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Chapter 1: Introduction 

A diversity of computer vision tasks involves assigning appropriate labels to 

image pixels or superpixels and associated features subjected to spatial and visual 

contexts. Common applications include image denoising, image inpainting, texture 

synthesis, object segmentation, object recognition, pose estimation, optical flow and 

motion estimation, stereo correspondence and multi-view reconstruction. These 

problems are collectively called image labeling problems and have been of central 

interest in computer vision and related fields for decades. The label spaces for these 

problems can vastly vary from one application to another. For instance, the label space 

for stereo correspondence is the set of possible disparity values for the pixels whereas 

the label space for object recognition is the set of known objects classes to be inferred 

from the input image. 

 

Figure 1: Examples of image labeling problems1 

                                                 

1 Images taken from CVPR 2012 tutorial: Graph Cut based Optimisation for Computer Vision 

URL: www.robots.ox.ac.uk/~lubor/tutorial.html 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

Figure 1 shows a few instances of labeling problems. The label space of image 

denoising is the set of possible intensity values (or color values) and the task is to assign 

to each pixel its ''correct'' intensity value based on the given noisy intensity value of 

that pixel by taking into account the intensity values of its neighbors. For object 

segmentation, the features of each known object class are learned from training set to 

construct the model for that object class. These constructed object models are then used 

to assign labels to the input image superpixels according to their probability of 

belonging to each object class. In depth estimation from stereo images, the input is a 

pair of images taken from different viewpoints of the same scene and the task is to 

assign each pixel its most probable disparity value, which can be used to reconstruct 

the depth value. 

Labeling problems are highly structured for most applications. This is because 

the labels are spatially correlated with the labels of its neighbors often via complex 

dependencies specific to each application. Attempting to assign a label to each pixel 

independently using information from its associated features alone often results in 

impossible labeling, as exemplified in the right subfigure of Figure 2.1 Preprocessing 

by segmenting the input image into superpixels helps improve the result but might still 

give improbable labeling as shown in the middle subfigure. To obtain the labeling as 

shown in the left subfigure, the whole task should be formulated as one optimization 

problem where visual contexts are used to assist in label estimation by providing cues 

for dependencies between pixel labels. 

 

Figure 2: Examples of labeling results for object segmentation 

Random field formulation and energy minimization framework provide a natural, 

elegant, and expressive means of modeling these labeling problems by using a set of 
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random variables to represent image locations and an energy function comprised of 

potentials that capture contextual information and mutual interaction between them. 

The problem is then to find the optimal labeling, also referred to as optimal 

configuration, to an objective energy function subjected to certain constraints. From a 

probabilistic viewpoint, this problem is equivalent to finding a maximum a posteriori 

(MAP) solution to a corresponding random field. This method has been shown to give 

respectable results when compared to other techniques in various applications, but as 

the number of labels increases, the computational complexity grows fast. 

In this work, we exploit characteristics of computer vision tasks to obtain a 

hierarchical discrete energy minimization algorithm for labeling problems with linear-

ordered label space. Instead of using one hierarchy for every variable, our approach 

builds different local hierarchy for each variable by taking the information from the 

energy function into account. The added processing steps have significantly less 

theoretical complexity than the overall process and our algorithm can assist in speeding 

up the computation time while providing comparable energy as shown in the 

experimental results. 

1.1 Problem Statement 

Given a discrete pairwise random field (or, equivalently, a discrete pairwise 

energy function) on a set of random variables described by a graph, compute a 

maximum a posteriori estimation. 

1.2 Objective of the Work 

 To develop an efficient algorithm for optimizing discrete pairwise random fields 

Many problems in computer vision, image processing, and related fields can be 

put in terms of random field or energy function. Even though the formulation in detail 

lies in the respective applications, the problems reduce to finding a configuration with 

the minimum energy or solving for a MAP solution. No information concerning the 

application appears once the formulation is done. Any information that affects the 

calculation is implicit in the energy function. Our goal is to exploit the characteristics 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

of computer vision tasks to obtain a faster energy minimization algorithm that still gives 

reasonably good solutions. 

1.3 Research Plan 

a) Conduct literature survey 

b) Identify current trend in the literature and the current problem involving discrete 

optimization in computer vision 

c) Study related works in discrete random field optimization and energy 

minimization in detail 

d) Develop a heuristic approximation algorithm that works faster while still 

providing good solutions 

e) Experiment with computer vision tasks using well-known datasets 

f) Perform in-depth analyses on experimental results and examine the proposed 

heuristic algorithm in contrast with related works 

g) Develop a complete algorithm for the problem 

h) Perform comparison with other representative algorithms in the literature 

i) Publish a journal article relating to the work 

j) Prepare and engage in a thesis defense 

1.4 Scope of the Work 

 This work considers random field optimization and energy minimization in a 

discrete sense, i.e., the label set is discrete and finite. 

 The label space is assumed to have a natural linear ordering structure that 

represents physical quantity. 

 The developed algorithm will be tested against at least three computer vision 

problems with linearly structured label spaces.  

 The developed algorithm will reduce computation time while providing 

comparable or better energies. Performance measurement can be either actual 

experimental results or a complexity analysis. 
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1.5 Contributions 

We have proposed a speedup scheme for optimizing discrete pairwise random 

fields using local label hierarchy. The proposed scheme takes advantage of 

characteristics of computer vision tasks with linearly ordered label space via a 

hierarchical energy minimization approach. We give definitions and notations for local 

label hierarchy and present techniques for label-wise grouping. Definition of energy 

function is generalized to include sets of labels and heuristics for group potential 

assignment are discussed. Unlike others, our approach builds different hierarchy for 

each variable which enables us to achieve better performance compared to using the 

same hierarchy for every variable despite using the same heuristics to obtain group 

potentials. Our most competitive technique has a speedup of an order of magnitude with 

less than 5% increase in energy. 

1.6 Benefits of the Work 

Obtaining an improved algorithm for optimizing discrete random fields. The 

algorithm is applicable to many tasks in the area of computer vision and related fields. 

1.7 Dissertation Organization 

The rest of this dissertation is organized as follows; Chapter 2 provides 

preliminaries and reviews of related research in the literature concerning random field 

theory and inference algorithms. The proposed methodology for random field 

optimization via local hierarchical label-wise grouping is described in Chapter 3. 

Experiments and results are detailed in Chapter 4. Chapter 5 concludes the thesis. 
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Chapter 2: Preliminaries and Literature Reviews 

Discrete energy minimization problems that are habitually encountered in 

computer vision applications can be described in the form of random fields. This unified 

framework offers a consolidated way to separate the energy minimization model from 

the original labeling problem. This means that any energy minimization algorithm can 

be used to obtain the solution once the labeling problem is transformed into energy 

minimization problem. This ability to efficiently port from one optimization algorithm 

to another enables researchers to choose inference algorithm best suited for their 

applications of interest. 

There are several classes of inference algorithms that attempt to solve discrete 

energy minimization problems: 1) maximum-flow algorithms based on graph cuts, 2) 

move-making algorithms that iteratively find labeling with lower energy, 3) algorithms 

based on message passing, 4) algorithms based on linear programming relaxations, and 

5) combinatorial algorithms. Although solving for exact solutions to these problems in 

general is NP-hard, these classes of algorithms are known to give practical approximate 

solutions and provide different problem-dependent theoretical guarantees. 

This chapter provides a review on random fields as well as several inference 

algorithms for MAP estimation by optimizing discrete energy minimization problems. 

The transformations from the original labeling problems into their corresponding 

energy minimization problems are specific to their respective applications and will be 

discussed later in Chapter 4.  

2.1 Random Fields 

A random field can be defined by a hypergraph ( , )  with a set of variables 

 corresponding to the set of image locations to be labeled, and a set of hyperedges2 

 characterizing mutual interactions among them. Let 1 2{ , ,..., }kl l l  be a finite set 

of possible labels that can be assigned to the variables in . A configuration 

                                                 

2 A hyperedge is a non-empty subset of the set of variables. Vertices participating in a hyperedge 

are said to be neighbors. 
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1 2{ , ,..., }x x x x  of the random field is a labeling of the variables and has an 

energy value defined as 

 ( ) ( ) ( )const v v c c

v c

E x  
 

   x x  (2.1) 

where each unary potential :v   is a function that outputs the energy of assigning 

label vx  to a variable v  and each higher-order potential :
c

c   represents the 

energy of assigning labels { | }c vx v c x  to a set of variables cv  participating in 

hyperedge c . Figure 3 shows an example of a random field with 1 2 3 4{ , , , }v v v v  and 

1 2 3 1 2 3 2 4 3 4{ , , } {{ , , },{ , },{ , }}c c c v v v v v v v  . In this example, the associated energy 

function is 
1 2 3 4 1 21 2 3 4 1 2 3 2 4( ) ( ) ( ) ( ) ( ) ( , , ) ( , )const v v v v c cE x x x x x x x x x            x  

3 3 4( , )c x x .3 

 

Figure 3: Example of a random field with four variables and three hyperedges 

For a random field, we seek an optimal configuration *
x  that minimize the energy 

function ( )E x  or, equivalently, maximize the probability distribution 

Pr( ) exp( ( )) /E Z x x  of the random field where exp( ( ))Z E


 x
x  is the 

partition function. Note that the probability distribution satisfies the Markov property: 

Every variable is conditionally independent of all other variables given its neighbors, 

                                                 

3 The curly braces in ( )c   are omitted for better readability. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

i.e., for every random variable v , { }Pr( | ) Pr( | )
vv v vx x x x  where v  is the set of 

neighbors of a variable v . 

Strictly speaking, the above definition is for a Markov random field (MRF) 

[Kindermann and Snell 1980]. In cases where some variables already have labels, using 

MRFs to find the MAP solution for all variables may lead to overly-involved 

calculations. Conditional random fields (CRF) [Lafferty et al. 2001] do not include the 

dependencies between these variables in the calculation and choose to model the 

probability distribution conditioned on these observed variables instead. Formally, a 

CRF is a hypergraph together with a probability distribution such that every variable 

v  obeys the Markov property with respect to  when given the labels of observed 

variables. 

For problems in computer vision, it is often the case that the observed variables 

of conditional random field are given so that optimizing a CRF reduces to optimizing 

an MRF. Due to their pervasive uses in computer vision community, we focus on MRFs 

in our work. 

Figure 4 shows some examples of random field formulation for different classes 

of applications in computer vision. Pixel-labeling problems (left) such as 

foreground/background estimation, dense stereo correspondence, and image 

segmentation require a label to be assigned to each pixel separately. To accomplish this, 

a variable in the model is created to be associated with each pixel in the input image, 

often referred to as pixel-based models.  

For the tasks involving object detection and pose estimation (middle), input 

images are often preprocessed into superpixels before assigning labels, thus forcing a 

single label to be assigned to all pixels in the same superpixel. The main reason for 

using superpixel is that objects can hardly ever, if possible at all, be recognized from a 

single pixel. The output of object recognizer often provides scores for how likely it is 

for the input superpixel to belong in the known object classes. The mutual interactions 

in the hyperedges between the superpixel variables can then help incorporate the spatial 

relationships between objects, which make label assignment much more probable.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 

For scene understanding (right), more layers are often needed to assemble pixels 

into progressively larger parts. The model, therefore, often consists of several levels 

from fine to coarse with both intralevel and interlevel interactions. These problems can 

also require each pixel to be labeled independently but, compared to pixel-labeling 

problems, scene understanding problems require much more complex mutual 

interactions to accomplish the task, which can even lead to the model being intractable 

in some cases. 

 

Figure 4: Examples of random field formulation in vision applications4 

2.2 Maximum-Flow Algorithms 

Before we delve into the matter of how graph-based energy minimization is done, 

it is worthwhile to first introduce the concept of graph cuts. Let ( , )G V E  be a directed 

                                                 

4 Images taken from CVPR 2014 Tutorial on Learning and Inference in Discrete Graphical 

Models URL: http://imagine.enpc.fr/~komodakn/GraphicalModels_CVPR2014.html 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 

weighted graph where the vertex set V  contains two special vertices, the source s  and 

the sink t , and each directed edge ( , )p q  in the edge set E V V   has a non-negative 

weight (also referred to as capacity) denoted by ( , )c p q . An s - t  cut is a partition of V  

into two disjoint subsets S  and T  with s S  and t T . The cost of an s - t  cut is 

defined by  

 
( , ) , ,

( , ) ( , )
p q E p S q T

c S T c p q
  

    (2.2) 

and the minimum s - t  cut problem is the task of finding an s - t  cut that has minimum 

cost. We will refer to an s - t  cut as simply a ''cut'' from this point onward for the sake 

of simplicity. 

Assigning vertices in S  and T  with label 0  and 1, respectively, allows a cut to 

be reinterpreted in terms of energy minimization as a binary configuration. 

Constructing a suitable graph such that each of its cut corresponds to an energy 

configuration (and vice versa) means that its minimum cut would correspond to the 

minimum energy configuration and can be used as the solution. An assortment of 

algorithms with known polynomial-time can then be used to calculate a maximum flow 

[Ahuja et al. 1993, Goldberg 1998] and, by the max-flow/min-cut theorem [Ford and 

Fulkerson 1956], a minimum cut of the graph. 

Table 1 shows a list of maximum flow algorithms [Goldberg 1998]. The years 

refer to the first publication of each algorithm. In the table, F  denotes the maximum 

capacity in the graph and 
*O  denotes the expected running time of a randomized 

algorithm. From the table, two main classes of the algorithms exist: push-relabel style 

algorithms (P) and augmenting-path-based algorithms (A). For computer vision tasks, 

the constructed graphs are most commonly in the form of two or higher dimensional 

grid [Boykov and Veksler 2006]. In this case, the augmenting path algorithm in 

[Boykov and Kolmogorov 2004] has been shown to achieve near-linear running time 

for many vision applications, even though the authors do not have a polynomial bound 

for the algorithm. 
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Table 1: List of max-flow algorithms 

Year Representative work Complexity 

1951 [Dantzig 1951] 2(| | | | )O V E F  

1956 [Ford and Fulkerson 1956] (A) (| || | )O V E F  

1970 [Dinic 1970] (A) 2(| || | )O V E , 2(| | | |)O V E  

1972 [Edmonds and Karp 1972] (A) 2(| || | )O V E , 2(| | log )O E F  

1973 [Dinic 1973] (A) (| || | log )O V E F , 2(| | log )O E F  

1974 [Karzanov 1974] (A) 3(| | )O V  

1977 [Cherkassky 1977] (A) 2(| | | |)O V E  

1980 [Galil and Naamad 1980] (A) 2(| || | log | |)O V E V  

1983 
[Sleator and Endre Tarjan 

1983] (A) 
(| || | log | |)O V E V  

1986 
[Goldberg and Tarjan 1986] 

(P) 

2(| || | log(| | / | |))O V E V E  

1987 [Ahuja and Orlin 1989] (P) 2(| || | | | log )O V E V F  

1987 [Ahuja et al. 1989] (P) (| || | log(| | log / | |))O V E V F E  

1989 

[Cheriyan and Hagerup 1989, 

Cheriyan and Hagerup 1995] 

(P) 

* 2 2(| || | | | log | |)O V E V V  

1990 [Cheriyan et al. 1996] (P) 3(| | / log | |)O V V  

1990 [Alon 1990] (P) 8/3(| || | | | log | |)O V E V V  

1992 [King et al. 1992] (P) 
2(| || | | | )O V E V   

1993 
[Phillips and Westbrook 1993] 

(P) 

2

| |/| |(| || | (log | | log | |))E VO V E V V  

1994 [King et al. 1994] (P) | |/(| |log| |)(| || | log | |)E V VO V E V  

1997 
[Goldberg and Rao 1997, 

Goldberg and Rao 1998] (A) 

2
2/3 | |

(min(| | , | |) | | log log )
| |

V
O V E E F

E

 
 
 
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In first-order (pairwise) energy function where the hyperedges are limited to 

cardinality of two, the energy function of a configuration x  is of the form 

 ( ) ( ) ( , )const p p pq p q

p pq

E x x x  
 

   x  (2.3) 

where each p  is the unary potential of a variable p  and pq  is the pairwise potential 

of an undirected edge  ,p q . Note that pq  and qp  refer to the same potential and, 

therefore, appear only once in the energy function. 

