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In this research, we focus on studying rank-1 preservers on Hessenberg ma-
trices. The first purpose is to characterize linear maps preserving rank one. This
result leads to attain the pattern of linear maps preserving determinants which
is another purpose. Moreover, the form of linear maps preserving eigenvalues is
given. Finally, on the same space, a characterization of surjective additive maps

preserving rank one is provided.
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NOTATION

a positive integer

a positive integer

a field

the field of complex numbers

the transpose of a matrix A

an n X n matrix (b;;) such that b;; = a,41-j,+1—; for any i, j
where A = (a;;)

the function on H,(F) which maps A to A~ for all A € H,,(F)
the rank of a matrix A

the determinant of a matrix A

the elementary matrix having only one at the (4, j)-entry and
zero for all other positions

the set of all m x n matrices over a field F

the set of all n x n matrices over a field F

the set of all n x n upper triangular matrices over a field F
the set of all n x n upper Hessenberg matrices over a field FF

{(aij) € Hn(F) | a921 7é 0 and Qjt41,5 = 0 for allj € {2, N 1}},

O
thus elements in this set are of the form i}

{(a,»j) € Hy(F) | app—1 #0and aj41;=0forall j € {1,...,n— 2}},

thus elements in this set are of the form i}
O

{A € Hu(F)[p(A) = 1}
xy" where x € M,,1(F) and y € M, (F)

the image of a function T’
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all empty entries of this matrix are all zeros
|
o the j-column of this matrix is v; € M, (F) for all
| je{l,...,n}

the i-row of this matrix is v; € My, (F) for all ¢ € {1,...,m}
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CHAPTER I
INTRODUCTION

1.1 Introduction

One of the most active research subjects in matrix theory in the last five decades
is linear preserver problems (LPPs) which concern the categorization of linear
maps on spaces of matrices or operators that leave certain properties, functions,
subsets or relations invariant.

Research that is considered to be the beginning of LPPs is determinant pre-
servers studied by Frobenius who gave the form of linear maps on square complex
matrices preserving determinant in 1897, that is, if 7" is a linear map on M, (C)
which is a determinant preserver (i.e., det(T'(A)) = det(A) for all matrices A),
then there exist nonsingular n x n matrices P and ) such that det(PQ) = 1 and
either

T(A) = PAQ forall A€ M,(C) (%)

or

T(A) = PA'Q forall A€ M, (C) (%)

where A! denotes the transpose of a matrix A and vice versa.

Actually, there are many motivations for studying LPPs [15], such as
1) in order to characterize structures of linear maps 7" on a space V' of matrices
preserving one of the followings (called a general linear preserver problem):

e a function f defined on V' (i.e., f(T'(A)) = f(A) for all A € V; e.g., the de-
terminant, the permanent);

e a subset A of V' (i.e., T(A) C A; e.g., the set of idempotents of V', an alge-
braic set);

e a relation ~ defined on V' (i.e., T(A) ~ T(B) whenever A ~ B; e.g., com-

mutativity, similarity).



There are three major ways to do research on this type of LPPs. First, we
can consider LPPs on matrix spaces over rings or semirings such as nonnegative
integers and Boolean algebras. Second, we can consider additive maps or bilinear
maps instead of linear maps. Finally, we can study other objects apart from
functions, subsets or relations to be preserved.

2) in order to be a tool for solving some other mathematical problems such as
problems in the area of differential equations and system theory.

3) in order to find conditions such that linear maps of the above forms (%) or (k)
preserve a specific object.

However, one of the most studied subjects in LPPs is rank-1 preservers be-
cause rank-1 preservers play a pivotal role in investigating other questions about
preservers such as commutativity preservers, rank-additivity preservers, spectrum
preservers and determinant preservers ([6], [9], [14], [19], [20] and [23]). In 1959,
Marcus and Moyls [18] gave the form of linear maps on M,,,(F), the space of
m X n matrices over an algebraically closed field F of characteristic 0, holding
rank one by using multilinear algebra techniques, i.e., for a given linear map 7" on
M, (F) preserving rank one,

i) if m # n, then there exist nonsingular matrices P and ) such that

T(A) = PAQ for all A € M,,,(F); or

ii) if m = n, then there exist nonsingular matrices P and () such that either

T(A) = PAQ for all A € M,,,(F) or T(A) = PA'Q for all A € M,,,(F).
Eight years later, Westwick [24] generalized these results to any algebraically
closed fields. In 1977, Minc [19] reproved the theorem of Marcus and Moyls by
using only elementary matrix theory. Nevertheless, two years before this Minc’s
research was published, Lim [17] provided a structure of all invertible linear maps
preserving rank one over any fields. In 1985, this theorem of Lim was generalized
by Waterhouse [22] to commutative rings with unit but the invertibility assump-
tion was still remained. However, the invertibility assumption in the theorem
of Lim could be omitted and the linear maps could be extended to linear maps

between spaces of different dimensions. This result was proved by Li, Rodman



and Serml [16] in 2002. Furthermore, there are many authors studied on some
subspaces of matrix spaces, for examples, in 1993, linear rank-1 preservers on
Hermitian matrix spaces were revealed by Baruch and Loewy [2]. In 1998, the
structure of linear rank-1 preservers on the space of upper triangular matrices
over an arbitrary field was given by Chooi and Lim [8].

During the past twenty years, there are various research concerning additive
preserver problems (APPs). APPs are problems similar to LPPs except these
maps preserve the addition while preserving the scalar multiplication is not re-
quired. Commonly, additive rank-1 preservers are among the most studied sub-
jects for examples Bell and Sourour [4] provided the structure of surjective ad-
ditive rank-1 preservers on block triangular matrix algebras in 2000, Chooi and
Lim [9] generalized some results of Bell and Sourour by studying additive rank-1
preservers on block triangular matrix spaces over any fields in 2006. Surjective
additive rank-1 preservers on the full matrix algebra over any fields were charac-
terized by Cao and Zhang [5] in 2004; besides, this result was applied to prove
invertibility preservers, determinant preservers and characteristic polynomial pre-
servers. Next year, the result of Li et al. [16] was extended by replacing linear
maps with additive maps in the hypothetical condition which was shown by Zhang
and Sze [25]. This work also generalized the result of Cao and Zhang [5]. In 2008,
Gao and Zhang [13] found the structure of all additive maps preserving rank one
between spaces of Hermitian matrices.

Found in [10], Karl Hessenberg, a German mathematician and engineer, called
a square matrix (a;;) upper Hessenberg if a;; = 0 whenever j+1 < i. One can see

) are

Hessenberg matrices. Obviously, upper Hessenberg matrices are quite the same

OO
SocoUTN
—=HOOW
N U=

that upper triangular matrices, diagonal matrices and, for example, (

as upper triangular matrices except the first one have zero entries below the first
subdiagonal. In addition, some properties of triangular matrices are not true for

Hessenberg matrices, for example, the product of Hessenberg matrices may not

5281\ (1111 77 14 11
be a Hessenberg matrix as follows: | 5393 0011 | = | §43335 ). Likewise
0012 0011 003 73

upper triangular matrices, upper Hessenberg matrices over a field form a vector



space.

One of the benefits of Hessenberg matrices is to alter QR algorithm (factor-
ization matrices into triangular matrices) for the better (see [1] and [7]). This
algorithm was devised by Francis in 1961 in order to replace LU factorization
which is not stable absent pivoting. Nowadays, the QR algorithm is one of the
most valuable algorithm to steadily compute the eigenvalues and corresponding
eigenvectors or Schur vectors; furthermore, it is also the most popular approach
for solving dense nonsymmetric eigenvalue problems. However, there is a limita-
tion in size of a matrix in M, (F) because this method uses O(n?) storage and
runs in O(n?) time. This shows that the QR algorithm is quite expensive. From
whole reasons, Hessenberg matrices become a tool to make the algorithm practical
since Hessenberg matrices have the forms closed to the forms of upper triangular
matrices and are invariant under the QR algorithm. A new algorithm is called
the Hessenberg QR algorithm by using Householder reflectors to first reduce every
square matrix to an upper Hessenberg matrix. This new algorithm requires only
O(n) storage and O(n?) time. Besides, for integrable system in quantum mechan-
ics, Hessenberg matrices are used as equipment in order to represent perturbed
Hamiltonians for perturbation theory which is the technique used in the study of
disturbed quantum systems see [26].

This dissertation focuses on rank-1 preservers on the space of all n x n upper
Hessenberg matrices over a field which are studied in two main points; namely,
linear maps and additive maps. Theorems regard linear rank-1 preservers on the
space of matrices and the space of upper triangular matrices over any fields are
given as follows. However, we introduce some basic notations first.

Let M,,,,(IF) and M, (F) be the set of all m x n matrices over a field F and the
set of all n X n matrices over a field F, respectively. Let T,,(IF) and H,(FF) be the
set of all n x n upper triangular matrices over a field IF and the set of all n x n
upper Hessenberg matrices over a field F, respectively. Then, it is clear that T,,(F)
and H,(F) are subspaces of M, (F) and T,(F) is also a subspace of H,(F). The

transpose of a matrix A is denoted by A’. Furthermore, p(A) denotes the rank of



a matrix A.

Definition 1.1. [3] A subspace V of any spaces of matrices is called a rank-1
subspace if each element in V is the zero matrix or has rank one. In addition, a
map T on H,(FF) is called a rank-1 preserver if p(T(A)) = 1 whenever p(A) = 1
for any A € H,(F). Besides, a map T on H,(FF) is called a rank preserver if T

preserves all ranks.

Theorem 1.2. [17] Let T' be a linear rank-1 preserver on My, (F). Then
(i) imT is a rank-1 subspace, or

(i) there exist nonsingular matrices P and Q such that
T(A) = PAQ for all A€ M,,(F) (1.1)

or

T(A) = PA'Q for all A€ M,,,(F). (1.2)

Note that the forms in (1.1) and (1.2) are alwalys called the “standard form”.

In [8], for a matrix A = (a;;) in M, (FF), Chooi and Lim defined the ~ of A,

denoted by A™, to be the matrix (b;;) in M, (IF) such that b;; = ay4+1-_jns1-; for
nd | Y (253) ana (1200) (100

any ¢ and j. For examples, (056) = <852> and | 5291 = |ogea |-
089 001 0008 0031

Observably, the diagonal line (not the main diagonal line) acts as the reflection-

axis for remaining elements but the elements on this line are fixed. Furthermore,

(A+ B)” = A~ + B~, (AB)” = B~A™, (A”)” = A and p(A) = p(A™) for all

A, B € M, (F).

Theorem 1.3. [8] Let T' be a linear rank-1 preserver on T,(F). Then
(i) im T is an n-dimensional rank-1 subspace, or

(i) there exist nonsingular upper triangular matrices P and Q) such that
T(A) = PAQ forall A€ T,(F)

or

T(A)=PA~Q forall AeT,(F).



It is worth mention that the results in Theorems 1.2 and 1.3 are similar in
the sense that matrices P and () are nonsingular; however, there are many points
different. First, P and @ in Theorem 1.2 are elements of M, (IF) (maybe or maybe
not in 7,,(F)) but P and @ in Theorem 1.3 are elements of T,,(F) because im T
must be contained in T, (F). Second, in Theorem 1.3, the transpose of a matrix is
replaced by the ~ of a matrix since the transpose of upper triangular matrices are
lower triangular matrices which are out of the considered spaces, T,(F). The ~ of
upper triangular matrices are upper triangular matrices so this symbol is thought
in order to get that property.

For the part of additive rank-1 preservers, this work is motivated by the result
of Cao and Zhang [5]. They provided the pattern of surjective additive maps

preserving rank one on square matrices over an arbitrary field as follows.

Theorem 1.4. [5] Let T be a surjective additive rank-1 preserver on M,,(F). Then
there exist a field automorphism 6 on F and nonsingular matrices P and @) such
that

T(A) = PA’Q for all A€ M,(F)

or

T(A) = P(A°)'Q forall A€ M,(F)

where A? = (6(ay;)) for all A = (a;;) € M,(F).

Notice that Theorems 1.2 and 1.4 are of the same types except that a field
automorphism is required in Theorem 1.4.

We seperate this dissertation into four chapters. In Chapter I, we start with
background of this research leading to why rank-1 preservers and Hessenberg
matrices are chosen. Next, definitions and notation used frequently in this disser-
tation are given. The rest of Chapter I is dedicated to some basic properties of
Hessenberg matrices.

Chapter II is devoted to characterize linear maps preserving rank-1 matrices
as Theorem 2.29 which is one of the major goals in this dissertation. Besides,

the forms of linear maps preserving all ranks of matrices, linear maps preserving



determinants and linear maps preserving eigenvalues are exhibited by capability
of Theorem 2.29 and the nonsingular condition as Corollaries 2.30 and 2.32 and
the diagram in page 49, respectively.

The pattern of additive maps preserving rank-1 matrices are exposed as The-
orem 3.7 under the surjectivity condition in Chapter III which is another of the
major goals in this dissertation.

We are to summarize on our work in the final chapter.

Now, we quote some theorems about elementary properties of ranks of matri-

ces.

Theorem 1.5. [12] If P and QQ are m X m and n X n nonsingular matrices and

if A is an m X n matriz, then p(PA) = p(A) and p(AQ) = p(A).

Theorem 1.6. [11] The rank of a matriz A is the largest integer r such that A
has an r x r submatriz B with det B # 0.

Theorem 1.7. [8] For a positive integer k < n, if X is a k-dimensional rank-1

subspace of M, (F), then

(1) X = xM for some0 # x € M, (F) and k-dimensional subspace M of My, (F),

or

(ii)) X = Ny for some 0 # y € My, (F) and k-dimensional subspace N of M, (F).

1.2 Preliminaries

This section begins with some definitions and notation which are used through
out in this dissertation. Then basic properties of upper Hessenberg matrices are
given.

Recall that an n x n square matrix A = (a;;) over a field F is called an upper

Hessenberg if a;; = 0 whenever j +1 <. Set

HY(F) = {(aij) € Hy(F)|ag #0and aj41,;, =0forall j € {2,...,n— 1}} and

Hz(F) = {(aij) € Hn(F) | Apn—1 7é 0 and Ajt1,5 = 0 for all] S {1, e, — 2}}



Let us have a closed look at H}(F) and H2(F). Their elements are shown in the
following pictures,
aip Q2 - Qin aip 0 Qip-1 A1n
91 Aoy -+ Gop - : :
aon | e HY(F) and € H2(F)

anfl,nfl anfl,n

Qnn Apn—1 Qpn

where a;; € F and the empty entries of each matrix are all zeros. Note that each
type is quite similar to upper triangular matrices except elements in H!(F) and in

H?(F) have excess positions at ag; and a,,_1, respectively. Then we rewrite the

]
elements of these sets in other pictures as w and w , respectively.
O

For each 7,7 € {1,...,n}, let E;; be the elementary matrix over F having
only one at the (i, j)-entry and zero for all other positions. Then {Eij |11 <i,j7<
nand i < j+ 1} forms a basis of H,(F), thus we write A = le%fﬁn a;; E; ; or
A =" a;;E;; for short for all A= (a;;) € H,(F).

