CHAPTER III

MATERIALS AND METHODS

1. Source of plant materials

The plant materials were collected from various locations in Thailand, as follows:

Sample code	Scientific name	Locality	
CIN01	Cinnamomum cf.verum	Chulalongkorn University, Bangkok	
CIN02	Cinnamomum cf.iners	Chulalongkorn University, Bangkok	
CIN03	Cinnamomum iners	Chulalongkorn University, Bangkok	
CIN04	Cinnamomum .tamala	Chulalongkorn University, Bangkok	
CIN05	Cinnamomum camphora	Chulalongkorn University, Bangkok	
CIN06	Cinnamomum iners	BKF, Bangkok	
CIN07	Cinnamomum camphora	BKF, Bangkok	
CIN09	Cinnamomum sp.1	Phufoilom, Udon Thani	
CIN10	Cinnamomum camphora	Phufoilom, Udon Thani	
CIN11	Cinnamomum sp.2	Kudchum Hospital, Yasothon	
CIN12	Cinnamomum verum	Kudchum Hospital, Yasothon	
CIN13	Cinnamomum cf.iners	Kudchum Hospital, Yasothon	
CIN14	Cinnamomum sp.3	Phumakprik, Yasothon	
CIN15	Cinnamomum sp.3	Phumakprik, Yasothon	
CIN16	Cinnamomum cf.verum	Princess Sirinthorn Garden, Rayong	
CIN17	Cinnamomum verum	Princess Sirinthorn Garden, Rayong	
CIN18	Cinnamomum cf.iners	Princess Sirinthorn Garden, Rayong	
CIN19	Cinnamomum camphora	Princess Sirinthorn Garden, Rayong	
CIN20	Cinnamomum cf.subavenium	Phuhinrongkla Nat. Park, Phitsanulok	
CIN21	Cinnamomum bejolghota	Doi Phuka Nat. Park, Nan	
CIN22	Cinnamomum cf.iners	Sirirukkachat Botanical Garden, Bangkol	
CIN23	Cinnamomum camphora	Sirirukkachat Botanical Garden, Bangkol	
CIN24	Cinnamomum cf.verum	Sirirukkachat Botanical Garden, Bangkol	

Sample code	Scientific name		Locality	
CIN25	Cinnamomum	porrectum	Khoathaphet, Surat Thani	
CIN26	Cinnamomum	sp.4	Khoasok Nat. Park, Surat Thani	
CIN27	Cinnamomum cf.	bejolghota	Khoasok Nat. Park, Surat Thani	
CIN28	Cinnamomum	pachyphyllum	Khoasok Nat. Park, Surat Thani	
CIN29	Cinnamomum	pachyphyllum	Khoasok Nat. Park, Surat Thani	
CIN30	Cinnamomum	sp.5	Khoasok Nat. Park, Surat Thani	
CIN33	Cinnamomum	subavenium	Khoayai Nat. Park, Nakorn Ratchasima	
CIN34	Cinnamomum	subavenium	Khoayai Nat. Park, Nakorn Ratchasima	
CIN35	Cinnamomum	subavenium	Khoayai Nat. Park, Nakorn Ratchasima	
CIN36	Cinnamomum	subavenium	Khoayai Nat. Park, Nakorn Ratchasima	
CIN37	Cinnamomum cf.	iners	Khoayai Nat. Park, Nakorn Ratchasima	
CIN38	Cinnamomum	verum	Kanchanaburi	
CIN39	Cinnamomum	iners	Phratumnak Suanpathum, Pathum Thani	
CIN40	Cinnamomum cf.	verum	Phratumnak Suanpathum, Pathum Thani	
CIN41	Cinnamomum	iners	Phratumnak Suanpathum, Pathum Thani	
CIN42	Cinnamomum	sintoc	Phratumnak Suanpathum, Pathum Thani	
CIN43	Cinnamomum iners		Phratumnak Suanpathum, Pathum Thani	
CIN44	Cinnamomum	porrectum	Phratumnak Suanpathum, Pathum Thani	
CIN45	Cinnamomum	verum	Phratumnak Suanpathum, Pathum Than	
CIN46	Cinnamomum	iners	Phratumnak Suanpathum, Pathum Than	
CIN47	Cinnamomum	camphora	Phratumnak Suanpathum, Pathum Than	
CIN48	Cinnamomum	tamala	Phratumnak Suanpathum, Pathum Than	
CIN49	Cinnamomum cf.	iners	Phratumnak Suanpathum, Pathum Than	
CIN50	Cinnamomum cf.	iners	Phratumnak Suanpathum, Pathum Than	
CIN51	Cinnamomum cf.	iners	Phratumnak Suanpathum, Pathum Than	