2.2.1 Binary Energy Minimization based on Maximum-Flow 

If the labels are from the Boolean set {0,1}, this form of energy is called quadratic 

pseudo-Boolean function in view of the fact that it can be rewritten as a quadratic 

polynomial and it maps Boolean variables to the set of real numbers  instead of the 

Boolean set. 

Calculating the minimum cut of a suitable graph can give exact solution if the 

binary energy function of the form in Eq. (2.3) is submodular [Kolmogorov and Zabih 

2004], i.e., if all its pairwise terms satisfy 

 (0,0) (1,1) (0,1) (1,0).pq pq pq pq       (2.4) 

This submodular condition guarantees that only graphs with non-negative capacities 

can be constructed so that an associated maximum flow can be calculated in polynomial 

time. Although this is a restrictive class of energy functions, several influential 

algorithms have been proposed in the literature and provided notable results in many 

applications. For general graphs (with the possibility of negative capacities), 

unfortunately, the problem is proven to be NP-hard since negating the capacities allows 

the maximum cut problem (one of Karp's 21 NP-complete problems [Karp 1972]) to be 

reduced to it. Furthermore, the maximum flow problem is P-complete5 and, therefore, 

                                                 

5 A problem is P-complete if it is in P (a deterministic Turing machine can solve it in polynomial 

time) and every problem in P can be reduced to it. 
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is believed to be inherently sequential6 [Goldschlager et al. 1982, Greenlaw et al. 1995, 

Nieuwenhuis et al. 2013]. 

For simplicity, let ,p i  denote ( )p i  and ,pq ij  denote ( , )pq i j  where , {0,1}i j  

and let ,0 ,1{ , }p p p    and ,00 ,01 ,10 ,11{ , , , }pq pq pq pq pq      be vectors of size two and 

four, respectively. The parameter vector { | }  θ  denotes the concatenation of 

all the terms in the energy function into a single vector where  

 {( , ) | {0,1}} {( , ) | , , {0,1}} { }p i p i pq ij p q i j const          

is the index set. This parameter vector θ  can be used to completely specify the binary 

energy function in Eq. (2.3), which will be denoted by ( | )E x θ . Note that the parameter 

vector of an energy function is not unique. For example, one can obtain the same energy 

function by subtracting a constant from both entries of p  and adding the same constant 

to const . A parameter vector θ  is called a reparametrization of a parameter vector θ  if, 

for every configuration x , ( | ) ( | )E E x θ x θ . 

A parameter vector θ  is said to be in a normal form the following two conditions 

are met: 

a) ,0 ,1min( , ) 0p p    for all p  and  

b) ,00 ,10min( , ) 0pq pq    and ,01 ,11min( , ) 0pq pq    for all { , }p q  . 

The following reparametrization procedure [Kolmogorov and Rother 2007] provides 

how to obtain a normal form. 

1) While there exists an edge { , }p q  and a label {0,1}j  not satisfying Condition 

b): Calculate ,0 ,1min( , )pq j pq j   , then subtract   from ,0pq j  and ,1pq j  and add   

to ,q j . 

                                                 

6 Otherwise it would imply that every problem in P can be efficiently solved in a parallel manner. 
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2) For every vertex p : calculate ,0 ,1min( , )p p   , subtract   from ,0p  and 

,1p  and add   to const . 

Note that either ,00 ,11 0pq pq    (the pairwise term is submodular) or ,01 ,10 0pq pq    

(the pairwise term is supermodular) for each edge { , }p q  upon termination. 

We first describe an algorithm where the energy is submodular. After parameter 

reparametrization into a normal form, a directed weighted graph ( , )G V E  is created 

by setting { , }V s t  . The edge capacities are then set such that ,1( , ) pc s p  , 

,0( , ) pc p t  , ,01( , ) pqc p q   and ,10( , ) pqc q p  7 when 0  . It can be proven that 

every configuration has an energy equal to the cost of the corresponding cut in this 

graph plus const . The construction is shown in Figure 5 (a). One can see, for example, 

that the cut for the configuration 0px   and 1qx   includes the directed edges ,0p , 

,1q  and ,01pq  as shown in Figure 5 (b), which, together with const , sum up to the correct 

amount of energy. 

 

Figure 5: Graph construction for submodular energy function 

                                                 

7 This last case is the same as setting ,01( , ) qpc q p   and is added only for clearer illustration. 
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The algorithm then computes maximum flow of the constructed graph. We give 

an example of using an augmenting-path-based max-flow computation. An augmenting 

path is a term given for a path from the source s  to the sink t  through the graph in 

which every directed edge has positive capacity. While there exists an augmenting path, 

let   be the minimum capacity of the edges along the path, subtract   from the 

capacities of all edges in the path (including terminal edges8) and add   to the 

capacities of the corresponding reverse edges in the path (there is no edge going into s  

and going out of t ) and to const . This procedure (usually called ''pushing'' flow) is a 

form of reparametrization and results in a less complicated normal form where the 

capacities of the terminal edges in the path are always decreased. The procedure 

terminates when no more augmenting path exists and the resulting const  is the optimal 

energy [Ford and Fulkerson 1956]. 

After maximum flow computation, any vertex that is reachable by s  is assigned 

label 0  and any vertex from which t  is reachable is assigned label 1. Other vertices 

can be assigned arbitrarily without changing the energy provided that the labels are 

consistent within each connected component. It is worth to remark that this graph-based 

energy minimization algorithm for submodular energy function is equivalent to max-

product belief propagation with appropriate scheduling and damping scheme [Tarlow 

et al. 2011]. 

Figure 6 shows an example of binary energy function constructed from the task 

of foreground/background estimation. The unary potential in this case is the likelihood 

of each pixel to be in the background or foreground classes computed from the color 

model of each class (brighter value indicates more likely to be foreground). The 

pairwise potential reflects the likelihood of neighboring pixels to have the same label, 

i.e., to both belong to foreground (or background), and is calculated from pixel 

discontinuity (brighter value indicates weaker image edge or more likely to belong to 

the same class). 

                                                 

8A terminal edge is an edge that is connected to either s  or t . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 

 

Figure 6: Binary energy minimization in foreground/background estimation9 

Several works involving non-submodular energy functions employ certain 

conversion to ensure that all terms are submodular prior to max-flow computation. For 

some tasks, truncating [Rother et al. 2005] or ignoring [Cremers and Grady 2006] non-

submodular terms provide reasonable results. For other applications, exclusion of non-

submodular terms can decrease the quality of the results [Kolmogorov and Rother 

2007], especially for models with substantial numbers of them. 

For quite a while, QPBO (quadratic pseudo-Boolean optimization) method 

[Boros and Hammer 2002] has grown sizeable attention in computer vision community. 

This method uses two vertices p  and p  for each variable p  instead of using one 

vertex per one binary variable to cope with supermodular terms. For any non-

submodular term ( , )pq p qx x  with  

 (0,0) (1,1) (0,1) (1,0),pq pq pq pq       

replacing q  with q  results in  

 (0,1) (1,0) (0,0) (1,1)pq pq pq pq       

 which is submodular and, therefore, can be converted into min-cut graph and solved in 

polynomial time. 

                                                 

9 Images taken from ECCV 2008 MAP Estimation Algorithms in Computer Vision – Part II 

URL: http://www.robots.ox.ac.uk/~pawan/eccv08_tutorial/index.html 
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By applying the technique based on this observation (known as roof dual 

relaxation [Hammer et al. 1984]), QPBO method is able to minimize any first-order 

binary energy function of the form in Eq. (2.3) in polynomial time. Similar to the 

submodular case, a graph ( , )G V E  is constructed, but this time with 

{ , | } { , }V p p p s t   . The edge capacities are set such that 1
,02

( , ) ( , ,) pc p t c s p    

1
,12

( , ) ( , ) pc s p c p t    for each unary potential 0p   and 1
,002

( , ) ( , ) pqc p q c q p   , 

1
,012

( , ) ( , ) pqc p q c q p   , 1
,102

( , ) ( , ) pqc q p c p q   , 1
,112

( , ) ( , ) pqc p q c q p    for 

pairwise potential 0pq  . The construction is shown in Figure 7 (a). In the figure, the 

pairwise term for the edge { , }p q   is submodular ( ,00 ,11 0pq pq   ) whereas the 

pairwise term for edge { , }p r  is supermodular ( ,01 ,10 0pr pr   ). The edges 

corresponding to the unary potentials of q  and r  are not shown for better readability. 

Figure 7 (b) shows the cut for the configuration 0p rx x   and 1qx  . 

 

Figure 7: Graph construction for QPBO method 

A maximum flow is then computed and the vertices in V  are assigned with labels 

from the corresponding minimum cut in the same manner as before. However, relaxing 

the integrality constraint ( px  and px  are not constrained to be complements of each 
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other's) means that QPBO method can output a partial configuration {0,1, } x  

where {0,1}px   if p  and p  ''agree'' ( 1p px x  ) and px   (unlabeled) otherwise. 

It is guaranteed by the partial optimality property [Boros and Hammer 2002, Hammer, 

et al. 1984] that the output partial configuration is part of some global optimal solution. 

In other words, there exists a global optimal configuration *
x  such that *

p px x  for 

every labeled variable p . 

2.2.2 Multi-label Energy Minimization based on Maximum-Flow 

One rather intuitive way to handle energy minimization in the multi-label case is 

to convert it into multi-terminal cut problem. Given a weighted graph with k  terminals, 

the problem is to find a set of separating edges with minimum cost that partition the 

vertex set into k  unconnected subsets with each terminal in each of these subsets (this 

problem reduces to an s - t  minimum-cut problem when k  is two). Unfortunately, the 

problem has been proven to be NP-hard for general graphs once k  is greater than two 

[Dahlhaus et al. 1994]. Approximation algorithms for this problem can be found in 

[Boykov et al. 1998, Karger et al. 1999, Xiao 2008]. 

Graph-based multi-label energy minimization algorithms can be categorized into 

two broad classes. One class, collectively known as move-making algorithms, 

iteratively finds local optimum through possible labels whereas the other class attempts 

to calculate the global optimum using all labels at once. 

Move-making algorithms in general maintain a labeling on hand. A new labeling 

is proposed in each iteration and each vertex collaboratively decides whether to retain 

its old label or move to the one proposed in that iteration. For computer vision tasks, 

this class of algorithms was first popularized by the work of [Boykov et al. 2001] which 

was based on maximum flow. Move-making algorithms will be discussed in detail in 

section 2.3. 

Early works that attempt to compute all labels at once [Roy 1999, Thomo et al. 

1998, Zhao 2000] use push-relabel style algorithms [Goldberg and Tarjan 1986] to 

minimize energy. However, only a limited range of pairwise interactions can be used 

to allow for the max-flow routine to be calculated in polynomial time. For energy 
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functions with convex priors10, the algorithm in [Ishikawa 2003] is proven to compute 

exact solutions. Despite the ability to solve for a global minimum exactly and 

efficiently, the results from having convex prior are often over-smoothed due to it not 

being discontinuity preserving [Kolmogorov and Zabih 2004]. 

To circumvent the limitation of the underlying max-flow that requires the energy 

to be submodular, a multi-label variant of QPBO method (MQPBO) has been 

introduced [Kohli et al. 2008]. MQPBO allows for a broader class of energy functions 

to be minimized at the cost of allowing ''undecided'' label in the solutions. A partial 

solution calculated by MQPBO is in the form of an interval for each variable. These 

intervals together are proven to contain an optimal solution, which allows for labels 

outside of them to be discarded. 

Given a multi-label energy function, MQPBO method constructs a corresponding 

binary energy function11 as follows. In this case, the label set  is presumed to be in a 

linear order structure, i.e., {0,1, , 1}k   . The set of variables is defined as 

{( , ) : {0}} { , }V p d p d s t      , corresponding to the discrete solution space 

defined by the random variables and possible labels.  

If a variable p  were to have label d , the corresponding binary configuration 

would be for a vertex ( , )p i  to have value 1 if i d , and 0  otherwise. To ensure that 

this would be the case, hard constraints are added in the form of pairwise potential 

( , 1),( , ) (0,1)p d p d   to every pair of vertices ( , )p d  and ( , 1)p d   with 2d  . The 

unary potential of each vertex ( , )p d  with 1d   is set as  

 

( , )

:

:

(1) ( ) ( 1) ( ( ,0) (0, ))

( ( 1,0) (0, 1)).

p d p p pq pq

q pq

pq pq

q pq

d d d d

d d

   

 





     

   




  (2.5) 

                                                 

10 The label set  can be placed in a linear order such that every pairwise term 

( , ) ( )pq p q pq p qx x g x x    where g  is a convex function. 

11 For simplicity, we chose to explain MQPBO in terms of energy functions. The maximum-

flow graph is constructed according to the same rules as QPBO. 
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The pairwise potential for each pair of vertices ( , ), ( , )p i q j  with pq  and ,i j  

are set as 

 ( , ),( , ) (1,1) ( , ) ( 1, 1) ( , 1) ( 1, ).p i q j pq pq pq pqi j i j i j i j             (2.6) 

Finally, set  

 (0) (0,0)const p pq constp pq
  

 
      (2.7).  

It can be shown [Shekhovtsov et al. 2008] that this constructed binary energy function 

is equivalent to the multi-label energy function for every configuration 
| |x . Note 

that the construction described above is subject to the ordering of the label set . Figure 

8 (a) shows a simplified graph construction for MQPBO method where the complement 

vertices are not shown and only a number of edges are present.  Figure 8 (b) shows the 

cut for the configuration 0px   and 2qx  . 

 

Figure 8: Graph construction for MQPBO method 
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The ability to handle multi-label energy functions while also not restricting the 

class of energy being minimized has made MQPBO been our main choice of 

optimization algorithm in our experiments. One drawback of the multi-label 

construction is that the size of the set of vertices V  is ( )O , which, when combined 

with the complexity of max-flow, can lead to large running time. 