Let {e1,...,e,} and {f1,..., fu} be the standard bases of M, (F) and M, (F),
respectively. Then for each ¢ and j, the elementary matrix E;; is the product of
e; and f;.

Recall that a subspace V' of any spaces of matrices is called a rank-1 subspace
if each element in V' is the zero matrix or has rank one. In addition, a map T’
on H,(F) is called a rank-1 preserver if p(T'(A)) = 1 whenever p(A) = 1 for any
A € H,(F). Furthermore, a map T is called a rank preserver if T preserves all
ranks.

Henceforth, let Q = {4 € H,(F)|p(A) = 1}, i.e., Q is the set of all rank-1
Hessenberg matrices.

Generally, every matrix of rank one in M,,,,(IF) can be written as the product

of a column vector and a row vector. In this dissertation, this product is denoted

by

xy’ when z € M,,,(F) and y € M, (F),

xy when z € M,,;(F) and y € M, (F).



t
For our convenient, xy" is rewritten by z ® y. In addition, if z = <a71 e g;n>
t
in M,,;(F) and y = <y1 e yn> in M,,;(IF), then
T1Yr - TilYn | | — ny —
TRy = : : =lzy - zy, | =
Ty - Tpln | | - Inyt -
| |
where A= | v, -+ w, | € My,(F) stands for the matrix whose the j-column is
| |
v; € My (F) forall j € {1,...,n} and A= : € M, (F), the matrix
J— Um JE—

whose the i-row is v; € My, (F) for all i € {1,...,n}. Moreover, let

@My (F)={z®y|y e Mu(F)} where 1z € M, (F),

Mo, F)oy={z®y|r e M, (F)} where y € M, (F),
My, (F) = {zy |y € My, (F)} where x € M,,1(F) and
My (F)y = {ay|z € My, (F)} where y € My, (F).

These sets are also rank-1 subspaces of M,,,(IF).

The following notation is adopted from [8]. For s € {1,...,n}, let
¢
Us = {(xl R | B 0) | z; € F for allie{l,...,s}}, and

Vi = {(0 e 0 oy e ggn> |z; € F for all i € {s,...,n}}; moreover,
xVs ={av|v eV} foreach x€ M, (F) and
Usy ={uy|u € Us} for each y € My, (F).

Clearly, for each s € {1,...,n}, Us and Vj are subspaces of M, (FF) and M, (F),
respectively; furthermore, Uy C Uy C --- C U, and V,, C V,,_; C --- C V}.
Especially, U, = M,;(F) and V; = My, (F).

From now on, we omit “upper” in both Hessenberg matrices and triangular

matrices. The rest of this section is devoted to investigate some properties of

Hessenberg matrices as follows.
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The following proposition and Lemma 1 in [5] are quite identical except (iii)
and (iv) which are considered on different spaces. For Lemma 1, the full matrix
spaces are attended but in this proposition, the Hessenberg matrix spaces are

considered.
Proposition 1.8. Let x,y,u,v € M, (F). The followings hold.
(i) r®@y =0 if and only if t =0 ory = 0.

(i) If t @y #0, then @y = u®v if and only if there exists o € FN{0} such

that u = ax and y = av.
(1)) If r @y +u®v e Q, then {x,u} or {y,v} is linearly dependent.

(i) Forn > 2, if u # 0 and v # 0, then there exists w € Q such that w ¢

Proof. Let x = (xl xn)t,y = (?/1 yn)t,u = (Ul un)t and v =
(0 o w)

(i) It is clear that if x = 0 or y = 0, then x ® y = 0. Now, assume that = # 0.
Then there exists j € {1,...,n} such that z; # 0. Then z;y; = zjy = --- =
xjy, =0, thus y; = 0 for all s € {1,...,n}. Hence y = 0.

(ii) Assume that z ® y # 0. It is trivial for the converse. Suppose that
r®y=u®v. Then z,y,u,v # 0 and thus v; # 0 and z; # 0 for some j,[ €

| |
{1,...,n}. It follows that xy; = uv; foralli € {1,... ,n}since | zy; --- ay, | =
| |
| |

wvy --- wv, |- Thus y; # 0 and v = ajz where a; = z—j # 0. Suppose that

there exists k € {1,...,n} such that k # j and v # 0. Then, similarly, there
exists oy = g—’; # 0 and apxr = Z—Zl‘ = u = ajz. As a result, oz, = aj;x; with

x; # 0, 50 u = ax for some a € F~{0}.
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It remains to show that y = av. Now, we obtain that x @y = u®v = ar®uv =
— Yy — — z1(av) —

x ® av, that is, : = : . Then z;y = z;(aw), and

— T,y — — zp(av) —
thus y = awv.

(iii) Assume that x @ y + u® v € Q and {z, u} is linearly independent. Since
plx @y +u®uv) =1, it follows that any two rows of the matrix  ® y + u ® v are

linearly dependent, i.e.,
{zy; + uv;, xy; + wv;} is linearly dependent for all ¢ # j in {1,...,n}.  (3)

For each i # j, let a;, 5; € F not both zeros, without loss of generality, put a; # 0,
such that

0= ai(xyi + UUZ‘) + Bj(xyj + UUj) = x(aiyl- + 5jyj) + U(Oéﬂ]i + Bj’l)j),

so a;y; + B;y; = 0 and o;v; 4+ B;v; = 0 and then y; = _a—ﬁ_jyj and v; = _a—ﬁ_jvj.
If there exists [ € {1,...,n} such that vy; = 0, then _a—’(jkvk = 0 for some

ke {1,...,n}~A{l} because of v; = _a—b;kvk. It follows that 8y = 0 or v, = 0. If
Br = 0, then y; = 0 because «; # 0. This shows that

if v; = 0 for some ¢, then y; = 0 or v; =0 for some j € {1,...,n}~{i}. (4

We show that {y,v} is linearly dependent. If y = 0 or v = 0, then {y, v} is
linearly dependent. Assume that y # 0 and v # 0.
Case 1: Assume that y; # 0 for all ¢ € {1,...,n}. Suppose that there exists
j € {1,...,n} such that v; = 0. Then there exists | € {1,...,n} with [ # j
such that v; = 0 by (4). Continue this process, we get v = 0 which is impossible.
Hence v; # 0 for all j € {1,...,n}. Thus y = (y1 oy any1>t and
v = <U1 Qo] - anm)t. Then y = Av where A = % £ 0.
Case 2: There exists ¢ € {1,...,n} such that y; = 0. Suppose that v; # 0
for all j € {1,...,n}. Then there exists [ € {1,...,n} with [ # i such that
yr = 0 by (4). In the similar way, we obtain y = 0 which is impossible. Hence

there exists j € {1,...,n} such that v; = 0. Since y # 0 and v # 0, there exist
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I,k € {1,...,n} such that y; # 0 and vy # 0. Without loss of generality, write

,l'th jth kth lth
t
y= ( 0 v Yi#0 )
t
V= ( V; 0 VE#£0 Uy )

where other entries of y and v are arbitrary. In order to show that {v,y} is linearly
dependent, it suffices to prove that each position of v and y are related in the sense
that for each s € {1,...,n}, the s-position of v is zero if and only if the s-position
of y is zero.

First, by applying (3) on the j- and k-columns of y and v, there exist a;, B, € F
not both zeros such that

0 = oj(zy; + wv)) + Be(ayr + vor) = x(oyy; + Bryx) + uloyvy + Brog).

Since {u,z} is linearly independent, v; = 0 and v # 0, it follows that 5, = 0
and hence «j(xy;) = 0. Thus y; = 0 because «; # 0 and z is not a zero vector.
Besides, we know that yx # 0 by considering (3) on the k- and [-columns of y
and v, and the fact that {u,z} is linearly independent, y; # 0 and vy, # 0. Next,
for g € {1,...,n}~{J, k}, we get that if v, = 0, then y, = 0 and if v, # 0, then
yg 7 0 by using the same technique on the g- and k-columns of y and v.

Hence for s € {1,...,n}, if vy, = 0, then y, = 0; moreover, if v, # 0, then
ys # 0. As a result, we obtain that for each s € {1,...,n}, the s-position of v
is zero if and only if the s-position of y is zero. Finally, we consider only the
positions of y which are not zero. Assume that there exists the p-position with

p # k such that y, # 0. Then by making use of (3) on the p- and k-columns
— =Bk

= ap

of y and v in the similar way, we obtain that y, = ;—’ikyk and v, v Where
ap, B € F~{0}. Similarly, each position of y and v which is not zero can be
written as the product of a nonzero scalar and ¥, and that of the same scalar and
v, respectively. Hence {v,y} is linearly dependent.

(iv) Assume that n > 2, u # 0 and v # 0. Then there exist 7,j € {1,...,n}

such that u; # 0 and v; # 0.
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Case 1: i = 1. Choose w = Ey where [ # j. Then w € Q. If w € u® M, (F),
then w = u ® z where z = (21 R Zn)t- From the first row of w, we get 2z =0
forall k € {1,...,n} which contradicts usz; = 1. Thus w ¢ u® M,,;(F). Similarly,
w ¢ M, (F) ®v. Hence w ¢ v ® M, (F) U M1 (F) ® v.

Case 2: i # 1. Choose w = Ey; where | # j. Then w ¢ u® M, (F) U M, (F) @ v

by using the same manner. O

The following proposition demonstrates the form of every rank-1 subspace of

H,(F).

Proposition 1.9. Let k be a positive integer less than or equal to n and X a
subset of H,(F). Then X is a k-dimensional rank-1 subspace if and only if there

exist integers s,t € {1,...,n} with s <t+ 1 such that

(i) there exist 0 # x € Uy and a k-dimensional subspace M of Vi such that
X =zM, or

(ii) there exist 0 # y € V; and a k-dimensional subspace N of Us such that
X = Ny.

Proof. The sufficient part is obvious. We now prove the necessary part. As-
sume that X is a k-dimensional rank-1 subspace of H,(F). Then it is a subspace

of M,,(F) and thus, by applying Theorem 1.7,

(1) X =aM forsome 0 # x € M, (F) and k-dimensional subspace M of M, (F),

or

(2) X = Ny for some 0 # y € M;,(F) and k-dimensional subspace N of M, (F).

Consider (1). Let ¢ be the largest positive integer such that M C V,. Then there
exists v € M such that its (n — ¢ + 1)-component is nonzero. Since xv € xM =
X C H,(F) and from the definition of Hessenberg matrices, + € U, for some
s<t+1.

Likewise, (2) can be done. O
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We would like to point here out that the proof of Proposition 1.9 and that of
Lemma 2.1 in [8] are similar although the spaces are different.

In general, for each m x n matrix A of rank r # 0, there exist nonsingular
matrices P and @ in M,,(F) and M, (FF), respectively, such that PAQ = I, as
Theorem 6.12 [21]. The analogous property in the sense of Hessenberg matrices

is given.

Proposition 1.10. If A € H,(F) of rank r # 0, then there exist nonsingular
matrices P,Q € T, (F) such that PAQ = Y_._, Es;, where s;,t; € {1,...,n} with
si <t;+1 foralli and s; # s;, t; #t; for all i # j.

Proof. Let A = (a;;) be a Hessenberg matrix of rank r # 0. Given Ry,..., R, and
Ci,...,C, are the row vectors and column vectors of A, respectively. Let R, be
the first nonzero row vector from the last row of A and let a4 be the first nonzero
entry from the left of R,. Multiply R, by a_' and then for each 1 < i < s, apply

the row operation R; — a;Rs — R;, adding —a;; times the s-row to the i-row.

Next, for each t < j < n, we apply the column operation C; — ZZ Cy — Cj,
adding —Z—Z times the ¢-column to the j-column. Let X and Y be the product of
matrices obtained by these row operations and the product of matrices obtained

by these column operations, respectively. Then X and Y are

Sth tth
B !
1 —ai1tagy 1
1 —as—1tag
tAst th -1 ... -1
h . = 1 TAs,t+10gy “Asnlgy
sh— a,

respectively, which are nonsingular triangular matrices such that XAY = E,;+ B
u v
with B = where U € H,_1(F) and V € Ms_y,,—s41(F). By using the

same argument with B, we get XoBY> = F,;, + By where
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th
82

—1
1 TAL,t9 sy 1y
-1
1 TAsy—1,t9 0, 1o
1 -1
X2 — stho g, o
1
1
t%h
1
tth—) 1 —1 . —1
2 _a52xt2+1as2,t2 _aSZan(ZSQ,tQ
and Y5 = ,ta #tand sy < s.

1

Furthermore, XsF, Yo = (Xges) ( fth) which is the product of the s-column of
X, and the t-row of Y5, hence it is the product of e, and f;, which is E,. This
shows that

XoEaYs = Eg (1)

Continue the same process and thus the number of these methods is r times
since p(A) = r. Let P = X,--- XX and Q = YY5---Y,. Then P and @ are

nonsingular triangular matrices; moreover, in the same way with (1),
X,EuY; =FEy forall 3<i<r,
and for j € {2,...,7}, we get
XiEg Yy =Eg,, forall j4+1<1<r (2)
Then for s;,t; € {1,...,n} with s; < t; + 1 for all 4 and s; # s;, t; # t; when
i F 7

PAQ =X, - Xo XAYY,---Y,
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PAQ =X, - X3(Eq + B)Ys---Y,
=X, X3(X2BaYs + X2 BY2)Y; - -+ Y,
:Xr"'Xg( St+XgBY2)Y3 Y, from (1)
=X, X3(Eg 4 Egp, + B2) Y3+ Y,
=X, Xy (X3EqYs + X3Eqy, Vs + X3BY3)Yy - Y,
=X, Xy(Eg + Egpr, + X3B2Y3)Yy - Y, from (2)
:ZT:Esm where Eg 4, = Eg.

O

As a consequence, any Hessenberg matrix of rank one can be written as a
product of PE4(Q) where P and () are nonsingular triangular matrices and also
are Hessenberg matrices. Thus, it is, in fact, the product of a column vector and
a row vector, that is A € Q only if A = zy for some nonzero vectors x € M, (F)

and y € My, (F). Nevertheless, the if part holds if certain conditions are given.

