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Silver nanoparticles (AgNPs) were successfully synthesized using “green 

chemistry”. Tapioca has been used both as reducing agent and stabilizer. Tapioca 

after treated with an acidic and alkaline solution generated reducing species which 

is used to completely reduce silver ions and sufficiently stabilize the obtained 

silver nanoparticles. The average size, size distribution, morphology, and structure 

of the synthesized silver nanoparticles were characterized by Ultraviolet-visible 

spectroscopy (UV-vis), transmission electron microscopy (TEM), and X-ray 

diffraction (XRD). Strong surface plasmon resonance peaks were observed at 

about 400 nm and the synthesized silver nanoparticles were spherical with an 

average particle size of 15 ± 2.3 nm with a narrow particle size distribution. XRD 

analysis showed that the silver nanoparticles were face centered cubic (fcc) 

structure. The degradation of tapioca via an acidic and alkaline treatment was 

investigated by ATR FT-IR spectroscopy. The synthesized silver nanoparticles are 

stable in aqueous solution over a period of two months at room temperature. The 

antibacterial activities of the silver nanoparticles were tested against 

Staphylococcus aureus and Escherichia coli bacteria. A very low concentration of 

silver nanoparticles (2.5 ppm) was shown to be an effective bactericide.  
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CHAPTER  I 

 

INTRODUCTION 

 

 

1.1 Synthesis of silver nanoparticles 

 

The large surface area and small size of nanoparticles provide the unique 

chemical, optical, mechanical, electronic and magnetic properties that are distinct 

from those bulk materials. These unique properties are derived due to several 

variations such as size distribution and structure of particles. Therefore, nanoparticles 

have received considerable attention and rapidly growth in the recent year with wide 

ranging implications in a variety of areas such as drug delivery, colorimetric sensors, 

diagnostics and antibacterial [1-9]. The broad applications of silver nanoparticles 

(AgNPs) encourage the high demanding of industries for adding them into the 

consumer products. There are several conventional synthesis protocols which involves 

the number of chemical and physical methods. Physical fabrication methods of metal 

nanoparticles employ inert gas condensation [10], laser ablation [11], spray pyrolysis 

12-13], radiation [14], and thermal plasma [15]. However, the methods are high 

energy consumption, expensive, employ toxic chemicals, and often give low yields. 

The chemical route to synthesize AgNPs involves the reduction of silver ion by 

reducing agents such as sodium borohydride [16], trisodium citrate [17-18], 

hydroxylamine hydrochloride [17], alcohol and glucose [19]. In order to prevent the 

aggregation of metal particles, surface protecting agent is necessary. Usually, the 

common protecting agents are sodium citrate, poly (vinyl pyrrolidone) [20], 

polyacrylate [21], and poly (vinyl alcohol) [22]. 

Nowadays, many researches preferred an environmental-friendly method for 

synthesizing AgNPs than the conventional methods involving hazardous chemicals. 

Green chemistry principles which involve a reduction or elimination of the use of 

generation of hazardous substances, play an important role in nanotechnology 

research. Three areas of opportunity to associate metal nanoparticles synthesis with 
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green chemistry principle: (1) choice of solvent, (2) the reducing agent, and (3) the 

dispersing agent [23]. The environmental friendly reducing agents, for instance, -D-

glucose [5, 24], galactose [24], maltose [24], lactose [24], L-lysine [25], L-arginine 

[25], soluble starch [5, 26-28], latex of Jatopha curcas [30], fish oil [31] , and banana 

peel extract [32]  have been used to synthesize AgNPs.  

In this work, we developed green chemical method to synthesize silver 

nanoparticles using tapioca as an efficient reducing agent and stabilizer. Tapioca is 

agricultural product and largely cultivated.  It is inexpensive and available in local 

market. In addition, it is non-toxic compared to other reducing agents. Synthesis of 

silver nanoparticles using tapioca, is accordance with the green chemistry principles: 

the tapioca is (1) eco-friendly as well as (2) the reducing employed, and (3) the 

stabilizer in the reaction. The results showed that the tapioca after treated with an 

acidic and alkaline solution generated reducing species which is used to reduce silver 

ion into silver nanoparticles.  

 

1.2 The objectives of the research 

 

1. To develop new synthesis route of silver nanoparticles via green chemistry. 

2. To investigate the suitable conditions for preparations of silver nanoparticles 

which well-defined size by using tapioca as both reducing agent and 

stabilizer. 

 

1.3 Scopes of the research 

  

1. Study the effect of amount of sodium hydroxide, concentration of silver 

nitrate, concentration of tapioca, reaction temperature on size, size 

distribution and morphology of synthesized silver nanoparticles. 

2. Characterize size, size distribution, morphology, and structure of 

synthesized silver nanoparticles using UV-visible spectroscopy, 

transmission electron microscopy (TEM), and X-ray diffraction (XRD). 

3. Investigating the degradation of tapioca under an acidic and alkaline 

treatment by ATR FT-IR spectroscopy. 
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4. Study the stability of synthesized silver nanoparticles. 

5. Comparison of green synthesis method and conventional method (sodium 

borohydride method). 

6. Investigating the antibacterial property of synthesized silver nanoparticles 

against the gram-negative bacterium Escherichia coli (E. coli) and gram-

positive bacterium Staphylococcus aureus (S. aureus). 
 

 



CHAPTER  II 

 

THEORETICAL BACKGROUND 

 

 

2.1 Silver nanoparticles 

 

 Silver nanoparticles are of great interests in scientific research and industrial 

applications, due to the large surface area to volume ratio and size-dependent 

properties. Silver nanoparticles have been used in different areas of science such as 

catalysis [15-16], surface enhance vibration [17], optical sensor [22, 25, 28-29], and 

antibacterial agent [2-7]. 

Noble metal nanoparticles (especially gold and silver) exhibit a strong UV-

visible absorption band that is not present in the spectrum of the bulk metal. This 

absorption band is observed when the incident photon frequency is resonant with the 

collective oscillation of the conduction electrons and is known as the localized surface 

plasmon resonance (LSPR) [1]. When the environment of metal nanoparticles was 

changed, LSPR shifts were observed. Electromagnetic field enhancement near the 

surface of nanoparticles is associated with extinction efficiency of nanoparticles, 

responsible for the intense signals. 

 The developments of synthesis methods for silver nanoparticles have been 

explored in order to control size and shape of particles [20-21]. There are many 

methods to synthesize silver nanoparticles. In general, the synthesis methods are 

classified into two categories, “bottom-up” and “top-down” approaches. Bottom-up 

approach is getting started with the atom or molecule for building up the desired 

nano-objects. In contrast to top-down approach, standard bulk material are broken 

down and produced the same materials in the form of nanometric grains.  
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2.2 Conventional methods for synthesis of silver nanoparticles 

 

There are several conventional synthesis protocols which involves a number of 

physical and chemical methods. Physical fabrication methods of metal nanoparticles 

employ inert gas condensation [10], laser ablation [11], spray pyrolysis [12-13], 

gamma ray [14], and thermal plasma [15]. However, the methods are high energy 

consumption, expensive, employ toxic chemicals, and often give low yields. The 

synthetic route to synthesize AgNPs involves the reduction of Ag ion by reducing 

agents such as sodium borohydride [16], trisodium citrate [17-18], hydroxylamine 

hydrochloride [17], alcohol and glucose [19]. In order to prevent the aggregation of 

metal particles, surface protecting agent is necessary. Usually, the common protecting 

agents are sodium citrate, poly (vinyl pyrrolidone) [20], polyacrylate [21], and poly 

(vinyl alcohol) [22]. The reviews express the concern with the synthesis of silver 

nanoparticles by using extreme conditions (e.g., high pressure, high temperature), 

hazardous reagent, organic solvent, and stabilizer. Presently, many researches tend 

to make environmental friendly method, green chemistry to design the reaction or 

choose the environmental benign for synthesis of silver nanoparticles. 

