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Preface 
Data structures is one of the fundamental subjects 

students in Computer Science and Computer 

Engineering have to learn to master. Usually, this subject 

is taught after students passed at least one basic 

programming course. The author has been involved with 

this subject for over two decades, being a student, a 

teaching assistant, and eventually a professor who 

teaches the subject. Students who had problems with this 

subject were either unable to draw pictures to help them 

understand various concepts, or unable to translate from 

pictures to code. This textbook, developed from class 

notes the author wrote for Fundamental Data Structure 

and Algorithm course offered to students in the 

International School of Engneering, Chulalongkorn 

University, tries to present concepts with many pictures, 

together with code explanations, to help students 

overcome those problems. The author hopes this 

textbook helps improve readers’ understanding and 

enjoyment for the subject.  
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Chapter 1 : Data Structures 
and Our Program  
Data structures are essential for coding. Programmers 

who know various types of data structures have more 

tools to choose from when they do their coding and they 

can program more efficient codes. But what is a data 

structure anyway? 

What is a Data Structure? 

A data structure is a piece of data that can store more 

than one instance of other data. Usually, all data stored 

in a data structure have the same type, but this is not an 

absolute requirement.  

A data structure you probably already know is array. We 

can use array to store several information of the same 

data type. For example, you may declare: 

int a = new int[5];  

as an array that provides 5 slots for storing integer data. 
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With array, we can work on several data of the same 

type. So, if we know how to use array, we also know the 

basics of how to work with a data structure.  

What does this book going to tell you about data 

structures? Well, array is just one kind of data structures. 

We need to know about other data structures too because 

they have different uses (and you will see). This book 

assumes that you are familiar with basic structured 

programming, including the use of array.  

Data structures used in programming today are based on 

what are taught in this book. Therefore, once you have 

learned data structures from this book, you will have an 

easier time understanding other people’s codes, as well 

as be able to apply these data structures in your own 

programs. You will not need to reinvent the wheel. Many 

programming languages have versions of these basic 

data structures available in their libraries. 

Understanding the basic data structures will also help 

you understand those built-in data structures.    

In a program, you may be able to choose a data structure 

to store your data. Sometimes it does not really matter 

which data structure you choose. But many times, it 

matters! One data structure may allow faster data 

retrieval than others. Let’s look at an example.  
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Let’s say we want to store 5 integers. There are several 

data structures that can be used: 

• Of course, our first data structure is an array.

• The second possible choice is a linked list, which is

usually organized as a sequence of slots linked

with one another using special links called

“pointers”. Figure 1-1 shows an example linked list

that we can start access its contents through its first

pointer “p” (don’t worry too much about it. We

will be covering it in detail in its own chapter).

• Our third possible choice is storing data in a tree,

as shown in Figure 1-2. The tree shown here is a

binary search tree (again, a chapter will be

dedicated to it).

Figure 1-1: Linked list storing 5 integers. 

Figure 1-2: Binary Search Tree that stores 5 integers. 
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• Another data structure that can be used is a heap,

which is a type of trees. Figure 1-3 shows a

maxheap, which stores larger data at the top.

So, which one do we choose in our implementation? 

Figure 1-3: Maxheap storing 5 integers. 
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Of course, it depends on how we want to use the data. If 

our program makes use of the smallest data much more 

often than others, then the choice would be the linked list 

because the smallest data can be accessed directly from 

pointer “p”. A sorted array can easily access its smallest 

data too, but if the smallest data is going to be regularly 

deleted, it will need a lot of time, especially in a large 

array, moving other data to the left.  

But what if our program will be using the largest data 

most of the time? To reach our largest data in the linked 

list, we would have to follow the pointer “p” for several 

steps, wasting a lot of time especially if the list is long 

(see Figure 1-4).  

To reach the largest data in our binary search tree (Figure 

1-2), we follow a right pointer from each node until we

can follow no further. The number of data nodes needed

to be investigated is lower than when we search our

linked list.

Figure 1-4: Following pointers to the last data in our linked list. 
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 It is even faster for our heap since the maximum value is 

already at the data node pointed to by “p”.  

As you can see, choosing a different data structure affects 

the speed of your program. That is why we need to know 

the basics.  

This book’s organization 

This book is intended to give you information you need 

for an introduction to data structures and algorithms 

course. All example codes in this book are in Java 

language but the codes are organized such that they can 

easily be applied in other programming languages. The 

chapters in this book are as follows:  

• Chapter 2 introduces common terms used in data

structures and the analysis of algorithms, such as

asymptotic runtime.

• Chapter 3 takes you through our first new data

structure: Linked list, including its 

implementation. 

• Chapter 4 covers the concept and implementation

of stack. 

• Chapter 5 establishes the concept and walks you

through how to implement queue.
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• Chapter 6 is all about binary tree and binary

search tree. These are the first non-sequential data

storage that you will encounter.

• Chapter 7 is all about hash table, a data structure

that allows data retrieval to take constant time on

average.

• Chapter 8 covers sorting algorithms and their

complexity. The algorithms introduced in this

chapter operate on arrays, but can be applied on

data structures as well.

• Chapter 9 gets you familiar with priority queue

and its major implementation, heap.

• Chapter 10 introduces an AVL tree, which is one

of the approaches we can use to maintain a

balanced binary search tree.

All readers should read chapter 2 first in order to get to 

know the terms used throughout this book. 

Linked list, stack, and queue are used to store data 

sequence. They only differ in ways data can be accessed. 

Stack and queue can be thought of as linked lists with 

special restrictions. Building blocks we used to 

implement a linked list can be used to implement stacks 

and queues too. Therefore, it is recommended that 

chapter 3 be read before chapter 4 and chapter 5.    
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Both our linked list and binary search tree (including 

AVL tree) implementations need pointers. Linked list 

pointers are easier to understand therefore it is 

recommended that you read chapter 3 before chapter 6. 

Hash table implementations use both linked list and 

array. Therefore, to fully understand chapter 7, it is 

recommended that you read chapter 3 first. 

Chapter 8 can be read independently of other chapters 

(except chapter 2).   

Heap in chapter 9 uses the concept of binary tree but the 

actual implementation uses an array. It is recommended 

that you read chapter 6 (the binary tree part) before 

chapter 9.  

Chapter 10 should be read after chapter 6 since AVL tree 

is a special form of binary search tree.  

Figure 1-5 shows our book’s organization. 
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Figure 1-5: Book organization. 
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 Without further ado, let’s start! 
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Chapter 2 : Introduction to 

Algorithm Analysis 

In this chapter, we will be looking at how we can 

estimate the speed of our programs. We will also see 

notations commonly used among programmers when 

referring to program speed. 

Running Time Analysis 
Let’s analyze the code in Figure 2-1 that calculates the 

average value of all data in a given array.  

Figure 2-1: Code calculating an average value from a given array. 

If we are to estimate the running time of the above code, 

we have the following alternatives: 

• Estimate the running time of each

component of the code and add them all up.

• Choose a representative statement of the

code and estimate the running time of that

statement only.
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Let us try estimating the running time of code 

components and adding them up. Let’s look at the code 

(Figure 2-1) line-by-line.  

Line 1: Variable declaration and assignment. Let a 

variable declaration consumes 1 unit of time and an 

assignment consumes 1 unit of time also. Therefore, this 

line of code takes 2 units of time to run.  

Line 2: Variable declaration and assignment also. The 

estimated time is also 2 units. 

Line 3: This involves quite a few operations: 

• Declaration and initialization of variable “i”. Both

are performed only once. So, the time is 2 units (1

for declaration and the other unit is for

initialization).

• Conditional testing of “i”. The first test takes place

when the value of “i” is 0. The last test takes place

when the value of “i” is equal to n. If we let each

conditional testing consume 1 unit of time, this

part of the program consumes n+1 units of time.

• Increment the value of “i” by 1. This part of the

code is executed every time before starting the

next iteration. The first time takes place when   the

value of “i” is 0. The last time this code gets

executed is when the value of “i” is n-1. If an

increment operation takes 1 unit of time, then all

increments take n units of time.
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From the analysis above, the total time (our estimated 

unit time) for the execution of line 3 is 2+(n+1)+n, which 

is equal to 2n+3.   

Line 4 contains an addition and an assignment. If each 

action takes 1 unit of time, we therefore have 2 units. But 

that is not all. This line of code is within a loop, which 

iterates n times. Therefore, the total unit time is 2n. 

Line 5 contains a division and a return statement. If each 

takes 1 unit of time, then overall it takes 2 units of time 

to execute.  

If we add the estimated running time of all 5 lines 

together, we get 2+2+(2n+3)+2n+2, which is 4n+9 units of 

time, where n is the size of our input array.  

This method of running time estimation can be used to 

compare estimated running time of 2 programs. 

However, it is obviously impractical because we need to 

work out estimated time for every line of code. A better 

method is discussed below. 
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Now, let’s try the method that chooses a representative 

statement of the code and estimates the running time of 

that statement only. 

Let’s choose line 4 as the program’s representative since 

it runs in a loop and therefore contributes significantly to 

the running time. Line 3 runs with the same loop but 

looks much more complex so it is not chosen. With line 4 

chosen, we have the estimated running time of 2n. You 

can see that it is much easier to obtain compared to the 

first method.  

This running time, in terms of n, grows with the size of 

data. The growth pattern is called a growth rate. 



15

Programs can have different growth rates such as 

𝑛, 𝑛2, log 𝑛, 2𝑛 depending on how you write them (they 

may have nested loops or they may be able to eliminate 

data by half at each iteration, etc.). The larger the growth 

rate, the longer the program runs, especially when you 

have larger data size. Growth rate is more important 

than actual running time when it comes to comparing 

program performances.  

Here is how the running time of each growth rate looks 

like as the data size grows. The x-axis indicates data size, 

while the y-axis indicates the running time.  

Figure 2-2: Running time for each growth rate. 

0

10

20

30

40

50

60

70

1 2 3 4 5 6

n

n^2

log n

2^n

Running time 

Size(n)



16 

You can see that for large n, the running time for each 

growth rate can be compared as follows: 

Therefore, knowing a program’s growth rate means we 

know its performance. We can also compare programs 

performances by comparing their growth rates.  

Let’s look at the following Code 1 and Code 2 (Figure 2-3 

and Figure 2-4) for two different programs. 

Figure 2-3: Code 1. 

Figure 2-4: Code 2. 

If we use the line that has x= x+1 as our code 

representative, Code 1 will take the following time to 

run: 
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And Code 2 will take the following time to run: 

Although their running time is different, both codes have 

the same growth rate. Let’s look at their running time as 

n (x-axis) increases.  

Figure 2-5: Growth rates of codes in Figure 2-3 and Figure 2-4. 

It is straightforward to see that their running time (y-

axis) increase with the same rate. Therefore, we can 

regard their performances to be equal. 

Running time 

Size(n)
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But comparing 2 programs’ growth rates may not be as 

simple as in the above example. The following definition 

helps you do the comparison without even having to 

draw a graph.  

Definition 2-1: Faster / Slower growth rates 

Instead of comparing graphs, the values of functions 

when n is large can be compared.  

With this definition, the following running times have 

the same growth rate (look at their most significant 

term!): 

And the following growth rates are shown, from slow to 

fast, according to the above definition: 



19

The definition helps us compare growth rates in a more 

difficult case, such as comparing 𝑙𝑜𝑔 𝑛 and √𝑛.  By just 

looking at them, it is not obvious which one is slower. 

Let’s try to compare them using the definition. Let 

𝑓(𝑛) = log 𝑛 and 𝑔(𝑛) = √𝑛. 

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= lim

𝑛→∞

log 𝑛

√𝑛

 = lim
𝑛→∞

ln 𝑛

ln 10 √𝑛

 =
1

ln 10
lim

𝑛→∞

ln 𝑛

√𝑛

 =
1

ln 10
lim

𝑛→∞

1/𝑛

1/(2√𝑛)

 =
1

ln 10
lim

𝑛→∞

2

√𝑛

 = 0 

Therefore 𝑙𝑜𝑔 𝑛 grows slower than 𝑛0.5. In fact, we can 

use this definition to show that ∀𝑐, 𝑘 > 0, (log 𝑛)𝑐 always 

grow slower than 𝑛𝑘. Because 
log 𝑛

√𝑛
is a factor of 

(log 𝑛)𝑐

𝑛𝑘
, 

hence lim
𝑛→∞

(log 𝑛)𝑐

𝑛𝑘
= 0. 
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There are some common notations used by computing 

people when they talk about running times of programs. 

These notations are collectively called asymptotic 

notations. For a computer science/ engineering student, 

it is crucial to understand these to communicate 

effectively with your co-workers and supervisors.   

Asymptotic Notation 

These notations are used to display growth rates. In this 

book, we will mainly focus on two most often used 

notations: the big-Theta and big-O. 

Definition 2-2: Big-Theta, or 𝛩 

𝛩(𝑔(𝑛)) is a set of functions that grow with the same rate 

as 𝑔(𝑛). We can define it mathematically using limit, as 

done in the last section. There is an alternative definition 

also. Let’s have a look at the alternative definition.  

Basically, the definition says that  𝑓(𝑛) ∈ 𝛩(𝑔(𝑛)) if and 

only if 𝑓(𝑛) is within the bound of 𝑐1𝑔(𝑛) and 𝑐2𝑔(𝑛) for 

all n greater than a certain value.  
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Time for an example! Let our program’s running time be 

𝑓(𝑛) = 5𝑛2 + 10𝑛 + 18. Let 𝑔(𝑛) = 𝑛2. If we set 𝑐1 to 1

and 𝑐2to 8, the graph of their values is shown in Figure 

2-6.

Figure 2-6: Big-Theta definition shown by graph. 

The values of 𝑓(𝑛) eventually lie between  1 ∗ 𝑛2 and 8 ∗

𝑛2. Therefore 𝑓(𝑛) has the same growth rate as 𝑛2, or 

𝑓(𝑛) ∈ 𝛩(𝑛2), according to Definition 2-2. There are 

many possible values for 𝑐1and 𝑐2 that make 𝑓(𝑛) ∈

𝛩(𝑛2). Just finding one pair that works is enough.  

Another definition that you will encounter a lot is big-O. 

Definition 2-3: Big-O, or  𝛰 
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𝛰(𝑔(𝑛)) is a set of functions that grow slower, or with the 

same rate as 𝑔(𝑛). Its formal definition is given below.  

Basically, the definition says that  𝑓(𝑛) ∈ 𝛰(𝑔(𝑛)) if and 

only if 𝑓(𝑛) has lesser or equal value to 𝑐𝑔(𝑛) for all n 

greater than a certain value.  

Looking at this definition and the previous example, we 

can see that 𝑓(𝑛) = 5𝑛2 + 10𝑛 + 18 ∈ 𝛰(𝑛2) since  𝑓(𝑛) ≤

8𝑛2 for n = 5 onwards. This means programs that satisfy 

𝛩(𝑔(𝑛)) also satisfy 𝛰(𝑔(𝑛)) (but not vice versa).  

Asymptotic Notations and Nested Loop 

You may be wondering about how these notations get 

used in real programs. Let us recall the earlier example 

code from Figure 2-3 (the code is shown below for your 

convenience).  
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We already know that the running time is 𝑛2 − 4𝑛 and its 

growth rate is the same as 𝑛2.  

Now, knowing asymptotic notations, we can write down 

the code’s performance in terms of asymptotic runtime, 

that is 𝛩(𝑛2).  The running time also satisfies 𝛰(𝑛2). 

Seeing a program, one can look at its representative 

statement (the one that gets run most often. For example, 

a loop or a recursive call) and write down its estimated 

runtime in asymptotic form. It is fast, convenient, and 

easily comparable with other programs (and 

mathematically usable too!). 

Now, let’s have a look at a slightly modified code in 

Figure 2-7. The code has a conditional exit.  

Figure 2-7: Program with a conditional exit. 

The number of times a representative statement gets to 

run can be from 0 to 𝑛2 − 4𝑛, depending on the value of 

𝑓(𝑖). A graph showing the runtime growth of this code is 

shown in Figure 2-8 (one possibility is shown).  
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Figure 2-8: Growth rate of code with a conditional exit. 

From Figure 2-8, there is a point where the running time 

no longer grows with n. So, its runtime no longer satisfies 

𝛩(𝑛2).  It still satisfies 𝛰(𝑛2) though. Many programs 

have exit conditions like this and their runtime hence 

must be indicated using big-O rather than big-Theta. 

Here is a definition for an asymptotic runtime of nested 

loops (the definition works for big-O and big-Theta): 
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Definition 2-4: Asymptotic runtime of nested loops. 

Asymptotic Runtime and Consecutive Operations  

You have already seen that for a nested loop, its 

asymptotic runtime is the multiplication of each layer’s 

runtime. What about programs with consecutive chunks 

of instructions, for example:  

Figure 2-9: Code with consecutive loops.

From Figure 2-9, the first loop has its asymptotic runtime 

equals to 𝛩(𝑛) while the second loop has its asymptotic 

runtime equals to 𝛰(𝑛2).    
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The total runtime is 𝛩(𝑛) + 𝛰(𝑛2). But when n becomes 

large, the runtime growth from 𝛰(𝑛2) will totally 

dominate the runtime growth from 𝛩(𝑛). Therefore, the 

asymptotic runtime that we can write down is just 

𝛰(𝑛2).  

Definition 2-5: Asymptotic runtime for consecutive 

operations (the definition works for big-O and big-

Theta). 

Asymptotic Runtime and Conditional Operations 

What about alternative statements? What should we use 

as their asymptotic runtime? Let’s look at the following 

example together: 

Figure 2-10: Code with alternative paths of execution. 
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This code in Figure 2-10 either executes Statement 1 or 

Statement 2, never both. Since we do not know which 

statement will get executed at runtime, the running time 

we should assume should be the worst-case scenario, 

that is, the most time-consuming statement.  

Asymptotic Runtime and Recursion 

A recursive program is a program or method that keeps 

calling itself. For each successive call, its input size 

reduces until a condition where it will not call itself again 

is satisfied.  

Let us analyze recursive code in Figure 2-11: 

Figure 2-11: Code with recursive calls. 

From the code, the input is originally n. It reduces by 1 

each time mymethod is called. This is similar to executing 

a loop for about n times. Therefore, our asymptotic 

runtime for this code is 𝛩(𝑛).  
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In short, we analyze how many times the method is 

called repeatedly and use that number as our asymptotic 

runtime.  

Indeed, if we transform this program into its iterative 

counterpart (its code is shown in Figure 2-12), its 

asymptotic runtime is still 𝛩(𝑛). 

Figure 2-12: Iterative version of code in Figure 2-11. 

Asymptotic Runtime in Logarithmic Form 

Sometimes our programs run in logarithmic time. This 

usually happens when we can spend a constant time to 

divide a problem into equal parts (reading input data 

does not count because it is already 𝛩(𝑛)).  

Let’s check out an example. Let’s say we have an array 

that stores n positive integers from index 0 to n-1, and the 

elements are sorted from small to large. We want to find 

an index of a given value, x. If x is not in the array, our 

algorithm should return -1. 
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To find the index, we could straightforwardly start 

searching from the first element of the array and stop 

when we find x. But x can be anywhere, from the first 

element to the last, even not in the array. Therefore, the 

asymptotic runtime is 𝛰(𝑛).  

But we know that the elements are sorted, so we can use 

a faster algorithm. This algorithm is called binary search. 

We start by looking at the middle element of the array. If 

it is less than x, it means x, if it is in the array at all, is on 

the right half of the array. On the other hand, if the 

middle value is more than x, we know that x, if it is in the 

array, is in the left half of the array. Once we know which 

half of the array to search, we can search that half of the 

array by starting with the middle element of that half, 

and so on. 

Below (Figure 2-13) is an array we want to work on (of 

course we normally do not know all array contents).     

Figure 2-13: Starting condition for our binary search example. 

If we want to see if the value 7 is in this array, searching 

the array from the first element will require us to look 

into 7 array slots. Using binary search, however, only 

requires us to look into 3 array slots (we use integer 

division when calculating the index of the middle 
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element). The middle element we find is at index (0+7)/2, 

which is 3 (0 is the index of the first slot, while 7 is the 

index of the last slot.). The stored value at that array slot 

is 4 (see Figure 2-14). 

Figure 2-14: Finding the middle data for the 1st time in binary search.

Since our array is sorted from small to large, we 

immediately know that the value 7 must be on the right 

half of the array. So, we start searching by looking at the 

middle element of that half, which has index (4+7)/2, 

which is 5 (the first slot of the half has index value equals 

to 4). The stored value at that array slot is 6, as shown 

Figure 2-15. 

Figure 2-15: Finding the middle data of the right half of the array in 

our binary search. 
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Again, at this stage, we know that the value we are 

looking for (7) is on the right half of that array portion. 

So, we start searching by looking at the middle element 

of the portion, which has index (6+7)/2, which is 6 (the 

first slot of this portion has index value equals to 6). This 

time, we find the value we are looking for (see Figure 

2-16). It can be seen that instead of looking at seven array

slots, we only need to look at three of them, saving us

half the time.

Let us look at the program code for this binary search 

algorithm (see Figure 2-17). 

The longest time that the code runs is when we cannot 

find the required number in the array. If the array size is 

n, the size of a portion that we need to investigate 

reduces by half each iteration.  

Figure 2-16: The required data found by our binary search. 
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Figure 2-17: Code for binary search on an array.

This means the number of iterations, i, is related to n in 

the following way: 

𝑛 = 2𝑖 + 𝑐, where 𝑐 is a constant. 

Applying logarithm on both sides, we get: 

log2 𝑛 = log2 2𝑖 +  log2 𝑐

log2 𝑛 = 𝑖 + log2 𝑐 

𝑖 = log2 𝑛 − log2 𝑐 

In asymptotic form, the running time is therefore equal 

to 𝛰(log 𝑛) (big-Theta is not used because the program 

can exit early if the required data is found). 
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The reason we just use log 𝑛 instead of log2 𝑛 is because 

the base of the log is not important in its asymptotic 

form, as stated in the following definition. 

Definition 2-6: Logarithmic asymptotic runtime 

The definition can be proven as follows: 

Let the running time x, be logarithmic: 

log𝑎 n = x and log𝑏 n = y.  

Hence, n =  ax and n =  by. Therefore, we get: 

ln n =  x ln a = y ln b 

x ln a = y ln b 

log𝑎 n ∗ ln a = log𝑏 n ∗ ln b 

log𝑎 n = log𝑏 n ∗
ln b

ln a

log𝑎 n = log𝑏 n ∗ c 

log𝑎 n = 𝛰(log𝑏 n) 
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Therefore, the logarithmic asymptotic runtime can have 

so many possible bases, i.e. the bases do not matter.  

Another example program that illustrates logarithmic 

asymptotic runtime is the program that finds the greatest 

common divisor (see Figure 2-18).  

 Figure 2-18: Program that finds the greatest common divisor.

From the program code, the value of 𝑛, which is the 

remainder, determines whether the program executes its 

next loop. How the remainder decreases will therefore 

decide our asymptotic runtime. 

Let’s run our program, with m = 1974 and n = 1288. The 

value of each variable in each loop is shown in Figure 

2-19.

The value of n does decrease, but there seems to be no 

obvious pattern (Between the 1st and 2nd loop, it decreases 

only a little. But between the 2nd and the 3rd loop it seems 

to decrease a lot. And between the 3rd and the 4th loop, it 

decreases a little again). 
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In order to determine the decrease speed of the 

remainder, we need to use the following fact: 

If 𝑎 > 𝑏 then (𝑎%𝑏) <
𝑎

2

The above claim can be proven as follows: 

• If 𝑏 ≤
𝑎

2
 : since 𝑎%𝑏 < 𝑏, therefore (𝑎%𝑏) <

𝑎

2
 . 

• If 𝑏 >
𝑎

2
 : 𝑎/𝑏 will result in 1 and its remainder, 

which is 𝑎 − 𝑏. Since we already know that 𝑏 >
𝑎

2
, 

Figure 2-19: Values of each variable in each iteration of the code in Figure 

2-18. 
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so the value of the remainder is  𝑎 − (>
𝑎

2
), which 

is less than 
𝑎

2
 .

This proof is illustrated in Figure 2-20. 

If we look at the value of each variable in each loop again, 

it can be seen that, starting from the third loop, the value 

of n in any of the loop comes from the modulo between 

the values of n in its previous two loops. For example, 

the value of n in the third loop (84) comes from the 

modulo between n in the first loop and n in the second 

loop.   

It means that the value of n reduces by at least half in 

every two iterations. This is similar to binary search but 

takes twice as long so the number of iterations is in terms 

Figure 2-20: Proof of claim - If 𝑎 > 𝑏 then (𝑎%𝑏) <
𝑎

2
. 
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of 2 ∗ log2 𝑛. Thus, its asymptotic runtime is also 

𝛩(𝑙𝑜𝑔 𝑛). 

Before we move on to a new topic, let us sort growth 

rates of programs from small to large: 

𝑐 < log 𝑛 < log𝑘 𝑛 < 𝑛 < 𝑛 log 𝑛 < 𝑛2 < 𝑛3 < 2𝑛 
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Asymptotic Runtime and Its Application in 
Choosing Implementation 

Different solutions for a problem often have different 

asymptotic runtime. We can analyze the runtime of each 

solution and pick the most efficient solution.  

Let us look at an example together. If we are to write a 

program that calculates the value of 𝑥𝑛, where 𝑛 is a 

positive integer, the code for the program can be 

straightforwardly written as shown in Figure 2-21 (we 

are not calling any pre-built function). 

Figure 2-21: Code for calculating 𝑥𝑛 . 

The above program executes its loop 𝑛 times, therefore 

having its asymptotic runtime equals to 𝛩(𝑛). 

This problem has a better solution, though. We can 

employ a divide and conquer approach as follows: 

• If n is even, 𝑥𝑛comes from (𝑥 ∗ 𝑥)
𝑛

2 . 

• If n is odd, 𝑥𝑛 comes from (𝑥 ∗ 𝑥)
𝑛

2 ∗ 𝑥, where 
𝑛

2
uses integer division.
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Divide and conquer is an algorithm that divides a 

problem into equal (or almost equal) portions. Let us 

look at the program code using this approach (Figure 

2-22).

Figure 2-22: Code for calculating 𝑥𝑛  , written recursively. 

Each time the method is called, n is reduced by half. This 

is very similar to the binary search problem. Until 𝑛 

reaches zero, the number of times method power is 

called is proportional to log2 𝑛. Therefore, it has its 

asymptotic runtime equals to 𝛩(𝑙𝑜𝑔 𝑛).  

By analyzing the asymptotic runtime of both programs, 

we can clearly pick the second implementation due to its 

smaller growth rate.   

Another example is a program that calculates the largest 

gap between two values in an array. Below are two 

versions of this program. The first version calculates the 

difference between every value pair (Figure 2-23).  
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Figure 2-23: Calculating the largest gap between 2 values in a given 

array, the exhaustive approach. 

The other version finds the maximum and the minimum 

value, and then subtracts them (Figure 2-24). 

Figure 2-24: Calculating the largest gap between 2 values in a given 

array, using the maximum and minimum value. 

Let the array size be 𝑛. For the first version of the 

program, one loop is nested inside the other. The outer 

loop obviously iterates for 𝑛 times. The running time of 

the inner loop varies according to the value of 𝑖. When i 

is 0, it runs n-1 times. When i is 1, it runs n-2 times, and 

so on. Therefore, the combined running time of both 

loops (from when i is 0 up to when i is a.length-1) is 

(𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯ + 1 + 0 =  𝛩(𝑛2).   
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For the second version of the program, we only need one 

loop, running for n iterations, thus its asymptotic 

runtime is 𝛩(𝑛).   

We can therefore choose to use the second 

implementation due to its slower growth rate.   

Best-Case, Worst-Case, and Average Case Runtime 

Best-case runtime is the fastest possible runtime for a 

program, when the input size is n. It has the lowest 

possible growth rate. Worst-case runtime is its opposite 

(we usually use the worst-case runtime as the upper 

bound for our asymptotic runtime).  

What about average case runtime? How do we find its 

value? Well, the average case runtime is the average 

runtime of all possible runs of the program (when the 

input size is n). We can find this value from: 

• Checking the number of inputs to the program.

• For each input, note down its runtime.

• Average case runtime =

𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑝𝑢𝑡𝑠

• This is, however, based on an assumption that each

input has equal probability of occurrences. If you
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know that each input does not occur with equal 

probability, you must take that into account. This 

results in average case runtime =  

∑(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖) ∗ (𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑖

𝑖

) 

Note that each probability value must be between 

(inclusive) 0 and 1. All probability values must add up to 

1.  

For an example, let us find best-case, worst-case, and 

average case runtime for a program that tries to find the 

index of value 𝑥 in array size 𝑛. The program code is 

shown in Figure 2-25.  

Figure 2-25: Finding the position of 𝑥 in an array. 

Best-case runtime takes place when 𝑥 is in the first array 

slot. Hence the program enters its loop only once and 

returns immediately. Therefore, its runtime is constant 

(𝛩(1)).  
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Worst-case runtime takes place when 𝑥 is not in the array 

at all. The program enters the loop n times. Thus, the 

runtime is 𝛩(𝑛).  

Asymptotic runtime is neither the worst-case nor the best 

case. Its value is 𝑂(𝑛) for this program.  

For the average case, if 𝑥 is in the array, it maybe in any 

array slot (each slot has equal chance to contain 𝑥). The 

case where x is not in the array also has equal chance 

compared to other possibilities. 

Since there are n array slots, the probability of 𝑥 in a slot 

is 
1

𝑛+1
. The probability for 𝑥 not being in any slot is also 

1

𝑛+1
. The average runtime of this program = 

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑙𝑜𝑡) +

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑙𝑜𝑡) +  … +

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦) 

=
1

𝑛 + 1
(1 + 2 + 3 + 4 + ⋯ + (𝑛 + 1)) 

=
(𝑛 + 1) ∗ (𝑛 + 2)

2(𝑛 + 1)

=
𝑛 + 2

2
= 𝛩(𝑛) 

For this array search example, its average case runtime is 

equal to its worst-case runtime.  
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Beyond Big-Theta and Big-O 
There are other asymptotic notation definitions. Let us 

check out some of them for completeness.   

Definition 2-7: Big-Omega, or  𝛺 

𝛺(𝑔(𝑛)) is a set of functions that grow not slower than 

𝑔(𝑛).  

Basically, the definition says that  𝑓(𝑛) ∈ 𝛺(𝑔(𝑛)) if and 

only if 𝑓(𝑛) has greater or equal value to 𝑐𝑔(𝑛) for all 𝑛 

greater than a certain value. 

Definition 2-8: Little-O, or 𝑜 

𝑜(𝑔(𝑛)) is a set of functions that grow slower than 𝑔(𝑛). 
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Basically, 𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if and only if 𝑓(𝑛) has less 

value than 𝑐𝑔(𝑛) for all 𝑛 greater than a certain value. In 

other words: 

Definition 2-9: Little-Omega, or 𝜔 

𝜔(𝑔(𝑛)) is a set of functions that grow faster than 𝑔(𝑛). 

Exercises 

1. Let 𝑓(𝑛)  =  7𝑛 ∗ 𝑙𝑜𝑔2𝑛 and 𝑔(𝑛)  =  𝑛2. Find the value

of 𝑛0, where 𝑛0 ≤  𝑛, that satisfies 𝑓(𝑛)  < 𝑔(𝑛).

2. Show that, if ))(()(1 NfONT = and ))(()(2 NgONT = , then

)))((),((max()()( 21 NgONfONTNT =+ . 

3. Show that 𝑇(𝑁)  =  𝑂(𝑓(𝑁)) if and only if 𝑓(𝑁)  =

 (𝑇(𝑁)).

4. Show that 7(n+1) is 𝛰(7n).

5. Show that 𝑛 =  𝑂(𝑛 𝑙𝑜𝑔 𝑛).

6. Prove that 𝑙𝑜𝑔𝑘 𝑛 =  𝑜(𝑛) when k is a constant.
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7. If 𝑓(𝑛)  =  4𝑛 when 𝑛 is an odd number, and 𝑓(𝑛) =

𝑛2  when 𝑛 is an even number. Find the big-O of 𝑓(𝑛).

8. If there are 𝑛 numbers. Write a program that finds the

maximum and minimum values. The number of

comparisons appeared in the program must not

exceed 3𝑛/2 times.

9. Assume we have two programs. The first program has

its worst-case running time =  230 𝑛 log2 𝑛. The other

program has its worst-case running time =  𝑛2. Which

value of 𝑛 does the second program start to have its

running time greater than the first program?

10. An equation, i
n

i

i xaxp 
=

=
0

)( can be re-written as: 

)...)))(...((()( 13210 nn xaaxaxaxaxaxp ++++++= − . This is 

called Horner’s method. Write a program to find the 

value of 𝑝(𝑥), given an array of 𝑎𝑖. Please also indicate 

the asymptotic runtime of your program. 

11. Write a method multiply(int x, int y). You are only

allowed to use the addition operator. What is the

asymptotic runtime of your method.

12. Prove that 
=

=−
n

i

ni
1

2)12(

13. Show that   )log(log
1

2 nni
n

i

=
=

14. A library fines us 𝑥 dollars if we return books late for

1 day. The fine is multiplied by 𝑥 each day. Write a

method that calculates the fine on 𝑛𝑡ℎday of late

return.
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15. Write a program to find the value of the minimum

sum of a subsequence of integers in array a. What is

the asymptotic runtime of this program?

16. Write a program that checks whether a positive

integer 𝑛 is a prime number. What is the asymptotic

runtime of this program?

17. A program can process 300 input data in 0.25 second.

How much data can it process in 5 minutes if:

• The program runs in 𝑂(𝑛 𝑙𝑜𝑔 𝑛).

• The program runs in 𝑂(𝑛2).

18. Find asymptotic runtime of the following programs:
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Chapter 3 : List 

In this chapter, we will look at list, its usage, and how we 

can implement it. We will mainly focus on an 

implementation called linked list. 

List and Its Operations 
A list is any structure that can store its data in sequence. 

Therefore, an array can be thought of as a list as well.  

So, what can we do with a list? The table below shows 

possible operations that can be done: 

Table 3-1: List operations 

Implementing a List with Array 
As mentioned earlier, an array can be thought of as a list. 

What will happen if we use an array to implement a list? 
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Figure 3-1 to Figure 3-6 show the class that contains 

various methods listed in Table 3-1. For simplicity, all 

data are assumed to be integers.  

From Figure 3-1, the list is implemented as a new class. 

Method find attempts to search our list (loop through our 

array), ending when it finds the given value (and returns 

the value’s position).  The method can end quickly if the 

Figure 3-1: List implementation using array. 

𝑂(𝑛) 

𝛩(1) 
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array is null, or if it can find value early. It can also look 

at every element in the array and do not find the required 

value at all. Therefore, its running time is 𝑂(𝑛), where 𝑛 

is the array size.  

The method findKth attempts to find the kth element 

stored in our list. It therefore accesses our array directly 

to find the kth member (corresponding to the kth member 

of the list). The method generates an exception if the 

given position is illegal for the given array. It can be seen 

that the method runs in constant time, 𝛩(1), since it uses 

the array access operator to access the required array 

element instantly.   

Figure 3-2 shows method insert. It attempts to put a new 

value into a given position. The method ends quickly if the 

array is initially empty or the position value is illegal 

(running time of this case is 𝛩(1)). Otherwise, it needs to 

loop through the array to expand the array size (this part 

takes 𝛩(𝑛)). It also has to shift all elements from the 

position to the right (this part takes 𝑂(𝑛) since the number 

of shifting elements depends on position).  

For example, let us insert 6 into the following array such 

that the array remains sorted (Figure 3-3). To keep the 

array sorted, 6 will have to be inserted into the slot after 

5. Therefore 7 and 8 must be pushed to the right. For large

arrays, there can be a lot of pushes.
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Figure 3-2: Method insert for linked list implemented using array. 

𝛩(1) 

𝛩(𝑛) 

𝑂(𝑛) 
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The running time of insert is 𝑂(𝑛). Although 𝛩(𝑛) is the 

most dominating term, the method can exit early 

regardless of the array size due to an illegal position 

value. 

Figure 3-4 shows method remove. It tries to remove a 

specified value from our list. The program can end right 

away if the array is empty (nothing to be removed, 𝛩(1)). 

Otherwise, it has to loop in order to find value and copy 

all data on the right-hand side of the value in the array 

one place to the left (𝑂(𝑛)). It also needs to shrink the 

array by one slot, causing a need to copy almost the 

entire array (𝛩(𝑛)). The overall running time is 𝛩(𝑛). 

Conditional exits for this method do not count as 

premature exits because they are for cases where array 

Figure 3-3: Inserting new data into array. 
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size is 0 or 1. Thus the method runtime is directly 

proportional to the array size. There is also a possibility 

that value is not in the array and the method will exit on 

line 14, but this case requires the whole array to be 

searched and therefore its performance is still 𝛩(𝑛). 

Figure 3-4: Method remove of List implemented by array. 

𝛩(1) 

𝑂(𝑛) 

𝛩(1) 

𝛩(1) 

𝑂(𝑛) 

𝛩(𝑛) 
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Consider an array in Figure 3-5, if we want to remove 5 

from such array, the number 6, 7, and 8 will have to be 

copied to their left so that we can access all array slots 

from the beginning of the array without getting an 

undefined value. This is very time-consuming in a large 

array. 

Figure 3-5: Removing data from an array. 

Method head, tail and append are shown in Figure 3-6. 

Method head just tries to access the first member of the 

list, which is the first element of the array. Therefore, it 

takes constant time (𝛩(1)).  
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Figure 3-6: Method head, tail, and append. 

𝛩(𝑛) 

𝛩(𝑛) 
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Method tail ends immediately if the array is empty, or it 

has to copy the entire array except the first data. The 

conditional exit takes place when there is no data in the 

array. It will not be considered when we estimate the 

runtime since we only make our estimation from the case 

where the input size in n.  

It basically means that the runtime always depends on 

array size, without any other factors to influence it. 

Therefore, tail takes 𝛩(𝑛) to run. 

Method append returns immediately (𝛩(1)) if both arrays 

we want to append do not have any content. Otherwise, 

contents from both arrays are copied into the resulting 

array, which takes 𝛩(𝑛) if there are n total contents from 

the 2 original arrays. To sum up, the running time for 

append is 𝛩(𝑛). The conditional exit does not count 

because it only happens when the arrays have no 

contents. 

To summarize, insert and remove take some time to run 

because they need array elements to move around. Other 

methods such as tail and append take time because we 

need to copy data from the original array into a new 

array. 

Speed improvement is impossible if a new copy of an 

array needs to be created. But for methods that just move 

data around, if we can find a data structure that does not 
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require elements to move around, we will save time. 

Indeed, such data structure exists. It is called a Linked 

List. 

Implementing a List with Linked List 
A linked list concept is shown in Figure 3-7.  

A linked list consists of “nodes”. Each node stores a piece 

of data and a link to another node, thus storing data in 

Figure 3-7: Linked list structure concept 
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sequence. Each element in a list can be reached by 

following links from its first node.  

Finding a specified value in a list will require searching 

from the very first node. Therefore, the running time is 

still 𝑂(𝑛). Method findKth can no longer make use of 

array index access so it has to count data from the 

beginning of a list, thus taking 𝑂(𝑘) to run (it can run in 

constant time if the value of k is illegal).    

But for any functionalities that used to require array 

elements to move around, using linked lists eliminate 

such requirements. Let us see how this improvement is 

achieved. Figure 3-8 shows how to remove data A2 from 

a linked list that originally stores data A1, A2, and A3.   

Basically, we need just one change of link (a link can be 

called pointer, or reference). In Figure 3-8, the changed 

link is identified by a thick arrow. The link coming out of 

Figure 3-8: Removing data from a linked list. 
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the node that contains A2 does not have to be changed 

because A2 is no longer accessible, causing the link to 

become inaccessible as well (Java’s garbage collector will 

clear it). 

Inserting a new piece of data uses the same concept, as 

shown in Figure 3-9. A thick arrow is used to mark the 

link that needs to be changed when inserting X into the 

list. A new node containing X has to be created. Then, the 

link from the node that stores A2 to the node that stores 

A3 needs to be changed to point to the node that contains 

X. The link from the node that contains X is then set to

point to the node that contains A3. Therefore, we achieve

the effect of inserting X between nodes that store A2 and

A3.

Figure 3-9: Inserting data into a linked list. 
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Note that inserting new data as a new first data in a list 

(Figure 3-10) requires different code to be written in the 

actual implementation. Since there is no node that can 

come before the newly created node (the new node stores 

X), we cannot write any code to change a link from a non-

existing node.  

To avoid having to write a different code for this case, a 

header node (also called a dummy node) is introduced. 

The header node does not store any data. It is always in 

front of the list. With the addition of a header node, every 

node that stores data now has a node in front. Code is 

therefore the same. Figure 3-11 illustrates a linked list 

with header. Figure 3-12 shows an empty list with 

header. Yes, an empty list has a header too, but the 

pointer from its header node does not point to any other 

node. We call a pointer that does not point to anywhere 

a “null pointer”.   

Figure 3-10: Inserting new data into the first position. 

