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CHAPTER |
INTRODUCTION

In the present, plants are being used to treat many health concerns and
conditions, including allergies, arthritis, migraines, faticue, skin infections, wounds,
burns, gastrointestinal issues and even cancer proving that is true that food is medicine.
These herbs are less expensive and they are a safer means of treatment than
conventional medications, which is why so many people are choosing to go back to

this traditional idea of medicine.

Plants are rich in a variety of compounds. Many are secondary metabolites and
include aromatic substances, most of which are phenols or their oxygen-substituted
derivatives such as tannins [ 1, 2]. Many of these compounds have antioxidant
properties. About 200 years ago, the first pharmacologically active pure compound,
morphine, was produced from opium extracted from seeds pods of the poppy Papaver
somniferum. This discovery showed that drugs from plants can be purified and
administered in precise dosages regardless of the source or age of the material [1]. This
approach was enhanced by the discovery of penicillin [3]. With this continued trend,
products from plants and natural sources (such as fungi and marine microorganisms)
or analogs inspired by them have contributed greatly to the commercial drug
preparations today. Examples include antibiotics (e.g., penicillin, erythromycin); the
cardiac stimulant digoxin from foxglove (Digitalis purpurea); salicylic acid, a precursor
of aspirin, derived from willow bark (Salix spp.); reserpine, an antipsychotic and
antihypertensive drug from Rauwolfia spp.; and antimalarials such as quinine from
Cinchona bark and lipid- lowering agents (e.g., lovastatin) from a fungus [3, 4]. Also,
more than 60% of cancer therapeutics on the market or in testing are based on natural
products. Of 177 drugs approved worldwide for treatment of cancer, more than 70%
are based on natural products or mimetics, many of which are improved with
combinatorial chemistry. Cancer therapeutics from plants include paclitaxel, isolated
from the Pacific yew tree; camptothecin, derived from the Chinese “happy tree”

Camptotheca acuminata and used to prepare irinotecan and topotecan; and


https://draxe.com/food-is-medicine/

combretastatin, derived from the South African bush willow [5]. It is also estimated
that about 25% of the drugs prescribed worldwide are derived from plants, and 121
such active compounds are in use [6]. Between 2005 and 2007, 13 drugs derived from
natural products were approved in the United States. More than 100 natural product-
based drugs are in clinical studies [3], and of the total 252 drugs in the World Health

Organization’s (WHO) essential medicine list, 11% are exclusively of plant origin [6].

o~ :
O~ I

paclitaxel camptothecin quinine

Figure 1.1 Natural products derived from plants

1.1 Xanthones: biosynthesis pathway and biological activities

Xanthones (IUPAC name 9H-xanthen-9-one) are a kind of phenolic acid with a
three-ring skeleton, widely distributed in herbal medicines. These constituents display
a vast range of bioactitivies, including anticancer, anti- oxidative, antimicrobial,
antidiabetic, antiviral, and anti- inflammatory effects. Over the past few decades,
xanthones have become an important resource for drug development. For example,
gambogic acid, a prenyl xanthone isolated from Garcinia hanburyi (Clusiaceae). A phase
Il clinical trial using gambogic acid in combination with anticancer drugs was carried out
in China. Besides gambogic acid mentioned above, mangosteen, another of the most
well-known xanthones, has been used as a dietary supplement to improve immune
function, decrease serum C-reactive protein levels and increase the ratio of T helper
cells. The pharmacokinetics and toxicity (PK/tox) properties of xanthones, as part of
the most crucial preclinical studies, have proved that xanthones are promising drug

candidates owing to their high efficacy and low toxicity.



Xanthones are mainly isolated from herbal medicines. Between 1988 and 2016,
168 species of herbal medicinal plant belonging to 58 genera, and 24 families were
found to be enriched in xanthones. Among them, the Calophyllum, Cratoxylum
Cudrania, Garcinia, Gentiana, Hypericum and Swertia genera are the plant resource
with the most development prospect. Xanthones display multiple bioactivities, which
may be useful for new drug development for cancer, inflammation, bacterial, fungal

and viral infection, diabetes, and so on [7].

o]
SCoA
0 OH
benzoyl-CoA o
o +.07 DK O O
HO OH
HOMSCOA <
malonyl-CoA 2,4 6-trihydroxybenzophenone
o B3'H

HO
SCoA

o] OH
HO
3-hydroxybenzoyl-CoA CeBPS
O + 0
HO OH HO OH
23"

4 B-tetrahydroxybenzophenone

3X HO SCoA
malonyl-CoA
1 3,5-TXS 1,3,7-TXS
0 OH 0 OH
HO
0 (o] OH
H 1,3,5-trihydroxyxanthone 1,3,7-trihydroxyxanthone
XGH ]XGH

(o] OH
HO
Abbreviations: BPS, benzophenone O O O e
synthase; B3'H, benzophenone 3- HO OH HO 0 OH

hydroxylase; TXS, trihydroxyxanthone
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Figure 1.2 Overview of major xanthones biosynthesis pathway in plants



The genus Calophyllum, belonging to the family Guttiferae which comprises
about 200 species that are widely distributed in Asia, America and Africa [8], [9]. This
genus has been shown to possess various pharmacological activities including
antiarthritic [10], antileishmanial [11], vasorelaxation [12], antiinflammatory, antioxidant
[13], antibacteria [14], cytotoxicity [15], antidiabetic [16], antimicrobial [17], antiseptics,
astringents, diuretics, purgatives, anti-HIV and antifungal [18]. The genus Calophyllum
has an abundant source of secondary metabolites, especially xanthones, coumarins,
flavonoids, acylphloroglucinols, terpenoids and chromanones [12], [19], [20]. C
calaba, commonly known as “Thunghoon” in Thai, is a tree found in the northeastern
and southern parts of Thailand. Xanthones [21], [22], terpenoids [23], flavonoids [24],
and fatty acids [25] have been reported from this plant.