Corollary 1.11. Let x € M, (F) and y € My,(F). The matriz zy € Q if and
only if there exist | € {1,...,n+ 1} such that x € U; and y € V,_1 where Vo = V3
and Upyq = U,.

Proof. The converse is clear. Assume that xy € €). Then by Proposition 1.9,
there exist integers s,t € {1,...,n} with s < ¢+ 1 such that xy = ab for some
a € U~{0} and b € V;~{0}. By Proposition 1.8 (ii), there exists o € F\{0} such
that x = aa and b = ay. Thus = € U and y € V;. Hence in case s € {1,...,n},
we obtain that € U, and y € V,_; where Vy = V; because of s — 1 < t and
Vo C--- CVi. Incaset € {1,...,n}, it follows that y € V; and = € U1 where
Up1 = U, owing to s <t+1and U; C --- C U,. Consequently, there exists
le{l,...,n+ 1} suchthat r € Uyand y € V_; . O

The following proposition guides us to observe forms of n-dimensional rank-1

subspaces of H,(IF).
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Proposition 1.12. Every n-dimensional rank-1 subspace of H,(F) is one of the

forms exVh, Upfu, (aer + €2)V1 or Up(fu_1 + afy,) for some o € F.

Proof. Let X be an n-dimensional rank-1 subspace of H, (). Then by Proposi-
tion 1.9, there exist integers s,t € {1,...,n} with s <t + 1 such that

(1) there exist 0 # = € Uy and an n-dimensional subspace M of V; such that
X =xzM, or

(2) there exist 0 # y € V, and an n-dimensional subspace N of Uy such that
X = Ny.

For (1), it is well-known that M must be M, (F) and then ¢ is equal to one.
Now, 1 < s < 2 so that X = zV) for some nonzero vector z € U; or X = xV; for
some nonzero vector x € Us.

Case 1: X = zV; for some nonzero vector x € U;. Then x = ~e; for some
v € F~ {0}, and thus X = 2V} = ve V] = e V1.

Case 2: X = zV] for some nonzero vector x € Us. Then we can rewrite = as the
x
T2

form | 0 |. If x5 =0, then x € U;. Similar to Case 1, X = e;V;. Assume that

0
29 # 0. Then x € Uy\U;. We get that x = xg(z—;el + e5) = xo(ae; + e3) where

=7 Thus X =2V) = xo(aer + e2)V] = (aey + e2) V).

For (2), by using the same argument, we obtain that X = U,y for some nonzero
vector y € V,, or X = U,y for some nonzero vector y € V,,_1. And thus X = U, f,
or X =U,(fn_1+ af,) for some o € F, respectively. O

From now on, for each o € I, let
X =eV1, Y =U,fn, Xo = (ae; + e2)Vy and Y, = Up(fro1 + afy).

Note that there are infinitely many spaces of each type X, and Y.
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Carefully, (ae; +e5)V) and (e; +aes)V; are not similar. The space («ae; +e3) V)
has a connotation that the second row never can be the zero vector but the
behavior of the first row depends on «. In a similar way, (e; + ae2)V; informs
that the first row never be zero but the second row is not the case.

Furthermore, the four patterns can be revealed as the following forms:

Ti1 ot Tin
X = ‘xleFforaﬂjE{l,...,n} ,
( )\
ara1 - QT2p
l‘ oo x n i
X, = 2 ? )ijEFforallje{l,...,n} >
\ Vs
Yin
Y = Yin € Fforalli e {1,...,n} » and
Ynn
Yin-1 CAYin-1
Y, = yim_leFfOl" allie{l,...,n}

Ynn—-1 OAYnn—1

However, we frequently write the above notation in these forms:

([~ + — ([~ ar —
X = ’x - Mln(]F) y XOL - —_ X — ‘x S Mln(F) )
\ \
4 (
| .
y - v | |veMaE) },and v, = v ay| |y e Ma(F)
\ | \ ‘ ‘

In fact, Y = X~ and Y,, = X for any a € F.

For each oo € F, we choose the bases of X, Y, X, and Y, respectively, as follows:
{F11, E12y -y B}y {Evn, Bony - oy Enn }, {@En+Eoy, aByo+Eos, ..., aB,+ By, }
and {Ei,,—1 + B, By o1 + By, ..., By + By b

Actually, in matrix theory, the product of upper triangular matrices is also

upper triangular. Nevertheless, the product of upper Hessenberg matrices may
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no longer be upper Hessenberg. Then a condition forcing this property done is

given.

Proposition 1.13. For n > 3, let A = (a;;) and B = (b;;) € H,(F). Then
AB € H,(F) if and only if a;;—1b;—1,—2 =0 for all i € {3,4,...,n}.

Equivalently, AB € H,(F) if and only if a;;—1 = 0 or bj_1,_o = 0 for all
i€ {3.4,... n}.

Proof. Assume that AB = (¢;;) € H,(F). Let j € {1,...,n—2}. Then ¢;; = 0 for
alli € {1,...,n} with ¢ > j + 1. However, for each 7 € {1,...,n} with i > j + 1,

n i—2 n n
Cij = E aisbs; = E isbsj + E aishs; = E @;shs;
s=1 s=1 s=i—1 s=i—1

because a;s = 0 for all s € {1,2,...,i—2}. Thus 0 =¢;; = > " a;sbs; for all

s=1—1

t > 7+ 1. In particular, put ¢ = 7+ 2. Then?—1=j + 1 and then

0= cjra;
= Z aj+2,sbsj
s=j+1
= aj+2,j+1bj+l,j since bsj =0 for all s € {j + 2, . ,77,}
= ai,i—lbi—l,i—Q-
Hence ai,i,lbi,lﬂ-,Q =0 forallie {3, 4, Ce ,7?,}.

To prove the converse, assume that a;; 1b;—1,-0 = 0 for all i € {3,4,...,n}
and let AB = (¢;;). Fix j € {1,...,n —2}. Since A, B € H,(F), we know that
a;; =0 and b;; =0 for all ¢ > j + 1. Then ¢;; = 0 for all ¢ > 5 + 3. It remains to
show that ¢;; = 0 when ¢ = j + 2. Let 2 = j + 2. Then

n
Cij = Cjt2,5 = E Gj42,sbs
s=1

n

= Z Ajt2,5Dsj since ajios =0 forall s € {1,2,...,5}

s=j+1
= aj+2,j+1bj+17j since bsj =0 for all s € {] -+ 2, ce ,n}
=0 since &i,iflbifl,z?Z =0 forall i e {3,4, c. ,n}.

Thus ¢;; = 0 for all ¢ > j + 1 and then AB € H,(F). O
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Proposition 1.14. Let C = (¢) € Q. If there exist 0 # a € F and i,j €
{1,...,n} with i < j+ 1 such that C + aE;; € Q, then

Clj
Cj+1,5

C = or C=10 -0 ¢i1 -+ Cpn

nxn

nxn

Proof. Assume that there exist 0 # o« € Fand ¢,5 € {1,...,n} with i < j+1 such

that C+aF;; has rank one. Since p(C') = 1, by Proposition 1.9, there exist integers

€y
T
s,t € {1,...,n} with s <t+1 such that C' = (0 e 0y e yn> =: Ugy.
0
0
T1Ye - TiYn
Now we can see C' as Ty TsUn

Moreover, aF;; = ae; f;. Since 1 = p(C' + aEy;) = p(usv, + e, fj), we get that
{us, ae;} or {vy, f;} is linearly dependent by (iii) of Proposition 1.8.
Case 1: Assume that {us, «e;} is linearly dependent. Then there exist 3,y € F
not both zeros such that fus + yae; = 0. If i > s, then yao = 0 and then v = 0,
hence § = 0 which is impossible. Thus ¢ < s. It follows that Sx; = 0 for all
Il # 4. If B =0, then va = 0 which is impossible because a # 0; moreover,

B and ~ cannot be zero simultaneously. Hence x; = 0 for all [ # 4. Thus,
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we rewrite C' as | z; <0 e 0y - yn>: 0 - 0 @y -+ Tyn |-

0
when ¢ < s <t+1.

Case 2: Assume that {uv, f;} is linearly dependent. By using the same manner,

clj

C, .
we get C' as the form T : H

0

Finally, in this chapter, we take a closed look at a result of a particular mapping

on H,(F). Recall that elements of H}(F) and H?(F) are of the forms w

and i} , respectively.
O

Proposition 1.15. Let A, B € H,(F) be nonsingular and ¢ : H,(F) — M,(F)
the map defined by p(X) = AXB. Then imp C H,(F) if and only if A €
H\(F) UT,(F) and B € H2(F) U T,(F).

Proof. The sufficiency clearly holds. We prove the necessity. Assume that im ¢ C
H,(F). First, we show that B € H2(F) U T,(F). Let y € V; for some 1 <
t < n. Ift =1, then it is clear that yB € My, (F) =V;. If t = n, choose
x = (1 0 --- 0>t, then © € U, and hence zy € H,(F) by Corollary 1.11.
From the fact that Az € M, (F) = U, and (Az)(yB) = A(zy)B € H,(F) with
p((A:):)(yB)) =1, we get that yB € V,,_; by applying Corollary 1.11 again. This
shows that if y € V,,, then yB € V,,_;.
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Fixt € {2,...,n—1}. Then xy € H,(F) for every x € U;;; by Corollary 1.11.
Since (Az)(yB) = A(xzy)B € H,(F) and A is nonsingular, we conclude that
(i) the spaces {Az |z € U1} and Upyq have the same dimensions which equals
t 4+ 1 because {ej,...,e41} is a basis of Uy and {Aeyq, ..., Ae;1} is a basis of
{Az |z € U1}, and
(ii) yB € V; by the following reason.

Let yB = <u1 N TP Un)' Suppose that yB ¢ V;. Then there exists k < ¢
such that uy # 0. Write y = (0 N | T yn> and B = (bij)nxn. Thus
U = Zylblk
1=t
k+1
= Zylblk since by, = 0whenl >k +1
I=t
= Yp+1bk41k sincek+1<tandt<k+1.

Now, k is the largest positive integer such that yB € V) since V,, C --- C V5, C V.
Then Az € Ugyq for all 1 < k < n — 2 owing to Corollary 1.11 and the fact that
t =k+ 1. It follows that Az € U; for 2 <t < n — 1. This shows that if x € Uy,
then Az € U, for all 2 <t < n — 1. Hence the space {Az |z € Uy} contains
in U; of which dimension equals ¢. Thus the dimension of this space is at most ¢
contradicting (i). As a result, if y € V;, then yB € V, for all 2 <t <n — 1.

From the above proof, we conclude that

(

Vi, when t = 1;

it yeV,then yBe {V, when 1 <t < n; (3)

V.1, when t =n.
\

In order to show that B = (b;;) € H2(F) U T,(F), from (3), we use only the fact
that if y € V;, then yB € V, forall 2 <t <n—1. Let [ € {2,...,n — 1} and
y= <0 e 0oy e yn> € V; such that y; # 0. Then

(l—l)th nth
+ +
yB :< 0 - 0 wbya -+ D5, yjbjn> € V;. Thereby, y;0;;—1 = 0 and then

biy—1 = 0. It follows that b;;—; = 0 for all 2 < [ < n — 1. For this reason, we
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obtain B € H2(F) U T, (F).
Next, we show that A € H}(F)UT,(F). By using the same manner, we obtain

that

Uir1, when 1 <t<n-—2;
if x €Uy, then Az e

U,, when t=n—1.
However, proving that A € H!(F)UT,(FF) is enough to use the fact that if z € Uy 4,
then Az € Uyyq for all 1 <t < n — 2. We rewrite this as if x € Uy, then Az € U,
forall2 <s<n-—1.
Let k € {2,...,n— 1} and y = <x1 T | ())t € Uy such that
x, # 0. Write A = (a;;)nxn, then

) k
N Doy

k+1th— Ak11,kTk

0

€ U,. Thus apy1k2r = 0 and then agy1p = 0.

0
It follows that apy1, = 0 for all 2 < k < n — 1. For this reason, we obtain

A€ H\(F) UT,(F). O



CHAPTER 11
LINEAR PRESERVERS ON
HESSENBERG MATRICES

This chapter is devoted to characterize three types of linear maps; namely, rank-1
preservers, determinant preservers and eigenvalues preservers by seperating in two

sections.

2.1 Rank-1 Preservers on Hessenberg Matrices

The aim of this section is to find a pattern of linear maps preserving rank-1 which
is one of the major goals of this research as follows: Let T be a linear map on

H,(F). Then T preserves rank-1 matrices if and only if

(i) im 7" is an n-dimensional rank-1 subspace, or

(ii) there exist nonsingular upper Hessenberg matrices P and @ such that T'(A) =
PAQ for all A € H,(F) or T(A) = PA~Q for all A € H,(F).

Nevertheless, its proof is so tedious that it is divided in various results.

The following property is frequently used in the proof of several results in

Chapter II.

Proposition 2.1. Let a,b € M,1(F). If {a,b} is linearly independent, then there
exists a nonsingular matric P € M, (F) such that (a b) =P (@1 e2>.

Proof. Assume that {a, b} is linearly independent. Since M, (F) is an n-dimensional

vector space, we can extend {a, b} to {a,b,vs,...,v,} which is a basis of M, (IF).

. |
PutP=1a b vy ... v, |- Then P is nonsingular and (a b) =P (61 ez).

. |
O
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Recall that there are four main types of n-dimensional rank-1 subspaces of

H,(F), namely, X,Y, X, and Y, for a € F as follows.
(

— x — — ar —
X = ‘l’ € Mln(]F) ) Xa = — T — ’ZE € Mln(F) )
\
(
| .
Y = v | |v€MuE) b and v, = v ay| |veMa®)
\ | .
Sometimes, we use ( ) , ( ) , () and ( > to denote el-
ements in X, Y, X, and Y,, respectively. However, () and ( ) are

used in order to emphasize the scalar a. In addition, from Chapter I, A~ de-

notes the matrix (b;;) in M, (F) such that b;; = a,41—_jn41—; for all ¢ and j where

~

A = (a;;) € M, (F). In particular, w is also an upper triangular; more-

~ ~

]
over, w is an element in H2(FF) and il is contained in H!(IF).
m}

From now on, let S be the particular map defined on H,(IF) by S(A) = A~ for

all A € H,(F). Then S maps < ) to ( > and S maps <) to

( ) and vice versa. It is clear that S is a bijection linear rank-1 preserver

on H,(F). Besides, SoT and T o S are linear rank-1 preservers on H,(F) for any
linear rank-1 preserver T on H, (IF).
In this section, T stands for a linear rank-1 preserver on H,(F). We first

investigate connections among mappings matrices having only the first two rows

of T; for example, knowing that 7" maps a matrix of the form ( ) to

a matrix of the form ( > compels T to map other matrices of the form

<> not into any matrices of the forms ( > and < ), see (i) in
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Proposition 2.2. Furthermore, relationships of mappings matrices having only the

last two columns of T" are given in Proposition 2.3.