Figure 3-11: A linked list with a header node. 
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Now let us go through the implementation in detail. We 

will be looking at the following code portions 

respectively: 

1. Node implementation.

2. Node marking implementation.

3. Linked list implementation.

Let us start with the implementation of a node. Figure 

3-13 shows the code that defines a node that stores

integer.

Figure 3-13: Implementation of a node that stores an integer. 

Figure 3-12: An empty linked list with a header node. 
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A node constructed with statement: 

ListNode a = new ListNode(5); 

is shown in Figure 3-14. 

Regarding node marking, a node we are interested in can 

be straightforwardly implemented because each node 

has a pointer to it, hence creating a pointer pointing to a 

node we are interested in should do the job. We can then 

traverse our linked list by following a link on each node. 

Figure 3-15 shows a linked list with 3 markers, two of 

them marking the same node. 

However, traversing a list this way is not recommended. 

The reason is that there are usually many data structures 

that we need to provide for programmers, and each data 

structure is implemented differently. Thus, traversing 

Figure 3-14: A node created from ListNode a = new ListNode(5); 

Figure 3-15: Simple markers a, b, and c at positions of interest. 
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each data structure requires different implementation-

specific methods, which is not very user-friendly. It is 

better to implement implementation-independent 

methods and have users call such methods on all data 

structures without having to go in-depth into each data 

structure implementation.  

Here, we introduce iterator, one of the common 

implementation-independent approaches. An iterator 

for a data structure is an entity that marks and 

remembers the position of a single data. Once created, a 

programmer can instruct an iterator to mark the next 

data and operate on it with the following methods 

(regardless of implementation): 

• hasNext(): checks if there is a next data in our data

sequence.

• next(): returns the next data in the sequence.

• set(Type value): replaces the last value returned by

next() with value.

To make it implementation-independent, every possible 

implementation of each data structure should implement 

its own iterator that has the above functionalities. Thus, 

an iterator should be written as a Java interface. For our 

linked list, a linked list iterator can be created to 

implement the Iterator interface. Please note that Java 

already has Iterator and List Iterator interface that you 

can use. They are different from the implementation in 

this book. The implementation in this book focuses on 
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the fundamental knowledge needed to implement your 

own data structure from scratch, which is needed if 

readers want to customize a data structure of their own. 

Figure 3-16 shows our iterator interface, simplified to use 

with data structures that store integers. In actual 

language libraries, data structures and iterators operate 

on more generic data types. 

1:   public interface Iterator{ 

2: public boolean hasNext(); 

3: public int next();  

4: public void set(int value); 

5:   } 

Figure 3-16: interface Iterator. 

Figure 3-17 shows our implementation of a list iterator 

class. Our linked list iterator implementation contains 

just one field, currentNode, that represents a node of 

which data has just been returned by method next. This 

is the node of interest. The list iterator constructor 

initializes this node to any given node from a linked list. 

For example, if we are to initialize a linked list iterator to 

be ready for an iteration from the very first data in a 

linked list (assuming that the header node of that linked 

list is header), the following statement must be used: 

ListIterator itr = new ListIterator(header); 
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Figure 3-18 shows the linked list and linked list iterator 

after the above statement was executed. 

1:   public ListIterator implements Iterator{ 

2: ListNode currentNode; 

3: 
4: public ListIterator(ListNode n){ 

5: currentNode = n; 

6: } 

7: 
8: public boolean hasNext(){ 

9: return currentNode.nextNode != null; 

10: } 

11: 
12: public int next() throws Exception{ 

13: //Throw exception if the next data 

14: // does not exist. 

15: if(!hasNext()) 

16: throw new NoSuchElementException(); 

17: currentNode = currentNode.nextNode; 

18: return currentNode.data;  

19: } 

20: 
21: public void set(int value){ 

22: currentNode.data = value; 

23: }

24:   } 

Figure 3-17: Iterator for Linked List implementation. 

Figure 3-18: List iterator focusing on list header. 

itr 

currentNode 

null 
header 

A1 A3 A2 
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The method hasNext checks whether there is a node after 

the node of interest.  For Figure 3-18, the method returns 

true since there is an actual node after currentNode. But 

for the list iterator in Figure 3-19, the method returns 

false because the node after currentNode does not exist.  

Method next creates an exception if the next data does 

not exist. Otherwise, it moves currentNode by one 

position in the list and returns the data in the node it just 

moves to. Figure 3-20 shows an example of a list iterator 

status before and after method next is called.  

The method set just straightforwardly changes the value 

of data in the node that we just focus on.  

Now we are ready for our linked list implementation. 

Figure 3-21 displays the code for class LinkedList, its 

constructor, method find and method findKth. 

itr 

currentNode 

A1 A3 A2 

Figure 3-19: State of List iterator that method hasNext returns false. 
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The code for find works in the same way as its array 

version, that is, we need to search the data structure, one 

data at a time. The method ends immediately if the 

linked list is empty or if the value is found. Therefore, its 

running time is the same as its array counterpart, which 

is 𝑂(𝑛). An example run of this method, where the value 

we want to find is 5, is shown in Figure 3-22. 

Method findKth suffers from the lack of direct positional 

access. Therefore, it requires a loop to look for the kth data 

in the list (its code is similar to our code for find). But the 

loop can end as soon as the position is found. Thus, its 

asymptotic runtime is 𝑂(𝑛) (One could say the runtime 

is 𝑂(𝑘), but I prefer 𝑂(𝑛) because it directly informs us 

itr 

currentNode 

next() itr 

currentNode 

A1 is the return value. 

A1 A3 A2 

A1 A3 A2 

Figure 3-20: The working of method next. 
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about input size). This runtime is worse than its array 

counterpart, but the performance increase in insert and 

remove outweighs this drawback.  

 

1: public class LinkedList { 
2:    ListNode header; 
3:    static int HEADER_MARKER = -9999999;  
4: 
5:    public LinkedList() { 
6: header = new ListNode(HEADER_MARKER); 

7:    } 
8: 
9:    public int find(int value) throws Exception{ 
10: Iterator itr = new ListIterator(header); 

11: int index = -1; 

12: while(itr.hasNext()){  

13: int v = itr.next(); 

14: index++;

15: if(v == value)  

16: //return the position of value. 

17: return index;  

18: }  

19: //return -1 if the value is not in the list. 

20: return -1;  

21:   } 

22: 
23:   public int findKth(int kthPosition) throws Exception{ 

24: //If the position number is negative (impossible) 

25: if (kthPosition < 0) 

26: throw new Exception 

27: 
28: Iterator itr = new ListIterator(header); 

29: int index = -1; 

30: while(itr.hasNext()){  

31: int v = itr.next(); 

32: index++;

33: if(index == kthPosition) 

34: return v; 

35: }  

36: throw new Exception(); 

37:   } 

38:   //This class continues in Figure 3-23. 

Figure 3-21: Linked List implementation (constructor, find, and findKth). 

𝑂(𝑛) 

𝑂(𝑛) 
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Method insert is shown in Figure 3-23. One of the 

parameters is different from its array counterpart. 

Instead of using a position number, we use an Iterator to 

indicate a position before the new data. We avoid using 

the position number because using it requires us to 

Figure 3-22: Execution steps of method find. 

End of 1st iteration 

index == -1 

itr 

currentNode 

2 5 

itr 

currentNode 

5 

v == 2 

index == 0 

2 

End of 2nd iteration 

itr 

currentNode 

5 

v == 5 

index == 1 (returned) 

2 
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iterate through the list, a very unnecessary time-

consuming process. Using an Iterator to indicate a 

position allows our implementation to avoid any loop 

completely, thus reducing its asymptotic runtime to a 

constant value, 𝛩(1). Please note that we have earlier 

seen the running time of insert for arrays, which is 𝑂(𝑛). 

A ListNode could also be used to indicate the position 

instead of an Iterator. For consistency, this book 

prioritizes Iterator when marking a position within a data 

structure. 

 

Examples of what happens when method insert is called 

are shown in Figure 3-24 and Figure 3-25. They are 

slightly different from Figure 3-9 because the list has a 

header this time. The header node helps us add the new 

first data to the list without requiring any special-case 

coding.  

1: public void insert(int value, Iterator p) throws Exception 
2: { 
3: if (p == null || !(p instanceof ListIterator)) 

4: throw new Exception(); 

5: ListIterator p2 = (ListIterator)p;

6: if(p2.currentNode == null) throw new Exception(); 

7:    ListNode n =  

8: new ListNode(value, p2.currentNode.nextNode); 

9:  p2.currentNode.nextNode = n; 

10: }// This class continues in Figure 3-26. 

Figure 3-23:  insert method of LinkedList. 
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The code for method remove is shown in Figure 3-26. It 

makes a call to method findPrevious and another remove 

which uses a position parameter.  

Figure 3-24: Inserting a new value at the start of the list (after the header). 

Figure 3-25: Inserting after the last data in a list. 
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Method findPrevious attempts to find a node just before 

the node that stores value. It returns null if no such node 

exists.  

 

 

  

 
  
 

 
 

 
 

First, two iterators are created focusing on header. Then 

we check if the list is an empty list by calling method 

hasNext. If the list is empty (method hasNext returns 

1:    public void remove(int value) throws Exception{ 
2: Iterator p = findPrevious(value); 

3: if(p == null) 

4: return; 

5: remove(p); 

6:    } 
7: 
8:    public Iterator findPrevious(int value) throws 
9:    Exception{ 
10: Iterator itr1 = new ListIterator(header); 

11: Iterator itr2 = new ListIterator(header); 

12: if(!itr2.hasNext()) 

13: return null; 

14: int currentData = itr2.next(); 

15: while(currentData != value && itr2.hasNext()){ 

16: currentData = itr2.next(); 

17: itr1.next();

18: } 

19: if(currentData == value) 

20: return itr1; 

21: return null; 

22:   } 
23: 
24:   public void remove(Iterator p){ 
25: if(p == null || !(p instanceof ListIterator)) 

26: return; 

27: ListIterator p2 = (ListIterator)p; 

28: if(p2.currentNode == null ||  

29: p2.currentNode.nextNode == null) 

30: return; 

31: p2.currentNode.nextNode = 

32: p2.currentNode.nextNode.nextNode; 

33:   } 
34:   // This class continues in Figure 3-31. 

Figure 3-26:  remove method of LinkedList. 

𝑂(𝑛) 

𝛩(1) 
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false), null is returned right away (line 12-13 in Figure 

3-26. Also, see Figure 3-27 for our drawing of this case).

If not, we move the position of interest of itr2 by one so

that the position is ahead of the position of interest of itr1

(see Figure 3-28). Then we move the positions of interest

of both iterators until we find value or until there is no

more data to work with. If value is found, we return the

position of interest, itr1, which is the position before the

node that stores value (see the lower part of Figure 3-28).

Otherwise, null is returned because value surely does not

exist in the list (line 21 in Figure 3-26). Figure 3-29 shows

the final state of everything before the method returns,

when value is not in the list.

Method remove (line 24-33 of Figure 3-26) works just as 

illustrated in Figure 3-8.  

Let us analyze the asymptotic runtime of the whole 

remove process. Since we have to search for value, a loop 

has to be employed (line 15-18 of Figure 3-26). The loop 

Figure 3-27: Status of variables when findPrevious is 

called on an empty list.  

itr2 
itr2.hasNext() returns false for 

an empty list and the method 

returns null right away because 

there is no node that contains value.

itr1 

header 
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can exit at any stage hence its asymptotic runtime is 

𝑂(𝑛). Other parts of the program take constant time to 

run. Therefore, the overall running time of method 

remove is 𝑂(𝑛). This running time is equal to its array 

counterpart mainly because of the search requirement.  

 Figure 3-28: Status of variables in each step of execution when findPrevious is 

called on a list that stores value. 

 Keep moving both positions of 

interest until we find value.

null 
3 value 5 

itr2 
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header 
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If we know the position of the data to be removed in 

advance, we can utilize method remove (line 24-33 of 

Figure 3-26) and remove the data in constant time. Note 

that in the array implementation, even though we may 

know the position of the data to be removed, other data 

to the right of the to-be-removed data must be shifted, 

causing the running time to still be 𝑂(𝑛). 

 

 

 

 

 

 

Method head and tail are shown in Figure 3-30. We 

introduce isEmpty, which checks whether the list does 

not store any data, and makeEmpty, which disconnects 

the link from the header to other nodes, effectively make 

the list become empty.  

Method head is straightforward. It just tries to return data 

in the node next to header. So, it runs in constant time just 

like its array counterpart.   

Method tail exits immediately if the list is empty. 

Otherwise it uses a loop to copy data (except the first 

Figure 3-29: Final status of variables when findPrevious is called on a list 

that does not store value. 

If value is not in the list, itr2 

stops after moving to the last 

node. The method then exits, 

returning null.

itr2 itr1 

header 

3 7 5 
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data) to a new list and return that list. The new list has to 

be created so that the original list is still preserved. The 

number of iterations is directly proportional to the size 

of the list. So, its asymptotic runtime is 𝛩(𝑛). Although 

the method can exit early, it does so due to the size of the 

list being zero. 

1:    public boolean isEmpty(){ 

2: return header.nextNode == null; 

3:    }   

4: 

5:    public void makeEmpty(){ 
6: header.nextNode = null; 

7:    } 
8: 
9:    public int head() throws Exception{ 
10: if(isEmpty()) 

11: throw new Exception();

12: return header.nextNode.data;

13: 
14:   } 

15: 
16:   public LinkedList tail() throws Exception{ 

17: if(isEmpty()) 

18: throw new Exception();

19: 
20: // Now create a copy of the list 

21: // so that the original does not change. 

22: // Copy everything except the first data 

23: // to the new list.  

24: LinkedList list2 = new LinkedList(); 

25: Iterator p1 = new  

26: ListIterator(header.nextNode); 

27: Iterator p2 = new ListIterator(list2.header); 

28: while(p1.hasNext()){  

29: int data = p1.next(); 

30: list2.insert(data,p2); 

31: p2.next(); 

32: } 

33: return list2; 

34:  } //This class continues in Figure 3-31. 

Figure 3-30: Method head and tail of LinkedList.

𝛩(𝑛) 
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If we allow our original list to change, the method can 

simply remove the first data and take constant time. But 

here we do not want method tail to change our original 

list.  

Method append (see Figure 3-31) enters loops n times, 

where n is the total amount of data from both lists. 

Therefore, its asymptotic runtime is 𝛩(𝑛), just like its 

array counterpart. This method can be made to run in 

constant time if we can mark the last node in our first list 

in advance, and connect the two lists together by 

changing just the end pointer from our first list (but 

doing it this way means any change made to one list will 

surely affect the other list). Please note that our append 

changes this list.    

 

 

Figure 3-31: Method append of LinkedList. 

1:   public void append(LinkedList list2) throws Exception{ 
2: Iterator p1 = new ListIterator(header); 

3: Iterator p2 = new ListIterator(list2.header); 

4: 
5: //move iterator to the end of our list. 

6: while(p1.hasNext()) 

7: p1.next(); 

8: 
9: //then copy everything from list2 to our list. 

10:    while(p2.hasNext()){ 

11: insert(p2.next(),p1);  

12: p1.next();

13:    } 

14: }// end of class LinkedList. 

𝛩(𝑛) 
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From our implementation of linked list, the runtime can 

greatly be reduced from its array implementation 

counterpart when doing insert or remove, if the position 

before the node to be inserted or removed can be 

identified.  This can greatly save time when our program 

has a lot of insert and remove. Table 3-2 summarizes 

asymptotic runtime comparisons of operations on an 

array and a linked list. 

Table 3-2: Asymptotic runtime comparisons on operations of array and 

linked list. 

operations Array Linked list 

find 𝑂(𝑛) 𝑂(𝑛) 

insert 𝑂(𝑛) 𝛩(1) 

findKth 𝛩(1) 𝑂(𝑛) 

remove 𝛩(𝑛) 𝛩(1) 

head 𝛩(1) 𝛩(1) 

tail 𝛩(𝑛) 𝛩(𝑛) 

append 𝛩(𝑛) 𝛩(𝑛) 
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Doubly-linked list 
A doubly-linked list is very similar to the linked list we 

have seen in the previous section. However, its node 

stores one extra variable, previousNode, which is a link 

back to the node to its left. Having this extra link allows 

us to iterate through the list in both directions 

(obviously, the list iterator also needs to be expanded). 

Extra pointers mean we need to be more careful when 

updating them though.  

Implementation can also be done such that a header is 

linked back to the node that stores the last data. This way, 

the list can be traversed in circle, in both directions. A 

doubly-linked list that can be traversed in circle is called 

a circular doubly-linked list. Figure 3-32 shows a circular 

doubly-linked list structure which stores 3, 6, and 4.    

 

Let us go through this list implementation. First of all, 

the structure of a ListNode needs to be changed to include 

a pointer back to a node that comes before it. Our 

extended class is called DListNode. The new pointer is 

header 

3 6 4 
nextNode 

previousNode 

Figure 3-32: Example of a circular doubly-linked list.
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named previousNode. Figure 3-33 shows the code of 

DListNode. 

 

From Figure 3-33, with 2 pointers to a node before and a 

node after it, our DListNode object also has constructors 

that initialize the values of both pointers. Figure 3-34 

shows a DListNode created by its default constructor (line 

6-8 in Figure 3-33), with the code:

DListNode a = new DListNode(9);

1: class DListNode {
2: int data; 

3: DListNode nextNode, previousNode; 

4: 
5: // Constructors 

6: DListNode(int data) { 

7: this(data, null, null); 

8: } 

9:  
10: DListNode(int theElement, DListNode n, DListNode p) { 

11: data = theElement; 

12: nextNode = n; 

13: previousNode =p; 

14:     } 

15: } 

Figure 3-33: Code of a node of a doubly-linked list. 

a 

9 nextNode previousNode 

Figure 3-34: A DListNode created by its 

default constructor. 
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For node marking, our iterator has to be able to do a bit 

more. Thus, we add the following functions: 

• hasPrevious(): returns true if there is a node prior to

the currently interested node. Please note that since

our list is circular, this will always be true. But this

may not be true for some other implementations.

• previous(): returns the value currently marked, then

move our iterator to the node before the current

node. Please note that the returned value is

obtained before the iterator is moved. Therefore,

calling next() and previous() in sequence will return

the same values.

Our modified iterator interface is shown in Figure 3-35. 

This iterator interface can be used with any data 

structure as long as the data structure allows 2-way 

traversal. Note that in Java we can write this new iterator 

interface by extending from the iterator in Figure 3-16. 

But here, the whole interface is re-written so that readers 

can clearly spot the differences between next() and 

previous().     

1: public interface Iterator { 
2: public boolean hasNext(); 

3: public boolean hasPrevious(); 

4: 
5: // moves iterator to the next position, 

6: // then returns the value at that new position. 

7: public int next() throws Exception;  

8: 
9: // returns the value at current position, 

10:   // then moves the iterator back one position. 

11:   public int previous() throws Exception;  

12: 
13:   public void set(int value); 

14: } 

Figure 3-35: Iterator that can traverse a data structure in two directions. 
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The code for our 2-way linked list iterator is shown in 

Figure 3-36. Instead of extending from the 1-directional 

version, the code is shown here in its entirety in order to 

emphasize the differences between next() and previous().  

 

 

 
 
 

 
 

 
 
 
 
 
 
 
 

 

1. public class DListIterator implements Iterator {
2.      DListNode currentNode; // interested position 
3.      DListIterator(DListNode theNode) {
4.           currentNode = theNode; 
5. }

6.

7.      public boolean hasNext() { 
8.      // always true for circular list. 
9. return currentNode.nextNode != null; 

10. }

11.

12.     public boolean hasPrevious() { 
13.     // always true for circular list. 
14. return currentNode.previousNode != null; 

15. }

16.

17.     public int next() throws Exception {
18.          if (!hasNext()) 
19.   throw new NoSuchElementException(); 

20. currentNode = currentNode.nextNode; 

21. return currentNode.data; 

22. }

23.

24. public int previous() throws Exception{

25. if (!hasPrevious()) 

26.  throw new NoSuchElementException(); 

27. int data = currentNode.data; 

28.  currentNode = currentNode.previousNode; 

29. return data; 

30. }

31.

32.     public void set(int value) {
33.          currentNode.data = value; 
34. }

35. }

Figure 3-36: Bi-directional linked list iterator. 
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Statement DListIterator itr = new DListIterator(header); 

creates an iterator pointing to header, as shown in Figure 

3-37.

 

 

The code for circular doubly-linked list can be written by 

extending from its singly-linked list counterpart, but due 

to a very different logic in list traversal, where there is no 

end of the list in this new circular implementation, all 

methods have to adapt this logic. This makes it difficult 

to write each method based on its existing counterpart. 

Therefore, the code shown in this section will be a 

complete rewrite, with differences highlighted in the 

code explanation.   

header 

3 6 4 
nextNode 

previousNode 

header 

3 6 4 
nextNode 

previousNode 

itr 
DListIterator itr = new 

DListIterator(header); 

Figure 3-37: List iterator creation on a doubly-linked list. 
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Figure 3-38 shows our doubly-linked list class, 

CDLinkedList, with its variables, constructor, and method 

isEmpty, makeEmpty, and size.    

For variables, we now have size. With it, now we can 

keep track of the number of data stored in the list without 

having to do any list traversal. We only need to update 

the value of size when adding and removing data from 

the list.  

1: public class CDLinkedList { 
2: DListNode header; 

3: int size;  

4: static final int HEADERVALUE = -9999999; 

5: 
6: public CDLinkedList() { 

7: size =0; 

8: header = new DListNode(HEADERVALUE); 

9: makeEmpty(); //necessary, otherwise  

10: // next/previous node will be null. 

11:    } 

12: 
13:    public boolean isEmpty() { 

14: return header.nextNode == header; 

15:    } 

16: 
17:    public void makeEmpty() { 

18: header.nextNode = header; 

19: header.previousNode = header; 

20:    } 

21: 
22:    public int size(){ 

23: return size; 

24:    }

25:   //The class continues in Figure 3-40. 

Figure 3-38: Circular doubly-linked list variables, constructor, and 

small utility methods. 
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For the constructor (which creates an empty list), when 

creating the header, we cannot simply write:  

header = new DListNode(HEADERVALUE,header,header);

The statement above will initialize nextNode and 

previousNode to null because the default value for header 

is null (the right-hand side of the assignment operator is 

executed before the left-hand side). In order to make 

nextNode and previousNode point to header, to create an 

empty list which is circular, we need to set their values 

after header is actually created (line 8-9, 17-20 of Figure 

3-38). This process utilizes method makeEmpty, which can

be used to reset any list back to an empty list.

Figure 3-39: Making an empty list with method makeEmpty. 

header 

3 6 4 

header 

3 6 4 

makeEmpty(); 
This is now the 

only visible node. 
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Figure 3-39 shows the working of method makeEmpty. It 

makes any generic list an empty list. All nodes except 

header are no longer accessible from any named 

variables and will be removed from memory by garbage 

collector.  

The method isEmpty no longer checks for null. Since the 

list now goes in circle, header of an empty list has its 

nextNode and previousNode points to itself (see Error! 

Reference source not found.).  

The implementation of the find method, that returns the 

position of value in the list (the first data is at position 

0), is shown in Figure 3-40. 

The method is quite similar to its singly-linked list 

counterpart (see Figure 3-21 and Figure 3-22), but instead 

1:  public int find(int value) throws Exception { 
2:    Iterator itr = new DListIterator(header); 
3:    int index = -1; 
4:    while (itr.hasNext()) { 
5: int v = itr.next(); 

6: index++; 

7: DListIterator itr2 = (DListIterator) itr; 

8: if (itr2.currentNode == header) //not found 

9: return -1;

10: if (v == value) 

11: //return position of the value. 

12: return index; 

13:  } 

14:  return -1; 

15: } 

Figure 3-40: Method find of circular doubly-linked list. 
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of checking if the iterator has reached null, we check if 

the iterator has reached header instead (line 7-8 in Figure 

3-40) because reaching header means we have looked at

all data in our circular list. The performance of method

find is 𝑂(𝑛), just like its singly-linked list counterpart

because the list iterator may run through all data but the

method can also exit early.

The implementation of method findKth is shown in 

Figure 3-41. It operates in almost the same way as its 

singly-linked list counterpart (its asymptotic runtime is 

also 𝑂(𝑛)). The only difference is that it checks for header 

instead of null when determining whether the last data 

in the list has been processed (line 15 in Figure 3-41).  

1:  public int findKth(int kthPosition) throws Exception{ 

2:  if (kthPosition < 0) 

3:  throw new Exception(); 

4:  // exit the method if the position is 

5:  // less than the first possible  

6:  // position, throwing exception in the 

7:  //process. 

8:  Iterator itr = new DListIterator(header); 

9:  int index = -1; 

10:   while(itr.hasNext()){  

11:   int v = itr.next(); 

12:   index++; 

13:   DListIterator itr2; 

14:   itr2 = (DListIterator) itr; 

15:  if (itr2.currentNode == header) 

16:    throw new Exception(); 

17:   if(index == kthPosition)  

18:   return v; 

19:   }  

20:   throw new Exception(); 

21:   } 

Figure 3-41: Method findKth of circular doubly-linked list. 

𝑂(𝑛) 
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The code for method insert is shown in Figure 3-42. 

Method insert (Figure 3-42) tries to add value into our 

linked list, by putting the value at position just behind a 

node that is marked by p. First, if p has illegal value, then 

an exception is thrown since we cannot insert new data 

after an illegal position.  

Illegal values of p are: 

• p is null (line 3 in Figure 3-42).

• p is not an iterator that can navigate a doubly-

linked list (line 3 in Figure 3-42).

• Value of currentNode stored in p is null, meaning p

does not mark any position in the linked list (line

5-6 in Figure 3-42).

After we make sure that p is legal (in the code, p is now 

casted to p2 to allow field access since p is just a normal 

1: public void insert(int value, Iterator p) throws Exception 
2: { 
3:    if (p == null || !(p instanceof DListIterator)) 
4:   throw new Exception(); 

5:    DListIterator p2 = (DListIterator) p; 
6:    if (p2.currentNode == null) 
7:  throw new Exception(); 

8:  
9:    DListIterator p3 = new 
10:    DListIterator(p2.currentNode.nextNode); 

11:    DListNode n; 
12:    n = new DListNode(value,p3.currentNode,p2.currentNode); 
13:    p2.currentNode.nextNode = n; 
14:    p3.currentNode.previousNode = n; 
15:    size++; 
16: } 

Figure 3-42: Method insert of circular doubly-linked list. 
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Iterator, not DListIterator), a new iterator (p3) is created to 

mark the node after the node marked by p.  This new 

DListIterator, together with p2, are then used to create a 

new node with value inside. The pointers to/from the new 

node are also adjusted (see bottom half of Figure 3-43). 

The pointers adjustment does not need any loop, so the 

asymptotic runtime of this insert method is 𝛩(1).    

Let us view an example in Figure 3-43. In the example, 

we insert 5 after the position that stores 3. Dotted line 

marked changes made in each step.   
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n 

p3 = new 

DListIterator(p2.currentNode.nextNode); 

p2 
header 

3 6 4 

n = new DListNode(5, p3.currentNode, 

p2.currentNode); 

p2 
header 

3 6 4 

p3 

p2.currentNode.nextNode = n; 

p3.currentNode.previousNode =n; 

p2 
header 

3 6 4 

p3 

5 

p2 
header 

3 6 4 

p3 

5 n 

Figure 3-43: Execution steps of insert for doubly-linked list. 
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The code for method remove updated for a doubly-linked 

list is shown in Figure 3-44, with its utility method 

findPrevious and remove(Iterator p) shown in Figure 3-45.   

The method remove is almost the same as its singly-linked 

list counterpart. In fact, the code in Figure 3-44  is the 

same as its singly-linked list version. Its core concept 

does not change. That is, we must find the position prior 

to value, then remove the node at that position by 

changing pointers. Thus, calls to method findPrevious and 

remove(Iterator p) are still needed (their codes are in 

Figure 3-45).  This time, however, method findPrevious 

needs to check for header instead of null to determine 

whether all data in the list are examined. Also, 

remove(Iterator p) needs to check for header instead of null. 

But since everything else does not change, (except one 

more previousNode pointer got updated) the asymptotic 

runtime of remove(Iterator p) is still 𝛩(1). The runtime for 

method findPrevious is also still 𝑂(𝑛). Thus, the overall 

runtime of the remove method in Figure 3-44 is 𝑂(𝑛), 

which is the same as its singly-linked list counterpart.  

1: // remove the first instance of the given data. 
2: public void remove(int value) throws Exception { 
3: Iterator p = findPrevious(value); 

4: if (p == null) 

5: return; 

6: remove(p); 

7: } 

Figure 3-44: Method remove of doubly-linked list. 
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1: // Return iterator at position before the first 
2: // position that stores value. 
3: // If the value is not found, return null. 
4: public Iterator findPrevious(int value) throws  
5: Exception { 
6:    if (isEmpty()) 
7: return null; 

8:    Iterator itr1 = new DListIterator(header); 
9:    Iterator itr2 = new DListIterator(header); 
10:   int currentData = itr2.next(); 

11:   while (currentData != value) { 

12: currentData = itr2.next(); 

13: itr1.next(); 

14: if (((DListIterator) itr2).currentNode == 

15: header) 

16: return null; 

17:   } 

18:   if (currentData == value) 

19: return itr1; 

20:   return null; 

21: } 

22: 
23: //Remove content at position just after the given 

24: // iterator. Skip header if found. 

25: public void remove(Iterator p) { 

26:    if (isEmpty()) 

27: return; 

28:    if (p == null || !(p instanceof DListIterator)) 

29: return; 

30:    DListIterator p2 = (DListIterator) p; 

31:    if (p2.currentNode == null) 

32: return; 

33:    if (p2.currentNode.nextNode == header) 

34: p2.currentNode = header; 

35:    DListIterator p3; 

36:    p3 = new 

37:   DListIterator(p2.currentNode.nextNode.nextNode); 

38: 
39:    p2.currentNode.nextNode = p3.currentNode; 

40:    p3.currentNode.previousNode = p2.currentNode; 

41:    size--; 

42: } 

Figure 3-45: Method findPrevious and remove(Iterator p) of doubly-

linked list. 
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Again, if a position is known in advance, data removal 

takes constant time.  

An illustrated example of findPrevious code from Figure 

3-45 is shown in Figure 3-46. Here we execute command

findPrevious(4). Figure 3-46 shows the execution after line

10.

itr2 
header 

3 6 4 

After a while loop iteration: 

itr1 
header 

3 6 4 

itr2 

itr1 

After another loop iteration: 

itr2 
header 

3 6 4 

itr1 

The loop stops when currentData == 4. The method then 

returns itr1, the position before our value.  

Figure 3-46: The working of findPrevious for doubly-linked list. 
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An example of remove with iterator parameter from 

Figure 3-45 is shown in Figure 3-47. Dotted lines show 

pointer changes. It can be seen that at the end, no pointer 

is connected to the node that stores 4, thus effectively 

rendering the node that contains 4 inaccessible from the 

rest of the list. The node that contains 4 will be cleaned 

up by a garbage collector (in languages without 

automatic memory management, you may have to 

remove the node by yourself, depending on the 

language).   

p3.currentNode.previousNode 

= p2.currentNode;

header 

3 6 4 

p2 p3 

p2.currentNode.nextNode = 

p3.currentNode;

header 

3 6 4 

p2 p3 

header 

3 6 4 

p2 p3 

Figure 3-47: How remove(Iterator p) operates in doubly-linked list. 
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Our remove method from Figure 3-44 mainly removes 

the first instance of a specified value. The remove 

method in Figure 3-45 removes data behind a specified 

position. What if we want to remove data at a specified 

position? The code for this is shown in Figure 3-48.  

1: // Remove data at position p. 
2: // if p points to header or the list is empty, do  
3: // nothing. 
4: public void removeAt(Iterator p) throws Exception{ 
5: if (isEmpty() || p == null 

6: || !(p instanceof DListIterator)  

7: ||((DListIterator) p).currentNode == null 

8: ||((DListIterator) p).currentNode ==  

9: header) 

10:    return; 

11: DListIterator p2 

12: =(DListIterator)(findPrevious(p)); 

13: remove(p2); 

14: } 

15: 
16: //return iterator pointing to location before p. 

17: public Iterator findPrevious(Iterator p) throws  

18: Exception { 

19: if ((p == null) 

20: || !(p instanceof DListIterator) 

21: || ((DListIterator) p).currentNode == null) 

22: return null; 

23: 
24: DListIterator p1 = ((DListIterator) p); 

25: DListIterator p2 = new  

26: DListIterator(p1.currentNode.previousNode); 

27: return p2; 

28: } 

Figure 3-48: Code for removing data at a specified position. 
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In findPrevious(Iterator p), we can easily find a node in 

front of the node marked by p by just following its 

previousNode pointer (line 26 from Figure 3-48). Once that 

position is identified, a remove(Iterator p) can be called to 

simply remove a node behind p. The overall process of 

removeAt therefore does not require any loop operation. 

Thus, it runs in constant time, 𝛩(1).   

Method head, tail, and append for a doubly-linked list can 

use codes almost exactly the same as its singly-linked list 

counterpart. In fact, the only difference is the list type. 

This is because those codes utilized method next and 

insert to add new data to the list. These two methods are 

also implemented for our doubly-linked list, so they 

already dealt with extra pointers manipulation for us. 

Thus, codes using these methods work perfectly with 

doubly-linked lists.    

Sparse Table 

Storing data which can be arranged in row-column 

format usually requires a 2-dimensional array. However, 

some data set has a lot of empty data. This means that 

there will be wasted array slots reserved in memory. This 

kind of data set is called a sparse table. One way to avoid 

wasting such memory reservation is to use a set of linked 

lists to store only necessary data. 
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Let’s say we have data of all gamers who play games on 

Steam, together with their achievement percentage for 

each game. We want to arrange data such that: 

• For each gamer, we must be able to find all the

games he plays and his achievement for each

game.

• For each game, we must be able to find all gamers

who play the game.

A 2-dimensional array representation of such data is 

shown in Figure 3-49. There are many empty slots 

because a gamer does not play every game and each 

game is not played by every gamer.   

Ann Ben Cathy Don Jim 

D.D. 20% 72% 

MTG 25% 74% 21% 

Orc 

Sky 99% 

T2 11% 33% 

Figure 3-49: Two-dimensional array representing games and players’ 

progresses. 

A linked list that corresponds to data set from Figure 

3-49 is shown in Figure 3-50.
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The less data it has, the more memory saving we can 

achieve. Following links can still be slow, however. We 

can speed the search for game names and gamer names 

by adding direct links to game name and gamer name for 

each node.  

Ann Ben Cat Don Jim 

D.D

MTG 25 

20 

74 

72 

21 

 

 
 

  33 

Sky 
99 

Orc 

11 T2 

Figure 3-50: Linked list implementation of a sparce table. 
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Skip List 
Searching for data in a linked list can be slow because we 

need to follow links through each and every node. One 

way to speed up the search is to implement a skip list. A 

node in a skip list can have more than one pointer, each 

one pointing to different nodes in the list (Figure 3-51).  

Figure 3-51: A skip list (shown with 1 direction pointers only in order 

to avoid confusion). 

Hence in a sorted skip list, we can start by following the 

link that skips most data. Then if we go beyond the 

intended data, we can go back by one link and start 

searching again with a lower level link. In Figure 3-51, to 
find the number 15, we follow the link from the header 

to the node that stores number 8, but the link from the 

node that stores 8 goes to a node that stores a larger 

number than 15. We therefore start the search again from 

the node that contains 8, following links that skip fewer 

number of nodes. This time we successfully find 15.      

2 6 

8 

5 

12

2

15 
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Finding (or not finding) a required data can take O(log n) 

with a doubly-linked version of skip list. The skipping 

works the same way as a binary search.   

Maintaining a skip list can be a problem though. If we 

want to maintain well distributed links for each level of 

links, we need to change all links when a data is inserted 

or removed from the list. This is impractical. Therefore, 

we resort to just maintain the number of links in each 

level when we add a new data.  

Let’s say we want to have 3 levels of links (level 0 to 2). 

level nth starts at the 2𝑛-1 position (not counting header). 

Node level n links to 2𝑛 th node to its right. A skip list 

with this scheme, with 5 data, is shown in Figure 3-52.  

If we are to expand the list in Figure 3-52 to have 20 

nodes (not including header) while maintaining evenly 

distributed nodes of all level, we will have a list with the 

following nodes: 

header

0th 1st 2nd 3rd 4th

Figure 3-52: Doubly-linked skip list with 5 data. 
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• Nodes level 0 (linked to its next node): 0th, 2nd, 4th,

6th, 8th, 10th, 12th, 14th, 16th, 18th node. There are 10

nodes in total.

• Nodes level 1 (linked to its next node and a node 2

places away): 1st, 5th, 9th, 13th,17th node. There are 5

nodes in total.

• Nodes level 2 (linked to its next node, a node 2

places away, and a node 4 places away): 3rd, 7th 11th,

15th, 19th node. There are 5 nodes in total.

The ratio of each node level from above is what we need 

to maintain when adding a new node (we do not change 

node type of any node when a node is removed because 

it is messy). We can achieve this by creating a random 

number between 1 and 20.  

• If the number is between 1 and 10, we add node

level 0.

• If the number is between 11 and 15, we add node

level 1.

• If the number is between 16 and 20, we add node

level 2.

In actual implementation, since there can be more than 

one next and previous pointers, you may want to 

implement array of pointers, as shown in a sample code 

in Figure 3-53.  
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Exercises 

1. Write method public void insertAtFront(int x) for

class CDLinkedList. This method inserts a new list

node, with data x inside, between header and other

nodes.

2. Write method public int removeAtLast() for class

CDLinkedList. This method removes the node at the

last position from the list, and returns the data stored

inside that node as the method’s return value.

3. Write method public CDLinkedList reverseList() for

class CDLinkedList. This method returns a new linked

list that has all elements from this list, but the

elements are arranged in reverse order. You are

allowed to change this list.

4. Write method public boolean isInFront(int x, int y)

for class CDLinkedList. This method returns true if x is

stored in some node before y (when we search from

left to right, starting from header). It returns false

otherwise. If x or y is not in the list, this method

returns false.

5. For class LinkedList (our singly-linked version), write

method public void setify(). This method changes our

1: class SKNode{ 
2:    int data; 
3:    SKNode[] next; 
4:    SKNode[] previous; 
5: } 

Figure 3-53: Sample code for a skip list node. 
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list by removing all duplicated data so that there is 

only one copy of each data.  

6. For class CDLinkedList, write method public void

removeBefore(DListIterator p). This method removes

a node before the node marked to by p, but it does not

remove header.  Do nothing if p is not valid.

7. For class CDLinkedList, write method public void

removeMin(). This method removes the smallest data

from the linked list.

8. For class LinkedList, write method public void

moveToFront(ListNode n). This method moves the

content of n to the front of the list. Other contents’

relative ordering remains unchanged.

For example 

9. For class CDLinkedList, write method public void

clone(CDLinkedList in), which removed all data from

this list and then copies all items from the input list in

to itself.  In this case if you change any data in the new

C A B D 

A B C D 

n 

moveToFront(n) 
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list, the data in the original input list must not be 

changed. 

10. Write code for method public CDLinkedList

partition(int value) of class CDLinkedList. This

method removes all values greater than value from

this list. The method returns a list containing all the

removed values in order from left to right from the

this list (or empty list of no value is removed). For

example, if the original this list is:

 

then calling partition(5) will change this to: 

And the returned list from the method will be: 

header 

3 6 4 
nextNode 

previousNode 
7 

3 4 
nextNode 

previousNode 

6 7 
nextNode 

previousNode 
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11. Implement a polynomial (such as 5𝑥36 − 3𝑥17 + 8)

using class Linkedlist. Write code to multiply 2

polynomials.

12. If the first element of a list has index  == 0, explain how

you would exchange the value of element  with index

number x and y in a list, provided that x and y are

really legal positions in the given list (drawing can

help your explanation).  Write method public void

swap(int x, int y) for class LinkedList that will perform

such work.

13. Explain how to modify a list of numbers such that

even numbers are in the front portion of the list and

odd numbers are in the back portion (drawing can

help). Write method public void evenOdds() for class

LinkedList that performs such task. You cannot create

another LinkedList or array.

14. For class LinkedList, write method public LinkedList

specificElements(LinkedList C, int[] P) This method

creates a new list by taking elements form C, as

specified by their indices in P. For example, if P

contains 1,3,4,6 the answer will be a linked list which

has the 1st, 3rd, 4th, and 6th element from C. If a specified

index does not exist in C, ignore it. P does not have to

be sorted. Discuss the asymptotic runtime of your

solution.

15. For class CDLinkedList, write method public

CDLinkedList union(CDLinkedList a, CDLinkedList

b) that creates a new list which is a result from the
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union of a and b. a and b must remain unchanged. 

Only one copy of each data is allowed in a result list.  

16. For class CDLinkedList, write method public

CDLinkedList intersect(CDLinkedList a,

CDLinkedList b) that creates a new list which is a

result from the intersection of a and b. a and b must

remain unchanged. Only one copy of each data is

allowed in a result list.