2.3 Move-Making Algorithms 

Move-making algorithms iteratively find new labeling with lower energy by 

combining two or more sub-optimal labelings in each iteration. The most prominent 

algorithm of iterating through the labels is the  -expansion algorithm introduced in 

[Boykov, et al. 2001]. In each iteration, each variable is given a choice to decide 

whether to keep its original label or ''move'' to a new label  , hence the name  -

expansion. This pioneer algorithm has been established to be very competent in 

calculating strong local optima for metric12 energy functions and has been used to 

provide respectable results by various works [Boykov and Funka-Lea 2006, Boykov 

and Kolmogorov 2004, Felzenszwalb and Huttenlocher 2005, Hirschmuller 2005, Kim 

et al. 2003, Kolmogorov and Zabih 2001, Kolmogorov and Zabih 2002, Kwatra et al. 

2003, Scharstein and Szeliski 2002]. 

The fact that graph cuts can find exact solutions to submodular energy functions 

in the binary case poses a limitation to -expansion, i.e., it can only find approximate 

solutions of metric energy functions. The authors of [Boykov, et al. 2001] also proposed 

another algorithm, the  -swap, in which some variables with label   swap to label 

  and vice versa. The graph construction of  -swap allows semi-metric energy 

functions to be used, but without the optimality guarantee of -expansion. 

                                                 

12 A multi-label energy function is called metric if for every { , }p q   and , ,    , its 

pairwise terms satisfy: a) ( , ) 0pq       , b) ( , ) ( , ) 0pq pq       , and c) 

( , ) ( , ) ( , )pq pq pq          . A semi-metric energy function is one whose pairwise terms 

satisfy a) and b). 




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Fusion move [Lempitsky et al. 2010] employs QPBO method to fuse together 

two candidate solutions. The  -expansion algorithm can be considered as a specific 

case where one of the candidate solutions consists entirely of one label and the energy 

function is metric. The advantage of QPBO is that it allows a broader class of energy 

function to be handled by their scheme. The use of QPBO was also studied 

independently in [Woodford et al. 2009] and both works have shown promising 

experimental results. 

Several other move-making algorithms exist. LogCut algorithm [Lempitsky et al. 

2007] encodes the label set as a sequence of bits and uses the binary hierarchy to make 

decisions starting from the most significant bit. The hierarchical move-making strategy 

in [Kumar and Koller 2009] uses a mixture of tree metrics to estimate semi-metric 

energy function and combines the solutions using  -expansion.  

Range expansion and range-swap algorithms [Kumar et al. 2011, Veksler 2012] 

extends  -expansion and  -swap by enabling the pixels to explore a range of 

consecutive labels instead of just one, which results in improved multiplicative bound 

for truncated convex models. GRSA, which was proposed in [Liu et al. 2015], explores 

the idea further and uses intervals with gaps that satisfy submodular condition in range 

swap move. 

Move-making algorithms in general search only a portion of the solution space. 

The search space size of -expansion and fusion move, for instance, is  | |2  whereas 

the entire solution space is | || | . 

FastPD [Komodakis and Tziritas 2007] and Iterated Conditional Modes (ICM) 

[Besag 1986] can be considered as move-making algorithms. Starting with an estimate 

of the solution, ICM iteratively applies a greedy winner-take-all strategy to assign the 

label that provides the maximum decrease in energy for each variable. The process is 

guaranteed to converge and does so rather fast in practice but, unfortunately, the 

qualities of the computed solutions highly depend on the initial estimate. The Lazy 

Flipper [Andres et al. 2012] algorithm is analogous to ICM in that it repeatedly uses a 

greedy exhaustive search without using max-flow methods but over local subsets of 

variables of size k  instead of ICM's one-at-a-time. FastPD is similar to move-making 


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algorithm, specifically  -expansion, in the way it selects and evaluates moves, but 

FastPD also uses the dual solution of the maximum flow to reparametrize the objective 

function which can provide considerable speedup but,  unfortunately, can get stuck in 

suboptimal fix-points. 

2.4 Message-Passing Algorithms 

Message-passing algorithm, or belief propagation, relies on local message 

updates to compute an optimal labeling. There are two popular variants of message-

passing algorithms: sum-product and max-product message passing. Sum-product 

message passing is used for inference on graphical models. The objective of inference 

is to compute the marginal distribution, i.e., the probability distribution of every 

configuration of the unobserved variables conditioned on the observed variables. On 

the other hand, max-product message passing is used for finding a MAP solution, i.e., 

a configuration with maximum probability. 

Each message contains the values of ''belief'' that other variables have over each 

label that a variable v  can take. The algorithm uses distributive property over maximum 

and product operations to break down global optimization into local messages between 

variables and hyperedges. For max-product message passing, the message ( )v c vm x  

from a variable v  to hyperedge c  is defined as 

 *

*: *, *

( ) ( ) ( )v c v v v c v v

c v c c c

m x x m x 

 

   (2.8) 

and the message ( )c v vm x  from c  to v  is  

 
* *

* *

* *
:

*: * , *

( ) max ( ) ( )
c v v

c v v c c v c v
x x

v v c v v

m x m x 


 

 
  

 


x

x  (2.9) 

where ( ) exp( ( ))v v v vx x    and ( ) exp( ( ))c c c c  x x  are shown to emphasize the 

term ''max-product''. However, min-sum algorithm is used with min{} ,  , ( )   in 

places of max{} ,  , ( )   for efficiency in implementation. Sum-product messages 

are defined by replacing max{}  with   in Eq. (2.9). 
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The algorithm converges to a global optimum in two passes of appropriate 

scheduling if the underlying graph is a tree. For arbitrary graphs with loops, the problem 

is known to be NP-hard [Weiss and Freeman 2001, Yedidia et al. 2003]. Repeatedly 

applying message passing to general graph is called Loopy Belief Propagation (LBP) 

[Bishop 2006]. LBP is not guaranteed to converge or give the correct solution in case 

it does converge. However, it still provides satisfactory results in some cases. 

Tree-reweighted message passing (TRW) [Wainwright et al. 2005] copes with 

loops by breaking the graph to be computed into a set of spanning trees that together 

cover every edge in the original graph and then trying to find a configuration from 

optimal solutions of the trees. The configuration obtained from the trees is guaranteed 

to be optimal if the tree solutions satisfy the tree-agreement condition, i.e. the labels for 

each vertex in every tree are equal. It is not surprising that this condition is not always 

achieved which means that TRW does not always converge. Sequential Tree-

reweighted message passing (TRWS) [Kolmogorov 2006] instead selects some order 

for edges and vertices in the graph and sequentially updates the trees in that order. This 

updating operation occurs one vertex or edge at a time and the result is also updated for 

all the trees, so agreement is easier to be achieved. However, TRWS still does not 

guarantee global optimal solution as it is an approximate algorithm and it is of practical 

consideration to stop the algorithm when the bound does not improve instead of 

checking tree agreement condition. 

2.5 Algorithms based on Linear Programming Relaxations 

Linear Programming (LP) relaxation covers a rather sizable part of discrete 

energy minimization algorithms mainly because a large portion of algorithms can be 

expressed or reinterpreted as LP of some sort. Several algorithms mentioned in earlier 

sections such as QPBO and TRWS can also be categorized into this class as well. LP 

relaxation has an advantage of providing a lower bound as the calculation progresses 

but the relaxation itself means that the solution is no longer constrained to be in the 

form of an answer to the original problem. 

For binary energy minimization, LP relaxation algorithms generally relax the 

label set from the discrete binary set {0,1} to the continuous set of an interval  0,1 . 
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For variables ,p q , the unary and pairwise terms are inserted into the objective 

function as  

 ,0 ,1( ) (1 )p p p p p px x x      (2.10) 

and  

 
,00 ,01

,10 ,11

( , ) (1 )(1 ) (1 )

(1 )

pq p q p q pq p q pq

p q pq p q pq

x x x x x x

x x x x

  

 

    

  
 (2.11) 

resulting in a pseudo-Boolean energy function 

 

,0 ,1

,00 ,01 ,10 ,11

( ) ( (1 ) )

( (1 )(1 ) (1 ) (1 ) ).

const p p p p

p

pq p q pq p q pq p q pq p q

pq

E x x

x x x x x x x x

  

   





   

       





x

 

  (2.12) 

One can also imagine this objective function being the dot product of the concatenated 

parameter vector θ  indexed by the index set  introduced in section 2.2.1 and the 

associated variable vector. 

For multi-label energy minimization, one cannot simply use the set  0, 1k   in 

place of {0,1,..., 1}k   since there is no precise means to construct the 

corresponding objective function for LP. Instead, a set of binary variable 

(0) (1) ( 1){ , ,..., }p p p kx x x   is defined to associate with each possible label for variable p . 

For pairwise potential associated with an edge pq , the set ( , ){ | ( , ) }pq i jx i j    

is used. This binary labeling must then satisfy the normalization constraints and the 

marginalization constraints  

 

( )

( , ) ( )

( , )

1;

; ,

p i

i

pq i j p i

i j

x p

x x pq p



 

 

  




 (2.13) 

to be consistent with a multi-label solution. LP relaxation then removes the binary 

constraint and progress as in the binary case. 
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As can be speculated from the definition, the sheer number of these binary 

variables makes generic LP-solvers nigh-impossible to be of practical use in most cases 

except for small problems. Specialized solvers with dual formulation are customarily 

used instead of just primal. Dual Decomposition (DD) scheme [Komodakis et al. 2011] 

decomposes the graph of the random field to be optimized into several subgraphs with 

overlapping vertices and solves them separately but with Lagrange multipliers which 

are used to facilitate agreement condition. The work of [Kappes et al. 2012] extends 

DD further by updating the dual variables using the subgradient obtained from solving 

the subproblems.  

2.6 Combinatorial Algorithms 

A-star search and branch-and-bound search are popular searching strategies for 

problems that are impractical for brute-force search. For random field optimization, 

however, attempting to find global optimal solution by expanding partial solutions one-

variable-at-a-time through the solution spaces is not suitable nor tractable because of 

the sheer number of possible paths and branches. Instead, combinatorial search for 

random field optimization employs integer linear programming (ILP) techniques which 

use convex polytopes to define candidate solution sets, making the number of 

candidates viable. 

There are two main ILP techniques in the literature: branch-and-bound and 

cutting-plane. Cutting-plane techniques start by finding a solution for LP-relaxation 

polytope and then repeatedly add constraints violated by the solution to the polytope 

until an integer solution is found. The work of [Savchynskyy et al. 2013] proposed 

using combinatorial solver only where relaxed LP solver returns non-integer labels 

which allows certain big problems to be solved exactly. However, combinatorial sub-

problems can still become too large for practical use.  

On the other hand, branch-and-bound techniques start by using the solution space 

as the only polytope in the candidate set and repeatedly select a polytope from the 

candidate set and split it into several polytopes, finding a solution for each if possible 

and disregarding ones with lower bounds higher than the best solution so far. Branch-

and-bound is often used with other searching techniques. For instance, the work of 
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[Bergtholdt et al. 2010] uses A-star search with tree-based bounding heuristic. Branch-

and-bound methods, however, scale rather poorly to large problems [Kappes et al. 

2015]. 

2.7 Comparison of Inference Algorithms 

It has been recognized for several decades that labeling problems can be 

intuitively and elegantly formulated using random field framework, but it is not until 

the last decade that the resulting optimization problems have been shown to be not as 

intractable as most researchers have thought. The algorithms mentioned in the previous 

sections have proven to be very powerful in their respective introductions and have 

translated well into other applications but the general consensus remains that no single 

algorithm performs best for all circumstances. The comparative study in [Tappen and 

Freeman 2003] found that graph-cut-based approach was able to solve for solutions 

with lower energy when compared to message-passing-based approach for the task of 

stereo vision.  

The research of [Boykov and Kolmogorov 2004] provides an experimental 

comparison of several max-flow/min-cut algorithms for applications in the computer 

vision field. Although it is slower than other techniques on several types of graphs the 

combinatorial optimization community commonly used for testing, their own proposed 

technique consistently outperforms other techniques for 2D grid graphs and is the most 

popular implementation of graph cut technique used in the computer vision community. 

The comparative study in [Szeliski et al. 2008] evaluates and compares the 

solution quality and computation time of a number of energy minimization algorithms 

for 2D grid-graph pixel-labeling problems and suggests that graph-cut-based 

approaches achieve better running time for computer vision tasks compared to message 

passing. They have found that expansion move-making algorithm works best across 

their benchmarks while TRWS performs well and even on par with move-making 

algorithm on certain benchmarks. LBP, surprisingly, performs rather poorly on many 

of their benchmarks. They also note how much better present-day energy minimization 

algorithms are than the longstanding ICM. 
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The research of [Kappes, et al. 2015] takes a step further and provides a more 

modernized and wider-ranged comparative study with OpenGM implementation and 

benchmarks. Their results show that different algorithms are suitable for different 

situations, which is not surprising since most algorithms were proposed with certain 

specialized purpose in mind and are often not easily generalized to other problem 

classes. More general-purpose algorithms that can find solutions for a large class of 

problems are often much slower. TRWS message passing performs well for problems 

to which it can be applied and the relaxation is nearly tight. Move-making algorithms 

perform slightly worse but do not suffer the restrictions on the conditions of problems 

like TRWS. Combinatorial algorithms can be utilized directly for some problems and 

are, in some instances, faster than some state-of-the-art algorithms. LP-relaxation 

algorithms are usually not restricted to problem classes and often provide good 

solutions but are also generally slower than other classes of algorithms. The authors 

also suggest that primal move-making algorithms seem to work best for the cases in 

which others do not fare so well. 

2.8 Hierarchical Schemes for Random Field Optimization 

As with most computational problems, various attempts to speed up the 

computation time using hierarchical approaches have been investigated in the area of 

random field optimization. The work of [Veksler 2006] uses hierarchical approach in 

graph-based stereo correspondence to increase efficiency. Input stereo pair is used to 

construct Gaussian pyramid and the process goes to the next finer level by restricting 

the disparity range using the results at the previous coarser level. Their experimental 

results were not encouraging as the loss in accuracy was quite considerable compared 

to gain in efficiency.  

Gaussian-pyramid was also used in [Zhang et al. 2010] to reduce the numbers of 

labels and variables to a half and a quarter, respectively. The process keeps going down 

the pyramid while fine-tuning over a small range, e.g., { 1,0,1} . Merging variables 

together, however, can lead to wrong labeling that small range fine tuning cannot 

correct. This is because neighboring pixels can have completely different labels at the 
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discontinuities in the scene where one object changes to another, which is most 

noticeable for slender objects. 