Proposition 2.2. (i) Ifthere exists o € F such that T(X,) = X, then T(X3) ¢
{Y,Y\}xer for all B € F.

(i1) If there exists o € F such that T(X,) =Y, then T(Xg) ¢ {Xa}rer for all
B eF.

(111) If there exists a € F such that T(X,) = X, for some v € F, then T(X3) ¢
{Ya}xer for all 5 € F.

Proof. (i) Assume that T'(X,) = X for some a € F. We obtain that for each
L<j<mn,

T(C(Elj + E2j> = eluj =

for some u; € V3~ {0}. Suppose that there exists § € F such that T'(X3) = Y.
Thus for each 1 <t < n,

T(BEy + Eo) = wifn = Wy
|
for some w; € U,~{0}. Then {uy,...,u,} and {wy,...,w,} are linearly indepen-
dent; otherwise, without loss of generality, there exist A\1,..., A\, € F not all zero

such that A\ju; + - - + A\ u, = 0 and then

0= )\1€1U1 + -+ )\nelun
=MT(aEy + Ey) + -+ T (aEy, + Eay,)
= T()\l(OéEH + Egl) + -+ )\n<aE1n + Egn))

Al - Ao

=T X - |
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which is a contradiction because T  is a rank-1 preserver. In addition, for each

1 <t <n, since p((a + B)Ey + 2E2t) =1 and T is a rank-1 preserver,

T((Oé + B) By + 2E2t) =T (aBy + Ey) + T (BE + Ey)
— oy — |

= e1Uy + U)tfn = + Wt

must have rank one. Thus u; € V,~{0} or w; € U~{0}. Without loss of generality,
let uy € V,~{0}. Then us,...,u, ¢ V,~{0} so that ws,...,w, € Uy ~{0}.
This contradicts the linearly independence of ws,...,w, since n > 3. Hence
T(Xg) #Y.
Next, suppose that there exist 3, A € F such that T'(X3) = Y,. Then, for each
1<t<n,
T(BEw + Eat) = zt(fa1 + Afn)

for some z; € U,~{0}. Thus for each 1 <t < n, we get
T((Oé + B) By + 2E2t) = e1uy + 2 (fom1 + Afn)

which has rank one so that u, € V,,_1~{0} or 2, € U;~{0}. Without loss of
generality, let z; € Uy ~{0}. Then u; € V,,_1~{0} for any i > 2 and we obtain
the form of u;, namely, u; = (0 e 0 ay >\(Zi> where a; € F. Nevertheless,
{uy,...,u,} is linearly independent which is a contradiction since n > 3. Hence
T(Xg) #Y, for any A € F.

Similarly, (ii) and (iii) are proved. O

Proposition 2.3. (i) If there exists o € F such that T(Y,) = X, then T'(Y3) ¢
{Y,;Y\}xer for all B € F.

(i1) If there exists « € F such that T(Y,) =Y, then T(Ys) ¢ {X)}aer for all
B eF.

(111) If there exists a € F such that T(Y,) = X, for some v € F, then T(Yp) ¢
{YA}/\G]F forall p €.
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Proof. (i) Assume that T'(Y,) = X for some a € F. Then T0S(X,) =T(Y,) = X.
Since T o S is a linear rank-1 preserver on H,(F), by applying Proposition 2.2 (i),
we get that T(YB) =To S(Xﬁ) ¢ {Yv, Y/\})\eﬂr.

(ii) and (iii) can be proved in the same way. O

Next, we draw our attention to find a relationship between the subspaces X

and X, providing that for scalars o and f3,

)0 = )0

as Proposition 2.4. Then we turn to a relationship between the subspaces X, and

X, satisfying

) - ) )

.
as Proposition 2.6. Besides, by ability of the map S, we also obtain the similar

results on matrices having the last two columns see Propositions 2.5 and 2.7.

Proposition 2.4. Let o, 5,7 € F be such that T(X,) = X and T(Xp) = X,.

Moreover, for each 1 < j <n, write
T(&Elj + E2j) = e1U; and T(ﬁElj + Egj) = (’761 + 62)’[1)]'

for some u;,w; € Vi~{0}. Then, for each 1 <t < n, there exists & € F~ {0}

such that w; = &uy.

Proof. Let 1 <t <n. Then

T((a + B)Ey + 2E2t) = ejuy + (ver + ex)wy = ey (uy + ywy) + eqwy

— wtywr —

= | _ wy — | has rank one.

If v = 0, then there exists a; € FN\{0} such that w; = a;u;. Assume that v # 0.
If uy +~yw; = 0, we get w; = —%ut. If u; + yw; # 0, then there exists b, € F\{0}

such that bywy = uy + ywy, so uy = (by — v)w, where b, — ~y is not zero. O
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Proposition 2.5. Let a, 5,7 € F be such that T(Y,) =Y and T(Y3) = Y,.

Moreover, for each 1 < i <n, write

T(Ei,nfl + CYE,m) = Uifn and T<Ei,n71 + /BEZTL) = Zi(fnfl + f}/fn>
for some v;, z; € U,~{0}. Then, for each 1 <t < n, there exists § € F~{0} such
that Zt = gtUt-

Proof. By assumption, SoT0S(X,) = SoT(Y,) =S(Y) =X and SoToS(X;) =
SoT(Ys) = S(Y,) = X,. Since SoT oS is still a linear rank-1 preserver, the
proof is done by applying Proposition 2.4. O

Proposition 2.6. Let o, 3,7, € F be such that T(X,) = X, and T(X3) = X,.

Moreover, for each 1 < j < n, write
T(aElj + Egj) = (’761 + 62)Uj (md T(BEU + Egj) = (/\61 + 62)wj

for some u;,w; € Vi~{0}. Then v = X or, for each 1 < t < n, there exists
& € FN A0} such that w, = &uy.

Proof. Assume that v # X. Let 1 <t <n. Since

T((Oé + B)Elt + 2E2t) =€ (’}/ut + >\U)t) + €9 (Ut + U)t)

— yur +Awy —

=|— w+w — | hasrank one,

there exists a; € F\{0} such that a; (u; + w;) = yu; + Aw, and then (a; — v)u, =
(A — ap)wy. If ap — v =0, then v = a4 and forces A — a; = 0 since w; # 0. Thus
A = a; = v which is impossible. Hence a; — v and A — a; are not zero and thus
w = (352) . 0

Proposition 2.7. Let o, 8,7,A € F be such that T(Y,) = Y, and T(Y3) = Y.

Moreover, for each 1 <1 < n, write
T(Ein-1+ aby) =v(fo1 +7fn) and T(Ein-1+ BEn) = zi(foo1 + Af0)

for some v;, z; € U, ~{0}. Then v = X or, for each 1 < t < n, there exists
& € F~N{0} such that z, = &uy.
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Proof. We can prove this in the same way as Proposition 2.5 by applying Propo-
sition 2.6. [

Now, we focus on results of T(Y),T(X,) and T(Y,) for any a € F provided
the space T'(X) is given.

Proposition 2.8. The following properties hold.

(1) If T(X) = X, then T(Y),T(Y3) ¢ {Xa}aer for all B € F and T(X,) ¢
{Y,Y, }aer for alla € F.

(i) If T(X) =Y, then T(Y),T(Ys) ¢ {Yataer for all f € F and T(X,) ¢
{X, Xo}aer for alla € F.

(1ii) If T(X) € {Xa}aer, then T(Y) # X, T(Ys) # X forall € F and T(X,,) ¢
{Y,Y, }aer for all o € F.

() If T(X) € {Yataer, then T(Y) #Y, T(Ys) £ Y forall f € F and T(X,) ¢
{X, X, }aer for alla € F.

Proof. (i) Assume that T(X) = X. Then for each 1 < j < n, there exists

u; € Vi1~ {0} such that T'(E;;) = eju;. Suppose that T'(Y) = X, for some v € F.

Then for each 1 < i < n, there exists v; € V1~{0} such that T(E;,) = (ve1+e2)v;.
— Un — — Y1 —

Since =eu, = T(Fy,) = (ye1 +e)vy = | — vy — |, we get

vy = 0 which is absurd. Hence T(Y") ¢ {X,}aer.

Suppose that there exist 8,7 € F such that T(Y3) = X,. Then for each
1 < i < n, there exists v; € V1 \{0} such that T'(E;,,—1 + BEi.) = (ve1 + e2)v;.
Thus v; = 0 which is a contradiction. Hence T'(Ys) ¢ { X, }acr for all § € F.

Moreover, suppose that there exists a € F such that T'(X,) = Y. Then, for
each 1 < [ < n, there exists w; € U, ~ {0} such that T'(aEy + Eq) = w;fy.
Since T'(Fy) = w f, — oT(Ey) = wif, — aequ;, we get that w, € Uy~ {0} or
w € Vo~ {0}. Besides, {uy,...,u,} and {w,...,w,} are linearly independent.
This is impossible because n > 3. With the same reason, we can conclude that

T(Xa) ¢ {Y,}aer for all a € F.
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(iii) Assume that 7'(X) = X, for some v € F. Then, for each 1 < j < n, there
exists u; € Vi~ {0} such that T'(Ey;) = (ve1 + e2)u;. Moreover, {uy,...,u,} is
linearly independent. If 7'(Y) = X, then w, = 0 which is impossible. If there
exists f € F such that T'(Y3) = X, then u,_; and u, are linearly dependent,
again, leading to a contradiction. Hence T'(Y) # X and T'(Ys) # X for all g € F.

Moreover, by the same argument, T'(X,) ¢ {Y, Y, }aer for all a € F.

The proofs of (ii) and (iv) are obtained similarly to those of (i) and (iii),
respectively. O]

We obtain similar results of 7'(X), T'(X,) and T'(Y,) for any a € IF on condition
that the space T'(Y") is fixed.

Proposition 2.9. The following properties hold.

(1)) If T(Y) = X, then T(X),T(Xs) ¢ {Xataer for all o € F and T(Yp) ¢
(Y. Yu}cr for all B € F.

(i) If T(Y) =Y, then T(X), T(X,) ¢ {Yatacr for all « € F and T(Y3) ¢
{X, Xo}aer forall p €.

(i) If T(Y) € {Xataer, then T(X) # X, T(X,) # X for all « € F and
T(Yﬁ) ¢ {Y7 ifa}aEIF fO?” all 5 cF.

(w) IfT(Y) € {Ya}aer, then T(X) #Y, T(X,) #Y foralla € F and T(Yj3) ¢
{X, Xo}aer for all p € T.

Proof. This is consequences of T(Y) = (T o S)(X) and Proposition 2.8. O
Next, we consider the results of various combinations of given 7'(X) and T'(Y).
Proposition 2.10. Assume that T(X) = X.
(i) If T(Y)=Y, then T(X,) # X and T(Y,) # Y for all a € F.

(1)) If T(Y) € {Y,}aer, then T(X,) # X for alla € F.
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Proof. Let T'(E1;) = equ; for some u; € Vi~ {0} where 1 < j < n.
(i) Assume that T(Y) =Y. For each 1 < i < n, let T(E;,) = v; [, for some
v; € U,~{0}. Suppose that there exists a € F such that T(X,) = X. Then

for each 1 < I < n, T(aFy + Ey) = eqw; for some w; € V3~ {0}. For each
je{l,...,n},

T(EQj) = ele — OéT(Elj> = 61’U)j — Oé€1u]' = 61(U)j — OéUj).

Then eju, = T(E1,) = vif, and e;(w, — au,) = T(Es,) = v f, which imply
that v; and v, are elements in U; \ {0} contradicting the linearly independence
of {v1,...,v,}. Hence T'(X,) # X for all @ € F. Similarly, we can show that
T(Y,) #Y forall a € F.

(ii) This can be done by similar method of the proof of (i). O

In addition, the following propositions can be proved in the same manner of

the proof of Proposition 2.10.

Proposition 2.11. Assume that T(X) =Y.
(i) IfT(Y)=X, then T(X,) #Y and T(Y,) # X for alla € F.
(1)) If T(Y) € {Xa}aer, then T(X,) #Y for alla € F.

Proposition 2.12. (i) If T(X) = X, for some o € F and T(Y) =Y, then
T(Ys) #Y forall B €F.

(i) If T(X) = Yy for some o € F and T(Y) = X, then T(Ys) # X for all

B eF.

We find that T'(Ey) and T(Ej,,—1) for each I,k € {1,2,...,n} are necessary
for the proof of the main result. The following propositions inform what they are

under various conditions.

Proposition 2.13. Let a,v,A € F be such that T(X) = X, and T(X,) = X\.

Moreover, write, for each 1 < j <mn,

T(Elj) = (’)/61 + 62>Uj and T(OéElj + EQj) = ()\61 + eg)wj
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for some uj,w; € Vi~{0}. Then there exists o € F such that, for each 1 <1 < n,

(ve1 + e2)(w; — awy) € Xy if v = A
T(Ey) = !
(ger + ex)auy € X, if v# A

for some a; € F~{0}.

Proof. First, assume that v = A. Then for each 1 <[ < n,
T(Ey) = (Aey + ea)w; — aT(Eyy) = (ver + e2)(w — awy) € X,

Next, assume that v £ \.

Case 1: aa=0. Let 1 <[ <n. Since

T (Ell + EQl) =T (Ell) + T (Egl) = ('}/61 + 62)Ul + ()\61 + 62)’LU[

— yu; — — Awyp —

there exists 7, € F such that n;(u; +w;) = yu; + Aw;. Thus (9, —v)u = (A —n)w;.
Since v # A, we obtain that 7, — v # 0 and A — 1, # 0 so that w; = (ZZT_JZ) uy.
Hence T'(Eq) = (Xeq + e2) <2’f_%) u; where Zlf_nz # 0.

Case 2: a # 0. Note that

T(Ey) = (Aep + ex)wy; — aT(Eyp) = (Aeg + ex)wy — a(yer + e2)uy

— Aw; — . ayul

— — w1 — - _ aul _

Thus there exists ¢ € F such that o(w; — auy) = AMw; — ayuy. Let 1 <1 < n.