17. For class CDLinkedList, write method public

CDLinkedList diff(CDLinkedList a, CDLinkedList b)

that creates a new list which has data which are in a

but not in b. Only one copy of each data is allowed in

a result list.

18. Illustrate how to swap two adjacent data in a

CDLinkedList by only changing pointers.

19. For class CDLinkedList, write method public void

swapChunk(DListIterator start, DListIterator end,

DListIterator p). This method changes our list by

moving data from position start to end (inclusive) to

position in front of p. Assume that the list is not

empty, all iterators actually point to positions in the

list, start is always to the left of end, and p is not a

position between start and end (inclusive).
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Chapter 4 : Stack 
A stack is a bucket. It stores data in layers. We can only 

insert and remove data from the top of the bucket. The 

way data can only be added or removed at the top is 

called LIFO (last in, first out). Figure 4-1 shows a stack: 

• data a, b and c are stored inside.

• A new data will sit on top of c.

• b cannot be accessed unless c is removed first.

• a cannot be accessed unless c and b are removed.

Stack Operations 

Operations that we do with data on a stack are: 

• Push: put a new data on top of the stack (Figure

4-2).

• Pop: remove the top most data (Figure 4-3).

• Top: read the data at the top without changing

stack content.

b 

a 

c 

Figure 4-1: Stack with 3 data inside. 
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Notable uses of Stack 
Bracket Pairing  

We can check to see if our program source code has the 

correct number/pairing of brackets. We do this by 

checking the source code character by character. Then: 

• If we find an opening bracket, push it onto sack.

• If we find a closing bracket, pop data from stack.

o If there is nothing in the stack to be popped,

it means we have more closing brackets than

opening brackets.

b 

a 

c 

b 

c 

a 

d 
push d 

Figure 4-2: Pushing data d onto a stack. 

Figure 4-3: Popping data out of a stack. 

b 

a 

c 
pop 

b 

a 
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o If the popped bracket is not the same type as

the closing bracket, we know we have an

incorrect bracket type pairing.

• When the entire source code is read, if there are still

opening brackets in the stack, we know we have

too many opening brackets. Otherwise, the bracket

pairings are correct.

1: public class Myclass { 
2:    int a; 
3:    public Myclass() { 
4: a = 0; 

5: for (int i =0; i<10; i++){ 

6: a = a+1; 

7:        }  
8:    } 
9: }  
10: }// this is an excess bracket. 

{ 

{ ( ( 

{ 

) 

{ 

{ 

{ 

{ ( 

{ 

Same type 

{ ) 

{ 

( 

Same type 

{ { 

{ 

{ 

{ 

} 

Same type 

{ 

{ 

line 3 line 5 

line 5 
} 

line 7 line 8 

Same type 

{ 

} 

line 9 

Same type 

} 
line 10 

No matching opening bracket to be popped!! 

Figure 4-4: Processing brackets, with excess closing brackets. 
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Figure 4-4 shows each stage of data inside our stack after 

reading each bracket from a given code. Each thick arrow 

shows a bracket being read (lines of code is also given in 

most cases to help readers map the code and the picture 

in the figure). 

The code has an excess closing bracket on line 10. This 

excess bracket is discovered when we try to pop an 

empty stack after reading that bracket.  

1: public class Myclass { 
2:    int a; 
3:    public Myclass() { 
4: a = 0; 

5: for (int i =0; i<10; i++{  //missing ‘)’ 

6: a = a+1; 

7: } 

8:    } 
9: }  

{ 

{ ( ( 

{ 

) 

{ 

{ 

{ 

{ ( 

{ 

Same type 

{ { 

{ 

( 

{ } 

{ 

{ 

( 

} 

Different type 
{ 

line 3 line 5 

line 7 line 8 

The pair does not match!! 

( 

line 5 

Figure 4-5: Processing brackets, with incorrect type pairing. 
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Figure 4-5 shows each stage of data inside our stack after 

reading each bracket, this time the code pairs different 

type of brackets because it is missing a bracket on line 5. 

When the process reads the closing curly bracket on line 

8, before popping the stack, it checks the type of the 

bracket stored in the stack. And it discovers a different 

type of bracket. Therefore, the pairing is incorrect. 

1: public class Myclass { 
2:    int a; 
3:    public Myclass() { 
4: a = 0; 

5: for (int i =0; i<10; i++){ 

6: { //excess bracket 

7: a = a+1; 

8: } 

9:    } 
10: }  

11:

{ 

{ ( ( 

{ 

) 

{ 

{ 

{ 

{ ( 

{ 

Same type 

{ ) 

{ 

( 

Same type 

{ { 

{ 

{ 

{ 

{ { 

{ 

line 3 line 5 

line 5 
} 

line 6 line 8 

{ 

} 

line 9 

} 
line 10 

{ 

{ 

Same type 

{ 

{ 

{ 

{ 

Same type 

{ 

Figure 4-6: Processing brackets, with excess opening bracket. 
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Figure 4-6 shows each stage of data inside our stack after 

reading each bracket, this time the code has an extra 

opening bracket on line 6. When the process ends, the 

stack still has an opening bracket inside. Therefore, it 

means we run out of all closing brackets to pair with it. 

Hence it is an excess bracket.  

Handling Data for Method Calls 

In quite a few programming languages, including Java, a 

stack is used to store data of method calls (including 

nested calls). A data stored in this kind of stack is called 

a stack frame.  

• When a method is called, a stack frame containing

data specific to that method is created and pushed

onto the stack.

• Data inside the top stack frame are visible to a

language’s runtime system (other globally visible

data are also visible, but data from other method

calls are not visible).

• When a method exits, a stack frame corresponding

to that method is popped off the stack. Data that

belong to that method are destroyed.

1:   public static void main(String[] args){ 
2:    int v = m1(2); 

3:    System.out.print(v + m2(v);); 

4:   } 
5:   public static int m1(int n){ 
6: return n+5; 

7:   } 
8:   public static int m2(int i){ 
9:    i++;  

10:  int v = i+m1(i); 

11:    return v; 

12: } 

Figure 4-7: Excample method calls. 
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Figure 4-7 shows an example of method calls. Table 4-1 

to Table 4-3 shows what happen to method stack when 

the code in Figure 4-7 is executed. Execution Point 

column identifies the sequence of execution as the code 

gets run, while Stack Status shows what are on the stack 

at each execution point.   

Each stack data (data for 1 method call) contains method 

parameters, local variables of the method, and a return 

address. A return address tells the runtime system where 

the execution should continue after a current method 

returns (For simplicity, we just use line number in Table 

4-1 to Table 4-3).

รูปสาวน้อยก าลเังรียงบล็อกส่ีห้าบล็อกทบักนัเป็นแสตก เป็นภาพน่ังบนโต๊ะ จะเห็นตวัคร่ึงบน บล็อกก็วางบน
โต๊ะ 



116 

Table 4-1: Various stages of stack for storing methods data when code 

in Figure 4-7 is executed (part 1).   

Execution point Stack status 

Enter main. 

Enter m1(2)  //line 2. 

return n+5 i.e. 2+5 (return 

value is kept by the 

system) and exit method. 

int v = the returned value. 

Enter m2(7)  //line 3. 

args: null  

return address: system 

args: null 

return address: system 

args: null 

return address: system 

n: 2 

return address: line 2 

v: 7 

args: null 

return address: system 

v: 7 

args: null 

return address: system 

i: 7 

return address: line 3 
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Table 4-2: Various stages of stack for storing methods data when code 

in Figure 4-7 is executed (part 2).   

Execution Point Stack Status 

i++ 

Enter m1(8) //line 10. 

return n+5 i.e. 8+5 (return value is 

kept by the system) and exit 

method. 

v: 7 

args: null 

return address: system 

i: 8 

return address: line 3 

v: 7 

args: null 

return address: system 

i: 8 

return address: line 3 

n: 8 

return address: line 10 

v: 7 

args: null 

return address: system 

i: 8 

return address: line 3 
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Table 4-3: Various stages of stack for storing methods data when code 

in Figure 4-7 is executed (part 3).   

Execution Point Stack Status 

int v =  i + the returned value (this 

is not the same v as in the bottom 

of stack since it is created as part 

of the execution of m2) 

The value of i in the current stack 

is 8. And the return value is 13 

from the last method call.   

return v and exit method (return 

value (21) is kept by the system). 

Enter print(v+ returned value). 

Exit print. 

Exit main.   Nothing remains in the stack. 

v: 7 

args: null 

return address: system 

v: 21 

i: 8 

return address: line 3 

v: 7 

args: null 

return address: system 

v: 7 

args: null 

return address: system 

to print: 7+21 = = 28  

return address: line 3 

v: 7 

args: null 

return address: system 
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Postfix Calculation 

A postfix expression is an arithmetic expression written 

by putting operands in front of their corresponding 

operator. Table 4-4 shows some expressions in their 

normal form (infix) and their corresponding postfix 

form.  

Table 4-4: Expressions and their corresponding postfix form.

Infix Expression Postfix Expression 

2+3 2 3 + 

5-3+2 5 3 – 2 + 

7-4*3 7 4 3 * - 

(5-1)*3 5 1 – 3 * 

((7+8)*9+5)*10 7 8 + 9 * 5 + 10 * 

(7+(8*9)+5)*10 7 8 9 * + 5 + 10 * 

It is easier for machines to evaluate postfix expression. 

The machine evaluation of postfix expression, using a 

stack, is as follows: 

• Read a token from a postfix notation.

o If the token is actually a number, push that

number onto the stack.

o If the token is actually an operator, pop data

off the stack to use with that operator (the

number of data to pop depends on the

number of parameters needed for that

operator). After the calculation is completed,

push a resulting data onto the stack.
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• Repeat the above process until there is no more

token to be read. At this point, a data on top of the

stack is our calculated result.

Let us see an example. Let us perform the calculation 2+3. 

Its postfix form is 2 3 +. Table 4-5 shows this operation 

step-by-step (top row to bottom row).   

Table 4-5: Postfix calculation of 2+3. 

Token 

Read 

Operation after  

Reading the Token 

Stack Status 

2 Push 2 onto stack. 

3 Push 3 onto stack. 

+ Pop the top 2 data  

on stack to add them. 

Then put the result back 

on the stack. 

More complicated examples are shown in Table 4-6 and 

Table 4-7.  

Now that you know how machines perform arithmetic 

calculations using a stack, you may wonder how 

machines get its arithmetic input in postfix form even 

2 

2 

3

3 

2 

5 

5 
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though we always input data into computers in infix 

form. The answer is – we have another algorithm, also 

using a stack, that can transform any infix arithmetic 

expression into its postfix counterpart.   

Table 4-6: Calculation of 7 4 3 * - (infix form is 7-4*3). 

Token 

Read 

Operation after  

Reading the Token 

Stack Status 

7 Push 7 onto stack. 

4 Push 4 onto stack. 

3 Push 3 onto stack. 

* Pop the top 2 data  

on stack to multiply 

them.  

Then put the result back 

on the stack. 

- Pop the top 2 data  

on stack to subtract 

them.  

Then put the result back 

on the stack. 

12 

7 

7 

4

7 

4 

3 

7 

4 

3 

7 

12 

12 

7 -5

-5
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Table 4-7: Calculation of 7 8 9 * + 5 + 10 * (infix form is (7+(8*9)+5)*10). 

Token 

Read 

Operation after  

Reading the Token 

Stack Status 

7 Push 7 onto stack. 

8 Push 8 onto stack. 

9 Push 9 onto stack. 

* Pop the top 2 data 

on stack to multiply 

them. Then put the result 

back on the stack. 

+ Pop the top 2 data 

on stack to add them. 

Then put the result back 

on the stack. 

5 Push 5 onto stack. 

+ Pop the top 2 data 

on stack to add them. 

Then put the result back 

on the stack. 

10 Push 10 onto stack. 

* Pop the top 2 data 

on stack to multiply 

them. Then put the result 

back on the stack. 

840 

84 

79 

72 

8 

9 

7 7 

72 

7 

72 

79 

79 

5 

79 

5 

84 

8 

9 

7 

84 

10 

84 

10 

840 

7 

7 

8 
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Transforming Infix to Postfix Form 

The algorithm is as follows: 

• For each token:

o If it is an operand, append it to the output.

o If it is an operator

▪ Pop operators on the stack and append

them to the output if the current token

has equal or less priority.

▪ Otherwise, do not pop them.

▪ Then push the new operator onto the

stack.

• When finish reading the input:

o pop all operators and append them to the

output.

Table 4-8 to Table 4-10 show examples of infix to postfix 

transformations. Each table shows what happens when 

each token is read one by one (top row to bottom row). 

7 - 4 * 3 - 

* 

7 4 3 

output 

stack
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Table 4-8: Transforming 2+3 to its postfix counterpart. 

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output

2 Append token to 

output. 

empty 2 

+ Push the operator onto 

stack. 

2 

3 Append token to 

output. 

2 3 

No 

more 

token 

Pop all on stack and 

append to output. 

empty 2 3 + 

Table 4-9: Transforming 7-4*3 to its postfix counterpart. 

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output

7 Append token to 

output. 

empty 7 

- Push the operator onto 

stack. 

7 

4 Append token to 

output. 

7 4 

* Do not pop anything 

because ‘*’ has more 

priority than ‘–’ on the 

stack. Push ‘*’ onto the 

stack. 

7 4 

3 Append token to 

output.  

 

7 4 3 

No 

more 

token 

Pop all on stack and 

append to output. 

empty 7 4 3 * - 

+ 

+ 

- 

- 

- 

* 

- 

*
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Table 4-10: Transforming 7+5-10 to its postfix counterpart. 

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output 

7 Append token to 

output. 

empty 7 

+ Push the operator onto 

stack. 

 7 

5 Append token to 

output. 

 7 5 

- ‘-‘ has equal priority to 

‘+’ on the stack. Hence 

we pop ‘+’ to the output, 

then push ‘-‘. 

 7 5 + 

10 Append token to 

output. 

 

 

7 5 + 10 

No 

more 

token 

Pop all on stack and 

append to output. 

empty 7 5 + 10 - 

 

The algorithm can also be expressed as pseudocode, as 

seen in Figure 4-8. The pseudocode assumes the 

availability of function isOperand, which tests whether a 

token is an operand or an operator, and function priority, 

which outputs a priority value of a given token.  

 

I hope the examples teach you some applications of stack 

in computing problems so that you understand why a 

data structure like stack exists. Before we move on to 

look at stack implementation, I would like to cover more 

details on this infix to postfix transformation.  

 

 

+ 

+ 

- 

- 
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Our example so far did not address two common things 

found in arithmetic expressions. They are: 

• brackets 

• right associative operators 

 

Let us look at brackets first. To group operations inside 

brackets, tokens between an opening bracket and its 

corresponding closing bracket should be processed just 

like they belong to a separate expression, independent of 

any part of the whole expression that comes before it or 

after it. We could use another stack to process the 

1:   String infix2postfix(String infix) { 
2:     String[] tokenArray = infix.split(“\\s”); 
3:     String postfix = ""; // our output string 
4:     Stack s = new Stack(); 
5:     for (int i=0; i<tokenArray.length; i++) { 
6:       String token = tokenArray[i]; 
7:       if(isOperand(token)){ //token is an operand 
8:           postfix += token; 
9:       } else {  //token is an operator 
10:         int pToken = priority(token); 

11:         int pTop = priority(s.top());     

12:         while(!s.isEmpty()&& pToken <= pTop ){ 

13:             postfix += s.top();  

14:             s.pop(); 

15:             pTop = priority(s.top()); 

16:         } 

17:         s.push(token); 

18:     } 

19:   } 

20:   while(!s.empty()) {  

21:     postfix += s.top();  

22:     s.pop(); 

23:   } 

24:   return postfix; 

25: } 

 

Figure 4-8: Pseudocode for Infix to Postfix Transformation.  
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bracketed expression separately, but it is also possible to 

use a single stack to do the job, as long as we make sure 

that: 

• when an opening bracket is read, it is always 

pushed onto the stack. 

• any operator (except the closing bracket) that 

follows the opening bracket does not cause the 

opening bracket to be popped from the stack. 

• when a closing bracket is read, all data inside the 

stack down to the opening bracket are popped out 

and processed.  

 

The above constraint ensures that a bracketed expression 

is treated as if it is processed on its own mini stack, 

without any interference to/from anything that comes 

before/after it.    

 

• To make sure that an opening bracket is always 

pushed onto the stack, it must have the highest 

priority compared to any possible operator on top 

of the stack. 

• To make sure that any operator (except the closing 

bracket) that follows the opening bracket does not 

cause the opening bracket to be popped from the 

stack, the opening bracket must have the lowest 

priority. 

• To make sure that when a closing bracket is read, 

all data inside the stack down to the opening 

bracket are popped and processed, the closing 
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bracket must have the lowest priority, but higher 

priority than the opening bracket on the stack (so 

that it does not interfere with operators stored on 

the stack before the opening bracket. Then, we can 

detect the opening bracket and pop it from the 

stack ourselves). 

 

An opening bracket has the highest priority and the 

lowest priority at the same time! How can we make this 

work? The answer is: we create two priority values for 

each operator, one value is used when the operator is 

read from input, the other value is used when the 

operator is on the stack. Thus, an opening bracket can 

now have the highest priority when read from input, and 

the lowest priority when read from the stack. Table 4-11 

shows priority values (when read from input and when 

read from the stack) of common arithmetic operators, 

including brackets.  

 

Table 4-11: Operator Priority. 

operator + - * / ( ) 

Priority when read from input 3 3 5 5 9 1 

Priority inside stack 3 3 5 5 0 None  

(never get stored) 

 

To show how these priority values of brackets inside and 

outside the stack work, let us transform 10*(5-2) into its 

postfix form (see Table 4-12). 
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Table 4-12: Transforming 10*(5-2) into postfix form.  

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output 

10 Append token to 

output. 

empty 10 

* Push the operator onto 

stack. 

 10 

( ‘(‘ from input has 

priority = 9, while ‘*’ on 

the stack has priority 

=5 . Hence ‘(‘ is pushed 

onto the stack. 

 

 

 

 

10 

5 Append token to 

output. 

 

 

 10 5 

- ‘-‘ from input (priority = 

3) has more priority 

than ‘(’ on the stack 

(priority = 0). Hence we 

push ‘-’ onto the stack. 

 

 

 

 

 

10 5  

2 Append token to 

output. 

 

 

 

 10 5 2 

) ‘)’ has lower priority 

than ‘-‘ on the stack but 

has higher priority than 

‘(‘ on the stack. So ‘-‘ is 

popped to output. And 

now that ‘(‘ is on top of 

the stack, we pop it.   

 10 5 2 - 

No 

more 

token 

Pop all on stack and 

append to output. 

empty 10 5 2 - * 

* 

* 

( 

* 

( 

* 

( 

- 

* 

( 

- 

* 

5-2 is 

grouped. 
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This way of priority arrangement keeps part of the 

expression in a bracket together. From Table 4-12, the 

subexpression (5-2) is guaranteed to become 5 2 – before 

getting processed with other subexpressions.    

Let us try a more complicated example. This time we 

have nested brackets. The expression is 10 * ((7+8)*9). The 

transformation is shown in Table 4-13 to Table 4-15. 

Table 4-13: Tranforming an expression with nested brackets into its 

postfix form (Part 1).  

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output

10 Append token to 

output. 

empty 10 

* Push the operator onto 

stack. 

10 

( ‘(‘ from input has 

priority = 9, while ‘*’ on 

the stack has priority 

=5 . Hence ‘(‘ is pushed 

onto the stack. 

 

 

10 

( ‘(‘ from input has 

priority = 9, while ‘(‘ on 

the stack has priority = 0. 

Hence the new ‘(‘ is also 

pushed onto the stack. 

 

 

 

 

10 

7 Append token to 

output. 

10 7 

* 

*

( 

*

( 

( 

*

(

( 

Opening bracket 

always get 

pushed. 
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Table 4-14: Tranforming an expression with nested brackets into its 

postfix form (Part 2).  

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output

+ ‘+‘ from input (priority 

= 3) has more priority 

than ‘(’ on the stack 

(priority = 0). Hence we 

push ‘+’ onto the stack. 

 

 

10 7 

8 Append token to 

output. 

10 7 8 

) ‘)’ has lower priority 

than ‘+‘ on the stack but 

has higher priority than 

‘(‘ on the stack. So ‘+‘ is 

popped to output. And 

now that ‘(‘ is on top of 

the stack, we pop it.   

10 7 8 + 

* ‘*‘ from input (priority = 

5) has more priority

than ‘(’ on the stack

(priority = 0). Hence we

push ‘*’ onto the stack.

10 7 8 + 

9 Append token to 

output. 

10 7 8 + 9 

* 

( 

( 

+

* 

( 

( 

+

*

(

*

*

(

*

* 

( 

7+8 is 

grouped. 
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Table 4-15: Tranforming an expression with nested brackets into its 

postfix form (Part 3). 

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output

) ‘)’ has lower priority 

than ‘*‘ on the stack but 

has higher priority than 

‘(‘ on the stack. So ‘*‘ is 

popped to output. And 

now that ‘(‘ is on top of 

the stack, we pop it.   

10 7 8 + 9 * 

No 

more 

token 

Pop all on stack and 

append to output. 

empty 10 7 8 + 9 * * 

Our pseudocode for infix to postfix transformation, after 

adding inside-outside stack priorities, is shown in Figure 

4-9. All changes from Figure 4-8 are indicated using bold

texts. Now, finding priority values when data is read

from input and when data is on the stack require

different functions.

* 

9 is grouped 

with the result 

of 7 + 8. 
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The last remaining issue for this postfix transformation 

is right associative operators. Our algorithm currently 

does not support right associative operators. For 

example, 223
  (written as 2^2^3) should be 2 2 3 ^ ^ in its

postfix form because the rightmost operation must be 

carried out first. Our algorithm, so far, regards the same 

operator (apart from brackets) to have the same priority 

when read from input and when on stack. Therefore, the 

1:   String infix2postfix(String infix) { 
2:    String[] tokenArray = infix.split(“\\s”); 

3:   String postfix = ""; // our output string 

4:   Stack s = new Stack(); 

5:   for (int i=0; i<tokenArray.length; i++) { 

6:   String token = tokenArray[i]; 

7:   if(isOperand(token)){ //token is an operand 

8:   postfix += token; 

9:   } else {  //token is an operator 

10: int pToken = outsidePriority(token); 

11: int pTop = insidePriority(s.top());   

12: while(!s.isEmpty()&& pToken <= pTop ){ 

13: postfix += s.top(); 

14: s.pop();

15: pTop = insidePriority(s.top());

16: } 

17: if(token == “)”) 

18: s.pop(); // pop “(“ on top of stack

19: else 

20: s.push(token);

21: } 

22:   } 

23:   while(!s.empty()) { 

24: postfix += s.top(); 

25: s.pop();

26:   } 

27:   return postfix; 

28: } 

Figure 4-9: Pseudocode for Infix to Postfix Transformation, after 

adding inside-outside stack priorities. 



134     
 

 

 

 

postfix form of 2^2^3 by our algorithm will be 2 2 ^ 3 ^, 

which is incorrect (see Table 4-16).   

 

This can easily be fixed without any change to our code, 

however, by giving right associative operators higher 

priorities when it is outside the stack (being read from 

input), so that the same operator does not get popped out 

to our output earlier than it should.  

 

Table 4-16: Incorrect postfix transformation due to priorities forcing left 

association.  

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output 

2 Append token to 

output. 

empty 2 

^ Push the operator onto 

stack. 

 2 

2 Append token to 

output. 

 2 2 

^ ‘^‘ has equal priority to 

‘^’ on the stack. Hence 

we pop ‘^’ to the output, 

then push ‘^‘. 

 2 2 ^ 

3 Append token to 

output. 

 

 

2 2 ^ 3  

No 

more 

token 

Pop all on stack and 

append to output. 

empty 2 2 ^ 3 ^ 

 

The corrected priority of ‘^’ is shown in Table 4-17.  The 

correct postfix transformation of 2^2^3 due to our fix is 

shown in Table 4-18.  

^ 

^ 

^ 

^ 

Now it is left 

associated. 
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Table 4-17: Operator Priority, with right associative operator ‘^’. 

operator + - * / ( ) ^ 

Priority when read from input 3 3 5 5 9 1 8 

Priority inside stack 3 3 5 5 0 None  

 

7 

 

Table 4-18: Correct postfix transformation after fixing right associative 

operator. 

Token 

Read 

Operation after 

Reading the Token 

Stack 

Status 

Current Output 

2 Append token to 

output. 

empty 2 

^ Push the operator onto 

stack. 

 2 

2 Append token to 

output. 

 2 2 

^ ‘^‘ has more priority to 

‘^’ on the stack. Hence 

we push ‘^’ onto stack. 

 2 2 

3 Append token to 

output. 

 

 

 

2 2 3  

No 

more 

token 

Pop all on stack and 

append to output. 

empty 2 2 3 ^ ^ 

 

Now that we have seen some uses of stack, let us 

investigate how we can implement it. Figure 4-10 shows 

methods available from our implementation in this 

^ 

^ 

^ 

^ 

^ 

^ 
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chapter (our implementation is a stack that stores integer 

data). To summarize, we have the following methods:  

• isEmpty(): returns true if our stack does not store

any data. Otherwise, it returns false.

• isFull(): returns true if our stack reaches its

maximum capacity. Otherwise, it returns false.

• makeEmpty(): gets rid of all data stored inside our

stack.

• top(): returns data on top of our stack (the stack

does not change). The method throws an

exception if there is no data to be returned.

• pop(): removes data on top of our stack. The

method throws an exception if there is no data to

be popped.

• push(int data): put a given data on top of our stack.

the method throws an exception if the the push is

somehow unsuccessful (caused by stack being full

or from other reasons).

1: public interface MyStack { 
2:   public boolean isEmpty(); 

3:   public boolean isFull(); 

4:   public void makeEmpty(); 

5:   public int top() throws Exception; 

6:   public void pop() throws Exception; 

7:   public void push(int data) throws Exception; 

8: } 

Figure 4-10: Stack Operations (interface). 
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Implementing a Stack with Array 
Figure 4-11 to Figure 4-18 show our implementation, the 

class StackArray. We split the code into several figures so 

that we can explain each part of the code separately.  

Figure 4-11 shows fields, constructors, and get/set 

methods of our stack. Our stack contains an array 

1:   public class StackArray implements MyStack{ 
2:   private int[] theArray; 

3:   private int currentSize; 

4:   private static final int DEFAULT_SIZE = 10; 

5: 
6:   public StackArray(){ // create an empty stack 

7:   this(DEFAULT_SIZE); 

8:   } 

9: 
10:   public StackArray(int intendedCapacity){ 

11: theArray = new int[intendedCapacity]; 

12: currentSize =0; 

13: } 

14: 
15:   public int[] getTheArray() { 

16:   return theArray; 

17:   } 

18: 
19:   public void setTheArray(int[] theArray) { 

20:   this.theArray = theArray; 

21:   } 

22: 
23:   public int getCurrentSize() { 

24:   return currentSize; 

25:   } 

26: 
27:   public void setCurrentSize(int currentSize) { 

28:   this.currentSize = currentSize; 

29:   } 

30:  //continued in Figure 4-12. 

Figure 4-11: Stack implemented by array (fields, constructors, get, set). 
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theArray to store data. It has variable currentSize to keep 

track of how many data are stored the stack.  

Figure 4-12 shows method isEmpty, isFull, and 

makeEmpty. Method isEmpty and isFull can easily check 

currentSize to find out the number of data stored inside 

the stack, without having to check the array. Method 

makeEmpty works by resetting theArray and currentSize.   

Figure 4-13 shows method top, which returns the 

topmost value stored in our stack. From line 4, it can be 

seen that: 

• Our top of stack is at position currentSize-1 in the

array.

• Data at position 0 in the array is considered to be

on the bottom of stack.

1:   public boolean isEmpty(){ 

2: return currentSize ==0; 

3:    } 
4:  
5:    public boolean isFull(){ 
6: return currentSize == theArray.length; 

7:    } 
8:  
9:    public void makeEmpty(){ 
10:    theArray = new int[DEFAULT_SIZE]; 

11:    currentSize =0; 

12:  } 

13: //continued in Figure 4-13. 

Figure 4-12: isEmpty(), isFull(), and makeEmpty() of stack implemented 

with array. 
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Let us look at an example in Figure 4-14. Our stack, 

although has theArray that contains 5 data, has 

currentSize = = 3. This means only data in slot 0, 1 and 2 

are regarded as data on the stack. The data that is 

regarded as on the bottom of the stack is stored at 

position 0 in the array. The top data on the stack is at 

position currentSize -1 = 3-1 =2.  

Figure 4-15 shows the code for method pop. Its main 

operation is just decrementing currentSize by 1. Thus the 

top of stack changes position.  

1:  public int top() throws Exception{ 

2: if(isEmpty()) 

3: throw new Exception(); 

4: return theArray[currentSize-1]; 

5:    }  
6: //continued in Figure 4-15. 

Figure 4-13: Code of method top, for stack implemented with array. 

Figure 4-14: top and bottom of stack of size 3 

(implemented with array). 

5 3 4 1 9 

currentSize = = 3 

Top data is at position 

currentSize-1 = 3-1 = 2 

Bottom data is 

at position 0. 

Not on stack 
5

3

4

Use array to 

implement 
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Figure 4-16 shows the effect of pop() when applied to our 

stack implementation. Since currentSize is reduced, our 

top of stack (position currentSize – 1) is moved to the left 

of the previous top data on the stack. This means 4 is no 

longer regarded as on the stack.      

Figure 4-17 shows code of method push. If the stack is 

already full (the array is full), we expand theArray to 

twice its original size.  Then we simply overwrite data in 

the slot next to our top data and change currentSize so 

that the top data on the stack becomes that new data.  

Figure 4-18 shows what happen when 7 is pushed onto a 

stack that originally stores 2 integers.  

1: public void pop() throws Exception{ 

2:   if(isEmpty()) 

3:   throw new Exception(); 

4:   currentSize--; 

5:  } 
6: //continued in Figure 4-17. 

Figure 4-15: Code of method pop, for stack implemented with array.

5 3 4 1 9 

currentSize = = 3 

Top of stack 

pop() 

5 3 4 1 9 

Top of stack 

currentSize = = 2 

Figure 4-16: Popping data from a stack implemented with array. 

Not on stack Not on stack 
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Implementing a Stack with Linked List 
In this section, a circular doubly-linked list is used to 

store data as our stack. The first data of the list is 

regarded as the data on top of our stack, while the very 

last data in the list is considered to be at the bottom of 

our stack (see Figure 4-19). Therefore, stack operations 

1:   public void push(int data) throws Exception{ 

2:   if(isFull()) 

3: doubleCapacity(); 

4: theArray[currentSize] = data; 

5: currentSize++; 

6:     } 
7:  
8: public void doubleCapacity(){ 

9: //resize array to twice the original size 

10:   int[] temp = new int[theArray.length*2]; 

11:   System.arraycopy(theArray, 0, temp, 0,  

12: theArray.length); 

13:    theArray = temp; 

14:   } 

15: } //end of class StackArray 

Figure 4-17: Code of method push, for stack implemented with array. 

push(7) 

7 5 3 4 1 9 

currentSize = = 2 

Top of stack 

5 3 1 9 

currentSize = = 3 

New top of stack 

overwrite 

Figure 4-18: Pushing data onto stack implemented with array. 

Not on stack 
Not on stack 
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used in this implementation mainly involves 

adding/removing data from the node after header.   

 

Our implementation, class StackLinkedList, is shown in 

Figure 4-20 to Figure 4-26.   

Figure 4-20 shows field and constructors for this linked 

list implementation. We only have one field, theList, 

which is a circular doubly-linked list from chapter 3. This 

list will be used as our stack, as seen in Figure 4-19. There 

are two constructors. A default constructor (line 5-7) just 

creates an empty linked list. The other constructor is a 

copy constructor, which takes a linked list and copies 

each data from that list to theList. By copying data into 

Figure 4-19: Linked list used as stack. 

header 

3 6 4 

Top of stack Bottom of stack 

4 

6 

3 

Use linked list to 

implement 
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our stack, any change in theList does not affect the input 

list, and vice versa.      

Figure 4-21 shows code for isEmpty(), isFull(), and 

makeEmpty() in this linked list implementation. Method 

isEmpty is performed by checking if the linked list is 

empty. Method isFull always returns false because there 

is no predefined space when we use a linked list. Method 

makeEmpty also makes use of makeEmpty of linked list. 

Mainly, we are just calling linked list methods.  

1: public class StackLinkedList implements MyStack{ 

2:    private CDLinkedList theList; 

3: 
4: // create an empty stack 

5:   public StackLinkedList(){ 

6: theList = new CDLinkedList(); 

7:    } 

8:  
9: public StackLinkedList(CDLinkedList l) throws 

10:   Exception { 

11:    super(); 

12:    DListIterator iParam; 

13: iParam = new DListIterator(l.header); 

14:    DListIterator iThis; 

15: iThis = new DListIterator(theList.header); 

16:    while (iParam.hasNext()) { 

17: int v = iParam.next(); 

18: if (iParam.currentNode == l.header) 

19: return; 

20: theList.insert(v, iThis); 

21: iThis.next(); 

22:     } 

23:   } 

24: //continued in Figure 4-21. 

Figure 4-20: Code for stack implemented with circular doubly-linked 

list (fields and constructors). 



144 

Figure 4-22 shows code for method top of this linked list 

implementation. The method throws exception if the 

stack is empty, since there is no data to return. 

Otherwise, it returns data stored in the node next to 

header, which we consider to be at the top of our stack 

(as illustrated in Figure 4-19, the returned data is 3).    

Figure 4-23 shows our code for the linked list 

implementation of method pop. Again, the method 

throws an exception if there is no data on our stack. If 

there is a data on top of our stack, we pop it out by calling 

remove method of our linked list implementation to 

remove the node after header (see illustration in Figure 

1:    public boolean isEmpty(){ 
2:      return theList.isEmpty(); 
3:     } 
4:  
5:     public boolean isFull(){ 
6:        return false; 
7:     } 
8:  
9:     public void makeEmpty(){ 
10:       theList.makeEmpty(); 
11: }  

12: //continued in Figure 4-22. 

Figure 4-21: isEmpty(), isFull(), and makeEmpty() for stack implemented 

with circular doubly-linked list. 

1: public int top() throws Exception{ 
2: if(isEmpty()) 

3:  throw new Exception(); 

4: return theList.header.nextNode.data; 

5: }  
6: //continued in Figure 4-23. 

Figure 4-22: top() for stack implemented with circular doubly-linked 

list.  
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4-24), thus effectively removing our top data from the

stack.

Figure 4-25 shows code for method push in our linked list 

implementation. Similar to method pop, this method 

1: public void pop() throws Exception{ 

2:    if(isEmpty()) 

3:    throw new Exception(); 

4:    Iterator itr;  

5: itr = new DListIterator(theList.header) 

6:    theList.remove(itr); 

7:  } 
8: //code continued in Figure 4-25. 

Figure 4-23: pop() for stack implemented with circular doubly-linked 

list. 

header 

3 6 4 

Top of stack Bottom of stack itr 

header 

3 6 4 

Top of stack 
Bottom of stack itr 

theList.remove(itr);

Figure 4-24: Removing the top of stack in linked list implementation. 
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mainly calls method of linked list. For this particular 

operation, it calls insert method of a linked list, to insert 

a new data next to header (illustrated in Figure 4-26).  

1:    public void push(int data) throws Exception{ 

2: Iterator itr; 

3: itr = new DListIterator(theList.header) 

4: theList.insert(data, itr); 

5:     } 
6: } // end of class StackLinkedList 

Figure 4-25: Method push for stack implemented with circular doubly-

linked list.

header 

3 6 4 

Top of stack Bottom of stack itr 

header 

3 6 4 

New top of stack 

Bottom of stack itr 

theList.insert(7,itr);

7 

Figure 4-26: Pushing new data onto stack implemented with circular 

doubly-linked list. 
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There we are. We have covered stack’s usage and its 

implementations. Now it is time for you to test your 

knowledge. 

Exercises 

1. There is a maze

1  1  1  1  1  1 

1  1  1  0  0  1 

1  0  0  0  F  1 

1  0  S  0  1  1 

1   1  1  1  1  1 

The number 1 represents wall and number 0 represents 

walkway. Let S be the starting point and F be the end 

point of travel (they are also walkways). We can 

systematically find a way from S to F by: 

• recording the coordinate (X, Y) that we can travel

to (at that moment in time) onto a stack. The order

of storage is north, south, west, and east of the

current position respectively (Let the coordinate of

the most left-bottom number 1 be (0, 0)).
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The original state of our stack will be: 

• Walking is done by popping stack and then

moving the current position to the popped 

coordinate. Then push the information of empty 

spaces surrounding that coordinate onto the stack 

(using north, south, west and east again) (we 

never push the coordinates that we have visited). 

We repeat this until we reach the destination. 

When the destination is reached, we do not push 

anything onto the stack. 

What is the final stage of the stack? 

2. Explain, step by step, how you can sort integers stored

in a stack (after sorting, the smallest value must be at

the top of the stack), using only one additional stack

and two integer variables. You are not allowed to

create array, linked list, or any data structure that can

store a collection of values. A starting and ending

state of an example stack are given below:

(3,1) 

Top of stack 

(2,2) 

(1,1) 

north of S 

west of S 

east of S 
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5 

1 

4 

 2 

3 

3. Write method:

public void addNoDuplicate (StackLinkedList s2) of

class StackLinkedList. This method removes and

pushes all contents (except for those that this already

has) from s2 into this. Contents that are duplicated

must remain in s2, in their original ordering. You are

not allowed to create arrays, linked lists, trees and

other kinds of data structures except

StackLinkedList. Give the estimated running time of

your implementation.

4. Assume we are using stack from class Stack, which has

the code of all methods defined in the following Java

interface (class Stack also has a working default

constructor):

public interface MyStack { 

public boolean isEmpty(); 

public boolean isFull(); 

public void makeEmpty(); 

//Return data on top of stack. 

//Throw exception if the stack is empty. 

public int top() throws Exception; 

1 

2 

3 

4 

5 

5

1

4 

2 

3 
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//Remove data on top of stack. 

//Throw exception if the stack is empty. 

public void pop() throws Exception; 

//Add new data on top of stack. 

//Throw exception if the operation is somehow 

//unsuccessful. 

public void push(int data) throws Exception; 

} 

We are using stack in our own class TestStack, which is: 

Class TestStack{ 

Stack s; 

public void removeDup(){ 

// You have to write code for this method. 

} 

} 

You are to implement method removeDup, which 

removes duplicated data from s. For example, if the 

original data inside s is  

Then stack s after the method is called, is 

1 

4 

3 

3 

1 

1 

4 

3 
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Where 1, 4, and 3 can be in any order on the stack, i.e. 

order does not matter. In other words, method 

removeDup makes a set out of existing data on s.  

 

• You do not know the internal workings of s, so 

you can only use methods provided by MyStack 

interface.  

• You are allowed to create primitive type 

variables. 

• You are not allowed to create non-primitive type 

variables, or any data structure, except Stack(s). 

 

a. Explain, with illustrated example, the inner 

workings of removeDup(). Your explanation 

should be clear and step-by-step.  

b. Write code for removeDup(). 

 

5. For the same stack as in the previous question, write 

method removeMin(), which removes the smallest 

value (and any copies of it) from the stack. Other 

values must remain in their original order. You are 

only allowed to create primitive type variables and 

another stack. 

6. For the same stack as in the previous question, write 

method removeBottom(), which removes the data at 

the bottom of the stack. Other values must remain in 

their original order. You are only allowed to create 

primitive type variables and another stack. 
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7. A palindrome is a sequence of integers (or letters) that 

reads the same left-to-right and right-to-left.  For 

example, "abadacadaba", "1234321". Write your 

explanation on how to use a stack to check whether a 

given string is a palindrome. 

8. Assume that values are always sorted from large to 

small in our stack, write the following methods of 

class StackArray: 

• public void putIn(int x): this method adds 

number, x, into the stack. After this new value is 

added, the stack must remain sorted. For 

example, if putIn(5) is called by the following 

stack: 

 

10 

8 

2 

1 

 

The resulting stack will be: 

 

10 

8 

5 

2 

1 

 

Top of stack 
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You are only allowed to create primitive variables and 

another stack. You are not allowed to create lists, arrays, 

or other data structures. 

 

9. We have an infix expression a*(b/c) – b*d. If we use a 

stack to convert this expression to its postfix form, 

what will be left on the stack after we just read the last 

input? What is on the stack at that point in time? 

10. Convert a+(b-c)*(d-e) to its postfix form using stack. 

Illustrate this operation step by step.  

11. Given a postfix expression 1 2 5 * 4 2 + + * 3 – . 

Illustrate, step by step, how a resulting value can be 

evaluated using stack.  

12. Write factorial(int n) that calculates a factorial of 

integer n, using only recursion. Draw what happens 

to stack frames of methods when factorial(3) is called 

from main method.   

13. Compare asymptotic runtime of all stack methods 

from class StackArray and StackLinkedList. 