1.2 Botanical aspect and distribution of Calophyllum calaba

Calophyllum calaba is a slow-growing, medium-sized evergreen tree with a
spreading crown, distributed widely in the lowland tropical rain forest. It usually grows
up to 10-25 meters tall, occasionally to 35 meters. All parts of the plant contain a
sticky yellowish latex [26-28]. Its leaves morphologies are oval or oval-shaped, 3-6 cm
wide and 4-8 cm long. The flowers are white, fragrant, 0.5 cm wide and occurs in
racemose or paniculate inflorescences consisting of 5 to 15 flowers. The fruits are a
round, green drupe reaching 2.5 cm (1 in) in diameter and having one-seeded drupes.
When ripe, the fruit is wrinkled and its color varies from yellow to brownish-red, usually

ripen the following December to April.



stem

flower fruit

Figure 1.3 The whole plant, stem, flower and fruit of Calophyllum calaba

Family : Guttiferae

Genus : Calophyllum
Species : Calophyllum calaba
Common name : Thunghoon

Local name : Thunghoon, Pa-Ong



1.3 Chemical constituents from Calophyllum calaba and their biological

activities

In 1981, Kumar et al. [22] successfully isolated two new xanthones;

calocalabaxanthone and calabaxanthone from the bark of C. calaba.

|
O OH

OO
O OH

calocalabaxanthone calabaxanthone

Figure 1.4 Chemical constituents from the bark of C. calaba

Gunatilaga et al. [24] in 1983 succeeded in isolating nine new acid compounds,
isochapelieric acid, chapelieric acid, friwdelin, friedelan-3B-ol, canophyllal,
canophyllol, friedelan-3p,28-diol, canophyllic acid and amentoilavone from leaves of

C. calaba.
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chapelieric acid isochapelieric acid

friedelin R1=-0, Rz2= Me
friedelan-3B-ol R1=a-H, B-OH,
R2-Me
canophyllal R1=0, R2=CHO
canophyllol R1=-0, R2=CH20H
friedelan-33,28-diol R1=a-H, B-OH,
R2-CH20H
canophyllicacid  Ri-=a-H, B-OH,
R2=CO2H

amentoilavone

Figure 1.5 Chemical constituents from the leaves of C. Calaba

From the root barks of C. calaba., C. thwaitesii and C. bractcurum, Dharmaratne
et al. [21] reported two new xanthones; calothwaitesixanthone and thwaitesixanthone,

together with six known xanthones.

0 OH

calothwaitesixanthone thwaitesixanthone

Figure 1.6 Chemical constituents from the root barks of C. calaba., C. thwaitesii

and C. bractcurum



1.4 Cytotoxic activity against human cancer cell lines

Cancer is one of dangerous diseases caused by uncontrolled growth of the
cells. The proliferation of cancer cells may invade the other tissues and organs, and
disrupt the metabolic pathways of normal cells. The discovery of an anticancer agent
from natural products has been developed initially through a preliminary screening of
drug candidates. The MTT (3-(4,5-dimethylthiazol- 2- yl) - 2,5- diphenyltetrazolium
bromide) assay is one of initial methods to screen the cytotoxicity of a substance
indicated by viability of the cells. The number of viable cells are determined through
the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reagent
by mitochondrial dehydrogenase enzyme inside living cells forming a formazan dye
(Figure 1.6) which is measured then using colorimetric method. The result of cytotoxic
activity can be used for further investigation through in vivo test using an animal model

to assess the metabolism properties of a drug candidate in a living organism [29].

\(LN
mitochondrial /
S >
SR reductase HN—N
IO T O
N=N N=N

3-(4,5-dimethylthiazol-2-yl)- (2E,42)(4,5-dimethylthiazol-2-y)-
2,5-diphenyltetrazolium bromide 3,5-diphenylformazan
(MTT) (formazan)
yellow color purple color

Figure 1.7 MTT reduction in live cells by mitochondrial reductase resulting a

formation of insoluble formazan

The literature review above showed no report on chemical constituent and
biological activity from the roots of C. calaba. Therefore, those provide an insight to

further investigation the bioactive compounds from the roots of this plant.



1.5

The objectives of this research

The main objectives in this investigation are as follows:

1. To isolate and purify the compounds from the roots of C. calaba

2. To elucidate structurally the isolated compounds by means of
spectroscopic analysis, including UV, IR, 1D and 2D NMR, and HRMS.

3. To evaluate the cytotoxic activity of the isolated compounds against

human cancer cell lines.



CHAPTER |l

EXPERIMENTAL

Figure 2.1 The roots of Calophyllum calaba

2.1 Plant material

The roots of C. calaba were collected from Buachet district, Surin province,
Thailand, in April 2016. The plant material was identified by Dr. Suttira Khumkratok, a
botanist at the Walai Rukhavej Botanical Research Institute, Mahasarakham University,

and a specimen retained as a reference (Khumkratok no. 1-13).