LogCut [Lempitsky, et al. 2007] uses binary subdivision for hierarchical 

partitioning of the label space. The resulting hierarchy is in the arrangement of a binary 

tree with the depth of the tree equal to 2log (| |) . Using binary representation of the 

labels, the process goes from more significant bits to less significant bits and makes 

hard decisions along the hierarchy. To cope with the effect of these irreversible 

decisions, the authors of [Lempitsky, et al. 2007] also proposed iterated LogCut, which 

considers different bit codings in each iteration. They introduce a shift s  to be applied 

to the label values before binary encoding, i.e., a label d  is instead shifted to 

(mod | |)d s  where mod  is the modulo operation. Their hierarchical energy 

minimization then proceeds as before and the solution from the shifted label space is 

then ''fused'' with the best-so-far using what is now called fusion move [Lempitsky, et 

al. 2010]. 

The work of [Kumar and Koller 2009] uses r-HST (r-hierarchically well-

separated tree) metrics to define hierarchical label clustering. Their method uses  -

expansion to minimize energy in a bottom-up hierarchical sequence but has a limitation 

in the class of energy functions that can be applied. The same concept is also explored 

independently in [Delong et al. 2012] which proposed hierarchical fusion algorithm for 

a class of energy functions that has ''hierarchical'' cost, requiring the label space to 

naturally form groups. Their examples of such label spaces include ''car, road, sky'' in 

''outdoors'' group and ''table, chair, wall'' in ''indoors'' group for the use in object 

recognition. They have shown that structured label space with energy function 

satisfying certain conditions can be solved more efficiently via their h-fusion algorithm, 

which generalizes  -expansion. 

Trained classifiers are used in [Conejo et al. 2014] to help in pruning the labels 

as the process undergone Gaussian pyramid iteration. To preserve sharp edges, presence 

of strong discontinuity (PSD) is included as one of the features and the nodes on a 

strong discontinuity border need to be treated separately.  
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The study in [Zach 2014] proposed a coarse-to-fine approach based on primal-

dual min-sum belief propagation. Their dead-end elimination detects states that are 

unfavorable due to having extremely large unary potentials and other possible causes 

that render them not to be part of any optimal solution. But because of irregular state 

space, fast message passing cannot be utilized. 

The stereo correspondence algorithm in [Taniai et al. 2014] uses pixel and region 

label sets to store candidate labels for pixels and regions to be proposed and fused via 

graph cuts. The process repeatedly finds new solution by drawing new proposals for 

each pixel from the union of its own pixel label set, its neighbors' pixel label sets, its 

own region label set, and its neighbors' region label sets. 

The work of [Meir et al. 2015] proposes variable grouping using conditional 

entropy to gauge confidence of using label assigned to representative variable as label 

of other variables in its group. Their variable grouping results in a spatial hierarchy that 

can be optimized with inference algorithms that satisfy certain requirements. 

The work of [Li et al. 2016] shows that there could be no approximate 

polynomial-time algorithm with reasonable bound on quality of the solution, even in 

binary pairwise energy minimization and planar case with more than two labels. More 

specifically, their finding precludes the existence for general energy minimization to 

have any approximation algorithm with a sub-exponential approximation ratio in the 

input size. As a corollary, this also precludes the possibility of hierarchical polynomial-

time algorithm optimization algorithm to have a reasonable bound. 
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Chapter 3: The Proposed Methodology 

While general first-order energy functions assume the form shown in Eq. (2.3), 

computer vision tasks often have characteristics that can be exploited which may lead 

to better performance. Objects are often composed of different structures at different 

scales and there are many problems which are often solved in a coarse-to-fine manner. 

The fact that the labels of certain formulated energy functions represent real-world 

physical quantities enables us to make use of their regularities to avoid exhaustive 

search of the solution spaces and, thus, gain speedup in running time while still offering 

comparable energy results. 

Consider dense stereo correspondence as an example. In this problem, some 

regions may contain very little or no distinctive features and must calculate their 

disparity by relying on their neighbors' disparity assignments. This means that the label 

assignment in these regions is affected mostly by pairwise potentials while their unary 

potentials do not vary much. In such case, the label assignment of these variables can 

be calculated in a coarser manner and then refined later after the assignment of more 

robust variables in nearby regions is done.  

The proposed methodology exploits these facts by systematically grouping labels 

with comparable potentials together. After that, energy minimization is done in a 

hierarchical manner. 

3.1 Local Label Hierarchies 

For each random variable p , we propose constructing a label hierarchy in 

the form of a tree. The root of this tree hierarchy is a group consisting of every possible 

label and each leaf of the tree is a singleton group situated at the same depth and 

containing exactly one label. At each intermediate level, each label d  belongs to 

exactly one group and we denote the group of label d  in the h th level of the hierarchy 

of p  by ( )h

p d . Using this notation, the 0 th-level group of d  which contains only 

itself is 0 ( ) { }p d d   and the set of all h th-level groups of variable p , which we denote 

by h

p , is  
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 { ( )}.h h

p p

d

d


  (3.1)  

Each group g  can be thought of as an interval, i.e., [ , ]g g g  , where g   and g   

denote the lower bound and upper bound of the labels in the group and the interval is 

restricted to only taking on discrete values. The set of neighbors of an h th-level group 

g  within range r  is denoted by ( , )h

p g r  and is defined as 

 ( , ) { \{ }: ,| | }.h h

p pg r f g d f e g d e r          (3.2) 

For a group g  in the ( 1)h st-level hierarchy of p , the set of its immediate children 

in the h th-level is denoted by   

 1( ) { ( ) : ( ) , }.h h h

p p pg d d g d       (3.3)  

 

Figure 9: Example of our notations in a two-level hierarchy 

An example of our notations in a two-level hierarchy is depicted in Figure 9. In 

this case, 2 ( ) rootp d   for every label d  of the variable p  and every group in the set 

of 1st-level groups 1

p  is a child of the root  of the hierarchy; that is 1 1(root)p p  . It 
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is possible for a higher-level group to have one child-group, for example, {11} , which 

is why level is explicitly included in the notations. 

We dub this hierarchical scheme ''local label hierarchy'' and the grouping process 

''label-wise grouping.'' We assume, without loss of generality, that the label set  has 

a linear ordering, i.e., {0,1,..., 1}k  . This is a rather common assumption in the 

literature [Ishikawa 2003, Kohli, et al. 2008, Kovtun 2003, Schlesinger and Flach 2006] 

and is the case of a number of applications such as image denoising and deblurring, 

inpainting, and stereo and multi-view reconstruction. In other applications, the order of 

 can be imposed and rearranged. The research in [Schlesinger 2007] proposes an 

approach to recognize if there exists an ordering of  in which the energy function is 

submodular. As pointed out by [Kohli, et al. 2008], a different reduction using binary 

indicator variables that does not depend on the order of  can be shown to give 

degenerate solutions. 

3.2 Hierarchical Energy Minimization 

After grouping, the problem is solved hierarchically in a top-down manner. The 

process starts at the root  of each variable, which situates at the highest level in the 

configuration hierarchy and contains every possible label. In each iteration, each 

random variable assumes a group of labels in the next immediate lower level by 

minimizing an energy function. The process continues until every variable is assigned 

a singleton group, i.e., the 0 th-level configuration is reached. 

More concretely, we define an h th-level energy configuration h
x  to be drawn 

from in the set  

 
1( )h h h

p p

p

x 



x  

where   is the -ary Cartesian product and the ( 1)h st-level configuration  

 
1 1 1( | )h h h

p p

p

x p  



  x  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34 

is from the previous iteration. The h th-level energy minimization problem is to solve 

for a configuration h
x  that minimizes the energy function   

 1( | , ) ( ) ( , )h h h h h h h h h

p p pq p q const

p pq

E x x x   

 

   x x   (3.4) 

where the domains of h

p  and h

pq  are defined to be the set h

p
 and h h

p q , respectively. 

The values of the potentials are discussed later in this chapter. 

Given the h th-level energy function, a binary energy function is constructed as 

described in section 2.2.2. The group indices start form 0  to 1| ( ) | 1h h

p px    and the set 

of graph vertices is defined as 

  1( , ) : , {1,2, ,| ( ) | 1}h h h

p pV p g p g x       (3.5) 

to correspond with the ( 1)h st-level configuration 1h
x . 

 

Figure 10: An example of two-level local label hierarchy in MQPBO setting 

An illustration of how our local label hierarchy can reduce MQPBO graph 

complexity in a two-level hierarchy is shown in Figure 10. In Figure 10 (a), the three 

top-most labels of variable q  is grouped together as shown in Figure 10 (b), which 

leads to the underlying graph  having fewer number of edges. The 1st-level graph after 
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grouping is shown in Figure 10 (c). The process starts at the 2 nd-level, which is the 

root  of the hierarchy. After energy minimization is done, the 1st-level configuration is 

obtained and the process continues to find the solution for the graph shown in Figure 

10 (d) to obtain the 0 th-level configuration, which is the solution. 

It can be seen that this method results in a faster running time. Suppose, for 

instance, that the max-flow algorithm being used has time complexity of 3(| | )O V  and 

that grouping with two-level hierarchy has the average size of 
*k . Using MQPBO 

method as the underlying inference algorithm, the running time of our approach would 

be  
3

* 3 *((| | ) | || | / )O k k  which is faster compared to  
3

( | || | )O  of the 

normal running time. Fewer number of variables and edges also means that the memory 

required for calculation is reduced. In a four-connected grid random field, the number 

of edges required for MQPBO would be 2((| || |) )O  in the normal case and 

* 2 * 2(max((| | ) , (| || | / ) ))O k k  using local label hierarchy. 

3.3 Group Potential Assignment 

Before energy minimization can be done, the values of the group potentials in the 

energy function must be assigned. If each group has a representative label, one sensible 

choice would be to assign group potentials with the potentials of representative labels 

of the groups. That is, suppose the h th-level groups f  and g  of variable p  and q  

have representative labels ( )rep f  and ( )rep g , respectively, the unary and pairwise 

group potentials would be assigned with 

 ( ) ( ( ))h

p pf rep f   

and ( , ) ( ( ), ( )).h

pq pqf g rep f rep g   (3.6) 

Aggregate functions are also natural choices for assigning group potentials. Our 

preliminary experiment suggests that using lower or upper bound approximations 

(minimum or maximum values) can often be overly-optimistic which may result in poor 

solutions for some cases. 
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We also experiment with using (uniform) mean and weighted mean of potentials 

of the labels in the group as group potentials. The mean for unary potentials is computed 

from the labels in each group as 

 

( )

( )

d p

d fh

p

d

d f

w d

f
w













 (3.7) 

and the mean for pairwise potentials is computed from all possible pairs of labels in the 

two participating groups of the participating neighboring variables as 

 
,

,

( , )

( , ) .

de pq

d f e gh

pq

de

d f e g

w d e

f g
w




 

 






 (3.8) 

For uniform mean, the weights are set to  

 

1

| |
dw

f


 

and  
1

| || |
dew

f g
  (3.9) 

and, for weighted mean,  

 

 
2

2

( )
exp

2
d

f

d rep f
w



 
  
 
    

and  
   

2 2

2 2

( ) ( )
exp

2 2
de

f g

d rep f e rep g
w

 

  
   
 
 

. (3.10) 

Since const  is not affected by grouping, 
h

const const   for every level h  in the 

hierarchy. Also, we use pre-computed cumulative sum in our experiment to compute 

the uniform mean of each group in constant time. 
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3.4 Label-wise Grouping Techniques 

In this section, we present three heuristics for label-wise grouping: local 

minimum search, cluster analysis, and maximum difference subdivision.  

3.4.1 Local Minimum Search 

As its name suggests, local minimum search groups labels by using local minima. 

That is, each local minimum, or ''basin'', is assigned its own group and other labels 

''drift'' toward where their basins are. These local minima are used as representative 

label of the groups. 

More concretely, our local minimum search technique groups labels in a bottom-

up manner starting at 0

p
, the set of all 0 th-level groups of variable p . Given h

p
, the 

set of h th-level local minima is defined as 

  

 

{ : ( ), ( ) ( )}

{ : 0, ( , ), ( ) ( )

( , 1), ( ) ( ) }

h h h h h

p p p p p

h h h h

p p p p

h h h

p p p

LM g f g g f

g r f g r g f

f g r g f

  

  

  

    

      

    

 (3.11) 

where ( )h

p g  is used to denote ( ,1)h

p g , the adjacent neighbors of a group g . From the 

definition, each label compares its unary potential with the potentials of its neighbors 

and identifies itself as a local minimum if its potential is less than all those of its 

neighbors or it is at the center of an equi-potential basin. 

The basin ( )h

p g  toward which a group g  drifts is then defined recursively as 

 
if

( )
( ) ( ); ( ), ( ) ( ).

h

ph

p h h h h h

p p p p p

g g LM
g

f f g e g f e


    

 
 

   

 (3.12) 

That is, a label stays to be a representative label if it is a local minimum. Otherwise, it 

is assigned to the group of the neighbor that has the least potential among all of its 

neighbors. If the neighbor is not assigned a group, the search for local minimum 

continues until one is found. In case of a tie between the potentials of the neighbors, we 

choose to move the label toward its nearest local minimum. Also, we currently choose 
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the center of the ''plateau'' (an equi-potential basin) as the local minimum if there are 

three or more consecutive labels with equal unary potentials. 

The set of ( 1)h st-level groups 1h

p

  is the union of the groups of all local 

minima, that is 

  1 { : ( ) } .
h
p

h h h

p p p

g LM

g f f g



     (3.13) 

If larger groups are preferred, value greater than 1 can be used in ( )h

p g . 

Conversely, one can also limit how large the groups can be to favor smaller groups, i.e., 

each basin grows to collect their neighbors until a predetermined maximum group size 

is reached, and the search for new basins and the group assignment process continue if 

there are still h th-level groups left. 

 

Figure 11: Label-wise grouping using local minimum search 
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Because one group in every pair of neighboring groups must have its unary 

potential less than or equal to that of the other, local minimum search grouping 

technique decreases the number of groups as we go up each level by at least half. An 

example of using local minimum search to construct a two-level hierarchy is shown in 

Figure 11. The arrows in Figure 11 (a) show where the labels drift toward. The resulted 

hierarchy is shown in Figure 11 (b). The node at the top is the root . The lower box 

contains the leaves and the upper box contains their 1st-level groups. 

3.4.2 Cluster Analysis 

Our cluster analysis grouping technique uses similarity in unary potentials as a 

basis for grouping. Here, we use a mode seeking algorithm based on mean shift [Cheng 

1995, Comaniciu and Meer 2002] but other algorithms of this sort would fit our 

framework as well.  

Given an h th-level group h

pg  of a random variable p , the weighted unary 

potential mean at g  within neighborhood range r  is defined as 

 
( , )

( , )

( ( ) ( )) ( )

( , )
( ( ) ( ))

h
p

h
p

h h

p p

f g rh

p h h

p p

f g r

K f g rep f

m g r
K f g





 

 













 (3.14) 

where ( )K   is the Gaussian kernel  2 2( ) exp ( ) / 2K      . One can imagine 

( , )h

pm g r  as a measure that indicates which direction the group g  is more similar to its 

neighbors in terms of potentials as the kernel ( )K   gives more weight when ( )h

p f  is 

closer to ( )h

p g . 