Authentication was achieved through comparison with herbarium specimens in the Forest Herbarium (BKF), National Park, Wildlife and Plant Conservation Department, Thailand.

2. Essential oil composition analysis

2.1 Headspace gas chromatography-mass spectroscopy

Essential oil composition was analyzed using a Varian gas chromatograph (GC) STAR 3400 CX, equipped with a Varian mass spectrometer (MS), SATURN 4D, and a Varian GENESIS Headspace auto-sampler was used. For each sample, a quantity of 0.2 g dry leaves was put in a 20 ml glass crimp top vial and incubated at 110 $^{\circ}$ C for 30 min. Then it was pressurized for 0.25 min and extracted with carrier gas, kept in 250 µl loop at 150 $^{\circ}$ C for 0.25 min and finally transferred to the GC with a transfer line at 250 $^{\circ}$ C. A StabilWax column, 30 m x 0.25 mm i.d. x 0.25 µm film thickness, was used, with a septum-equipped programmable injector (SPI) set at 250 $^{\circ}$ C, spitless. Carrier gas was helium, with head pressure of 12 psi. The temperature program for analyses was described below.

Temperature (^o C)	Rate (^o C/min)	Time (min)
60	0	3.0
60 - 200	3	46.7
200	0	10

Mass spectra were taken at 70 eV, with 1 scan per second from 35 until 350 m/z. The relative amount of each compound was calculated as a percentage of total oil using area under the peak (peak area).

2.2 Identification of the components

Identification of the components was based on spectral data computer matching with the NIST mass spectral search program version 1.19 and terpene library, comparison of the retention times and fragment pattern with those reported in the literatures. Moreover, standard solutions of seven components in the list below were injected as reference solution.

1. (1S)-(-)-α-Pinene	SIGMA Chemical Co	
2. (±)-Linalool	SIGMA Chemical Co	
3. (-)-trans-Caryophyllene	SIGMA Chemical Co	
4. Eucalyptol (1,8-Cineol)	CHEM SERVICE	
5. Safrole	CHEM SERVICE	
6. (+)-3-Carene	Fluka Chemika	
7. Eugenol	SIGMA Chemical Co.	

3. Chemometric analysis

Hierarchical cluster analysis of the chemical data was performed using the statistical package SPSS version 11.5 for Windows. Between group linkage method with Pearson correlation distance measure was used in clustering. An alternative method of chemometrics, principal component analysis, was performed using MINITAB 13 for Windows.

For the present study, the peak area of 128 volatile compounds were used as dependent variables. Approximately 80% of the compounds have been identified, but as stressed in Dunlop *et. al.* (2004) that complete identification is not necessary for the mathematical analysis.

To reduce the effect of natural variation within species, the peak area from each chromatogram was normalized to 0.00-1.00 range and scored before analysis. The major components of which their normalized quantities were in the range of 1.00-0.90 were scored as 3 while other minor compounds with normalized peak area in the range of, 0.89-0.80, 0.79-0.70, 0.69-0.01 and 0.00 were scored as 2, 1.5, 1 and 0, respectively.