenols 0.98 3.88 2.295 0.625851 

Flavanoids 0.34 5.08 2.029 0.998859 

Nonflavanoid phenols 0.13 0.66 0.3619 0.124453 

Proanthocyanins 0.41 3.58 1.591 0.572359 

Color intensity 1.28 13 5.058 2.318286 

Hue 0.48 1.71 0.9574 0.228572 

OD280/OD315 of diluted wines 1.27 4 2.612 0.7099904 

Proline 278 1680 746.9 314.9075 

 

Figure 14 Wine dataset 
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 The following table summarizes information of all datasets.  

Table 5 Dataset Description 

Dataset Attributes Instances 

Iris 4 150 

Seed 7 210 

E.coli  7 336 

Wine 13 178 

 

4.2 Results of the experiments 

 In this section, we compare the total variances of our clustering algorithm 
with k-means and k-medoids algorithm. Since our algorithm gives the same final 
clusters in different runs, the total variances in different runs are the same value. We 
run 100 rounds of each compared algorithms and use the average values of total 
variances to compare with our results.   

 At the beginning, we set different values of gamma by varying from 0.05 to 1 
with 0.05 increments. Then, we run HOEP algorithm only once for each gamma 
value. We compare our algorithm with k-means and k-medoids algorithms by setting 
the number of clusters of compared algorithms equal to the number of clusters from 
our algorithm. We run 100 rounds of each compared algorithms to compare with our 
result in each run of gamma value. Finally, we choose the gamma value that gives 
the minimum total variance to be the appropriate gamma value of each dataset. The 
results of experiments are shown as follows. 

 

Iris dataset   

The following table shows the number of clusters and the total variance from 
HOEP algorithm. The values of gamma are varied from 0.05 to 1 with 0.05 
increments. The result shows that the gamma values that give the minimum total 
variance in HOEP algorithm for ݃ଵ( ௜݂) is 0.25 and for ݃ଶ( ௜݂) are 0.35 and 0.40.  
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Table 6 Results of iris dataset from HOEP algorithm 

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 

 ߛ
The 

number 
of clusters 

Total 
variance 
HOEP 

The 
 number  

of clusters 

Total  
variance 
HOEP 

0.05 1 0.274255 1 0.2742545 

0.10 3 0.139462 1 0.2742545 

0.15 2 0.270116 1 0.2742545 

0.20 5 0.257964 5 0.1485446 

0.25 3 0.137439 5 0.1485446 

0.30 2 0.139887 6 0.2736472 

0.35 1 0.274255 3 0.1394619 

0.40 1 0.274255 3 0.1394619 

0.45 1 0.274255 3 0.1433193 

0.50 1 0.274255 4 0.1440115 

0.55 1 0.274255 4 0.1440115 

0.60 1 0.274255 4 0.1440115 

0.65 1 0.274255 10 0.1926997 

0.70 1 0.274255 2 0.2701162 

0.75 1 0.274255 6 0.248374 

0.80 1 0.274255 6 0.248374 

0.85 1 0.274255 6 0.248374 

0.90 1 0.274255 4 0.2418484 

0.95 1 0.274255 5 0.2450899 

1.00 1 0.274255 1 0.2742545 

Table 7 shows the results from HOEP comparing with ones from k-means and 
k-medoids algorithms. The number of clusters from the result of HOEP algorithm is 
set as the predetermined value in the initial step of k-means and k-medoids 
algorithms. Therefore, we compare the total variance of the same number of clusters 
in each algorithm. The results from iris dataset show that the total variances from 
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HOEP are lower than total variances from k-means and k-medoids algorithms in both 
of normalized functions.   

Table 7 Comparison of the total variance of iris dataset 

௜݂
 ߛ ∗

The number 
 of clusters 

Total variance 
HOEP k-means k-medoids 

݃ଵ( ௜݂) 0.25 3 0.137439 0.1483595 0.1398882 

݃ଶ( ௜݂) 
0.35 3 0.1394619 0.1496138 0.1398587 

0.40 3 0.1394619 0.1466788 0.1399226 

 

Although the HOEP algorithm can definitely partition instances in class Setosa 
after combining two final clusters, the HOEP cannot separate instances in class 
Virginica from Versicolor. Because, in the third iteration, there are only one instance 
which is one of extreme poles is partitioned from histogram, this means that this 
pole is not close to some of the remaining instances enough to form another cluster. 
Therefore, the algorithm terminates. 

