Chapter III

Formulation of 3 problems

In this chapter, we are describing how to formulate our problems from the conjectures. Moreover; we also show that the problems are equivalent to minimizing convex functions.

1. An equilateral Triangle

We suppose that there is a roit arc that can not be covered by an equilateral triangle in any orientations. Thus. He arm γ minst not be covered by the triangle in the standing position and its reflection ilystrated by figure 3.1.

Figure 3.1 : An equilateral triangle $A_{1} B_{1} C_{1}$ in standing position and is its reflection $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$

According to the Figure 3.1, $A_{1} B_{1} C_{1}$ is an equilateral triangle in standing position and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ is its 180° rotation. Since γ cannot be covered by the triangle. We can translate γ so that it touches the conner of $\mathrm{C}_{1} \hat{\mathrm{~A}}_{1} \mathrm{~B}_{1}$ and crosses $\overline{\mathrm{B}_{1} C_{1}}$. Moreover, it touches the conner of $\mathrm{C}_{2} \hat{\mathrm{~A}}_{2} \mathrm{~B}_{2}$ and crosses $\overline{\mathrm{C}_{2} \mathrm{~B}_{2}}$. We define $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, $\mathrm{P}_{4}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$, and $\mathrm{P}_{5}\left(\mathrm{x}_{5}, \mathrm{y}_{5}\right)$ as points on the sides $\overline{\mathrm{A}_{1} C_{1}}, \overline{\mathrm{~A}_{1} \mathrm{~B}_{1}}, \overline{\mathrm{~A}_{2} C_{2}}$, and $\overline{\mathrm{A}_{2} \mathrm{~B}_{2}}$ of the triangle that touch γ, respectively. Moreover, $P_{3}\left(x_{3}, y_{3}\right)$ and $P_{6}\left(x_{6}, y_{6}\right)$ are defined as
points which are not on the triangles. Thus they are not on the sides $\overline{\mathrm{B}_{1} \mathrm{C}_{1}}$ and $\overline{\mathrm{C}_{2} \mathrm{~B}_{2}}$, respectively.

In particular $\quad y_{1}=0$,
$y_{2}=\tan \left(\frac{\pi}{3}\right) x_{2}$,
$y_{3} \geq-\tan \left(\frac{\pi}{3}\right)\left(x_{3}-1\right)$,
$y_{4}=y_{\mathrm{A}_{2}}$,
$y_{5}=\tan \frac{\pi}{3}\left(x_{5}-x_{A_{2}}\right)+y_{A_{2}}$, and
$y_{6} \geq-\tan \left(\frac{\pi}{3}\right)\left(x_{6}-x_{A_{2}}+1\right)+y_{A_{2}}$

Example 3.1 Suppose Π be the polygonal arc $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$
Let $L=P_{1} P_{2}+P_{2} P_{3}+P_{4} P_{4}+P_{4} P_{5}+P_{5} P_{6}$ be the length of Π.
We want to minimize the length function.

According to the Corollary 1 , the length L is convex with linear constraints. Hence, this problem is a convex programming.

Note : This problem is formed by the idea that if the poly-segment can not be covered, it must pass through these six points. Moreover; the poly-segment satisfied example 3.1 is
considered to pass through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right),\left(x_{5}, y_{5}\right)$ and $\left(x_{6}, y_{6}\right)$ respectively. A lot of more similar problems will be formed by changing the order of passing points.

2. A right-angled isosceles triangle

We suppose that there is a unit arc γ that can not be covered by an isosceles right-angled triangle in any orientations. Thus, the arc γ must not be covered by the triangle in the standing position and its reflection illustrated by Figure 3.2

Figure 3.2 : An isosceles right-angled triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ in standing position and its reflection $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$

จุฬาลงกรณ์มหาวิทยาลัย

According to the Figure $13,2, A, B, C$, is lan isosceles right-angled triangle in standing position and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ is its 180° rotation. Since γ cannot be covered by the triangle. We can translate γ so that it touches the conner of $\mathrm{C}_{1} \hat{\mathrm{~A}}_{1} \mathrm{~B}_{1}$ and crosses $\overline{\mathrm{B}_{1} C_{1}}$.Moreover, it touches the conner of $\mathrm{C}_{2} \hat{\mathrm{~A}}_{2} \mathrm{~B}_{2}$ and crosses $\overline{\mathrm{C}_{2} \mathrm{~B}_{2}}$. We define $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{P}_{4}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$, and $\mathrm{P}_{5}\left(\mathrm{x}_{5}, \mathrm{y}_{5}\right)$ as points on the sides $\overline{\mathrm{A}_{1} C_{1}}$, $\overline{\mathrm{A}_{1} \mathrm{~B}_{1}}, \overline{\mathrm{~A}_{2} \mathrm{C}_{2}}$, and $\overline{\mathrm{A}_{2} \mathrm{~B}_{2}}$ of the triangle that touch γ, respectively. Moreover, $\mathrm{P}_{3}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ and $\mathrm{P}_{6}\left(\mathrm{x}_{6}, \mathrm{y}_{6}\right)$ are defined as points which are not on the triangles. Thus they are not on the sides $\overline{\mathrm{B}_{1} \mathrm{C}_{1}}$ and $\overline{\mathrm{C}_{2} \mathrm{~B}_{2}}$, respectively.