2.2 General experiment procedures

1D and 2D NMR spectra were recorded on Bruker 400 AVANCE spectrometer.
HRESIMS spectra were obtained using a Bruker MICROTOF model mass spectrometer.
IR data was obtained using Nicolet 6700 FT-IR spectrometer using KBr discs. Optical
rotation was detected by Jasco P-1010 Polarimeter. Melting Points were determined
on a Fisher-Johns Melting Point apparatus. Column chromatography was performed by

silica gel 60 (0.063-0.200 mm) and Sephadex LH-20 (25-100 pm, GE Healthcare).
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2.3 Extraction and isolation

The air-dried roots of C. calaba (7.0 kg) were extracted with CH,Cl, over a
period of 7 days at room temperature, respectively (2 x 25 L). Removal of the solvent
under reduced pressure provided CH,Cl, crude extract (149.45 ¢) that was further
separated by column chromatography over silica gel (Merck Art 7734) (40x10 cm, 2.5
kg) and eluted with a gradient of Hexane-EtOAc (100% Hexane, 90%, 80%, 70%, 60%,
50% and 40% Hexane-EtOAc each 5 L) to give five fractions (A-E). Fraction A (15.0 g)
was purified by silica gel column (45x5 cm, 0.5 kg) eluted with 95% hexane-EtOAc (5
L) to provide two subfractions (A1-A2). Subfraction A1 (2.0 ¢) was applied to a Sephadex
LH-20 column (50x5 cm, 150 ¢) with 50% CH,Cl,-MeOH (2 L) to afford compound 32
(5.1 mg). Subfraction A2 (5.0 g) was separated by a Sephadex LH-20 column (50x5 cm,
150 ¢) eluted with 50% CH,Cl,-MeOH (2 L) to give compounds 7 (8.2 mg), 10 (7.9 mg)
and 27 (6.3 mg). Fraction B (25.0 ¢) was purified over silica gel column silica gel CC
(45x5 cm, 0.5 kg) eluted with 95% hexane-EtOAc (5 L) to yield four subfractions (B1-
B4). Compounds 14 (2.8 mg) and 21 (2.1 mg) were separated from subfraction B1 (25.0
mg) by radial chromatography (chromatotron) using 80% hexane-EtOAc (200 mL).
Subfraction B2 (2.5 ¢) was purified by Sephadex LH-20 column (50x5 cm, 150 g) eluted
with 80% CH,Cl,-MeOH (2 L) to obtain compounds 3 (2.9 mg), 13 (8.2 mg) and 31 (1.9
mg). Subfraction B3 (4.0 ¢) was subjected to Sephadex LH-20 column (50x5 cm, 150 g)
using 80% CH,Cl,-MeOH (2 L) and further purified by chromatotron eluted with 85%
hexane-EtOAc (200 mL) to afford compounds 11 (2.2 mg), 12 (3.0 mg), 18 (1.7 mg), 28
(2.6 mg) and 29 (2.7 mg). Compound 8 (2.2 mg) was obtained from subfraction B4 (1.5
g) by Sephadex LH-20 column (50x5 cm, 150 ¢) with 50% CH,Cl,-MeOH (2 L). Fraction
C (5.0 g) was separated by silica gel column (40x4 cm, 0.4 kg) eluted with 80% CH,Cl,-
MeOH (5 L) and further purified by chromatotron with 70% hexane-EtOAc (200 mL) to
obtain compounds 9 (4.6 mg), 17 (3.1 mg), 19 (4.8 mg) and 20 (3.7 mg). Compound 23
(4.0 mg) was purified from fraction D (1.0 g) by Sephadex LH-20 column (50x5 cm, 150
g) using 50% CH,Cl,-MeOH (2 L). Fraction E (35.0 g) was isolated by silica gel column
(45x5 cm, 0.5 kg) eluted with 70% hexane-EtOAc (5L) to afford four subfractions (E1-

Ed). Compounds 1 (7.1 mg) and 2 (8.1 mg) were purified by chromatotron with 80%
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hexane-EtOAc (200 mL) from subfraction E1 (1.0 g). Subfraction E2 (2.5 g) was applied
to a Sephadex LH-20 column (50x5 cm, 150 g) using 50% CH,Cl,-MeOH (2 L) to give
compounds 4 (7.0 mg) and 6 (2.3 mg). Subfraction E3 (4.5 g) was purified by silica gel
column (45x5 cm, 0.5 kg) using 80% hexane-EtOAc (5L) and further separated by
chromatotron with 100% CH,Cl, (200 mL) to provide compounds 5 (2.5 mg), 15 (2.0
mg), 16 (5.2 mg), 22 (6.5 mg) and 30 (6.9 mg). Finally, subfraction E4 (3.5 g) was
subjected to silica gel column (45x5 cm, 0.5 kg) eluted with 100% CH,Cl, and further
purified by chromatotron with 60% hexane-EtOAc (200 mL) to yield compounds 24
(1.7 mg), 25 (2.4 mg) and 26 (1.7 mg).

The isolated compounds were identified by means of various spectroscopic
methods including MS, 1D and 2D NMR techniques together with comparison with the
previous literature data.