Seed dataset   

Table 8 shows the number of clusters and the total variance of the seed 
dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1 with 
0.05 increments. The result shows that the gamma values that give the minimum 
total variance in HOEP algorithm for ݃ଵ( ௜݂) is 0.10 and for ݃ଶ( ௜݂) are 0.10, 0.15, 
0.20, 0.25, and 0.30.  
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Table 8 Results of seed dataset from HOEP algorithm 

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 

 ߛ
The 

number 
of clusters 

Total 
variance 
HOEP 

The 
 number 

of clusters 

Total  
variance 
HOEP 

0.05 2 0.418124 1 0.4237425 

0.10 4 0.342573 2 0.4181241 

0.15 3 0.386164 2 0.4181241 

0.20 1 0.423743 2 0.4181241 

0.25 1 0.423743 2 0.4181241 

0.30 1 0.423743 2 0.4181241 

0.35 1 0.423743 5 0.4499825 

0.40 1 0.423743 5 0.4499825 

0.45 1 0.423743 5 0.4499825 

0.50 1 0.423743 13 0.4999935 

0.55 1 0.423743 8 0.4359098 

0.60 1 0.423743 8 0.4359098 

0.65 1 0.423743 8 0.4978527 

0.70 1 0.423743 7 0.4783967 

0.75 1 0.423743 7 0.481209 

0.80 1 0.423743 6 0.4822992 

0.85 1 0.423743 6 0.4961151 

0.90 1 0.423743 6 0.4961151 

0.95 1 0.423743 4 0.4545432 

1.00 1 0.274255 1 0.4237425 

 

Table 9 shows the results from HOEP comparing with ones from k-means and 
k-medoids algorithms. The number of clusters from the result of HOEP algorithm is 
set as the predetermined value in the initial step of k-means and k-medoids 
algorithms. Therefore, we compare the total variance of the same number of clusters 
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in each algorithm. The results from normalized function	݃ଵ( ௜݂) show that the total 
variance from HOEP is lower than the total variance from both of k-means algorithm 
and k-medoids algorithm. Considering normalized function	݃ଶ( ௜݂), the total 
variances from HOEP are higher than total variances from k-means and k-medoids 
algorithms. This means that the normalized function ݃ଵ( ௜݂) may be more suitable 

for seed dataset than the normalized function	݃2൫݂݅൯. However, if we do not 

consider the gamma value that gives the minimum total variance in HOEP, the 
results of the total variances from HOEP may be lower than total variances from k-
means and k-medoids algorithms. (See Table  9) 

Table 9 Comparison of the total variance of seed dataset 

௜݂
 ߛ ∗

The number 
 of clusters 

Total variance 
HOEP k-means k-medoids 

݃ଵ( ௜݂) 0.10 4 0.3425730 0.3555230 0.3434717 

݃ଶ( ௜݂) 

0.10 
0.15 
0.20 
0.25 
0.30 

2 0.4181241 0.3209425 0.3290560 

0.55 8 0.4359098  0.4694328  0.4730751 

0.60 8 0.4359098  0.4693166  0.4724625 

 

E.coli dataset   

Table 10 shows the number of clusters and the total variance of the E.coli 
dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1 with 
0.05 increments. The result shows that the gamma values that give the minimum 
total variance in HOEP algorithm for normalized function ݃ଵ( ௜݂) are 0.05, 0.90, 0.95 
and 1.0 and for normalized function ݃ଶ( ௜݂) are 0.05, 0.10, 0.15, 0.20 and 1.00.  
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Table 10 Results of E.coli dataset from HOEP algorithm 

