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CHAPTER1

INTRODUCTION

In a general form of a linear programming problem min ¢”x s.t.Ax > b, x > 0, if an op-
timal solution exists, we usually find an optimal solution of this problem by the simplex method.
However, we focus on a linear programming problem with vectors of uncertainty in this thesis.
In other words, the coefficient matrix A and right hand side b have uncertain information in a
vector form. Uncertain entity is an unknown information or a situation that is difficult to explain
its realization of that entity. For example, productivities of both brown and white sugar (kg/bag)
may have three realizations (Below average, Average and Above average) where the probability
of occurrence depends on the weather. The total demand b; may also have realizations in the
same pattern of economic behavior. Therefore, three vector realizations could be Below average
(realization 1) : = (7, 8,45) with probability f;, Average (realization 2): = (8,9, 50) with prob-
ability fo and Above average (realization 3): = (9, 10, 53) with probability f3, where («, 3,7)
in each realization refers to the productivities (kg/bag) of brown sugar, white sugar and the to-
tal demand (kg) of sugar, respectively. This thesis concentrates on such an uncertainty (called
vectors of uncertainty) as explained in the example above. There are many types of uncertainty,
such as random set, possibility distribution and probability interval. However, we concentrate
only on the probability interval type of uncertainty that can be represented as a random set. The
references [3], [7] and [8] showed the relationship between a probability interval and a random

set and the conditions when they can be represented the same information.

When a problem is a linear program with uncertainty, it is impossible to find an optimal
solution directly. A decision maker needs to have a policy on how to use the uncertainty. The
methods to solve a linear program with uncertainty by using pessimistic, optimistic, or minimax
regret approaches are presented in [2] and [7]. The pessimistic approach is the opposite of the
optimistic one. It provides the maximum of the expected recourse values when the original linear
program with uncertainty is a minimizing problem. Pessimistic and optimistic solutions provide
the boundary of the actual objective value when we do not know the exact realization. The min-

imax regret approach provides the minimum of the maximum regret due to not knowing the



actual probability to establish an expected recourse model. A minimax regret solution would
minimize the maximum difference between the actual and the best possible outcome under a
particular scenario when we cannot forecast the future result. Comprehensive methods for han-
dling linear programming problems under mixed uncertainty by using pessimistic, optimistic,

and minimax regret approaches are stated in [9].

The method to find a minimax regret optimal solution using the relaxation procedure is
our main interest in this manuscript. We have an objective to improve the relaxation procedure
in [9] by using the idea of ordering. We want to reduce the size of probability boundary (the
lower probabilities) of all possible ordering cases and reduce the calculation time. Nevertheless,
we limit the number of each of uncertain vectors and uncertain constraints to be only up to five
constraints and three realizations. Because for the case of one or two realizations, there are no
differences between the original and the improved methods. For the case of more than three
realizations, it is not difficult to see that if we apply our method to only the partial of any three
realizations and leave the rest normally, we still would be able to reduce the calculation time.
Therefore it is not necessary to expand our investigation to more than three realizations. We

consider only up to five uncertain constraints because of the similar reason.

This thesis divides into four chapters. In Chapter II, we present the preliminaries and
the concept of a stochastic expected recourse model and an interval expected recourse model,
which are important to transform the uncertain problem into various approaches. We present the
idea of minimax regret of an uncertain expected recourse problem, the algorithm for a general
relaxation procedure, the algorithm using the idea of ordering, and the idea how to improve it in
Chapter III. We then show a process that we find the average time by MATLAB in Chapter IV.

We finally draw the conclusion and suggest for future works in Chapter V.



CHAPTER 11

PRELIMINARIES

In this chapter, we present all basic knowledge needed in order to deal with a relaxation
procedure for the minimax regret approach. We start with a literature review on minimax re-
gret approach of linear programming problems with uncertainty. We then provide some basic
idea of an uncertain information such as probability interval, random set, believe, plausibility,
assignment function, and provide the relationship between them. After that, we demonstrate the

concept of a stochastic expected recourse model and an interval expected recourse model.
2.1 Literature Reviews

There are some literature that worked on the minimax regret approach of linear program-
ming problems with uncertainty, which tried to show new methods to solve problems under
their working conditions. In 1995, Inuiguchi [4] studied a linear programming problem with
interval objective function coefficients by using minimax regret criterion. Mausser and Laguna
[5] wanted to find the method to reduce the time per iteration of minimax regret for linear pro-
grams with interval objective function coefficients. So, they proposed their heuristic method in
1999. This heuristic approach concentrates on the minimax regret problem which can guaran-
tee solving a maximum regret problem to its optimality. The result of this method is that the
time per iteration reduces, but the total time increases. Averbakh [1] suggested a method for
finding solutions of minimax regret for a group of combinatorial optimization problems with
objective functions of minimax type and uncertain objective function coefficients in 2000. The
approach based on reducing a problem with uncertainty to some problems without uncertainty.
He described the method on bottleneck combinatorial optimization problems, minimax multi-
facility location problems and maximum weighted delay scheduling problems with uncertainty.
Thipwiwatpotjana and Lodwick [8] presented comprehensive methods for handling a linear pro-
gramming problem under mixed uncertainty by using pessimistic and optimistic, and minimax

regret approaches in 2013.



We know that there are many methods to solve a linear programming problem with un-
certainty. However, in this work we interest in improving the minimax regret method for finding
an optimal solution by a relaxation procedure. Uncertain information in our issue is probabil-
ity intervals that can be represented by random sets. We use the idea of belief and plausibility
measures to represent a random set, since they are equivalent to each other. We acquaint with
probability intervals more than random sets because probability intervals are easier for user to
understand. A probability interval and a random set are not equivalent, but they may provide
the same information under some conditions, see [3]. Therefore, we can choose to present that

information in a way that is more beneficial to us.

We provide the relevant mathematical definitions of uncertain information including a

reachability probability interval, random set, believe, and plausibility, in the next section.
2.2 Probability Intervals, Random Set, Believe and Plausibility Measures

In this section, we define set X = {x1,x9,x3...,2,} to be the set of all n realizations

of uncertainty information and P(X) be the power set of X .

Definition 2.2.1. Probability interval (see [8]).

Let X = {x1,xz9,...,2,} be the set of all n realizations of an uncertainty information
and L = {[l;,u;];3 € {1,2,3,...,n} | 0 < I; < u; < 1}. We define P’ as the set of probability

distributions on X with respect to L as

n

Pl = {f D P(X) = [0,1] [ 1 < f({a}) Swiy > f{w}) = 1,Vi= 1,2,3,...,n},
i=1
where f({x;}) is a probability density of {z;}.
The set L is called the set of probability intervals, or the probability interval, in short. While,

the set P is the set of all possible probabilities associated with L.



Definition 2.2.2. Proper probability interval (see [3]).

A probability interval L = {[l;,u;] C [0,1],7 = 1,2,3,...,n} is called a proper proba-

bility interval if P is nonempty.

n n
Therefore, Z i <1< Z u; always holds under the proper probability interval. For

i=1 i=1
each A C X, the I%eference [3] déﬁnes the smallest and the largest probability of set A as

N

~—~

=
1}

mingcpr f(A), and

=
=
1

maxscpr f(A).