 

2.3 Synthesis of silver nanoparticles via green chemistry 

 

Nowadays, many researches preferred an environmentally-friendly method for 

synthesizing AgNPs to the conventional method involving hazardous chemicals. 

Green chemistry principles which involve a reduction or elimination of the use of 

generation of hazardous substances, play an important role in nanotechnology 

research. 

 

 2.3.1 Green chemistry principle 

Green chemistry is “the utilization of a set of principles that reduces or 

eliminates the use or generation of hazardous substances in the design, manufacture, 

and application of chemical products” [23]. The 12 principles of green chemistry are 

summarized in Table 2.1. Application of these principles has reduced the use of toxic 
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chemical and solvents, improved the material and energy efficiency of chemical 

processes, and enhanced the design of products for end of life. 

 

Table 2.1 12 green chemistry principles [23].  

Principles of green chemistry 
Design to greener nanomaterial and 

production method 

P1.   Waste prevention 
design to prevent waste than to treat or clean 
up waste after it has   been created 

P2.   Atom economy design to maximize all of the materials use in 
the synthetic process to final product 

P3.   Less hazardous  chemical  
        synthesis   

design to a little use or generate the hazardous 
substance 

P4.   Designing safer chemicals design the desire product with minimizing 
their toxicity 

P5.   Safer solvents/reaction  
         media 

design to make a necessary use of substances 
(e.g., solvents) 

P6.   Design for energy efficiency design to minimize energy using. 
P7.   Use of renewable feed stocks design to used renewable raw material or 

feedstock 
P8.   Reduce derivatives design to minimize or avoid the using of 

unnecessary derivative (e.g., protection 
group) P9.  Catalysis design to use the catalytic reagent which as 
selective as possible 

P10. Design for degradation/ 
        design for end of life 

design to gain the product which non-toxic 
and environmentally benign 

P11. Real-time monitoring and           
        process control 

design to develop the real-time analysis for 
prevention of the formation of hazardous 
substances 
 
 

P12. Inherently safer chemistry design to use the  potential substance for 
minimizing of an accident 

  

 2.3.2 Literature reviews 

The preparation of stable and well-defined shape with controllable size of 

silver nanoparticles with green synthesis method, the polysaccharide (i.e., starch, 

carbohydrate, and cellulose base material) is a renewable reagent which widely used 

as a stabilizer or protecting agent. For example, a starch was used as a stabilizer for 

synthesis of silver nanoparticles published in a few reports. In 2003 Raveendran et al. 

[26] reported a completely green synthesis of silver nanoparticles with size of 1-8 nm 
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using starch as stabilizer and β–D-glucose as reducing agent under gentle heating at 

40 °C for 20 hours. This method is limited in long time reaction. There are few works 

which reported in literature on the green synthesis of silver nanoparticles using 

soluble starch as both the reducing agent and stabilizer. In 2006 Vigneshwaran et al. 

[27] synthesized silver nanoparticles using soluble starch as both the reducing and 

stabilizing agent. This reaction was carried out in an autoclave at 15 psi, 121 °C for 5 

minutes. The size of these nanoparticles was found to be in the range of 10-34 nm. 

The environmental friendly reducing agents, for instance, -D-glucose [5,24], 

galactose [25], maltose [25], lactose [25], L-lysine [26], L-arginine [26], soluble 

starch [5, 27-29], latex of Jatopha curcas [30], fish oil [31] , banana peel extract [32], 

sucrose [33], Capsicum annuum L. extract. [34], plant leaf extracts [35], honey [36], 

tansy fruit [37], Cyas Leaf. [38], sorghum bran extracts [39], Murraya Koenigii leaf 

[40], Aspergillus flavus NJP08 [41], chitosan [55], tea extract [7], garlic clove extract 

[6] are summarized in Table 2.2.  
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2.4 Tapioca 

 

Tapioca is one of largely cultivated agricultural products of Thailand. It is 

inexpensive and available in local market. Tapioca is a white powder and the 

chemical structure like a starch (as shown in Figure 2.1). Starch occurs in the form of 

tiny white granule in various sites of plants, for example in roots (tapioca, sweet 

potato, yam), in tubers (potatos), in stems (sagopallm), in cereal grains (maize, rice, 

wheat, barley, oat, sorghum), and in legume seeds (peas, beans) [42].  

 

 
 

Figure 2.1 Tapioca 

 

Starches are polysaccharides, composed of a number of monosaccharides or 

glucose molecules linked together with α-1,4 and/or α-1,6 linkages. The starch 

consists of 2 main polymers; the amylose, which is a linear glucose polymer with     

α-1,4 linkages and amylopectin, which is a large branched molecule with α-1,4 and  

α-1,6 linkages and is a major component of starch [43]. The chemical structure of 

starch is shown in Figure 2.2. 

 

 

 
Figure 2.2 The chemical structure of starch [44]. 
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The amylose and amylopectin composition of starch is depending on the plant, 

starch generally contains 20-25% amylose and 75-80% amylopectin. Tapioca consists 

of 17% amylose and 83% amylopectin. The percentage of amylose and amylopectin 

are shown in Table 2.3. 

 

Table 2.3 Amylose and amylopectin in some starches [43]. 

 

Starch Amylose (%) Amylopectin (%) 

Tapioca 17 83 

Potato 21 79 

Wheat 26 74 

Maize 28 72 

 

It has been reported that the reducing end group (aldehyde and α-hydroxy 

ketone) can be obtained from the degradation of polysaccharide under alkaline 

condition [6466]. Soluble starch is polysaccharide which forms a linear polymer by 

the -(14) linkages between D-glucose units (Figure 2.2) which can be generated 

the reducing end group under alkaline degradation. Moreover, the hydroxyl rich on 

the starch structure can provide the complexation of metal ion to prevent the 

aggregation or precipitation of metal particles [26-27]. Although, the soluble starch 

have been served for synthesis and stabilization of AgNPs, however, the reaction is 

carried out in strong condition, which involves high pressure (15 psi) and high 

temperature (121C). In addition, the clarification of reduction reaction mechanism 

for using degraded products of tapioca under alkaline condition serving as a reducing 

agent for the metal reduction has not been reported.  

In this work, we synthesized silver nanoparticles using tapioca as an efficient 

reducing agent and stabilizer. Tapioca is agricultural product that largely cultivated. It 

is inexpensive and available in local market. In addition, no toxicity, compared to 

other reducing agents. Synthesis silver nanoparticles using tapioca, is compatible with 

the green chemistry principles: the tapioca is (1) eco-friendly as well as (2) the 

reducing employed, and (3) the stabilizer in the reaction. 
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2.5 Characterization techniques 

 

 2.5.1 Ultraviolet-visible spectroscopy (UV-vis) 

 UV-visible spectroscopy is widely used to determine the optical properties of   

material in solution phase. The absorption in the UV-visible range directly affects the 

color of material. In case of metal nanoparticles, the optical properties are much more 

complicated. The measured absorbance spectrum is the extinction of the light, which 

is the summation of absorption and scattering intensity. Extinction and absorption 

intensity of spherical particles of arbitrary size can be calculated by Mie’s theory [45-

48].  

  

 

 

 

 

 

Figure 2.3 LSPR schematic illustration [46]. 