We call a group g  a mean-shift cluster center if ( , )h

pm g r  is no further from 

( )rep g  than a predetermined threshold . The set of all h -level cluster centers is then 

defined as 

  : ( , ) ( ) .h h h

p p pMC g m g r rep g     (3.15) 
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Like local minimum search, we give each cluster center its own group. Other groups 

then use their ( , )h

pm g r  to determine which direction it should be grouped with its 

neighbors. The cluster center ( )h

p g  toward which each group g  converges is defined 

recursively as 

 
if

( )
( ) ( ,1);sgn( ( ) ( )) sgn( ( , ) ( ))

h

ph

p h h h

p p p

g g MC
g

f f g rep f rep g m g r rep g


 

 
 

   

 

  (3.16) 

where sgn( )  is the signum function. The set of ( 1)h st-level groups is then the union 

of the groups of all cluster centers and is defined as 

  1 { : ( ) } .
h
p

h h h

p p p

g MC

g f f g



     (3.17) 

 

Figure 12: Label-wise grouping using cluster analysis 
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An example of constructing a two-level hierarchy using mean shift cluster 

analysis is shown in Figure 12. Mean shift tries to move label toward the direction that 

has similar potentials as shown by the arrows. Compared to Figure 11, the groups 

resulted from using local minimum search can differ more in terms of potentials 

whereas the labels within each group of cluster analysis have more closely-related 

potentials. Another noteworthy behavior of using mean shift for grouping is that labels 

that situate in a neighborhood with comparable potentials would be assigned its own 

group and, thus, would be treated with more attention near the root  of the hierarchy. 

3.4.3 Maximum-Difference Subdivision 

Unlike previously mentioned grouping techniques which work from the bottom 

upward, maximum-difference subdivision builds groups in a top-down manner. This 

proposed grouping technique starts at the root  group and repeatedly splits each group 

at the points between pairs of adjacent labels with maximum unary potential 

differences. Because of the dividing method, there is no obvious choice for assigning 

representative label for each child group like previous grouping techniques. 

The resulting number of subgroups can be fixed, predetermined or conditioned 

on certain criteria. Using fixed number of groups, such as always splitting into 2 or 4 

subgroups, is straightforward but do not take the label space size into account. In 

contrast, predetermined number of groups considers the number of possible labels and 

other relevant information. For example, one can use the (desired number of levels)th 

root of the label space size as the number of subgroups to be split if given a desired 

number of levels. The number of the resulting subgroups can also be set independently 

as the (remaining number of levels)th root of the size of the group being split. 

Certain strategy such as keep splitting until the remaining unary potential 

differences are less than a certain threshold can also be used, but the threshold must be 

different for each level which introduces a new task of determining suitable thresholds. 

This can be done by using certain criteria, such as splitting at the differences that are 

greater than the mean of all differences or ranking the potential differences and then 

splitting the top   percentile for some parameter  . These criteria loosely resemble 

using predetermined number of groups but are more complicated. 
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Let ( ) ( ) ( 1)p p pdiff a a a     be the potential difference between a pair of 

adjacent labels a  and 1a   of variable p  with 0 1a k   . To obtain n  groups, the 

first ( 1)n  maximum potential differences are selected. 

Given a group h

pg  at level h , the set of maximum-potential-difference labels 

of g  is defined as  

  ( ) : \ ( ), ( ) ( )h h

p p p pMD g a g b g MD g diff a diff b      (3.18) 

with the constraint | ( ) | min( 1,| | 1)h

pMD g n g   . The set of its immediate children 

1( )h

p g   is constructed as described in Table 2. 

Table 2: Pseudocode for maximum-difference subdivision 

Input: 
h

pg , a group of variable p  at level h  

       n , the desired number of child groups 

Output: 
1( )h

p g 
, a set of child groups of g  at level 1h  

 

Set gn :=min( 1,| | 1)n g  . 

Select the first gn  maximum-difference labels to create ( )h

pMD g . 

Set  :={ }g . 

While [ , ] ( ), 1h

pf f f a MD g a f a f          : 

  Set 1f :=[ , ]f a
 and 2f :=[ 1, ]a f  . 

  Remove f  from   and add 1f , 2f  to  . 

Endwhile 

 

Return  . 

 

The set of all ( 1)h st-level groups is then the union of the subgroups split from 

all the h -level groups and is defined as 

 
1 1( )

h
p

h h

p p

g

g 



  (3.19) 

In cases where there are more than one adjacent pairs of labels with equal 

potential differences, we currently choose to split the largest group at the point nearest 
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to its middle. For a variable with every label having equal unary potential, this strategy 

would be equivalent to binary subdivision. 

 

Figure 13: Label-wise grouping using maximum difference subdivision 

Figure 13 shows an example of using maximum-difference subdivision in 

building a two-level hierarchy. Compared to Figure 12, it can be seen that the resulting 

groups of maximum-difference subdivision resemble those of cluster analysis to some 

degree. This behavior is expected as our cluster analysis technique tries to group labels 

with close potentials together whereas maximum-difference subdivision tries to break 

labels with diverse potentials apart. The advantage (or one can also view it as 

disadvantage) of maximum-difference subdivision is that the number of resulting 

groups is preset, which allows better control but also comes at a caveat. If Figure 13 

had been subdivided into four groups, the left-most six labels would have been put into 

a single group, which would put more workload into the bottom of the hierarchy as 

opposed to Figure 12 that deals with these labels mostly at the top.  
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Further constraints can be enforced to make the number of levels logarithmic to 

the size of the label space. A simple case is where each group is constrained to split into 

only two subgroups. In this case, we can constrain the size of the subgroups not to be 

larger than some fraction of the group being split to limit the number of levels. For 

example, limiting the subgroup size to three quarters of the group size guarantees that 

the number of resulting levels will not go above the logarithm of the label space size to 

the base 4
3

. We dub this binary subdivision scheme ''Skewed Log Subdivision'' which 

can be viewed as a generalization of algorithms with logarithmic complexity proposed 

in [Lempitsky, et al. 2007] where binary subdivision does not have to occur at the 

middle of the group. 

3.5 Discussions 

Our methodology can be considered as a generalization of the bit-level 

subdivision proposed in [Lempitsky, et al. 2007] where our groups are allowed to have 

more than two subgroups each and also allowed to have different sizes. Similar to 

[Lempitsky, et al. 2007], our methodology makes irreversible pruning of the label space 

starting at the top of the hierarchy. However, binary subdivision builds very coarse and 

deep hierarchy, which is not fitting for applications in general. To make LogCut more 

robust, iterated LogCut was proposed in which the label set is shifted by some amount 

before bit-level subdivision in each iteration and the solutions from different shifted 

amounts are combined using fusion move. Our methodology attempts to integrate the 

information from the energy function at hand into the process of constructing the 

hierarchy by taking the potentials of the labels into account. 

Using hierarchical scheme in stereo correspondence has provided quite 

discouraging quality in the results in some cases. The Gaussian pyramid employed in 

[Veksler 2006] did not take into account the energy function during hierarchy 

construction, which is the key aspect of our methodology. Also,  using pyramid scheme 

can result in over-smoothed edges because the higher-level variable does not allow 

pixels in its group to have much diverse disparity values that occur at edges [Zhang, et 

al. 2010].  
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Our idea is related to [Kumar and Koller 2009] but their hierarchical graph cuts 

approach expects the energy function to be r-HST metric. The concept of [Delong, et 

al. 2012] is related to ours as well but, instead of having the label space placed in a 

linear ordering which is the case of our work, requires structured label space that is 

explicitly grouped in hierarchy.  

Using machine learning for coarse-to-fine pruning of label space has been 

proposed in [Conejo, et al. 2014]. Learning, however, requires at least one training set 

from which features are drawn, as opposed to our work which relies exclusively on 

information from the given energy function and therefore does not require training. 

Unlike other works, our local label hierarchy scheme builds, for each variable, its 

own label hierarchy by drawing information from the potentials instead of forcing every 

variable to use the same hierarchy. We also do not employ spatial grouping of random 

variables which has been shown in several works to oftentimes inadequately preserve 

discontinuities. The additional processing steps of our methodology have theoretical 

complexity significantly less than that of the overall optimization process. The 

empirical performance of our methodology will be demonstrated and discussed in the 

next chapter. 
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Chapter 4: Experiments and Results 

We have applied our methodology to computer vision applications with linearly 

ordered label space, namely, dense stereo correspondence, image denoising, and image 

inpainting. We have also tested our methodology with a benchmark database of discrete 

energy minimization problems [Kappes, et al. 2015] which offers a mixed range of 

diverse types of models. Performance of our methodology has been compared with our 

implementation of MQPBO method [Kohli, et al. 2008],  -expansion algorithm 

[Boykov, et al. 2001], and algorithms with logarithmic complexity introduced in 

[Lempitsky, et al. 2007]. 

4.1 Algorithm Implementation 

For  -expansion algorithm, each sweep iterates through all possible labels 

through a series of binary graph cuts moves. Here, the  -expansion algorithm has been 

modified to be QPBO-based so that it can cope with non-submodular energy and the 

comparison can be equitably made. For cases in which QPBO method returns partial 

solutions, we break the tie by assigning each unlabeled pixel the label with lower unary 

potential between the two competing ones. The initial configurations of  -expansion 

are different in each of the benchmark application being tested and will be provided 

shortly in their related section. 

Algorithms with logarithmic complexity [Lempitsky, et al. 2007] build their 

hierarchies by partitioning the label space by the bit values of its binary encoding. The 

final labeling of each pixel is solved hierarchically via fusion move binary optimization 

steps [Lempitsky, et al. 2010]. The simple binary subdivision (Log Simple), minimum 

(Log Min), and mean (Log Mean) variances are compared in the experiment. These 

variances differ in their methods of group potential assignment. Minimum value for 

each group is taken from every possible value of the less significant bits. Since all 

undetermined bits are essentially of equal importance, mean values are computed 

without weight. Simple binary subdivision assigns potential to each group by setting 

the less significant bits to zero.  
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The techniques proposed in this work being compared are LocalMin Min, 

LocalMin Mean, Cluster Center, Cluster Mean, MaxDiff Mid, MaxDiff Mean, 

SkewLog 2/3, and SkewLog 3/4. Algorithms followed by Mean use mean value 

calculated from all labels in a group as group potential. Min uses minimum unary 

potential as group potential for LocalMin (section 3.4.1), Center uses potential of the 

cluster center as group potential for Cluster (section 3.4.2), and Mid uses the potential 

of the middle label of the group as group potential for MaxDiff (section 3.4.3) since it 

does not have a clear choice for representative label. The numbers specified after 

MaxDiff, such as 8 and 16, indicate the predetermined numbers of subgroups. 

SkewLog is a special case of MaxDiff where each group is split into two subgroups 

and the fractions 2/3 and 3/4 indicate the constrained sizes of the subgroups are not to 

be larger than two thirds and three quarters of the size of the group being split, 

respectively. For a label space size of 256, Log would yield 
2log (256) 8    

hierarchical levels whereas SkewLog 2/3 and 3/4 would yield no greater than 

3
2/

log (256) 14  
 

 levels and 4
3/

log (256) 20  
 

 levels, respectively. 

In our experiment, we have used the QBPO implementation from [Rother et al. 

2007] which uses the max-flow algorithm from [Boykov and Kolmogorov 2004]. 

Despite not having any computational bound, this max-flow algorithm has been shown 

to outperform many methods with polynomial-time bound for optimizing several two- 

and three-dimensional grid graphs in computer vision and is the most widely-used 

implementation of graph cut technique in computer vision research. 

4.2 Stereo Benchmarks 

Stereo correspondence has been one of the most intense areas of research in 

computer vision for decades. The problem takes two images from different viewpoints 

of a scene as inputs and asks to match each pair of locations in the images that 

correspond to the same physical scene point. In contrast with sparse stereo 

correspondence where only a subset of image locations with visually distinctive 

features are matched, dense stereo correspondence outputs a disparity map of the whole 

scene (every pixel has an assigned disparity) and, thus, is more suitable for further use 
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in higher-level vision applications, such as object tracking and classification, and 

reconstructing the 3D scene structure. 

We formulate dense stereo correspondence as a multi-label energy minimization 

problem in which each pixel is considered a random variable and the matching cost and 

smoothness prior constitute unary and pairwise potentials of the corresponding energy 

function, respectively. The matching cost is used in stereo problems to evaluate the 

similarity between image locations whereas the smoothness prior penalizes difference 

in disparity of neighboring pixels and help coping with ambiguous regions in the image 

pair such as those caused by occlusions or lack of distinctive features. 

In our experiment, we use sum of squared differences and sum of absolute 

differences as matching costs. These differences are computed from primary (left) and 

secondary (right) RGB images and multiplied with Gaussian weights before summing 

over circular neighborhood window using with the sampling-insensitive computation 

in [Birchfield and Tomasi 1998]. A penalty term is used when a pixel in the primary 

image is matched to the imaginary pixel outside the range of the secondary image to 

reduce the effect near the edge. 

We switch between different smoothness priors to experiment with global 

smoothness constraints whose purposes are to penalize the disparity differences 

between neighboring pixels. Our selection of functions consists of constant function, 

linear function, inverse function, and Gaussian function. These functions are calculated 

based on the intensity gradient in the primary image to reflect the fact that the more 

different two neighboring pixels appear, the more they are likely to have different 

disparities and thus should not be penalized as much as the case where two neighboring 

pixels appear to be similar.  

Suppose neighboring pixels p  and q  were to have disparity values i  and j , 

respectively, the constant function is calculated based on only the difference in their 

disparity values, i.e., ( , )const

pq consti j i j   . On the other hand, linear function, inverse 

function and Gaussian function are calculated based on both the intensity gradient and 

the disparity difference and are defined as  

 ( , ) ( _ ( ) ( ) ),lin

pq lini j i j max intensity I p I q      
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 ( , )
( ) ( )

invinv

pq

i j
i j

I p I q








 

and 

2( ( ) ( ))

( , )
I p I q

Gauss h
pq Gaussi j i j e 




   (4.1) 

where ( )I p  and ( )I q  are the intensity values of pixel p  and q  in the primary image, 

_max intensity  is the maximum intensity value allowed in the images,   and h  are 

parameters to be set in the experiment settings. 

In each setting, the parameter combination used is the one that, when solved using 

MQPBO method, has given lowest error result when compared with ground truth 

images. All terms in the energy function were computed prior to energy minimization 

and then used throughout the experiment. The initial labeling for each pixel of  -

expansion algorithm is chosen to be assigned with the disparity that has the lowest 

unary potential in that pixel.  

The stereo datasets we used are from the Middlebury Stereo Vision13 

[Hirschmuller and Scharstein 2007, Scharstein et al. 2014, Scharstein and Pal 2007, 

Scharstein and Szeliski 2002, Scharstein and Szeliski 2003] which have been growing 

and improving over more than a decade and have been used as the de facto benchmark 

for stereo correspondence and multi-view reconstruction for almost as long. The 

datasets provide rectified stereo image pairs with radial distortion removed and pixel-

accurate ground-truth disparity maps. Some examples of the ground truth disparity 

maps and the corresponding original primary (left) images from the datasets are shown 

in Figure 14. 