Functions [ and u are not probabilities in general, since [(A) + [(A°) may be less than 1

and u(A) + u(A°) could be greater than 1, where A° is the complement of A.

The next definition is the condition of a proper probability interval which ensures that for
each ¢, the lower bound /; and the upper bound u;, can be reached by some probabilities in the

set PL.

Definition 2.2.3. Reachability (see [3]).

A proper probability interval L = {[l;, u;],7 = 1,2, 3, ...,n} is reachable if
le—i—ui < 1andZuj+l,- > 1, Vi.
j#i J#i

However, when L is a reachable probability interval, it was proved in [2] that

(). 1({x;}) =1 and u({z;}) = w4, Vi € {1,2,3,...,n}

(ii). l(A)_max{Zli,l— Z uz},VAgX,

r,EA T, EA°

(iii). u(A):min{Z w;, 1 — Z li},VAgX.

T, €EA T, EA°

We use [(A) and u(A) to represent the boundary of probabilities of a set A;

n

{1 < fHai}) Sy fad) = LVi} = {f[1(A) < f(4) < u(A), YA € P(X)}.

i=1



Random set is probability over the power set of X represented by a basic probability

assignment function m : P(X) — [0, 1].

Definition 2.2.4. Probability basic assignment function and random set (see [6]).

Let P(X) be the power set of X. A probability basic assignment function m is a mapping

m: P(X) — [0, 1], such that Z m(A) = 1, generates a random set (F, m), where F = {A €

AeF
P(X):m(A) > 0}.

For example, an opinion poll for a governor’s election, let X = {a,b,c,d,e} be the
set of all candidates. There are 10,000 individuals providing their preferences. They may not
have made their final choice, since the poll takes place well before the election. Suppose that
3,500 individuals support candidates a and b, 4,500 individuals support candidates c, d and e,
500 individuals support candidates a, 500 individuals support candidates b and d, and 1,000
individuals support all candidates (have no opinion yet).This example can be presented as subsets

of X shown in figure below.

{a,b} = 3500
{c,d, e} = 4500

@ {a} =500
o) D {enbed e} = 1000

Figure 2.1: Random set example (a governor’s election)

We can find the value of a basic probability assignment function m as follows:

m({a,b}) = 0.35, m({c,d,e}) = 0.45,
m({a}) = 0.05, m({b,d}) = 0.05,
m({a,b,c,d,e}) =0.1.

We will not get into the details of a random set but provide the definition of believe and

plausibility measures which are closely related to a random set. Belief and plausibility measures



can be characterized by a basic probability assignment function m as follows.

Bel(A)= Y m(E),

E,ECA

and

Pl(A) =1-Bel(A%) = > m(E).

It is well known as shown in [2] that
Bel(A) < f(A) < PI(A),

where f is an unknown probability of A, given a random set of information. However, reader

can read more details in [3] and [6]

Definition 2.2.5. Belief (see [3]).

Let P(X) be the power set of X. A belief measure is a function Bel : P(X) — [0, 1]

that satisfies the following properties:

* Bel(0) =0,Bel(X) =1, and

* Super-additive property: for A, Ag, As,..., A C X,

Bel(AyU---UA;) > > Bel(Aj)— > Bel(A; N Ay)

1<j<t 1<i<k<t

+o A (=D Bel(Ay N Aa N A3 N -+ N Ay).

Definition 2.2.6. Plausibility (see [3]).

Let P(X) be the power set of X. A plausibility measure is a function Pl : P(X) — [0, 1]

that satisfies the following properties;

* PI(0)=0,Pl(X)=1,and

¢ Super-additive property: for A, Ao, Az, ..., A; C X,



PI(AyU---UA) < ) PU(A)— > Pl(A;NA)

1<j<t 1<) <k<t

+o A (=D)IPI(AT N Ay N Az NN Ay).

The definitions above mean that belief and plausibility measures lose the additive property

of probability measure. Thus, we have

Bel(A) + Bel(A¢) <1, and
PI(A) + PI(A°) > 1.

Boodgumarn [2] provided the meaning of belief and plausibility in a general context as
follows. Bel(A) means a user’s beliefs that one of the elements in A could happen for sure with
the proportion Bel(A). PI(A) means it possible that one of the elements in A could happen

with the proportion PI(A).

A given probability interval can be converted into a random set that has the same infor-
mation when it is
1. a reachable probability interval,
2. having at most two indices, say 7; and 79, such that Z l; +u;, <1and Z L 4w, < 1,
3. bounded by Bel(4) = I(A) and PI(A) = u(A),¥A & P(X). -
We will not get into the details of the proof of this statement. More details can be read in [3],

[7], and [8].

In the next section, we explain a general linear programming problem with uncertainty and
its associated recourse model. A recourse model that we use in our work is an interval expected
recourse model. Uncertainty in the model is limited to a probability interval uncertainty that can

be presented as a random set.



2.3 Recourse Models for Solving Linear Programming Problems with Uncertainty

2.3.1 Stochastic Expected Recourse Model

We change the pattern of uncertainty to be a vector form. Let x be the vector of variables
of size n and ¢ be the vector of coefficients of size n. Consider the following linear programming

problem with uncertainty:

7 ) (2.3.1)
A x> by,
Bx >d
x>0,
where (Ai, lA)z) is a vector of uncertainty with k; realizations, foreachi =1,2,3,...,m. Bx > d

is a deterministic constraint. We can write all k; realizations of (A;, b;) as (A4, , b;, ), (A, bi, ), - - -,
(A, ,bi, ). Each j' realization of (A;, b;) has the associated probability fi,forj =1,2,3,... k.
In our work, we will skip Bx > d and consider only uncertain constraints because it has no effect
on the complexity of the uncertain problem. An example of an uncertain constraint is as follows.
Suppose ;1 and xo are the number of bags of brown sugar and white sugar (at the same fixed
price per bag), respectively. The i constraint can be referred to as to a demand constraint,
where A; is an uncertain vector of weight (kg) for each bag of brown sugar and white sugar and
b; is an uncertain demand (kg). Note that x; and x5 may not need to be the whole numbers, a
customer could get a half a bag of brown sugar for example. The productivities of both types of
sugar may have three realizations (Below average, Average and Above average) depending on
the weather. The demand b; also has realizations in the same pattern under economic behavior
that means if the productivities is a below average the demand is a below average demand, too,
since a manager could set a higher price per bag of sugar to reduce the customer’s demand.

Therefore, three vector realizations are as follows.
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(7,8,45) with probability f;,
(8,9, 50) with probability f;,
(9, 10, 53) with probability f;,.