 

 When the incident photon frequency resonates with the collective oscillation of 

the conduction electron in the metal nanoparticles is frequency known as a Localized 

Surface Plasmon Resonance (LSPR). This is schematically pictured Figure 2.3. 

When the electron cloud is displaced relative to the nuclei, a restoring force arises 

from Coulomb attraction between electrons and nuclei that results in oscillation of the 

electron cloud relative to the nuclear framework. The oscillation frequency is 

determined by four factors: (i) the density of electrons, (ii) the effective electron mass, 

(iii) the shape and (iv) size of the charge distribution. The collective oscillation of the 

electrons is called the dipole plasmon resonance of the particle to distinguish from 

plasmon excitation that can occur in bulk metal or metal surfaces. Higher modes of 

plasmon excitation can occur, such as the quadrupole mode where half of the electron 

cloud moves parallel to the applied field and half moves antiparallel. For silver, the 

plasmon frequency is also influenced by other electrons such as those in d-orbitals, 

and this prevents the plasmon frequency from being easily calculated using electronic 



 15 

structure calculations. However, it is not hard to relate the plasmon frequency to the 

metal dielectric constant, which is a property that can be measured as a function of 

wavelength for bulk metal. 

 

 
Figure 2.4 The plasmon extinction spectrum of silver nanoparticles. 

 

 The particles shape, dimension, and particle size distribution are associated 

with the measured extinction spectra (Figure 2.4). Therefore, we can obtained the 

direct particle information from the simple measurement, instead of the complex 

sample preparation and time-consuming TEM measurement for numerous sample 

measurements. 

 

 2.5.2 Transmission electron microscopy (TEM) 

 TEM was widely used for studying the size, size distribution, and morphology 

of particles. TEM involves a beam of accelerated electron with energy of 50-200 keV 

emitted by a cathode in vacuum. These electrons are deflected in small angles by 

atoms in sample and transmitted through thin sample. Then, these electrons are 

magnified by magnetic lenses and hitting a fluorescent screen generating the bright 

field image. The interactions of electron beam with atoms in the samples are the 

diffraction or absorption of electron beam. The images from electron microscopes 
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indicate the morphology of a sample which can be used for determining size and 

morphology of metal nanoparticles.   

  

 2.5.3 Attenuated Total Reflection Fourier Transform Infrared 

spectroscopy (ATR FT-IR spectroscopy) 

 ATR FT-IR spectroscopy is the characterization technique based on an 

internal reflection phenomenon. The radiation travels in a higher refractive index 

material impinges on the interface with a less dense medium. When incident angle is 

greater than critical angle, the incident radiation is completely reflected. In addition, 

there is an electromagnetic field that extends beyond the crystal surface, it is called       

evanescent wave. If an absorbing material is contacted with internal reflection 

element (IRE), the evanescent wave will absorb at wavelength where the material has 

an absorption band. The amount of energy reflected back through the IRE will be 

attenuated. This technique is called Attenuated Total Reflection. 

For ATR technique, the reflectivity is a measurement of the interaction of the 

electric field with the material. The molecular information and chemical composition 

can be obtained.   

 

 2.5.4 X-ray diffraction (XRD)  

 The X-ray technique employs the powder diffraction in which the 

monochromatic beam is incident at an angle  on a specimen of about 10 mm2 in area 

and (for polycrystalline or powder specimens) a minimum thickness of about 20 µm, 

mounted on a support film that does not give rise to interfering reflections. The 

detector is set to receive reflections at an angle (the Bragg-Brentano symmetrical 

arrangement and this is varied over the angular range of interest (typically 1-6° for 

low-angle reflections and 6-80 for high-angle reflections), either by keeping the 

incident beam and detector direction fixed and rotating the specimen and detector (the 

detector at twice the angular velocity) or by keeping the specimen fixed and rotating 

the incident beam and detector in opposite senses. In both cases this instrumental set-

up preserves the symmetrical arrangement [45]. 
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2.6 Antibacterial activity of silver nanoparticles 

 

It is well known that silver ions and silver nanoparticles are highly toxic to 

microorganisms showing strong biocidal effects on bacteria including Staphylococcus 

aureus (S. aureus) and Escherichia coli (E. coli). [2-5, 8, 9, 24, 49-57] 

Compared with silver compounds, the mechanism for the antimicrobial 

activity of silver nanoparticles may be the same, although neither is properly 

understood. However, because of the large surface area to volume ratio, silver 

nanoparticles may have much better efficiency. The possible mechanisms of the 

antibacterial activity are as follows [49-51]:  

1. Better contact with the microorganism, silver nanoparticles provides and 

extremely large surface area for contact with bacteria. The silver nanoparticles get 

attached to the cell membrane and also penetrate inside the bacteria. 

2. Bacterial membranes contain sulfur-containing proteins. Silver 

nanoparticles, like silver ion (Ag+), can interact with them as well as with 

phosphorus-containing compounds like DNA, perhaps to inhibit function. 

3. Silver nanoparticles or Ag+ can attack the respiratory chain in bacterial 

mitochondria and lead to cell death.  
4. Silver nanoparticles can have sustained release of silver ion once inside the 

bacterial cells (in an environment with lower pH), which may create free radicals and 

induce oxidative stress, thus further enhancing their bactericidal activity (Figure 2.5) 

[51].  
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Figure 2.5 The various mechanisms of the antibacterial activity of silver 

nanoparticles [51].  

 

Summary of the factors affecting AgNPs toxicity are shown in Table 2.4 [53]. 

Many publications have shown size-dependent toxicities of AgNPs [58-60]. As 

particle size decreases, the specific surface area increase leaving a higher number of 

atoms exposed on the surface available for redox, photochemical, and biochemical 

reactions. One of the key mechanisms for AgNPs to exert antibacterial activity is 

through the release of silver ions. As the rate of ion release is proportional to particle 

surface area, nanoparticles can release ions more rapidly than larger particles and 

macroscopic materials. Silver nanoparticle shape may also be a factor [53, 57]. High 

atom densities at <111> facets increased the toxicity of AgNPs to bacterial strains. 

Truncated triangular nanoplates exert stronger antibacterial activity than spherical 

AgNPs and rod-shaped AgNPs because they contain more <111> facets. The 

antibacterial properties of AgNPs are related to both size (surface area) and 

crystallinity (surface reactivity). Stability of AgNPs also influences toxicity since the 

formation of aggregates tends to decrease biocidal activity. However, water chemistry 

also governs silver dissolution and/or re-precipitation through various possible redox 

and precipitation reactions. 
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Table 2.4 Summary of the factors affecting silver nanoparticles toxicity [53]. 

 

Factor Tendency Possible explanation 

Particle size Smaller particles sizes 

tend to enhance 

antibacterial properties. 

As size decrease, there is larger 

number of atoms on the surface 

available to interact with 

bacteria or to release a higher 

amount of silver ions. 

Particle shape Particles with shapes 

containing more <111> 

facets like triangular 

particles tend to have 

strongest antibacterial 

properties. 

<111> facets would contain 

larger atom densities thus more 

atoms available for interaction.  

Particle stability Higher stability produces a 

higher antibacterial 

property. 

Non-stable nanoparticles will 

tend to form aggregates thus 

surface area will be reduced and 

the density of atoms available on 

the surface will be lower. 

Water chemistry Depending in a case to 

case base. 

Since water chemistry affects 

particle suspension/solubility, 

particle size distribution, as well 

as, bacterial ability to face 

environmental stresses, water 

chemistry will affect the 

interaction between silver 

nanoparticles and bacterial thus 

influencing the resulting 

toxicity. 