In particular $y_{1}=0$,

$$
\begin{aligned}
& y_{2}=\tan \left(\frac{\pi}{4}\right) x_{2}, \\
& y_{3} \geq-\tan \left(\frac{\pi}{4}\right)\left(x_{3}-1\right) . \\
& y_{4}=y_{A_{2}}, \\
& y_{5}=\tan \frac{\pi}{4}\left(x_{5}-x_{A_{2}}\right)+y_{A_{2}}, \text { and } \\
& y_{6} \geq-\tan \left(\frac{\pi}{4}\right)\left(x_{6}-x_{A_{2}}+1\right)+y_{A_{2}} .
\end{aligned}
$$

Example 3.2 Suppose Π be the polygonalyarc $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$
Let $L=P_{1} P_{2}+P_{2} P_{1}+P_{2} P_{4}+P_{4} P_{2} P_{2} P_{6}$ be the length of Π.
We want to minimize the leingth function

$$
\begin{aligned}
& L= \sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)}+\sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}+\sqrt{\left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}} \\
&+\sqrt{\left.\left(x_{4}-x_{5}\right)^{2}+\left(y_{4}\right) y_{5}\right)^{2}} \sqrt{\left(x_{5}-x_{2}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}} \\
& \text { subject to the constrainss) } \\
& y_{1}=0 \\
& y_{2}= \tan \left(\frac{\pi}{4}\right. \text {. } \\
& y_{3} \geq-\tan \left(\frac{\pi}{4}\right)\left(x_{3}-1\right), \\
& y_{4}=y_{\mathrm{A}_{2}} \text { ค่ULALONGKORN UNIVERSITY } \\
& y_{5}= \tan \frac{\pi}{4}\left(x_{5}-x_{A_{2}}\right)+y_{A_{2}}, \text { and } \\
& y_{6} \geq-\tan \left(\frac{\pi}{4}\right)\left(x_{6}-x_{A_{2}}+1\right)+y_{A_{2}} .
\end{aligned}
$$

Note : The poly-segment satisfied the example 3.2 is considered to pass through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right),\left(x_{5}, y_{5}\right)$ and $\left(x_{6}, y_{6}\right)$ respectively. A lot of more similar problems will be formed by changing the order of passing points

3. A $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

We suppose that there is a unit arc γ that can not be covered by a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle in any orientations. Thus, the arc γ must not be covered by the triangle in the standing position and its reflection illustrated by Figure 3.3.

Figure 3.3 : $A 30^{\circ}-60^{\circ}-90^{\circ}$ triangia A, B, C, in standing position
and its retlection $A_{2} \dot{B}_{2} \mathrm{C}_{2}$
According to the Figure $3,3, \mathrm{~A}, \mathrm{~B}$, $30-60^{\circ}-90^{\circ}$ triangle in standing position and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ is its 180° rotation. Siace translate γ so that it touches the conner of $\mathrm{C}_{1} \hat{A}_{1} \mathrm{~B}_{1}$ band crosses $\overline{\mathrm{B}_{1} C_{1}}$. Moreover, it touches the conner of $\mathrm{C}_{2} \hat{\mathrm{~A}}_{2} \mathrm{~B}_{2}$ and crosses $\overline{\mathrm{C}}_{2} \mathrm{~B}_{2}$. We define $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, $\mathrm{P}_{4}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$, and $\mathrm{P}_{5}\left(\mathrm{x}_{5}, \mathrm{y}_{5}\right)$ as points on the sides $\mathrm{A}_{1} \mathrm{C}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1}, \overline{\mathrm{~A}_{2} C_{2}}$, and $\overline{\mathrm{A}_{2} \mathrm{~B}_{2}}$ of the triangle that touch γ, fespectivelyl Moreover, $\mathrm{P}_{3}\left(\mathrm{x}_{3}, \mathrm{~F}_{3}\right)$) and $\mathrm{P}_{6}\left(\mathrm{x}_{6}, \mathrm{y}_{6}\right)$ are defined as points which are not on the triangles. Thus they are not on the sides $\overline{\mathrm{B}_{1} \mathrm{C}_{1}}$ and $\overline{\mathrm{C}_{2} \mathrm{~B}_{2}}$, respectively.

In particular $\quad y_{1}=0$,

$$
\begin{aligned}
& y_{2}=\tan \left(\frac{\pi}{6}\right) x_{2}, \\
& y_{3} \geq-\tan \left(\frac{\pi}{3}\right)\left(x_{3}-1\right), \\
& y_{4}=y_{A_{2}}, \\
& y_{5}=\tan \frac{\pi}{6}\left(x_{5}-x_{A_{2}}\right)+y_{A_{2}}, \text { and } \\
& y_{6} \geq-\tan \left(\frac{\pi}{3}\right)\left(x_{6}-x_{A_{2}}+1\right)+y_{A_{2}} .
\end{aligned}
$$

Example 3.3 Suppose Π be the polygonal arc $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$
Let $L=P_{1} P_{2}+P_{2} P_{3}+P_{3} P_{4}+P_{4} P_{5}+P_{5} P_{6}$ be the length of Π.
We want to minimize the length function

$$
\begin{aligned}
L= & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}+\sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}+\sqrt{\left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}} \\
& +\sqrt{\left(x_{4}-x_{5}\right)^{2}+\left(y_{4}-y_{5}\right)^{2}} \sqrt{\left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}}
\end{aligned}
$$

subject to the constrains
$y_{1}=0$,
$y_{2}=\tan \left(\frac{\pi}{6}\right) x_{2}$,
$y_{3} \geq-\tan \left(\frac{\pi}{3}\right)\left(x_{3}-\mu\right)$
$y_{4}=y_{\mathrm{A}_{2}}$.

Note : The poly-segment satistie the examgle 3.3 is considered to pass through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{0} y_{4}\right),\left(x_{5}, y, y\right.$ and $\left(x_{6}, y_{6}\right)$ respectively. A lot of more similar problems will be formed by ensanging the order of pasing points