Then there exists n; € F (with 7, = o) such that
m(w; — awy) = Aw; — ayy

so that (m, — A\) w; = a (1 — ) w;. Since v # X and « # 0, it follows that 7,—\ # 0

and 1, — v # 0 and thus w; = (%) u;. Hence

T(E21> = ()\61 + 62)71)1 — Oé(’}/l + eg)ul
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— it e) (=) - atyen +

m— A
A — A —
= (mey + e2) (M) u;  where u £ 0.
m—A m— A

This shows that T'(Ey) = (me; + e2) (%) w for all [ € {1,...,n}. It remains

to show that g, = o foralll € {1,...,n}. Let l € {1,...,n}. Since T (Es + Ey)
has rank one, there exists ¥, € F\{0} such that J;(kjus + kju;) = mriu + Mk
where x; = % # 0. Then (¢, — m)rius + (V) — m)kwy = 0. Since {uq,u;} is
linearly independent, ¥, — n; = 0 = ¥ — 1, and hence n; = ¥; = ;. This shows
that y, =m =o forall l € {1,...,n}. O

Proposition 2.14. Let o, v, A € F be such that T(Y) = X, and T(Y,) = X,.

Moreover, write, for each 1 <1i < n,
T(Ew) = (ye1 +e)u;  and  T(Eip-1+ aby,) = (Ner + ex)w;
for some u;, w; € Vi~{0}. Then there exists o € F such that, for each 1 < k < n,

(ver + ex)(wr — auy) € X, if v = A,
T(Ejn1) = !

(0'61 + GQ)CLkuk € Xg, Zf y 7£ A
for some aj, € F~{0}.
Proof. This is obtained similarly to the proof of Proposition 2.13 by replacing Fjy,
and Ey by By, and Ej,_1, respectively. O

Note that Proposition 2.14 can also be done by making use of Proposition 2.13

together with the fact that 70 S(X) =T(Y) = X, and ToS(X,) = T(Y,) = X).
Proposition 2.15. Let a,y,A € F be such that T(Y) =Y, and T(Y,) = Y.
Moreover, write, for each 1 <1i < n,

T(Ein) =vi(fao1 +7fn)  and  T(Eip1+ alin) = 2i(foo1 + Afa)

for some v;, z; € U,~{0}. Then there exists o € F such that, for each 1 < k < n,

(2 — av)(facr +7/0) € X5, if v =X

arvr(foo1 +ofn) € X, if v# M\

T(Ek,nfl) ==

for some aj, € F~{0}.
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Proof. We can prove by applying S o T o .S with Proposition 2.13. O

Propositions 2.16 and 2.17 can be shown as Proposition 2.13. Moreover, Propo-
sitions 2.18 and 2.19 can be proved by using S o7 o.S with Propositions 2.16 and
2.17, respectively.

Proposition 2.16. Let «,y € F be such that T(X) = X and T(X,) = X,.

Moreover, write, for each 1 < j <n,
T(Elj) = e1Uy and T(CYEU + E2j) = (’)/61 + 62)11)]'

for some uj,w; € Vi~{0}. Then there exists 0 € F such that, for each 1 <1 < n,

T(Ey) = (e + ex)ayuy € X, for some a; € FN{0}.

Proposition 2.17. Let o,y € F be such that T(X) = X, and T'(X,) = X.

Moreover, write, for each 1 < j < n,
T(Eyj) = (ye1 +ea)u; and T(aEyj+ Ey) = eqw;

for some uj,w; € Vi~{0}. Then there ezists o € F such that, for each 1 <1 < n,

T(Ey) = (oey + e2)au, € X, for some a; € FX{0}.

Proposition 2.18. Let o,y € F be such that T(Y) =Y and T(Y,) =Y,. More-

over, write, for each 1 <1 <n,
T(Em) - Uifn and T(Ei,n—l + aEzn) - Zi(fn—l + an)

for some v;, z; € U,~{0}. Then there exists o € F such that, for each 1 < k < n,
T(Ekpn-1) = avi(foo1 + 0 fn) € Y, for some a;, € FN{0}.

Proposition 2.19. Let o,y € F be such that T(Y) =Y, and T(Y,) =Y. More-

over, write, for each 1 < i <n,
T<Ezn) - Ui(fnfl + Fyfn) and T<Ei,n71 + aE@n) = Zlfn

for some v;, z; € U,~{0}. Then there exists o € F such that, for each 1 < k <mn,

T(Ekpn-1) = arvg(fo—1 + 0 fn) € Y, for some a, € FN{0}.
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To obtain the proof of the main result, the series of Propositions 2.20-2.28 are
needed. Now, allow us to state without proof Propositions 2.20-2.27 in order to

see the overall results.

Proposition 2.20. If T(X) = X, T(Y) =Y, T(X,) € {Xo}aer and T(Y3) €
{Y,}aer for some o, p € F, then there exist nonsingular upper triangular matrices

P and @Q such that T(A) = PAQ for all A € H,(F).

Proposition 2.21. If T(X) = X, T(Y) € {Y.taer, T(Xa) € {Xo}aer and
T(Ys) € {Y, Y, }aer for some o, f € F, then there exist a nonsingular upper trian-
gular matriz P and a nonsingular matriz Q € H2(F) such that T(A) = PAQ for
all A € H,(F).

Proposition 2.22. If T(X) =Y, T(Y) = X, T(X,) € {Ya}aer and T(Y3) €
{Xo}aer for some «, 8 € F, then there exist nonsingular upper triangular matrices

P and Q such that T(A) = PA~Q for all A € H,(F).

Proposition 2.23. If T(X) =Y, T(Y) € {Xi}taer, T(Xa) € {Yo}aer and
T(Ys) € {X, Xo}aer for some o, € F, then there exist a nonsingular matriz
P € H!(F) and a nonsingular upper triangular matriz Q such that T(A) = PA~Q
for all A € H,(F).

Proposition 2.24. If T(X) € {X,}oer, T(Y) =Y, T(X,) € {X, Xy }aer and
T(Ys) € {Ya}aer for some a, 5 € F, then there exist a nonsingular matriz P €
H(F) and a nonsingular upper triangular matriz Q such that T(A) = PAQ for
all A € H,(F).

Proposition 2.25. If T(X) € {X,}aer, T(Y) € {Yataer, T(Xo) € {X, X} aer
and T(Yg) € {Y, Y.} aer for some a, B € F, then there exist nonsingular matrices
P € H:\(F) and Q € H(F) such that T(A) = PAQ for all A € H,(F).

Proposition 2.26. If T'(X) € {Ya}aer, T(Y) = X, T(X,) € {Y,Yo}taer and
T(Yp) € {Xu}aer for some o, p € F, then there exist a nonsingular upper triangu-
lar matriz P and a nonsingular matriz Q € H2(F) such that T(A) = PA~Q for
all A € H,(F).
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Proposition 2.27. If T(X) € {Yao}taer, T(Y) € {Xa}taer, T(Xa) € {Y, Ya}taer
and T(Yg) € {X, Xy }aer for some o, f € F, then there exist nonsingular matrices
P e H(F) and Q € H2(F) such that T(A) = PA~Q for all A € H,(F).

For the above propositions, we can divide these into three kinds from the
pattern of their proofs. For each kind, the proof has the same step but part of
details is quite different. The first kind is of Propositions 2.20, 2.21, 2.24 and 2.25
except the case that T'(X), T(Xa) € {Xataer, T(Y) € {Ya}aer, and T(Y3) =Y for
some «, 3 € F. The second kind is of only the remaining case of Proposition 2.25
which is shown by using SoT 0.S. The last kind is of Propositions 2.22, 2.23, 2.26
and 2.27 which are done by using SoT'. Thus only the proofs of Propositions 2.25

and 2.26 are given.

Proof. (Proposition 2.25) Assume that T(X) € {X,}aer, T(Y) € {Yi}uer,
T(Xa) € {X, Xo}taer and T'(Y3) € {Y, Y, }aer for some a, 8 € F. Then there are

four cases to be considered:
(i) T(X) € {Xaotaer, T(Y) € {Yataer, T(Xo) = X and T(Y3) = Y for some
a,B €F, or
(i) T(X) € {Xa}aer, T(Y), T(Ys) € {Yo}aer and T'(X,) = X for some a, 5 € F,
or

(ili) T(X),T(Xa) € {Xataer, T(Y) € {Ya}aer, and T'(Y3) = Y for some «, 5 € F,

or
(iv) T(X), T(Xs) € {Xa}aer and T(Y), T(Y3) € {Y,}aer for some a, 3 € F.

As mentioned above, the proofs of Cases (i), (ii) and (iv) are similar and that of
Case (iii) can be done by making use of SoT o S. Hence we prove only Case (iv)
which is more delicate than other cases and then Case (iii).

Case (iv): Let T'(X) = X, T(Y) = Y), T(X,) = X5 and T'(Y3) = Y, for
some v, A, 9,0 € F. For each 1 < 4,7,k,1 < n, there exist u;,w; € V3~ {0} and
v;, 2k € U, ~{0} such that

T(Elj) = (’761 + ez)uj, T(Em> = Ui(fnfl + )\fn)v
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T(aEy + Ey) = (661 + e2)w;  and T(Eyn-1+ BEgn) = 2k(fao1 + 1fn)-

For each 2 < s < t+ 1 < n, let T(Ey) = UsUsy where Uy € M, (F)~{0} and
Est < Mln(]F)\{O} Then
T(Ey + Eg) = (ve1 + e2)uy + UgVy € €,

and T(Ey + Egn) = UsUst + vs(foo1 + Afn) € .
Thus we obtain the following four cases from Proposition 1.8 (iii):
(1) {ve1 + eq,Us } and {Ug,vs} are linearly dependent.
(ii) {ye1 + eq, s} and {Vs, fu_1 + Afy} are linearly dependent.
(iii) {u¢, st} and {s, vs} are linearly dependent.
(iv) {w,vs} and {Ug, fn_1 + Afn} are linearly dependent.

However, Case (i) does not hold otherwise {vy, v, } is linearly dependent contradict-
ing the linearly independence of {vy,...,v,}. With the same manner, Case (iv)
cannot occur because of the linearly independence of {us, ..., u,}. Suppose that
Case (ii) holds. Then there exist ¢ € F and a nonsingular matrix P € M,,(F) from

Proposition 2.1 such that

T(Ey; + Ein + Eq + Es)

= (ve1 + e2)uy + (ver + e2)uy + UsTsy + Vs(fro1 + A fn)

= (ye1 + ex)us + (yer + e2)un, + s(ver + €2)(fn1 + Afn) + vs(foo1 + Afn)
= (ve1 +e2) (w + tn + 5 (fue1 + M) ) + 0s(faor + Afn)

Uy + Up, + g(fnfl + Afn)
= (761 + e US>

fn—l + /\fn
Uy + Unp, + g(fn—l + )‘fn)
fn—l + )\fn
Ut + Unp + §(fn—1 + )\fn)
el s )T X
0

nxn
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Thus {us, frno1 + Afn} is linearly dependent which is a contradiction. Hence
Case (ii) does not occur. Then Case (iii) must hold, i.e., for each 2 < s < t+1 < n,
T(Eg) = UgUg = €5vsu; where €4 € FN{0}.

Since (yey + eg)u, = T(Ev,) = v1(fn1 + Afn), we obtain that u, € V,,_1~{0}
and v; € Up~{0}. Then there exists \; € F\{0} such that

>\1un = fnfl + )\fn and )\1?}1 = yep + ea. (21)

In addition, {uy, ..., u,} and {v,...,v,} are linearly independent sets. By Propo-

sitions 2.13 and 2.15, there exist 1,0 € F such that for each 1 <[,k <n

;

(ver + e2)(w; — o), if v = 0;
T(Ey) =
\ (7761 + ez)alul, if Y # 0
(2k = Bor)(fac1 + A fa), I A=
T<Ek,n71> =
\bkzvk(fn—l'f_a-fn)a if A p

where a;, by € FN{0}. Then v # 6 and A # p. Since (ne; + e9)an_1uy—1 =
T(Eyn—1) = bova(fu1 + 0 fy), it follows that u,_; € V,,_1~{0} and vy € Us~{0}.
Then there exist Ay, A3 € F\{0} such that

Aoy =mer +ex  and  A3up_1 = fuo1+ 0 fn. (2.2)
We obtain from (2.1) and (2.2) that
T(Eyj) = Mo, T(Ein) = Moy,
T(Ey) = Avoaqu;  and T(Ekpn-1) = A3bpvptin_1.

Next, for each 2 < i < j+1 < n, there exists a nonsingular matrix P € M,,(F)
by applying Proposition 2.1 such that

j=i—1

n n n—2
= Z /\1’01U,j + Z )\Q’UQCLJ‘U]‘ + Z €35 V;U; + Agbiviun—l + )\wiun

j=i—1 j=i—1 j=i—1

n n n—2
= )\1’1}1 ( Z Uj) + )\2?]2 ( Z ajuj> + v; ( Z €ijUsj + Agbiun,l + Alun)

j=i—1 j=i—1 j=i—1
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= <)\11)1 AUz Ui) D i Q5
Z?jﬁl €ijuj + Asbitn—1 + Aup,
Z;‘L:ifl uj
- F(‘?l €2 63) Z;’L:i—l a;u;
Z?j_l €ijuj + Asbitn—1 + Aruy,

Z?:i—l U

Z?:_il €ijuj + Asbittn—1 + Arup
0

I
ol

0

nxn

It follows that, for each 4, there exist x;, (; € F\{0} such that

n n n n—2
Kj (Z Uj) = Z a;Uj and Cl (Z Uj) = Z €i5Uj +>\3biun,1 +)\1un

j=i—1 j=i—1 j=i—1 j=i—1
Thus >\2aj = )\3bz = €5 = )\1 so that T(Ez]) = )\11]in for all 1 S Z,] S n
| | | — w
with ¢ < j+ 1. Choose P = | \jo; ANovy --- Ao, | and Q =

| | | — Un —
Then Pe; = \v;, f;Q = u; and P, () are nonsingular matrices. Besides, for each

1 S Z,] S n with ¢ S j + ]., T(Ew) = /\1’0in = Peiij = PEZJQ which forces

1<i,j<n
1<j+1
for all A € H,(F). By Proposition 1.15 and (2.1), P € H}(F) and Q € H*(F) as

desired.

Case (iii): Let T(X) = X,, T(Y) = Y», T(X.) = X; and T(Y3) = Y for
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some v, \, 0 € F. Note that SoT oS is also a linear rank-1 preserver and

Applying Case (ii) yields that there exist nonsingular matrices P € H!(F) and
Q € H%(F) such that (SoT o S)(A) = PAQ, that is (T(A™))” = PAQ for all
A € Hy(F). Put B = A”. Thus T(B) = (T(B)~)” = (PB~Q)~ = Q~BP"~
where Q~ € H)(F) and P~ € H2(F). O

Proof. (Proposition 2.26) Assume that T(X) = Y,, T(Y) = X, T(X,) = Y
and T'(Y3) = X, for some a, 8,7, A € F. Then

(SoT)(X) = S(Y,) = X, (SoT)(Y)=S5(X) =Y,
(SoT)(X,) =S(Y)=X and (SoT)(Ys) = S(X,) = Y.