 

 



CHAPTER  III 

 

EXPERIMENT 

 

 

3.1 Chemicals and materials 

 

Silver nitrate (AgNO3), sodium hydroxide (NaOH), nitric acid (HNO3, 65% w/v 

or v/v), sodium borohydride (NaBH4) and soluble starch were purchased from Merck 

(Thailand). All Chemicals were analytical grade and were used as received without an 

additional purification. Tapioca was the product of Thai Wah Products Public Co., 

Ltd. (Sathorn, Bangkok, Thailand). De-ionized water was used as solvents. All 

glassware and magnetic bars were thoroughly cleaned with detergent, rinsed with de-

ionized water, rinsed with dilute nitric acid (6 M), and thoroughly rinsed again with 

de-ionized water. Silver salt stock solution (1,000 ppm Ag+ or 0.01 M Silver ion) was 

prepared by dissolving silver nitrate (AgNO3) 0.16 g in 100 mL de-ionized water. The 

solution was stirred until silver nitrate was completely dissolved.  

 

3.2 Green synthesis of silver nanoparticles using tapioca  

 

Silver nanoparticles were synthesized by chemical reduction using tapioca as 

both reducing agent and stabilizer (as shown in Figure 3.1). Aqueous solution of 

tapioca was prepared by dissolving 0.1 g of tapioca in 100 mL of de-ionized water 

and brought to boiling for some minutes. Then, tapioca solution was hydrolyzed by 

adding 5 mL of 0.1 M HNO3 and incubated for 20 minutes. Alkaline degradation was 

carried out by adding 0.1 M NaOH with different volume of NaOH at 5, 10, 15, 20, 

25, 30, 40, and 50 mL, respectively and incubated solution for 40 minutes. 10 mL of 

1,000 ppm silver salt solution was added to tapioca solution after treating by acid 

hydrolysis and alkaline degradation. The solution was vigorously stirred and heated at 

80 °C for 10 minutes. The color of solution turned brown after reaction was 

completed, indicating the formation of silver nanoparticles. The total volume was kept 
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constant at 100 mL by addition of de-ionized water. Finally, the 100 ppm (1 mM) of 

AgNPs solutions were stabilized with 0.1% w/v tapioca which give colloid S1, S2, 

S3, S4, S5, S6, S7 and S8, respectively. The time-dependent study on the generation 

of the generated reducing species by alkaline-degradation of tapioca was conducted 

from 0.5 to 15 min incubation time. 

 

 

 

Figure 3.1 Synthesis of silver nanoparticles using tapioca. 

 

3.3 Investigation of various factors affecting the green synthesis of silver 

nanoparticles 

 

In this method, size, size distribution, and morphology of silver nanoparticles 

depend on the various reaction conditions such as concentration of tapioca, 

concentration of silver nitrate, and the reaction temperature. 

 

 3.3.1 The concentration of tapioca 

 The concentrations of tapioca were varied as follows: 0.05, 0.1, 0.2, and 0.5% 

w/v. The concentration of silver nitrate was maintained at 100 ppm. 10 mL of 1,000 
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ppm silver nitrate solution was added to tapioca solution after treating by acid 

hydrolysis and alkaline degradation. Stirred solution vigorously and heated at 80 °C 

for 10 minutes. The total volume was kept constant at 100 mL by adding of de-

ionized water. 

 

 3.3.2 The concentration of silver nitrate 

 The concentrations of silver nitrate were varied as follows: 25, 50, 100, 200, 

and 500 ppm. The concentration of tapioca was maintained at 0.1% w/v. Aqueous 

solution of tapioca was prepared by dissolving 0.1 g of tapioca in 100 mL of de-

ionized water and brought to boiling for some minutes. Then hydrolyzed tapioca 

solution by adding 5 mL of 0.1 M HNO3 and incubated solution for 20 minutes. 

Making alkaline degradation by adding 20 mL of 0.1 M NaOH and incubated solution 

for 40 minutes. 2.5, 5, 10, 20, and 50 mL of 1,000 ppm silver salt solution was added 

to tapioca solution after treating by acid hydrolysis and alkaline degradation. Stirred 

solution vigorously and heated at 80 °C for 10 minutes.  

 

 3.3.3 The reaction temperature 

 To study the effect of temperature on the synthesized silver nanoparticles, 

reaction temperature was varied as follows: room temperature, 40, 50, 60, 70, 80, 90, 

and 100 °C. The concentration of silver nitrate and tapioca were maintained at 100 

ppm, and 0.1% w/v, respectively. Aqueous solution of tapioca was prepared by 

dissolving 0.1 g of tapioca in 100 mL of de-ionized water and brought to boiling for 

some minutes. Then hydrolyzed tapioca solution by adding 5 mL of 0.1 M HNO3 and 

incubated solution for 20 minutes. Making alkaline degradation by adding 20 mL of 

0.1 M NaOH and incubated solution for 40 minutes. 10 mL of 1,000 ppm silver salt 

solution was added to tapioca solution after treating by acid hydrolysis and alkaline 

degradation. Stirred solution vigorously and heated at various temperatures such as 

room temperature, 40, 50, 60, 70, 80, 90, and 100 °C for 10 minutes.  
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3.4 Characterization of synthesized silver nanoparticles 

 

The synthesized silver nanoparticles were characterized by various techniques. 

Strong surface plasmon resonance peaks were observed by UV-vis spectroscopy. The 

average size and size distribution of the synthesized silver nanoparticles were 

investigated by transmission electron microscopy (TEM). The crystal structure of the 

synthesized silver nanoparticles were elucidated by X-ray diffraction (XRD). The 

degradation of tapioca via an acidic and alkaline treatment were investigated by 

attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR).  

 

 3.4.1 UV-vis spectroscopy  

Solution of AgNPs was diluted to 10 ppm with de-ionized water before 

analyzing. A reference of pure de-ionized water was collected as the blank sample. 

The absorption spectra of the colloidal AgNPs were carried out on Ocean Optics 

Portable UV-visible spectrometer. The light source of this instrument was deuterium 

lamp (DH-2000, Micropack, bandwidth 200-850 nm). The USB 2000 

spectrophotometer was used as detector. The quartz cuvette with optical path length 

of 1.0 cm was employed as a sample cell and washed by de-ionized water before 

collecting the spectrum.  

 

 3.4.2 ATR FT-IR spectroscopy  

A Nicolet 6700 FT-IR spectrometer attached to the Continuum infrared 

microscope, which equipped with a mercury-cadmium-telluride (MCT) detector, with 

a built-in 15X Schwarzschild-Cassegrain infrared objective was employed for the 

spectral acquisition of molecular information of tapioca and tapioca stabilized-

AgNPs. A homemade slide-on Ge µATR accessory with a cone shape Ge IRE was 

employed as a sampling probe. To collect an infrared spectrum, tapioca solution and 

tapioca-stabilized AgNPs colloid were dropped onto a glass slide and dried under the 

ambient condition. The dried film on the glass slide was mounted onto the sample 

stage beneath the infrared objective. The spectral acquisition at a defined position was 

conducted by raising the sample stage until the dried film on the glass slide contacted 
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the tip of the Ge µIRE. All ATR spectrums were collected at 4 cm-1 collection with 

128 scans. 

 

 3.4.3 TEM 

TEM images of synthesized silver nanoparticles were recorded with a Hitachi, 

H-7650 analytical transmission electron microscope. The colloidal AgNPs were 

diluted to 50 ppm (0.5 mM) and dropped onto a formvar-coated copper grid. The 

specimen were dried over night in a desiccator. The accelerating voltages of this 

instrument are 100 kV. The histogram of silver nanoparticles size distribution and 

average diameter of nanoparticles were determined by counting of 300 particles from 

the TEM image using Image J software while data were analyzed by means of the 

software OriginPro 8. 