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 

 ߛ
The 

number 
of clusters 

Total 
variance 

HOEP 

The 
 number 

of clusters 

Total  
variance 

HOEP 

0.05 1 0.223759 1 0.223759 

0.10 2 0.241686 1 0.223759 

0.15 6 0.365499 1 0.223759 

0.20 5 0.377571 1 0.223759 

0.25 7 0.401987 2 0.2416859 

0.30 5 0.52312 2 0.2416859 

0.35 4 0.510741 5 0.3362595 

0.40 2 0.403802 9 0.4770188 

0.45 2 0.403802 8 0.6150343 

0.50 2 0.403802 5 0.3775712 

0.55 2 0.403802 3 0.3564157 

0.60 2 0.403802 3 0.3564157 

0.65 2 0.403802 3 0.3564157 

0.70 2 0.403802 3 0.3564157 

0.75 2 0.403802 5 0.3853661 

0.80 2 0.403802 14 0.7245408 

0.85 2 0.403802 14 0.7245408 

0.90 1 0.223759 12 0.6833156 

0.95 1 0.223759 11 0.6846903 

1.00 1 0.223759 1 0.223759 
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From the above table, the calculated gamma values give the same number 
of clusters which is only one cluster. This means that the values of total variance 
from three algorithms are equal. However, when we choose other gamma values 
which are not the gamma values that give the minimum total variance in HOEP, the 
results from HOEP are better than the compared algorithms as seen in Table 11. 

In Table 11, from the normalized function	݃ଵ( ௜݂), we vary the values of 
gamma varied from 0.05 to 0.25 with 0.05 incremental. The results show that the 
total variance from HOEP is lower than the total variances from k-means and k-
medoids algorithms. This is the same result when we set the gamma values are 
equal to 0.25, 0.30 and 0.35 using the normalized function	݃ଶ( ௜݂). 

Table 11 Comparison of the total variance of E.coli  dataset 

௜݂
 ߛ ∗

The number 
 of clusters 

Total variance 

HOEP k-means k-medoids 

݃ଵ( ௜݂) 

0.05 1 0.223759 0.223759 0.223759 

0.10 2 0.241686 0.298999 0.291798 

0.15 6 0.365499 0.501051 0.501281 

0.20 5 0.377571 0.457003 0.474829 

0.25 7 0.401987 0.538358 0.525647 

݃ଶ( ௜݂) 

0.05  
0.10 
0.15 
0.20 

1 0.223759 0.223759 0.223759 

0.25 2 0.241686 0.301083 0.291798 
0.30 2 0.241686 0.298107 0.291798 
0.35 5 0.336260 0.460839 0.462371 
1.00 1 0.223759 0.223759 0.223759 

 

Wine dataset   

Table 12 demonstrates the number of clusters and the total variance of the 
wine dataset from HOEP algorithm. The values of gamma are varied from 0.05 to 1 
with 0.05 increments. The result shows that the gamma values that give the 
minimum total variance in HOEP algorithm for normalized function ݃ଵ( ௜݂) are 0.40, 
0.45, 0.50, …, 1.0 and for normalized function ݃ଶ( ௜݂) are 0.05 and 0.10.  
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Table 12 Results of wine dataset from HOEP algorithm 

 ௜݂
∗ = ݃1(݂݅) =

݂݅
|ܵ|

 ௜݂
∗ = ݃2൫݂݅൯ =

݂݅ − min
݆
݂݆

max
݆
݂݆ − min

݆
݂݆

 

 ߛ
The 

number 
of clusters 

Total 
variance 

HOEP 

The 
 number 

of clusters 

Total  
variance 

HOEP 

0.05 3 0.826678 1 0.5370761 

0.10 4 0.917629 1 0.5370761 

0.15 4 1.010106 3 0.8266777 

0.20 8 1.621768 4 0.9176289 

0.25 8 1.790671 4 0.9176289 

0.30 3 1.152957 4 0.9176289 

0.35 2 0.815026 4 0.9176289 

0.40 1 0.537076 4 1.0101061 

0.45 1 0.537076 4 1.0101061 

0.50 1 0.537076 10 1.8864756 

0.55 1 0.537076 10 1.9952272 

0.60 1 0.537076 10 1.9952272 

0.65 1 0.537076 9 1.9096509 

0.70 1 0.537076 8 1.8918815 

0.75 1 0.537076 8 1.8918815 

0.80 1 0.537076 8 1.7906712 

0.85 1 0.537076 7 1.9546810 

0.90 1 0.537076 6 1.8737017 

0.95 1 0.537076 6 1.8737017 

1.00 1 0.537076 1 0.5370761 
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In Table 12, the provided gamma values give the same number of clusters 
which is only one cluster in dataset. This means that the values of total variance 
from three algorithms are equal because there is no partitioning of instances into 
clusters. However, when we choose other gamma values which are not the gamma 
values that give the minimum total variance in HOEP, the results from HOEP are 
better than both k-means and k-medoids algorithms. 