14. Write method int power(int x, int y) for class 

MyCalculation (this is a newly created class), which 

calculates the value of 𝑥𝑦, using class StackLinkedList.  
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Chapter 5 : Queue 

A queue is a data structure that stores a sequence of data. 

It is very much like a list, but it has extra restrictions: 

• Remove (also called “dequeue”) can only be done

on the first data of the sequence.

• A new data can be added (also called “enqueued”)

to the queue only after the last data.

The way data can only be added or removed this way is 

called FIFO (first in, first out). It is similar to how people 

queue for services (see Figure 5-1). 

Queue Operations 
Common operations that we do with a queue are as 

follows: 

• front(): return the very first data in the queue.

• back(): return the very last data in the queue.

Welcome

!

Leave queue when served. 

New person at the back of 

the queue. 

Figure 5-1: Queueing for services. 
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• removeFirst(): remove the first data from the queue.

It returns that data. This is “dequeue” (illustrated

in Figure 5-2).

• insertLast(data): add new data following the current

last data. This is “enqueue” (illustrated in Figure

5-3).

• isEmpty(): check if the queue stores no data. It

returns true if the queue does not store any data

and false otherwise.

• isFull(): check if the queue has no more space to

store data.

• size(): return the number of data currently stored in

the queue.

front 
7 2 6 9 

back 

removeFirst() 

7 2 6 9 

The queue after removing the first data. 

Figure 5-2: Dequeueing the first data from a queue.
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The operations can be put into a Java interface (named 

MyQueue) (see Figure 5-4). This queue is for integer.  

 

 

 

 

 

 

 

 

 

front 
7 2 6 9 

back 

insertLast(3) 

7 2 6 9 

The queue after adding a new data 

3 

Figure 5-3: Enqueueing a new data. 

1: public interface MyQueue { 
2:  
3:  //return the first data. 

4:  public int front() throws Exception; 

5: 
6:    //return the last data. 
7:  public int back() throws Exception; 

8: 
9:    //remove the first data (return its value too). 
10:  public int removeFirst() throws Exception;  

11: 
12:  //insert new data after the last data. 

13:  public void insertLast(int data) throws Exception;  

14: 
15:  //check if the queue is empty. 

16:  public boolean isEmpty();  

17: 
18:  //check if the queue has no more space to store new 

19:  //data. 

20:  public boolean isFull(); 

21: 
22:  //return the number of data currently stored in the 

23:  //queue.  

24:  public int size();

25: } 

Figure 5-4: Interface for queue storing integer data. 
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Implementing a Queue with Array 
In this section, we show our array implementation for a 

queue that stores integer data. Let us first go through the 

concept.  

• We use array to store data.

• To manage enqueueing and dequeueing, we need

the following variables:

o front: an integer that is an index of the front

data.

o size: an integer indicating the number of

currently stored data.

Let us name our array theArray. By having front and size, 

the following methods can easily be implemented: 

• front(): we can just return theArray[front].

• isEmpty(): we can simply check if size = = 0. Our

theArray will always have slots, so checking for size

is the only way to find out if our queue is empty.

• isFull(): we can simply check whether size = =

theArray.length. This means there is absolutely no

space left anywhere in theArray.

• size(): we can simply return the value of the

variable size.

• removeFirst(): we can produce the effect of

removing the first data from the queue by

incrementing front by 1 (and, of course reducing

size by 1). This removal is shown in Figure 5-5

when our queue has 3 data: 7, 2, and 6. Thus, the

next time the front of the queue is to be accessed,
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we get the data stored behind the original front 

data. In Figure 5-5, the new front data is 2. The 

queue after removeFirst() finishes contains 2 and 6. 

This implementation prevents us from having to 

shift array contents after a data is removed.  

• insertLast(int data): this is done by adding the new

data after the last data (and incrementing size by 1).

The last data is at position front+size-1 so the new

data goes into position front+size. See Figure 5-6,

which actually carries out its insertLast method

right after the operation in Figure 5-5. In Figure 5-6,

the original data sequence in the queue is 2 and 6.

The data sequence after method insertLast executes

is 2, 6, and 5.

Figure 5-5: Dequeue for array implementation. 

front =0 

size = 3 7 2 6 9 

removeFirst() 

2 6 9 

front =1 

size = 2 
The last data 

The last data is at position 

front+size-1 = 0+3-1 = 2 

7 



160 

Method removeFirst and insertLast, although simple to 

implement, actually cause another problem. That is, 

when enqueue and/or dequeue are performed for some 

time, the last slot of our array will be occupied, while 

some slots at the front of the array are not used. This 

means we can no longer add another data because the 

position to add will exceed the rightmost array slot, even 

though there may be empty slots somewhere at the front 

of the array. In Figure 5-6, after method insertLast is 

executed, the last array slot is occupied by data 5, while 

the first slot is no longer used. If we want to enqueue a 

new data, it will have to be in position front+size = 1+3 = 

4, which goes beyond the last array slot. So, it cannot be 

added, even though the first slot is available.     

Figure 5-6: Enqueue for array 

implementation. 

The last data 

The last data 
front =1 

size = 2 

7 2 6 9 

insertLast(5) 

2 6 5 

front =1 

size = 3 

7 

Overwrite at position front+size (1+2 = 

3). Then size is incremented. 
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We can fix this problem by allowing array index to go 

from the back to the front of the array. Thus, method 

removeFirst, instead of having front = front +1, will have 

front = (front+1) % theArray.length. An example of a call to 

method removeFirst is shown in Figure 5-7, where the 

original data sequence is 4, 2, 1 and the end data 

sequence is 2, 1.  

For method insertLast, instead of having a new data go 

into position front+size, we will have the new data go into 

position (front+size)%theArray.length. In Figure 5-8, the 

data sequence is 2, 6, 5. The position to add the new data 

is (1+3)%4 = 0. Thus, the new data is put into the first slot, 

which is next to the position that stores 5 when we make 

The last data 

2 

front =3     size = 3 

2 1 8 4 

removeFirst() 

1 8 4 

front =0     size = 2 

Figure 5-7: Incrementing front that goes back to 

the first array slot when dequeueing. 

The last data 
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the aray index go back to the start of the array. The data 

sequence then becomes 2, 6, 5, 1.  

• back(): by making the index able to move from the

last array slot back to the first array slot, the last

position of data is at position (front+size-

1)%theArray.length. Method back simply returns

data stored in that position.

The code for the class, fields, constructors, and methods 

that check for the value of size is shown in Figure 5-9, in 

class QueueArray. Although the constructors create an 

array (line 12), the array slots do not store any data for 

Figure 5-8: front+size that goes back to the first 

array slot when enqueueing. 

The last data 

front =1 

size = 3 

7 2 6 5 

insertLast(1) 

2 6 5 

front =1 

size = 4 

1 

The last data 
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our queue. That is why the value of front is set to -1 

instead of 0 (line 14). If front is set to 0, it will mean there 

is one data in the queue, which is not true at the stage of 

queue creation.    

All methods in Figure 5-9 do not have any loop in their 

codes, so each method has 𝛩(1) as its asymptotic 

runtime.  

1: public class QueueArray implements MyQueue { 
2: private int[] theArray; 

3: private int size;//number of currently stored data. 

4: private int front; //index of the first data. 

5:  static final int DEFAULT_CAPACITY = 5; 

6:  
7:   public QueueArray() { 
8:   this(DEFAULT_CAPACITY); 

9:  } 

10: 
11: public QueueArray(int capacity) { 

12:   theArray = new int[capacity]; 

13:   size =0; 

14: front = -1; 

15: } 

16: public boolean isEmpty() { 

17: return size == 0; 

18: } 

19: public boolean isFull() { 

20: return size == theArray.length; 

21: } 

22: public void makeEmpty() { 

23: size = 0; 

24: front = -1; 

25: } 

26: public int size() { 

27: return size; 

28: } 

29:  // This class continues in Figure 5-10. 

Figure 5-9: fields, constructors, and methods that check for size in the 

array implementation of queue.  
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We have makeEmpty() (line 22-25) as an additional utility 

method. It basically resets size and front just like when we 

run a constructor, but it does use existing array.  

The code for front() is shown in Figure 5-10. It can be seen 

that we can just return data in position front. But if the 

queue is empty, we will not be able to return any data. 

That is why an exception is thrown (the class 

EmptyQueueException just extends from class Exception). 

The asymptotic runtime of front() is 𝛩(1) since there is no 

looping. 

The code for back() is shown in Figure 5-11. It returns data 

at position (front+size-1)%theArray.length, as discussed 

earlier. It also needs to check if the queue is empty and 

throws an exception if so, since it will be impossible to 

return any value. The runtime of this method is 𝛩(1) 

since there is no looping. 

1: public int front() throws EmptyQueueException { 

2: if (isEmpty()) 

3:  throw new EmptyQueueException(); 

4: return theArray[front]; 

5:  } 
6:   //This class continues in Figure 5-11. 

Figure 5-10: Code for front() in array implementation of queue. 

1:  public int back() throws EmptyQueueException { 
2:  if (isEmpty()) 

3: throw new EmptyQueueException()  

4:  return theArray[(front + size - 1) % 

5: theArray.length]; 

6:  } 
7:  //This class continues in Figure 5-12. 

Figure 5-11: Code for back() in array implementation of queue. 
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The code for removeFirst() is shown in Figure 5-12. Its 

illustrated operations are shown in Figure 5-5 and Figure 

5-7. The method also needs to throw an exception if the

queue is empty. It also needs to store the data at the front

of the queue (line 5) in order to be able to return that data

after front is incremented. Its execution does not involve

any loop, therefore its asymptotic runtime is 𝛩(1).

The code for method insertLast is shown in Figure 5-13. 

Its illustrated operations are shown in Figure 5-6 and 

Figure 5-8. It simply overwrites data at position 

(front+size)%theArray.length. But if the array is full, a new 

array of twice the original array size is created to replace 

the original (line 10-17). All data from the original array 

must be copied into a new array. Therefore, the copying 

process takes 𝛩(𝑛), making method insertLast run in 

𝑂(𝑛) since it either runs in constant time or in 𝛩(𝑛).    

1: public int removeFirst() throws EmptyQueueException{ 
2:  if (isEmpty()) 

3:   throw new EmptyQueueException(); 

4:  size--; 

5:  int frontItem = thearray[front]; 

6:  front = (front + 1) % thearray.length; 

7:  return frontItem; 

8: }  
9: //This class continues in Figure 5-13.

Figure 5-12: Code for removeFirst() in array implementation of queue. 
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Implementing a Queue with Linked List 
In this section, a circular doubly-linked list is used to 

store data as our queue. The first data of the list is 

regarded as the first data in the queue, while the very last 

data in the list is considered to be the last data in the 

queue (see Figure 5-14). Therefore, our queue 

implementation using a linked list is just a linked list, but 

with restrictions forbidding any removal of data except 

the first, and any addition of new data except after the 

last data.  

1: public void insertLast(int data) throws 

2:   EmptyQueueException { 
3: if (isFull()) 

4: doubleCapacity(); 

5: theArray[(front + size)%theArray.length] = data; 

6: size++; 

7:  } 
8:  
9:  // resize array to twice its original size. 
10: public void doubleCapacity() { 

11: int[] temp = new int[theArray.length * 2]; 

12: for (int i = 0; i < size; i++) { 

13: temp[i] = theArray[(front+i)%theArray.length]; 

14: } 

15: theArray = temp; 

16: front =0; 

17: } 

18: // end of class QueueArray. 

Figure 5-13: Code for method insertLast in array implementation of 

queue. 
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Figure 5-15 shows code for field, constructors, isEmpty(), 

isFull(), size() for this linked list implementation of a 

queue (the class name is QueueLinkedList). We only have 

one field, theList, which is a circular doubly-linked list 

from chapter 3. This list will be used as our queue. There 

are two constructors. A default constructor (line 4-6) just 

creates an empty linked list. The other constructor is a 

copy constructor, which takes a linked list and makes 

that list our data storage. Of course, we could do the 

same as in class StackLinkedList in chapter 3 and copy all 

data to a separate list. In this chapter, however, we opt 

for code simplicity. Method isEmpty, isFull, and size 

simply called their corresponding linked list methods in 

class CDLinkedList.    

Figure 5-16 shows code for method front of our linked list 

implementation of queue. The method throws exception 

if the queue is empty (we check the list if it is empty), 

since there is no data to return. Otherwise, it returns data 

stored in the node next to header, using method findKth of 

header 

3 6 4 

First data in queue Last data in 

queue

Figure 5-14: Using a circular doubly-linked list to represent a queue. 
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CDLinkedList to find data. The asymptotic runtime of this 

method is the asymptotic runtime of findKth(0), which is 

𝛩(1), since only the first iteration of the loop in findKth(0) 

is executed.  

1: public class QueueLinkedList implements MyQueue { 

2: CDLinkedList theList; 

3: 
4: public QueueLinkedList() { 

5: this(new CDLinkedList()); 

6: } 

7: 
8: public QueueLinkedList(CDLinkedList theList) { 

9: this.theList = theList; 

10: } 

11: 
12: public boolean isEmpty() { 

13:  return theList.isEmpty(); 

14: } 

15: 
16: public boolean isFull() { 

17:  return theList.isFull(); 

18: } 

19: 
20: public int size() { 

21:  return theList.size(); 

22: } 

23: //continued in Figure 5-16. 

1:  public int front() throws Exception { 
2:    if (isEmpty()) 

3: throw new EmptyQueueException(); 

4:    return theList.findKth(0); 

5:  } 
6: // continued in Figure 5-17. 

Figure 5-15: Code for field, constructors, isEmpty(), isFull(), size() of 

linked list implementation of queue.  

Figure 5-16: Code for front() of linked list implementation of queue. 
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The code for method back is shown in Figure 5-17. The 

method returns the last data in the queue, which is also 

the last data in the linked list that we use. The method 

throws an exception if the queue has no data.  

Figure 5-18 illustrates pointers from header to the last 

data (its corresponding code is at line 4 of Figure 5-17). 

There is no loop execution so the asymptotic runtime is 

𝛩(1). 

Figure 5-19 shows our code for the linked list 

implementation of method removeFirst. Again, the 

method throws an exception if there is no data in our 

queue. If there is the first data, it is removed by calling 

method removeAt of our linked list implementation to 

1: public int back() throws EmptyQueueException { 
2:  if (isEmpty()) 

3: throw new EmptyQueueException(); 

4:  return theList.header.previousNode.data; 

5: } 
6: //continued in Figure 5-19. 

Figure 5-17: Code for back() of linked list implementation of queue.

header 

3 6 4 

First data in queue Last data in 

queue

Figure 5-18: Identifying the last data in linked list implementation of 

queue. 
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remove the node after header. Figure 5-20 shows what 

happens just before and after removeAt(itr), from line 7 of 

Figure 5-19, is executed. The runtime of removeFirst() 

directly depends on the runtime of method removeAt, 

which is 𝛩(1).   

Figure 5-21 shows code for method insertLast in our 

linked list implementation. Again, this method mainly 

calls a method of our linked list. For this particular 

operation, it calls insert method of a linked list, to insert 

a new data next to the last node. Figure 5-22 shows what 

happens just before and after theList.insert(7, itr), at line 5 

of the code in Figure 5-21, is executed. The asymptotic 

runtime of method insertLast directly depends on the 

runtime of theList.insert(data, itr), which is 𝛩(1).   

1: public int removeFirst() throws Exception { 
2:    if (isEmpty()) 
3: throw new EmptyQueueException(); 

4:    DListIterator itr; 
5:    itr  = new DListIterator(theList.header); 
6:    int data = itr.next(); 
7:    theList.removeAt(itr); 
8:    return data; 
9: } 
10: // continued in Figure 5-21. 

Figure 5-19: Code for removeFirst() of linked list implementation of 

queue. 
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1: public void insertLast(int data) throws Exception { 

2: DListIterator itr; 

3: itr = new DListIterator(theList.header); 

4: itr.previous(); 

5: theList.insert(data, itr); 

6:   } 
7: } // end of class QueueLinkedList 

header 

3 6 4 

First data Last data 

itr 

header 

3 6 4 

First data 
Last data 

itr 

theList.removeAt(itr);

Figure 5-20: Removing the first data in linked list implementation of 

queue.   

Figure 5-21: Code for insertLast() of linked list implementation of 

queue.
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Double-Ended Queue 

In a few programming languages, there is a queue-like 

data structure that is more flexible than the queue we 

saw in the previous section. This double-ended queue 

allows the following additional operations: 

7 

header 

3 6 4 

First data Last data 
itr 

header 

3 6 4 

New last data 

First data 
itr 

theList.insert(7, itr); 

Figure 5-22: Adding a new data to linked list implementation of queue.
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• removeLast(): remove the last data from a sequence

of data stored in our queue. It also returns the

removed data. Its concept is shown in Figure 5-23.

• insertFirst(data): add a new data into the queue.

This data becomes the first data in the sequence. Its

concept is shown in Figure 5-24.

front 
7 2 6 9 

back 

removeLast() 

7 2 6 9 

The queue after removing the last data. 

Figure 5-23: Illustrated concept of removeLast(). 

front 
7 2 6 9 

back 

insertFirst(3) 

7 2 6 9 

The queue after adding a new data to the front. 

3 

Figure 5-24: Illustrated concept of insertFirst(data). 
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These operations can be shown as a Java interface in 

Figure 5-25. The interface presented here inherits from 

the interface in Figure 5-4. Basically, it is our existing 

queue, with two additional methods.  

Implementing a Double-Ended Queue with 
Array 

Our implementation extends from QueueArray so that we 

only need to implement the two new functions (see 

Figure 5-26).  

1: public interface DeQ extends MyQueue { 

2: 
3:   // remove the last data (return its value too). 
4: public int removeLast() throws Exception; 

5: 
6:   // insert new data as the first data. 
7: public void insertFirst(int data) throws 

8:   Exception; 
9: } 

Figure 5-25: Java interface for double-ended queue. 

1: public class DeQArray extends QueueArray implements DeQ{ 

2:  public int removeLast() throws Exception { 

3:  int data = back(); 

4:  size--; //change all fields to protected! 

5:  return data; 

6:     } 
7:  
8:   public void insertFirst(int data) throws Exception { 

9:   if (isFull()) 

10:    doubleCapacity(); 

11:    front = front-1; 

12:    if(front <0)  

13:    front = theArray.length-1; 

14:    theArray[front] = data; 

15:    size++; 

16:   } 
17: } //end of class DeQArray. 

Figure 5-26: Double-ended queue implementation using array. 
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From Figure 5-26, removeLast() records data at the back of 

the queue, then simply reduces size by 1 before returning 

the recorded value. The effect of reducing size by 1, 

without changing front, is illustrated in Figure 5-27. The 

sequence of data stored in our queue is 4, 2, 1. The 

variable size determines the number of data considered 

to be in our queue, starting from data at position front. 

Reducing size means we consider smaller number of data 

from the position of front to be in our queue. Thus, we 

lose data at the back of the queue. The data sequence 

after the reduction of size is 4, 2.    

The operation removeLast() does not require any loop. 

Therefore, its asymptotic runtime is 𝛩(1).  

2 

front =3     size = 3 

2 1 8 4 

size-- 

1 8 4 

front =3     size = 2 

The last data 

The last data 

Figure 5-27: Reducing size without changing front 

in array implementation of double-ended queue. 
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From Figure 5-26, method insertFirst reduces the value of 

front by 1 (it also changes front to identify the last array 

slot if its value becomes negative). Then it sets data at 

position of the new front to a given value, and increments 

size. This effectively adds a new data in front of the 

queue. Figure 5-28 illustrates line 11-14 from code in 

Figure 5-26, when insertFirst(77) is called on a queue with 

data 2, 1. The resulting data sequence is 77, 2, 1. 

theArray[front] = data; 

front =3 The last data 

front =3 The last data 

front = -1 

front =0  size = 2 

2 1 8 4 

front = front -1; 

1 8 4 2 

The last data 

The last data 

if(front < 0) 

   front = theArray.length-1; 

1 8 4 2 

1 8 77 2 

Figure 5-28: Operations inside insertFirst(77) for array 

implementation of double-ended queue. 
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Most of the time, method insertFirst does not require any 

loop execution. But occasionally, method doubleCapacity 

will have to be called to expand the array. This array 

resize causes the asymptotic runtime to be 𝛰(𝑛).    

Double-Ended Queue implemented with 
Linked List 
We can build on top of our existing linked list 

implementation. Thus, we only need to add method 

removeLast and insertFirst. Our implementation using a 

circular doubly-linked list is shown in Figure 5-29. 

From Figure 5-29, method removeLast throws an 

exception if the queue is empty. Otherwise, it creates a 

linked list iterator and moves the iterator to the left until 

1: public class DeQLinkedList extends QueueLinkedList 
2: implements DeQ { 
3:  
4: public int removeLast() throws Exception { 

5: if (isEmpty()) 

6: throw new EmptyQueueException(); 

7: DListIterator itr = new DListIterator(theList.header); 

8: itr.previous(); 

9: int data = itr.previous(); 

10:  theList.remove(itr); 

11:  return data; 

12:  } 

13:  
14:   public void insertFirst(int data) throws Exception { 
15:    DListIterator itr = new DListIterator(theList.header); 

16:    theList.insert(data, itr); 

17:   } 
18: } // end of class DeQLinkedList 

Figure 5-29: Linked list implementation of double-ended queue. 
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it identifies position before the last data. Then method 

remove of our circular doubly-linked list is called to 

remove the node after that position. The removed node 

is therefore the node that stores the last data.  

itr 

itr 

itr 

data =itr.previous(); 

header 

3 6 4 

First data in queue Last data in queue 

header 

3 6 4 

itr.previous();

header 

3 6 4 

data = = 4 

header 

3 6 4 

itr 

theList.remove(itr); 

Figure 5-30: Operations inside removeLast() for linked list 

implementation of double-ended queue.
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Once again, our implementation utilizes methods from 

linked list. The execution from line 8-10 in Figure 5-29 is 

illustrated in Figure 5-30. There is no loop so the runtime 

of removeLast() is 𝛩(1). 

From Figure 5-29, method insertFirst just adds a new 

node (containing new data) after header, by calling 

method insert of our linked list. The operation for 

insertFirst(9) is illustrated in Figure 5-31. 

header 

3 6 4 

First data in queue Last data in queue 

itr = new 

DListIterator(theList.header); 

header 

3 6 4 

itr 

header 

3 6 4 

theList.insert(data, itr); 

9 

itr 

Figure 5-31: Operations of insertFirst(9) for linked list implementation of 

double-ended queue. 
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There is no loop, so the runtime is 𝛩(1). 

Application of Queue: Radix Sort 

Apart from using queue(s) to simulate a FIFO data 

storage, there is a very interesting application to point 

out. That is, using queues to sort numbers with radix sort 

algorithm.  

So, what is a radix sort? It is a method we can use to sort 

numbers. Let us have an array storing various numbers 

(let assume they are integers). What we do is as follows:  

1) create 10 queues for storing numbers. The queues are

labelled 0 to 9.

2) For each number, we use the value of its least

significant digit as our “sorting identifier”.

a) For each number in the array, look at its sorting

identifier, then enqueue (method insertLast) that

number into a queue with the same label as that

sorting identifier.

b) For each queue, starting from the queue that has

label ‘0’, dequeue (method removeFirst) all numbers

from that queue back to the array. Do it until all

queues are empty.

c) Change the digit of the sorting identifier to the next

significant digit, then repeat step a) to c) until there

is no more possible sorting identifier.
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Let us see an example. Let us sort 321, 521, 354, 324, 150 

and 237 in an array. At the beginning, our sorting 

identifier is the value of the least significant digit. So, to 

do step a), we look at our array from the leftmost slot to 

the rightmost slot. Each number is put into a queue 

according to the sorting identifier. Thus, the number 321 

and 521 go into queue 1. The number 354 and 324 go into 

queue 4. The number 150 goes into queue 0. The number 

237 goes into queue 7 (see Figure 5-32).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, to do step b), we start from queue 0. We dequeue 

all numbers from it back to the array. We do the same for 

queue 1, 2, 3, etc. (see Figure 5-33).  

 

 

 

 

321 521 354 324 150 237 

0 1 2 3 4 5 6 7 8 9 

Figure 5-32: Step a), getting numbers into queues, when the least 

significant digit is the sorting identifier. 
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Now that all numbers are back in the array, we change 

the value of the sorting identifier to the value of the next 

significant digit. That is the number 150 will now have 5 

as its sorting identifier. The number 321 will have 2 as its 

sorting identifier. Then we repeat step a) again with a 

new sorting identifier for each number (see Figure 5-34). 

Remember, we go through the array from left to right. 

 

 

 

 

 

 

 

 

   

 

 

2 1 0 

237 150 
324 

354 

521 

321 

      

3 4 5 6 7 8 9 

Figure 5-33: Step b), getting all numbers back to the array. 

2 1 0 

150 321 521 354 324 237 

3 4 5 6 7 8 9 

Figure 5-34: Step a), when using the second digit from the right as a 

sorting identifier. 
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And then step b) is carried out by doing removeFirst() on 

every queue, from left to right, and put the removed data 

back into our array (see Figure 5-35).  

 

 

 

 

 

 

 

 

 

 

 

Then, we change the sorting identifier for the last time 

(since all numbers in our example have the maximum 

digit number equal to 3). Now, the number 321 has 3 as 

its sorting identifier. The number 521 has 5 as its sorting 

identifier. And we carry out step a) (Figure 5-36) and step 

b) (Figure 5-37) as before.  

 

 

 

 

 

 

 

 

 

5 0 1 2 

237 150 

354 521 

321 

      

3 4 6 7 8 9 

324 

Figure 5-35: Step b), when using the second digit from the right as a 

sorting identifier. 

2 1 0 

  

 

  
 

321 521 324 237 150 354 

3 4 5 6 7 8 9 

Figure 5-36: Step a), when using the third digit from the right as a sorting 

identifier. 
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After the actions carried out in Figure 5-37, all data in the 

array are sorted. The code for radix sort is shown in 

Figure 5-38 and Figure 5-39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1 2 9 6 5 3 

521 237 321

 

  

      

 

4 7 8 

324
150

354

Figure 5-37: Step b), when using the third digit from the right as a 

sorting identifier. 

1: public class RadixSort { 
2:  int[] theArray; 

3:   

4:   public RadixSort(int[] theArray) { 
5:     this.theArray = theArray; 

6:   } 
7:  
8:   // Return the kth digit of v. 
9:   // The least significant digit is 0. 
10: public int getKthDigit(int v, int k) { 

11:    for (int i = 0; i < k; i++) 

12:       v /= 10; 

13:    return v % 10; 

14: } 

15:  

16: // Find the number of digits of a value v. 

17: public int numberOfDigit(int v) { 

18:    int total = 1; 

19:    while ((v / 10) > 0) { 

20:       total++; 

21:       v = v / 10; 

22:    } 

23:    return total; 

24: } 

25: //continued in Figure 5-39. 

Figure 5-38: Radix sort implementation (part 1). 
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1:    // Get the number of digits of 
2:    // the longest number in theArray. 
3:    public int maxDigit() { 
4:       int maxDigit = 1; 
5:       for (int i = 0; i < theArray.length; i++) { 
6:          int n = numberOfDigit(theArray[i]); 
7:          if (n > maxDigit) 
8:             maxDigit = n; 
9:       } 
10:     return maxDigit; 

11:  } 

12:  

13: public void sort() throws Exception { 

14:  int maxDigit = maxDigit(); 

15:  MyQueue[] allQueues = new MyQueue[10]; 

16:  

17:  // initialize all 10 queues 

18:  for (int i = 0; i < 10; i++) 

19:   allQueues[i] = new QueueLinkedList(); 

20:  

21:   // for each digit 

22:   for (int k = 0; k < maxDigit; k++) { 

23:     // for each data in array  

24:     for (int i = 0; i < theArray.length; i++) { 

25:       int value = theArray[i]; 

26:      MyQueue q = allQueues[getKthDigit(value, k)]; 

27:       q.insertLast(value); 

28:     } 

29:  

30:     // index of array when we put data in from each 

31:     // queue. 

32:     int j = 0;  

33:  

34:     // for each queue 

35:     for (int i = 0; i < 10; i++) { 

36:       // empty each queue and output to theArray. 

37:       while (!allQueues[i].isEmpty()) { 

38:         int data = allQueues[i].removeFirst(); 

39:         theArray[j++] = data; 

40:       } 

41:     } 

42:   } //end outer for 

43: } //end method 

44: } //end class 

Figure 5-39: Radix sort implementation (part 2). 
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The main working of the code is in method sort in Figure 

5-39. It uses the same sorting mechanism concept that has 

already been explained. For easier mapping of the 

concept, we summarize the code below:  

 

• First, the maximum number of digits is calculated 

(line 14).  

• Then all 10 queues are initialized (line 17-19). 

• Then, starting from k = 0 (and ending when k 

reaches the maximum number of digit), we use k 

as the digit of our sorting identifier. For each k (line 

22):  

o For each and every data in the array (line 24): 

▪ We identify the queue that the data 

must go to, by using its sorting 

identifier (line 26). 

▪ Then we use method insertLast to put 

the value into that queue (line 27).  

o For each queue, starting at queue 0 (line 35): 

▪ Until the queue is empty, we use 

method removeFirst to remove data 

from the queue and put it in our array 

(line 37-40). We put data in a different 

array slot each time. 

 

Radix sort is very interesting because of its asymptotic 

runtime. Let us analyze the code of method sort together: 
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• The outer for loop (line 22) is only done MaxDigit 

number of times. This number is generally small, 

so it does not dominate the growth rate.  

• The first inner for loop (line 24): 

o Method getKthDigit (line 26) also works 

mainly on small value of k, so its runtime can 

be regarded as constant.  

o Method insertLast only takes 𝛩(1) since we 

use a linked list here.  

o Therefore, the first inner for loop (line 24) 

only consumes time for the loop itself. Thus, 

it has growth rate = 𝛩(𝑛). Where n is the 

number of data. 

• The second inner for loop (line 35): 

o The most times the while loop gets run is 

𝛩(𝑛), equal to the number of data. 

▪ removeFirst is only 𝛩(1).   

o The second inner for loop itself runs only 10 

times, so we can regard its growth rate to be 

𝛩(1).  

 

Thus, the growth rate of method sort is dominated by 

𝛩(𝑛) of the first inner for loop and 𝛩(𝑛) of the while loop 

that follows. Therefore, the growth rate of the whole sort 

operation is 𝛩(𝑛) + 𝛩(𝑛) = 𝛩(𝑛).   

 

Normally, if you are to write method sort that works on 

any number of data, you will need 2 for loops, each with 

its asymptotic runtime of 𝛩(𝑛). So, the runtime is 



188     
 

 

 

 

generally 𝛩(𝑛2). Therefore, the fact that radix sort has its 

the runtime equal to 𝛩(𝑛) means it is much faster then 

conventional methods.  
 

Exercises 

1. If we have existing stack1 and stack2, we want to use 

stack1 to represent a queue and use stack2 for any 

bookkeeping (see a picture below). The data type for 

stack in this question is MyStack from chapter 4.  

 

 

 

 

 

 

 

 

 

Explain how we can use these 2 stacks to implement 

method insertLast and removeFirst. Remember, stacks can 

only be manipulated by popping and pushing. 

 

Write the code for your insertLast and RemoveFirst.  

 

2. Assume we already have our own class Q, a queue 

that stores integers, and implement MyQueue 

interface of this chapter (assume all methods from 

MyQueue are implemented). 

Front of 

queue 

back of queue = top of stack 

stack1 stack2 
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a. Explain how we can manipulate the queue’s 

content so that only even number remains 

(drawing can help). Write method public void 

removeOdd() of class Q that performs this task. 

b. Write method public void removeOddIndex() of 

class Q. This method removes all data that are 

in odd positions from our queue. For example, 

if data in the queue are “a, b, c, d, e, f”, this 

method will change the queue to “a, c, e” (the 

leftmost data is at position 0). You must use 

only methods available for MyQueue and you 

are not allowed to create non-primitive 

variables. 

c. Write code for public void moveBackToFront() 

of class Q. This method moves the last integer 

stored in the queue to the front of the queue. 

Other stored integers remain unchanged. You 

are not allowed to create any new array, linked 

list, stack, or queue. 

d. Explain how you can move integer x from 

anywhere in the queue to the front of the queue, 

without changing the ordering of other integers 

in the queue. You are only allowed to create 

primitive variables and another queue. You 

are not allowed to create arrays, linked lists, 

stacks, trees and other kinds of data structures. 

If x is not in the queue, do nothing. Following 

your description, write public void 

moveToFront(int x) for class Q. Give the 
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asymptotic runtime of your solution (Assume 

that each given method of Q in this question 

takes constant time to run). 

e. Write method public void reverseQueue() for 

class Q. This method reverses the ordering of 

elements in the queue. You are only allowed to 

create primitive variables and a stack (any 

stack implementation from chapter 4 is fine). 

You are not allowed to create arrays, linked 

lists, trees and other kinds of data structures. 

Assume that each given method of this question 

takes constant time to run, give the estimated 

runtime of your implementation. 

f. Write method public Q merge(Queue q1, Queue 

q2) for class Q. This method receives two 

queues, q1 and q2. Each of the queues has 

elements in sorted order (from small number to 

large number). The method creates a new queue 

that has all elements from q1 and q2. The new 

queue still has its elements in sorted order. You 

are allowed to destroy or change q1 and q2. 

g. In order to sort elements in a queue, you can do 

the following 

i. Divide the elements in the queue in half 

(each half has equal, or almost equal 

numbers of elements). 

ii. Put elements in the first half of the queue 

into a new queue. 
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iii. Put elements in the last half of the queue 

into another new queue. 

iv. Sort the new queues. 

v. Combine the elements from the new 

queues to form the answer queue.  

Write method public Queue sortQueue() for 

class Q. This method performs the above 

algorithm. 

h. Explain how you can put a new data x at 

position i in a queue (the leftmost data in your 

data sequence is at position 0). The data that 

used to be at position i (and all data stored after 

it) must move one position to the right. You are 

not allowed to create any new data structure. 

From your explanation, write method public 

void jumpQueue(int x, int i) of class Q.   

               

3. Assume we have Class Queue, a double-ended queue 

that stores integers. This class already implements all 

methods defined in the following interfaces: 

 
public interface MyQueue { 
 //Return the first data. 
 //Throw Exception if the queue is empty. 
 public int front() throws Exception;  
  
 //Return the last data. 
 //Throw Exception if the queue is empty. 
 public int back() throws Exception;  
  
 //Remove the first data (return its value too). 
 //Throw Exception if the queue is empty. 
 public int removeFirst() throws Exception;  
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 //Insert new data after the last data. 
 //Throw exception if the insert fails for some reason. 
 public void insertLast(int data) throws Exception;  
  
 //Check if the queue is empty. 
 public boolean isEmpty();  
  
 //Check if the queue has no more space to store new data. 
 public boolean isFull(); 
  
 //Return the number of data currently stored in the queue. 
 public int size();         
} 
public interface DeQ extends MyQueue { 

// Remove the last data (return its value too). 
// Throw Exception if the queue is empty. 
public int removeLast() throws Exception; 

 
// Insert new data as the first data. 
// Throw Exception if the insert is not successful 
// for some unknown reason. 
public void insertFirst(int data) throws Exception; 

} 

We are using a double-ended queue in our own class 

TestQueue, which is: 

 
Class TestQueue{ 
 Queue q; 
 
 public int findValue(int i){ 
  //return a value at ith position in q  
     //(the position number starts from 0). 
     // This method is assumed to be completed and working with  
     // runtime = O(n).  
  // It assumes that the value of i must be from 0 to  
     // size()-1. 
  // Do not code this method!  
 } 
 
 public void swap(int p1, int p2){ 
  // You have to write code for this method. 
 } 
} 
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You are to implement method swap, which exchanges 

values stored in position p1 and p2 of q, where p1 and 

p2’s value must be from 0 to size()-1. For example, if the 

original data inside q is: {1,2,3,4,5} and swap(1,3) or 

swap(3,1) is called, then the final data in the queue will be 

{1,4,3,2,5}. Please note that: 

• You do not know the internal workings of q, so you 

can only use methods provided by the interfaces.  

• You are allowed to create primitive type variables. 

• You are not allowed to create non-primitive type 

variables, or any data structure. 

 

a. Write code for method swap. 

b. Draw pictures and explain your code. Do the 

explanation and drawings at the side of your code 

so that each part of the code is clearly explained.  

c. Analyze asymptotic runtime for each part of your 

code and give the overall asymptotic runtime of 

method swap. 

 

15. For our doubly-linked list implementation of queue, 

extend it so that each data has a priority value. When 

adding new data to the queue, the data with more 

priority value is stored so that it is removed before 

data with lower priority values. Rewrite methods if 

necessary.    
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Chapter 6 : Binary Tree 
A binary tree is a sequence of nodes, similar to a linked 

list. However, a node of a tree can have at most 2 next 

nodes. Thus, a linked list can be regarded as a form of 

binary tree that each node only has one next node. An 

illustrated example of a tree is shown in Figure 6-1.    

In Figure 6-1, a tree is formed by connecting node a, b, c, 

…, i together. Below are some terms we need to be 

familiar with regarding this data structure.   

9 

3 13 

11 6 18 

7 5 15 

root 

c 

a b 

d e 

f g h 

8 

Depth 

of c 

Height 

of c 

Tree 

height 

Figure 6-1: A Binary Tree. 

i 

Left 

subtree 
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• A root is the very first node of a tree. From Figure

6-1, a root is the node that stores the number 9.

• For a tree, its root links to its left subtree and right

subtree. From Figure 6-1, our tree has its left

subtree being a tree that has node ‘a’ as its root.

Similarly, its right subtree is a tree that has node ‘b’

as its root.

• A parent of node n is the node directly linked just

above n. From Figure 6-1, node ‘a’ is a parent of

node ‘c’. Node ‘c’ is a parent of node ‘f’ and node

‘g’.

• A child of node n is the node directly linked just

below it. From Figure 6-1, node ‘c’ is a child of node

‘a’. Node ‘f’ and node ‘g’ are children of node ‘c’.

• An ancestor of node n is a node that can find only

downward link(s) to n. From Figure 6-1, if we

consider node ‘g’, we can see that root, node ‘a’,

and node ‘c’ are ancestors of node ‘g’. Node ‘b’ is

not an ancestor of node ‘g’ because we cannot reach

node ‘g’ from node ‘b’ with downward links alone.

• A leaf of a tree is the node that has no children.

From Figure 6-1, node ‘f’, ‘i’, ‘d‘ and ‘h’ are the

leaves.

• The depth of node n is the largest number of links

we can follow upwards from n (not including the

root). From Figure 6-1, the depth of node ‘c’ is 2.

The depth of node ‘h’ is 3.

• The height of node n is the largest number of links

we can follow downwards from n (not including
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itself). From Figure 6-1, the height of node ‘c’ is 2. 

The height of root is 4.  

• The height of a tree is the height of its root. From

Figure 6-1, the height of our tree is 4.

o A tree that has only one node (that is, only a

root) has its height equal to 0.

o An empty tree, which is a tree with no node,

has its height equal to -1.

o The height of a tree can be calculated from

the height of its tallest subtree +1. From

Figure 6-1, our tallest subtree is the tree

which has node ‘a’ as its root (and it has its

height equal to 3). Therefore, our tree has

height equal to 3+1 = 4.

• Please note that there is only 1 path from a root to

a node.

Nodes in a tree can be at different levels, as shown in 

Figure 6-2.  

A perfectly balanced (or a perfect) binary tree looks like 

a complete triangle, as shown in Figure 6-3.  A full 

binary tree (or strict binary tree) is a tree that each node 

either has 0 or 2 children. 
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Figure 6-2: Node levels in a tree.
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Figure 6-3: A perfectly balanced tree. 
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A complete binary tree is the tree filled up at least to the 

level before the highest level, from left to right. Once a 

node is missing, all other nodes in the same level (we 

look from left to right) and in the levels after that must 

not exist. Thus, a perfectly balanced tree is also a full and 

complete binary tree, but a complete (or full) binary tree 

does not have to be perfectly balanced.    

The tree in Figure 6-4 (a) is not a complete binary tree 

because in the last level, nodes do not fill from left to 

right (one node is missing along the way). The tree in 

Figure 6-4 (b) and Figure 6-4 (c) are complete binary trees 

because when a node is missing, other nodes to the right 

and to other levels do not exist also. 

e

(a) (b) (c) 

Figure 6-4: Examples of non-complete/complete binary trees. 
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Interesting properties of A Binary Tree 
Let us define the followings: 

• leaves(t): the number of leaves in the tree t.

• n(t): the number of nodes of tree t.

• height(t): the height of t.

• leftsubtree(t): the left subtree of t.

• rightsubtree(t): the right subtree of t.

• max(a,b): a maximum value from a and b.

For a non-empty binary tree, the following definitions 

are true: 

Definition 6-1: 

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0

Definition 6-2: 

𝑛(𝑡)+1

2.0
≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) 

Definition 6-3: 

If t is a full binary tree, then 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) =
𝑛(𝑡)+1

2.0

Definition 6-4: 

If 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) =
𝑛(𝑡)+1

2.0
 , then t is a full binary tree. 
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Definition 6-5: 

If t is a perfect binary tree, then 
𝑛(𝑡)+1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) 

Definition 6-6: 

If 
𝑛(𝑡)+1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) , then t is a perfect binary tree. 