 

 3.4.4 XRD analysis  

The synthesized silver nanoparticles were dried at 80 °C, and the brown-

coloured powder obtained was used for XRD analysis. The powder XRD pattern was 

obtained with a Rigaku RINT2000 X-ray diffractometer using Cu Kα1 radiation (λ = 

0.154 nm) and a power of 40 kV and 20 mA. The diffracted intensities were recorded 

from 30° to 80° 2 angles.  

 
 
3.5 Long term stability of synthesized silver nanoparticles 

 

The synthesized silver nanoparticles were kept at room temperature. UV-vis 

analysis of several weeks of old samples was also carried out to check the stability of 

silver nanoparticles. 
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3.6 Comparison of synthesized silver nanoparticles reduced with tapioca and 

soluble starch 

 

UV-vis extinction spectra of synthesized silver nanoparticles using tapioca, and 

soluble starch were measured. The results were compared to investigate the size and 

size distribution of silver nanoparticles. 

 

3.7 Comparison of green synthesis method and sodium borohydride method 

 

UV-vis extinction spectra of synthesized silver nanoparticles via green synthesis 

method (100 ppm AgNPs with 0.1% tapioca) and sodium borohydride method (5,000 

ppm of AgNPs with NaBH4 and 2% w/v soluble starch and 5,000 ppm of AgNPs with 

NaBH4 and 6% w/v polyvinylpyrrolidone) were measured. The results were compared 

to investigate the size and size distribution of silver nanoparticles. 

5,000 ppm of AgNPs with NaBH4 and 2% w/v soluble starch was synthesized. 

Briefly, a 0.094 M aqueous solution of AgNO3 was prepared with 2% soluble starch 

as a stabilizer. An aqeous solution of 0.07 M NaBH4 with the soluble starch solution 

as a solvent was prepared. By mixing both solutions, AgNO3 solution was added to 

NaBH4 solution under vigorous stirring. When all reactants were completely added, 

the solution turned dark brown. 

5,000 ppm of AgNPs with NaBH4 and 6% w/v PVP was synthesized by the 

same method that mentioned above but used ethyl alcohol as solvent. 

 

3.8 Antibacterial activity of synthesized silver nanoparticles 

 

The antibacterial activity of synthesized silver nanoparticles against Escherichia 

coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were investigated as a 

model for Gram-negative and Gram-positive bacteria. Bacteriological tests were 

performed on solid nutrient agar (DifcoTM) plates and in liquid systems supplemented 

with different concentrations of silver nanoparticles. 

To examine the bactericidal effect of silver nanoparticles approximately 106 

colony-forming units (CFU) of Escherichia coli ATCC 25922 were cultured on 
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nutrient agar (DifcoTM) plates supplemented with silver nanoparticles in 

concentrations of 2.5, 5, and 10 ppm (µg/mL). Silver-free agar plates cultured under 

the same conditions were used as a control. The plates were incubated for 24 h at     

37 °C and the numbers of colonies were counted. The counts on the two plates 

corresponding to a particular sample were averaged. The percentage reduction in 

bacterial count was calculated by the equation: 

 

% reduction=
(viable CFU at 0 hour -viable CFU at 24 hour)

viable CFU at 0 hour
×100 



CHAPTER  IV 

 

RESULTS AND DISCUSSION 

 

 

4.1 Green synthesis of silver nanoparticles using tapioca 

  

The formation of the synthesized silver nanoparticles was investigated using 

UV-visible spectroscopy, which demonstrated for the analysis of nanoparticles 

formation over time. The color of the obtained solutions at different volumes of 

NaOH including UV-visible spectrum of each condition is shown in Figure 4.1A. 

Though tapioca has been evaluated to use both as reducing agent and stabilizer in the 

preparation of silver nanoparticles, no silver nanoparticles appeared at 5 mL of NaOH 

(S1). The solution was colorless and there was no surface plasmon band in the 

spectrum. We found that increased the amount of NaOH did influence the formation 

of silver nanoparticles as the typical peak at ~400 nm corresponding to the 

characteristics of surface plasmon resonance of silver nanoparticles were observed 

and the color of solution was rapidly changed from colorless to dark brown (S1-S8). 

This confirms that the silver nanoparticles are formed. The observed plasmon band 

was very symmetric, which indicates that there are not any aggregated particles in the 

solution. Stability of silver nanoparticles was investigated by staying the solutions at 

room temperature for one week (as shown in Figure 4.1B). The plasmon band of 

solution (S7-S8) was shifted to higher wavelength (Red shift) about 570 nm which 

suggests that there are some aggregated particles. This may be due to excess bases 

which decomposed the tapioca operated as the protecting agent.  
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Figure 4.1 The plasmon extinction spectra of silver nanoparticles (S1-S8) prepared at 

different volumes of NaOH (5, 10, 15, 20, 25, 30, 40, and 50 mL, 

respectively). Inset photo shows the color of silver nanoparticles changes 

with volume of NaOH. (A: 1 day, B: 1 week)  
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Plot of the intensity of the surface plasmon at extinction maximum against the 

volume of NaOH was shown in Figure 4.2.  

 

 

Figure 4.2 Plot of the intensity of the surface plasmon at extinction maximum against 

the volume of NaOH. 

 

The adequate volume of 0.1 M NaOH at 20 mL was considered as the 

appropriate condition for synthesizing silver nanoparticles with high stability. The 

maximum of extinction spectrum ( max) of AgNPs (S4) was at 400 nm with a narrow 

full width at half maximum (FWHM) about 70 nm. This result indicated that the size 

distribution of AgNPs was narrow (as shown in Figure 4.3 A). The plasmon band of 

AgNPs (S8) was shifted to higher wavelength (Red shift) about 570 nm which 

suggests that there are some aggregated particles (as shown in Figure 4.3 B). 

Synthesized silver nanoparticles (S4 and S8) after 1 week were characterized by 

TEM in order to confirm that S4 which particles are spherical and narrow size 

distribution and silver nanoparticles (S8) were aggregated.  
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Figure 4.3 The plasmon extinction spectrum of synthesized silver nanoparticles (A: 

S4 and B: S8) after 1 week.  
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TEM images of synthesized silver nanoparticles (S4) are shown in Figure 4.4. 

TEM measurements were used to determine the morphology and shape of 

nanoparticles. 

 

 
 

Figure 4.4 (A)-(C) TEM images of synthesized silver nanoparticles (S4); (D) Size 

distribution histogram.  

 

The particles are spherical in shape with uniform size distribution. The particle 

size ranged from 10 to 23 nm and the histogram showed the particle size distribution 

of the synthesized silver nanoparticles (the average particles size = 15.3 nm,  = 2.4 

nm). 
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TEM images of synthesized silver nanoparticles (S8) are shown in Figure 4.5. 

 

 

 

Figure 4.5 (A)-(C) TEM images of synthesized silver nanoparticles (S8); (D) Size 

distribution histogram.  

 

All of the particles are nearly spherical in shape. The nanoparticles appear to 

aggregate and form nanoplate. It indicated that shape had been changed but plasmon 

band did not occur at 340 nm (plate characteristic of transverse quardrupole).  The 

particle size ranged from 10 to 52 nm and histogram showed the particle size 

distribution of the synthesized silver nanoparticles (the average particles size = 15.8 

nm,  = 2.2 nm).  
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4.2 The silver nanoparticles growth kinetics 

 

The time-dependent study on the generation of the generated reducing species 

by alkaline-degradation of tapioca was conducted with 0.5 to 15.0 min incubation 

time.  