                                                 

13 URL: vision.middlebury.edu/stereo/ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 

 

Figure 14: Examples from the stereo datasets (From left to right: taken from the 2003, 2005, 

2006, and 2014 datasets.) 

The input images and ground truth image from the Aloe stereo pair are shown in 

Figure 15, as well as the disparity maps of the solutions computed by the techniques 

being compared using sum of square differences and Gaussian smoothness prior. 

Qualitatively, the artifacts in Log techniques, especially in Log Min, can be seen to be 

quite strong. This is due to the erroneous assignment in the more significant bits, which 

cannot recover because the techniques employ a top-down computation scheme. Both 

SkewLog techniques also demonstrate this behavior and, upon closer inspection, 

SkewLog34 appears to have smoother disparity map, which suggests that having more 

choices to subdivide leads to better qualitative result. 
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Figure 15: Disparity maps of the Aloe stereo pair 

The artifacts in LocalMin techniques can be seen to be more pronounced than 

those in Cluster and MaxDiff as a result of the group potential estimation being over-

optimistic. Between the two LocalMin techniques, extra computation of mean values 

in LocalMin Mean provided a disparity map with fewer artifacts. This behavior can 

also be seen in MaxDiff. Despite more computation steps, the disparity map from 

Cluster Mean can be seen to have more artifacts than that from Cluster Center. This 

hints that the cluster centers from mean-shift are more suitable for group potential 
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assignment. MaxDiff, on the other hand, gives better result when using mean values 

than simply using the middle label in each group as representative label. 

 

Figure 16: Disparity maps of the Rocks2 stereo pair 

The techniques being compared exhibit the same behavior in other stereo pairs as 

well, for example, results from the Rocks2 stereo pair as can be seen in Figure 16. It is 

worth pointing out that the results from this stereo pair have regions where the disparity 

values of the background (the surface that the rocks were placed on) are not zero in the 
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results but are zero in the ground truth, which is expected since the background appears 

to lack any distinctive features so the disparity values were inferred from the rocks 

through pairwise potentials. 

Table 3: Speedup, energy ratio and error results from stereo experiment 

Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO Error Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO Error 

MQPBO 1 --- 18.33% MaxDiff8 

Mid 

8.47 +9.20% 18.51% 

AlphaExp 1.1 +0.002% 18.29% MaxDiff8 

Mean 

8.66 +5.65% 18.43% 

Log Simple 17.1 +86.29% 27.85% MaxDiff16 

Mid 

9.42 +5.52% 18.61% 

Log Min 14.6 +104.83% 28.25% MaxDiff16 

Mean 

9.7 +4.23% 18.32% 

Log Mean 16.2 +71.20% 27.81% MaxDiff24 

Mid 

9.03 +5.04% 18.41% 

LocalMin 

Min 

9.16 +30.98% 20.24% MaxDiff24 

Mean 

9.28 +4.41% 18.34% 

LocalMin 

Mean 

9.23 +17.79% 20.07% MaxDiff32 

Mid 

8.49 +6.56% 18.39% 

Cluster 

Center 

7.99 +4.42% 18.36% MaxDiff32 

Mean 

8.65 +6.31% 18.37% 

Cluster 

Mean 

7.16 +9.77% 18.52% MaxDiff48 

Mid 

7.31 +9.80% 18.52% 

SkewLog 

3/4 

12.9 +62.39% 25.27% MaxDiff48 

Mean 

7.64 +9.78% 18.52% 
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Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO Error Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO Error 

SkewLog 

2/3 

13.9 +64.02% 26.31%     

 

Table 3 summarizes speedup, energy ratio, and error results from all settings of 

stereo experiment over all stereo pairs. Compared to the baseline techniques (MQPBO 

and AlphaExp), Log techniques give the best speedup but also the worst energy and 

error. SkewLog techniques give better energy and error rate than Log with less 

speedup, which supports our thesis that incorporating unary potentials into the 

subdivision process can lead to higher-quality results in terms of energy and error rate. 

LocalMin techniques are the next fastest and give better energy and error rate. Notice 

that both Log and LocalMin perform worse when using Min than Mean, suggesting 

that lower bound is not a good candidate for group potential assignment. 

As we reported in [Leelhapantu and Chalidabhongse 2018], Cluster Center, the 

most competitive technique at the time, provides a near order-of-magnitude speedup 

with less than 5% increase in energy. Cluster Mean, however, gives less speedup and 

larger increase in energy, hinting that using mean-shift center is better for group 

potential assignment than using mean value. 

We experiment with several numbers of subgroups in MaxDiff techniques. The 

results demonstrate that MaxDiff16 performs best on all counts: speedup, energy, and 

error with respect to ground truth. While we have expected using 16 as number of 

subgroups to give the best speedup, we did not expect the energy and error results to be 

this competitive. Taking a closer inspection has revealed that while using larger number 

of smaller subgroups intuitively should have given the best energy and error, the reality 

is that having several small groups at the higher hierarchy level can lead to the 

corresponding configuration getting stuck at a local minimum with no room to wiggle 

and refine at the lower level. Using MaxDiff8, nevertheless, performs worse and the 

optimal trade-off spot appears to be at 16 where the group sizes are balanced between 
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the hierarchy levels. Also, the difference between using Mid and Mean as group 

potentials are more pronounced as the number of subgroups gets smaller (the group 

sizes get larger). 

4.3 Image Denoising Benchmarks 

Digital cameras capture images by measuring light intensity reflecting from 

objects in the scenes. Even with constant light source, the number of photons received 

by each pixel in a camera can fluctuate.  Furthermore, heat spurious photons can also 

occur if the capturing element is not adequately cooled. The resulting perturbation is 

called noise and the problem of estimating an underlying function from error-

contaminated observations is called denoising. 

Like dense stereo correspondence, we cast image denoising as multi-label energy 

minimization problem. The unary potential for each pixel variable measures the 

similarity between the new (estimated) intensity value and the observed intensity value. 

To help mitigate possible error in the observed value, neighboring intensity values are 

also included in unary potential. From preliminary experiment, using either absolute or 

squared difference between new intensity value and weighted mean intensity of 

neighborhood window for unary costs tends to cause the result to be over-smoothed 

because each pixel has one ''preferred'' value from which the unary potential is 

measured. This same behavior also exhibits when sum of (weighted) squared 

differences and sum of (weighted) absolute differences are used because both functions 

are convex and continue to be convex after summation which means that each of them 

has a global minimum and, because they are combined linearly, has progressively 

steeper slope as we go further from the global minimum.  

To mitigate this effect, we also use minimum value of differences computed in 

the neighborhood window as unary cost. This way, each pixel is allowed to take on 

intensity values in the neighborhood window without being penalized as much as 

previously mentioned unary costs, which results in more edges and lines being 

preserved. We experiment with minimum of absolute differences and minimum of 

squared differences. In addition to multiplicative weight, we also insert additive weight 

into the differences before computing minimum, i.e., the difference value in the window 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56 

center (the pixel's own observed intensity value) has 0 additive weight and each of the 

other difference values are added by more weight the further it is from the center. This 

results in unary cost with many local minima with the global minimum occurring at the 

pixel's own observed intensity value. 

 

Figure 17: Behaviors of Unary Cost Functions on a sample neighborhood window 

We also experiment with using sum of (weighted) square root of absolute 

differences as unary cost. This function by itself has a global minimum but is not convex 

and, thus, has multiple local minima when linearly combined together. Typical 

behaviors of the mentioned unary cost functions are illustrated in Figure 17. Note, 

however, that the figure only shows an illustration from a sample neighborhood window 

as the actual label space is 0 to 255. Also, we mainly use neighborhood window size of 

5x5 in our experiment. 
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Like stereo, all terms in the energy function were computed prior to energy 

minimization and then used throughout the experiment. The parameter combination 

used in each setting is the one that has achieved highest PSNR14 computed from 

MQPBO results with respect to the ground truth images. The initial labeling for each 

pixel of  -expansion algorithm is taken directly from the intensity value of the input 

noisy image. 

 

Figure 18: Examples of original and input images from the datasets (From left to right: taken 

from [Estrada et al. 2009], [Pletscher et al. 2011], and [Mairal et al. 2008].) 

                                                 

14 Peak Signal-to-noise Ratio is calculated from   
2_

MSE
PSNR 10log

max intensity
  where 

_max intensity  is the maximum possible intensity value of the input and MSE is the Mean Squared 

Error of the denoising result with respect to the original image, which is calculated from 

 
1 1 2

1

0 0
MSE ( , ) ( , )

width height

width height x y
original x y result x y

 

  
   . 
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The datasets we used are mostly from the Image Denoising Benchmark15 

[Estrada, et al. 2009]. Others are from [Pletscher, et al. 2011] (capricorn, arch, foxes, 

elephant, etc.) and [Mairal, et al. 2008] (castle, mushroom, etc.). The benchmark in 

[Estrada, et al. 2009] provides multiple noise levels of each image indicated by the 

standard deviation of Gaussian noise added. We have converted the images to grayscale 

to use in the experiment. Figure 18 shows some examples of the original and input noisy 

images from the datasets. 

 

Figure 19: Denoising results of ''Wolf'' image 

                                                 

15 URL: www.cs.utoronto.ca/~strider/Denoise/Benchmark/ 
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The denoising results of ''Wolf'' at SD=35 (0246_35) (dataset from [Estrada, et 

al. 2009]) are shown in Figure 19. The results are from using sum of square-root of 

absolute differences cost and inverse smoothness prior. The artifacts in Log techniques 

are the most noticeable, followed by SkewLog techniques. The rest are more subtle and 

have to be inspected by PSNR results.  

 

Figure 20: Denoising results of ''Elephant'' image 

Figure 20 shows the denoising results of ''Elephant'' (dataset from [Pletscher, et 

al. 2011]). Again, the behaviors of the techniques are the same as the previous case with 

Log techniques having the most noticeable artifacts followed by SkewLog. This input 

image, however, exposes more artifacts in the results since it has lower PSNR than that 

of the previous one.  
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Table 4: PSNR results of ''Wolf'' and ''Elephant'' datasets 

Wolf 

Techniques PSNR  

Elephant 

Techniques PSNR 

Input 26.6269  Input 20.2098 

MQPBO 30.6166  MQPBO 28.6284 

AlphaExp 30.6165  AlphaExp 28.6275 

Log Simple 29.8146  Log Simple 26.9934 

Log Min 29.5890  Log Min 26.2698 

Log Mean 29.8158  Log Mean 27.0137 

LocalMin Min 30.2596  LocalMin Min 28.1523 

LocalMin Mean 30.3612  LocalMin Mean 28.1599 

Cluster Center 30.6130  Cluster Center 28.6236 

Cluster Mean 30.6080  Cluster Mean 28.6117 

MaxDiff16 Mid 30.5866  MaxDiff16 Mid 28.6096 

MaxDiff16 Mean 30.6138  MaxDiff16 Mean 28.6246 

SkewLog 3/4 30.1539  SkewLog 3/4 27.9068 

SkewLog 2/3 30.1394  SkewLog 2/3 27.9065 

 

The PSNR results of ''Wolf'' and ''Elephant'' in the previous figures are shown in 

Table 4. In both cases, the PSNR results reveal that the relative qualities of the results 

from techniques being compared agree with that of the stereo benchmark from section 

4.2. Log techniques give the worst PSNR with Log Min having the lowest values. 

SkewLog techniques are next with SkewLog34 having higher PSNR than SkewLog23. 

Next are the LocalMin techniques with LocalMin Min giving worse PSNR than 

Mean. Results from Cluster Center and MaxDiff Mean are nigh on par with the 

baseline MQPBO and AlphaExp techniques with MaxDiff Mean having slightly 

better PSNR than Cluster Center.  
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The speedup, energy ratio, and error results from all settings of image denoising 

experiment are shown in Table 5. Overall, the relative performances of the techniques 

do agree with those from the stereo experiment. The trade-off between speed and 

quality can be seen by comparing Log and SkewLog techniques. Among our proposed 

label-wise grouping techniques, LocalMin techniques still give poorest quality results 

but faring well in terms of speed. Cluster Center, in contrast, does well in terms of 

energy and PSNR but provides lower speedup. MaxDiff techniques still perform well 

on all metrics being compared with MaxDiff16 being the best among all preset number 

of subgroups and MaxDiff16 Mean being better than both LocalMin Mean and 

Cluster Center. 

Table 5: Speedup, energy ratio and error results from image denoising experiment 

Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO PSNR Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO PSNR 

MQPBO 1 --- 26.656 MaxDiff8 

Mid 

9.59 +11.42% 26.266 

AlphaExp 0.979 +0.114% 26.654 MaxDiff8 

Mean 

10.1 +7.88% 26.343 

Log 

Simple 

18.9 +81.57% 24.595 MaxDiff16 

Mid 

10.9 +6.11% 26.499 

Log Min 16.1 +113.95% 24.107 MaxDiff16 

Mean 

11.1 +3.95% 26.650 

Log Mean 18.1 +77.74% 24.649 MaxDiff32 

Mid 

9.68 +9.20% 26.432 

LocalMin 

Min 

11 +28.29% 26.018 MaxDiff32 

Mean 

10.1 +7.66% 26.519 

LocalMin 

Mean 

9.97 +17.73% 26.136 SkewLog 

3/4 

14.1 +61.51% 25.652 
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Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO PSNR Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio wrt. 

MQPBO PSNR 

Cluster 

Center 

9.38 +4.52% 26.645 SkewLog 

2/3 

15.6 +63.93% 25.093 

Cluster 

Mean 

8.31 +8.65% 26.471     

 

4.4 Inpainting Benchmarks 

There are many circumstances in which parts of an image may be lost or 

corrupted. Films may deteriorate, photographs may crack, or blocks may be lost in the 

coding and transmission of images. Some artifacts may even be intentionally added, 

such as timestamps and watermarks. The problem of image inpainting accepts as input 

an image to be inpainted and a mask of the same size specifying the state of each pixel 

as ''known'' or ''unknown''. 

Unlike denoising in which the intensity values of the pixels are observed with 

possible errors, the case where parts of the image are missing poses a different challenge 

to the problem of estimating the true observations. Given a pixel that is obscured or 

damaged, its intensity is estimated by the intensity of its neighbors. This common 

practice of using a kernel of fixed size as neighborhood window works adequately when 

the pixel has some neighbors with correct intensity values but is not applicable when 

the pixel to be estimated is too far for the kernel to reach. In terms of energy function, 

this means that its unary potential would be equal for all possible intensity labels to 

reflect the fact that there is no information in the pixel itself and the estimation must 

rely on the pairwise potentials for the information to propagate through.  

We have also experimented with using distance transform to calculate pairwise 

potential. This is to reflect the fact that unknown pixel situated nearer to known pixels 

should be penalized more for having different intensity value from its neighbors than 

the further situated counterparts. Given the input mask, the distance from each unknown 
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pixel to the nearest known pixel is calculated. This distance is then used as input to 

calculate smoothness priors for pairwise potentials. In addition, we also use the 

direction to the nearest known pixel to specify the strength of the pairwise potential in 

each direction.  