These definitions can be proven using discrete 

mathematics. In our context, we are not interested in how 

they are proven, but on how they can be used. Here, we 

give a short proof for 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 :

We use mathematical induction. The base case is when 

our tree has only its root.  

• Thus leaves(t) is 1 because the root itself is the only

leaf.

• The value of 
𝑛(𝑡)+1

2.0
 is 

1+1

2.0
 , which is 1. 

• Therefore 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
is true for this base 

case. 

Let the inductive case happens when our tree has height 

equal to h.  Thus 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 is true when the tree

height is h.  

Now, we must prove that when the tree height is h+1, 

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 still holds. So, for a tree of height h+1,

the following is true: 
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𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) = 𝑙𝑒𝑎𝑣𝑒𝑠(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 𝑙𝑒𝑣𝑒𝑠(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) 

Since t has height equal to h+1, its left subtree and right 

subtree must have their height less than h+1, meaning 

the property of the inductive case is true for them. 

Therefore, we can replace  𝑙𝑒𝑎𝑣𝑒𝑠(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) with 
𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡))+1

2.0
. The same can be done for the right 

subtree. Hence, we get: 

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1

2.0
+

𝑛(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1

2.0

And since we know that: 

𝑛(𝑡) = 𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 𝑛(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1 

We can substitute 𝑛(𝑡) into our previous equation and 

eventually get:  

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡) + 1

2.0

This completes our proof. 

These properties are very important for optimizing how 

data are stored. For example, let us look at definitions 

about height (Definition 6-2, Definition 6-5, and 

Definition 6-6). From these definitions, we can deduce 

that if data are well distributed such that the tree is a 

perfect (or almost perfect) binary tree, the height of the 
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tree will have the lowest value possible. This leads to the 

lowest possible search time when we want to find a data 

stored inside (we start our search from the root). This 

height is related to the number of nodes according to 

Definition 6-5 and Definition 6-6.  

𝑛(𝑡) + 1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) 

We can take log for the above equation and come up 

with: 

log2

𝑛(𝑡) + 1

2.0
= log2 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

log2(𝑛(𝑡) + 1) − log2 2 = ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) 

log2(𝑛(𝑡) + 1) − 1 = ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) 

The number of stored data in a tree is equal to the 

number of nodes. Therefore, in a binary tree that has 

good distribution of data, if there is a way to choose 

which node (left or right) to go search for the data, the 

process of searching can take a number of steps equal to 

the height of the tree, which is directly proportional to 

the logarithm of the number of data. In other words, 

searching a binary tree can take as little time as 𝛰(log 𝑛), 

where n is the number of data in the tree.   
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With certain data storage policy, the above performance 

can be achieved. A tree with such policy is called a binary 

search tree, which is discussed in the next section.  

Definitions regarding the number of leaves can also be 

useful. We will touch upon the use of these definitions 

when we discussed priority queues.   

Binary Search Tree 
A binary search tree is either an empty tree, or a binary 

tree with the following properties: 

• For each node, every data in its left subtree has

smaller (or equal) value than the data stored in that

node.

• For each node, every data in its right subtree has

larger (or equal) value than the data stored in that

node.

Binary trees shown in Figure 6-1 to Figure 6-3 are binary 

search trees.  

Searching for data is easy. Let us look at a binary search 

tree in Figure 6-5. Let us try to find number 4.  

• When we look at the root, it stores the number 7, so

4 must be on the left side of the root. We therefore

follow the link to node ‘a’.
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• Node ‘a’ stores 5. Due to the data arrangement of a

binary search tree, our data is surely on the left side

of ‘a’. We therefore follow the link to node ‘c’.

• Node ‘c’ stores 2. Our number, 4, must be to the

right of node ‘c’. So, we follow the link to node ‘f’

and eventually find 4 there.

As mentioned earlier, if data are distributed well, the 

searching time only depends on the height of the tree, 

which is log 𝑛, where n is the number of data stored 

inside the tree.  

7 

5 11 

4 

6 14 2 

root 

a b 

d 

f 

e c 

Figure 6-5: Searching for the number 

4 in a Binary Search Tree. 
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Binary Search Tree Implementation 
We define the followings: 

• Node.

• Node marking and how to go through data.

• Binary Search Tree.

Let us start by defining the node that uses to store data. 

In our example code, data will be integer.  

A node is a pointer to the space we store data. The 

following data are stored (Figure 6-6): 

• A value (integer value in our example).

• A pointer to another node on the left.

• A pointer to another node on the right.

• A pointer to the node’s parent node.

Figure 6-7 shows how the tree from Figure 6-5 will look 

like under our implementation idea. If we focus at 

node ’a’, we can see that:  

• Its space stores the value 5.

5 

parent 

value 

pointer to node 

on the left 
pointer to node 

on the right 

node 

Figure 6-6: A node implementation concept of a 

binary tree. 
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• The pointer to the node on the left is ‘c’.

• The pointer to the node on the right is ‘d’.

The pointer to the parent node is root (we name the 

pointer according to its destination. Since that 

destination already has a name “root”, we use that 

name). 

Parent of root is null. The pointer to the node on the left 

or on the right of a node can also be null.  

The code for our node implementation is shown in class 

BSTNode (Figure 6-8). A one parameter constructor 

Figure 6-7: Tree from Figure 6-5, 

utilizing our implementation idea. 
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creates a node that simply stores data, but does not 

connect to left/right subtree and it does not have a parent 

(see Figure 6-9 for illustration).  

For node marking, we need to be able to determine a 

sequence for visiting all nodes in the tree, from the node 

that stores the smallest value to the node that stores the 

largest value. If we use the tree from Figure 6-7, the 

1: public class BSTNode { 

2:   int data; // value stored in the node. 

3:    BSTNode left; //pointer to lower left BSTNode. 

4:    BSTNode right; //pointer to lower right BSTNode. 

5:    BSTNode parent; //pointer to the BSTNode above. 

6: 
7:  public BSTNode(int data){ 

8:  this(data,null,null,null); 

9:  } 

10:  
11:   public BSTNode(int data, BSTNode left, BSTNode right, 

12:    BSTNode parent) { 

13:   this.data = data; 

14:   this.left = left; 

15:   this.right = right; 

16:   this.parent = parent; 

17:   } 

18:  } 

Figure 6-8: Code for binary search tree node. 

BSTNode b = new BSTNode(9); 

14 

b 

Figure 6-9: Creating a node by using 

one parameter constructor.  
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sequence is shown in Figure 6-10. Round square labels 

indicate the visiting order for method next of our iterator. 

This is not quite straightforward. You can see that going 

from label 2 to 3 (or 4 to 5) requires more than one link 

traversal. With a higher tree, we will require even more 

link traversal. For the tree created from Figure 6-1, going 

from the node that stores 8 and the node that stores 9 

requires 4 link traversals. Therefore, our implementation 

of a binary search tree iterator must support this. 

Figure 6-11 shows how we implement a field and a 

constructor for our tree iterator (class TreeIterator). Our 

Figure 6-10: Node visiting sequence. 
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iterator only marks a node and the constructor is 

straightforward.   

Figure 6-12 shows the implementation of method 

hasNext, which determines whether there is a next data 

(data with the next larger value from the current data) to 

look at.  

Method hasNext works as follows: 

• If the currently marked node has another node to

its right, then there definitely is a larger value to

1:   public class TreeIterator implements Iterator { 
2: BSTNode currentNode; 

3: 
4: public TreeIterator(BSTNode currentNode) { 

5: this.currentNode = currentNode; 

6:     } 
7: // continued in Figure 6-12. 

Figure 6-11: Code for tree iterator field and constructor. 

1: public boolean hasNext() { 

2: BSTNode temp = currentNode; 

3:   if (temp.right != null)  

4: return true; 

5: BSTNode p = temp.parent; 

6: while (p != null && p.right == temp) { 

7: temp = p; 

8: p = temp.parent; 

9: } 

10: if (p == null) 

11: return false; 

12: else 

13: return true; 

14:   } 

15: // continued in Figure 6-16. 

Figure 6-12: Method hasNext of class TreeIterator. 
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visit via its right field. So, the method returns true 

right away (line 3-4 of Figure 6-12). 

o As an example, consider the tree in Figure

6-10. If the node with label 3 is the currently

marked node. It has the node with label 4 as

its right field, so there is definitely a larger

value to go visit. Thus, our method returns

true for this case.

• If the currently marked node does not connect to

any node by its right field, a value larger than the

one stored in that node can be at one of its ancestor

nodes. So, we need to follow the link up the tree

until we find that ancestor node, or until there is no

more link to follow (line 6-9 of Figure 6-12).

o An example is shown in Figure 6-13. If temp

is the node that contains value 5, its parent

will be the node that contains value 6. It is the

larger value we are looking for, so we know

there is a next node. Indeed, our code (line 6

of Figure 6-12) evaluates that node p.right is

not temp so the code does not even enter the

loop. The value of p is not null so the code

returns true.

o Another example is shown in Figure 6-14. In

this case, our current node temp stores value

8 (see the left-hand side of the figure). A node

that stores a larger value is an ancestor quite

further away. But our code will find it. Its

loop will move p and temp up the tree until p
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marks that node (see the right-hand side of 

the figure).  

Figure 6-13: Immediate parent contains 

a larger value.  

Figure 6-14: Movement of p and temp when the larger value is in some 

ancestor node.  
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o It is also possible that a node that contains a

larger value does not exist. In Figure 6-15 (left

hand side of the figure), our current node

stores 8. It is obvious that there exists no node

that stores a larger value. So, there should not

be a next node. Our code will loop to move p

and temp up the tree until p is null (see the

right-hand side of the figure). The code will

then return false.

Figure 6-15: Movement of p and temp when a node with larger value does 

not exist. 
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The code for method hasPrevious is shown in Figure 6-16. 

The code is the same as hasNext, except right is changed 

to left because the logic is the same.  

Now, let us see the code for method next. It is shown in 

Figure 6-17. It uses the same logic as method hasNext. 

This time we not only have to determine if there is a next 

node that stores a larger value, but we also need to 

navigate to that very node and return the data stored 

there.   

When our current node has another node as its right field. 

We navigate to right, then follow left until we can go no 

further. This way, we will always navigate to the node 

that stores data just larger than our current node. This 

1:  public boolean hasPrevious() { 

2: BSTNode temp = currentNode; 

3: if (temp.left != null) { 

4: return true; 

5:     } 
6:  
7: BSTNode p = temp.parent; 

8: while (p != null && p.left == temp) { 

9: temp = p; 

10: p = temp.parent; 

11:   } 

12:   if (p == null) 

13: return false; 

14:   else 

15: return true; 

16: }  

17: //continued in Figure 6-17. 

Figure 6-16: Method hasPrevious of class TreeIterator. 
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navigation is illustrated in Figure 6-18. Its corresponding 

code is in line 3-7 of Figure 6-17.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1:   public int next() throws Exception { 
2:     BSTNode temp = currentNode; 
3:     if (temp.right != null) { 
4:       temp = temp.right; 
5:       while (temp.left != null) { 
6:         temp = temp.left; 
7:       } 
8:     } else { 
9:       BSTNode p = temp.parent; 
10:     while (p != null && p.right == temp) { 

11:       temp = p; 

12:       p = temp.parent; 

13:     } 

14:     temp = p; 

15:  } 

16:   if(temp == null) //hasNext() == false  

17:     throw new NoSuchElementException(); 

18:   currentNode = temp; 

19:   return currentNode.data; 

20: } 

21: //continued in Figure 6-19. 

Figure 6-17: Code for method next of class TreeIterator. 

X 

Y 

Z 

Figure 6-18: Finding node Z, with a value just larger than X, 

when our current node, X, has another node as its right. 
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When the right field of our current node does not connect 

to any node, we search the tree upwards, just like what 

we did with method hasNext, until we find the ancestor 

node that has a larger value, or until there is no more link 

to follow. This part of the code (line 10-13 of Figure 6-17) 

is the same as in method hasNext.  

 

After finding the next node, method next then does some 

additional work from method hasNext by throwing an 

exception if the next node does not exist. Otherwise, it 

updates the current node and return the value stored 

inside the new current node. This is implemented in line 

16-20 of Figure 6-17.  

 

Method previous of our iterator (code shown in Figure 

6-19) works the same way as next(). The code mainly 

switches left and right. But there is one important point 

to note. That is, the data returned by the method must be 

the data before currentNode is updated.  

 

Lastly, we add method set to our tree iterator to allow the 

iterator to set the value stored in the current node (code 

shown in Figure 6-20).    
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Now, let us look at the implementation of binary search 

tree. We will implement it as class BST, with the 

following methods: 

• findMin(): return iterator that marks the node that

stores the minimum value.

1:   public void set(int value) { 

2: currentNode.data = value; 

3:     } 
4: } //end of class TreeIterator. 

Figure 6-20: Code for method set of class TreeIterator.

1:   public int previous() throws Exception { 
2: BSTNode temp = currentNode; 

3: int d = currentNode.data; 

4: if (temp.left != null) { 

5: temp = temp.left; 

6: while (temp.right != null) { 

7: temp = temp.right; 

8: } 

9: } else { 

10: BSTNode p = temp.parent; 

11: while (p != null && p.left == temp) { 

12: temp = p; 

13: p = temp.parent; 

14: } 

15: temp = p; 

16: } 

17:   if(temp == null) //hasPrevious() == false 

18: throw new NoSuchElementException(); 

19:   currentNode = temp; 

20:   return d; 

21: } 

22: //continued in Figure 6-20. 

Figure 6-19: Code for method previous of class TreeIterator. 
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• find(Type v): return an iterator that marks the node 

that stores the given v. If v is not in the tree, this 

method returns null. 

• insert(Type v): add v as a new data inside the tree. 

This method returns an iterator that focuses on the 

tree node that contains the new data  v. 

• remove(Type v): remove a node that stores v from 

the tree.    

 

The class structure of BST (without methods) is shown in 

Figure 6-21. Our binary search tree contains a root, which 

is a BSTNode, and a size, which indicates the number of 

data stored inside the tree.  

 

 

 

 

 

 

 

 

 

 

Method findMin is shown in Figure 6-22. It starts its 

search at the tree root (creating a temp node there), then 

it tries to move temp down the tree (using its while loop) 

to the left as far as possible. The last possible value of 

temp then identifies the location of the smallest value in 

the tree. 

1: public class BST { 
2:  BSTNode root; 

3:  int size; 

4:   

5:   public BST(BSTNode root, int size) { 
6:   this.root = root; 

7:   this.size = size; 

8:  } 

9:  
10: //continued in Figure 6-22. 

Figure 6-21: Structure of a binary search tree (implementation). 
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The code for method find is shown in Figure 6-23. It 

creates a temp node at the root and then tries to move 

temp down the tree (using its while loop) until temp 

reaches where the value v is stored, or until temp is null 

(which means v is not inside the tree). temp is then used 

to return the position of v inside the tree, or return null if 

v is not inside the tree. 

1:   public Iterator findMin() { 
2:   BSTNode temp = root; 

3:   if(temp == null) 

4:   return null; 

5:   while (temp.left != null) { 

6:   temp = temp.left; 

7:   } 

8:   Iterator itr = new TreeIterator(temp); 

9:   return itr; 

10: } 

11: 
12: //continued in Figure 6-23. 

Figure 6-22: Implementation of method findMin for a binary search tree. 
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Now, let us look at method insert. To insert a new data, 

v, into a binary search tree, we do the followings: 

• First, we try to find v in the tree. We can utilize the

same code as method find, moving temp node down

the tree (code is shown on line 8-16 of Figure 6-26).

1: public Iterator find(int v) { 

2:   BSTNode temp = root; 

3:   while (temp != null && temp.data != v) { 

4:   if (v < temp.data) { 

5:   temp = temp.left; 

6:   } else { 

7:   temp = temp.right; 

8:   } 

9:  } 

10: if (temp == null) // data not found 

11:  return null; 

12: return new TreeIterator(temp); 

13: } 

14: //continued in Figure 6-26. 

Figure 6-23: Code for method find of binary search tree. 
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But we will also have to keep track of the parent of 

temp in order to know where to add our new node 

that contains v later on.    

o If v is found, we do nothing (in our 

implementation, we do not want to add 

duplicated data into the tree). 

o If v is not found, we create a new node that 

contains v (code is shown on line 19 of Figure 

6-26).  The new node’s parent is set to be the 

parent of temp, then: 

▪ If parent of temp is null: this is only 

possible when the tree has no node. So 

we set the root of the tree to be the new 

node (line 20-21 of Figure 6-26).  

▪ If v is less than the value stored inside 

the parent of temp, add the newly 

created node to the left of that parent 

node (line 22-23 of Figure 6-26).  

▪ If v is greater than the value stored 

inside the parent of temp, add the newly 

created node to the right of that parent 

node (line 24-25 of Figure 6-26).  

 

An example showing what happens when adding v to an 

empty tree is shown in Figure 6-24. Another example, an 

addition of value 6 to a non-empty tree, is shown in 

Figure 6-25. The code for method insert is illustrated in 

Figure 6-26.   
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root  = = null,  

parent = = null 

Does not find v. 

So, create a new 

node.  
v 

n  

root  

parent is null, 

which means 

our original tree 

is empty.  

So, we set root = 

n.  Thus, our 

new tree is 

finished. 

v 

root  

Figure 6-24: Adding new data, v, to an empty binary search tree. 
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the stored value. 

6 

Figure 6-25:Adding 6 to a binary search tree that does not originally store 6. 
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Our next method is method remove. So how do we 

remove a value, v, stored in a binary search tree? Let us 

follow these steps: 

• First, we try to locate where v is stored. We can use

the same procedure as method find.

1: public Iterator insert(int v) { 

2:   BSTNode parent = null; 

3:   BSTNode temp = root; 

4: 
5: // This while loop is almost the same as in 

6: // method find, but it has an extra pointer 

7: // called parent. 

8:   while (temp != null && temp.data != v) { 

9:   if (v < temp.data) { 

10:   parent = temp; 

11:   temp = temp.left; 

12: } else { 

13:   parent = temp; 

14:   temp = temp.right; 

15:   } 

16:  } 

17: 
18:   if (temp == null) { 

19:   BSTNode n = new BSTNode(v, null, null, parent); 

20:   if(parent == null){ 

21:   root = n; 

22:   } else if (v < parent.data) { 

23:   parent.left = n; 

24:   } else { 

25:   parent.right = n; 

26:   } 

27:   size++; 

28:   return new TreeIterator(n); 

29:   } else { 

30:   // we do nothing since 

31:   // we don't want to add duplicated data. 

32:   return null; 

33:  } 

34: } 

35: //continued in Figure 6-33. 

Figure 6-26: Code for inserting value v into a binary search tree. 
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o If v is not stored in the tree, we end our 

execution since there is nothing to be 

removed from the tree. 

o If v is stored in node n: 

▪ If n has no child node: 

• If n is the root of the tree, thus n 

is the only node of the tree, we 

can just remove it from the tree 

by setting root to null (see Figure 

6-27 for an illustration and see 

the code on line 13 of Figure 

6-33). 

• If there is a node above n, just cut 

the links to/from n from its parent 

(see Figure 6-28 for an illustration 

and see the code on line 14-19 of 

Figure 6-33). The tree will no 

longer has access to node n. The 

code needs to test whether n is to 

the right or left of its parent in 

order to cut the correct links. 

▪ If n has a right child, but no left child: 

• If n is the tree’s root, make the 

root point to n’s right child. This 

will effectively bypass n. To 

completely disconnect n from the 

tree, n.right then needs to be set 

to null and the new root’s parent 

will have to be disconnected 
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from n (see Figure 6-29 for an 

illustration and see the code on 

line 24-28 of Figure 6-33). 

• If n is not the tree’s root, and n 

stores a larger value than its 

parent, link n.parent.right to 

n.right instead of n.parent to n (see 

Figure 6-30 for an illustration and 

see the code on line 29-34 of 

Figure 6-33).   

• If n is not the tree’s root, and n 

stores a smaller value than its 

parent, link n.parent.left to n.right 

instead of n.parent to n (see 

Figure 6-31 for an illustration and 

see the code on line 35-40 of 

Figure 6-33). 

▪ If n has a left child, but no right child, 

we perfrom the same tasks as when n 

has only its right child, but the tasks 

have to be done like in a mirror. The 

code is shown on line 44-65 of Figure 

6-34. 

▪ If n has both left and right child, we 

need to find the node that stores the 

smallest value in n’s right subtree (let 

us name that node x), then replace v in 

n with the value in x. After that, remove 

x. Removing x uses simple code 
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because we know x does not have its 

left child (see Figure 6-32 for an 

illustration and see code on line 66-81 

of Figure 6-34).   
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Figure 6-27: Removing v when v is in a root 

with no children.  
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Figure 6-28: Removing v when v is in a node 

(not a root) with no children. 
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Figure 6-29: Removing v when v is in a root with right 

child but no left child. 
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Figure 6-30: Removing v when the node, n, that stores v 

has only its right child, it is not the tree’s root, and n 

stores a larger value than its parent. 
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Figure 6-31: Removing v when the node, n, that stores v 

has only its right child, it is not the tree’s root, and n 

stores a smaller value than its parent. 
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 Figure 6-32: Removing v when the node, n, that stores v 

has both left and right child. 
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1:  public void remove(int v) { 

2:   BSTNode parent = null; 

3:   BSTNode n = root; 

4:   TreeIterator i = (TreeIterator) find(v); 

5:   if (i == null) //not found, we can not remove it 

6:    return; 

7:   n = i.currentNode; 

8:   parent = n.parent; 

9:     size--; 
10:   if (n.left == null && n.right == null) { 

11:     //both subtrees are empty 

12:     if (parent == null) { 

13:      root = null; 

14:     } else if (parent.left == n) { 

15:      parent.left = null; 

16:      n.parent = null; 

17:     } else { 

18:      parent.right = null; 

19:      n.parent = null; 

20:     } 

21:   } 

22:   else if (n.left == null && n.right !=null){ 

23:      // only right child 

24:     if (parent == null) { 

25:         //the node to remove is a root 

26:      root = n.right; 

27:      root.parent = null; 

28:      n.right = null; 

29:     } else if (parent.right == n) { 

30:      BSTNode q = n.right; 

31:      q.parent = parent; 

32:      parent.right = q; 

33:      n.parent = null; 

34:      n.right = null; 

35:     } else { // parent.left == n 

36:      BSTNode q = n.right; 

37:      q.parent = parent; 

38:      parent.left = q; 

39:      n.parent = null; 

40:      n.right = null; 

41:     } 

42:   } 

43: // This method continues in Figure 6-34. 

Figure 6-33: Code for method remove of a binary search tree (part 1). 
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44:     else if (n.right == null && n.left != null) { 

45:      if (parent == null) { 

46:       root = n.left; 

47:       root.parent = null; 

48:       n.left = null;  

49:      } else if (parent.right == n) { 

50:         // a mirror image of line 35-40  

51:         // from Figure 6-33                              

52:       BSTNode q = n.left; 

53:       q.parent = parent; 

54:       parent.right = q; 

55:       n.parent = null; 

56:       n.left = null; 

57:      } else {  

58:         // a mirror image of line 29-34  

59:         // from Figure 6-33 

60:       BSTNode q = n.left; 

61:       q.parent = parent; 

62:       parent.left = q; 

63:       n.parent = null; 

64:       n.left = null; 

65:      } 

66:     } else {// n has two subtrees 

67:      BSTNode q = n.right; 

68:      TreeIterator itr =  findMin(q); 

69:      BSTNode minInSubtree = itr.currentNode; 

70:      n.data = minInSubtree.data; 

71:      BSTNode parentOfMin = minInSubtree.parent; 

72:      if(parentOfMin.left == minInSubtree){ 

73:       parentOfMin.left = minInSubtree.right; 

74:      }else{//min is the only node in the subtree 

75:       parentOfMin.right = minInSubtree.right; 

76:      } 

77:      if(minInSubtree.right != null){ 

78:       minInSubtree.right.parent=parentOfMin; 

79:       minInSubTree.right = null; 

80:      } 

81:      minInSubTree.parent = null; 

82:     } 

83:   } //end of method. 

84: } //end of class BST. 

Figure 6-34: Code for method remove of a binary search tree (part 2). 
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Recursive Implementation of Binary Search 
Tree 
A recursive implementation of a binary search tree can 

be useful and is easier to understand for some students. 

In this section, the recursive implementation is shown.  

For a node, we need not change anything, so we simply 

use class BSTNode (Figure 6-8).    

For an iterator, we can also use class TreeIterator (Figure 

6-11 to Figure 6-20).

What needs to be changed is class BST. The instance 

variables, constructor, and some simple methods remain 

unchanged, but other methods need to be changed to 

incorporate recursive tree traversals.  

Let us name our recursive binary search tree class 

BSTRecursive. Let us break down our implementation 

into parts. First, the code for our instance variables and 

simple methods is shown in Figure 6-35.  

Now, let us look at method findMin of this recursive 

implementaion. The code is shown in Figure 6-36. For the 

method to be called recursively, we have to write a new 

method that takes a parameter. The parameter is the 

node that the method uses to start searching its tree. 

Method findMin will be recursively called, each time its 

parameter changes to go left down the tree. It stops when 
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there is no left branch to use as the method parameter. 

When this happens, our current method parameter is the 

node that stores the smallest data. This is just like using 

a loop, but we just change the method parameter as the 

method gets called instead.  

1:   public class BSTRecursive { 
2: BSTNode root; 

3: int size; 

4: 
5: public BSTRecursive(BSTNode root, int size) { 

6: this.root = root; 

7: this.size = size; 

8: } 

9: 
10:   public boolean isEmpty() { 

11: return size == 0; 

12:   } 

13: 
14:   public void makeEmpty() { 

15: root = null; 

16: size = 0; 

17: } 

18:   // continued in Figure 6-36. 

1:   public Iterator findMin() { 

2: return findMin(root); 

3:   } 
4: 

5:   public Iterator findMin(BSTNode n) { 

6:  if (n == null) 

7:   return null; 

8:  if (n.left == null) { 

9:  Iterator itr = new TreeIterator(n); 

10:   return itr; 

11:   } 

12:   return findMin(n.left); 

13: } 

14:  // continued in Figure 6-37. 

Figure 6-35: Instance variables and simple methods of a recursive 

binary search tree. 

Figure 6-36: Method findMin of class BSTRecursive. 
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Method find is also implemented with the same idea as 

its non-recursive version. Like method findMin, we need 

to write another method that can take an extra 

parameter, so that we can supply the starting point of our 

tree search for each call. Again, we change parameter 

value, just like changing the value in each loop, as each 

instance of the method gets called. The code is shown in 

Figure 6-37.  

For method insert, it also uses the same idea as its 

iterative counterpart. That is, find the node that will be 

the parent of the node that stores the new data, then 

connect that node to the node with the new data.  

Our code locates this parent node by updating the 4th 

parameter in each call to insert, until no more call is 

possible. The code is shown in Figure 6-38. The method 

1:   public Iterator find(int v) { 
2: return find(v, root); 

3:   } 
4:  
5:   public Iterator find(int v, BSTNode n) { 
6: if (n == null) 

7: return null; 

8: if (v == n.data) 

9: return new TreeIterator(n); 

10:   if (v < n.data) 

11: return find(v, n.left); 

12:   else 

13: return find(v, n.right); 

14: } 

15: // continued in Figure 6-38. 

Figure 6-37: Method find of class BSTRecursive. 
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returns BSTNode instead of an iterator, however. We 

need to return BSTNode because we need to use BSTNode 

to update the tree branches when insert is repeatedly 

called. TreeIterator cannot help us with such update. The 

mentioned branch update is shown on line 13 and 15 of 

Figure 6-38. Instead of just calling insert, we update n.left 

and n.right to be the result of insert.    

Let us focus on line 15 of Figure 6-38. On this line of code, 

we cannot just call insert without setting n.right. Let us 

see what happens if line 15 does not set n.right. Let us 

assume we have a tree with one node, containing value 

1. If we call insert(5) on this tree, what happens is shown

in Figure 6-39 .

1:   public BSTNode insert(int v) { 

2: root = insert(v, root, null); 

3:  return root; 

4:   } 
5: 

6:   // return the node n after v was added into the 

7:   // tree. 

8:   public BSTNode insert(int v, BSTNode n, BSTNode 

9:   parent) { 

10:   if (n == null) { 

11:   n = new BSTNode(v, null, null, parent); 

12:    size++; 

13:   } else if (v < n.data) { 

14:  n.left = insert(v, n.left, n);

15:   } else if (v > n.data) { 

16:  n.right = insert(v, n.right, n);

17:   } 

18:   return n; 

19:   } 

20:   // continued in Figure 6-43. 

Figure 6-38: Method insert of class BSTRecursive. 
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1

j

t.root 

t.insert(5)

calls t.insert(5,root,null)

Start our recursive call instance for 

t.insert(5,root,null).

5 is our v, root is our n, null is our parent

calls line 15 (without setting n.right) 

v, n, and parent are created 

locally for each call. 

1

j

t.root 
n 

insert(5,n.right,n) 

Start another recursive call instance. 

Let all arguments for this instance has 2 in its name. So we 

have v2 == 5, n2 == n.right, parent2 == n   

1

j

t.root 
n 

n2 

parent2 

It executes n2= new BSTNode(v2, null, null, parent2), 

which does the following: 

1

j

t.root 
n 

n2 

parent2 

1

j

root cannot reach n2 (although 

n2 can reach root). This is 

because the assignment of 

n.right is missing from this

method’s caller.

This is the caller! 

Figure 6-39: The tree is not modified properly if n.right is not used to 

store the result of insert. 
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A same type of mistake can cause problem in our main 

method, even with the assignment of n.left and n.right in 

Figure 6-38. For example, see the code for main method 

in Figure 6-40. The code first creates an empty tree, then 

it tries to add a new node with 1 inside.  

How this code operate is shown in Figure 6-41. 

1:   public static void main(String[] args){ 

2: BSTRecursive t = new BSTRecursive(null,0); 

3: t.insert(1);

4:   } 

Figure 6-40: Incorrect use of method insert. 

Start our recursive call instance for t.insert(1,root,null). 

1 is our v, root is our n (which is null), null is our parent   

t.insert(1)

calls t.insert(1,root,null)

It executes n= new BSTNode(v, null, null, parent), 

which does the following: 

1

j

n 
n is returned to its caller, 

and eventually returned in 

the main method, without 

actually connecting to the 

root.   

t.root

t.root n parent 

t.root parent 

Figure 6-41: How the code in Figure 6-40 works. 
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The reason the code fails to work is that the original tree 

is not set to connect to the newly created node. Therefore, 

we need to set the connection from the original tree. A 

correct version of code in Figure 6-40 is shown in Figure 

6-42. To sum up, when a part of a tree is changed due to

recursive call(s), you must set the connection from the

unchanged part of the tree to that new part.

Now. Let us move on to method remove. The idea is 

exactly the same as our iterative version, and the code 

reflects the idea.  

The code is shown in Figure 6-43. Similar to insert, it 

needs to set n.left and n.right (see line 12 and 14 of the 

code) in order to connect our tree to its changed part.  

1:   public static void main(String[] args){ 

2: BSTRecursive t = new BSTRecursive(null,0); 

3: t.root = t.insert(1);

4:   } 

Figure 6-42: Correction of code from Figure 6-40. 
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1:   public BSTNode remove(int v) { 
2:  return remove(v, root, null); 

3:   } 

4: 

5:   // return the node n after v was removed from the 

6:   //tree 

7:   public BSTNode remove(int v, BSTNode n, BSTNode 

8:   parent) { 

9:     if (n == null) 

10: ; // do nothing, there is nothing to be removed 

11:     else if (v < n.data) { 

12: n.left = remove(v, n.left, n);

13:     } else if (v > n.data) { 

14: n.right = remove(v, n.right, n);

15:     } else { 

16: if (n.left == null && n.right == null) { 

17: n.parent = null; //disconnect from above

18: n = null; //disconnect from below

19: size--;

20: } else if (n.left != null && n.right == null) { 

21: BSTNode n2 = n.left; 

22: n2.parent = parent; 

23: n.parent = null; //disconnect from above

24: n.left = null; //disconnect from below

25: n = n2; //change to the node below

26: //to prepare for connection from parent 

27: size—-; 

28:  } else if (n.right != null && n.left == null) { 

29: BSTNode n2 = n.right; 

30: n2.parent = parent; 

31: n.parent = null; //disconnect from above

32: n.right = null; //disconnect from below

33: n = n2; //change to the node below

34: //to prepare for connection from parent 

35: size--; 

36: } else { 

37:  TreeIterator i; 

38:  i = (TreeIterator) findMin(n.right); 

39: int minInRightSubtree = i.currentNode.data; 

40: n.data = minInRightSubtree;

41: n.right= remove(minInRightSubtree, n.right, n);

42: } 

43:     } 

44:     return n; 

45:  } // end of method. 

46: } // end of class BSTRecursive. 

Figure 6-43: Code for method remove of class BSTRecursive. 
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Recursive Tree Traversal 
By visiting each the nodes recursively, we can go 

through every data in a tree (the tree does not have to be 

a binary search tree) in a few number of ways: 

• Preorder traversal: we visit the root, then left

subtree, then right subtree. Within a subtree, we

visit its root first, then its left subtree, then its right

subtree, and so on. An example tree (this one is a

binary search tree) is shown in Figure 6-44. For

simplicity, we only draw downward pointers. Let

us name each node after a data stored inside it.

A preorder visit of the data will give us the 

following sequence of node visiting: 

o 6, left subtree of 6, right subtree of 6

Expanding the sequence within the subtree 

traversal recursively, we get: 

o 6, (1, left subtree of 1, right subtree of 1), (8,

left subtree of 8, right subtree of 8)

6

1 8 

7 10 3

Figure 6-44: Tree for use with all 

traversal examples.  
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o 6, (1, null, (3, left subtree of 3, right subtree of

3))(8, (7, left subtree of 7, right subtree of 7),

(10, left subtree of 10, right subtree of 10))

o 6, (1, null, (3, null, null))(8, (7, null, null), (10,

null, null))

o 6, 1, 3, 8, 7, 10

• Postorder traversal: we visit the left subtree, then

right subtree, then root. Within a subtree, we visit

its left subtree first, then its right subtree, then its

root, and so on. Using the tree in Figure 6-44, our

traversal sequence is as follows:

o Left subtree of 6, right subtree of 6, 6

o (left subtree of 1, right subtree of 1, 1), (left

subtree of 8, right subtree of 8, 8), 6

o (null, (left subtree of 3, right subtree of 3, 3),

1), ((left subtree of 7, right subtree of 7, 7),

(left subtree of 10, right subtree of 10, 10), 8),

6

o (null, (null, null, 3), 1), ((null, null, 7), (null,

null, 10), 8), 6

o 3, 1, 7, 10, 8, 6

• Inorder traversal: we visit the left subtree, then the

root, then the right subtree. Within each subtree,

we visit its left subtree, then its root, then its right

subtree, and so on. Using the tree in Figure 6-44,

our traversal sequence is as follows:

o Left subtree of 6, 6, right subtree of 6
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o (left subtree of 1, 1, right subtree of 1), 6, (left

subtree of 8, 8, right subtree of 8)

o (null, 1, (left subtree of 3, 3, right subtree of

3)), 6, ((left subtree of 7, 7, right subtree of 7)

, 8, (left subtree of 10, 10, right subtree of 10))

o (null, 1, (null, 3, null)), 6, ((null, 7, null) , 8,

(null, 10, null))

o 1, 3, 6, 7, 8, 10

With a binary search tree, inorder traversal visits 

data from small to large.  

The implementations of these traversals are 

straightforward.  Figure 6-45 shows code (that can be 

part of class BSTRecursive) for printing all data from a 

tree using preorder traversal and inorder traversal.   

1:   public void preOrderPrint() { 
2: preOrderPrint(root); 

3:   } 
4: 

5:   public void inOrderPrint() { 

6: inOrderPrint(root); 

7:   } 
8: 

9:   public void preOrderPrint(BSTNode n){ 

10: if (n == null) 

11: return; 

12: System.out.println(n.data);

13: preOrderPrint(n.left); 

14: preOrderPrint(n.right); 

15:   } 
16:  

17:   public void inOrderPrint(BSTNode n){ 

18: if (n == null) 

19: return; 

20: inOrderPrint(n.left);

21: System.out.println(n.data);

22: inOrderPrint(n.right); 

23:   } 

Figure 6-45: code for preorder and inorder printing of data in a tree. 
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Notice that although the code is simple, and we do not 

require the use of any iterator, an iterator is still useful if 

we want to mark the location for use later in other parts 

of the program.  

Breadth-First Tree Traversal 

All tree traversals that we have looked at so far do not 

provide any way for us to go through our data level-by-

level. For example, with the tree in Figure 6-46, we may 

want to look through 6, 1, 8, 3, 7, 10 in sequence.  

In order to handle this special kind of tree traversal, we 

have to utilize another data structure, a queue. In fact, we 

will be using 2 queues to help us. The two queues are 

called: 

• thisLevel: store nodes that are in the current level

of our tree.

• nextLevel: store nodes that are in the next level of

our tree.

6 

1 8 

7 10 3 

Figure 6-46: Search sequence by level of a tree. 
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Using the tree in Figure 6-46 as our example: 

• When our traversal starts, both queues are empty.

• The root of the tree is then read. The node is then

put into thisLevel (Figure 6-47).

• Then, we remove a node from thisLevel. This is

where we can read the node’s data. We then put

the node’s left and right node into nextLevel. Repeat

until thisLevel is empty. From our example, we only

have one node to remove from thisLevel at this

state. Therefore, our program reads data 6 from the

node and the state of the queues after thisLevel

becomes empty is shown in Figure 6-48.

• At this state, remove all nodes from nextLevel and

put them in thisLevel (shown in Figure 6-49).

thisLeve

l

nextLevel 

6 

Figure 6-47: Putting root into thisLevel queue. 

thisLeve

l

nextLevel 

1 8 

Figure 6-48: Removing a node from thisLevel 

queue and put its left and right nodes into 

nextLevel queue. 
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• Then we start our process again. We remove each

node from thisLevel (and visit its data) and put each

node’s left and right node into nextLevel (not putting

null though). From our example in Figure 6-49, the

data that are visited are 1 and 8. The state of the

queues after all the nodes are removed from

thisLevel is shown in Figure 6-50.

• At this state, remove all nodes from nextLevel and

put them in thisLevel. This is shown in Figure 6-51.

thisLeve

l

nextLevel 

1 8 

Figure 6-49: Removing all nodes from nextLevel 

queue and putting them in thisLevel queue. 

thisLeve

l

nextLevel 

3 7 10

Figure 6-50: The queues after nodes with 1 and 

8 are removed. 

thisLeve

l

nextLevel 

3 7 10

Figure 6-51: Removing all nodes from nextLevel 

queue and putting them in thisLevel queue for 

the 2nd time. 
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• We then start our process again by removing each

node from thisLevel (and reading their

information), and putting each node’s left and right

nodes into nextLevel. From our example, the data

that are read are 3, 7, 10 respectively. There are no

nodes to be put in nextLevel. Both queues are now

empty and we end our traversal.

From the example, the sequence of read data is 6, 1, 8, 3, 

7, 10. Which is from left to right, one level to the next.   

We will leave the implementation of this breadth-first 

traversal as an exercise for readers.  

Exercises 

1. For class BST, write code for a method that performs

the following task:

a. It receives a value v, as its method parameter.

b. The method returns an integer in the tree that is

just lower than v, if such value exists.

2. For class BST, write code for a method that performs

the following task:

a. It receives a value v, as its method parameter.

b. The method returns an integer in the tree that is

just larger than v, if such value exists.

3. For class BST, write a non-recursive code for a method

that checks whether our tree is a binary search tree.
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4. For class BSTRecursive, write a recursive code for a 

method that checks whether our tree is a binary search 

tree. 

5. For class BSTNode write code for method public 

boolean isLeaf(). This method tests whether the node 

is a leaf node.    

6. For class BSTRecursive, write code for method private 

int height(BSTNode n). This method calculates the 

height of a subtree in a recursive fashion. Note that: 

 

• A tree is one level higher than its highest subtree. 

• The height of an empty subtree is -1. 

 

7. For class BSTRecursive, write code for method  public 

int maxNumNodes(). This method calculates the 

maximum number of nodes that the tree can contain 

based on its current height. 

8. For class BST, write the code for method: 

a. public int numNodes(): this non-recursive 

method calculates the number of nodes in our 

tree. 

b. public int numLeaves(): this non-recursive 

method  count the number of leaves in the tree. 

9. For class BSTRecursive, write the code for method: 

a. public int numNodes(): this recursive method 

calculates the number of nodes in our tree.  

b. public int numLeaves(): this recursive method  

count the number of leaves in the tree. 
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BSTNode findParent (BSTNode n, BSTNode d, BSTNode 

parent): this method finds the parent of a given node (in 

a subtree) without following parent link up from that 

node. It returns null if no parent can be found. 

 

• n is the node that roots the subtree we want to 

work on.  