To evaluate the correlation between reduction time and particle growth, the 

reduction reaction was determined by sampling solution at defined time and analyzed 

with UV-vis spectroscopic technique. The time-resolved plasmon extinction spectra 

of the synthesized silver nanoparticles solution are shown in Figure 4.6. 

 

 
Figure 4.6 Time-resolved plasmon extinction spectra of synthesized silver 

nanoparticles (S4).  

 

The plasmon extinction at ~400 nm from all spectra in Figure 4.6 were plotted 

against time as shown in Figure 4.7. 

 

 

0.0

0.5

1.0

1.5

Wavelength (nm)

Ex
tin

ct
ion

300 400 500 600 700 800

0.5 min
1.0 min
1.5 min
2.0 min
2.5 min
3.0 min
3.5 min
4.0 min
4.5 min
5.0 min
6.0 min
7.0 min
8.0 min
9.0 min
10.0 min
15.0 min



 34 

 
Figure 4.7 Time-dependent plasmon extinction at plasmon maxima of the synthesized 

silver nanoparticles (S4).  

 

In order to investigate the reducing efficiency of the generated species, a time 

dependent UV-vis experiment was conducted and the results are shown in Figure 4.7. 

When the time increased to 1.5 min, the extinction slightly increased and dramatically 

increased as the reduction time reached to 4 min and nearly constant till 10 min before 

showing no significant change. The reduction profile show sigmoidal shape. An 

increasing absorbance in the first period corresponded to the seed nucleation, 

followed by a rapid particle growth (as suggested by LaMer [61] in colloidal growth 

mechanism). In our case, due to the high efficiency of the generated reducing species, 

the nucleation is very fast and the reaction was completed within 10 min. 

As the above results, it suggested that tapioca treated with 20 mL of 0.1 M 

NaOH having enough reducing power to convert silver ion to silver particles and the 

reduction reaction were almost complete at 10 min.  
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4.3 Investigation of various factors affecting the green synthesis of silver 

nanoparticles 

 

In this method, size, size distribution, and morphology of silver nanoparticles 

depend on the various reaction conditions such as concentrations of tapioca, 

concentrations of silver nitrate, and the reaction temperatures. 

 

 4.3.1 The concentrations of tapioca 

 The concentrations of tapioca were varied as follows: 0.05, 0.1, and 0.2% w/v.  

 

 

 

Figure 4.8 The plasmon extinction spectra of synthesized silver nanoparticles reduced 

with various concentrations of tapioca. (A: 0.05, B: 0.1, and C: 0.2% w/v) 
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concluded that the aggregation was due to an inadequate stabilization power of low 

concentration tapioca. It is possible that there are enough reducing species but the 

tapioca concentration is too low to stabilized silver nanoparticles. Silver nanoparticles 

with 0.1 and 0.2% w/v tapioca, the colloid did not precipitate. This implied that there 

was enough starch molecules to stabilize silver nanoparticles. 

 

 4.3.2 The concentrations of silver nitrate 

The concentrations of silver nitrate were varied as follows: 25, 50, 100, 200, 

and 500 ppm. The concentration of tapioca was maintained at 0.1% w/v.  Figure 4.9 

shows the normalized extinction spectra of the synthesized silver nanoparticles with 

various concentrations of silver nitrate. 

 

 
 

Figure 4.9 The normalized extinction spectra of the synthesized silver nanoparticles 

with various concentrations of silver nitrate. (A: 25, B: 50, C: 100, D: 200 

and E: 500 ppm) 
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the extinction maxima and FWHM. These results imply that the concentrations of 

silver nitrate affected the amount of silver nanoparticles but did not affect their size, 

size distribution and morphology. When the concentration of silver nitrate was 

increased to 500 ppm, the normalized extinction spectrum of synthesized silver 

nanoparticles showed the extinction maxima at longer wavelength (red shift) and 

broad spectrum. This indicates that there is the formation of the larger silver 

nanoparticles. Therefore, silver nitrate concentration was limited at 100 ppm. 

 

 4.3.3 The reaction temperature 

 To study the effect of temperature on the synthesized silver nanoparticles; 

reaction temperature was varied as follows: room temperature, 40 °C, 50 °C, 60 °C, 

70 °C, 80 °C, 90 °C, and 100 °C. The concentration of silver nitrate and tapioca were 

maintained at 100 ppm, and 0.1% w/v, respectively.  

 

 
Figure 4.10 The plasmon extinction spectra of the synthesized silver nanoparticles 

with various reaction temperatures.  
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  Temperature is one of the factors affecting chemical reaction of silver ion. 

Normally, when reaction is increased, reaction rate is also increased. For silver 

nanoparticles synthesized by chemical reduction, fast reduction rate trends to produce 

smaller silver nanoparticles due to the promotion of the nucleation of seeds instead of 

the growth of particles. This phenomenon also occurred in our green synthesis system 

as the temperature was increased from room temperature to 100 °C. It is observed that 

the maximum extinction occurs at about 400 nm. The extinction spectra of silver 

nanoparticles synthesized with reaction temperature (80, 90 and 100 °C) showed the 

higher conversion.  

 

4.4 XRD Analysis  

 

XRD pattern of the synthesized silver nanoparticles  with optimum condition 

(0.1% tapioca modified with 5 mL of 0.1M HNO3 and 20 mL of 0.1M NaOH, 

reaction temperature 80 °C)  was shown in Figure 4.11.  

 

 
 

Figure 4.11 X-ray diffraction pattern of the synthesized AgNPs. 
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The synthesized silver nanoparticles were highly crystalline with diffraction 

peaks corresponding to the face-centered cubic (fcc) phase of metallic silver. A 

number of Bragg reflections with 2 values of 38°, 45°, 64°, and 77° sets of lattice 

planes are observed which may be indexed to the (111), (200), (220), and (311) facets 

of the fcc structure of metallic silver. No extra diffraction peaks (impurities or oxides) 

were present, suggesting that the synthesized silver was essentially pure. 

 
4.5 The effect of acidic-alkaline treatment on the degradation of tapioca 

 

In order to investigate the effect of acidic-alkaline treatment on the 

degradation of tapioca; the solution was analyzed by attenuated total reflection 

Fourier transform infrared spectroscopy (ATR FT-IR). In Figure 4.12, ATR FT-IR 

spectra of tapioca solution, tapioca after treated with acidic and alkaline and tapioca in 

silver colloid were compared.  

 

 
 

Figure 4.12 Normalized ATR FT-IR spectra of tapioca, tapioca treated with acid, 

tapioca treated with acid and alkaline, and tapioca in silver colloid. 
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The broad absorption band from 3,600 to 3,000 cm-1 are according to the –OH 

stretching vibration and band at 2,900 cm-1 is attributed to C-H stretching modes.  An 

absorption band at 1,647 cm-1 is assigned to water adsorbed in the amorphous starch 

[62]. Under the acidic treatment, the ATR FT-IR spectra of tapioca showed that the 

long chain hydrocarbon could be only hydrolyzed to short chain but the structure does 

not change (glycosidic linkage of starch bridge   C1-O-C4  in the region 1,200–900 

cm-1). The confirmation of the breaking of the glycosidic bonds is the exits of the high 

number of end aldehyde groups which agreeable to the ATR FT-IR spectrum [63]. 

When the tapioca was under alkaline treatment, a significant change of ATR FT-IR 

spectra of tapioca was observed by the development of absorption band at 1,594 cm-1 

and 1,358 cm-1 attributed to –COO- asymmetrical and symmetrical stretching 

vibration, respectively [64]. This absorption band is expected to associate with 

generated reducing species upon degradation of tapioca molecules. The drastically 

change in the spectral envelop in 1,200 - 900 cm-1 which associated with the main 

structure of tapioca, was significantly changed. 