By Proposition 2.24, there exist a nonsingular matrix P € H!(F) and a nonsin-
gular upper triangular matrix @) such that (So7T)(A) = PAQ for all A € H,(F).
As a result, T(A) = (T(A)™)” = ((SoT)(A4))” = (PAQ)~ = Q~A~P~ for all
A € H,(F) where Q~ is a nonsingular upper triangular matrix and P~ € H2(FF)
is a nonsingular matrix.

The other result is obtained by applying S o 7" and Proposition 2.24. O]

There are two major results in the main theorem. One is the existence of
nonsingular upper Hessenberg matrices satisfying some certain conditions. This
can be obtained from Propositions 2.20-2.27. The other is the character of im T

which can be done by making use of Proposition 2.28.
Proposition 2.28. The following statements hold.

(1) If there exist a, f € F such that T(X) =T(Y) =T(X,) =T(Y3) = X, then
im7 =X.
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(i1) If there exist a, B € F such that T(X) =T(Y) =T(X.) =T(Ys3) =Y, then
im7T =Y.

(111) If there exist o, f € F such that T(X),T(Y),T(X,),T(Ys) € {Xa}aer, then
imT = X, for some v € F.

() If there exist o, 5 € F such that T(X),T(Y),T(X.),T(Ys) € {Ya}aer, then
imT =Y, for somey €.
Proof. We prove (i) and (iii) only.

(i) Assume that there exist a, f € F such that T(X) = T(Y) = T(X,) =
T(Y3) = X. For each 1 < 4,7, k,1 < n, there exist u;,v;,w;, 2, € V1 ~{0} such
that

T(Elj) = 61'U,j, T(E,L ) = €17,

T(aEy + Ey) = eqw;  and T(Ekpn-1+ BEkn) = €12
Then for each 1 <1,7 <n,

T(Ein-1) = e1zi — BT (Ein) = e12; — Berv; = ex(z; — Pu;) € X

and T(EQJ) = €1U)j — OéT(Elj) = ele — ozeluj = el(wj — OéUj) - X.
For each 2 < s <t +1 < n, let T(Ey) = UuUs where Uy € M, (F)~{0} and
Ut € Min(F)~{0}. Since T is a rank-1 preserver, the ranks of the following
matrices equal one:
T(Ey + Eq) = e1ug + UsiUst,

T Est + Esn) - astﬁst + €1V,

~

(
(
(B + Eg) = e1(w; — auy) + UgiTyy,
T(Eg + Esp-1) = UsUst + €1(2s — Bvs),
T(aEy + By + Ey) = e1wy + UgyUgy.

We claim that {e;, U } is linearly dependent. Suppose not. By Proposition 1.8 (iii),
it follows that {u;, Us}, {Ust, vs}, {wy — g, Ut }, {Ust, 25 — Pus} and {wy, Ty} are

linearly dependent sets. Then there exists ¢ € I such that

T(aElt + aEl,nfl + aﬂEln + E2t + EQ,nfl + BE2n + Est + Es,nfl + BES’)’L)
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= aejuy + aeju, 1 + aferu, + ep(wy — aug) + ey (wy—1 — quy,—1) + Per(w, — auy,)

+ ﬂstast + 61(23 — 6U8> + ﬁelvs

Vst
_ . _ Wn—1
= Ge1Ug + e1Wp_1 + Berwy, + Uyl = (ce1 €1 fer Uy
Wn,
Ust
_ gﬁst + Wp—1 + 5wn
Vst _
Vst
Wn—1
= P(cer e e e =P 0 )
wn
Est
0
nxn

where P € M, (F) is a nonsingular matrix obtained from the fact that {ey, us}
is linearly independent. Thus {w;,_1 + Bw,, Ty} is linearly dependent and hence
{wy,_1 + Pwy,w} is linearly dependent which is absurd. As a result, {e1, 7y}
is linearly dependent. This implies that for each 2 < s <t+1 < n, T(Eg) =
UsUst = €105 € X where e € FN{0}.

Next, we are ready to show that im7 = X. If A € H,(F), then T(A) =
T( Z%ﬁ a; Eij) = z%ﬁ a;;T(E;;) € X. Moreover, if A € X, then A € imT
because T'(X) = X. Hence we can conclude that im 7 = X.

(ili) Assume that there exist o, 5,7, A, 0, p € Fsuch that T'(X) = X, T(Y) = X,
T(X,) = Xsand T'(Y3) = X,,. Foreach 1 <1,j,k,1 < n, there exist u;, v;, w, 2 €
Vi~{0} such that

T(Eyj) = (ve1 + e2)uy, T(E;,) = (N\ey + e2)vy,
T(aEy + Ey) = (0e1 + e2)w;  and T(Ekpn-1+ BEgn) = (per + e2)zy.
Since (ye; + ex)u, = T(E1,) = (Aeg + e2)vy, we obtain that w, = v; and 7 = A.

It is clear that {us,...,u,} and {vy,...,v,} are linearly independent sets. From

Propositions 2.13 and 2.14, there exist n, 0 € F such that for each 1 <[,k <n

(ve1 + e2)(w; — awy), if v=0;
T(Egl) —

(nex + e2)ayuy, if v#£9
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(Ne1 + e2)(zk — Pug), if A=
T(Ek,nfl) =
(oe1 + e2)bguy, if A#p

for some a;, b, € F~{0}. If v # §, then (ne; + ea)anu, = T(Ea,) = (Aeq + e2)vy
which implies that a,u, = v and thus a,v; = vy leading to a contradiction. If
A # p, then bju, = wu,_; which contradicts the linearly independence of u, 1

and u,. This shows that v = ¢ and A\ = y. Thus 6 =~y = A = u so that

T(Eyy) = (ver + e2)uy, T(Ein) = (ve1 + e2)ui,
T(Ey) = (yve1 + e2)(w; — auy), T(Ekpn-1) = (ve1 + e2)(z, — Pug) and
T(aEy + Ey) = (ver + e2)w;.

For each 2 < s <t + 1 < n, let T(FEy) = UyUs where Uy € M,1(F)~{0} and

Ust € My, (F)~{0}. Then each of the followings

T(Ey+ Eg) = (ver + e2)us + Usi Vg,

T Est + Esn) = UstUgst + (761 + 62)U87

(

(
T(Eoy + Eg) = (ve1 + e2)(wy — auy) + Usi Vs,
T(Egq + Espn_1) = UsgUst + (ve1 + e2)(2s — Bus),
(

T(aEy + Ey + Eg) = (ve1 + e2)wy + Ug Vst

has rank one. It can be shown similarly to the proof of (i) that {vye; + eq, ug}
is linearly dependent and then T'(Ey) = usvs = eq(ve1 + e2)vy € X, for some
€t € FN{0} for all 2 < s < t+1 < n. This leads to the conclusion that
im7 = X, O

We now ready to prove the main theorem.

Theorem 2.29. Let T be a linear map on H,(F). Then T preserves rank-1 ma-

trices if and only if

(i) im T is an n-dimensional rank-1 subspace, or

(ii) there exist nonsingular upper Hessenberg matrices P and Q) such that T(A) =
PAQ for all A€ H,(F) or T(A) = PA~Q for all A € H,(F).
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Proof. The sufficiency is clear. We prove the necessity. Recall that every n-
dimensional rank-1 subspace of H,(F) is one of the forms X, Y, X, or Y, for
some « € F. Since T is a rank-1 preserver, T'(X), T(Y), T(X,) and T(Y,) must
be n-dimensional rank-1 subspaces of H,(F) for any o € F. There are four cases
to be considered as the choices of T'(X).

Case 1: T'(X) = X. Proposition 2.8 provides that there are three possibilities of
T(Y), ie.,

TY)=X o TY)=Y or T()e€{Y,}uer.
Moreover,
T(X.) ¢{Y,Yo}taer and T(Y3) ¢ {Xo}aer for any o, € F. (2.3)

Subcase 1.1: T(Y) = X.
Proposition 2.9 and (2.3) force that T(X,) = X and T'(Y3) = X for all a, 5 € F.
Consequently, im T = X by Proposition 2.28.

Subcase 1.2: T(Y) =Y.
Proposition 2.10 and (2.3) yield that T'(X,) € {X,}aer and T'(Yp) € {Y, }aer for
all a, 8 € F. Thus there exist nonsingular upper triangular matrices P and @)
such that T'(A) = PAQ for all A € H,(F) by Proposition 2.20.

Subcase 1.3: T(Y) € {Y, }uer-
It follows from Proposition 2.9 and (2.3) that T'(X,) € {Xa}aeer and T'(Y3) €
{Y,Y,}aer. Thus there exist a nonsingular upper triangular matrix P and a
nonsingular matrix € HZ2(F) such that T(A) = PAQ for all A € H,(F) by
Proposition 2.21.
Case 2: T(X) =Y. Then there are three choices of T'(Y'), namely,

TY)=X o TY)=Y or TY)€{Xut}aer.

It can be shown parallel to Casel that if T(Y) =Y, then imT =Y. Otherwise,
there exist nonsingular upper Hessenberg matrices P and ) such that T(A) =

PA~Q for all A € H,(F).
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Case 3: T(X) € {Xo}aer. U T(Y) € {Xo}aer, then imT € {X,},er. For the
others, there exist nonsingular upper Hessenberg matrices P and () such that
T(A) = PAQ for all A € H,(F).

Case 4: T'(X) € {Y,}ser. Similarly, if T(Y) € {Y,}eer, then imT € {Y,},cr;
or else there exist nonsingular upper Hessenberg matrices P and () such that

T(A) = PA~Q for all A € H,(F). O

From the above theorem, observingly, a matrix P must be only an element of
H(F) or T,,(F) and a matrix Q must be only an element of H2(F) or T,,(F).
In general, if there is a map preserving all ranks, then this map must preserve

rank one. It is also true in the case of Hessenberg matrices.

Corollary 2.30. Let T be a nonsingular linear map on H,(F). Then T is a rank
preserver if and only if there exist nonsingular upper Hessenberg matrices P and )

such that T(A) = PAQ for all A € H,(F) or T(A) = PA~Q for all A € H,(F).

Proof. By using Theorem 2.29 and the fact that if T" is a rank preserver, then T'

is a rank-1 preserver. For the converse, it is done on account of Theorem 1.5. [

2.2 Determinant Preservers and Eigenvalue Preservers

In this section, the pattern of linear maps preserving determinant and the pattern
of linear maps preserving eigenvalues are found by the hand of Theorem 2.29.
First of all, we show that a map preserving determinant preserves rank-1 under

the condition that this map must be nonsingular.

Proposition 2.31. If a nonsingular linear map on H,(F) preserves determinant,

then it also preserves rank one.

Proof. Assume that T' is a nonsingular linear map on H,(F) preserving deter-
minant. Let A € H,(F) with p(A) = 1. Then by Proposition 1.10, there exist

nonsingular triangular matrices Py, P, ()1 and () such that

PAQy = E,, where p,qe{l,...,n} withp < ¢+ 1 and
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PBT(A)Qy =Y By =Y
=1

where s;,t; € {1,...,n} with s; <t; + 1 for all ¢; moreover, s; # s; and t; # t;
for i # j providing that p(T(A)) = r. Define ¢ : H,(F) — H,(F) by ¢(X) =
P,T(P7'XQ71)Q,. Then ¢ is a linear map and

det ¢(X) = (det X) (det(P,P QT Q0)) = kdet X

where k = det(P,P; ' Q7' Q2). Moreover, ¢(E,,) =Y. Put

/f n
Z Ei; ifp=g¢
i=1
iF#p
n
7 ZEii—f—Eqp Jifp=qgq+1lorg=p+1;
— :1
i;fp,q
n—1
El,p—l + Z Ei-f—l,i + Eq+1,n s otherwise.
\ i#q

Let a € F. From the property of the determinant when using row operations,

a
we get that det(aE,,+ Z) = £ det ‘ = ta and det p(a By, + 2Z) =

1
det (aY + QS(Z)), which is a polynomial p(a) in « of degree at most r. We get

that p(a) = detp(aE,, + Z) = kdet(aE,, + Z) = tka and then 1 < r, thus
p(A) < p(T(A)). Since T is nonsingular and T preserves determinant, we gain
that det B = det (I'T~Y(B)) = det (T"!(B)) for all B € H,(F), that is 7"
preserves determinant. Similarly, p(4) < p(T'(A)) for all A € H,(F), hence
p(T(A)) < p(A). Thus p(T(A)) = p(A) = 1. O

Corollary 2.32. Let T be a nonsingular linear map on H,(F). If T preserves

determinant, then there exist nonsingular upper Hessenberg matrices P and @)

such that T(A) = PAQ for all A € H,(F) or T(A) = PA"Q for all A € H,(F).
If there exist nonsingular upper Hessenberg matrices P and () such that

det(PQ) =1 and T(A) = PAQ for all A € H,(F) or T(A) = PA™Q for all
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A € H,(F), then T preserves determinant.
Proof. By using Proposition 2.31 and Theorem 2.29. [

Next, the relations between maps preserving determinants and maps preserv-

ing eigenvalues are manifest.

Proposition 2.33. If a linear map on H,(F) preserves determinants and maps

the identity matrix into itself, then it also preserves eigenvalues.

Proof. Let T be a linear map preserving determinants such that T7'(I,) = I,, and

A € H,(F). Then

A is an eigenvalue of A < det (A —A[,) =0
= detT(A—A,) =0
& det (T(A) — AT'(I,)) =0
& det (T(A) — A,) =0
& \is an eigenvalue of T'(A).
Hence T preserves eigenvalues. ]

Proposition 2.34. If F is an algebraically closed field, then a linear map on

H,(F) preserving eigenvalues also preserves determinants.

Proof. Let T be a linear map preserving eigenvalues and A € H,(F). By applying
Jordan canonical form, we obtain that the product of all eigenvalues of A is equal
to the determinant of A. Accordingly, det A = det (T(A)) Hence T preserves

determinants. O

In addition, the relation between preserving eigenvalues and the form:
T(A) = PAQ for all A € H,(F) or T(A) = PA™Q for all
A € H,(F) where P and @ are nonsingular upper Hessen- (*)

berg matrices

is given. The necessity is done by capability of Proposition 2.34 and Corollary
2.32. For the sufficiency, Corollary 2.32 and Proposition 2.33 are used as tools,

see the following picture.
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Finally, a relation between determinants and traces is given.