Below average (realization 1) | (A;,, b;,)
Average (realization 2) Ay, biy)

(
Above average (realization 3) | (A, b;,)

Table 2.1: Realizations of an uncertain demand constraint

When a linear programming problems is deterministic, it can be solved by using a simplex
method by adding slack/surplus variables. If a constraint is uncertain, we remodel the problem
as a two-stage stochastic expected recourse model. We can rewrite (2.3.1) to be the stochastic

expected recourse model as follows.

m

min  ¢’x + Z si(ffwy)

=1
s.t. A{lx +wy, > b11

A1T2x +wi, > b12

A{klx + Wiy, > blkl
(2.3.2)
Afux + Wy > by

Az;mx + Wiy = by

AT x4+ Winy, = b

Mk = YMky,
x,w>0,
where x is the first stage decision vector and w; = (w;, , wj,, Wi, . . ., w;, ) is the second stage
(recourse) decision vector according to the original i*" constraint, with the corresponding prob-
s T
ability f; = (fi,, fiz, fis,- - - fiy,). Each w;; defines as w;; = max{(b;; — Aj x, 0)}. The
m
term Z S; (fiTwi) is the expected recourse value, when s = (s1, 82,53, , Sp,) iS @ penalty
i=1
vector with respect to the original constraints. Example 2.3.1 shows the corresponding stochas-

tic expected recourse problem of the demand constraint of brown sugar and white sugar with

minimization of its transportation cost.
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Example 2.3.1. Consider a linear programming P; with uncertain vector (A1, by )

Pi: min 3z + 229
AT .
st. Ajx>b

x> 0.

Suppose we know realizations of (Al, 31) and their probabilities as shown in Table 2.1. The
corresponding stochastic expected recourse problem with recourse variables (w1, wa, w3) of the

demand constraint is

Py :min 3wy + 2w2 + s1f1,w1, + 81.f1,w1, + s1f15w15

s.t.  Tx1+ 8z + wy, > 45

8x1 + 9x2 + Wi, > 50
(2.3.3)

9z1 + 1029 + w1, > 53

X, Wi > 0.

How do we interpret a result of the expected recourse problem (2.3.3) if we do not know
the exact probability, for example, if fi, € [3,3], f1, € [, %] and f1, € [¢,5]? One of the
approaches is to use an idea of an interval expected value, which will be presented in the next

section.
2.3.2 Interval Expected Recourse Model

We know that a linear program with uncertainty cannot have an exact optimal solution.
Some common approaches for such a problem are to find the maximum/minimum expected
objective value or a minimum of maximum regret solution. In this thesis, we define 2 to be
the set of all feasible solutions of problem (2.3.2) and consider only uncertainties that are in the
form of interval probabilities which can be written as random sets. Thus, our general uncertain

expected recourse problem with unknown probability in probability interval is stated as follows,
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using the same feasible set 2 as (2.3.2).

m
min  ¢lx + g si(ffwy),
(x,wi)EQ P

2.3.4
where fi:(fiufiz?fig?"'afiki)and ( )
fi; € [lij,ug;] foralli =1,2,3,...,mand j =1,2,3,... k.
Let ¢ be an uncertain information of our concern, and T = {t1,t2,t3,...,t;} be the set of all

realizations of ¢ where t; < to < t3 < --- < t;. We use the idea of Bel and Pl for finding the

smallest and the largest probabilities on set A, for any A C T as follows.

Bel(A) =1(A) =max [ Y 1;,1— ) u], (2.3.5)
t;€A t,eAc

PI(A) = u(A) =min [ Y u;, 1= > 1|, (2.3.6)
tieA tieAc

where the probability of {¢;} is bounded in [I;, u;].

Moreover, Nguyen [6] showed the probabilities generating the smallest and the largest

expected values of £ when we have a random set uncertainty as follows.

f(tl) = Bel({tl,tg, cee ,tk}) — Bel({tg,t;),, s ,tk})
f(ti) = Bel({ti,tit1, -+ tx}) — Bel({tiy1, tiva, -, tx})
f(te) = Bel({tx})
(2.3.7)
f(t1) = Bel({t1})

7(751) = Bel({tl, tg, e ,ti}) — Bel({tl, t2, e ,tifl})

f(tx) = Bel({t1,t2,--- ,tx}) — Bel({t1,t2, - ,tk—1}),
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where f and f are probabilities that provide the smallest and the largest expected values, re-
k koo
spectively. The boundary of expected value of £ is Z tif(t5), Z tjf(t;)| - This boundary
j=1 j=1
is called an interval expected value. Sometimes we will call f as the lower probability. Hence

we can find f and f in the form of /; and u; when we have probability intervals represented as

random sets. Thus in case of three realizations ¢ < to < t3, we know that

f(t3) = Bel({t3})

— max(ls, 1 — w1 — us)
f(t2) = Bel({t2,ts}) — Bel({ts})

= max(ly + I3, 1 — uy) — max(ls, 1 — uy — us)
F(t)  =Bel({ty,t2.t3}) — Bel({t2,t5))

=1- max(l2 + 13,1 — ul)
(2.3.8)

f(tr) = Bel({t1})

ax(l1,1 — s — ug)
({t1,t2}) — Bel({t1})

max(

f(ts) = Bel({t1,ta,t3}) — Bel({t1,t2})

=1-— max(h + 15,1 — U3).

=
I
S B

el

lh1+1,1— U3) — max(ll, 1—ug — U3)

For the rest of the thesis, we will work on only three realizations of uncertain vector for
each uncertain constraint as stated in the end of chapter 1. We can apply the idea of System
(2.3.8) to our vector of uncertainty when its realizations can be ordering; i.e, let (Al, l;Z) be a
vector of uncertainty with k; realizations: (A;,,b;,), (A, biy), -+, and (A;,_, b;, ), we have
(Ai;;bi;) < (A4, b;;) when j <. Please note that (A;;,b;;) < (A;;,b;) ifand only if A;, < A;,

and b;; < b;,.

Let us continue using Example 2.3.1 to explain how to find probabilities that provide an
interval expected recourse model with interval probability (with the properties of random set

information) by using the idea (2.3.8).
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Example 2.3.2. Consider the expected recourse problem P, in Example 2.3.1, when we do not

know the probability f; = (f1,, fi,, f1,) for certain, but we know that fi, € [3,3], fi, €

[+, 2], and f1, € [§, 3]. Therefore, to find an interval expected value to the objective function of

6

problem P, with the unknown probability (f1,, fi, and fi,), we have to know the ordering of

wy, , w1, and wy, which are corresponding to vectors of realizations in Table 2.1. All possible

ordering cases of wy,, w1, and wy, with their corresponding lower/upper probabilities to get the

boundary of interval expected value are in the table below.

Ordering cases

Probability L provides

the smallest expected value

Probability f; provides

the largest expected value

ill ilz zls 711 ?12 713
enSwnsSw| 3| 4|4 |4 |k |4
wnswosgun| 4 |4 |4 [ 4[4 ]
wasSwwSwo| 4 | 3 |4 |4 ||
waswnsen | 4 | 4 [ 4 [ 8 [ 4] 4
woSwisw| 3| 4 |3 |8 |4 |8
oo | 4 | & |4 [ 3[4 8

However, a decision maker may prefer to have a solution that can present a reasonable

regret for not knowing an exact probability, which leads us to the minimax regret approach. In

the next chapter, we provide the minimax regret of an uncertain expected recourse problem, the

idea of a relaxation procedure and its improvement using the ordering idea.