The isolation and purification of all isolated compounds from the roots of

C. calaba were briefly summarized in Schemes 2.1, 2.2 and 2.3.
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2.4 Cytotoxic activity against human cancer cell lines procedure

All isolated compounds (1-32) were subjected to cytotoxic evaluation against
KB, HelLa S-3, HT29, MCF-7 and HepG2 cell lines employing the colorimetric method
[30], [31]. Doxorubicin was used as the reference substance which exhibits activity
against five cancer cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (Sigma Chemical Co., USA) was dissolved in saline to make a 5 mg/mL stock
solution. Cancer cells (3x103 cells) suspended in 100 pg/wells of MEM medium
containing 10% fetal calf serum (FCS, Gibco BRL, Life Technologies, NY, USA) were
seeded onto a 96-well culture plate (Costar, Corning Incorporated, NY 14831, USA).
After 72 h pre-incubation at 37°C in a humidified atmosphere of 5% CO,/95% air to
allow cellular attachment, various concentrations of test solution (10 uL/well) were
added and these were then incubated for 48 h under the above conditions. At the
end of the incubation, 10 pL of tetrazolium reagent was added into each well followed
by further incubation at 37°C for 4 h. The supernatant was decanted, and DMSO (100
uL/well) was added to allow formosan solubilization. The optical density (OD) of each
well was detected using a Microplate reader at 550 nm and for correction at 595 nm.
Each determination represented the average mean of six replicates. The 50% inhibition

concentration (ICsy value) was determined by curve fitting.



CHAPTER Il
RESULTS AND DISCUSSION

3.1 Properties and structural elucidation of isolated compounds

The roots of C. calaba were grounded and extracted with CH,Cl, at room
temperature for six days. The crude CH,Cl, extract was further subjected by various
chromatographic techniques using silica gel and Sephadex LH-20 as stationary phases
to afford three new xanthones, calaxanthones A-C (1-3) together with twenty nine
known xanthones (4-32), including scriblitifolic acid (4), teysmannic acid (5),
calophylixanthone A (6), 9-xanthone (7), 1-hydroxyxanthone (8), 4-hydroxyxanthone
(9), 4- methoxyxanthone ( 10) , 1,5- dihydroxyxanthone ( 11), 1- hydroxy- 5-
methoxyxanthone (12), 1,6- dihydroxyxanthone (13), 1- hydroxy- 6- methoxy- 9H-
xanthen-9-one (14), 3-hydroxy- 5-methoxy- 9H-xanthen-9-one (15), 5-hydroxy- 3-
methoxy-9H-xanthen-9-one (16), mesuaxanthone B (17), buchanoxanthone (18), 1,5-
dihydroxy- 6- methoxyxanthone (19), 3,4- dimethoxyxanthone (20), 1-Hydroxy- 5,6-
dimethoxyxanthone (21), 6-hydroxy- 3,4-dimethoxy- 9H-Xanthen-9-one (22), 1,5-
dihydroxy-3,6-dimethoxy-xanthen-9-one (23), 5-hydroxy-1,3,6-trimethoxy-9H-xanthen-
9-one (24), 1-hydroxy-3,7-dimethoxyxanthone (25), 1,3,5,7-tetramethoxyxanthone (26),
1- hydroxy- 3,5- dimethoxyxanthone (27), 1,5- dihydroxy- 8- methoxyxanthone (28),
cratoxyarborenone F (29), 3-hydroxy-2-methoxyxanthone (30), B-mangostin (31) and
toxyloxanthone A (32). The structures of all isolated compounds were elucidated using
spectroscopic methods (especially 1D and 2D NMR) and compared with their 'H and

3C NMR spectroscopic data of literature.
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3.1.1 Calaxanthone A1)

Figure 3.1 The chemical structure of compound 1

Calaxanthone A (1) was obtained as a white powder and optically active
[a]4+5.26 (¢ 0.3, CHCLy). Its molecular formula was determined as CyH;004 by
HRESIMS measurement through the molecular ion peak at m/z 357.1342 [M+ H] *
(calcd. for CyH,00gH, 357.1338). The UV spectrum displayed absorption bands at A,y
314, 258 and 242 nm, which is typical of the xanthone chromophore [32]. The IR
spectrum showed O-H and C=0 stretching bands at 3215 and 1745 cm™’, respectively.
The ' H NMR spectrum displayed a methyl proton at &, 1.24 (3H, d, J = 7.14 Hz, H-5),
two methoxy protons at 8, 3.70 (3H, s, OCH5-4") and 4.04 (3H, s, OCHs-5), two methylene
protons at &y 1.76, 2.04 (2H, m, H-2) and 2.79 (2H, t, J = 8.03 Hz, H-1); six methine
protons at &y 2.54 (1H, dd, J = 6.92, 13.86 Hz, H-3), 6.81 (1H, d, J = 8.27 Hz, H-2), 7.00
(1H, d, J = 8.25 Hz, H-4), 7.20 (1H, d, J = 8.25 Hz, H-7), 7.60 (1H, t, J = 8.36 Hz, H-3), and
7.94 (1H, d, J = 8.23 Hz, H-8), and a hydrogen-bonded hydroxy proton at 6y 12.65 (1H,
s, OH-1). The >C NMR spectrum displayed 20 carbons, including three methyl carbons
at 8¢ 17.3 (C-5, 51.7 (OCH5-4"), and 61.8 (OCH5-5), two methylene carbons at 6. 28.2
(C-1) and 34.3 (C-2), six methine carbons at d: 39.3 (C-3"), 107.2 (C-4), 110.8 (C-2),
120.5 (C-8), 125.3 (C-7) and 136.8 (C-3), two carbonyl carbons at 6. 176.8 (C-4) and
182.3 (C-9), and seven quaternary carbons at 8¢ 108.9 (C-9a), 115.7 (C-8a), 142.8 (C-6),
146.3 (C-5), 150.0 (C-10a), 156.1 (C-4a) and 162.1 (C-1). The COSY spectrum showed
correlations between H-2 and H-3, H-3 and H-4 ring A, between H-7 and H-8 ring B,
and between H-1" and H-2), H-2'" and H-3, and H-3" and H-5" in methyl- 2-

methylbutanoate chain (Figure 3.2).
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Figure 3.2 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 1.