Proposition 2.35. If a linear map on H,(F) preserves determinants and maps

the identity matriz into itself, then it also preserves traces.

Proof. Let A € H,(F).

x €T,

Assume that T preserves determinants. Then for each

det(A — z1,,) = det (T(A) — zT'(I,,)) = det (T'(A) — z1,,).

However, the coefficients of 2"~ of det(A — x1,) and det (T(A) — z1,,) are trA

and tr (T(A)), respectively. Hence T preserves traces.

Similarly, we can write the above relationship as follows.

the form (x)

det(PQ)=1

preserving

determinants

T(In):[n
—

preserving

traces




CHAPTER III
ADDITIVE PRESERVERS ON
HESSENBERG MATRICES

In this chapter, rank-1 preservers are still investigated however linear maps are
replaced by surjective additive maps. Recall that a map ¢ on a space V' is additive

if p(a+b) = p(a) + ¢(b) for any elements a and b in V. Furthermore,

r@My(F)={zx®y|y € M,(F)} where © € M, (F),
M (F)@y={roy|x € M, (F)} where y € M,;(F) and
Q= {A e H,(F)|p(A) = 1}.

For certain mappings on H,(FF), relationships between the first row and the
last column of each matrix in H,,(F) are shown as follows. Note that for a space V/

of matrices, set V! = {A"| A € V}.
Lemma 3.1. Let ¢ be a surjective additive rank-1 preserver on H,(F). Then

(i) there exist s,q € {1,...,n} with s < 2 and ¢ > n — 1, nonzero elements

r1 € Us and v, € Vqt and injective additive maps g1, ¢, on M, (F) such that

pleg®z2)=x1@q1(2) forall z & My, (F)

and  p(z®e,) =cp(2) @u,  forall z€ My, (F), or

(i1) there exist s,q € {1,...,n} with s < 2 and ¢ > n — 1, nonzero elements

u, € Uy and y; € V:f and injective additive maps dy, hy, on M, (F) such that

pleg®z2)=di(2) @y forall z¢€ My (F)

and  p(z®e,) =u, @ hy(z)  forall 2z e My (F).
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Proof. Since e; ® M,,;(FF) is a rank-1 subspace and ¢ preserves all rank-1 matrices,
it follows from Proposition 1.9 that there exist s,q € {1,...,n} with s < ¢+ 1
such that

@(el ®Q M1 (IF)) = 17 ® M for some nonzero x; € U, and subspace M of V:]t,
or go(el ® M1 (IF)) = N ® y; for some nonzero y; € Vqt and subspace N of U,.
This implies that there exists a 1-1 additive map g1 : M,,;(F) — V;It such that
pleg®z) =21 ®¢g1(z) forall ze M, (F), (*)
or there exists a 1-1 additive map d; : M,1(F) — Us such that
ple1 ®@z)=di(z) @y, forall zée M, (F). (**)

For (*), the map ¢; is 1-1 because for each u,v € M, (F) such that g (u) = ¢1(v),
then p(e1 ®u) = 71 ® g1 (u) = 11 @ g1(v) = p(e; ®v) and thus (e; @ (u—v)) = 0;
hence, u = v since ¢ is a rank-1 preserver. Furthermore, the map ¢; is additive
because ¢ is additive. By virtue of the injectivity of ¢g; and the conditions of s
and ¢, we get ¢ = 1 and s < 2 for (*); otherwise, s =n and n—1 < ¢ < n for (**).

Hence we can say that there exist s € {1,...,n} with s < 2, a nonzero element

x1 € Ug and a 1-1 additive map ¢y : M1 (F) — M,;(F) such that
ple1®z) =21 @ g1(z) forall ze& M, (F), (1)

or there exist ¢ € {1,...,n} with ¢ > n — 1, a nonzero element y; € V' and a 1-1

additive map d; : My, (F) — M,;(F) such that
ple1®z)=di(z) @y, forall ze M, (F). (2)

Similarly, since M, (F)®e, is a rank-1 subspace, there exist [ € {1,...,n} with

[ <2, a nonzero element u, € U; and a 1-1 additive map h,, : M1 (F) — M, (F)
such that

p(z®en) =u, ®h,(z) forall 2ze M, (F), (3)

or there exist k € {1,...,n} with k > n— 1, a nonzero element v, € V! and a 1-1

additive map ¢, : M1 (F) — M,;(F) such that

plz®e,) =cp(z)@uv, forall ze& M, (F). (4)
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There are four possible cases. It sufficies to show that
(i) (1) and (3) cannot hold simultaneously, and
(ii) (2) and (4) cannot hold simultaneously.

However, their proofs are similar, so we prove only (i).

Suppose that (1) and (3) hold simultaneously. Since 21 ®g¢;(e,,) = p(e1®e,) =
Uy, @ hy(e1), by (ii) of Proposition 1.8, there exists a nonzero o € F such that
r1 = au,. Thus p(e; ® 2) = au, @ g1(2) = u, @ agi(z) € u, @ M, (F) for all
z € My (F).
Case 1: Suppose that ¢(Q) C u,, ® M, (F). In general, each Hessenberg matrix
is the sum of finitely many rank-1 matrices. Then ¢ (H,(F)) C u,® M, (F) which
contradicts the surjectivity of .
Case 2: ¢(Q) € u, ® M, (F). Then there exist nonzero z,y,u,v € M, (F) with
r®y € 2 such that p(r ® y) = u ® v and {u,u,} is linearly independent. We
know that

(z®@y)=u®uv e,

S

e((z+e)@y) =u@v+ au, ® gi(y) € €,
gp(x@ y+en):u®v+un®hn(y)69 and
(¢

p((z+e)®y+en) =u®v+ au, @ gi(y) + tn @ hn(y) + un @ hy(er) € Q,

by using (iii) of Proposition 1.8 repeatedly we obtain that {v,gl (y)}, {v, hn(y)}
and {’U,hn(el)} are linearly dependent so that there exists a nonzero § € F
such that v = Bh,(e1), and hence p(x ® y) = u ® Lhy(e1) = Pu ® hy(ey) €
M1 (F) @ hy(eq).

As a conclusion, ¢(Q2) C u, ® M,1(F) U M,1(F) ® hy,(ey), it follows that
gp(Hn(]F)) C up ® Mp1(F) U M1 (F) ® hy,(er) which contradicts the surjectivity
of ¢ by (iv) of Proposition 1.8. O

The previous lemma indicates that, for a surjective additive rank-1 preserver ¢
on H,(F), the mapping of the last column (i.e., of the form z ® e,) of every

Hessenberg matrix via ¢ depends on the mapping of its first row (i.e., of the form
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e1 ® z). However, there are only two types of the mapping of the first row via ¢

see the followings.

() ) 1)
() Dl )+

Next, the first two following lemmas explain the form of the mapping of each
column when given the character of the mapping of the first row. Another next
two following lemmas inform in case that the mapping of the last column is given.
However, the proofs of Lemmas 3.2-3.5 use the same method, thereby we prove

only Lemma 3.5.

Lemma 3.2. Let ¢ be a surjective additive rank-1 preserver on H,(F) satisfying
the condition (1) in the proof of Lemma 3.1. Then, for 1 <i <mn —1, there exist
pisri € {1,...,n} withi+1<p; <ri+1<n+1, anonzero element v; € V!

and an injective additive map c; : Uiy — U, such that
plz®e) =ci(z)@v;  forall z € Uy.

Lemma 3.3. Let ¢ be a surjective additive rank-1 preserver on H,(F) satisfying
the condition (2) in the proof of Lemma 3.1. Then, for 1 <i <mn —1, there exist
pi,ri €{1,...,n} with1 <p; <r;+1<n—i+1, a nonzero element u; € Uy,

and an injective additive map h; : U;11 — Vrt such that
p(z®@e;) =u; ®@hi(z)  forall z& Uy

Lemma 3.4. Let ¢ be a surjective additive rank-1 preserver on H,(F) satisfying
the condition (3) in the proof of Lemma 8.1. Then, for 2 < i < n, there exist
liyki € {1,...,n} withn —i+2<1; <k;+1<n+1, anonzero element y; € V).

and an injective additive map d; : Vi | — Uy, such that

ple;®@z2)=di(2)®y; foral zeV!,.
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Lemma 3.5. Let ¢ be a surjective additive rank-1 preserver on H,(F) satisfying
the condition (4) in the proof of Lemma 8.1. Then, for 2 < i < n, there exist
Liyki € {1,....,n} with 1 < 1; < k;+1 < i, a nonzero element z; € U;, and an

injective additive map g; : V! | — Vil such that
ple;®@2)=2;®gi(z) forall 2€V!,.

Proof. Let 2 < i < n. Since p(e; ® V') is a rank-1 subspace, by the same way
of the proof in Lemma 3.1, we obtain that there exist l;,k; € {1,...,n} with
[; < k; + 1, such that either there exist a nonzero element z; € U;, and a 1-1

additive map g; : Vi ; — V! such that

ole;®2) =1, @gi(z) forall zeVi,, (5)

or there exist a nonzero element y; € V! and a 1-1 additive map d; : V.| — U,
such that

wlei®z)=di(z)®y; forall zeV!,. (6)
We show that (6) does not occur. Suppose that (6) holds. Then we obtain by
applying (4) and (6) that d;(e,) ® y; = p(e; ® e,) = cule;) @ v, for each i. By
(ii) of Proposition 1.8, there exists  # 0 in F such that y; = awv, and hence
vle;®ep,) = di(e,) @ av, € U, ®v,. Next, let x,y,u,v € M,;(F) be nonzero such
that p(z ® y) = u ® v and {v,v,} is linearly independent. Since

pz@y)=u®uveQ,

go(m—i—el ®y)—u®v+di(y)®avneﬂ,
P(z@(y+en) =u®v+cy(z) ®v, €Q, and
((

el(z+e)®y+e)) =u®v+di(y) ®av, + () @ v, + cule;) @ vy, € Q,

it follows that there exists 3 # 0 in F such that u = f¢,(e;) and thus p(z ® y) =
Ben(er) @ v € ¢,(e;) @ My (F). Accordingly, ¢(Q2) C U, ® v, U cy(e;) @ My (F)
contradicting (iv) of Proposition 1.8.

In addition, from (5), since g; is 1-1, we get that dimV;_; < dimV}, which
equals n — k; + 1. Thus V. C Vi,. Recall that V,, € --- C Vj, hereupon,

ki <i—1landthusl; <k +1<i. ]
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The following lemma results from the combination of Lemmas 3.1, 3.2 and 3.5.

Lemma 3.6. Let ¢ be a surjective additive rank-1 preserver on H,(IF) satisfying

(i) of Lemma 3.1. Then the followings hold.
(i) There exist bijective additive maps gy, ..., gn and 1, ..., x, € My (F) such
Us, ifi=1

U, ifi#]l

Moreover, such x1,...,x, are linearly independent.

that g; : Vi1 — V| where Vo =V; and x; €

7

(i) There exist bijective additive maps cy,...,c, and vy,...,v, € My (F) such
Vi, ifi#n

VTf*l? Zf Z = nNn.

that ¢; : Uiy — Uy where Uy = U, and v; €

Moreover, such vy, ..., v, are linearly independent.

Proof. From the assumption, there exist s,q € {1,...,n} withs <2and ¢ > n—1,
nonzero elements x; € Uy and v,, € Vqt and injective additive maps g1, ¢, on M, (F)

such that

ple;®z2) =21 @g1(2) forall ze& M, (F) (1)

and  p(z®e,) =c,(2)®v, forall ze M, (F). (2)

By Lemmas 3.5 and 3.2, we obtain that for all 2 < ¢ < n, there exist [;, k; €
{1,...,n} with 1 <[; < k; +1 < i, a nonzero element z; € U, and an injective

additive map g; : Vi | — V! such that
ple;®z) =2, ®gi(z) forall zeV!, (3)

and for each 1 <i < n—1, there exist p;,7; € {1,...,n} withi+1 <p, <r;+1<
n + 1, a nonzero element v; € Vrt and an injective additive map ¢; : U;jy1 — Uy,
such that

p(z®e) =ci(z)@v; forall ze€ Uys. (4)

From (1) and (3), it follows that ¢(e; ® 2) = z; ® gi(2) and is also an element

in Q for all z € V!, for all 1 <1i <n where Vj = M,;(FF); moreover, z; € Uy and
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x; € U; for all 2 <7 <n. Thus img;,imgs € V; and img; € V;_; for all ¢« > 3 by

making use of Corollary 1.11. In this way,
gi: Vi, —= Vi forallie{1,...,n} where Vj = V;. (5)

Now, first of all, since ¢ maps onto H,(F), for each A € H,(F), there exists
B € H,(F) such that ¢(B) = A; however, B can be written as Y . (e; ® zf)

where B = : . It follows that
—_ ZTL —_
A:cp(Z e; ® 2t ) ng e; @ zL) :Z(@@gz(zf)) (6)
i=1 i=1

Consequently, every Hessenberg matrix A is represented by the sum of the form
x; ® g;i(2!) where z; is the i-row of B such that ¢(B) = A.
First, we are to show that {xi,...,x,} is linearly independent. In fact, F,, €

H,(F), 1 € Uy and z; € U; for all i > 2, it follows that

n—1
E,, = Z 2 @ gi(2])) + 2n @ gn(2}) where z; is the i-row of B with ¢(B)=E,,
i=1

= + where each * is an element of F,
0 0 * %

accordingly, the n-position of x,, must not be zero. Moreover, with the same
argument, F,_;, 5 is an element of H, (F) which forces the (n — 1)-position of
T,—1 must not be zero either. Similarly, the i-position of x; must not be zero for
all ¢ > 3. Besides, Ey € H,(F) and x1, 25 € U,, it follows that, without loss of
generality, the 2-position of x5 must not be zero. Hence {xs,...,z,} is linearly
independent. It remains to show that {z1,...,z,} is linearly independent. By the
above reason and properties that z1, x5 € U, and z; € U; for all i« > 3, we obtain
that {x1, z;} is certainly linearly independent for all i > 3. Suppose that {1, x5} is
linearly dependent. Put z; = <a1 a 0 --- 0>t and xo = <b1 by 0 --- ())t
with by # 0. Then ay # 0. If a; = 0, then b; = 0 so E;; would not be represented

by ¢, which is impossible. Thus a; # 0. Now, a; and as are not zero and xs = vy,
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for some nonzero v of F. It follows that E5; would not be represented by ¢ for
all j, hence this case does not occur. As a result, {xq, 2} is linearly independent.