CHAPTER III

MINIMAX REGRET OF UNCERTAIN EXPECTED

RECOURSE PROBLEM WITH ORDERING

The objective of our work is to improve the relaxation procedure of the minimax regret
method by using the idea of ordering. In our work, we use only three realizations of each un-
certain vector and up to five uncertain constraints. In this chapter, we first explain the minimax
regret of uncertain expected recourse problem. After that we provide a general relaxation pro-
cedure, and a relaxation procedure using ordering from the reference [9]. We give a modified

version of the relaxation procedure by ordering in the last section.
3.1 Minimax Regret of Uncertain Expected Recourse Problem

A minimax regret of an uncertain expected recourse problem is a problem trying to min-
imize the maximum regret solution over all unknown probability vectors in the set of all proba-

bilities generated by probability intervals, M, where

M = {(fl)fQ)f3)' 7fm) |f7, = (fil)figafi37" : ’flkl) where fi]' S [ZZ],UZJ]}

Consider the stochastic expected recourse model

m

min  ¢’x + Zs,(fZTwz)
i=1

s.t. Ag;x+wi]. >b;; fori=1,2,3...,mandj =1,2,3,...,k (3.1.1)

x,w>0.

The objective function of problem (3.1.1) is to minimize

m
2(f,x,w) :=cTx + Z sifTwg,

=1

where w = (Wi, wa, w3 ..., wp,) and w; = (Wi, , Wiy, Wig, . . . ,wiki).
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We now consider the problem

min z(f,x,w).
(x,w)eQ (f’ ’ )

Given a probability f € M, the regret shows the amount of the objective value that a candidate

solution (x,w) deviates from the true objective value, which can be expressed by

r(f,x,w) := (z(f,x,w) — min z(f,fc,ﬁ’)),

(x,w)eN

where ( m%nQ z(f,x,w) is the true objective value with this given probability f.
X,W)€

The best of the worst regret (minimax regret) over all f & M is

(;3;29}22}1\3[4 (z(f,x, w) — (;3;1619 z(f,x,w)). (3.1.2)

A method to find an optimal solution of the minimax regret for an uncertain expected recourse
problem has four general steps as follows.

Algorithm 1: General relaxation procedure (see [9]).

1. Initialization. Choose f<1) € M and solve ( m%nQ z(ﬂl),x, w) to obtain its optimal solu-
xX,w)e

tion (¥(1), w(1)), then set p = 1.

2. Solve the following current relaxed problem to obtain an optimal solution (R®); (x(P), w(P))).

min R
R;(x,w)eQ
st. R>0 (3.1.3)

R > (=(f0,xw) = 2(f,30,950)),i = 1,2,3,...p.
3. Obtain an optimal solution ( fP+1) ®+1) 5 (®+1)) where its optimal value Z(®) s

7)) — () @)y _ 7. w) ).
feM?(%)eQ<z(f’x W) Z(ﬁx,W))
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4. If Z®) < R terminate the procedure. An optimal solution to the minimax expected

regret model is (R(p);x(p), w(p)). Otherwise, set p = p + 1 then return to step 2 . O

3.2 The idea of ordering

Let £ be an uncertain information of our concern, T' = {t1,to,13,...,t% |t; € R} be the
set of all realizations of f, where ¢ can be ordering as t1 < t9 < t3 < .- < {. Boodgumarn
[3] said that we can use the idea of Bel and P! for finding the smallest and the largest values of
probability on set A, for any A C T from equation (2.3.5) and (2.3.6). When a probability is
bounded in [l;, u;], we know all possible ordering cases of all realizations of a probability interval
uncertainty that can be represented by a random set. We can use a method in Nguyen [6] to find
the largest and the smallest expected values of £ from system (2.3.7). We apply this idea to step
3 of Algorithm 1 when we distribute the term Z®) as follows.

(p) _ (P) ()Y _ X. W
Zs (i{g?gﬂ(Z(f7x W) Z(f?x,W))

k1 km
= (}1}2)129 (cT(x(p) —X)+s Z f1 (wg‘?) —Wy;) + -+ S Z fm; (wsﬁ])_ — wmj)).
*W j=1 j=1

We start step 3 by using f and the optimal solution (x(p), w(p)) from step 2. We then find the

different values of terms (wg) — W1, ), (wg) — W, ), (wéf) — W3, ), - (wﬁ,’jj — W, ) and make

the ordering of them. We can find probability &;; that corresponding to the ordering when h =

(h1,ha,h3, -  hy) € M, hi = (hiy, hiy, hig, -+, hi, ) and h;, is corresponding to the order

of (wg’ )—wij f). Moreover (X, w},) is an optimal solution for @mﬁég z(h,x,w)and ZJEP) < Z}Ep).

We continue to find a new h;; by using the following system.



7P _ ¢ (x®) —Xp) + 51 Z f1; (wy ) w1, f) +
j=1
k1
< cT(x(P) —Xf) + 51 Z hy; (wﬁp) —wy,f) +
j=1
k1
< cT(x(P) _xh) + 51 Z h,l ('U)l wlj,h) +
j=1
= max (z(h,x®) w®) — 2(h,% w))
(x,w)eQ
7P

3.3 Relaxation Procedure by Ordering

km

o+ Sm Z fm](wy(ﬁj) - wmj,f)
j=1
km

ot Sm Y g (W) — @, )
j=1

Fm
S Y Ty (W) — By )
j=1
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(3.2.1)

Thipwiwatpojana and Lodwick [9] used the ordering idea (3.2.1) to improve the general

relaxation procedure by changing the set M into M, where M is the set of probabilities of all

possible ordering cases of realizations that provide the smallest expected values in step 3 of

the p!" iteration of Algorithm 1. We follow step 1 and 2 from the Algorithm 1 and use the idea

(3.2.1) of ordering in step 3, which helps to obtain a modified version of the relaxation procedure

in Algorithm 2 as follows.

Algorithm 2: Relaxation procedure by ordering of realizations see ([9]).

1. Initialization. Choose j<1) € M and solve ( m%nQ z(fm,x, w) to obtain its optimal solu-
xX,w)e

tion (1), w(1)), then set p = 1.

2. Solve the following current relaxed problem to obtain an optimal solution (R®); (x(P), w(P))).

min R
R;(x,w)eQ

st. R>0

R 2 (z(fi),x,w) - Z(j(Z)ax(l)aw(l)))al = 1a2537"' y D-

(3.3.1)

3. Start with f<p) and work on the system (3.2.1) in order to find % then calculate Z,(,p ) and
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its optimal solution (), w()),

4. If Z}EP) > R setp =p+1and ﬂp) = h, then return to step 2. Otherwise, go to next

step.