Based on the HMBC spectrum showed cross-peak between a hydroxy
proton at &y 12.65 and carbons at C-1, C-2, and C-9a, between a methoxy proton at
OCHs-5 and carbon at C-5, and between a methylene proton at H-1"and carbons at C-
5, C-6, C-7, C-2" and C-3'indicated that ring A was substituted at C-1 and ring B was
substituted at C-5 and C-6. The HMBC correlations (Figure 3.2) at H-2'to C-6, C-1', C-
3" C-4"and C-5', at H-3"to C-1"and C-4', at H-5"to C-2"and C-4', and at OCH;-4"to C-4'
showed the presence of methyl-2-methylbutanoate group located at C-6 ring B. The
'H and ">C NMR data (Table 3.1) of 1 were shown to be quite similar to those of
known xanthone, scriblitifolic acid (4) [33], the difference was found at C-4'in which
the carboxylic acid of 4 was replaced to methyl ester. From these data, the structure

of calaxanthone A was assigned as 1.
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Table 3.1 'H (400 MHz) and "*C (100 MHz) NMR spectroscopic data of compound 1 in

CDCls
position
8, U in Hz) 8¢ HMBC
1 162.1 -
2 6.81, d (8.27) 110.8 C-4, C-9a
3 7.60, t (8.36) 136.8 C-1, C-4a
q 7.00, d (8.25) 107.2 C-2, C-4a, C-9a
da 156.1 -
5 146.3 -
6 142.8 -
7 7.20, d (8.25) 125.3 C-, -8, -1’
8 7.94, d (8.23) 120.5 C-6, C-9, C-10a
8a 115.7 -
9 182.3 -
9a 108.9 -
10a 150.0 x
1 2.79, t (8.03) 28.2 C-5, C-6, C-7, C-2', C-3'
2 2.04 (m), 1.76 (m) 34.3 c-6, C-1', c-3', c-a', -5
3! 2.54,dd (6.92, 13.86)  39.3 ca' c5'
q 176.8 -
5 1.24, d (7.14) 17.3 c-1',c-2', a3’ ca
1-OH 12.65 C-1, C-2, C-9a
4'-0CH;  3.70, s 51.7 c-4
5-OCH;  4.04,s 61.8 C-5
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3.1.2 Calaxanthone B (2)

Figure 3.3 The chemical structure of compound 2

Calaxanthone B (2) was obtained as a yellow viscous oil and optically
active [0{]%1—8.06 (c 0.5, CHCLl,). Its molecular formula was determined as CyoHy005 by
HRESIMS measurement through the molecular ion peak at m/z 341.1391 [M+ H]*
(calcd. for CyH,005H, 341.1389). The UV spectrum displayed absorption bands at Ay
312, 261 and 247 nm, which is typical of the xanthone chromophore [32]. The IR
spectrum showed C= O stretching bands at 1746 cm™'. The 'H and C NMR
spectroscopic data (Table 3.2) of 2 were showed to be the same with those of 1,
except for unsubstituted at C-1 ring A. The 'H NMR showed the aromatic methine
proton at &y 8.33(1H, dd, J = 1.42, 7.94 Hz, H-1), which were correlated in the HSQC

spectrum with aromatic methine carbon at ¢ 126.8 (C-1).

OCH,

Figure 3.4 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 2.

Based on the HMBC correlations (Figure 3.4) between H-1 and C-3 (¢
134.8), C-4da (8¢ 155.9) and C-9 (&, 176.8) confirmed unsubsituted ring A. Thus, the

structure of calaxanthone B was assigned as 2.
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Table 3.2 'H (400 MHz) and "*C (100 MHz) NMR spectroscopic data of compound 2 in

CDCl,

2
position
8H (_/ in HZ) SC HMBC
1 8.33,dd (1.42,7.94) 1268 C-3, C-4a, C-9
2 7.38, 1 (7.52) 124.2  C-4, C-9a
3 7.73, 1 (7.78) 134.8 C-1, C-4a
i 7.56, d (8.39) 1182 C-2, C-4a, C-9a
43 155:9 -
5 1464 -
6 1418 -
7 7.18, d (8.26) 1251  C-5 C-8,C-1
8 8.00, d (8.24) 1213 (-6, C-9, C-10a
8a 1221 -
9 176.8 -
%a T8~ 4
10a 150,00
1! 2.79, t (7.98) 28.1  C-5,C-6,C7,C2, c3
2! 2.04 (m), 1.76 (m) 3a4  C6,C1', 3, cd, 5
3 2.53,dd (6.93,13.85) 2393  C-1' c2' cda' 5
g’ 1770 -
5! 1.23, d (7.08) 173 2, 3 cd
1-OH -
4'-OCH;  3.69, s 517 c4
5-OCH;  4.05, s 618  C5
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3.1.3 Calaxanthone C (3)