In Table 13, from the normalized function	݃ଵ( ௜݂), we vary the values of 
gamma from 0.05 to 0.20 with 0.05 incremental. The results show that the total 
variance from HOEP is lower than the total variances from k-means and k-medoids 
algorithms except at the gamma value equal to 0.05 and 0.15 the total variance from 
k-means is lower than total variance from HOEP.  

From the normalized function	݃ଶ( ௜݂), the values of gamma are varied from 
0.10 to 0.50 with 0.05 incremental. The results show that the total variances from 
HOEP are lower than the total variances from k-means and k-medoids algorithms 
except at the gamma value equal to 0.15 the total variance from k-means is lower 
than total variance from HOEP. 

Table 13 The comparison of the total variance of wine dataset 

௜݂
 ߛ ∗

The number 
 of clusters 

Total variance 
HOEP k-means k-medoids 

݃ଵ( ௜݂) 

0.05 3 0.826678 0.826381 0.8378864 

0.10 4 0.917629 1.03006 1.0201929 

0.15 4 1.010106 1.037033 1.0177082 

0.20 8 1.621768 1.686746 1.6869938 

0.40 1 0.537076 0.537076 0.537076 

݃ଶ( ௜݂) 

0.05 1 0.537076 0.537076 0.537076 

0.10 1 0.537076 0.537076 0.537076 

0.15 3 0.8266777 0.823341 0.8378864 

0.20 4 0.9176289 1.0380546 1.0224664 

0.25 4 0.9176289 1.0274516 1.0190927 

0.30 4 0.9176289 1.0364914 1.0274369 

0.35 4 0.9176289 1.0377276 1.0167909 

0.40 4 1.0101061 1.0388452 1.0193632 

0.45 4 1.0101061 1.0323878 1.0245189 

0.50 10 1.8864756 1.9247291 1.9322233 
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CHAPTER V  

CONCLUSION 

 The Half-orbital extreme pole algorithm is a clustering algorithm which uses a 
concept of the farthest pair to partition instances into groups. The concept of the 
farthest pair is derived from two papers in classification [14, 15]. In our experiment, 
we compare our algorithm with k-means clustering algorithm and k-medoids 
clustering algorithm using 4 datasets which are iris, E.coli, seed, and wine datasets. 
The performance measure used in this thesis is total variance. We use an average 
value of total variances from 100 rounds of experiments to compare the 
performance of all three algorithms with respect to the same number of clusters. 

Even though HOEP algorithm does not require the number of clusters in the 
beginning, HOEP algorithm requires the value of parameter gamma. We suggest the 
method to select a gamma value by the following technique. First, gamma values 
are varied from 0.05 to 1 with 0.05 increments. Then, in every run, the total variances 
are calculated and collected. Finally, the suggested gamma is the gamma value that 
gives the minimum total variance.  

Using the gamma selecting technique, the results of the Iris dataset show that 
both transformed functions of our algorithm give the same three final clusters whose 
the total variance is lower than those from both k-means and k-medoids algorithms.  

For the results of the Seed dataset, the suggested gamma value is good for 
the first transformed function because it provides the final clusters that their total 
variance is lower than total variances from k-means and k-medoids algorithm. For the 
second transformed function, the total variance from HOEP algorithm with respect to 
the suggested gamma value is higher than those from k-means and k-medoids 
algorithms.  

In the E.coli and the Wine datasets, a suggested gamma value gives only one 
final cluster. Since the cluster formed by all instances has the total variance lower 
than the total variance from any partitioned clusters.  

In conclusion, the HOEP algorithm tries to form instances into clusters by 
starting from boundary. The visualization from Principal Component Analysis (PCA) 
cannot demonstrate this fact in some datasets because PCA tries to visualize a 
dataset which has several attributes into two-dimensional space. However, the 
scatter plots of two attributes can show this fact. HOEP algorithm can perform well 
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when the appropriate gamma value is chosen. The appropriate gamma value 
provides the final clusters that have low total variance.  