 

Figure 21: Examples of original, mask, and input images from the datasets (Top row: from 

TUM-IID; Bottom row: from Depth Inpainting database) 

The datasets we used in our experiment are from the TUM-Image Inpainting 

Database16 [Tiefenbacher et al. 2015] and the Depth Inpainting database17 [Xue et al. 

2017]. The TUM-IID contains natural scene images that are diverse in terms of texture 

and structure as well as different masks to specify target regions to be inpainted. The 

Depth Inpainting database consists of depth images converted from ground truth 

disparity maps, the masks specifying missing depth values and the damaged images. 

Figure 21 shows examples of the original, mask, and input images from the datasets. 

Note that the PSNR values reported are computed over only the unknown regions, 

which means that the inputs would always have PSNR of 0 dB. 

                                                 

16 URL: www.mmk.ei.tum.de/tumiid/ 

17 URL: www.cad.zju.edu.cn/home/dengcai/Data/depthinpaint/DepthInpaintData.html 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 

 

Figure 22: Inpainting results of ''16'' from the TUM-IID dataset 

Figure 22 shows the inpainting results of ''16'' from the TUM-IID dataset and 

Figure 23 shows the results of ''adi'' from the Depth Inpainting database. All of the 

results are from using sum of square-root of absolute differences cost and inverse 

smoothness prior. As with stereo and image denoising, artifacts in Log and SkewLog 

techniques are more easily to be seen than those in the other techniques.  
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Figure 23: Inpainting results of ''adi'' from the Depth Inpainting database 

Their PSNR results are shown in Table 6. The relative quality of the inpainting 

results from most of the techniques does agree with stereo and image denoising except 

for Cluster techniques, which perform worse than LocalMin (and, also, worse than 

MaxDiff). This may seem counterintuitive at first but, as mentioned before, Cluster 

does not group labels with equal unary potentials which should have made those labels 

behave like they were being solved with MQPBO. Instead, because the unknown pixels 

close to the border of the mask were still able to calculate potential based on some of 

their neighbors, forcing the pixels that are farther to make decision at the root  worsens 

the quality of the results rather obtrusively. The results from delaying the ungrouped 

labels to make decision at the 0 th level are shown in the table as Cluster(delay) Center 
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and Mean, which now give better PSNR than MaxDiff Mean. Note that the image 

results shown in the figures are from the delayed versions of Cluster. 

Table 6: PSNR results of ''16'' and ''adi'' datasets 

16 

Techniques PSNR 

 adi 

Techniques PSNR 

MQPBO 34.604  MQPBO 27.104 

AlphaExp 34.607  AlphaExp 27.088 

Log Simple 30.687  Log Simple 26.645 

Log Min 28.78  Log Min 26.567 

Log Mean 30.702  Log Mean 26.655 

LocalMin Min 33.736  LocalMin Min 27.033 

LocalMin Mean 33.737  LocalMin Mean 27.047 

Cluster Center 33.4807  Cluster Center 26.986 

Cluster Mean 33.3923  Cluster Mean 26.876 

MaxDiff16 Mid 34.597  MaxDiff16 Mid 27.07 

MaxDiff16 Mean 34.601  MaxDiff16 Mean 27.076 

SkewLog 3/4 32.712  SkewLog 3/4 26.884 

SkewLog 2/3 31.844  SkewLog 2/3 26.837 

Cluster(delay) 

Center 
34.604 

 

Cluster(delay) 

Center 
27.089 

Cluster(delay) 

Mean 
34.579 

 

Cluster(delay) 

Mean 
27.088 

 

In regions where the unary potentials of all labels are equal, MaxDiff techniques 

create groups of equal size since all the potential differences are zero. On the other 

hand, LocalMin uses its group size constraint to build the hierarchy. Nevertheless, the 
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groups created by MaxDiff16 and LocalMin are not the same. MaxDiff's strategy is to 

split the largest group nearest to its middle so MaxDiff16 would create 16 groups of 

size 16. LocalMin, if used group size constraint of 16 as it gives the best performance 

in MaxDiff, would first choose the middle label as the local minimum and then expand 

on both sides to reach the size constraint so, for label space [0,255], the first group 

created would be [120,135]. Next, LocalMin would repeat the process for [0,119] and 

[136,255] and create [52,67] and [188,203]. The process would go on until all groups 

are of size not larger than 16 and would result in more than 16 groups with different 

sizes18. We use group size constraint of 18 in our experiment as its 15 resulting groups 

most resemble those built by MaxDiff16. 

Table 7: Speedup, energy ratio and error results from inpainting experiment 

Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio 

wrt. 

MQPBO PSNR Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio 

wrt. 

MQPBO PSNR 

MQPBO 1 --- 24.825 MaxDiff8 

Mid 

10.3 +9.62% 24.466 

AlphaExp 0.978 +0.248% 24.823 MaxDiff8 

Mean 

10.8 +6.48% 24.540 

Log 

Simple 

18.8 +58.09% 23.827 MaxDiff16 

Mid 

10.9 +4.77% 24.681 

                                                 

18 The groups for MaxDiff16 are {[0,15], [16,31], [32,47], [48,63], [64,79], [80,95], [96,111], 

[112,127], [128,143], [144,159], [160,175], [176,191], [192,207], [208,223], [224,239], [240,255]} 

while LocalMin would yield {{0}, [1,16], {17}, [18,33], {34}, [35,50], {51}, [52,67], {68}, [69,84], 

{85}, [86,101], {102}, [103,118], {119}, [120,135], {136}, [137,152], {153}, [154,169], {170}, 

[171,186], {187}, [188,203], {204}, [205,220], {221}, [222,237], {238}, [239,254], {255}} with 

maximum group size 16 and {[0,15], [16,33], [34,49], [50,67], [68,83], [84,101], [102,118], [119,136], 

[137,152], [153,170], [171,186], [187,204], [205,220], [221,238], [239,255]} with maximum group size 

18. 
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Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio 

wrt. 

MQPBO PSNR Technique 

Speedup 

wrt. 

MQPBO 

Energy 

ratio 

wrt. 

MQPBO PSNR 

Log Min 18.5 +58.77% 23.352 MaxDiff16 

Mean 

11.3 +3.48% 24.821 

Log Mean 19 +57.43% 23.687 MaxDiff32 

Mid 

10.3 +8.02% 24.605 

LocalMin 

Min 

11.1 +6.46% 24.423 MaxDiff32 

Mean 

10.6 +6.81% 24.701 

LocalMin 

Mean 

11 +3.71% 24.434 SkewLog 

3/4 

18.2 +47.76% 24.292 

Cluster 

Center 

2.04 +1.08% 24.821 SkewLog 

2/3 

18.3 +50.72% 24.242 

Cluster 

Mean 

2.03 +2.02% 24.800     

 

Table 7 summarizes the speedup, energy ratio, and error results from all settings 

of inpainting experiment. The key difference between the results here and those in the 

previous benchmark applications is the existence of regions where the random variables 

have equal unary potentials for all labels. The trade-off between Log and SkewLog 

persists but with smaller gaps since both SkewLog techniques split groups at the middle 

the same way as Log in equi-potential regions. Also in these regions, LocalMin and 

MaxDiff techniques behave similarly with slightly different resulting groups as 

previously discussed. It can be seen that LocalMin's 15 subgroups performs marginally 

worse than MaxDiff16. Using Min and Mid still give poorer quality results than Mean, 

with Mid being a better group representative potential than Min. The results shown for 

both Cluster techniques are the ''delay'' versions. Cluster Center now has only 1% 

increase in average energy and virtually the same PSNR as the baseline techniques since 
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it leaves the labels as they were without being grouped. This, of course, means that both 

Cluster techniques now give considerably less gain in speedup. 

4.5 Discrete Energy Minimization Benchmarks 

We have also experimented with a database of discrete energy minimization 

problems from the OpenGM Benchmark19 [Kappes, et al. 2015] which contains datasets 

from various applications from both within and outside the field of computer vision. 

We selected mrf-inpainting and mrf-stereo benchmarks for problems with linearly 

ordered label space. Unlike the stereo benchmarks in section 4.2 which has label space 

size of 256, mrf-stereo benchmark has label space sizes between 16 and 60. We have 

also compared the results of applications where the labels do not have natural ordering 

structure that represents physical quantity, namely, image-seg and protein-folding-pdb 

benchmarks. In image-seg benchmark, the random variables are segmented superpixels 

in the input image and the label space contains as many labels as there are superpixels, 

making a rather large label space size for some instances. The protein-folding-pdb 

benchmark refers to protein folding side-chain prediction [Yanover et al. 2008] and the 

constructed models are fully connected and have quite large label spaces. We have 

chosen these applications because of their large sizes of label spaces. 

Here we have experimented with using LBP and TRWS as the underlying 

optimization algorithms and, as such, they are the baseline used to calculate the speedup 

and energy ratio shown in the tables. Because of the irregular label space, we have used 

the square root of label space size as the number of subgroups for MaxDiff. It can be 

seen that changing the optimizers does have effect on speedup and energy results.  

Table 8 and Table 9 summarize the results. For mrf-inpainting and mrf-stereo, 

the results are consistent with those in the previous sections. The speedup gains for mrf-

stereo are less manifest here than in section 4.2 since the label spaces in this case are 

not full-sized.   

                                                 

19 URL: hciweb2.iwr.uni-heidelberg.de/opengm/ 
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Table 8: Speedup and energy ratio results of mrf-inpainting and mrf-stereo 

Technique 

mrf-inpainting mrf-stereo 

LBP TRWS LBP TRWS 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Log 

Simple 

12.2 +47.43% 15.9 +46.75% 3.01 +86.56% 4.51 +108.27% 

Log Min 12.4 +52.36% 16.1 +49.80% 3.25 +90.98% 4.72 +123.01% 

Log Mean 12.3 +49.67% 16 +45.93% 3.18 +79.71% 4.7 +107.81% 

LocalMin 

Min 

8.12 +22.37% 9.91 +31.87% 2.84 +39.84% 3.71 +20.85% 

LocalMin 

Mean 

7.99 +17.09% 9.89 +30.34% 2.74 +20.90% 3.44 +15.66% 

Cluster 

Center 

6.3 +4.09% 7.89 +4.56% 2.01 +6.11% 2.61 +4.54% 

Cluster 

Mean 

6.18 +4.23% 7.67 +7.98% 2 +7.83% 2.27 +7.61% 

MaxDiff 

Mid 

7.89 +13.95% 9.87 +13.91% 2.82 +5.25% 3.52 +5.28% 

MaxDiff 

Mean 

8.13 +4.05% 9.97 +4.24% 2.85 +4.36% 3.69 +4.59% 

SkewLog 

3/4 

10.5 +33.78% 13.5 +34.90% 2.93 +59.55% 4.33 +70.42% 

SkewLog 

2/3 

10.9 +37.31% 14 +37.21% 2.97 +66.85% 4.37 +74.17% 
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For image-seg and protein-folding-pdb in which the label spaces are unstructured, 

both speedup and energy ratio results of the techniques still exhibit the same relative 

quality as in the linearly ordered label space but more erratically. The increases in 

energy for image-seg, though higher than linearly ordered label space cases, are still 

not above 10% for MaxDiff. Cluster, in this case, does not take effect since all 

variables have no unary term. For protein-folding-pdb, however, the lowest increase in 

energy is still almost 30%. Comparing the two, image-seg, while having as many labels 

as variables, can be segmented adequately when grouped since hierarchical label 

grouping still allows adjacent superpixels to congregate and differentiate. The same 

cannot be accomplished, at least not satisfactorily, for protein-folding-pdb. 

Table 9: Speedup and energy ratio results of image-seg and protein-folding-pdb 

Technique 

image-seg protein-folding-pdb 

LBP TRWS LBP TRWS 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Log 

Simple 

3.94 +69.35% 6.4 +53.71% 10.3 +114.94% 12.2 +140.45% 

Log Min 3.95 +72.04% 6.28 +54.99% 10.4 +118.49% 12.4 +147.13% 

Log Mean 3.94 +63.90% 6.31 +53.77% 10.3 +114.17% 12.4 +140.39% 

LocalMin 

Min 

3.83 +16.36% 5.32 +19.24% 7.06 +59.04% 8.07 +62.16% 

LocalMin 

Mean 

3.8 +8.37% 5.25 +8.93% 7.02 +46.85% 8.07 +44.23% 

Cluster 

Center 

1 0.00% 1 0.00% 5.11 +35.36% 5.73 +29.14% 

Cluster 

Mean 

1 0.00% 1 0.00% 5.05 +40.60% 5.6 +37.32% 
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Technique 

image-seg protein-folding-pdb 

LBP TRWS LBP TRWS 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

Spd 

up 

Energy 

ratio 

MaxDiff 

Mid 

3.73 +11.67% 5.23 +15.70% 6.84 +44.97% 7.63 +49.88% 

MaxDiff 

Mean 

3.83 +8.26% 5.26 +8.86% 7.04 +35.27% 8.06 +29.08% 

SkewLog 

3/4 

3.87 +57.16% 6.22 +41.11% 8.88 +91.42% 10.5 +122.85% 

SkewLog 

2/3 

3.88 +59.36% 6.25 +42.82% 9.13 +99.00% 10.6 +129.34% 

 

4.6 Result Discussions 

From the experimental results, it can be observed that the behavior and 

performance of the techniques being compared agree across the applications with 

linearly ordered label space used as benchmarks. Log techniques give the best speedups 

but poor energy ratios. In contrast, SkewLog, which also does binary subdivision but 

allows unequal group sizes to favor subdividing between labels with maximum 

difference in potentials, gives higher-quality results, which supports our thesis that 

incorporating information from the energy function into the subdivision process can 

lead to better quality of the results in terms of energy and error rate. SkewLog, however, 

oftentimes requires more levels in the hierarchy to be optimized which leads to smaller 

gains in speedup. 

In general, using Min for group potential assignment provides poorer quality 

results than using Mean, both in Log and LocalMin as well as in our preliminary 

SkewLog results. This behavior is also consistent with the findings in [Lempitsky, et 
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al. 2007], strongly indicating that lower bound approximation is not an effective choice 

for group potential assignment.  

Among our proposed techniques, LocalMin favors speed over quality whereas 

Cluster does the opposite and provides quality while having less speedup gain. 

MaxDiff, however, performs respectably on both counts. LocalMin and MaxDiff give 

their respective best results when using Mean as group potential assignment. Cluster, 

on the other hand, does its best when using Center. The behavior is consistent across 

the benchmark applications, evidently suggesting that mean-shift centers are reliable as 

representative labels. 

Between LocalMin and MaxDiff, their speedups are comparable on average but 

LocalMin gives inferior results in terms of energy and error despite both using Mean 

which gives their respective best. This is because the groups resulted from LocalMin 

can be more diverse since there is no guarantee that labels that fall into the same basin 

would be close in terms of potentials. Having labels with diverse potentials in the same 

group means that Mean is still not a good choice for group potential assignment even 

though it provides better results than Min. 