Figure 3.5 The chemical structure of compound 3

Calaxanthone C (3) was obtained as a white powder. Its molecular formula
was determined as CigH;405 by HRESIMS measurement through the molecular ion peak
at m/z 281.1171 [M+ HI" (calcd. for CigH1605H, 281.1178). The UV spectrum displayed
absorption bands at A, 311, 263 and 245 nm, which is typical of the xanthone
chromophore [32]. The IR spectrum showed O-H and C=O stretching bands at 3216
and 1668 cm™, respectively. The 'H and "*C NMR spectroscopic data (Table 3.3) were
showed to be quite similar to those of 2, except for the absence of 'H NMR signal of
the methoxy group at C-5 and methyl-2-methylbutanoate group at C-6 of 3.
Furthermore, the substituent at C-5 was assigned as a hydroxyl group according of its
3C NMR chemical shift (8¢ 142.2). The *H NMR spectrum displayed two methyl protons
at 04 1.78 (3H, s, H-4) and 1.78 (3H, s, H-5, a methylene proton at oy 3.52 (2H, d, J =

7.17 Hz, H-1), and a methine proton at &y 5.36 (1H, t, J = 7.32 Hz, H-2") for prenyl unit.

0]

L e
L)

Figure 3.6 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 3.



The HMBC spectrum showed cross peak (Figure 3.6) between H-1"to C-2
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1

(O¢ 121.1), C-7 (B¢ 124.9) and C-5 (8¢ 142.2), and between H-2' to C-5' (& 18.0), C-6

(O¢ 134.0) and C-3' (3¢ 134.5) indicated that the prenyl group was connected at C-6

ring B. From this data, the structure of calaxanthone C was therefore assigned as 3.

Table 3.3 'H (400 MHz) and "*C (100 MHz) NMR spectroscopic data of compound 3 in

CDCls
3
position
84 U in Hz) 8¢ HMBC
1 8.36,d (7.91) 1272  C-3,C-0a, C-9
2 7.41,t(7.49) 1244  C-4,C9a
3 7.74, t (8.05) 134.8  C-1,C-4, C-4a
q 753,d(8.43) 1177  C-2,C-4a, C-9a
da 1555 -
5 1422 -
6 134.0 N2
7 717,d(828) 1249  C-5C1',¢c2
8 780,d(8.29) 1172  C-6,C-9, C-10a
8a 1205 -
9 1769 -
9a 121.9 -
10a 1453 -
1 352,d(7.17) 290 C-5, C-6, C-7, C-2'
2! 5.36, t (7.32) 1211 5
3/ 1345 -
q' 1.78, s 25.9 c-2', 5’
5' 1.78, s 18.0 c-2', ca'
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3.1.4 Scriblitifolic acid (4)

OCH;  CHs

Figure 3.7 The chemical structure of compound 4

Scriblitifolic acid (4) (Figure 3.7): The structure of compound 4 was determined
and confirmed by comparison of the physical and spectroscopic data with a previous

report [34].

3.1.5 Teysmannic acid (5)

O

QS PP
(6] OH

OCH;  CHs

Figure 3.8 The chemical structure of compound 5
Scriblitifolic acid (5) (Figure 3.8): The structure of compound 5 was determined
and confirmed by comparison of the physical and spectroscopic data with a previous

report [35].

3.1.6 Calophylixanthone A (6)

)

l o l OH

OH CHj

Figure 3.9 The chemical structure of compound 6
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Calophylixanthone A (6) (Figure 3.9): The structure of compound 6 was

determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [36].

3.1.7 9-Xanthone (7)

Figure 3.10 The chemical structure of compound 7

9-Xanthone (7) (Figure 3.10): The structure of compound 7 was determined
and confirmed by comparison of the physical and spectroscopic data with a previous

report [37].

3.1.8 1-Hydroxyxanthone (8)

Figure 3.11 The chemical structure of compound 8
1- Hydroxyxanthone (8) (Figure 3.11): The structure of compound 8 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [38].
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3.1.9 4-Hydroxyxanthone (9)

o)

489

OH

Figure 3.12 The chemical structure of compound 9

4- Hydroxyxanthone (9) (Figure 3.12): The structure of compound 9 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [38].

3.1.10 4-Methoxyxanthone (10)

O

<8¢

OCH;

Figure 3.13 The chemical structure of compound 10
4- Methoxyxanthone (10) (Figure 3.13): The structure of compound 10 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [39].
3.1.11 1,5-Dihydroxyxanthone (11)

(I

OH

Figure 3.14 The chemical structure of compound 11
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1,5-Dihydroxyxanthone (11) (Figure 3.14): The structure of compound 11 was

determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [40].

3.1.12 1-Hydroxy-5-methoxyxanthone (12)

98¢

OCH;

Figure 3.15 The chemical structure of compound 12
1-Hydroxy-5-methoxyxanthone (12) (Figure 3.15): The structure of compound

12 was determined and confirmed by comparison of the physical and spectroscopic

data with a previous report [41].

3.1.13 1,6-Dihydroxyxanthone (13)

il ) Il OH

Figure 3.16 The chemical structure of compound 13

1,6-Dihydroxyxanthone (13) (Figure 3.16): The structure of compound 13 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [42].
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3.1.14 1-Hydroxy-6-methoxy-9H-xanthen-9-one (14)

OH O

OCH3

Figure 3.17 The chemical structure of compound 14

1-Hydroxy-6-methoxy-9H-xanthen-9-one (14) (Figure 3.17): The structure of
compound 14 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [43].