• d is the node that we want to find its parent node. 

• parent is our temporary node that will move down 

the tree. Its final value will be our return value. 

 

10. An expression tree is a tree that represents an 

arithmetic expression. It is not a binary search tree. 

For example, to represent 2+3*(4-1), we can use the 

following tree:   

 

 

 

 

 

 

 

 

 

   

Each node now stores a String instead of an integer. 

Write a method double evaluate(BSTNode n). This 

method receives a root of our expression tree and 

calculates the value of the expression. 

+ 

2 * 

3 - 

4 1 
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11. Explain, with drawings, how you would generate the 

most balanced binary search tree possible from any 

given binary search tree. The most balanced tree 

possible has all data filled from left to right, top to 

bottom, except at the last level. It must still be a 

binary search tree. You are allowed to create any new 

data structures and objects.  

 

For example: 

 

 

 

 

 

 

 

 

 

Write code for method  

public void constructMostBalanced() of class 

BSTRecursive according to your explanation. The method 

must reconstruct the tree from an existing tree so that the 

most balanced arrangement possible is obtained. 

 

12. Write code for method boolean sameData(BST t1, 

BST t2) of a generic class that can access BST and 

related classes. This method returns true if t1 and t2 

have the same data. It returns false otherwise. After 

7 

5 9 

1 

3 

11 

becomes 

5 

1 9 

11 3 7 
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the method finishes its execution, t1 and t2 must not 

change. 

13. Write code for method boolean same(BST t1, BST t2) 

of a generic class that can access BST and its related 

classes. This method returns true if t1 and t2 have the 

same shape and the same content. It returns false 

otherwise. After the method finishes its execution, t1 

and t2 must not change. 

14. Write code for method  

BSTNode createMirror(BSTNode n) of class 

BSTRecursive. This method creates a completely new 

tree that looks to be a mirror image of a tree that has 

n as its root. It returns the root of the new tree. The 

new tree is a binary search tree, but data is arranged 

from large to small. The original tree must not be 

changed.   

 

For example:  

 

 

 

 

 

 

 

 

 

 

 

n 

7

0 

2

0 
8

5 

1

0 
5

5 

3

3 

6

9 

4

4 

Create 

mirror 

n 

7

0 

2

0 
8

5 

1

0 
5

5 

3

3 

6

9 

4

4 
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15.  For a generic class that has access to class BST and all 

other related classes, write code for method public int 

average(BST t). This method calculates the average 

value from all nodes in the tree. 

16.  Let us look at the following binary tree: 

 

 

 

 

 

 

 

 

What is the sequence of data when we traverse this tree 

with: 

• Preorder traversal 

• Inorder traversal 

• Postorder traversal 

 

17. Explain how we can convert a postfix expression to an 

expression tree. Write your pseudocode for this 

conversion. 

18. For class BST and BSTRecursive, write code for 

method findMax(). This method returns an iterator 

that marks the node that stores the maximum value. 

The code in class BST must be non-recursive, while 

the code in class BSTRecursive must be recursive. 

19. For class BST, write code for method public void 

combine(BST t). This method combines this with a 

a 

c t 

o d e n 

f k s m g l 
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binary search tree, t. The result is this, with all data 

from t also inside it. this must still be a binary search 

tree. 
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Chapter 7 : Hash Table 

A hash table is basically an array that allows for fast data 

searching. If done right, we can find our data in constant 

time. Due to the way hash table data are arranged, there 

is no sorting of data. In fact, the only operations we will 

use on a hash table are: 

• Find a data.

• Add a new data.

• Remove a data.

To find a data X (after that, we can try to add or remove 

X from our hash table), we do the followings: 

• Use part of X as a “key”.

• Use the “key” as an input for our hash function. A

hash function takes a key as its input, and return

the array index, i, of a position that X should be in.

• Look at the array at position i.

o If X is stored in that position, we have found

it and we can decide to remove it from the

array.

o If X is not stored in that position, it means X

does not exist in the array. We can then

decide whether to put X in that array

position.

An example of a hash table and its usage is shown in 

Figure 7-1  . Our hash table is an array that stores cars. A 
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car has many information, but to identify each car, we 

may only need some information. In our example, let us 

use brand, model, and color to identify a car in our array. 

We will use brand, model, and color as a key for our hash 

function when we want to find/add/remove a car from 

our array. Thus from Figure 7-1: 

• hash(“Toyota”, “yaris”, “black”) returns 1.

• hash(“Nissan”, “sunny”, “black”) returns 3.

• hash(“Toyota”, “camry”, “black”) returns 4.

hash(“Toyota”, “camry”, “black”) returns 4. 

Car:- 

Brand: Toyata 

Model: yaris 

Color: black 

Etc… 

Car:- 

Brand: Nissan 

Model: sunny 

Color: black 

Etc… 

Car:- 

Brand: Toyata 

Model: camry 

Color: black 

Etc… 

To find a car, we call hash(brand,model, color). An integer 

returned from hash is the position of the car.  

Figure 7-1: A hash table example. 
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Everything depends on our hash function. A hash 

function should: 

• be fast to calculate. The runtime of a hash function

directly dictates the speed that our data can be

found.

• be appropriate for a given type of data (if

calculated from data). Each type of data will

certainly give us different keys.

• returns different values when supplied with

different keys.

Designing A Hash Function 
When designing a hash function, we try to make our 

hash function distribute its data all over the array. We 

generally use the following steps: 

1. Transform our key into an integer.

2. Make our integer more widely distributed with

some rules of transformation.

3. Transform the number we got in step 2 into array

index.

Transforming our key  

To transform our key into an integer, we can: 

• convert it to integer using available methods.

• convert true to 1, false to 0.

• convert a string or strings to its ASCII values.

• combine integer conversions of various pieces of

data into one integer.
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Let us see an example. For this example, a key “john” can 

be converted to “j”+“o”+“h”+“n” =  106 + 97 + 118 +

 110 =  431 according to each letter’s ASCII value.  

But this may cause a problem or two. 

• Since an ASCII value is at most 127, therefore the

sum of 4 characters never exceeds 127 ∗ 4 =  508.

So, even though we may have an array of size

10000, our data will only be stored in the first 508

array slots.

• “john” and “hojn” will be represented by the same

integer value. The array slot calculated from “john”

and “hojn” will therefore be the same.

A better approach is to regard each character as a digit in 

a base-26 number (there are 26 characters in English 

alphabets so we use base-26). Using this new approach, 

“john” gets converted to 106 ∗ (263) + 97 ∗ (262) +

118 ∗ (261) +  110 ∗ (260) = 1863056 + 65572 + 3068 +

110 = 1931806. This is obviously more usable with a 

larger array. Also, “hojn” is converted to 118 ∗ (263) +

97 ∗ (262) + 106 ∗ (261) +  110 ∗ (260) = 2073968 +

65572 + 2756 + 110 = 2142406. This gives us a 

different value. The code for this example is shown in 

Figure 7-2.    

1:   public static int f(String key) { 
2: int val =0; 

3: for(int i=0; i<key.length();i++) 

4: val = 26*val+key.charAt(i); 

5: return val;  

6:   } 

Figure 7-2: A function that transforms a string into integer. 
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The code may seem a bit strange, but it is really 

calculating (𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 26 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(1)) ∗
26 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(2) . ..   

For simplicity, let us assume that our string has only 3 

characters. So, the above expression can be rearranged to 
𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 262 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(1) ∗ 261 +

𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 260 , which is what we want to 

calculate. The code works for any number of characters. 

The reason we avoid method power in our code is that the 

method takes long time to run compared to our 

approach.  

The execution of our example code may still take some 

time if we have a long key. We can fix this by selecting 

only a few characters.  

Making our integer more widely distributed 

Our key may already be an integer. But the integer may 

be too organized. This means two data have their integer 

representations too close to one another. In order to have 

the widest possible range of integers, so that we can use 

them as indices for our well-distributed array, we need 

to transform our integer.  

There are several ways that we can generate more widely 

distributed integers from existing ones. In this book, 

three techniques are given. 
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The first technique is removing a too repetitive digit. For 

example, students in the same year have their ids as their 

unique identifiers. Student 1 and student 2 have the 

following ids: 5831380721 and 5830401221. These two 

numbers are too similar because they both have 583 at 

their front and 21 at their back. We can make better 

distributed numbers by removing 583 and 21. Thus both 

numbers are now 13807 and 04012.  

The second technique is folding your integer. For 

example, if your integer is 5831380721, you split this 

number into 583, 1380 and 721. Then you just add them 

up, which results in 583 + 1380 + 721 = 2684. Or if your 

integer is 5830401221, you get 583 + 0401 + 221 =

 1205. Any prior similarity between the two integers is 

gone. Apart from adding, you can also do something else 

that combines them, such as doing XOR operation and 

other bitwise operations. 

The third technique is to divide our integer with a 

number and record its remainder as our transformed 

integer. Choosing the divisor is very important here.  

• Do not choose a divisor which is a power of 10.

Because the remainder will just be a few last digits

(and will likely be the same for original integers

with certain patterns). For example, if our original

integers are 5831380721 and 5830401221, and we

choose to divide each number by 100, their
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remainders will be the same number, 21. This is not 

what we want.  

• Do not choose a divisor which has a small common

factor with its numerator. This is because the

common factor will be a factor of the remainder as

well. Hence our result will not be well distributed.

As an example, let our original data be 100 and 200.

If we use 55 as our divisor (value 5 is our common

factor here), our result will be 100%55 = 45 and

200%55 = 35. Both the number 45 and 35 have 5

as their factor. They cannot be effectively used as

positions in our array because other positions not

divisible by 5 will simply not be used.

Transforming our value into array index 

Once we have our integers from each data, these integers 

are likely to spread out. To use them as positions for our 

array, we simply need to make sure that their values do 

not fall out of possible array index range. The best way 

to handle this is to divide each integer with the array size 

and use the remainder as its corresponding array index 

value. But we have to be careful when using remainders, 

since the problem caused by the small common factor, as 

mentioned in the previous section, can arise. To prevent 

the small common factor problem, a prime number is 

often used as the array size.      

If our hash function is well designed, the chance that 2 

data will get the same position in our array is greatly 
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reduced. However, it is very hard to make a perfect hash 

function. Some data will end up being assigned to the 

same array position (this is called “collision”). When this 

happens, we have to organize these data in a systematic 

way to be able to store all of them in the array and be able 

to quickly find them later. There are two implementation 

ideas of a hash table that can deal with collision. They are 

called: 

• Separate chaining

• Open addressing

Separate Chaining Hash Table 
This idea can simply be explained as follows: 

• Each of our array slots, instead of storing one data,

stores a linked list of data instead.

• All data that have the same value from our hash

function go into the same linked list.

• To find a data, use a hash function to find a linked

list that stores the data, then search the data

sequentially in that linked list.

• To add a new data, use a hash function to find a

linked list that will (or already) store that data.

Then search the list for that data.

o If the list already has the data, we do nothing.

There is no point for adding a duplicated

data. A hash table has no use for duplicated

copies of data, since it is only used to check

whether a data is available.
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o If the list does not store the data, we add the

data in front of the list. Statistically, a new

data is more likely to be accessed than older

data. That is why we put it in front of the list.

A separate chaining hash table (implemented using 

circular doubly-linked lists) is illustrated in Figure 7-3. In 

this example, our array has 5 slots and the slots are 

shown vertically to allow linked listeds to be drawn 

horizontally. Data 0, 5, and 10 are stored in the same 

linked list, indicating that our hash function put them in 

the same array slot.  

Implementation of Separate Chaining Hash Table 

In Java, every object can call method hashCode. This 

method maps the object’s memory address to an integer 

value. This gives an evenly distributed integer. Our 

implementation makes use of this hashCode method. Our 

header 
0 5 10 

3 8 

2 

Figure 7-3: A separate chaining hash table. 
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code (class SepChaining) is shown in Figure 7-4, Figure 

7-7 and Figure 7-8.

1: public class SepChaining{ 
2:    private static int DEFAULT_SIZE = 101; 
3:    private static int MAXLOAD = 2; 
4:    private CDLinkedList[] lists; 
5:    private int currentSize =0; 
6:  
7:    public SepChaining(){ 
8:       this(DEFAULT_SIZE); 
9:    } 
10: 
11:  public SepChaining(int size){ 

12: int nextPrimeSize = nextPrime(size); 

13: lists = new CDLinkedList[nextPrimeSize]; 

14: for(int i=0; i<lists.length; i++){ 

15: lists[i] = new CDLinkedList(); 

16:     } 

17:  } 

18: 
19:  private static boolean isPrime(int n){ 

20: if(n == 2 || n == 3) 

21: return true; 

22:   if(n == 1 || n % 2 == 0) 

23: return false; 

24:   for(int i = 3; i*i <= n; i+= 2) 

25:   if(n%i == 0) 

26: return false; 

27:   return true; 

28:  } 

29: 
30:  private static int nextPrime(int n){ 

31: if(n % 2 == 0) 

32: n++; 

33:   for( ; !isPrime(n); n += 2 ){} 

34:   return n; 

35:  } 

36: 
37: // continued in Figure 7-7. 

Figure 7-4: Fields, constructors, and utility methods for separate 

chaining hash table. 
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Figure 7-4 shows fields, constructors, and utility 

methods for our separate chaining hash table. Our 

implementation contains the following fields (line 2-5 in 

Figure 7-4): 

• DEFAULT_SIZE: a default value for the number of

array slots. This must be a prime number to avoid

the small common factor problem.

• MAXLOAD: a maximum number of data that we

want to store per list, on average. We do not want

the average number of data (per list) to be long.

This is because a list is searched sequentially.

Longer list means longer search time. So, we need

to check our current average number of data

against MAXLOAD. If our value exceeds

MAXLOAD, it means our lists are too long, we

should make a larger array and redistribute our

data into the new array (this is called rehash) so

that lists within the new array are shorter.

• lists: an array that stores linked lists. This is our

main data storage of our hash table. Our linked

lists are circular doubly-link lists from chapter 3

(class CDLinkedList), but the code for class

CDLinkedList and DListIterator has to be modified

so that our list can store Objects, instead of integers

(this modification is left for readers).

• currentSize: a total number of data stored in our

hash table.
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For constructors, we have a default one, which calls our 

main constructor. Our main constructor (line 11-17 in 

Figure 7-4) creates an array of linked list that has its 

number of slots equal to a prime number equal to or next 

to a given value (again, avoiding the small common 

factor problem). Once the slots are created, a list for each 

slot is created using the constructor of CDLinkedList.  

To facilitate the generation of a given prime number, we 

have two utility methods, isPrime and nextPrime (line 19-

35 of Figure 7-4).    

Method hash (shown in Figure 7-5) returns the position 

that a given data is supposed to be stored in out array. It 

simply calls hashCode(), then makes sure the returned 

number is positive and the returned number is not 

outside possible positions.  

Method find (shown in Figure 7-6) returns -1 if a given 

data is not stored in our hash table. Otherwise, it returns 

a non-negative value. This non-negative value is a 

position within a linked list that the data is stored (it is 

not the same value that we get from method hash).  

1:   public int hash(Object data){ 
2: int hashValue = data.hashCode(); 

3: int abs = Math.abs(hashValue); 

4: return abs%lists.length; 

5:   } //continued in Figure 7-7. 

Figure 7-5: Method hash of separate chaining hash table. 
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Method add (shown in Figure 7-7) does the followings: 

• It first identifies a linked list that may store our

given data, by calculating its slot in our array (line

2-3 in Figure 7-7).

• Once the list is identified, it searches the list for the

data using method find of linked list (line 4 in

Figure 7-7).

o If the data is not in the list, it adds the data in

front of the list (line 4-8 in Figure 7-7), using

method insert of CDLinkedList.

o If the data is in the list, we do nothing since

adding a duplicated data into a hash table

does not help us with anything.

• Once the addition is done, we need to check if our

current average number of data (per list) exceeds

MAXLOAD. If so, we need to create a larger array

(and new linked lists within the new array) and put

all existing data from our array inside the new

array. We achieve this by calling method rehash

(also shown in Figure 7-7).

1:   public int find(Object data){ 
2: int pos = hash(data); 

3: CDLinkedList theList = lists[pos]; 

4: return theList.find(data);

5:   } //continued in Figure 7-7. 

Figure 7-6: Method find of separate chaining hash table. 
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Please note that, for method rehash to work, we need to 

add new data using method add. We cannot simply copy 

data into new lists because a value returned from 

hashing each data is different due to the array changing 

its size.  

1:   public void add(Object data){ 
2: int pos = hash(data); 

3: CDLinkedList theList = lists[pos]; 

4: if(theList.find(data) == -1){ // not found 

5: DListIterator itr = 

6: new DListIterator(lists[pos].header); 

7: lists[pos].insert(data, itr); 

8: currentSize++;  

9:    } 

10:    if(currentSize/lists.length >= MAXLOAD){ 

11: rehash(); 

12:    } 

13: } 

14: 
15: public void rehash(){ 

16:    CDLinkedList[] oldLists = lists; 

17:    int newLength = nextPrime(2*lists.length); 

18:    lists = new CDLinkedList[newLength]; 

19:    for(int i=0; i<lists.length; i++){ 

20: lists[i] = new CDLinkedList(); 

21:    } 

22:    for(int i=0; i<oldLists.length; i++){ 

23: DListIterator itr; 

24: itr = new DListIterator(oldLists[i].header); 

25: while(itr.currentNode.nextNode !=  

26: oldLists[i].header){ 

27: add(itr.next()); 

28:      } 

29:    } 

30: } //continued in Figure 7-8. 

Figure 7-7: Method add and rehash of separate chaining hash table.
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Method remove (shown in Figure 7-8) does the 

followings:  

• It first identifies a linked list that may store our

given data, by calculating its slot in our array (line

2-3 in Figure 7-8).

• Once the list is identified, it searches the list for the

data using method find of linked list (line 4 in

Figure 7-8).

o If the data is not in the list, we do nothing.

o If the data is in the list, we call method remove

of CDLinkedList (line 5 in Figure 7-8).

Runtime Analysis of Separate Chaining 
Hash Table  
First, we need to define a term that is commonly used 

when analyzing hash tables. It is called a load factor (or 

λ – pronounced lambda). A load factor is defined as 

follows:   

1:   public void remove(Object data){ 
2: int pos = hash(data); 

3: CDLinkedList theList = lists[pos]; 

4: if(theList.find(data) != -1){ //data found 

5: theList.remove(data); 

6: currentSize--; 

7: } 

8:   } 
9: } //end of class SepChaining 

Figure 7-8: Method remove of separate chaining hash table. 
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Definition 7-1: 

𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

For a separate chaining hash table, a load factor is 

therefore an average length of each linked list.  

The time spent when searching a separate chaining hash 

table can be calculated from: 

Seach time  = time to do hashing + time to search a list 

 = very small value     + time to search a list 

 ≅ time to searh a list   

If the data that we want to find is not in our hash table at 

all, our search time is approximately equal to the time to 

search an entire list. This is directly proportional to an 

average list length, which is our load factor.  

If our data is in one of the lists, on average, we will have 

to search half of that list. Assume that our hash function 

can distribute data evenly, each linked list in our hash 

table should be of equal size. The average search time is 

therefore directly proportional to half an average list 

length, which is half our load factor. 

In both cases, the time for searching a data depends on 

the value of the load factor.  
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Open Addressing Hash Table 
An open addressing hash table does not use any linked 

list. Instead, if a collision is found, we find a new slot for 

our data. We need a considerably larger array (compared 

to a separate chaining approach) because there are no 

lists to help store data.  

There is a pattern for finding slot(s). 

• If the data is 𝑥, we first check array slot ℎ0(𝑥).

• If the data collides with another existing data, we

try slot ℎ1(𝑥) in the array.

• If the data still collides, we try slot ℎ2(𝑥), etc.

 Where ℎ𝑖(𝑥) = (ℎ𝑎𝑠ℎ(𝑥) + 𝑓(𝑖))%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 

 𝑓(0) = 0 

There are several ways to define 𝑓(𝑖). In this chapter, 3 of 

them are discussed. They are: 

• Linear Probing

• Quadratic Probing

• Double Hashing

Linear Probing 

In this approach, we have: 

𝑓(𝑖) = 𝑖 

As an example, let us store integer data into an empty 

hash table of size 7. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 
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The data to put in our example hash table are 1, 11, 3, 8, 

9.  

Putting in 1, 11, and 3 are straightforward, since there is 

no collision. The process of putting these values inside 

the array is shown in Figure 7-9.  

Putting 8 in the array (using ℎ0(8)), however, causes a 

collision with 1. So, we need to inspect a slot next to the 

slot that stores 1, that is slot number ℎ1(8). Fortunately, 

that slot is empty. Hence, we put 8 in that slot (see Figure 

7-10).

Figure 7-9: Putting 1, 11, and 3 into a hash table of size 7, 

where ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 

1

1 

1 11 

11

3 

ℎ0(11) = ℎ𝑎𝑠ℎ(11) = 11%7 = 4 
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Following 8, 9 is to be stored in the array. But using ℎ0(9), 

9 now collides with 8. So, what we do is look for the next 

slot, each one is at position ℎ𝑖(9), where 𝑖 starts from 1, 

and keep looking until we find an empty slot.  

Searching and removing data use this same procedure. 

To remove 9, we have to start from position ℎ0(9), and 

work our way through each ℎ𝑖(9) until we find 9 or until 

we find an empty slot (which indicates that 9 is not in our 

hash table). 

Figure 7-10: Putting 8 in a hash table from Figure 7-9. 

8

1 3 11 

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1 

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 1)%7 = 2 

1 8 3 11 

9

ℎ0(9) = ℎ𝑎𝑠ℎ(9) = 9%7 = 2 

ℎ1(9) = (ℎ𝑎𝑠ℎ(9) + 1)%7 = 3 
ℎ2(9) = (ℎ𝑎𝑠ℎ(9) + 2)%7 = 4 

ℎ3(9) = (ℎ𝑎𝑠ℎ(9) + 3)%7 = 5 

Figure 7-11: Putting 9 in a hash table from Figure 7-10. 
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Removing data can cause a problem, however. Let us 

remove 3 and then try to search for 9, using a hash table 

in Figure 7-12.  

It can be seen that after 3 is removed, the search for 9 will 

stop prematurely, at the position that used to store 3 (but 

now it is an empty slot). Our algorithm misinterprets that 

the array does not store 9 because it finds this empty slot 

during its search. This premature stopping takes place 

in every open addressing approach discussed in this 

chapter.  

Figure 7-12: Removing 3 and then trying to search for 9, 

where ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.  

1 8 11 9 

1 8 11 9 

1 8 3 11 9 

remove 3 

search for 9 

Find an empty slot, and stop 

searching. 
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So, seeing an empty slot does not mean we should stop 

our search. When do we stop our search then? This can 

be handled by lazy deletion.  

What is lazy deletion? Lazy deletion works as follows: 

• When a data is to be deleted from an array slot,

mark that array slot instead of deleting the data.

o Marking can be done on the data, or a special

kind of data can be inserted into that array

slot to replace the original data.

Let us see lazy deletion in action in Figure 7-13, using the 

same array as in Figure 7-12. We try to do the same thing, 

that is, removing 3 and then searching for 9. This time, 

when a data is to be deleted, we replace it with a special 

data, DL. 

It can be seen that DL prevents the search for 9 from 

stopping prematurely, since the search regards DL as a 

data.  

Although using DL to replace the original data solves 

our problem, readers may wonder that we are wasting 

spaces that should be reclaimed for other data. But we 

cannot simply use this space right away when adding a 

new data. From Figure 7-13 (at the bottom), if we want to 

add 9, we will have to search beyond DL anyway 

because there is no guarantee that 9 is not stored 

anywhere further than DL in the array (and in this case 
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it was stored!). It is only when 9 is not found anywhere, 

that the first discovered DL slot can be used. 

Apart from the deletion problem, linear probing has its 

own shortcoming. Readers may have already noticed 

from Figure 7-11 that when collisions take place near to 

one another, several consecutive array slots are very 

likely to be occupied. This can cause a problem when 

another collision takes place in one of these occupied 

slots. Because linear probing just searches one slot away 

each time, it can take a long time to find an empty array 

slot. This problem is called primary clustering.    

1 8 DL 11 9 

1 8 DL 11 9 

1 8 3 11 9 

remove 3 

search for 9 

Figure 7-13: Lazy deletion prevents premature stopping while 

sarching for data. 
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Quadratic Probing 

In this approach, we have: 

𝑓(𝑖) = 𝑖2 

An example is shown Figure 7-14. We store integer data 

into a hash table of size 7. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 

and let the hash table originally store 1, 3, and 11. Then 

we try to add 8 and 9 to the hash table.  

For each data, the more it collides, the more it is put 

further away. This prevents primary clustering.   

 

ℎ1(9) = (ℎ𝑎𝑠ℎ(9) + 𝑓(1))%7 = (2 + 12)%7 = 3 

ℎ2(9) = (ℎ𝑎𝑠ℎ(9) + 𝑓(2))%7 = (2 + 22)%7 = 6 

8

1 3 11 

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1 

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 12)%7 = 2 

1 8 3 11 

9 ℎ0(9) = ℎ𝑎𝑠ℎ(9) = 9%7 = 2 

Figure 7-14: Adding 8 and 9 to a quadratic probing hash 

table that already has 1, 3, and 11, with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 
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But a data that collides in the same slot as other several 

data before it will still have to go through the same 

calculation for each ℎ𝑖 and thus it can take some time to 

find the array slot that stores/will store the data. As an 

example, let us try to add 8, 15, 22 to a hash table with 

size 7, ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. The table already has 

integer 1 stored inside. What happens is shown in Figure 

7-15.

It can be seen that, to add 15, we need to repeat the 

operations done when adding 8. To Add 22, we need to 

repeat the operations done when adding 15. Thus, the 

more data that collide at the same slot, the longer it takes 

to search our hash table. This problem is called 

secondary clustering. It takes place because every data 

has the same calculation when avoiding the same array 

slot.  

Another problem with quadratic probing hash table is 

that we may not be able to put our data into our array 

even though there are still some empty slots. Consider 

adding 29 to our aray in Figure 7-15. You can see that its 

ℎ𝑖 always collide with existing data. This is even more 

likely to happen if the array size is not prime.   

Therefore, a quadratic probing hash table needs to be 

larger than other types of hash tables in order to store the 

same amount of data.  
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1 8 

8

1 

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1 

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 12)%7 = 2 

15
ℎ1(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(1))%7 = (1 + 12)%7 = 2 

ℎ2(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(2))%7 = (1 + 22)%7 = 5 

1 8 15 

22 ℎ1(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(1))%7 = (1 + 12)%7 = 2 
ℎ2(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(2))%7 = (1 + 22)%7 = 5 

ℎ3(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(3))%7 = (1 + 32)%7 = 10%7 = 3 

Figure 7-15: Adding 8, 15, 22 into a quadratic probing hash table 

that already has 1, with ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 
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How large do we need it to be? Here is a fact that can 

help us. It has been proven that if a quadratic probing 

hash table is not yet half full and the table size is prime, 

then we can always find a slot for a new data.  

Let us look at the proof: 

Let the array size be prime number larger than 3 and 0 ≤

𝑖, 𝑗 ≤ ⌊
𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

2
⌋(this indicates that we still do not fill up 

to half of the array), where 𝑖 and 𝑗 are not equal (this 

represents different calculations).  

Assume that position (ℎ(𝑥) + 𝑖2)%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 collides 

with position (ℎ(𝑥) + 𝑗2)%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 

Doing the math, we get: 

ℎ(𝑥) + 𝑖2 = ℎ(𝑥) + 𝑗2  % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 
       𝑖2 = 𝑗2        % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 

(𝑖 − 𝑗)(𝑖 + 𝑗) = 0  % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 

So, ((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0. 

For the above statement to be true, one of the followings 

has to be true: 

• 𝑖 − 𝑗 = 0
• 𝑖 + 𝑗 = 0
• 𝑖 − 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒
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• 𝑖 + 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

• ((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0

The statement 𝑖 − 𝑗 = 0 , or 𝑖 = 𝑗 is impossible since we 

demand that 𝑖 and 𝑗 are from different calculations in the 

first place. 

𝑖 + 𝑗 = 0 is also impossible since they are both non-

negative, and are not equal. So, they cannot both be 0.  

𝑖 − 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 is impossible because both values are 

non-negative and the value of 𝑖 is never larger than the 

array size.  

𝑖 + 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 is also impossible because both values 

do not reach half of the array size at the same time.  

((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0 is impossible because the 

array size is prime. 

So, our assumption that the two positions collide must 

be wrong! Therefore, they do not collide. Thus, if the 

array size is prime and not yet half full, we can find a 

position for our new data.  

Double Hashing 

This approach can avoid primary clustering and 

secondary clustering.  
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For this type of open addressing hash table: 

𝑓(𝑖) = 𝑖 ∗ ℎ𝑎𝑠ℎ2(𝑥), where x is our data. 

Using another hash function (hash2) means that each 

data is likely to have a different pattern when avoiding 

collisions. Therefore, we can prevent both primary and 

secondary clusterings.  

As an example, let us try to add 8, 15, 22 to a double 

hashing hash table with size 7, ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 

Let ℎ𝑎𝑠ℎ2(𝑥) = 3 − (𝑥%3). The table already stores 1. 

This is shown in Figure 7-16.  

From Figure 7-16, it can be seen that although 8, 15, and 

22 collide with 1, all of them find different alternate 

positions. We thus avoid secondary clustering that was 

present in Figure 7-15.  

Implementation of Open Addressing Hash Table 

Fields, constructors, and utility methods of an open 

addressing hash table (the class name is OpenAddressing) 

is shown in Figure 7-17. Fields consist of: 

• DEFAULT_SIZE: a default hash table size, which is

prime.

• DELETED: a placeholder data to replace a deleted

data. This is how we mark an array slot as deleted.
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• MAXFACTOR: a default load factor that this table

can tolerate. If a load factor exceeds this value, we

need to do a rehash.

• currentSize: a number of data stored in our array.

• array: the array that stores our data.

 

 

1 8 

8

1 

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1 

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 8%3))%7 = 2 

15 
ℎ1(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 15%3))%7 = 4 

1 8 15 

22

ℎ1(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 22%3))%7 = 3 

Figure 7-16: Adding 8, 15, 22 into a double hashing hash table that already 

has 1, with ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 and  ℎ𝑎𝑠ℎ2(𝑥) = 3 − (𝑥%3). 
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Constructors just create our array, making its size prime. 

Method isPrime and nextPrime are exactly the same as in 

Figure 7-4.  

A double hashing hash table (shown from Figure 7-18 to 

Figure 7-21) is defined by extending from 

1:   public class OpenAddressing{ 
2:  private static int DEFAULT_SIZE = 101; 

3: Private static final Object DELETED = new 

4: Object(); 

5: private static int MAXFACTOR = 0.5; 

6:   private int currentSize =0; 

7: private Object[] array;  

8:  
9:      public OpenAddressing(){ 
10:         this(DEFAULT_SIZE); 

11:    } 

12: 
13:    public OpenAddressing(int size){ 

14:   int nextPrimeSize = nextPrime(size); 

15:   array = new Object[nextPrimeSize]; 

16:    } 

17: 
18:    private static boolean isPrime(int n){ 

19: //Same code as in our  

20: //separate chaining hash table. 

21: // You can rewrite method isPrime and nextPrime 

22: // in a separate utility class.  

23: . . .  

24:    } 

25: 
26:    private static int nextPrime(int n){ 

27: // Same code as in our separate chaining hash 

28: // table. 

29: . . .  

30:    } 

31: } // end of class OpenAddressing. 

Figure 7-17: Fields, constructors, and utility methods for open 

addressing hash table. 



285

OpenAddressing. We do not show the implementation of 

linear probing and quadratic probing in this book. Their 

codes are similar to a double hashing hash table except 

their function ℎ𝑖. 

Shown in Figure 7-18, our double hashing hash table 

(class DoubleHashing) has its own MAXFACTOR so that 

we can use our own default value. Its hash uses hashCode. 

hash2 can use any function that produces unique 

number, but it must be different to hash because we do 

not want data that collide in the same array slot to use 

the same collision avoidance pattern. 

It also has a new field, occupiedSlots. This field records the 

number of slots that store data or DELETED object. We 

use this field to determine whether to rehash (see method 

add in Figure 7-19).  

Method find calculates ℎ𝑖(𝑑𝑎𝑡𝑎) until it finds our data, or 

finds an empty slot, or tries enough number of times. The 

calculation of each ℎ𝑖, starting from 𝑖 = 0, is carried out 

by a for loop (line 26-30 in Figure 7-18). The number of 

iterations is enough for us to look at every array slot 

because the array size is prime.  

If you want to implement a linear probing or a quadratic 

probing hash table, simply change the code on line 30 in 

Figure 7-18 according to each type of hash table. Method 

find returns the position of our data (or the position of the 
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empty slot) if the data (or the empty slot) is found. 

Otherwise, it returns -1, which means we cannot find our 

data and there is no empty array slot.  

 1:  class DoubleHashing extends OpenAddressing 
2: private static int MAXFACTOR = 0.75; 

3: private int occupiedSlots = 0; 

4:  
5:     public DoubleHashing(){ 
6:        this(DEFAULT_SIZE); 
7:     } 
8: 
9: public DoubleHashing(int size){ 

10: super(size); 

11:   } 

12: 
13:   public int hash(Object data){ 

14: int hashValue = data.hashCode(); 

15: int abs = Math.abs(hashValue); 

16: return abs%array.length; 

17:   } 

18: 
19:   public int hash2(Object data){ 

20: return //any unique number function different 

21: //from hash. 

22:   } 

23: 
24:   public int find(Object data){ 

25: int h = hash(data);  

26: int hash2Result = hash2(data); 

27: for(int i=0; i<currentSize; i++){ 

28: if(array[h] == null || array[h].equals(data)) 

29: return h; 

30: h = (h + hash2Result)%array.length;   

31:     } 

32:     return -1;  

33:   } 

34: 
35: //continued in Figure 7-19. 

Figure 7-18: Fields, constructors, hash functions, and method find of a 

double hashing implementation. 
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For your information, the code on line 30 should be 

changed to h = (h + 1)%array.length for linear probing, and 

h = (h+2*i-1)%array.length for quadratic probing.  

Figure 7-19 shows method add. The first part of method 

add (line 6-14) is almost the same as method find, that is, 

we attempt to find our data through the calculation of ℎ𝑖. 

The only major difference in this part is that in method 

add, if our search encounters a slot that is marked 

deleted, we record this slot position. This slot position 

will be the position we add our new data. Reusing a 

DELETED slot helps save space.  

After the attempt to find our data, if the data or an empty 

slot is not found, it means that our data is not in the array 

and the array is full somehow. So, we have to rehash and 

then attempt to add the data again (line 15-17).  

Otherwise, if the data is found, we do nothing since there 

is no point adding a duplicated data.  

But if the empty slot is found, we add the data to the 

array (add to the DELETED slot if its position was 

recorded earlier) (see line 20-25). Then we update 

currentSize and call method rehash if the current load 

factor exceeds our specified value (line 26-30).  
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Method rehash (see Figure 7-20) makes a new array that 

is larger, then adds all data (DELETED objects are not 

true data so they are not added) from our original array 

into the new array. The new additions have to be done 

using method add so that the correct position for each 

data can be determined by our hash function. 

1:  public void add(Object data) throws Exception{ 
2: int h = hash(data);  

3: int hash2Result = hash2(data); 

4: int emptySlotPosition = -1;  

5: int i; 

6: for(i=0; i<currentSize; i++){ 

7: if(array[h] == null || array[h].equals(data)) 

8: break; 

9: if(array[h] == DELETED && 

10: emptySlotPosition == -1){ 

11: emptySlotPosition = h;  

12: } 

13: h = (h + hash2Result)%array.length;   

14: } 

15: if(i >= currentSize){ 

16: rehash(); 

17: add(data); 

18: } else { 

19: if(array[h] == null){ 

20: if(emptySlotPosition != -1){ 

21: array[emptySlotPosition] = data; 

22: } else{ 

23: array[h] = data; 

24: occupiedSlots++; 

25: } 

26: currentSize++; 

27: double currentLoadFactor = 

28: (double)(occupiedSlots/array.length); 

29: if(currentLoadFactor > MAXFACTOR) 

30: rehash(); 

31:         } 

32:     } 

33: } 

34: //continued in Figure 7-20. 

Figure 7-19: Method add of a double hashing implementation. 
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Method remove (see Figure 7-21) first attempts to find our 

data. If the data is found, we replace it with a DELETED 

object.  

Separate Chaining VS Open Addressing 

Table 7-1 shows advantages and disadvantages from 

using both types of hash tables. It is up to readers to 

choose the type they believe to be suitable for their 

works.  

1:  public void rehash(){ 

2: Object[] oldArray = array; 

3: array = new Object[nextPrime(array.length*2)]; 

4: currentSize = 0; 

5: occupiedSlots = 0; 

6: for(int i=0; i<oldArray.length; i++){ 

7: if(oldArray[i] != null && 

8: oldArray[i]!=DELETED) 

9: add(oldArray[i]); 

10:   } 

11: }  

12: //continued in Figure 7-21. 

Figure 7-20: Method rehash of a double hashing implementation. 

1:  public void remove(Object data){ 

2: int index = find(data); 

3: if(index != -1 && array[index]!=null){ 

4: array[index] = DELETED; 

5: currentSize--;  

6:     } 
7:   } 
8: } // end of class DoubleHashing. 

Figure 7-21: Method remove of a double hashing hash table. 
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Table 7-1: Separate Chaining and Open Addressing Comparison.

Separate Chaining Open Addressing 

Simple add and remove. More complicated add and 

remove. 

A lot of space required to store 

references. 

Less space required, even though 

the load factor is small. 

Collisions only affect data in the 

same linked list. 

Collisions may affect an entire 

table. 

Exercises 

1. A hash table of size 11 with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ uses double hashing. Index of a data

when collision takes place is ℎ𝑎𝑠ℎ(𝑥) + 𝑓(𝑖), where

𝑓(𝑖) = 𝑖 ∗ ℎ𝑎𝑠ℎ2(𝑥). The value of i starts at 1. Let

ℎ𝑎𝑠ℎ2(𝑥) = 5 − 𝑥%5.

We use lazy deletion. A new data does not overwrite 

old data even though the old data may already be 

marked as DELETED.    

The array currently has only one data: 

4 

What will happen if we sequentially do the following 

actions: 

• Add 15

• Add 26

• Add 8

• Delete 26

• Add 19
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Explain what happens in each step. Draw picture for 

each step too. 

2. Given a double hashing hash table for integer data of

size 13. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ and

ℎ𝑎𝑠ℎ2(𝑥) = 7 − 𝑥%7. Show and explain (step by step)

what happens when 1, 5, 18, 8 are inserted into the

hash table in order, using double hashing.

3. In open addressing hash table, explain the reason for

the use of lazy deletion. Give example(s) too.

4. A hash table of size 13 with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ uses quadratic probing with lazy

deletion , where DELETED slot can be reused.

We sequentially do the following actions: 

• Add 5

• Add 10

• Add 18

• Add 19

• Add 31

• Delete 18

• Add 32

Draw what happens to the hash table in each step.

5. A special kind of separate chaining hash table works

as follows:

• When a new data is added, if a linked list

obtained using our hash function contains at

least one data, but it does not store the new data,
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we find a new empty position in our array (using 

linear probing) and add that new data in a node 

linked to that array slot. Then the linked list 

obtained from our hash function is linked to this 

newly created node.   

For example, let us add 0, 5, 10 (all these collide in the 

first array slot) to this hash table respectively (size 5, 

ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ). Below is our hash table 

after adding the three numbers. It can be seen that it is 

quite different from a normal separate chaining hash 

table. Our link on a linked list actually links to other 

linked lists.   

Explain how to delete data from this kind of hash 

table. Write your code for method find, add, and remove 

using this table. 

6. For a separate chaining hash table, what if we use

ArrayLists instead of doubly-linked lists in our

implementation? Write code for method find, add, and

remove for this new implementation.

0 

5 

10 



293

Chapter 8 : Sorting 

In this chapter, we will be looking at various algorithms 

that can sort data (from small to large) stored in an array. 

Bubble Sort 

This is done by: 

1. Comparing 2 adjacent values in an array, starting

with the first two values. Swap the values if the

value on the left is larger than the value on the

right.

2. Then compare the next pair of values. The leftmost

value maybe the one swapped from the previous

comparision.

3. Once the last two values in the array are compared

and/or swapped, start again with data in the first

and second slot. Repeat.

An example is shown in Figure 8-1. But how many times 

do we need these swaps? Let us think of it this way: 

• The number of swaps must be enough for moving

the largest value from the leftmost array slot to the

rightmost array slot.

• The number of swaps must also be enough for

moving the smallest value from the rightmost

array slot to the leftmost array slot.
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When the array size is n. The first n-1 swaps are enough 

to move a value from the leftmost position to the 

rightmost position. But the value in the rightmost 

position can only move 1 position to the left. This is 

clearly shown in the left half of Figure 8-1, where the first 

n-1 swaps (n is 4) can move 5 from the leftmost array slot

to the rightmost array slot, but 2 (originally at the

rightmost slot) can only move one slot to the left.