In the first iteration, if HOEP algorithm is terminated by the criterion that there 
is only one instance which is partitioned, the outlier is first detected. As the result of 
this criterion, HOEP algorithm is good for a dataset that contains outliers. 
Furthermore, this algorithm can be used to detect the outliers of a dataset by 
considering the number of instances from the cluster that is formed first.  

Furthermore, HEOP algorithm is suitable for a dataset whose constructed 
histogram is nonhomogeneous because if the appropriate gamma value is chosen, 
the instances can be grouped into the appropriate clusters. Since each bin of 
histogram is constructed from the frequency of instances in each layer, the 
nonhomogeneous histogram is occurred when there is the middle region of layers of 
ball that has the density of instances lower than the density of instances of its left 
and its right regions of layers of ball.  

HOEP algorithm has three major advantages. The first advantage is that the 
number of clusters is not needed to be set by users. The second advantage is that 
the distances between every instance and centroid are not needed to be re-
calculated after the first distance calculation. The other advantage is the finalized 
clustering will be the same for different runs. These can rectify three drawbacks of k-
means and k-medoids algorithms which are the number of clusters is required to be 
predetermined, the distances between instances and their centroids are needed to 
be recalculated in every iteration and the different initial centroids can result in 
different final clusters. 

However, the HOEP algorithm cannot partition a cluster from a dataset that 
the constructed histogram is homogeneous because the gamma value cannot find 
the splitting point. Thus, our algorithm can be improved by using other methods to 
split instances into clusters instead of using histogram. Furthermore, our algorithm 
can also be improved by finding an appropriate way to determine the parameter 
gamma or using different values of gamma in each iteration, because each iteration 
might require its own gamma values to perform effectively.  
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APPENDIX : RESULTS FROM HALF-ORBITAL ALGORITHM 

Iris dataset  

 

Table 14 The results from iris dataset 

 ௜݂
∗ = ݃ଵ( ௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ( ௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂
 

 ݇ ߛ
Total variance 

݇ 
Total variance 

HOEP k-means k-medoid HOEP k-means k-medoid 

0.05 1 0.274255 0.274255 0.2742545 1 0.2742545 0.2742545 0.2742545 

0.10 3 0.139462 0.147885 0.1399325 1 0.2742545 0.2742545 0.2742545 

0.15 2 0.270116 0.139887 0.1398865 1 0.2742545 0.2742545 0.2742545 

0.20 5 0.257964 0.153486 0.1530062 5 0.1485446 0.1541574 0.1519457 

0.25 3 0.137439 0.147823 0.1398882 5 0.1485446 0.1526397 0.1519537 

0.30 2 0.139887 0.139887 0.1398865 6 0.2736472 0.1623842 0.1623433 

0.35 1 0.274255 0.274255 0.2742545 3 0.1394619 0.1496138 0.1398587 

0.40 1 0.274255 0.274255 0.2742545 3 0.1394619 0.1466788 0.1399226 

0.45 1 0.274255 0.274255 0.2742545 3 0.1433193 0.147432 0.1399522 

0.50 1 0.274255 0.274255 0.2742545 4 0.1440115 0.147392 0.1490768 

0.55 1 0.274255 0.274255 0.2742545 4 0.1440115 0.148028 0.1492465 

0.60 1 0.274255 0.274255 0.2742545 4 0.1440115 0.1471689 0.1481208 

0.65 1 0.274255 0.274255 0.2742545 10 0.1926997 0.1823195 0.1889037 

0.70 1 0.274255 0.274255 0.2742545 2 0.2701162 0.1398865 0.1398865 

0.75 1 0.274255 0.274255 0.2742545 6 0.248374 0.1623894 0.1631725 

0.80 1 0.274255 0.274255 0.2742545 6 0.248374 0.1620667 0.1624493 

0.85 1 0.274255 0.274255 0.2742545 6 0.248374 0.1612586 0.1621937 

0.90 1 0.274255 0.274255 0.2742545 4 0.2418484 0.1461825 0.1486243 

0.95 1 0.274255 0.274255 0.2742545 5 0.2450899 0.1553587 0.1519796 

1.00 1 0.274255 0.274255 0.2742545 1 0.2742545 0.2742545 0.2742545 
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Figure 15 Result of iris dataset from HOEP algorithm with the first transformed 
function and the gamma value as 0.25 