5. If Z,(lp ) < R®), select f?) € M # 0 that has not been used in this iteration of step
3 and reprocess System (3.2.1) until we obtain & such that Z,gp ) > R®) | then continue
working on step 4. Otherwise, M = () then we terminate the procedure. Finally, an

optimal solution of the minimax expected regret model (3.1.2) is (R(p);x(p), w(p)) . g

We continue modifying Algorithm 2, by removing f(i);z' =1,---,p— 1, in step 2 from the
set M before using it in step 3, since we had already knew the value of these (z(ﬂi),x, w) —
z(ﬂi),i(i),w(i))) from (3.3.1), we only need to check Zj, for the rest of A € M. Checking the
correspondence between ordering of (w;; — w;; 1) and the probability & when every Z ,gp ) < R®)
at step 5, if they are corresponding to each order, we stop the algorithm, i.e., we do not need to

keep doing until getting M = ().
3.4 Modify Relaxation Procedure by Ordering

Algorithm 3: Modify relaxation procedure by ordering of realization and reducing the

size of M.

1. Initialization. Choose j<1) € M and solve ( m%nQ z(fm,x, w) to obtain its optimal solu-
xX,w)e

tion (1), w(1)), then set p = 1.

2. Solve the following current relaxed problem to obtain an optimal solution (R®); (x(?), w(®))).

min R
R;(x,w)eQ

st. R>0 (3.4.1)

R> <z(f<i>,x,w) _ z(ﬁ@,x(i),w(i))),i —1,2,3,....p.

3. If M =0, (R® then x®); w(®)) is an optimal solution. If M # 0, start with f7) and set

M = M\{f(’) |i=1,2,3,...,p}, then work on the system (3.2.1) in order to find k.
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Ifh ¢ M then (R®);x(®) w() is an optimal solution for our minimax regret problem.

Else, calculate Z,(lp ) and its optimal solution (¥(), w(®)).

4. If Z,(lp) > R® setp =p+1, andﬂp) = h, then return to step 2. Otherwise go to the

next step.

5. If Z,(lp) < R®) set M; = M. Select j<p) € M; # () that has not been used in this
iteration of step 3, and reprocess the system (3.2.1) until we find & such that Z,(lp ) > R®),
then continue to step 4. Otherwise, M; = () and we terminate the procedure with an

optimal solution to the minimax expected regret model ([

We already show three algorithms of relaxation procedure. We then implement the codes
and find the average time in MATLAB using computer with Processor: Intel(R) Core(TM) i7-
4770 CPU @ 3.40GHz (8 CPUs), 3.4GHz Memory: 8192MB RAM, Windows 10. In the next
chapter, we first provide the step of setting up our algorithm and finally provide the results and

discussions of all algorithm.



CHAPTER IV

RELAXATION PROCEDURE WITH MATLAB

From previous chapter, we know that we can reduce the size of probability boundary (the
lower probabilities, f) of all possible ordering cases by using the idea of ordering (3.2.1). In
this chapter, we want to reduce the calculation times by implementing all algorithms in MAT-
LAB. We first random 100 uncertain examples each for up to five decision variables and up to
five uncertain constraints. Thus we have the total of 25 cases. Each case contains 100 random

uncertain examples. Then we find an optimal solution and record the time used for each example

in each algorithm. Finally, we find the average time of each case by using the process below.

Fix number of de-
cision variables and
| uncertain constraints |

Y

~
J

Randomize all Randomize reachable
coefficients Uncertain Examples probability intervals
(see APPENDIX A) (see APPENDIX B)

r
\

Y
Implement each

example in
each algorithm
( Algorithm 1 ] ( Algorithm 2 ] ( Algorithm 3 ]
(see APPENDIX C) (see APPENDIX D) (see APPENDIX E)

v . . A4 . . 4 .

Record the time Record the time Record the time

of each example of each example of each example
a " 3\ a l 3\ a " 3\

Find the average Find the average Find the average

time of each case time of each case time of each case

J \ \

Y

Compare the time
of each algorithm

Figure 4.1: The process to find the average time used in Algorithms 1, 2 and 3.
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Examples in our work are stochastic expected recourse problems that we limit the number
of each realizations of uncertain vectors and uncertain constraints to be only three realizations
and up to five constraints. Uncertain entities in our example are probability intervals that can
be represented as random sets. A problem of five constraints and three realizations for each
constraint, the total scenarios of a linear programming with uncertainty are 15 scenarios. If we

reduce the number of constraints, the scenarios decreases corresponding to the constraints.
4.1 The Process for Finding an Average Time

Step 0: Realizations of uncertain vectors is fixed to be three realizations.

Step 1: Fix a number of up to five decision variables and up to five uncertain constraints. Then
randomize ¢ € [—100, 100] and each component of an uncertain vector (4,b) in [—100, 100].
Check that all realizations can be ordering. Also randomize s; in [1,100] because the
problem is minimizing. Probability interval must be able to be represented by the random

set (see APPENDIX A). A generated uncertain recourse example is as follows.

m
. T T
min c'x+ si(f:w;
(x,wi)EQ ; Z(fl l)’
T ) .
s.t. Al-jx +wi; > blj,
x,w>0,

where  fi, € [li;,uy]; fori=1,2,...,m, j=1,2,... k.

Check the feasibility of the uncertain recourse example. Keep randomize all parameters

until we have 100 feasible uncertain recourse examples.

Step 2: Implement each of the feasible uncertain recourse examples with Algorithm 1, 2 and 3.
We start with the same process in step 1 and step 2 of each algorithm. We then use an
optimal solution (R®); (x(®), w(P))) in step 3. This step is very computationally intensive.
We start with Algorithm 1 for the original relaxation procedure (see APPENDIX C). We
apply the idea of ordering to reduce size of M in the Algorithm 2 (see APPENDIX D) and
modify the Algorithm 2 to reduce size of M and reduce calculate time in the Algorithm

3 (see APPENDIX E).
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Step 3: We then record the times of each of 100 examples and finally find the average time of

the fixed case. (see APPENDIX A).

Step 4: Redo step 1-3 using the other fixed number of decision variables and uncertain con-
straints, until complete all 25 cases. Average times and regrets of each case are shown in

APPENDIX F.

4.1.1 An Experimental

We compare times of all three algorithm for each case. Note that the optimal regret got
from three algorithms (by using the same problem) are the same, please see APPENDIX F. The

average time of each case is shown as follows.

Prc;b\}z;?jbixgth Average time (second)

# of constraints 1 2 3 4 5
Algorithm 1 0.1711 | 0.3919 | 3.3691 | 24.9854 | 166.9415
Algorithm 2 | 0.0700 | 0.5548 | 1.5061 | 9.2054 | 65.9210
Algorithm 3 | 0.0585 | 0.1957 | 0.9731 | 4.8609 | 37.7121

Pr20 BI;EZI‘Z ;th Average time (second)

# of constraints 1 2 3 4 5
Algorithm 1 0.0515 | 0.4867 | 2.8889 | 20.2407 | 106.8274
Algorithm 2 | 0.0534 | 0.3502 | 1.7999 | 15.4527 | 96.9212
Algorithm 3 | 0.0507 | 0.1953 | 1.0525 | 6.1747 | 48.3515

Table 4.1: The average time of 100 examples of one decision variable and up to five
uncertain constraints