In order to move the rightmost data all the way to the left 

of the array, we need to repeat the moves in the above 

Figure 8-1: Bubble Sort. 

5 4 3 2 

4 5 3 2 

4 3 5 2 

4 3 2 5 

3 4 2 5 

3 2 4 5 

3 2 4 5 

2 3 4 5 

swap 

swap 

swap 

swap swap 

No 

swap 

swap 
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paragraph n-1 times. Therefore, the number of 

comparisions (and possibly, swaps) that we need is (𝑛 −

1) × (𝑛 − 1). Hence the estimated runtime of bubble sort

is 𝛩(𝑛2).  Our code for bubble sort is shown in Figure 8-2.

Please note that we write all sorting methods as static

methods so they can be implemented in their own java

classes.

The nested loop structure also confirms that 𝛩(𝑛2) is our 

asymptotic runtime. The worst-case (requires the most 

number of swaps) running time for bubble sort takes 

place when the array is sorted from large to small. Figure 

8-1 is also an example of the worst-case scenario.

Selection Sort 
A selection sort algorithm can be described as follows: 

1. Store the index of the first array element in

variable maxindex.

1:  public static void swap(int[] array, int a, int b){ 
2: int temp = array[a]; 

3:  array[a]= array[b]; 

4:  array[b]= temp; 

5: } 

6: 
7:   public static void bubblesort(int[] array){ 
8: for (int p = 1; p <=array.length-1; p++) 

9:    for(int e =0; e <= array.length –2; e++) 

10:   if(array[element] > array[element+1]) 

11: swap(array, element, element +1); 

12: } 

Figure 8-2: Code for bubble sort algorithm. 
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2. Check each array member one by one. If a

member value is greater than array[maxindex],

change maxindex to store the index of that

member. Continue until all members (not

including a sorted portion of the array) are

checked.

3. Swap the last data that has not been sorted with

array[maxindex] (no swapping needed if both are

the same member).

4. Then, consider all other data not yet in their

correct position, repeat the above 3 steps. This

means we gradually build up a sorted portion of

our array from right to left. We repeat until all

data are in the sorted array portion.

The algorithm is illustrated in Figure 8-3. In each step, 

maxindex is updated to the position of the maximum 

unsorted value. Then that value (identified by maxindex), 

is swapped with the rightmost value in the unsorted 

portion of the array.    

We only need to do a value swap when we find the 

largest unsorted value. Hence, selection sort is expected 

to be faster than bubble sort.   
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The code for selection sort is given in Figure 8-4. The 

code has nested loops, each loop is estimated to run for 

at most about 𝑛 times, where 𝑛 is the array size. 

Therefore, the asymptotic runtime of selection sort is 

𝛩(𝑛2).  This is the same asymptotic runtime as bubble 

sort, even though selection sort is supposed to be faster.  

maxindex =0, then updated to 2. 

3 4 5 1 

3 4 1 5 

3 1 4 5 

1 3 4 5 

maxindex reset to 0, 

then updated to 1. 
Sorted 

portion

.

maxindex reset 

 to 0, then  

updated to 0. 

swap 

swap 

Sorted 

portion 

swap 

Figure 8-3: Selection sort. 
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The inner loop (line 6-8 in Figure 8-4) looks through 

every data in the unsorted portion of the array and stores 

the position of the maximum value amongst them.   

The outer loop just swaps the maximum value with the 

rightmost unsorted value (line 11 in Figure 8-4). It also 

resets the value of maxindex before entering the inner 

loop.  

The worst-case running time (maximum number of 

comparisons and maximum number of swaps) takes 

place when there is a swap for every round of 

comparisons, which happens when the data are almost 

sorted but the smallest value is the last data, such as 

2,3,4,5,1.  

1:   public static void selectionSort(int[] a){ 
2:  int maxindex; //index of the largest value 

3:    int unsorted; 
4:    for(unsorted=a.length; unsorted > 1; unsorted--){   
5:   maxindex = 0; 

6:   for(int index= 1; index < unsorted; index++){ 

7:   if(array[maxindex] < array[index]) 

8:    maxindex = index; 

9: } 

10: if(a[maxindex] != a[unsorted -1]) 

11: swap(array, maxindex, unsorted -1); 

12:  } 

13: } 

Figure 8-4: Code for selection sort. 
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Insertion Sort 
This algorithm is as follows: 

1. Split the array into 2 sides, left and right. The left

side is consider sorted. Therefore, at the beginning,

there is only one member in the left side.

2. Check the leftmost value on the right side. Store it

in temp variable.

3. If the value of temp is smaller than the last member

of the left side, put the value of temp in its correct

place on the left side. To put the value of temp in its

correct position on the left side, we need to keep

moving other values to the right so that we have

space to put our temp value.

4. Repeat the whole steps again. Each time, the left

side (sorted side) will grow by 1. Repeat until all

members are moved to the left side.

This algorithm is illustrated in Figure 8-5. The source 

code is shown in Figure 8-6. The inner loop (line 5-11) 

shifts data in the sorted array portion so that a correct 

position for the first data from an unsorted portion is 

ready. The outer loop makes sure that every data is 

examined and put in a prepared position.    

The asymptotic runtime, from the code, is 𝛩(𝑛2). The 

worst-case runtime takes place when there are maximum 

number of data shifting. That means, for each inner loop, 

all data must move. This happens when the array is 

initially sorted from large to small.   
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2 5 4 3 

temp =2. We compare it with 

5. It has smaller value than 5,

so we copy 5 to the right.

No more value to compare with 

temp, so we copy it to the first slot. 

The sorted portion also grows.  

2 5 5 3 

Sorted 

portion

.

temp =4. We compare it with 5. 

It has smaller value than 5, so 

we copy 5 to the right. 

2 4 5 3 

temp =4. We compare it with 2. It 

has larger value than 2, so we copy 

4 to the slot behind 2. The sorted 

portion grows. 

2 4 5 5 

2 4 4 5 

2 3 4 5 

temp =3. We compare it with 4. 

It has smaller value than 4, so 

we copy 4 to the right. 

temp =3. It has larger value than 2, 

so we copy it to slot behind 2. The 

sorted portion also grows. We 

finish sorting.  

temp =3. We compare it with 5. 

It has smaller value than 5, so 

we copy 5 to the right. 

Figure 8-5: Insertion sort. 
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Merge Sort 
So far, we have looked at sorting algorithms with 

performance 𝛩(𝑛2). Merge sort is an algorithm that has 

better performance. Here is how the algorithm works: 

1. Split a part of the array that we want to sort into

two portions (with equal size).

2. Sort each portion with merge sort.

a. Each portion can be further divided. Hence,

we have a recursion here.

3. Then combine the sorted portions.

The above concept is illustrated in Figure 8-7. 

Array Splitting 

In this part of the algorithm, we divide the data that we 

want to sort into two equal halves. We do not really need 

to create 2 new arrays. What we need to do is just 

1:   public static void insertionSort(int[] a){ 
2:   int index;  

3:   for(int sorted = 1; sorted < a.length; sorted++){ 

4:   int temp = a[sorted]; 

5:   for(index = sorted; index >0; index--){ 

6:   if(temp< a[index-1]){ 

7:   a[index] = a[index –1]; 

8:   } else{ 

9:   break; 

10: } 

11: } 

12: a[index] = temp; 

13: } 

14: } 

Figure 8-6: Code for insertion sort. 
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identifying array slots that are in the first half and the 

second half. 

For ease of implementation, we define the following 

variables: 

• left: an integer indicating the leftmost position of

the array portion that we want to sort.

• right: an integer indicating the rightmost position

of the aray portion that we want to sort.

• center: an integer indicating the position halfway

between left and right.

2 7 5 3 9 4 6 2 1 5 8 

Split the unsorted array into 2 portions. 

2 3 4 5 7 9 1 2 5 6 8 

Each portion sorts its data (recursively). 

1 2 2 3 4 5 5 6 7 8 9 
Combine the sorted portions to complete our sort. 

Figure 8-7: Merge sort concept. 
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The values of left and right can identify any portion of the 

array that we want to sort. We need to be able to identify 

any portion because we will be dividing the array 

recursively.  

We only apply our algorithm to data stored between left 

and right. Figure 8-8 shows an array where we want to 

sort data from slot number 2 to slot number 7. Therefore 

𝑙𝑒𝑓𝑡 = 2, 𝑟𝑖𝑔ℎ𝑡 = 7, 𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑙𝑒𝑓𝑡+𝑟𝑖𝑔ℎ𝑡

2
=

2+7

2
= 4. 

Consequently, the first array portion is from slot 2 to slot 

4. The second array portion is from slot 5 to slot 7. This is

how we identify the two portions.

Sorting Each Portion 

We need to call merge sort recursively. Let our method 

mergeSort return a new array that contains a sorted 

sequence from index left to right of its input array.  

The method looks like:  

int[] mergeSort(int[] unsort, int left, int right)

2 7 5 3 9 4 6 2 1 5 8 

left = 2 
right = 7 center = 

(2+7)/2 = 4 

Figure 8-8: Splitting array into 2 portions for sorting. 
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Method mergeSort receives 3 parameters: 

• unsort: our array to be sorted.

• left: the leftmost position of the data we want to

sort.

• right: the rightmost position of the data we want to

sort.

Using the array splitting mechanism mentioned 

previously, the first half of the array can be sorted by 

using : 

• int[] result1 = mergeSort(unsort,left,center);

Similarly, the second half of the array can be sorted by 

using : 

• int[] result2 = mergeSort(unsort,center+1,right);

Generally, result1 and result2 will be just about half the 

size of unsort.  

If left = = right, it means the part of the array we want to 

sort only contains 1 data. In such case, we do not need to 

call mergeSort recursively. We can simply return a one-

slot array with that very data stored inside as our sorting 

result.  

Merging Two Sorted Portions 

After we get two sorted arrays (result1 and result2 from 

the previous section), we combine them into one sorted 

array with following algorithm: 
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1. Create integer i and j to mark the first slot of result1

and result2 respectively.

2. Create a result array (let us name it answer) that can

hold all data from both result1 and result2. Also,

create integer k to mark the first slot of answer.

3. Repeat until we look at all data in either result1 or

result2:

a. Compare result1[i] and result2[j].

b. Copy the smaller value to answer[k], then

increment k and the index of the array that

stores the value. For example, if result1[i] <

result2[j], then answer[k++] = result1[i++]. If

compared values are equal, you can do the

copying from either result1 or result2.

4. Copy all remaining contents from the array that we

have not finished copying into the remaining slots

of answer.

Figure 8-9 shows what happen when we combine 

{1,5,8,9} with {2,4,6,7}. 

Implementation and Runtime of Merge Sort 

Code for merge sort is shown in Figure 8-10. Code for 

combining 2 sorted arrays is shown in Figure 8-11. To 

work out the asymptotic runtime of merge sort, we need 

to know the time used for combining 2 arrays first. From 

the code in Figure 8-11, the runtime for array 

combination is 𝛩(𝑛).  
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1 5 8 9 

result2 

j 

result1 

i 

answer 

k 

2 4 6 7 

result1[i] < result2[j] 

1 5 8 9 

1 result2 

j 

result1 

i 

answer 

k 

2 4 6 7 

Compare and copy until either i 

or j is beyond its last possible 

position. 

1 5 8 9 

result2 j 

result1 

i 

answer k 

2 4 6 7 
The only thing left to do is 

copying the rest of result1 to 

answer. 

6 7 1 2 4 5 

Figure 8-9: Combining 2 sorted arrays. 
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1:   public static int[] mergeSort(int[] a, int 
2:   left, int right){ 
3:    if(left == right){//only 1 data to sort
4:    int[] x = new int[1]; 

5:    x[0] = a[left]; 

6:    return x;  

7:  } 

8:  else if(left<right){ 

9:  int center = (left+right)/2; 

10:    int[] result1 = mergeSort(a,left,center); 

11:    int[] result2 = mergeSort(a,center+1,right); 

12:    return merge(result1,result2); //combine arrays 

13:  } 

14: } 

Figure 8-10: Code for merge sort. 

1:   public static int[] merge(int[] a, int[] b){ 
2:  int aIndex = 0; int bIndex = 0; int cIndex = 0; 

3: int aLength = a.length;  

4: int bLength = b.length; 

5: int cLength = aLength + bLength; 

6: int[] c = new int[cLength];  

7: 
8: // compare a and b then move a smaller value 

9: // into c until one array is spent. 

10:   while((aIndex < aLength) && (bIndex < bLength){ 

11:    if(a[aIndex]<=b[bIndex]){ 

12: c[cIndex++] = a[aIndex++]; 

13:  }else{  

14: c[cIndex++] = b[bIndex++]; 

15: } 

16:   } 

17: 
18:   //copy the remaining data into c 

19:   if(aIndex == aLength){ //if a is spent. 

20:    while(bIndex<bLength){ 

21:    c[cIndex++] = b[bIndex++]; 

22: } 

23:   }else{ //if b is spent. 

24:    while(aIndex<aLength){ 

25:    c[cIndex++] = a[aIndex++]; 

26: } 

27:   } 

28:   return c; 

29: } 

Figure 8-11: Code for combining 2 sorted arrays into one. 
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Indeed, what the program in Figure 8-11 does is visiting 

each data once. Therefore, if the resulting array stores n 

data, the program simply traverses those data.   

Now, let us try to estimate the runtime for merge sort. 

Let the time for executing method mergesort from Figure 

8-10 be 𝑇(𝑛).

If there is only 1 data, our method (line 3-7 from Figure 

8-10) runs in constant time. Therefore:

𝑇(1) = 𝛩(1) 

If there are many data, the time used is the sum of the 

time to sort the left portion, the time to sort the right 

portion, and the time to combine the sorted portions. For 

simplicity, we assume that the left and the right portion 

has equal number of data. Hence: 

𝑇(𝑛) = 2 × 𝑇 (
𝑛

2
) + 𝛩(𝑛) 

We can divide both sides of the above equation by n. So, 

we get:  

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 1
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If we keep changing 𝑛 to 
𝑛

2
, 

𝑛

4
,

𝑛

8
, . .. we get the following 

sets of equations:  

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 1

𝑇(
𝑛
2

)

𝑛
2

=
𝑇 (

𝑛
4

)

𝑛
4

+ 1

𝑇(
𝑛
4

)

𝑛
4

=
𝑇 (

𝑛
8

)

𝑛
8

+ 1

. . . 

𝑇(2)

2
=

𝑇(1)

1
+ 1

From observation, it can be seen that: 

2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑛 

Therefore: 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 =  log2 𝑛 
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If we add all of the above equations, most of the contents 

will cancel out, and we will get: 
𝑇(𝑛)

𝑛
=

𝑇(1)

1
+ log2 𝑛

𝑇(𝑛) = 𝑛 × 𝛩(1) + 𝑛 log2 𝑛 

Hence, 𝑇(𝑛) = 𝛩(𝑛 log2 𝑛), which is faster than 𝛩(𝑛2).

Quick Sort 

Although merge sort has better performance than all the 

previous sorting algorithms, the algorithm needs to 

create a new array to store the sorted result. Quick sort 

uses similar principle, but it operates on the input array. 

Therefore, required space is reduced.  

The quick sort algorithm (see Figure 8-12) is as follows: 

1. If the input array has one data or less, that input

array is our answer (we do not need to move any

value inside the input array). The algorithm ends

here in such case.

2. For a small input array (e.g. 20 data or less), other

sorting algorithms are faster because the

advantage of splitting the input array into 2

portions does not outweigh the overhead for

partitioning. Hence, we just call other sorting

methods such as insertion sort. The algorithm then

ends here.



311

3. Choose a value in the input array. That value

becomes our “pivot”.

4. “Partitioning” the input array by the following

steps:

a. Moving all values that are less than our pivot

to the left of the pivot.

b. Similarly, all values greater than the pivot

should be moved to the right of the pivot.

c. For values equal to the pivot, distribute them

evenly on both sides of the pivot.

5. At this stage, the pivot is in a correct position. We

then call quick sort on parts of the array on both

sides of the pivot.

Figure 8-12: Quick sort concept. 

quick sort 

Let’s choose this as our pivot 

9 5 6 2 3 8 1 4 

partitioning 

9 5 6 8 3 2 1 4 

quick sort 

5 6 8 9 1 2 3 4 
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Choosing a Pivot 

An ideal pivot should be the median value amongst all 

values stored in the input array. This is so that 

partitioning can divide the array into 2 equal halves (the 

smaller the array can be reduced to, the faster quick sort 

recursive calls can finish). 

But it is impractical to find a median because you will 

have to investigate all the stored values. You cannot 

simply choose the first or the last value as your pivot 

either because if the array (or its portion that you are 

working on) is already sorted, partitioning will just 

reduce the array size by one (because one of the two 

portions will be empty). This bad pivot selection is 

shown in Figure 8-13.   

Empty on this 

side.  

9 5 6 2 1 8 3 4 

Choosing the first data as pivot. This 

happens to be the smallest data.  

partitioning 

9 5 6 2 1 8 3 4 

On this side, the number of data to look at 

only reduces by 1. 

Figure 8-13: Bad pivot selection. 
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So how do we select a good pivot? Since we do not know 

how the data is arraged, choosing a pivot randomly is 

likely to get us even partitions. However, a random 

number is slow to generate.  

To get a fast selection and a number that can generally 

divide the array in half, we will use a method that 

statistically works in most cases. The method is called 

“median of 3”. Basically, we find the median amongst the 

first data, the last data, and the middle data from our 

input array. The code for “median of 3” is shown in 

Figure 8-14 as method pivotIndex, which returns the 

position of our chosen pivot.   

 

Partitioning 

Once a pivot is selected, we can partition our array (let 

us name our array “a”) using the following algorithm: 

1. Get the pivot out of the way by swapping it with

the last data.

1:   static int pivotIndex(int[] a, int l, int r){ 
2: int c = (l+r)/2; 

3: if((a[l]<=a[r] && a[l]>=a[c]) || 

4:  (a[l]>=a[r] && a[l]<=a[c])) 

5: return l; 

6: if((a[c]<=a[l] && a[c]>=a[r]) || 

7: (a[c]>=a[l] && a[c]<=a[r]) 

8: return c; 

9: return r; 

10: } 

Figure 8-14: Code for median of 3. 
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2. Let i be the index of the first position and j be the

index of the before-last position (the pivot is in the

last position).

3. Keep incrementing i until a[i] >= pivot value.

4. Keep decrementing j until a[j] <= pivot value.

5. If i is on the left of j, swap a[i] and a[j]. This is an

attempt to move smaller value to the left and larger

value to the right of the array. If i is not on the left

of j, go to step 8.

6. Increment i by 1 and decrement j by 1. This is just

avoiding the slots that we just swap their values.

7. Go to step 3.

8. Swap a[i] with pivot. We will get the array with the

pivot in its correct position. To the pivot’s left will

be the smaller values and to its right will be the

larger values.

An example is illustrated in Figure 8-15, followed by 

Figure 8-16.  

Using a[i] >= pivot value and a[j] <= pivot value in step 3 

and 4 allows copies of our pivot to be evenly distributed 

on both sides of our partition. Any other conditions (a[i] 

> pivot value and a[j] < pivot value, or a[i] > pivot value and

a[j] <= pivot value) will simply distribute the copies in one

side of the partition only.
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j 

pivot 

4 0 9 6 7 2 5 1 3 8 

Swap pivot with the last 

data.  

i j 

Try to increment i and decrement j, 

but both are in their stopping 

conditions. So, no change there.  

8 0 9 6 7 2 5 1 3 4 

Swap a[i] and a[j], then increment 

i and decrement j.  

i 

8 0 9 6 3 2 5 1 7 4 

i j 

Increment i until a[i] >= pivot 

value and decrement j until a[j] <= 

pivot value.  

8 0 9 6 3 2 5 1 7 4 

i j 

Figure 8-15: Partitioning example (part 1).

8 0 9 6 7 2 5 1 3 4 
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Implementation and Runtime of Quick Sort 

Code for quick sort is given in Figure 8-17. It follows our 

algorithm in the previous section. The method receives 

the following inputs: 

• int[] a: the input array.

Swap a[i] and a[j], then increment 

i and decrement j.  

8 0 9 6 3 2 5 1 7 4 

i j 

8 5 9 6 3 2 0 1 7 4 

i j 

Increment i until a[i] >= pivot 

value and decrement j until a[j] <= 

pivot value.  

8 5 9 6 3 2 0 1 7 4 

i j 

The value of i is now more than j. 

so now we swap pivot with a[i], 

and the partitioning is complete.    

4 5 9 6 3 2 0 1 7 8 

Figure 8-16: Partitioning example (part 2). 
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• int l: the leftmost position of the input array that

our sorting algorithm applies.

• int r: the rightmost position of the input array that

our sorting algorithm applies.

The method performs quick sort from data at position l 

to r in the array. It changes the contents of the input 

array.  

 1: static void quicksort(int[] a,int l, int r){
2: if(l+CUTOFF>r){
3: insertionSort(a,l,r); 

4: } else { 

5: //find pivot using median of 3. 
6: int pIndex = pivotIndex(a,l,r);
7: 
8: //get pivot out of the way. 

9: swap(a,pIndex,r); 

10: int pivot = a[r]; 
11: 
12: //start partitioning. 

13:   int i=l, j=r-1; 

14:   for( ; ; ){ 

15: while(i<r && a[i]<pivot)i++; 

16: while(j>l && a[j]>pivot)j--; 

17: if(i<j){ 

18: swap(a,i,j); 

19: i++;  

20: j--; 

21: }else{ 

22: break; 

23: }  

24: } //end partitioning. 

25: 
26: //swap pivot into its correct position. 

27: swap(a,i,r); 

28: 
29: //quick sort on subarrays. 
30: quicksort(a,l,i-1); 

31: quicksort(a,i+1,r);  

32:    } 

33: } 

Figure 8-17: Code for quick sort. 
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There are some parts of the code worth noting: 

• CUTOFF: this value is the array length for when we

choose to do another sorting algorithm instead of

quick sort.

• insertionSort(int[] a, int left, int right): this is an

insertion sort that applies only from position left to

right inclusively. The code for this mehod is not

given in this book. It is recommended that readers

modify the code from regular insertion sort.

• swap(int[] a, int i, int j): this is a method that swaps

value between position i and j in a given array. The

code for this mehod is not given in this book. It is

simple to implement, however.

To allow straightforward analysis of the runtime, we 

assume that random pivot selection is used and other 

sorting algorithms are not used when the array is small.  

Let𝑇(𝑛) = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑠 𝑛. 

Therefore 𝑇(0) = 1 and 𝑇(1) = 1. 

For other cases, the runtime is the sum of: 

• time for pivot selection. If we use the median of 3

method, this time is constant and thus can be

ignored.

• time for partitioning. This depends directly on the

array size. Let the time be 𝑐 × 𝑛, where c is a

constant and n is our array size.

• time for quick sorts on left and right subarrays.
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If the left subarray has size equal to i, then 

 𝑇(𝑛) = 𝑇(𝑖) + 𝑇(𝑛 − 𝑖 − 1) + 𝑐 × 𝑛. 

Let us first analyze the worst-case runtime. This case 

takesplace when all our pivots happen to be the smallest 

value. In such situation, one subarray is always empty, 

the other’s length is always reduced by 1 each time.  

Therefore, 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(0) + 𝑐 × 𝑛. 

With various n, we create the following set of equations: 

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(0) + 𝑐 × 𝑛 
𝑇(𝑛 − 1) = 𝑇(𝑛 − 2) + 𝑇(0) + 𝑐 × (𝑛 − 1) 
𝑇(𝑛 − 2) = 𝑇(𝑛 − 3) + 𝑇(0) + 𝑐 × (𝑛 − 2) 

      … 
𝑇(2) = 𝑇(1) + 𝑇(0) + 𝑐 × 2 

Adding all the equations above, we get: 

𝑇(𝑛) = 𝑇(1) + (𝑛 − 1) × 𝑇(0) + 𝑐 × (2 + 3 + 4 + ⋯ + 𝑛) 

which simplifies to: 

𝑇(𝑛) = 𝑇(1) + (𝑛 − 1) + 𝑐 ∑ 𝑖

𝑛

𝑖=2

= 𝛩(𝑛2) 

From our deduction, the worst-case runtime is similar to 

other sorting algorithms. 
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What about the best case? This happens when our pivot 

selection always divides the array in half. Our analysis 

for this is similar to merge sort.  

The equation for 𝑇(𝑛) becomes: 

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑇 (

𝑛

2
) + 𝑐 × 𝑛 

Dividing both sides by n, we get: 

𝑇(𝑛)

𝑛
=

𝑇(
𝑛

2
)

𝑛

2

+ 𝑐

Varying the value of n, we get the following set of 

equations: 

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 𝑐

𝑇(
𝑛
2

)

𝑛
2

=
𝑇 (

𝑛
4

)

𝑛
4

+ 𝑐

𝑇(
𝑛
4

)

𝑛
4

=
𝑇 (

𝑛
8

)

𝑛
8

+ 𝑐

… 

𝑇(2)

2
=

𝑇(1)

1
+ 𝑐
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Adding them all up (exactly like what we did with our 

analysis of merge sort), we get: 

𝑇(𝑛)

𝑛
=

𝑇(1)

1
+ 𝑐 × log2 𝑛

Multiplying both sides by n, we get: 

𝑇(𝑛) = 𝑛 + 𝑐 × 𝑛 × log2 𝑛 = 𝛩(𝑛 log 𝑛) 

Therefore, its best case performs at the same level as 

merge sort.  

When sorting real life data, worst-case and best-case 

scenarios are unlikely to take place, however. The more 

useful runtime is the average case. For this, a subarray 

can have any size, from 0 to n-1 (a subarray cannot have 

size n because we are not counting the pivot).  

For every subarray size to have equal chance of 

happening, each has a probability of 
1

𝑛
. Our equation for 

𝑇(𝑛) becomes: 

𝑇(𝑛) =
1

𝑛
∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+
1

𝑛
∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+ 𝑐 × 𝑛

=
2

𝑛
∑ 𝑇(𝑗)𝑛−1

𝑗=0 + 𝑐 × 𝑛
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Multiplying both sides by n, we get: 

𝑛 × 𝑇(𝑛) = 2 ∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+ 𝑐 × 𝑛2

Substituting n with n-1, we get another equation: 

(𝑛 − 1) × 𝑇(𝑛 − 1) = 2 ∑ 𝑇(𝑗)

𝑛−2

𝑗=0

+ 𝑐 × (𝑛 − 1)2

Subtracting the new equation from the previous one, we 

get:  

𝑛 × 𝑇(𝑛) − (𝑛 − 1) × 𝑇(𝑛 − 1) = 2 × 𝑇(𝑛 − 1) + 2𝑐𝑛 − 𝑐 

Ignoring a constant c, then move (𝑛 − 1) × 𝑇(𝑛 − 1) to 

the right-hand side, we get:  

𝑛 × 𝑇(𝑛) = (𝑛 + 1) × 𝑇(𝑛 − 1) + 2𝑐𝑛 

Dividing both sides by 𝑛(𝑛 + 1), we get: 

𝑇(𝑛)

𝑛 + 1
=

𝑇(𝑛 − 1)

𝑛
+

2𝑐

𝑛 + 1

Again, we can generate a set of equations: 

𝑇(𝑛)

𝑛 + 1
=

𝑇(𝑛 − 1)

𝑛
+

2𝑐

𝑛 + 1

𝑇(𝑛 − 1)

𝑛
=

𝑇(𝑛 − 2)

𝑛 − 1
+

2𝑐

𝑛
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𝑇(𝑛 − 2)

𝑛 − 1
=

𝑇(𝑛 − 3)

𝑛 − 2
+

2𝑐

𝑛 − 1
… 

𝑇(2)

3
=

𝑇(1)

2
+

2𝑐

3

When we add all equations in this set, we get: 

𝑇(𝑛)

𝑛 + 1
=

𝑇(1)

2
+ 2𝑐 ∑

1

𝑖

𝑛+1

𝑖=3

where, ∑
1

𝑖

𝑛
𝑖=1  is a harmonic number. It is defined as: 

∑
1

𝑖

𝑛
𝑖=1 = ln 𝑛 +  𝛾 +

1

2𝑛
−

1

12𝑛2
+

1

120𝑛4
− 𝜀, where 𝑛 ≥

1, 0 < 𝜀 <
1

256𝑛6
 , 𝛾 ≈ 0.5772 

Substituting the value of ∑
1

𝑖

𝑛
𝑖=1  into our 

𝑇(𝑛)

𝑛+1
 equation, we 

get:  

𝑇(𝑛)

𝑛 + 1
=

𝑇(1)

2
+ 2𝑐(ln 𝑛 +  𝛾 +

1

2𝑛
−

1

12𝑛2
+

1

120𝑛4
− 𝜀 − 1 −

1

2
) 

It can be seen that the right-hand side is dominated by 

ln 𝑛. Therefore, when we get rid of 𝑛 + 1 on the left-hand 

side, 𝑇(𝑛) = 𝛩(𝑛 log 𝑛). So, in general, quick sort 

performs at the same level as merge sort. 



324 

 

Bucket Sort 
Bucket sort is a type of sorting algorithms that generally 

performs well because we know where each data will go. 

For example, putting each card in a 52-card deck on a 

table. 

• We only need to prepare a space for each card.

• When we look at a card, just put it at its provided

space.

• Therefore, picking a card means we know its

position automatically.

• The running time is 𝛩(𝑛), which is the time to look

at n cards.

A space for each card is called a bucket. For the above 

example, one bucket stores one data.  

Let us look at another example. If we have n numbers in 

a range of 1 to m, where n<m, we can sort these numbers 

by: 

• Creating an array, a, of size m. This will be a

frequency array. Position 1 stores the frequency of

value 1. Position m stores the frequency of value m.

• Each array slot initially stores 0.

• Read each number, for number k, we increment a[k]

by 1.

• When finish reading all the data, we will get a

frequency of each number.



325

• We can then read the frequency array and

construct our sorted data.

• The running time is 𝛩(𝑛) for constructing the

frequency array and 𝛩(𝑚) for constructing our

sorted result.

A bucket may store more than one distinct objects.  As an 

example, consider the problem of sorting exam papers 

collected from 49 students: 

• At collection time, an examiner can divide students

into 5 groups (1-9,10-19,…,40-49).

• Within a group, we can use a sorting method such

as insertion sort.

• After sorting within a group, simply put all groups

in sequence.

• The running time depends on the method used to

sort within buckets.

Bucket sort can be designed according to our knowledge 

of data. The more we know about the data, the better our 

sorting algorithm can be created.  

Exercises 

1. Use recursion to implement insertion sort.

2. Draw what happen when we perform a merge sort on

array {4,78,3,34,1,45,7,8}.

3. Draw what happen when we perform a quick sort on

array {4,78,3,34,1,45,7,8,10,20,15,24}.
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4. In quick sort, instead of normal partitioning, we do 

the followings: 

a) Compare all data with the leftmost data of the 

portion we want to sort. Count how many data are 

smaller than the leftmost data. Hence, we now 

know the correct position of the leftmost data.  

b) Move the leftmost data to the position found in the 

previous step.  

 

Is there anything wrong with this method of 

partitioning? If so, please show an example.  

5. Show how you derive the asymptotic runtime of 

quicksort when data in the input array are already 

sorted. Do it for the case when our pivot is always the 

first data, and when our pivot is chosen randomly. 

6. Show how you derive the asymptotic runtime of 

quicksort when data in the input array are already 

sorted from large to small. Do it for the case when our 

pivot is always the first data, and when our pivot is 

chosen randomly. 

7. If we know that there are many copies of each data, in 

quick sort, we can partition our input array into 3 

portions: data that are more than our pivot, data that 

are less then our pivot, and data that are equal to our 

pivot. Please rewrite the code for this new quick sort. 

8. Compare insertion sort, quicksort and bucket sort. 

Explain their differences. In what circumstances will 

you choose one over others.  

9. Write a special selection sort such that:  
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• For any two odd numbers, they are arranged 

from small to large. 

• For any two even numbers, they are arranged 

from small to large. 

• Odd numbers always come before even numbers. 

10. We have a class ListQuickSort which will be used to 

implement quick sort for linked list. 
 

public class ListQuickSort{ 

     CDLinkedList theList; //linked list from chapter 3  

} 

 

Implement the following methods. For each method 

state its asymptotic runtime. 

 

DListIterator listIterator(int i)  

This method returns a list iterator that focuses on 

position i in thelist (the first position on the left of the 

list has index = 0). If the position given by i is not in the 

list, the method returns an iterator that points to null.  

 

DListIterator findPivot() 

This method returns a list iterator that points to the 

median amongst the first, the middle, and the last 

element of the list. (throw exception if our list has less 

than 3 elements.) 

 

public void swap(DListIterator i, DListIterator j)  

This method swaps the positions of two elements 

(each one identified by a list iterator). 

 

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator(int)
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public void partition(DListIterator itr) 

This method receives an iterator (that represents a 

pivot), then move all elements which are less than or 

equal to the pivot value to the left of the pivot and 

elements that are greater than or equal to the pivot 

value to the right of the pivot. 

 

Write code for quick sort. Is there anything you need 

to make change?  

11. If you want to sort an array of positive integers 

containing n numbers but you do not know the range 

of the values in the array, explain and write code for 

method: 

 

public static int[] sort(int[] input) 

 

This method sorts the array so that the big O is less 

than 𝑂(𝑛 log 𝑛). Discuss the big O of your code and any 

limitation your code has.   

12. Write code for method: 

 

void sortTwoArrays(int[] a1, int[] a2).  

 

This method sorts two arrays. When finishes, both 

arrays must be sorted (from small to large numbers) 

and all numbers in a1 must be smaller than all 

numbers in a2. Assume that a1 and a2 are not null and 

you can call void sort(int[] a) that can sort values in a 

given array from small to large. 
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For example: 

If a1 = {8,4,7,5,2} and a2 = {6,10,3,0,11,1}.  After the 

method is called, a1 will be {0,1,2,3,4} and a2 will be 

{5,6,7,8,10,11}.  

13. Write code for insertion sort that operates on a 

doubly-linked list. Write code as part of class 

CDLinkedList from chapter 3. 

14. For class BSTRecursive in chapter 6, Write code for 

method:     

 

int[] toSortedArray()  

 

This method returns an array of elements contained 

in the tree, where:  

• Elements in the returned array must be sorted 

from small to large. 

• The tree must still contain all its contents when 

the method finishes its execution. 

What is the asymptotic runtime of your code. 

15. Write code for method:  

 

public int[] sortFirstN(int[] a, int n)  

 

This method sorts the first n integer in a from small to 

large. There is no change to other integers in the array. 

The method returns a modified array. Assume n is 

smaller than array size.  
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Chapter 9 : Priority Queue 
A priority queue is a queue that accesses its elements 

according to their importance. For example, at a hospital, 

a person with broken back should be treated before a 

person with minor wounds, even though he arrives later. 

In this book, small value is regarded as more important 

than large value. If two data have equal priority, we may 

regard the data that exists longer in the queue to be more 

important.  

To compare data stored inside a priority queue, we can 

use Comparable interface or Comparator interface in the 

Java language. 

In this book, Comparator interface is used. It has method: 

compare(Object o1, Object o2) 

o1’s type has to be compatible with o2. This method 

returns a negative value if o1 is less than o2, a positive 

value if o1 is greater than o2, and it returns 0 otherwise. 

Priority queue has the following operations: 

• size(): returns the number of data currently stored

in the priorit queue.

• isEmpty(): returns true if our priority queue does

not store any item, and false otherwise.
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• add(Object data): adds data to the priority queue.

• top(): returns the most important data (the smallest

data).

• pop(): removes and returns the most important

data.

These operations are defined in a Java interface in Figure 

9-1.

1:   public interface PriorityQ { 
2:   // Postcondition: return the number of 

3:   // data in this priority queue.  

4:   int size(); 

5: 
6:   // Postcondition: return true if this priority 

7:   // queue does not store any data, otherwise  

8: // return false.  

9:   boolean isEmpty(); 

10: 
11:   // Postcondition: element is  

12:   // added to priority queue.  

13:   void add(Object element) throws Exception; 

14: 
15:   // Throws NoSuchElementException if heap is  

16:   // empty.  

17:   // Postcondition: return the most important data. 

18: public Object top() throws Exception; 

19: 
20:   // Throws NoSuchElementException if heap is  

21:   // empty.  

22:   // Postcondition: remove and return the most 

23:   // important data. 

24: public Object pop() throws Exception; 

25: } 

Figure 9-1: Priority queue operations. 
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Implementation Choices 
There ae quite a few possible implementations for a 

priority queue. Let us briefly investigate each possible 

implementation. 

• normal queue: cannot be used because it does not

have priority.

• Array of queues (each queue is used for each

priority): if there are many possible values for

priorities, the array will consume too much space

because we have to reserve space in advance.

• Linked list of queues:

o does not have the space problem like array of

queues do, but instant access to each priority

is eliminated. Searching for a priority will

require the runtime of 𝛰(𝑝), where p is the

number of priorities. If every data has a

different priority, the time is 𝛰(𝑛).

o pop() and top() has runtime = 𝛩(1). The first

data in the first queue is always accessed

first.

• ArrayList:

o add(data) takes time to find a position to add

data. Finding the position takes 𝛰(log 𝑛) if a

binary search is used. Furthermore, many

data have to be shifted to the right to make

space for the added value (takes 𝛰(𝑛)).

Therefore, adding a new data takes 𝛰(𝑛),

which is not very good.
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o top() takes 𝛩(1) because we just return the

first data in the ArrayList.

o pop() takes 𝛩(𝑛) because we have to shift all

data after the leftmost data is removed.

• Linked list:

o top() and pop() take 𝛩(1) because we can

return the front of the list right away and

removing data in a linked list does not

require shifting other data.

o add() takes 𝑂(𝑛), it still needs to search the

position to add, but does not need to shift

other data when adding.

o The performance is about equal to using

linked list of queues.

Using a linked list seems to be a good implementation. 

Let us see the actual implementation using linked list 

(class CDLinkedList from chapter 3). 

Linked List Implementation of Priority 
Queue 
The linked list implementation is in class PQDLinkedList 

(shown in Figure 9-2 and Figure 9-3). Our 

implementation contains a comparator and a linked list 

to store data. Our linked list in this chapter is modified 

to store Object instead of int. Figure 9-2 shows fields, 

constructors, size(), isEmpty(), and method compare. 

Method compare checks if we have a comparator, if so, it 
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compares the two input data using that comparator (line 

27). Otherwise, a compareTo method for the stored data is 

used (that class must implement Comparable interface). 

This compareTo method is defined as follows:  

• data1.compareTo(data2) returns a negative integer if

data1 is less than data2.

• data1.compareTo(data2) returns zero if data1 is equal

to data2.

• data1.compareTo(data2) returns a positive integer if

data1 is larger than data2.

1:  public class PQDLinkedList implements PriorityQ { 
2: CDLinkedList list; 

3: Comparator comp; 

4: 
5: public PQDLinkedList() { 

6: list = new CDLinkedList(); 

7: comp = null; 

8: } 

9: 
10:   public PQDLinkedList(CDLinkedList l,Comparator c) 

11:   { 

12: this.list = l; 

13: this.comp = c; 

14:   } 

15: 
16:   public int size() { 

17: return list.size; 

18:   } 

19: 
20:   public boolean isEmpty() { 

21: return list.isEmpty(); 

22:   } 

23: 
24:   protected int compare(Object d1, Object d2) { 

25: return (comp == null ?  

26: ((Comparable) d1).compareTo(d2) : 

27: comp.compare(d1, d2)); 

28:   } 

29:   // this class continues in Figure 9-3. 

Figure 9-2: Priority queue implemented by linked list (part 1). 
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Method top, pop, and add are shown in Figure 9-3.  

Method top throws an exception if our list is empty. 

Otherwise, it returns a data stored in a node next to 

header. This is the first data. Method top runs in 𝛩(1) since 

there is no loop.  

1: public Object top() throws Exception { 

2: if (list.isEmpty()) 

3: throw new Exception(); 

4: return list.header.nextNode.data; 

5:   } 
6:  
7:   public Object pop() throws Exception { 
8: if (list.isEmpty()) 

9: throw new Exception(); 

10:   Object result = top(); 

11:   list.remove(new DListIterator(list.header)); 

12:   return result; 

13: } 

14: 
15: public void add(Object d) throws Exception { 

16:   if (list.isEmpty()) { 

17: DListIterator i = 

18: new DListIterator(list.header); 

19: list.insert(d, i); 

20:   } else if (compare(d,  

21: list.header.previousNode.data)) >= 0){ 

22: DListIterator last = 

23: new DListIterator(list.header.previousNode); 

24: list.insert(d,last); 

25:   } else { 

26: DListIterator itr = 

27: new DListIterator(list.header.previousNode); 

28: while (compare(d, itr.currentNode.data)< 0) 

29: itr.previous(); // back up one position 

30: list.insert(d, itr); 

31:   } 

32: } // end of class PQDLinkedList. 

Figure 9-3: Priority queue implemented by linked list (part 2).
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Method pop is similar. It throws an exception if our list is 

empty. Otherwise, it records data stored in the node after 

header, removes that node from our list, and returns the 

recorded value. Its runtime is also 𝛩(1) since there is no 

loop.  