The observed spectral change agreed with that of the alkaline degradation of 

polysaccharide given by the Nef-Isbell mechanism [65-68]. The detail infrared band 

assignment is shown in Table 4.1. 

 

Table 4.1 Infrared spectra band assignments of starch [65-68].  
 

Infrared band (cm-1) Infrared band assignment 

860 

930 

 

1200 – 900 

1500 – 1300 

1610 – 1550/1420-1300 

1642 

1765 

3000 – 2800 

3600 - 3100 

CH2 deformation 

Skeleton mode vibration of α-1,4 glycosidic linkage  

(C-O-C) 

Bridge  C1-O-C4 stretching 

Vibration band related to the carbon and hydrogen atoms  

COO- stretching vibration (carboxylic acid salt) 

Water adsorbed in the amorphous region of starch  

C=O stretching vibration of carboxylic acid  

C-H stretching  

O-H stretching 
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 In this work, tapioca, a linear polymer of glucose units, was used as both the 

reducing and the stabilizing agent. The degradation of starch under alkaline treatment 

involves a β-elimination reaction followed by a series of rearrangement before 

liberation of a glucose unit. A simplified mechanism of starch degradation is shown in             

Scheme 4.1 [65-68].   

 

 
 
 
 
 

 
 
 
 

      
 
 

Scheme 4.1 (A) The possible process of starch under alkaline degradation to generate 

reducing end groups adapted from Nef-Isbell mechanism [65-68]. (B) 

Example of reducing species (C6) from degraded intermediates. (C) 

Reduction of silver ions to silver nanoparticles. 

 

C
HC-OH

HO-CH
HC-O Gl n

HC-O
CH2OH

OHH

HO-CH

HC=O
HC-OH

HC-O Gl n

HC-OH
CH2OH

C-OH
C-H

CH2OH
C=O

HC-OH
CH2OH

C=O
CH2

CH2OH
C=O

HC-OH
CH2OH

CH
HC-O Gl n

HC=O
C-OH

HC-OH
CH2OH

CH2

HC-O Gl n

HC=O
C=O

HC-OH
CH2OH

(I)

(III)

(II) (IV) (I)

(V) (I)
(I) keto-enol tautomerism
(II) enediol deprotonation
(III) anion isomerisation
(IV) β-hydroxycarbonyl elimination
(V) β-alkoxycarbonyl elimination
(VI) benzilic acid rearrangement

β-elimination

      

HO-CH
HC-O Gl n

HC-OH
C-OH

HC-OH
CH2OH
         

HC-O Gl n

HO-CH

HC-OH
C-O

HC-OH
CH2OH
 8  9  10 

 4 

HO-CH
HC-O Gl n

HC-O
C-OH

HC-OH
CH2OH

C(OH)(COOH)
CH2

CH2OH

HC-OH
CH2OH

CH2

HC-O Gl n

COOH
CH(OH)

HC-OH
CH2OH

 7 

 11 

(VI)

(VI)

C=O
CH2

CH2OH
C=O

HC-OH

CH2OH

C=O
CH2

HO-CH
C-OH

HC-OH

CH2OH

C=O
CH2

O=CH
HC-OH

HC-OH

CH2OH

+     3OH - C=O
CH2

O=C-O
HC-OH

HC-OH

CH2OH

+     2H2O     +      2e -

B

OH - OH -

2Ag++ 2e¯ 2Ag0

A 

C 

α-hydroxy ketone 

α-hydroxy ketone 

Enediol anion 

(4-deoxy-D-glycero-2, 3-hexodiulose) 

Starch 

Diketodeoxyglycitol 

4-O-methyl-D-glucose 



 42 

 From Scheme 4.1 A, the first step is the ring opening of glucose unit  1  via β-

elimination reaction to form 4-O-methyl-D-glucose (2). This unit can be formed as 

enediols (3) via keto-enol tautomerism (i), which is then followed by enediol 

deprotonation by hydroxide ions (ii) to form the enediol anion (4). After that 

isomerisation (iii) of anion (4) to (8) followed by reprotonation.  Anion (8) has the 

methoxyl group in the β–position relative to the negative charge of the anion and thus 

β-alkoxycarbonyl elimination (v) of the enediol anion (8  take places. Therefore, β-

alkoxycarbonyl elimination produces a diketodeoxyglycitol product (9). The 

degradation pathway then continues, keto-enol tautomerism (i) of (9) produces 4-

deoxy-D-glycero-2,3-hexodiulose (10 . β-alkoxycarbonyl elimination (v) occurs more 

readily than β-hydroxycarbonyl elimination (iv). The generations a new deprotonated 

end groups (e.g., structure (8) and (10)) can undergo further alkaline degradation like 

monosacharide degradation. M. A. Clarke, et al show that the monosaccharide 

degradation under an alkaline treatment could generated molecules with carbonyl 

functionalities [67]. Some of the degraded products show reduction potentials such as 

those with aldehyde and -hydroxy ketone functionalities. Aldehyde and α-hydroxy 

ketone can be efficient reducing specie under the employed alkaline condition 

(Scheme 4.1 B). As a result, silver ions could be reduced to silver nanoparticles as 

indicated by Scheme 4.1 C. A simplification of monosaccharide degradation products 

with different carbon number are shown in Scheme 4.2 [65-68].  Some of the 

intermediates have aldehyde or α-hydroxy ketone moiety which can function as 

powerful reducing species under an alkaline condition. There are at least 17 reported 

reducing species of different carbon number (as shown in Table 4.2).  
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Table 4.2  The possible degradation products of starch in alkaline solution those act 

as  reducing species [64-68].  

Numbers of 
Carbon 

Structure Product name  

6 

 

4,5,6-trihydroxy-2-oxohexanal 

 

6 

 

1,5,6-trihydroxyhexane-2,3-dione 

 

6 

 

4,5,6-trihydroxyhexane-2,3-dione 

5 

 

4,5-dihydroxy-2-oxopentanal 

5 

 

4,5-dihydroxypentane-2,3-dione 

5 

 

1,5-dihydroxypentane-2,3-dione 

5 

 

3,4,5-trihydroxypentanal 

 

 

HC=O
C=O
CH2

HCOH
HCOH
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CH2

HCOH
CH2OH

CH3
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HC-OH
HCOH
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CH2
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CH3
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HC-OH
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CH2OH
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C=O
CH2

CH2OH
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CH2

HCOH
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CH2OH



 45 

Table 4.2The possible degradation products of starch in alkaline solution (continued). 

Numbers of 
Carbon 

Structure Product name 

4 

 

4-hydroxy-2-oxobutanal 

4 

 

1-hydroxybutane-2,3-dione 

4 

 

3,4-dihydroxybutanal 

4 

 

2,3,4-trihydroxybutanal 

3 
 

2,3-dihydroxypropanal 

3 
 

3-hydroxypropanal 

3 
 

2-oxopropanal 

2 
 

2-hydroxyacetaldehyde 

2 
 

Acetaldehyde 

1  formaldehyde 

 

HC=O
C=O
CH2

CH2OH

CH3

C=O
C=O
CH2OH

HC=O
CH2

HCOH
CH2OH

HC=O
HCOH
HCOH

CH2OH

HC=O
HCOH

CH2OH

HC=O
CH2

CH2OH

HC=O
C=O
CH3

HC=O
CH2OH

HC=O
CH3

H2C=O
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4.6 Long term stability of the synthesized silver nanoparticles 

 

The prepared silver nanoparticles (S4) were kept at room temperature and 

regularly monitored by UV-visible spectroscopy for six months. 