Table 4.2: The average time of 100 examples of two decision variables and up to five
uncertain constraints
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Problems with
3 variables
# of constraints 1 2 3 4 5
Algorithm 1 0.0906 | 0.4333 | 2.6587 | 23.4222 | 128.7291
Algorithm 2 | 0.0755 | 0.3074 | 2.0604 | 13.0668 | 91.6097
Algorithm 3 | 0.0600 | 0.2387 | 1.2470 | 7.8081 | 52.0429

Average time (second)

Table 4.3: The average time of 100 examples of three decision variables and up to five
uncertain constraints

Problems with
4 variables

# of constraints 1 2 3 4 5
Algorithm 1 0.1069 | 0.4218 | 3.3827 | 18.5621 | 138.7532
Algorithm 2 | 0.0713 | 0.2563 | 2.3472 | 15.1171 | 112.7372
Algorithm 3 0.0655 | 0.1966 | 1.3934 | 10.5068 | 54.9573

Average time (second)

Table 4.4: The average time of 100 examples of four decision variables and up to five
uncertain constraints

Problems with
5 variables

# of constraints 1 2 3 4 5
Algorithm 1 0.0811 | 0.4398 | 2.7904 | 22.2362 | 181.4090
Algorithm 2 | 0.0646 | 0.2742 | 2.1166 | 16.7340 | 119.8803
Algorithm 3 | 0.0589 | 0.2043 | 1.3776 | 9.7868 | 75.2131

Average time (second)

Table 4.5: The average time of 100 examples of five decision variables and up to five
uncertain constraints

Problems with
100 variables

# of constraints 1 2 3 4 5
Algorithm 1 0.1080 | 0.2031 | 2.9017 | 51.0962 | 567.6350
Algorithm 2 | 0.0984 | 0.1531 | 2.4377 | 25.5042 | 269.3758
Algorithm 3 | 0.0805 | 0.1439 | 1.3570 | 15.1525 | 145.1933

Average time (second)

Table 4.6: The average time of 100 examples of 100 decision variables and up to five
uncertain constraints

From Table 4.1- 4.5, we can see the trend that the lowest average time happens when using

Algorithm 3. We also illustrate in Table 4.6 with the large amount of variables (100 variables)
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to show that the number of decision variables would effect the average time in the case of five

constraints. This means, our algorithm should be reasonable for a moderate amount of variables.

Problem with
up to 5 variables

Average time (second)

# of constraints

1 2 3 4 5

Algorithm 1

0.1002 | 0.4347 | 3.0180 | 21.8893 | 144.5320

Algorithm 2

0.0670 | 0.3486 | 1.9660 | 13.9152 | 97.3539

Algorithm 3

0.0587 | 0.2016 | 1.2087 | 7.8275 | 53.6554

Table 4.7: The average time of 100 examples of up to five decision variable and up to

five constraints

By using randomized 100 problems of up to five decision variables and up to five uncertain

constraints, we also show in Table 4.7 and Fig 4.2 that Algorithm 3 will always provide the best

average time.

150

,_.

)

3
T

Average time (second)

50 —

—Ag1
——Ag2
——Aq3

Figure 4.2: The average time of 100 problems of up to five decision variable and up to

five uncertain constraints

Although the average time in each table shows the best results when using Algorithm 3,
in some cases Algorithm 2 or 3 may provide higher average times than Algorithm 1 because it

we may use all possible cases of probabilities in Algorithm 2 or 3 to check ordering in the worst

cases.

We show some regrets (R) for each case of up to five decision variables and up to five

uncertain constraints (see APPENDIX F). However, we skip reporting the associated optimal

2 3 4
Constraints
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solutions since each problem may not have a unique optimal solution. The regret got from three
algorithms are the same for each problem while the average time is the best in Algorithm 3. It
means that we can use the idea of ordering to reduce the size of the probability set of all possible

cases and reduce the calculate times.



CHAPTER V

CONCLUSION

In this thesis, we improve the relaxation procedure by applied the analysis written in
[9] to our vectors of uncertainty. Therefore the uncertain entities in this thesis is said to be a
special case of general uncertainty in [9] that means we change the form of uncertainty to be
vectors of uncertainty and assume that (Az, Bl) be a vector of uncertainty with k; realizations:
(A, biy), (A4, biy), -+, and (Aiki,biki), such that (A;;,b;;) < (A, b;) when j < . All vec-
tors of uncertainty together with probability intervals that can be represented by the random sets.
We use only up to three realizations and up to five constraints. Finally we can reduce the average
calculation time of the relaxation procedure by using the idea of ordering and reduce the size of
probability boundary (the lower probabilities) of all possible ordering cases at each iteration. In
minimax regret approach, we clearly improved Algorithm 2. by reducing the set of M in each

iteration that we already explain in Chapter III and IV.

The result can guarantee that if the realizations can be ordering and uncertain information
is probability intervals that can be represented by random sets. We can use the idea of ordering

to reduce the size of M and reduce the calculate time.
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APPENDIX A: Comparing time of all examples

The stochastic expected recourse problem in our work is

m
cTx + Z si(ffw;),

min
(x,wi)EQ 1
s.t. /%x+w”2mﬁ
x,w>0,
where  fi. € [l;;,u;,]; fori

30

function Run
tl=[]1; t2=[]; t3=[1; % Time used in Algorithm 1,2,3
rl=[]1; r2=[]; r3=[]; % Regrat of Algorithm 1,2,3
count = 0; % Count number of examples
r = @() 100*(2*rand-1) ; % Random value blw [-100,100]
qg=0Q() [r() () xO1; % Random vector
N = 100; % Number of examples
while count!=N
a=[]; c=[]; fs=[];
s=[1; b=[1; f1=[1;
n = input ('Nuber of variables ")Y; % #Variables
m = input ('Nuber of constraints "y; % #Const (1 to
5)
[count+1 n m]
for i = 1:n
e = [];
for j = 1l:m;
e = [e qg(O];
end
a = [a e'] % Coef of x in constraint
c = [cr()]; % Coef of x in objective
end
for i = 1:m
s = [s 100*rand]; % Penalty
b= 1[bgOl; % Right hand side
[fsml,flar] = Prob(); % Probability f
fs = [fs fsmall; % f smallest expected value
f1 = [fl flarg]; % f largest expected value




28 end

29 |$ Find the solution (x,w) from the algorithm 1,2,3
30 [T1 R1 X1] = Algorithml(m,n,a,c,s,b, fs);
31 [T2 R2 X2] = Algorithm2 (m,n,a,c,s,b, fs,fl);
32 [T3 R3 X3] = Algorithm3(m,n,a,c,s,b, fs,fl);
33 |$% Check unbound of the algorithm 1,2,3

34 if abs([R1,R2,R3])<10"7

35 tl = [tl T1]; rl = [rl R1];

36 t2 = [t2 T2]; r2 = [r2 R2];

37 t3 = [t3 T3]; r3 = [r3 R3];

38 count = count+1;

39 end

40 |end

41 |%$ Display the regrat values and time of the problem
42 | [r1l; r2; r3]

43 |A1l = [1 mean(tl)];
44 |A2 = [2 mean(t2)];
45 |A3 = [3 mean(t3)];

46 |formatSpec = 'Algorithm %d : Time = %.4f\n’;
47 | fprintf (formatSpec, Al, A2, A3);

48 |% Plot the time that used to solve the problem
49 |plot (1:N,tl); hold on;

50 |plot (1:N,t2)

51 |plot (1:N,t3)

31

The following functions are subroutines of the Algorithm 1, 2 and 3, which these subrou-

tines are used often in all algorithms. Thus, we bring them to create the functions that including;

sort descending of vector with three elements, generate all possible cases of probabilities and

permutation (P, ), respectively, as the following.