 

 

 

 

Figure 16 Result of iris dataset from HOEP algorithm with the second transformed 

function and the gamma value as 0.35 
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Figure 17 Result of iris dataset from k-means algorithm (k = 3) 

 

 

 

 

 

Figure 18 Result of iris dataset from k-medoids algorithm (k = 3) 
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Seed dataset  

 

Table 15 The results from seed dataset 

 ௜݂
∗ = ݃ଵ( ௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ( ௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂
 

 ݇ ߛ
Total variance 

݇ 
Total variance 

HOEP k-means k-medoid HOEP k-means k-medoid 

0.05 2 0.418124 0.320801 0.3288243 1 0.4237425 0.4237425 0.4237425 

0.10 4 0.342573 0.355523 0.3434717 2 0.4181241 0.3209425 0.3281293 

0.15 3 0.386164 0.3151 0.3159005 2 0.4181241 0.3208924 0.3283609 

0.20 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3207223 0.329056 

0.25 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3209959 0.3258125 

0.30 1 0.423743 0.423743 0.4237425 2 0.4181241 0.3209675 0.3272025 

0.35 1 0.423743 0.423743 0.4237425 5 0.4499825 0.3874692 0.3739612 

0.40 1 0.423743 0.423743 0.4237425 5 0.4499825 0.388273 0.3733803 

0.45 1 0.423743 0.423743 0.4237425 5 0.4499825 0.3892873 0.3738341 

0.50 1 0.423743 0.423743 0.4237425 13 0.4999935 0.5606782 0.5821383 

0.55 1 0.423743 0.423743 0.4237425 8 0.4359098 0.4694328 0.4730751 

0.60 1 0.423743 0.423743 0.4237425 8 0.4359098 0.4693166 0.4724625 

0.65 1 0.423743 0.423743 0.4237425 8 0.4978527 0.4710116 0.4703925 

0.70 1 0.423743 0.423743 0.4237425 7 0.4783967 0.4477825 0.4419135 

0.75 1 0.423743 0.423743 0.4237425 7 0.481209 0.447614 0.4415455 

0.80 1 0.423743 0.423743 0.4237425 6 0.4822992 0.4182504 0.4093491 

0.85 1 0.423743 0.423743 0.4237425 6 0.4961151 0.4189727 0.4101843 

0.90 1 0.423743 0.423743 0.4237425 6 0.4961151 0.417759 0.4077891 

0.95 1 0.423743 0.423743 0.4237425 4 0.4545432 0.3552202 0.3435858 

1.00 1 0.423743 0.423743 0.4237425 1 0.4237425 0.4237425 0.4237425 
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Figure 19 Result of seed dataset from HOEP algorithm with the first transformed 
function and the gamma value as 0.10 

 

 

Figure 20 Result of seed dataset from k-means algorithm (k = 4) 

 

  

Figure 21 Result of seed dataset from k-medoids algorithm (k = 4) 
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Figure 22 Result of seed dataset from HOEP algorithm with the second transformed 
function and the gamma value as 0.1 

 

 

Figure 23 Result of seed dataset from k-means algorithm (k = 2)   

 

 

Figure 24 Result of seed dataset from k-medoids algorithm (k = 2) 
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E.coli  Dataset 

 

Table 16 The results from E.coli  dataset 

 ௜݂
∗ = ݃ଵ( ௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ( ௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂
 