 

 
 

Figure 4.13 Stability of the synthesized silver nanoparticles (S4). 

 

 It was noticeable that the colloidal solution of synthesized AgNPs was 

extremely stable at room temperature, with no evidence of precipitation of particles as 

determined by UV-visible spectroscopy (Figure 4.13). The intensity of spectrum of 

synthesized AgNPs measured after two months was decreased. The additional 

shoulder at about 550 nm was observed. This indicated that the spectrum consists of 

the broaden size and shape particles in the aggregated system. However, AgNPs were 

not precipitated in the solution. The tapioca is a linear polymer formed by glucose 

units, the extensive number of hydroxyl groups present in tapioca can facilitate the 

complexation of metal ion to molecular matrix that prevent the aggregation of AgNPs 

1.5

300 400 500 600 700 800
0.0

0.5

1.0

Wavelength (nm)

Ex
tin

ct
io

n

1 day
2 month

6 month

AgNPs 100 ppm



 47 

[24]. Moreover, it supposes that the long chain of tapioca structure can stabilize 

AgNPs via steric hindrance.  

 

4.7 Comparison of the synthesized silver nanoparticles reduced with tapioca and 

soluble starch 

 

UV-visible extinction spectra of the synthesized silver nanoparticles reduced 

with tapioca and soluble starch were measured. The results were compared to 

investigate the size and size distribution of silver nanoparticles. 

 

 
 

Figure 4.14 The plasmon extinction spectra of synthesized silver nanoparticles 

reduced with tapioca and soluble starch. 

 

The extinction spectra of synthesized silver nanoparticles with 0.1% w/v tapioca 

and 0.1% w/v soluble starch displayed in Figure. 4.14 show a well-defined plasmon 

band at 400 nm.  
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4.8 Comparison of green synthesis method and sodium borohydride method 

 

UV-visible extinction spectra of synthesized silver nanoparticles via green 

synthesis method and sodium borohydride method were measured. The results were 

compared to investigate the size and size distribution of silver nanoparticles. 

 

 

Figure 4.15 The normalized extinction spectra of synthesized silver nanoparticles via 

green synthesis method (A) and sodium borohydride method (B-C). 

 

The normalized extinction spectra of synthesized AgNPs via green synthesis 

method and sodium borohydride method are shown in Figure 4.15. The spectra show 

a well-defined plasmon band at 400 nm and there were slightly change in FWHM.  

TEM images and histogram of synthesized AgNPs via green synthesis (A)  and 

sodiumborohydride method (B-C) were shown in Figure 4.16. The synthesized 

AgNPs with sodium borohydride as a reducing agent, the particles are smaller than 

using tapioca. The average particles size of synthesized AgNPs via sodium 

borohydride method with 2% w/v soluble starch and 6% w/v polyvinylpyrrolidone are 

10.46 ± 5.34 nm and 12.92± 3.85 nm, respectively.   
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Figure 4.16  TEM images of synthesized silver nanoparticles via green synthesis (A)  

and sodium borohydride method (B-C).  Histogram showing the particle 

size distribution of the synthesized silver nanoparticles via green 

synthesis (D) and sodium borohydride method (E-F). 
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4.9 Antibacterial activity of the synthesized silver nanoparticles 

 
We investigated the antibacterial properties of synthesized silver nanoparticles 

against the Gram-negative bacterium Escherichia coli (E. coli) and Gram-positive 

bacterium Staphylococcus aureus (S. aureus), on agar plates containing different 

concentrations of nanoparticles. Tables 4.3 and 4.4 show percent reduction of bacteria 

as a function of the concentration of silver nanoparticles when approximately 106 

CFU were applied to the plates.  

 

Table 4.3 Antibacterial activities against Escherichia coli shown as percent reduction 

of bacteria 

 

 

 

 

 
 

 

 

       

Table 4.4 Antibacterial activities against Staphylococcus aureus shown as percent 

reduction of bacteria  

 

 

 

   

 

 

 

 

 

 

 

Sample 

Escherichia coli 

CFU/ml 
% reduction 

0 h 24 h 

Control 2.25 x 106 8.75 x 105 61.11 

AgNPs 2.5 ppm 2.25 x 106 < 1.0 x 101 99.99 

AgNPs 5 ppm 2.25 x 106 < 1.0 x 101 99.99 

AgNPs 10 ppm 2.25 x 106 < 1.0 x 101 99.99 

Sample 

Staphylococcus aureus 

CFU/ml 
% reduction 

0 h 24 h 

Control 3.22 x 106 2.65 x 106 17.57 

AgNPs 2.5 ppm 3.22 x 106 < 1.0 x 101 99.99 

AgNPs 5 ppm 3.22 x 106 < 1.0 x 101 99.99 

AgNPs 10 ppm 3.22 x 106 < 1.0 x 101 99.99 
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This study shows that silver nanoparticles have excellent antibacterial activity 

against E. coli. and S. aureus. A very low concentration of silver nanoparticles (2.5 

ppm) was shown to be an effective bactericide. 



CHAPTER  V 

 

CONCLUSIONS 

 

 

The present study demonstrates an eco-friendly and low cost protocol for 

synthesis of silver nanoparticles using tapioca solution supplied with aqueous silver 

(Ag+) ions. Tapioca has been used both as reducing agent and stabilizer.  100 ppm of 

silver nanopartiles can be synthesized from tapioca after treated with acid hydrolysis 

and alkaline degradation.  

The optimal condition for synthesizing AgNPs that are stable more than 2 

months (no precipitation) were as follows: using 20 mL of 0.1M NaOH added into 

0.1% tapioca solution and incubate solution at 80 °C for 40 min. Then the tapioca 

shows the efficiency to generate reducing species completely reduce silver ions and 

sufficiency stabilizes the obtained silver nanoparticles (AgNPs). Strong surface 

plasmon resonance peaks were observed at about 400 nm. The particles are spherical 

in shape with uniform distribution. The particle size ranged from 10 to 23 nm and 

histogram showed the particle size distribution of the synthesized silver nanoparticles 

with the average particles size 15.3 nm and standard deviation () 2.4 nm. When the 

volume of NaOH was added more enough (excess base), the plasmon band was 

shifted to higher wavelength (red shift) about 570 nm; this means that shows there are 

some aggregrated particles and silver nanoplate. This might due to excess bases which 

decomposed the tapioca that acted as the stabilizing agent.  

The correlation between reduction time and particles generation that tapioca 

treated with 20 mL of 0.1 M NaOH had enough reducing power to convert silver ions 

to silver particles and after 10 min, the reduction reaction are almost complete.  

X-ray diffraction (XRD) showed that the silver nanoparticles were face 

centered cubic (fcc) structure. In order to investigate the effect of acidic-alkaline 

treatment on the degradation of tapioca; the solution was analyzed by attenuated total 

reflection Fourier transform infrared spectroscopy (ATR FT-IR). Some of the 

degradation intermediates contain functional groups with reduction potential (i.e., 
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aldehyde and α-hydroxy ketone moieties). The observed spectral change agreed with 

the alkaline degradation of polysaccharide given by the Nef-Isbell mechanism.   

The synthesized silver nanoparticles have excellent antibacterial activity 

against E. coli. and S. aureus. A very low concentration of silver nanoparticles (2.5 

ppm) was shown to be an effective bactericide.  
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Scheme 1. Reaction mechanism of starch under alkaline degradation. 
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Scheme 2. Reaction mechanism of monosaccharide under alkaline degradation. 
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