1 |function ord = Ordering(x) % Sort descending of x
2 |for i = l:length(x)

3 if x(1)==min(x); ord(3) = 1i;

4 elseif X (1i)==max (x); ord(l) = 1i;

5 else ord(2) = 1i;

6 end

7 |end




O 0 3 N L AW N~

—_ = = = = =
AN N B~ WD = O

O 0 9 N LKt A W N~

[N I e e e e e e T
S O 0 NN N L W N = O

32

function F = Expand(m, f) Generate all cases of prob
if size(f,1)==
k = GenOrdf (6,m) ;
for i = 1l:length (k)
h = [];
for j = 1:m
h = [h £(k(i,3), (1:3)+3*(3-1))];
end
F(i,:) = h;
end
else
F =[]
for i = 1:m
F = [F repmat (£(i),1,3)1;
end
end
function P = GenOrdf (n, r) % Permutation P (n, r)
if n==
P = ones(1l,r);

elseif r==

P = (1l:n)’;
end
L = n"r;
P = zeros (L, r);
v = [-(n—-1) ones(l,n-1)]";
T = v(:,ones(L/n,1));
P(:,r) = T(:);
P(l:n"(r-1):L,1) = v;

for i = r-1:-1:2
R =1:n"(i-1) :L;
X = length(R) ;

T = v(:,ones (X/n,1));

P(R, r—i41) = T(:);
end
(1,:) = 1;
P = cumsum (P) ;

o° o oo oo o°

o\

o o° oo

o\

o\

o\

Number of rows in outputs

Pre allocation matrix
These values put into P

Instead of repmatting

We don’t need to do 2 loops
The 1st col is the simplest

Index into rows for this col

Find length of R
Match dimension

Build it up,

For proper cumsumming

This is the time hog

insert wvalues
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This program finds reachable probability. We then find probability L that they provide the

smallest expected value. We use the concept of (2.3.8) and imply it as follows.

Prob ()
Check ordering
Check reachable

function
Cord = 1;
Crcbhb =
p = perms([3 2 1]);
while Cord!=0

while Crcb

Random prob intervals a,b,c

[fsmal flarg] =

o\°

o\°

true;

o\°

All possible ordering

o\°

= [rand rand]; b = [rand rand]; c¢c = [rand rand];

O 00 39 N Lt A W N~

[min(a) min(b) min(c)];

—

)

(@
Il

= [max(a) max(b) max(c)];

—_
—_
o\

Check prob intervals are reachable

L L L LW LW W N D N DN N NN = = ===
DN B W N =) © O 0 3O Lt B W N —= O O 0 3 Nt B W N

CL
CU
if

els
end
for
1
u

o\

P
fs(
fs(
fs(
fsm
P

o\

flar
q(i
end
Cor
Crc

end

[U(1)+L(2) +L(3)
[L(1)+U(2)+U(3)

U(2)+L(1)+L(3)
L(2)+0(1)+U(3)

U((3)+L(1)+L(2)1;
L(3)+U(1)+U(2)];

1 (p(i,1)) =
I (p(i,2))

CL(1)>1]|CL(2)>1]||CL(3)>1||CU(1)<1l]||CU(2)<1l]||CU((3)<1
Crcb =
e Crcb

true;

end

false;

l:1length(p)

L(p(i,:));

U(p(i,:));

rob f provides the smallest expected
p(i, 1)) = l-max(l(2)+1(3),1-u(l));
p(i, 2)
p (i, 3)
al(i,:) =

i =

)
) = max (1(3),1-u(l)-u(2));

fs;

rob f provides the largest expected

max (1l (1l),1-u(2)-u(3));

max (L (1)+1(2),1-u(3))max(1l(1l),1-u(2)-u(3));
l-max (1l (1)+1(2),1-u(3));

= fl;

= Ordering(fs);

g(i,:)
pt)

d
b =

norm(p—q) ;

true;

= max (1 (2)+1(3),1-u(l))max(l(3),1-u(l)-u(2));
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fun
opt
tic

Z

R o )}
Il

] oo
([P

N
Il

ction [T R xwp] = Algorithml (m,n,a,c,s,b, £s)
= optimset ('Display’, "off’) ;

n+3*m; % #Unknown variables x,w
Expand(m, s) ;

Expand (m, £s) ;

[1;

tep 1 """
£(1,:);
[c s.*F (1, :)];
[-a —eye(3*m)];
= zeros (1l,N);
= linprog(z,A,-b, [1,[]1,1b, [1, [],0pt);
[X xwb];
= 1; % Number of iterations
tep 2 ——————— e e
ck = true;
le Check
———————————————————— Find R(p) ———————————"""—"————
z = [zeros(l,N) 1];
A = [-a —-eye(3*m) zeros(3*m,1)];
B = -b;
for i = 1l:p
A = [A; ¢ s.*F(i,:) —-11;
g = c*X(l:n,i)+s.*F (i, :)*X(n+lwend, i) ;
B = [B gl;
end
1b = zeros (1,N+1);
[xwp, R(p)] = linprog(z,A,B, [],[],1b, [1,[],0opt);
———————————————————— Find z(p) ——————————"———————
for i = 1:6"m
z1 (i) = c*xwp(l:n)+s.*f(i, :) *xwp (n+liend-1) ;
z = [c s.*E(1,:)];
A = [-a -eye(3*m)];
1lb = zeros (1l,N);
[xw,z2(i)] = linprog(z,A,-b, [],[]1,1b, [1,[],opt);

xwb (:,1) = xw;
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end
[Z(p),k] = max(zl-z2);
F o= [F; £(k,:)];
= [X xwb(:,k)];
5 Check Unbound
if abs([Z(p),R(p)]1)>10"7
break;
end
5 Check Z (p)>R(p)
if Z(p)>R(p) && p<=50
p = p+l;
Check = true;
else Check = false;
end
end
T = toc;
R = R(end);

35
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op
ti

0]

fs

Q

F
4

A

o\°

1b

xwb

t

C

function [T R xwp] = Algorithm2(m,n,a,c,s,b, fs,1l)

= optimset ('Display’, "off’) ;

n+3*m; % #Unknown variables x,w
[1; X = 1[];

perms ([3 2 1]);

i =1:mm

d=[dp(:,3) p(:,2) p(:,1)];

Expand (m, d) ;
Expand(m, s) ;

= Expand (m, fl) ;

S

= Expand(m, £s) ;

zval = Q(x,f) c*x(l:n)+s.*f*x(n+l:end-1) ;

tep 1 ">+
fs (1, :);
[c s.*F (1, :)];
[-a —eye(3*m)];
= zeros (1l,N);
= linprog(z,A,-b, [1,[1,1b, [1,[],0pt);
[X xwb];