3.1.15 3-Hydroxy-5-methoxy-9H-xanthen-S-one (15)

O

OCH;

Figure 3.18 The chemical structure of compound 15
3-Hydroxy-5-methoxy-9H-xanthen-9-one (15) (Figure 3.18): The structure of
compound 15 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [43].

3.1.16 5-Hydroxy-3-methoxy-9H-xanthen-9-one (16)

0]

H,CO g 0 g

OH

Figure 3.19 The chemical structure of compound 16
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5-Hydroxy-3-methoxy-9H-xanthen-9-one (16) (Figure 3.19): The structure of
compound 16 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [43].

3.1.17 Mesuaxanthone B (17)

l @) l OH

OH

Figure 3.20 The chemical structure of compound 17

Mesuaxanthone B (17)  (Figure 3.20): The structure of compound 17 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [44].

3.1.18 Buchanoxanthone (18)

OH O

l O I OH

OCH,

Figure 3.21 The chemical structure of compound 18

Buchanoxanthone (18) (Figure 3.21): The structure of compound 18 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [45].



31

3.1.19 1,5-Dihydroxy-6-methoxyxanthone (19)

OH O

g 0 g OCH;

OH

Figure 3.22 The chemical structure of compound 19

1,5- Dihydroxy- 6- methoxyxanthone (19) (Figure 3.22): The structure of
compound 19 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [46].

3.1.20 3,4-Dimethoxyxanthone (20)

0]

H3CO g 0 g

OCH;

Figure 3.23 The chemical structure of compound 20
3,4-Dimethoxyxanthone (20) (Figure 3.23): The structure of compound 20 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [47].

3.1.21 1-Hydroxy-5,6-dimethoxyxanthone (21)

OH O

g o) g OCH;

OCH,

Figure 3.24 The chemical structure of compound 21
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1- Hydroxy- 5,6- dimethoxyxanthone (21) (Figure 3.24): The structure of
compound 21 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [45].

3.1.22 6-Hydroxy-3,4-dimethoxy- 9H-xanthen-9-one (22)

0
H5CO g 0 g OH

OCH;

Figure 3.25 The chemical structure of compound 22

6-Hydroxy-3,4-dimethoxy- 9H-xanthen-9-one (22) (Figure 3.25): The structure
of compound 22 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [48].

3.1.23 1,5-Dihydroxy-3,6-dimethoxy-xanthen-9-one (23)

0
H,CO g 0 g OCH,

OH

Figure 3.26 The chemical structure of compound 23

1,5-Dihydroxy-3,6-dimethoxy-xanthen-9-one (23) (Figure 3.26): The structure
of compound 23 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [49].
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3.1.24 5-Hydroxy-1,3,6-trimethoxy-9H-xanthen-9-one (24)

OCHL

H,CO g 0 g OCH;

OH

Figure 3.27 The chemical structure of compound 24

5-Hydroxy-1,3,6-trimethoxy-9H-xanthen-9-one (24) (Figure 3.27): The structure
of compound 24 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [50].

3.1.25 1-Hydroxy-3,7-dimethoxyxanthone (25)

OH O
H,CO 0

Figure 3.28 The chemical structure of compound 25
1 - Hydroxy- 3,7 - dimethoxyxanthone (25) (Figure 3.28): The structure of
compound 25 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [51].

3.1.26 1,3,5,7-Tetramethoxyxanthone (26)

OCHL

OCH,
H,CO g o) g

OCH;

Figure 3.29 The chemical structure of compound 26
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1,3,5,7-Tetramethoxyxanthone (26) (Figure 3.29): The structure of compound
26 was determined and confirmed by comparison of the physical and spectroscopic

data with a previous report [52].

3.1.27 1-Hydroxy-3,5-dimethoxyxanthone (27)

OH O

H,CO g 0 g

OCH;

Figure 3.30 The chemical structure of compound 27
1- Hydroxy- 3,5- dimethoxyxanthone (27) (Figure 3.30): The structure of

compound 27 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [53].

3.1.28 1,5-Dihydroxy-8-methoxyxanthone (28)

OH O
G inh3
OCH;  OH

Figure 3.31 The chemical structure of compound 28

1,5- Dihydroxy- 8- methoxyxanthone (28) (Figure 3.31): The structure of
compound 28 was determined and confirmed by comparison of the physical and

spectroscopic data with a previous report [54].
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3.1.29 Cratoxyarborenone F (29)

OCH,

Figure 3.32 The chemical structure of compound 29

Cratoxyarborenone F (29) (Figure 3.32): The structure of compound 29 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [55].

3.1.30 3-Hydroxy-2-methoxyxanthone (30)

Figure 3.33 The chemical structure of compound 30
3-Hydroxy-2-methoxyxanthone (30) (Figure 3.33): The structure of compound
30 was determined and confirmed by comparison of the physical and spectroscopic

data with a previous report [56].

3.1.31 B-Mangostin (31)

Figure 3.34 The chemical structure of compound 31
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B-Mangostin (31) (Figure 3.34): The structure of compound 31 was determined
and confirmed by comparison of the physical and spectroscopic data with a previous

report [57].