MaxDiff can be regarded as an approximation of Cluster since both result in 

separating the pairs of adjacent labels with large unary potential differences. The main 

difference between the two strategies is that Cluster handles consecutive labels with 

close potentials at the top of the hierarchy while MaxDiff does so by delegating the 

overall workload between the levels. Dealing with variables having these equi-potential 

labels at the top, however, is not a good practice as shown empirically in the results. 

This is because doing so would result in more imbalanced workloads between the 

hierarchical levels, giving more workload to the root  and therefore gaining less 

speedup. Also, forcing these variables to make irreversible decisions at the top while 

the rest still have not decided leaves no room for them to refine their decisions once 

their neighbors have finished making their decisions. This effect is most obvious in 

inpainting where delaying the processing of pixels situated farther into the unknown 

regions to the 0 th level gives noticeably better PSNR and energy results. 

Cluster(delay), nonetheless, still provides subpar speedup since the workloads 

between the levels are still imbalanced. 
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Among the different numbers of subgroups in MaxDiff techniques, MaxDiff16 

provides the best results in all measures. This is by no means a coincidence since all of 

the benchmark applications with linearly ordered label space have a label space size of 

256, which makes 16 the choice of number of subgroups that would result in a most 

balanced two-level hierarchy. Using more subgroups can result in groups in which the 

labels have close unary potentials being subdivided which leads to less speedup and 

upper-level solution getting stuck in a local minimum while using fewer subgroups can 

group labels with more diverse potentials together which can mislead the group 

potential estimation in the upper-level optimization. Our preliminary experiments using 

a coarser label space size of 32 also had 6 being the best choice for number of subgroups 

followed closely by 5. 

Another advantage of our methodology is the lowered memory requirement for 

calculation. While  -expansion does not face physical memory limit as it explores only 

a relatively much smaller fraction of the solution space, the memory occupancy of 

MQPBO method is generally much higher by several orders of magnitude and virtual 

memory swapping can have drastic effect on its running time. Our methodology's 

theoretical memory consumption, while still being significantly higher than that of  -

expansion, is several orders of magnitude smaller than that of MQPBO method. For 

one random variable with 256 possible labels, the number of vertices constructed in 

max-flow-based energy minimization is 2 for QPBO-based  -expansion, 30 for 

MQPBO-based MaxDiff16, and 310 for MQPBO method. For a pairwise interaction 

between two variables each having 256 labels, the number of directed edges constructed 

is 4 for QPBO-based  -expansion, 900 for MQPBO-based MaxDiff16, and 260100 

for MQPBO method. 

In recent years, the combination of advances in learning methods and parallel 

computing devices together with the availability of easy-to-access large-scale datasets 

has made possible the rapid development in deep learning and convolutional neural 

networks (CNNs) for the use in many research areas including computer vision. For 

image denoising, the work of [Zhang et al. 2017] uses CNN for residual learning which 

outputs an estimate residual mapping to be subtracted from the noisy input to obtain the 

latent clean result. The receptive field size has to be quite large (35x35) and the network 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75 

has to be rather deep (17 and 20) but the overall computation can be sped up by GPU, 

compared with nonlocal self-similarity (NSS) models which are popular in state-of-the-

art approaches and have presented high denoising quality but require complex 

optimization steps that can be more time-consuming. Generative adversarial networks 

(GANs) are used in [Yeh et al. 2017] for image inpainting. Given a fixed-size corrupted 

image, their work tries to recover the encoding closest to the image and then uses the 

generator trained from GAN to generate the unknown region. For certain problems such 

as stereo correspondence, the use of deep learning is still mainly for calculating 

matching cost to be used in random field formulation [Chen et al. 2015, Luo et al. 

2016], which stresses the importance of random field for handling problematic regions 

such as those with occlusions, repetitive patterns or lack of distinctive features. Overall, 

the use of image-wide global information in deep learning and CNNs is still somewhat 

limited. In order to capture enough spatial information to perform computer vision 

tasks, either random field formulation is still needed or the networks have to be very 

deep so that the corresponding effective receptive field sizes are adequately large. We 

expect to see more of the interplay between deep learning architecture and random field 

formulation in the near future. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76 

Chapter 5: Conclusions 

5.1 Dissertation Summary 

Random field formulation has been prominent in computer vision research and 

related area due to the ability to intuitively incorporate spatial relationships and visual 

contexts with local information. Its phenomenal success since its introduction in low-

level vision tasks has drawn in researchers and, through the test of time, it has been 

recognized to be a powerful framework for solving a wide and diverse range of 

computer vision applications from image denoising, multi-view reconstruction, and 

motion estimation to object recognition and scene understanding. As a result, random 

field optimization or finding a MAP solution for a random field and its equivalent form, 

discrete energy minimization, have been of central interest in computer vision research 

community for over a decade. 

As the technology progresses, the demand for computer vision has grown to be 

greater and more diverse than ever. Larger problem instances mean larger sets of 

random variables and larger label spaces are involved. This, unfortunately, means that 

solving for solutions, even in an approximated sense, can be impractical since the 

computational complexity grows fast with the size of the problem. This plus the 

abundance of labeling problems in computer vision make it very important to develop 

tractable algorithms that can handle diverse classes of problems as creating more 

models for problems will not lead to anything worthwhile if reasonable labelings cannot 

be found in practice. 

Our main contribution to random field optimization is the introduction of local 

label hierarchy for hierarchical energy minimization. We focus on problems in which 

the label space has a natural linear ordering structure that represents physical quantity 

and utilize this characteristic of the underlying labeling problems, which is the key that 

has enabled us to circumvent exhaustive search of the solution space and obtain a more 

computationally efficient scheme for energy minimization. We give notations and 

definitions for local label hierarchy as well as generalize the definition of discrete 

energy function to include sets of labels in the domain. Three techniques for label-wise 

grouping are proposed: local minimum search, cluster analysis, and maximum-
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difference subdivision, as well as one generalization of algorithms of logarithmic 

complexity. Also, heuristics for assigning group potentials are discussed. 

Our methodology was tested with a number of computer vision applications with 

linearly structured label spaces as well as problems with unstructured label spaces. 

Comparing Log with SkewLog corroborates our thesis that including energy 

information into the binary subdivision process leads to better energy and error results. 

The three contenders among our proposed label-wise grouping techniques are 

LocalMin Mean, Cluster Center, and MaxDiff Mean with MaxDiff Mean being the 

most competitive, providing approximately an order of magnitude speedup with less 

than 5% increase in energy in all benchmark applications. Overall, grouping labels with 

close potentials together gives better results due to better estimates of group potentials 

and the key to performing well in terms of both speed and quality is to balance the 

workload across the hierarchical levels. 

5.2 Open Questions 

While we have described our efforts in speeding up the energy minimization 

process in this dissertation, there are still exciting challenges that lay ahead. Potential 

improvement and extension for this work are listed in this section as well as some open 

questions. 

 Unlike having the same hierarchy for every variable, our local label hierarchy 

presents quite a challenge for learning-based group potential assignment as the 

parameters generally depend on both group size and level. Cluster analysis has 

the advantage of having a natural representative label for each group which gives 

decent results when used. Finding a better way to assign group potential for 

maximum-difference subdivision could potentially give even higher-quality 

results. 

 While using the square root of the label space size as the predetermined number 

of subgroups for maximum-difference subdivision empirically provides 

respectable speedup and high-quality results in terms of energy and error than 

using mean-shift cluster analysis to automatically find the number of groups 

from the energy function, there is still a question of how to automatically 
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determine the number of subgroups that gives the best trade-off between speedup 

and result quality.  

 It has been shown in the literature that random field optimization for problems 

with structured label spaces can be made more efficiently by hierarchically 

solving for solutions. The question remains, however, whether such structure can 

be detected or inferred automatically from the energy functions. In the most 

extreme sense, can any label space be automatically arranged and grouped into 

hierarchy in such way that efficient hierarchical energy minimization can be 

utilized? 

5.3 Final Remarks 

As pointed out before by many, having found a configuration with the lowest 

energy does not automatically means that it is the best in terms of quality. In fact, 

comparing the energy from the minimum energy configuration with that from the 

ground truth often reveals that the ground truth considerably has higher energy. The 

obvious solution to this is, of course, to create a more accurate formulation that better 

models the labeling problem. Researchers, of course, need to provide results. This drive 

to have tangible outcomes, perhaps, implies that we as a whole may have been biased 

by algorithms that are available and perform well, which makes problem formulation 

incline toward more obtainable goals rather than more intuitively appealing models. As 

random field formulation was once thought to be too intractable for practical use, we 

hope that more efficient algorithms would encourage more complex and elegant 

problem formulations which, in turn, would loop back and drive the research 

community toward the development of new and even more efficient algorithms. 
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Appendix A: Additional Results 

Figure 24, Figure 25, Figure 26, and Figure 27 show the input images, ground 

truth images, and the disparity maps of the stereo correspondence solutions computed 

by the techniques being compared using sum of square differences and Gaussian 

smoothness prior. Overall, the techniques exhibit the same relative qualitative results 

as discussed in section 4.2.  

 

Figure 24: Disparity maps of the Cloth1 stereo pair 
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For the Cloth1 stereo pair shown in Figure 24, the results overall appear smoother 

than other pairs since the input images contain virtually no occluded part nor 

discontinuity. Artifacts can be seen along the left edge of the results where there are no 

pixels in the secondary image to match. Scattered artifacts are most obviously in Log 

Min. 

 

Figure 25: Disparity maps of the Baby1 stereo pair 
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For the Baby1 stereo pair (Figure 25), the Log and SkewLog techniques give 

unfavorable results. The region in question has disparity values in the range near 128, 

which is the first splitting point of binary subdivision. LocalMin techniques also 

happen to divide the group around this range and the resulting disparity maps, again, 

show how using Mean is better than Min for LocalMin.  

 

Figure 26: Disparity maps of the Moebius stereo pair 

Figure 26 shows the Moebius stereo pair. Like Cloth1, most artifacts are along 

the left edge since there are no pixels in the secondary image to match. Unlike Cloth1, 

however, there are several occluded regions in this pair. The most noticeable is the 
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region to the left of the cards where the results from grouping techniques return 

disparity value of zero but the baseline techniques do not. 

 

Figure 27: Disparity maps of the Art stereo pair 

Figure 27 shows the Art stereo pair. The slender objects on the right are missing 

due to over-smoothing in the baseline  -expansion techniques and some grouping 

techniques. The numbers of error pixels in these cases, however, are still lower than 

those of Log and SkewLog techniques since these objects occupy a very small portion 

of the scene and the error elsewhere outweighs them. 
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Figure 28: Denoising results of ''Flowers'' image 

Figure 28 and Figure 29 show the input images, ground truth images, and the 

denoising results computed by the techniques being compared from using sum of 

square-root of absolute differences cost and inverse smoothness prior. Table 10 shows 

their PSNR results. 

In the ''Flowers'' dataset, the artifacts from over-smoothing are more pronounced 

for Log and SkewLog techniques with Log Min being most noticeable. The tradeoff 

between preserving and smoothing pixel intensity values can be observed by comparing 

LocalMin Mean and MaxDiff Mean as MaxDiff over-smoothed the middle-right 

region which results in the obtrusive boundary between the darker and brighter area. 
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Comparing the PSNR in Table 10, however, reveals that preserving noise in LocalMin 

gives worse quantitative results. 

 

Figure 29: Denoising results of ''Race cars'' image 

The artifacts in the ''Race cars'' dataset are most perceptible at the car in the center 

and on the bottom-right darkened area. As with before, smoothing the noisy pixels can 

lead to unwanted observable boundaries between regions but preserving the noise leads 

to worse PSNR results. 
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Table 10: PSNR results of ''Flowers'' and ''Race cars'' datasets 

Flowers 

Techniques PSNR  

Race cars 

Techniques PSNR 

Input 26.955  Input 26.8973 

MQPBO 30.767  MQPBO 28.6547 

AlphaExp 30.785  AlphaExp 28.6613 

Log Simple 28.692  Log Simple 27.6551 

Log Min 27.188  Log Min 27.8455 

Log Mean 28.726  Log Mean 27.6632 

LocalMin Min 28.988  LocalMin Min 27.7008 

LocalMin Mean 28.997  LocalMin Mean 27.7098 

Cluster Center 30.685  Cluster Center 28.619 

Cluster Mean 30.675  Cluster Mean 28.619 

MaxDiff16 Mid 30.684  MaxDiff16 Mid 28.6412 

MaxDiff16 Mean 30.685  MaxDiff16 Mean 28.6423 

SkewLog 3/4 28.709  SkewLog 3/4 27.7183 

SkewLog 2/3 28.709  SkewLog 2/3 27.7134 

 

Figure 30 and Figure 31 show the ground truth images, input images, and the 

inpainting results computed by the techniques being compared from using sum of 

square-root of absolute differences cost and inverse smoothness prior. The 

corresponding PSNR values are given in Table 11. The values for Cluster techniques 

are from the delayed version (section 4.4). 

Due to having a rather large unknown region in the ''12'' dataset, the inpainting 

model can only project the structures of the scene to a certain extent (with no texture). 

Comparing Log Simple and Log Min with the SkewLog techniques, the results from 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95 

the Log techniques appear more pleasing to the eye while the results from the SkewLog 

techniques gives higher PSNR values. 

 

Figure 30: Inpainting results of ''12'' from the TUM-IID dataset 

As with other datasets, the most noticeable artifacts in the ''Pipes'' dataset appear 

in the result from Log Min technique. In the rest of the techniques, most artifacts can 

be seen along the edges of the pipes, where the depth discontinuities can lead the model 

to make wrong decisions. 
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Figure 31: Inpainting results of ''Pipes'' from the Depth Inpainting database 

Table 11: PSNR results of ''12'' and ''Pipes'' datasets 

12 

Techniques PSNR  

Pipes 

Techniques PSNR 

MQPBO 25.729  MQPBO 32.132 

AlphaExp 25.73  AlphaExp 32.134 

Log Simple 25.431  Log Simple 29.651 

Log Min 25.475  Log Min 29.012 

Log Mean 25.442  Log Mean 29.652 
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12 

Techniques PSNR  

Pipes 

Techniques PSNR 

LocalMin Min 25.452  LocalMin Min 31.743 

LocalMin Mean 25.451  LocalMin Mean 31.743 

Cluster Center 25.73  Cluster Center 32.114 

Cluster Mean 25.73  Cluster Mean 32.089 

MaxDiff16 Mid 25.728  MaxDiff16 Mid 32.092 

MaxDiff16 Mean 25.729  MaxDiff16 Mean 32.099 

SkewLog 3/4 25.691  SkewLog 3/4 30.877 

SkewLog 2/3 25.69  SkewLog 2/3 30.617 

 

 

Also note that even though only 10% of the pixels in the ''12'' dataset are unknown 

whereas the unknown pixels occupy more than 50% of the ''Pipes'' dataset, both 

qualitative and quantitative results of ''Pipes'' are better than those of ''12''. This is the 

typical behavior of inpainting algorithms since the unknown pixels are inferred from 

the known pixels. 
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 [Metsiritrakul et al. 2016] 
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