1; % Number of iterations

———————————————————— Find R(p) ————————"—"""""""""—"—-
z = [zeros(1,N) 11;
A = [-a —-eye(3*m) zeros(3*m,1)];
B = -b;
for i = 1:p
= [A; ¢ s.*F(i,:) —-11;

g = c*X(l:n,i)+s.*F (i, :)*X(n+lwend, i) ;

B = [B gl;
end
1lb = zeros (1,N+1);
[xwp, R(p)] = linprog(z,A,B, [], [],1b, [], [],opt);
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

z = [c s.*F(p,:) —-zval(xwp,F(p,:))]1;

A = [-a —-eye(3*m) zeros(3*m,1)];

Aeq = [zeros(l,N) 1]; beg = 1;

xwb = linprog(z, A, -b, Aeq, beq, 1b, [], []1, opt) ;

h = ProbProvMax (m, n, xwp—-xwb, 11, d) ;

z = [c s.*h —-zval(xwp,h)];

[xwb,val] = linprog(z,A, -b, Aeq,beq, 1b, [], [],0pt) ;
Zz(p) = —val;

F = [F; hl;

X = [X xwb(l:end-1)];

————————————————— Check Z(p)<=R(p) ——F—F———"————""—-
if z(p)<=R(p)

A = [-a —eye(3*m)];
1b = zeros(1l,N);
z3=[]; f=[]; x=[];
for i = 1:6"m
Check2 = Chkf(fs(i, :),F);
if Check2
z1l = zval (xwp, £s (i, :));
z = [c s.*fs (i, :)];
[xw, z2] = linprog(z,A,-b, []1,[1,1b,[]1,[],0opt);
z3 = [z3 zl1-22];
f = [f; £s(i,:)1;
X = [x xw];
end
end
if length(z3)!=0
[Z(p),k] = max(z3);
F(p+l,:) = £(k,:);
X(:,p+l) = x(:,k);
end
end

7777777777777777777 Check Unbound -———----"""""""""—-

end
777777777777777777 Check Z(p)>R(p) ——————————"——"—"———
if Z(p)>R(p) && p<=50
p = ptl;
Check = true;

37




78 else C
79 end
80 |end

81 |T = toc;
82 |R = R(end);

heck = false;

38

The following function is the subroutine for finding the probabilities providing largest

expected values for all ordering cases that used in Algorithm 2.

function h
h = []; or
dif = dx(n

k = (1:

ord = [
end

for i = 1:

if ord

h =

O 0 3 O Lt A W N~

—_—
- O

end

—
[\e]

end

= ProbProvMax (m, n, dx, £, d)
d=11];
+1:end-1) ;

for i = 1:m

3)+3* (i-1) ;
ord Ordering(dif(k))];

6"m
== d(i, :)

£(i,:);
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function [T R xwp] = Algorithm3(m,n,a,c,s,b, fs,1l)
opt = optimset ('Display’, ' off’);
tic
N = n+3*m; % #Unknown variables x,w
s = Expand(m, s); X=[];
fs = Expand(m, £s) ;
zval = @ (xw, f) c*xw(l:n)+s.*f*xw(n+l:end-1) ;
$ Step 1 -~————"—"""—"""""""""""""""" =
F = fs(l,:); M= fs(1,:);
z = [c s.*F(1,:)];
A = [-a —eye(3*m)];
1lb = zeros(1,N);
xwb = linprog(z,A,-b, []1,I[],1b,[],[],0pt);
X = [X xwb];
p =1; % Number of iterations
% Step 2 ——f————————
Checkl = true;
while Checkl
T e Find R(p) —————————————————————
z = [zeros(1,N) 11;
A = [-a —eye(3*m) zeros(3*m,1)];
B = -b;
for 1 = 1:p
= [A; ¢ s.*F(i,:) -11;
g = c*X(l:n,i)+s.*F (i, :)*X (n+lend, i) ;
B = [B ql;
end
1b = zeros(1l,N+1);
[xwp, R(p)] = linprog(z,A,B, [],[],1b, [], [],0pt);
5 Find z(p) ——————————"———————
z = [c s.*F(p,:) —zval(xwp,F(p,:))];
A = [-a —eye(3*m) zeros(3*m,1)];
Aeq = [zeros(l,N) 1]; beqg = 1;
xwb = linprog(z, A, b, Aeq, beq, 1b, [], []1, opt) ;
[h, I1] = ModifiedPPM (m, n, xwp—xwb, 1l) ;
z = [c s.*h —-zval(xwp,h)];

[xwb,val] = linprog(z,A, -b,Aeq,beq,1lb, [],[],0pt);
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Z(p) = -val;
F = [F; h];
X = [X xwb(l:end-1)1];

————————————————— Check Z(p)<=R(p)
if Z(p) <=R(p)

I2 = ChkOrd(m, n, xwp—xwb) ;
if isequal(Il, I2)
break;
else
f=[01; zz2=[]; x=[];
for i = 1:6"m
Check2 = Chkf(fs(i, :),F);
if Check2
z = [c s.*fs(1i,:) —-zval(xwp,fs(i,:))]1;
[xw,zl1] = linprog(z,A,-b,Aeq,1,1b, []1,[],
opt) ;
z(p) = -zl;
z2 = [z2 Z(p)];
x = [x xw(liend-1)1];
£f=1[f; fs(i,:)]1;
if Z(p)>R(p)
F(p+l,:) = f£s(i,:);
X(:,p+l) = xw(l:end-1) ;
break;
elseif !Chkf(fs(i,:),F)
Checkl = false;
break;
end
end
end
end

Check Unbound
if abs([Z(p),R(p)])>10"7
end
****************** Check Z(p)>R(p)
if Z(p)>R(p) && p<=50
p = ptl;

Checkl = true;

40
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else Checkl
end

end

T = toc;

R = R(end);

= false;

41

The following functions are the subroutines used in Algorithm 3 which including; mod-

ified probability providing largest expected values for all ordering cases (ModifiedPPM), con-

struct the ordering (ChkOrd) and check that a probability f(*) is used in step 2 (Chkf), respec-

tively,

O 0 9 N LKt A W N~

—_ = = = = = =
AN L AW = O

~N N Lt AW N~

as the following.

= ModifiedPPM (m, n, dx, fl)
11)3

,2) p(:,1)]1;

(i-1);
ng (dif (k));

d(j, =)
f1(3,k)1;
p(i, ) 1;

function [h, I]
p = perms ([3 2
d = [p(:,3) pl
dif = dx(n+l:end-1) ;
h=11; IT=1»1I;
for i = 1I:m
k = (1:3)43*
ord = Orderi
for j = 1:6
if ord ==
h = [h
I = [I
break;
end
end
end

function I = Ch
I =11;

for i = 1:m
k = (1:3)43~*
I = [I Order

end

kOrd (m, n, dx)

dif = dx(n+l:end-1) ;

(i-1);
ing(dif(k))];
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function Check = Chkf (f, F)

Check = true;
for i = 1l:size(F,1)
if isequal (f,F (1,
Check = false;
break;
end

end

:))
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