3.1.32 Toxyloxanthone A (32)

OH O
8989
O O

OH

Figure 3.35 The chemical structure of compound 32

Toxyloxanthone A (32) (Figure 3.35): The structure of compound 32 was
determined and confirmed by comparison of the physical and spectroscopic data with

a previous report [58].
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3.2 Cytotoxic activity of isolated compounds (1-31) against human cancer cell

lines

All isolated compounds were in vitro evaluated for their cytotoxic potential
against KB, Hel.a S-3, HT29, MCF-7 and HepG2 cell lines using the modified MTT method
with doxorubicin as the positive control. The results are summarized in Table 3.4. The
test compounds mostly showed moderate to inactive against these five cell lines,
except compounds 3 showed potent cytotoxicity against KB, HelLa S-3, HT29, MCF-7
and HepG2 cells with ICsq values of 1.72, 0.82, 1.17, 5.04 and 1.65 uM, respectively.
Furthermore, compound 6 showed good cytotoxicity against KB and HelLa S-3 cell with
ICs value of 7.06 and 5.27 uM, respectively. Moreover, compound 13 showed good
cytotoxicity against only KB cell with ICs, value of 4.62 uM. Compounds 1, 2, 16 and
32 showed moderate cytotoxicity against KB cell with ICs, values in the range of 16.32-
28.19 uM. Compounds 13, 31 and 32 showed moderate cytotoxicity against HelLa S-3
cell with ICs, values in the range of 17.49-27.91 uM. Compounds 6 and 32 showed
moderate cytotoxicity against MCF-7 and HepG2 cell with IC50 values in the range of
17.49-27.91 uM. The SAR studied data from Figure 4.1 and Table 3.4 suggested that
the appearance of C-5 hydroxy and C-6 side chain of xanthones might improve the
cytotoxicity, as inferred from the comparison of their cytotoxicity from compounds 3,

6,11, 17 and 19.
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CHAPTER IV
CONCLUSION

In conclusion, compounds 1-32 were successfully isolated and purified from
the CH,Cl, crude extract from the roots of C. calaba by silica gel and Sephadex LH-20
column chromatographies. The isolated compounds consisted of three new
xanthones, calaxanthones A-C (1-3) together with twenty nine known xanthones (4-
32), including scriblitifolic acid (4), teysmannic acid (5), calophylixanthone A (6), 9-
xanthone (7), 1-hydroxyxanthone (8), 4-hydroxyxanthone (9), 4-methoxyxanthone (10),
1,5- dihydroxyxanthone ( 11) , 1- hydroxy- 5- methoxyxanthone ( 12) , 1,6-
dihydroxyxanthone (13), 1-hydroxy-6-methoxy-9H-xanthen-9-one (14), 3-hydroxy-5-
methoxy- 9H- xanthen- 9- one (15), 5- hydroxy- 3- methoxy- 9H- xanthen- 9- one (16),
mesuaxanthone B (17), buchanoxanthone (18), 1,5-dihydroxy-6-methoxyxanthone (19),
3,4-dimethoxyxanthone (20), 1-Hydroxy-5,6-dimethoxyxanthone (21), 6-hydroxy-3,4-
dimethoxy- 9H-Xanthen-9-one (22), 1,5-dihydroxy-3,6-dimethoxy-xanthen-9-one (23),
5-hydroxy-1,3,6-trimethoxy-9H-xanthen-9-one (24), 1-hydroxy-3,7-dimethoxyxanthone
(25), 1,3,5,7-tetramethoxyxanthone (26), 1-hydroxy-3,5-dimethoxyxanthone (27), 1,5-
dihydroxy- 8- methoxyxanthone ( 28), cratoxyarborenone F (29), 3- hydroxy- 2-
methoxyxanthone (30), B-mangostin (31) and toxyloxanthone A (32). The structures of
all isolated compounds were elucidated using spectroscopic methods especially 1D
and 2D NMR spectroscopies and compared with their *H and *C NMR spectroscopic
data of literature. Moreover, the cytotoxic activity against KB and HelLa S-3 cancer cell

lines were performed to evaluate the bioactivity of all 32 compounds.
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Figure 4.1 Structures of xanthones 1-32 from the roots of C. calaba
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The results of the cytotoxicity against human cancer cell lines showed the
tested compounds mostly showed moderate to inactive against these five cell lines,
except compounds 3 showed potent cytotoxicity against KB, HelLa S-3, HT29, MCF-7
and HepG2 cells with ICsq values of 1.72, 0.82, 1.17, 5.04 and 1.65 uM, respectively.
Furthermore, compound 6 showed good cytotoxicity against KB and Hela S-3 cell with
ICso value of 7.06 and 5.27 pM, respectively. Moreover, compound 13 showed good
cytotoxicity against only KB cell with ICsy value of 4.62 uM. Compounds 1, 2, 16 and
32 showed moderate cytotoxicity against KB cell with ICs, values in the range of 16.32-
28.19 uM. Compounds 13, 31 and 32 showed moderate cytotoxicity against HelLa S-3
cell with IC5q values in the range of 17.49-27.91 uM. Compounds 6 and 32 showed
moderate cytotoxicity against MCF-7 and HepG2 cell with IC50 values in the range of
17.49-27.91 uM

The future works may involve the modification and synthesis of active
compounds for a new potent drug. In addition, these results might provide basic
knowledge to study the mechanism of active compounds toward disease for the drug

improvement.
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