 ݇ ߛ
Total variance 

݇ 
Total variance 

HOEP k-means k-medoid HOEP k-means k-medoid 

0.05 1 0.223759 0.223759 0.223759 1 0.223759 0.223759 0.223759 

0.10 2 0.241686 0.298999 0.2917981 1 0.223759 0.223759 0.223759 

0.15 6 0.365499 0.501051 0.5012805 1 0.223759 0.223759 0.223759 

0.20 5 0.377571 0.457003 0.4748292 1 0.223759 0.223759 0.223759 

0.25 7 0.401987 0.538358 0.5256469 2 0.2416859 0.2943786 0.2917981 

0.30 5 0.52312 0.460468 0.4736863 2 0.2416859 0.2897843 0.2917981 

0.35 4 0.510741 0.410694 0.4280872 5 0.3362595 0.4627097 0.4743868 

0.40 2 0.403802 0.300095 0.2917981 9 0.4770188 0.596143 0.575553 

0.45 2 0.403802 0.29122 0.2917981 8 0.6150343 0.5543817 0.5481004 

0.50 2 0.403802 0.299561 0.2917981 5 0.3775712 0.4590082 0.4753218 

0.55 2 0.403802 0.294654 0.2917981 3 0.3564157 0.3522067 0.3452243 

0.60 2 0.403802 0.304923 0.2917981 3 0.3564157 0.3531643 0.3452243 

0.65 2 0.403802 0.292763 0.2917981 3 0.3564157 0.3562084 0.3452243 

0.70 2 0.403802 0.307255 0.2917981 3 0.3564157 0.3567013 0.3452243 

0.75 2 0.403802 0.300702 0.2917981 5 0.3853661 0.4617241 0.4717096 

0.80 2 0.403802 0.2933 0.2917981 14 0.7245408 NaN* 0.6959607 

0.85 2 0.403802 0.295378 0.2917981 14 0.7245408 NaN* 0.6971183 

0.90 1 0.223759 0.223759 0.223759 12 0.6833156 0.6636169 0.6512241 

0.95 1 0.223759 0.223759 0.223759 11 0.6846903 0.6453578 0.6294429 

1.00 1 0.223759 0.223759 0.223759 1 0.223759 0.223759 0.223759 

*NaN in k-means algorithm means that the k-means algorithm does not converge to 
the final clusters after 50 iterations.  
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Wine dataset  

 

Table 17 The results from wine dataset 

 ௜݂
∗ = ݃ଵ( ௜݂) =

௜݂
|ܵ|

 ௜݂
∗ = ݃ଶ( ௜݂) =

௜݂ −min
௝ ௝݂

max
௝ ௝݂ −min

௝ ௝݂
 

 ݇ ߛ
Total variance 

݇ 
Total variance 

HOEP k-means k-medoid HOEP k-means k-medoid 

0.05 3 0.826678 0.826381 0.8378864 1 0.5370761 0.5370761 0.5370761 

0.10 4 0.917629 1.03006 1.0201929 1 0.5370761 0.5370761 0.5370761 

0.15 4 1.010106 1.037033 1.0177082 3 0.8266777 0.823341 0.8378864 

0.20 8 1.621768 1.686746 1.6869938 4 0.9176289 1.0380546 1.0224664 

0.25 8 1.790671 1.676395 1.6850448 4 0.9176289 1.0274516 1.0190927 

0.30 3 1.152957 0.828306 0.8378864 4 0.9176289 1.0364914 1.0274369 

0.35 2 0.815026 0.731775 0.7256739 4 0.9176289 1.0377276 1.0167909 

0.40 1 0.537076 0.537076 0.5370761 4 1.0101061 1.0388452 1.0193632 

0.45 1 0.537076 0.537076 0.5370761 4 1.0101061 1.0323878 1.0245189 

0.50 1 0.537076 0.537076 0.5370761 10 1.8864756 1.9247291 1.9322233 

0.55 1 0.537076 0.537076 0.5370761 10 1.9952272 1.9179555 1.9264655 

0.60 1 0.537076 0.537076 0.5370761 10 1.9952272 1.9314268 1.9185647 

0.65 1 0.537076 0.537076 0.5370761 9 1.9096509 1.7987976 1.787649 

0.70 1 0.537076 0.537076 0.5370761 8 1.8918815 1.6660726 1.6764645 

0.75 1 0.537076 0.537076 0.5370761 8 1.8918815 1.6854133 1.6781531 

0.80 1 0.537076 0.537076 0.5370761 8 1.7906712 1.6856917 1.6846281 

0.85 1 0.537076 0.537076 0.5370761 7 1.954681 1.5438785 1.5625041 

0.90 1 0.537076 0.537076 0.5370761 6 1.8737017 1.3795635 1.3819696 

0.95 1 0.537076 0.537076 0.5370761 6 1.8737017 1.3867941 1.3842947 

1.00 1 0.537076 0.537076 0.5370761 1 0.5370761 0.5370761 0.5370761 
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Figure 25 Results of E.coli dataset from three algorithms are the same. 

  

 

 

 

Figure 26 Results of wine dataset from three algorithms are the same. 
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