Next, we are to show that g; is a bijective additive map on V', for all i €
{1,...,n}. Fix i. Then, from (1), (3) and (5), g; is an injective additive map
on V' ,. Tt remains to show that g; is onto. Let @ € V' ;. Since z; € Uy and

xp € Uy for k > 2, we obtain that x; ® @ € H,(F). By applying (6), ; ® @ =
> ory (xk ® gk(rZ)) where 7, € Vi_; is the k-row of B such that ¢(B) = z; @ a.

t
Then ZE? (a:k®gk(r,2))—|—xi®(gi(frf)—a) = 0. Write gx(rf) = <bk1 b,m) and
t
a= (Ch . an> with a; = 0 for all j < i—1. Thus > i, bz + (bil —al)x,- =0
ki
and hence by, = 0 and by = q; for each [ € {1,...,n} since {z1,...,x,} is linearly

independent. Then gx(rf) = 0 for all k£ # i and g¢;(r}) = @, respectively. As a
result, g; is onto for all 4.

From (2) and (4), it implies that (ii) holds. O

Theorem 3.7. Let ¢ be a surjective additive map on H,(F). Then ¢ preserves
rank-1 matrices if and only if there exist a field automorphism 6 on F and non-
singular upper Hessenberg matrices P and @Q such that o(A) = PA’Q for all
A € H,(F) or p(A) = P(A’)~Q for all A = (a;;) € H,(F) where A? = (6(a;)).

Proof. Assume that ¢ preserves rank-1 matrices. By Lemma 3.1,

(i) there exist s,q € {1,...,n} with s < 2 and ¢ > n — 1, nonzero elements

x1 € Ug and v, € Vqt and injective additive maps ¢, ¢, on M,,1(FF) such that

ple1®z2) =21 @ g1(z) forall ze& M, (F)

and  p(z®e,) =cy(z) @, forall ze My, (F), or

(ii) there exist s,q € {1,...,n} with s < 2 and ¢ > n — 1, nonzero elements

u, € Ug and 1y, € Vqt and injective additive maps dy, h,, on M, (FF) such that

pleg®2)=di(z) @y, forall zée M, (F)
and  (z®e,) =u, ®h,(z) forall ze My, (F).
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Case 1: Assume that (i) holds. Then by Lemma 3.6, we obtain that {zy,..., z,}
and {vy,...,v,} are linearly independent where x; € Uy, x; € U; for all i €
{2,...,n}, v; € Vil forall i € {1,...,n — 1} and v, € V! ;. Furthermore, g;
and ¢; are also bijective additive maps on V! ; and on U1, respectively, for all
ie{l,...,n}.
| | - U =
Let X = |2z, ... z,]| and Y = : . Then X € H\(F) UT,(F)
| | — v, —
which is nonsingular and Xe; = x; for all i. Put P, = X~!. Then ¢; = Pyz; for
all i and P, € H}(F) U T,(F).

Similarly, Y € H2(F) U T, (F) which is nonsingular and ¢;Y" = ! for all . Put
Q1 =Y ! Then ¢; = v!Q; for all i and Q, € H(F) U T, (F).

Let 1 : H,(F) — M,(F) be defined by ¢1(X) = Pip(X)Q; for all X € H,(F).
Then Pip(X)Qy € H,(F) for all X € H,(F), ie., ¢; : Hy(F) - H,(F) from
Proposition 1.15. In fact, ¢, is a surjective additive rank-1 preserver resulted
from ¢. Fix i € {1,...,n}. For each z € M, (F) with ¢; ® z € H,(F), by
applying (3) in the proof of Lemma 3.6, we get that

e1(e; ® z) = Pip(e; @ 2)Q1 = Pi(; @ i(2)) Q1 = €, @ Qgi(2),
similarly,
1z ®€;) = Pro(z @ e;)Q1 = Py (ci(2) @ 1) Q1 = Pri(ci(2)) ®e;.

Let ;(2) = Qigi(z) where z € V| when V{ = M, (F) and ¢;(z) = Pi(c;(2))
where z € Vi1 when U, 1 = My, (F). Then ¢; and ¢; are bijective additive maps
on V!, and on Uy, 1, respectively, for all i by the virtue of ¢g; and ¢;, respectively.

Let ce Fandi,j € {1,...,n} with i < j+ 1. Since
e @ Pi(cej) = pile; @ cej) = pi(ce; ® €5) = dj(ce;) ® ey,

it follows that there exists a;;(c) € F~{0} such that ¢;(ce;) = a;;(c)e; owing
to (ii) of Proposition 1.8. Then we are to show that «;; : F — F is a bijective

additive map.
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Suppose that a;j(a) = «;;(b) for any a,b € F. Then v;(ae;) = w;;j(a)e; =
a;;(b)e; = 1;(bej). Since v, is a 1-1 additive map, «; is additive and ae; —be; = 0
and hence a = b. Thus «; is a 1-1 additive map. To show that «;; is onto, let
a € F. Then (Q})'ae; € Vi, owing to i < j+ 1. Since g; is onto V;*,, it follows

that ¢;(z) = (Q}) 'ae; for some z € V! ,. Hence
¥i(2) = Q1gi(z) = Q1(QY) 'ae; = ae;.

However,
n

Yi(Z) = %’( Z bkek) = Z ik (br) e

k=i—1 k=i—1
where Z = Y, _. | byey, with b, € F for all k. It follows that a = «;;(b;) thus a;;
is onto F.

As a result, p1(cE;;) = ¢i(ce; @ ej) = e; @ YPi(cej) = e; ® ayj(c)e; = ayj(c) Eyj.
In another word, ¢;(cE;;) = a;j(c)E;j for any ¢ € F and 4, j such that ¢ < j+1
where «a;;(c) € FN{0}.

Let o : H,(F) — H,(F) be defined by (X ) = Pop1(X)Q: for all X € H,,(F)

arn (1)1 an(Dai (1)1

where P, = , Qo =

oenn(l)*1 aln(l)ogn(l)’l

and a;;(1)7" is the inverse of ;;(1) for all 4,j. Then 5 is a surjective additive

rank-1 preserver on H,(IF). Furthermore,

902(CEij) = P2901(0Eij)Q2 = P2aij(C)EijQ2
= Pyaij(c) (e ® e;) Q2 = ayj(c) (Paei) (€5Q2)
= 6ij(C>Eij Where ﬁij(c) = Oéij(C)Oéin(l)_lOéln(]_)Oélj(1)_1.
For each k € {1,...,n}, we obtain that

©2(Erx) = anp(1)ar, (1) an, (D (1) 7 By = B

and  @o(Ey,) = akn(l)akn(l)_laln(l)aln(l)_lEkn = FE,.

Hence

P1k(1) =1 = Byn(1)  for all k. (1)
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Similarly, it can be shown that 3;; is a bijective additive map on F.

Next, let ¢ € F. We are showing that f1;(c) = fin(c) = Bin(c) for all

jth nth
\: 3
15t — c c
i,j € {1,...,n}. Without loss of generality, since u ., ) .| € 2 and
jth nth
\J \J

1= B;(c) Bin(c)

(2 is an additive rank-1 preserver, we get that . _, 855 (1) s ] € Q. By

Theorem 1.6 and (1), we obtain f1,(c)5;;(1) = B1,(c)Bin(1) = F1(c). In particu-
lar, letting ¢ = 1 implies f3;;(1) = 1. Hence f1,,(c) = B1;(c) for all j.

Moreover, since Ey; + cEy, + E;; + cE;, has rank one, 51;(1)Ey; + Bin(c) Ern +
Bi;(1)Eij + Bin(c) By must have rank one and then 3;,(c) = Bin(c)Bi;(1) by (1).
In addition, 3;;(1) =1 as ¢ = 1. Hence f;,(c) = Bin(c) for all i.

In order to prove that ,,(c) = Bin(c) for all p,q € {1,...,n}, given p,q €
{1,...,n} and use the same argument on cE,,+ E1,, +cE,,+ E,,. Hence f,,(c) =
Bin(c) for all p,q € {1,...,n}. Put § = By,,. Then 0 is a bijective additive map

on IF such that for all i, j € {1,...,n}, we get
pa(cEyj) = Bij(c)Ey; = Pin(c) By = 0(c) Ej;.

Besides, 0(ab) = 6(a)f(b) for all a,b € F by using the same manner as proving
that B;,(c) = Bin(c) for all i on Eyy + aFEy, + bEy + abEsy, and the fact that
0(1) = 1 because f1,(1) = 1. Thereby, 6 is a field automorphism on F.

Now, for each i,j € {1,...,n}, we know that

o(cEy;) = Pl (cEy)Qr
= Xg&l(CEZJ)Y
= X Pyl oo(cE;)Q5'Y

= XP,0(0)EyQ3 'Y
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= PO(c)E;QQ where P=XP;'and Q =Q,'Y.

Hence for each A € H,(F), we obtain that

p(A) = w(Z%’Eﬁj>
= olciEy)
= Pb(cij) E;;Q
- P(Z e(cij)Eij>Q = PA’Q where A? = (0(ay)).

Case 2: Assume that (ii) holds. Then there exist s,q € {1,...,n} such that
s < 2and g > n—1, nonzero elements u,, € Us; and y; € Vqt and injective additive

maps dy, h, on M, (F) such that

pleg®2)=di(z) @y, forall ze M, (F)

and  @p(z®e,) =u, ®h,(z) forall ze& M,(F).

By capability of S, we get that S o () -9 ( > _ () and
Sogp ( ) =S () = ( > . Besides, S o is a surjective additive

rank-1 preserver. Making use of Case 1, there exist P € H!(F) U T, (F) and
Q € H2(F)UT,(F) such that Sop(A) = PA’Q for all A € H,(F). Hence for each
A € H,(F), we get that ¢(A) = (p(A)~)" = (PAQ)” = Q~(A%)~*P~ where
Q~ € HY(F)UT,(F) and P~ € H2(F) U T,(F).

For the sufficient part, let A € H,(F) such that p(A) = 1. By the assump-

tion, the property of nonsingular matrices and the property of ~, we obtain that

p(p(A)) = p(A?). It remains to show that p(A?) = 1, or equivalently to show

that every two rows of A’ are linearly dependent. Let A = : and

— R —
A — : where r; = <a¢1 Gm) and R, = (9(%) H(am)>
— R, —
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for all 7. Fix i # j and let o, B € F be such that aR; + SR; = 0. Since 0 is onto,
there exist a,b € F such that 6(a) = a and 6(b) = 8. Then, for each 1 < k < n,
O(aa; + baj,) = 0(a)f(ax) + 6(b)0(a;r) = 0 and hence aa;; + baj;, = 0 because
6 is 1-1. Thus ar; + br; = 0. Since p(A) = 1, it forces either a # 0 or b # 0.
Accordingly, o # 0 or 5 # 0 on account of the injectivity of § and thus R; and R;

are linearly dependent. O

Corollary 3.8. Let ¢ be a surjective additive map on H,(F). Then ¢ is a rank
preserver if and only if there exist a field automorphism 0 on F and nonsingular
upper Hessenberg matrices P and Q such that p(A) = PA’Q for all A € H,(F)
or p(A) = P(A%)~Q for all A = (a;;) € H,(F) where A’ = (6(aj;)).

Proof. For the necessary part, by using Theorem 3.7 and the fact that if ¢ is
a rank preserver, then ¢ is a rank-1 preserver. For the converse, it is done on

account, of Theorem 1.5 and the property of 6. O]



CHAPTER IV
CONCLUSION

This dissertation is motivated by various research, especially, the research of
Minc [19] and Chooi and Lim [8]. Notice that these results are quite similar
although they are studied in different spaces. Besides, it seems that the ~ of ma-
trices acts instead of the transpose of matrices in the case of triangular matrices.

In this work, the space of Hessenberg matrices is chosen among various types
of matrices. For the first reason, Hessenberg matrices are full matrices and trian-
gular matrices also are Hessenberg. Another reason is that Hessenberg matrices
are applied in many areas such as applied mathematics and quantum theory of
Physics. From whole reasons, it make us investigate linear rank-1 preservers on
Hessenberg matrices. Theorem 2.29 provides the standard form in the sense of
Hessenberg matrices. Like the spaces of upper triangular matrices, the ~ is needed
for Hessenberg matrices since the ~ of upper Hessenberg matrices are still upper
Hessenberg matrices but the transpose of upper Hessenberg matrices become lower
Hessenberg matrices.

This result leads to study a linear preserving determinants and a linear preserv-
ing eigenvalues. Observingly, the pattern of linear maps preserving determinants
on H,(F) and on M, (F) are more similar than that of linear maps preserving
determinants on T,,(IF). Unsurprisingly, the determinant of each upper triangular
matrices is the product of all elements in its main diagonal, hence the pattern
of linear maps preserving determinants on 7, (F) relates to only entries on its
main diagonal. However, a Hessenberg matrix has one subdiagonal added, thus
its determinant should not be considered in the same way as the determinant of
a triangular matrix.

Furthermore, Theorem 2.29 can be generalized by replacing linear maps with

surjective additive maps as Theorem 3.7.
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Let T be a surjective linear map on H,(F) preserving rank one. Then both
of Theorems 2.29 and 3.7 can be applied on this T'. In another word, there are

nonsingular upper Hessenberg matrices P and () such that

T(A) = PAQ for all A€ H,(F)
or T(A)=PA~Q forall A€ H,(F)

and there are nonsingular upper Hessenberg matrices X and Y and an injective

additive map 6 on F such that

T(A) = XA%Y for all A € H,(F)
or T(A)=X(A)Y for all A € H,(F)

where A? = (0(a;;)) for A = (a;;). To be certain that these results are the same,
it is enough to show that A’ = A for any A in H,(F). Thus, it is adequate to
prove that 6 is the identity map.

Let a € F. From the proof of Theorem 3.7, T'(a;;E;;) = a(a;;)E;; for all i,
with ¢ < j + 1 when A = (a;;). In particular, T'(aE11) = a(a)Ey; for A = aFy;.
However, T'(aEy;) = aT(E1;) because T is a linear map. Since a(1) = 1, we get
that

a(a)Ey =T (aFy) = aT(Ey) = aa(l)E = aFyy.

Hence « is the identity map.

In my opinion, this work can be generalized by neglecting the surjectivity
condition and may still have the same result since there is a research of Zhang
and Sze [25] concerning additive rank-1 preservers between spaces of rectangu-
lar matrices. Furthermore, the result of linear maps preserving rank-k matrices
are convinced to be similar to Theorem 2.29 provided that we can show that
linear rank-k preservers are linear rank-1 preservers because this property holds
on M, (F). Moreover, the results of additive maps preserving rank-k, additive
maps preserving determinants and additive maps preserving eigenvalues should

have the same type.
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