Method add is used to add a new data into our priority 

queue. It receives the new data, d, as its input. It does the 

followings:  

• If our list for data storage is empty (line 16-19):

create a new node and store d inside that node.

Then add the new node just behind the list’s header.

The runtime for this action is 𝛩(1) since it does not

involve any loop.

• If d is larger than or equal to the last data in our

linked list (line 20-24): add a new node (with d

inside) just after the last node of the list. The

runtime for this part is also 𝛩(1).

• Otherwise (line 26-30): we create an iterator

pointing to the last node in the list. We keep

moving our iterator to the left until d is larger than

or equal to the data pointed to by our iterator. We

then add a new node (with d inside) right after the

node pointed to by our iterator. This process takes

𝛰(𝑛) since the loop may finish early or may go all

the way through the entire list.
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Heap 
In this section, we will look at another implementation of 

priority queue that is more popular than using a linked 

list. This implementation is called heap.  

A heap is a complete binary tree (a complete binary tree 

is defined in chapter 6) that has the following properties: 

• It is an empty tree, or

• A tree that has its most important data in its root.

• Left and right subtrees must be heaps too (and so

as their left and right subtrees, recursively).

Please note that a heap is not a binary search tree! A heap 

stores its data in a completely different manner. 

The implementation in this text regards the most 

important data to be the smallest data (we call this kind 

of heap a min heap).  

A min heap is shown in Figure 9-4. Every subtree stores 

its smallest value at its root.  

Heap Implementation and Runtime 
Analysis 
A complete binary tree can be represented by an array. 

We just need to traverse the tree from left to right down 

the trees’ levels (breadth-first). Thus, the tree in Figure 

9-4 is represented by an array in Figure 9-5.
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Although the representation is now an array (an array 

slot represents a node of the actual tree), we can still 

traverse to left child, right child, and parent of each node 

using the following rules: 

• If our current data is in slot number i,

o the slot that represents slot i’s left child is slot

2*i+1.

o Similarly, the slot that represents slot i’s right

child is slot 2*i+2.

o The slot that represents slot i’s parent is slot
𝑖−1

2
 . 

26 

40 31 

99 48 55 

36 48 50 85 

57 88 

Figure 9-4: A min heap example. 

26 40 31 48 50 85 36 99 48 55 57 88 

Figure 9-5: Array representation of heap in Figure 9-4. 
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Let us see an example. From Figure 9-5, value 50 is in the 

4th slot:  

• By the rules, the value at its left is in the (2*4+1) =

9th slot. That value is 55 (which is correct according

to Figure 9-4).

• The value at 50’s right is in the (2*4+2) = 10th slot.

That value is 57 (which is correct according to

Figure 9-4).

• The value at 50’s parent is in the 
4−1

2
=  1st slot.

That value is 40 (which is correct according to

Figure 9-4).

The code for class Heap is shown from Figure 9-6 to 

Figure 9-12.    

1:   public class Heap implements PriorityQ { 
2: Object[] mData; 

3: int size = 0; 

4: 
5: public Heap() { 

6: final int DEFAULT_CAPACITY = 11; 

7: mData = new Comparable[DEFAULT_CAPACITY]; 

8: } 

9: 
10:   public boolean isEmpty() { 

11: return size == 0; 

12:   } 

13: 
14:   public int size() { 

15: return size; 

16:   } 

17:  // this class continues in Figure 9-8. 

Figure 9-6: Code for constructor, isEmpty(), and size() of class Heap. 
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In Figure 9-6, fields, constructor, method isEmpty and 

method size are defined. Our heap simply stores its data 

in array mData. It has another field, size, for recording the 

number of data currently stored in the array. Method 

isEmpty and size simply use the field.  

 

For method add(Object data), we use the following 

algorithm:  

1. We add data as the last data in the last tree level. 

2. Then we swap data with the one in its parent node 

if data is smaller.  

3. We keep swapping data up the tree until the tree is 

heap once more.  

 

Moving data up the tree after putting it in is called 

“percolate up”. An example of what happens when 

adding 30 to a heap is shown in Figure 9-7.  

 

First, 30 is added as the last data (in the last level) in our 

heap. Then it is compared with the data in its parent 

node, which is 48, causing 30 and 48 to be swapped. Then 

30 is compared to the data in its parent node, which is 

now 40. They got swapped because 30 has smaller value 

(more important). After that, 30 is compared to 26 in its 

parent node, but 26 is smaller so 30 does not get swapped 

with 26. Our procedure then ends.     
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26 

40 31 

99 30 

36 48 50 85 

26 40 31 48 50 85 36 99 30 

New data is added as the last data in the last 

level.  

26 

40 31 

99 48 

36 30 50 85 

26 40 31 30 50 85 36 99 48 

26 

30 31 

99 48 

36 40 50 85 

26 30 31 40 50 85 36 99 48 

Figure 9-7: Each step for adding 30 into a heap, showing both the tree 

version and its array implementation.  
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Although class Heap is defined to store data of type 

Object, examples in this chapter uses integer data for 

easier understanding.    

 

The code for method add is shown in Figure 9-8. The 

worst-case runtime for method percolateUp takes place 

when the newly added data has to be moved up the 

entire height of our tree. Hence, we can write down the 

runtime of method percolateUp as 𝛰(log 𝑛), where 𝑛 is the 

number of data. The asymptotic runtime for method add 

1:   public void add(Object element) { 
2:     if (++size == mData.length) { 
3:       Object[] newHeap; 
4:       newHeap = new Object[2 * mData.length]; 
5:       System.arraycopy(mData, 0, newHeap, 0, size); 
6:       mData = newHeap; 
7:     } 
8:     mData[size - 1] = element; 
9:     percolateUp(); 
10: } 

11:  

12: protected void percolateUp() { 

13:   int parent; 

14:   int child = size - 1; 

15:   Comparable temp; 

16:   while (child > 0) { 

17:     parent = (child - 1) / 2;  

18:     if (((Comparable)  

19:        mData[parent]).compareTo(mData[child]) <= 0) 

20:        break; 

21:     temp = (Comparable) mData[parent]; 

22:     mData[parent] = mData[child]; 

23:     mData[child] = temp; 

24:     child = parent; 

25:   } 

26: } //this class continues in Figure 9-9.  

Figure 9-8: Code for method add of class Heap. 
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is the worst-case runtime from method percolateUp 

(called on line 9 of Figure 9-8) and other parts of the code. 

It turns out that the worst-case runtime for method add 

takes place when our array needs to be resized (line 2-7 

of Figure 9-8). For such case, all data need to be copied to 

an expanded array, therefore the runtime is 𝛰(𝑛). This 

runtime is worse than the worst-case runtime of method 

percolateUp (𝛰(log 𝑛)). Therefore, the runtime for method 

add is 𝛰(𝑛), which is the same as the time for method add 

when using a linked list or other implementations.      

The advantage of using heap over other 

implementations comes when we consider the average 

runtime. On average, a newly added value will be the 

value in the middle of existing values (if sorted from left 

to right). Since our heap is a complete binary tree, half of 

the heap’s values are at its leaves. This means swapping 

the newly added value up the tree just once will get it to 

its correct position. Therefore, it takes constant time (on 

average) to add a new data into a heap.  

Method top is shown in Figure 9-9. If there is no data, the 

method cannot return any value, so it throws an 

exception. Otherwise, the method returns the data stored 

inside the root of our heap, which is the first array slot in 

our implementation. 
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To pop a data out of our heap, we have to be careful 

because removing a node can destroy our complete 

binary tree structure (even though we can preserve the 

data ordering from the root), thus destroying our array 

representation of the heap, as shown in Figure 9-10.  

 

 

 

 

 

 

 

 

 

 

To preserve our complete binary tree, we must use the 

following algorithm when removing the most important 

value: 

• Overwrite the value at the root with the last value 

from the last level of our complete binary tree. 

1:   public Object top() throws Exception { 
2:      if (size == 0) 
3:         throw new Exception("Empty"); 
4:      return mData[0]; 
5:   } //this class continues in Figure 9-12.  

Figure 9-9: Code for method top of class Heap. 

1 

5 3 

9 6 8 7 

3 

5 7 

9 6 8 

Remove 1  

Figure 9-10: Removing a root without using a special algorithm, 

destroying a complete binary tree structure. 
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• Swap the value at the root down the tree (swap 

with the most important child) until the tree 

becomes heap again. 

 

Swapping our data down the tree is called “percolate 

down”. Figure 9-11 shows what happens when we 

remove 26 (the most important value) from the heap we 

obtained in Figure 9-7.  

 

First, the data at the root (26) is replaced by the last data. 

Hence the data at the root now becomes 48. Then 48 is 

compared with data in its left and right child (30 and 31). 

The value 30 is the smallest of the two children values 

and it is smaller than 48 so it is swapped with 48. After 

this swap, 48 is then compared to data in its new left and 

right child (40 and 50). The value 40 is the smallest of the 

two and it is smaller than 48, so 48 is swapped with it. 

After that, 48 is then compared with data in its new left 

child (99) (no right child to compare since we consider it 

removed from our heap). This time, no swap occurs since 

48 is already smaller than 99.    

 

The code for method pop is shown in Figure 9-12. 
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Figure 9-11: Each step for removing the most important value from a 

heap, showing both the tree version and its array implementation. 

48 

30 31 

99 48 

36 40 50 85 

48 30 31 40 50 85 36 99 48 

48 (our last data) 

overwrites 26.  

30 

48 31 

99 48 

36 40 50 85 

30 48 31 40 50 85 36 99 48 

30 

40 31 

99 48 

36 48 50 85 

30 40 31 48 50 85 36 99 48 

48 no longer in our heap.  
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From Figure 9-12, if the heap is empty, we throw an 

exception because there is nothing to return (line 2-3). 

Otherwise, we replace the data at the root with the last 

data (line 5), reduce the value of size (line 6) so that the 

last data is treated as no longer in the heap, then call 

method percolateDown to move the new value in the root 

down the tree, before returning the original data at the 

root.   

1:   public Object pop() throws Exception { 
2:     if (size == 0) 
3:       throw new Exception("Priority queue empty."); 
4:     Object minElem = mData[0]; 
5:     mData[0] = mData[size - 1]; 
6:     size--; 
7:     percolateDown(0); 
8:     return minElem; 
9:   } 
10:  

11: protected void percolateDown(int start) { 

12:   int parent = start; 

13:   int child = 2 * parent + 1;  

14:   Object temp; 

15:   while (child < size) { 

16:     Comparable lVal = (Comparable)mData[child]; 

17:     if (child < size – 1) 

18:       Comparable rVal =(Comparable)mData[child+1];    

19:       if(lVal.compareTo(rVal) > 0) 

20:         child++; 

21:   

22:     Comparable pVal = (Comparable) mData[parent]; 

23:     if(pVal.compareTo(mData[child]) <= 0) 

24:       break; 

25:     temp = mData[child]; 

26:     mData[child] = mData[parent]; 

27:     mData[parent] = temp; 

28:     parent = child; 

29:     child = 2 * parent + 1; 

30:   } 

31: } //end of code for class Heap. 

Figure 9-12: Code for method pop of class Heap. 
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Method percolateDown receives the position index of the 

root as its input. We then initialize 2 variables, parent and 

child. Variable parent indicates the position (in our array 

representation) of our to-be-moved-down-the-tree data. 

Variable child indicates the position of parent’s child that 

stores the more important value amongst the left child 

and the rigt child. Before every iteration, this is set to the 

position of the left child (line 13 and line 29).  

The loop iteration is performed as long as child does not 

go beyond the last possible position in the last level of 

our tree (line 15). Inside the loop, child can change to 

indicate the right child of parent if the right child exists 

(line 17) and it stores a more important value than the left 

child (line 19). After child is updated, it is compared with 

the value stored in position parent (line 23). If position 

parent stores a more important value, we exit the method 

since there is no need to do any swap (line 24). 

Otherwise, values in position parent and child need to be 

swapped, and new parent and child are set to reflect the 

new position of our data that gets swapped down the 

tree (line 25-29).      

The asymptotic runtime of method pop depends on the 

runtime of method percolateDown. The worst-case 

runtime for percolateDown takes place when we have to 

swap our data down the entire tree. Thus, it directly 

depends on the tree’s height. If the number of data is 𝑛, 

our runtime for method pop is therefore 𝛰(log 𝑛).  
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For an average case, the new root data has value in the 

middle of all existing values. That means, half of the 

tree’s data have greater values.  But because we use a 

complete binary tree, half the data must be at its leaves. 

Method percolateDown will have to move the root data 

down to the level before last.  So, it is almost like the 

worst case. 

Table 9-1 summarizes the average runtime of each 

method for linked list implementation and heap 

implementation of a priority queue. 

Table 9-1: Average runtime for method add, top, and pop in linked list 

implementation and heap implementation of priority queue. 

Method Linked list 

implementation 

Heap 

implementation 

add 𝛰(𝑛) 𝛩(1) 

top 𝛩(1) 𝛩(1) 

pop 𝛩(1) 𝛰(log 𝑛) 

Priority Queue Application: Data 
Compression 
Let us try to store a text file with 100,000 characters. 

Normally, we need 16 bits to represent a character. 

Therefore 100,000 characters need 1,600,000 bits. 
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We can reduce the number of bits by introducing our 

own encoding. For example, we can represent a character 

using only 3 bits: 

• ‘a’ is 000

• ‘b’ is 001

• ‘c’ is 010

• ‘d’ is 011

• ‘e’ is 100

If our 100,000-character file contains only characers ‘a’ to 

‘e’, we only need 300,000 bits to store the file.   

Can the number of bits be reduced further? Yes, we can 

try the following encoding:  

• ‘a’ is 0

• ‘b’ is 1

• ‘c’ is 00

• ‘d’ is 01

• ‘e’ is 10

With the new encoding, the number of bits is reduced 

even more, but a new problem arises. The problem is we 

can compress the file, but when we try to uncompress it, 

we can’t get the original characters back because the 

decoded result is ambiguous. 

For example, if our compressed file contains 001010. We 

can decode it as “aababa”, or “cee”, or “adae”, or any 

other possible values. There is no way that we can be 
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sure we will get the original string (before compressed) 

back.  

How do we encode and prevent ambiguity at the same 

time? We can do it by utilizing a binary tree. Drawing a 

binary tree with enough leaves, a leaf represents a 

character in our text file. A character encoding is 

indicated by a sequence of 0s and 1s marked on braches 

from root to the leaf. A left branch represents 0, a right 

branch represents 1. Figure 9-13 shows a possible 

encoding of ‘a’ to ‘e’, using a binary tree. For this 

encoding, ‘a’ is 010, ‘b’ is 11, ‘c’ is 00, ‘d’ is 10, and ‘e’ is 

011 (follow the marked branches from root to each leaf).  

With this encoding, there is no ambiguity. Bit string 

001010 in our text file can only be interpreted as “cdd”. 

No other strings are possible.  

a e 

c d b 

0 

0 

0 

0 

1 

1 1 

1 

Figure 9-13: A possible encoding 

for character ‘a’ to ‘e’ in a text file. 
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But there are more than one possible trees that can be 

constructed. Figure 9-14 shows another possible tree that 

we can use.   

So which tree is better? The answer is - it depends on a 

file we try to compress. Basically, if a character is very 

frequent in our file, we want that character to be 

represented using as few number of bits as possible in 

order to minimize the total number of bits for our 

compression.  

That means, for each file to compress, we have to build a 

tree. Each file will have a different tree.  

1 

1 

1 

1 

0 

0 

0 

0 

a 

c 

e d 

b 

Figure 9-14: Another possible 

tree for encoding ‘a’ to ‘e’.  
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An optimum encoding tree for a file is called a Huffman 

tree. Please note that a Huffman tree is neither a binary 

search tree nor a heap. It is a tree that shows our 

encoding of data. 

A Huffman tree can be constructed using a priority 

queue. First, we have to prepare our priority queue with 

the following algorithm: 

1. Count the frequency of all characters in our to-be-

compressed text file.

2. For each character, make a “node” of data that

consists of:

a. That character

b. The frequency of that character

c. left (will later point to another node)

d. right (will later point to another node)

3. Put all the nodes (these will be nodes in our

Huffman tree) of data we made into a priority

queue. Our priority queue regards the node with

the lowest frequency as the most important data.

Then our Huffman tree can be constructed using the 

following algorithm: 

1. Remove two nodes with the smallest frequency

from the priority queue.

2. Create a new node using:

a. the first removed node as its left branch.

b. the second removed node as its right branch.

c. The new node character is ‘’.
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d. The new node frequency is the sum of the

frequency from both removed nodes.

3. Put the new node back into our priority queue.

4. Go back to do step 1 to 3 again until there is only

one node left in our priority queue. That node is the

root of our encoding tree (it will have already been

linked with the rest of the tree).

Let us compress a text file with only characters ‘a’ to ‘e’. 

Let the frequency count of each character be as follows: 

• ‘a’ = 5000

• ‘b’ = 10000

• ‘c’ = 20000

• ‘d’ = 31000

• ‘e’ = 34000

Our priority queue constructed from these data stores 

the nodes to be retrieved in the order (from left to right) 

shown in Figure 9-15. We choose to represent our 

priority queue as a sequence of to-be-retrieved nodes in 

order to keep readers away from any particular priority 

queue implementation and focus on Huffman tree 

construction.  

a, 5000 b, 10000 c, 20000 d, 31000 e, 34000 

Figure 9-15: An Example of order of nodes to be retrieved 

from priority queue that stores nodes of Huffman tree.  
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From our example text file, our Huffman tree 

construction is shown from Figure 9-16 to Figure 9-19. 

Each figure represents one iteration in our Huffman tree 

construction algorithm.  

Figure 9-16: Example of Huffman tree creation (first iteration). 

a, 5000 b, 10000 c, 20000 d, 31000 e, 34000 

‘’, 15000 

a, 5000 b, 10000 

c, 20000 d, 31000 e, 34000 

Remove 2 nodes 

to create a new 

node. 

Add the new node back 

into priority queue. 

‘’, 15000 

a, 5000 b, 10000 
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Figure 9-17: Example of Huffman tree creation (second iteration). 

‘’, 15000  

a, 5000  b, 10000  

c, 20000  d, 31000  e, 34000  

‘’, 35000  

‘’, 15000  

a, 5000  b, 10000  

c, 20000  

Remove 2 nodes 

to create a new 

node. 

Add the new node back into priority queue. 

d, 31000  e, 34000  ‘’, 35000  

‘’, 15000  

a, 5000  b, 10000  

c, 20000  
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Figure 9-18: Example of Huffman tree creation (third iteration). 

d, 31000 e, 34000 ‘’, 35000 

‘’, 15000 

a, 5000 b, 10000 

c, 20000 

‘’, 65000 

d, 31000 e, 34000 

Remove 2 nodes 

to create a new 

node. 

Add the new node back 

into priority queue. 

‘’, 35000 

‘’, 15000 

a, 5000 b, 10000 

c, 20000 

‘’, 65000 

d, 31000 e, 34000 
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‘’, 35000 

‘’, 15000 

a, 5000 b, 10000 

c, 20000 

‘’, 65000 

d, 31000 e, 34000 

‘’, 35000 

‘’, 15000 

a, 5000 b, 10000 

c, 20000 

‘’, 65000 

d, 31000 e, 34000 

Remove 2 nodes to 

create a new node. 

Now there is only one node to put inside 

our priority queue. It is the root of our 

finished Huffman tree. 

‘’, 100000 

Figure 9-19: Example of Huffman tree creation (fourth iteration). 
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The code for Huffman tree construction is left as an 

exercise for readers. 

Exercises 

1. Define a new class for a node of a Huffman tree (let us

call it class HuffmanNode). Then write a method that

creates a Huffman tree from a given heap. The

method returns a HuffmanNode.

2. Let your data (to be stored in a heap) be of type:

public class Student { 

String name; //name 

int mark; // score 

public Student(String n, int m){ 

name = n; mark = m; 

} 

} 

Let class StudentHeap extend from class Heap (but 

students with more marked are popped first). Currently, 

StudentHeap does not have any method. Write the 

following methods in class StudentHeap :  

• public Heap mergeHeap(Heap secondHeap): This

method combines secondHeap of Student with our

heap and return a new heap with all data from both

heaps (for each data, a new copy of it must be

created before being put in a new heap). The array

mData of this and secondHeap must not change.

What is the worst-case runtime of your code?

• public static boolean isAHeap(Heap h): This

method tests heap of Student and returns true if
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students with more marks are organized to be 

popped before students with less marks, i.e. a 

student has more score than all students below 

him/her in the heap (Assume that h.size() is correct 

but the data inside the heap’s array may not be 

ordered correctly according to the definition of 

Heap).  

• public void changemark(String name, int

newMark): Change the mark of any one student.

Our student heap then must still preserve its heap

properties.

3. we want to compress a text file that stores only

alphabet a, b, c, d, e. where the frequency of each

alphabet is as follows:

a: 370 

b: 80 

c: 60 

d: 150 

e: 30 

When putting these data inside a heap, the popping 

sequence of the heap (from left to right) is: 

(e: 30), (c: 60), (b: 80), (d: 150), (a: 370) 

Assume that you always use the first value taken from 

the heap as left branch of your construction of Huffman 

tree, and the second value from the heap as right branch, 

draw a popping sequence and a partial Huffman tree 
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for each step of removing 2 smallest-frequency values 

from the heap, until the Huffman tree is complete. Then 

after you have a complete Huffman tree, write down a 

bit string that represents each alphabet. 

4. A heap of integer (smallest number is most important)

is implemented using tree structure that has parent

link.

class HeapNode{ 

int data; 

HeapNode left, right, parent; 

public HeapNode(int v){ 

data =v; 

left = null; 

right = null; 

parent = null; 

} 

} 

class Heap{ 

HeapNode root; 

} 

A queue that can store HeapNode object is also available, 

with the following methods: 

• public Queue(): constructor that creates an empty

queue.

• public void insertLast(HeapNode n): this method puts

node n at the back of the queue.

• public HeapNode removeFirst(): this method removes

the node stored in front of the queue. It returns the

removed node.

• public boolean isEmpty(): this method returns true if

the queue is empty, otherwise it returns false.
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• public HeapNode front(): this method returns the

node stored in front of the queue, without

changing the queue.

Write code for the following methods of the above 

Heap: 

• public void percolateUp(HeapNode n). This

method moves the value stored in n up the tree of

our Heap until the tree becomes heap again (the

method is used to fixed the tree after adding a new

data).

• public void add(int v). This method adds new data,

v, into our heap, then arranges the heap so that it

retains all properties of heap.

• public int pop(). This method removes the node

that contains the smallest value from the heap,

arranges the heap so that it retains all properties of

heap, and returns the integer inside the removed

node.

5. For class Heap in this chapter, write method public

void removeValue(Object value). This method

removes specified value stored in our array

implementation. The array after the removal must still

have the quality of heap.

6. Assume that our Heap contains at least 3 elements and

the smallest value is the most important value. Write

code for method public void removeSecond(). This

method removes the value next to the smallest value

from the heap. After the method finishes, the heap

must still have all the qualities of heap.
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7. For class Heap defined by array in this chapter, write

method public int calculateMaxIndex(). This method

returns the index of the maximum value in our array.

8. A min-max heap of integer looks like the following:

Even levels are like min heap (small value is more 

important). Odd levels are like max heap (greater value 

is more important).  

A member in an even level must have smaller value than 

the value in its direct parent. For example, 8 and 5 are 

less than 80. Similarly, a member in an odd level must 

have larger value than the value in its direct parent. For 

example, 30 and 8 are greater than 4.   

Write code for method void add(int newnumber) of this 

new data structure. This method adds a new number to 

the min-max heap. When the addition finishes, the heap 

must still be a min-max heap.  

1

1

30

0

9 

80 

5 8 4 

10 85 

Level 0 

Level 1 

Level 2 

Level 3 
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Chapter 10 : AVL Tree 

For a binary search tree, the more it looks like a perfectly 

balanced tree, the less time for searching, since the tree 

height will be low. But we have no control over how a 

binary search tree will look like. It might look like a 

linked list, which gives us the worst possible search time. 

An AVL tree (AVL is an abbreviation of Adelson-Velskii 

and Landis) is a binary search tree that has a rule 

controlling its height. The rule is as follows: 

For each node, n, in an AVL tree, let the height of its left 

subtree be ℎ𝐿, and the height of its right subtree be ℎ𝑅. 

Then |ℎ𝐿 − ℎ𝑅| ≤ 1.  

In other words, the difference of height between a left 

and right subtree must never go beyond 1. This means 

we are trying to make our tree as flat as possible prevent 

parts of the tree forming a linked list.  

Examples of AVL trees are shown in Figure 10-1. Non-

AVL Trees are shown in Figure 10-2. The nodes that fail 

the height condition are marked.  
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With this condition, we are certain that our tree height is 

still in terms of log2 𝑛. 

The problem is how we can maintain this height 

condition after adding/removing data. What we actually 

need to do is: we add/remove just like what we do in 

binary search tree, but we rebalance the tree after the 

change.  

31 

36 25 

11 

40 

33 50 

19 57 45 

48 

26 26 

31 

Figure 10-1: Examples of AVL trees. 
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Rebalancing the Tree 
There are only 4 possible cases that a node can become 

non-AVL after adding/removing data from/to an 

existing AVL tree. We will go through each case. 

1. A node is heavy to its left (its ℎ𝐿 − ℎ𝑅 = 2,

becoming non-AVL), and its left subtree is also

heavy to its left (its ℎ𝐿 − ℎ𝑅 = 1).

26 

31 

43 

26 

31 

28 

31 

36 25 

11 

5 

32 

34 

40 

35 50 

22 57 45 

11 

Figure 10-2: Examples of non-AVL Trees. 
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This part of our tree can be made AVL again by rotating 

the left subtree up, as shown in Figure 10-3. The method 

that we will implement for this fix will be called 

rotateLeftChild. Rotating a node up a tree is not as difficult 

as readers may think. We just need to change pointers so 

that the part of our tree that needs fixing changes 

accordingly.   

2. A node is heavy to its right (its ℎ𝐿 − ℎ𝑅 = −2,

becoming non-AVL), and its right subtree is also

heavy to its right (its ℎ𝐿 − ℎ𝑅 = −1). This part of

our tree can be made AVL again by rotating the

right subtree up, as shown in Figure 10-4. The

method that we will implement for this fix will be

called rotateRightChild.

𝑛 

𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛) 

ℎ𝐿 − ℎ𝑅 = 2 

ℎ𝐿 − ℎ𝑅 = 1 

x 

y 

A 

B

C 

y 

x 

C B
A 

Figure 10-3: Rebalance, 1st possible case. 
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3. A node is heavy to its left (its ℎ𝐿 − ℎ𝑅 = 2,

becoming non-AVL), and its left subtree is heavy

to its right (its ℎ𝐿 − ℎ𝑅 = −1). A rotation that fix

this case is shown in Figure 10-5. One

rotateLeftChild(n) will not solve the problem

because the longest branch (connecting to the node

that stores z) does not move up even one level. For

this case, the rotation must be done twice. First,

rotateRightChild(n.left), then rotateLeftChild(n).

ℎ𝐿 − ℎ𝑅 = −2 

ℎ𝐿 − ℎ𝑅 = −1 

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛) 

y 

x 

C 
A B

x 

y 

C 

B

A 

n 

Figure 10-4: Rebalance, 2nd possible case. 
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𝑛 

ℎ𝐿 − ℎ𝑅 = 2 

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛. 𝑙𝑒𝑓𝑡) 

ℎ𝐿 − ℎ𝑅 = −1 

z 

x 

y 

A

D 

B C

x 

y 

D 

A B

C

z 

n 

x y 

D A B C

z 

𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛) 

Figure 10-5: Rebalance, 3rd possible case. 
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4. A node is heavy to its right (its ℎ𝐿 − ℎ𝑅 = −2,

becoming non-AVL), and its right subtree is heavy

to its left (its ℎ𝐿 − ℎ𝑅 = 1). A rotation that fix this

case is shown in Figure 10-6. One

rotateRightChild(n) will not solve the problem

because the longest branch (connecting to the node

that stores z) does not move up even one level. For

this case, the rotation has to be done twice. First,

rotateLeftChild(n.right), then rotateRightChild(n).

Implementation of AVL Tree 
The implementation is very similar to class BST. But we 

cannot extend from BSTNode because left, right, parent 

will then be BSTNode.  

Node Implementation 

First, we look at a node of an AVL tree. It is implemented 

by class AVLNode. It is almost the same as a node of a 

binary search tree, with one extra variable, height, which 

stores the height of the tree (counting down from the 

node).   

The following methods are needed for a node: 

• int getHeight(AVLNode n): returns the height of a

given node, n, by reading the value of variable

height. We need to use a node as a parameter here

because it allows the node to be null.
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• void updateHeight(AVLNode n): recalculates the

height of n, and set the value of height, assuming

that n.left and n.right have correct height.

• int tiltDegree(AVLNode n): calculates ℎ𝐿 − ℎ𝑅  of

node n. This is necessary when we rebalance the

tree.

𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛. 𝑟𝑖𝑔ℎ𝑡) 

ℎ𝐿 − ℎ𝑅 = −2 

ℎ𝐿 − ℎ𝑅 = 1 
x 

y 

D

A

CB

z 

x 

A

y 

z 

n 

B

DC

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛) 

z 

x y 

A DCB

Figure 10-6: Rebalance, 4th case. 
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The code for a node of an AVL tree is shown in Figure 

10-7.

1:   public class AVLNode { 
2: int data; 

3: AVLNode left, right, parent; 

4: int height; 

5: 
6: public AVLNode(int data) { 

7: this.data = data; 

8: left = null; 

9: right = null; 

10:  parent = null; 

11:  height = 0; 

12:   } 

13: 
14:   public AVLNode(int data, AVLNode left, AVLNode 

15:   right, AVLNode parent, int height) { 

16:  this.data = data; 

17:  this.left = left; 

18:  this.right = right; 

19:  this.parent = parent; 

20:  this.height = height; 

21:  } 

22: 
23:   public static int getHeight(AVLNode n) { 

24:  return (n == null ? -1 : n.height); 

25:   } 

26: 
27:   public static void updateHeight(AVLNode n) { 

28:  if (n == null) 

29: return; 

30:  int leftHeight = getHeight(n.left); 

31:  int rightHeight = getHeight(n.right); 

32: n.height = 1 + (leftHeight < rightHeight ?

33: rightHeight : leftHeight);

34:   } 

35: 
36:   public static int tiltDegree(AVLNode n) { 

37: if (n == null) 

38: return 0; 

39: return getHeight(n.left) - getHeight(n.right); 

40:   } 

41: } 

Figure 10-7: Code for a node of AVL tree. 
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Iterator Implementation 

Since an AVL tree is still a binary search tree, an iterator 

for an AVL tree works in the same manners as an iterator 

for a binary search tree. Therefore, the implementation is 

the same except all BSTNode get replaced by AVLNode. 

We call the class for this iterator AVLTreeIterator. The 

code for this iterator class is left as an exercise for readers. 

Tree Implementation 

An AVL tree class (AVLTree) contains root and size, just 

like our binary search tree, except the root is of type 

AVLNode.  

Almost all methods remain the same as its binary search 

tree counterpart (but AVLNode replaces BSTNode and 

AVLTreeIterator replaces TreeIterator. See Figure 10-8 and 

Figure 10-9), except method insert and remove, where we 

need to rebalance the tree. There are also 3 new methods: 

• AVLNode rotateLeftChild(AVLNode n): this method

rotates the left child of n (the root of our subtree we

are working on) up the tree. It returns the new root

of our subtree after the rotation finishes.

• AVLNode rotateRightChild(AVLNode n): this method

rotates the right child of n (the root of our subtree

we are working on) up the tree. It returns the new

root of our subtree after the rotation finishes.

• AVLNode rebalance(AVLNode n): this method

rebalances the subtree that has n as its root

according to the 4 cases discussed in the last section
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(page 367-371). It returns a new root of the subtree 

after the rebalance finishes.   

1:   public class AVLTree { 
2: AVLNode root; 

3: int size; 

4: 
5: public AVLTree() { 

6: root = null; 

7: size = 0; 

8: } 

9: 
10:    public boolean isEmpty() { 

11: return size == 0; 

12:   } 

13: 
14:   public void makeEmpty() { 

15: root = null; 

16: size = 0; 

17:   } 

18: 
19:   public Iterator findMin() { 

20: return findMin(root); 

21:   } 

22: 
23:   public Iterator findMin(AVLNode n) { 

24: if (n == null) 

25: return null; 

26: if (n.left == null) { 

27: Iterator itr = new AVLTreeIterator(n); 

28: return itr; 

29: } 

30: return findMin(n.left); 

31:   }  

32:   // continued in Figure 10-9. 

Figure 10-8: Code for AVL Tree (part 1). 
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Method rotateLeftChild updates the tree according to 

Figure 10-3. Method rotateRightChild updates the tree 

1:   public Iterator findMax() { 
2: return findMax(root); 

3:   } 
4: 
5:   public Iterator findMax(AVLNode n) { 
6: if (n == null) 

7: return null; 

8: if (n.right == null) { 

9: Iterator itr = new AVLTreeIterator(n); 

10:  return itr; 

11:   } 

12:   return findMax(n.right); 

13: } 

14: 
15: public Iterator find(int v) { 

16:   return find(v, root); 

17: } 

18: 
19: public Iterator find(int v, AVLNode n) { 

20:   if (n == null) 

21: return null; 

22:   if (v == n.data) 

23: return new AVLTreeIterator(n); 

24:   if (v < n.data) 

25: return find(v, n.left); 

26:   else 

27: return find(v, n.right); 

28: } 

29: //continued in Figure 10-13. 

Figure 10-9: Code for AVL Tree (part 2). 
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according to Figure 10-4. Their codes are shown in Figure 

10-10.

How the code for method rotateLeftChild manipulates the 

tree is shown in Figure 10-11. For method 

rotateRightChild, it is the same except it is mirrored. 

1:   public AVLNode rotateLeftChild(AVLNode n) { 

2: AVLNode l = n.left; 

3: AVLNode lr = n.left.right; // can be null 

4: n.left = lr;

5: if (lr != null) {

6: lr.parent = n; 

7: } 

8: l.right = n;

9: l.parent = n.parent;

10: n.parent = l;

11: AVLNode.updateHeight(n);

12: AVLNode.updateHeight(l);

13: return l;

14:   } 

15: 
16:   public AVLNode rotateRightChild(AVLNode n) { 

17: AVLNode r = n.right; 

18: AVLNode rl = n.right.left; // can be null 

19: n.right = rl;

20: if (rl != null) {

21: rl.parent = n; 

22: } 

23: r.left = n;

24: r.parent = n.parent;

25: n.parent = r;

26: AVLNode.updateHeight(n);

27: AVLNode.updateHeight(r);

28: return r;

29:   } 

30:   // continued in Figure 10-13. 

Figure 10-10: Code for rotateLeftChild and rotateRightChild. 
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The code for method rebalance is shown in Figure 10-12. 

Method rebalance merges the 1st case and the 3rd case from 

𝑙

𝑛 

l.right = n;

l.parent = n.parent;

𝑙r 

𝑛 

x 

y 

A 

B

C 

n.left = lr;

if (lr != null)

{

lr.parent = n; 

} 

x 

y 

A 
C B

𝑙 

𝑙r 

x 

y 

B

C 

A 

x 

y 

A 

B

C 

𝑙 
n.parent = l;

point to n.parent 

𝑛 

Figure 10-11: Detailed operation of method rotateLeftChild. 
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page 367-371 (code is shown on line 6-9 of Figure 10-12). 

It also merges the 2nd case and the 4th case (code is shown 

on line 11-14 of Figure 10-12).    

The code for method insert is shown in Figure 10-13. The 

code is the same as its binary search tree counterpart (the 

recursive version) except AVLNode is used instead of 

1:   public AVLNode rebalance(AVLNode n) { 
2: if (n == null) 

3: return n; 

4: int balance = AVLNode.tiltDegree(n); 

5: if (balance >= 2) { 

6: if (AVLNode.tiltDegree(n.left) <= -1) 

7: //3rd case 

8:           n.left = rotateRightChild(n.left);
9: n = rotateLeftChild(n); //1st case 

10:    } else if (balance <= -2) { 

11: if (AVLNode.tiltDegree(n.right) >= 1) 

12: //4th case 

13:         n.right = rotateLeftChild(n.right);

14: n = rotateRightChild(n); //2nd case 

15:    } 

16:    AVLNode.updateHeight(n); 

17:    return n; 

18: } // continued in Figure 10-13. 

Figure 10-12: Code for method rebalance. 



380 

BSTNode, and method rebalance is called right at the end 

(on line 18) to fix any non-AVL nodes.  

The code for method remove is shown in Figure 10-14. It 

works in the same way as its binary search tree 

counterpart. Similar to insert, it calls rebalance at the end. 

1:   public AVLNode insert(int v) { 
2: return insert(v, root, null); 

3:   } 
4:  
5:   // n is the root of our subtree. 
6:   // this method returns the new root of the  
7:   // subtree after v is added to the tree. 
8:   public AVLNode insert(int v, AVLNode n, AVLNode 
9:   parent) { 
10: if (n == null) { 

11:    n = new AVLNode(v, null, null, parent, 0); 

12: size++; 

13:   } else if (v < n.data) { 

14:      n.left = insert(v, n.left, n);

15:   } else if (v > n.data) { 

16:      n.right = insert(v, n.right, n);

17:   } 

18:   n = rebalance(n); 

19:   return n; 

20: } 

21: //continued in Figure 10-14. 

Figure 10-13: Code for method insert of AVL tree. 
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1:   public AVLNode remove(int v) { 
2: return remove(v, root, null); 

3:   } 
4:  
5:   public AVLNode remove(int v, AVLNode n, AVLNode 
6:   parent) { 
7: if (n == null) 

8: ; // do nothing (nothing to be removed) 

9: else if (v < n.data) { 

10:      n.left = remove(v, n.left, n);

11:   } else if (v > n.data) { 

12:      n.right = remove(v, n.right, n);

13: } else { 

14: if (n.left == null && n.right == null) { 

15:          n.parent = null;

16: n = null; 

17: size--; 

18: } else if(n.left != null && n.right == null) { 

19: AVLNode n2 = n.left; 

20: n2.parent = parent; 

21:          n.parent = null; 

22:          n.left = null;

23: n = n2; 

24: size--; 

25: } else if(n.right != null && n.left == null) { 

26: AVLNode n2 = n.right; 

27: n2.parent = parent; 

28:          n.parent = null; 

29:          n.right = null;

30: n = n2; 

31: size--; 

32: } else { 

33: AVLTreeIterator i = (AVLTreeIterator) 

34: findMin(n.right); 

35: int minInRIght = i.currentNode.data; 

36:          n.data = minInRight;

37:          n.right = remove(minInRight, n.right, n);

38:     } 

39:   } 

40:   n = rebalance(n); 

41:   return n; 

42: } 

43: // class AVLTree ends here. 

Figure 10-14: Code for method remove of AVL tree. 
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This is all we need for implementing an AVL tree. Please 

revise your knowledge with the exercises.   

Exercises 

1. Draw the following AVL trees after a value is inserted

or deleted. If a double rotation is used, draw each step

of the rotation separately.

a) 

 ? 
15 

10 30 

5 25 

20 

45 

35 50 

insert 40 
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b) 

c) 

insert 40 

? 
25 

10 50 

5 35 

30 

55 

45 60 

15 

remove 55 

? 
45 

15 60 

10 50 

5 

65 

20 35 

30 

55 

25 40 
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d) 

2. For class BSTRecursive in chapter 6, write code for

method:

public BSTNode moveFurthestDown(BSTNode n).

This method regards n as the root of a subtree we are 

interested in. It rotates data in n down the longest path 

possible from n until that data is in a leaf. Note that 

the longest path changes for each rotation. The 

method returns a new root of this subtree. 

Hint: 

- You can call public BSTNode

rotateRightChild(BSTNode n) and public

BSTNode rotateLeftChild(BSTNode n). Both

remove 5 

? 
15 

10 25 

5 20 30 

35 
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methods work just like they do in an AVL 

tree.  

- You can call public int max(int a, int b). This

method returns the maximum value among

value a and b.

- A null node has its height equals to -1.

An example is shown below 

 

 

25 

15 30 

10 20 35 

5 

25 

10 30 

5 15 35 

20 

this node is returned 

25 

10 30 

5 20 35 

This value is moved to leaf 15 

n 

15 

10 25 

5 20 30 

35 
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3. For class AVLTree, write code for method:

public boolean isAVL(AVLNode n)

This method tests to see whether node n and all nodes 

below it satisfy the structural requirement of AVL 

tree.     

4. For class BST, write code for method:

public BSTNode addUP(int num, BSTNode n)

This method adds num to part of the tree that has n as 

its root.  After num is added, it must be at the root of 

that part of the tree (use rotation to move a newly 

added number up the tree). An example is shown 

below. 

 

n 

addUp(8,n) 10 

5 15 

10 

5 15 

8 

10 

5 

15 8 

8 

5 10 

15 
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5. Draw, step by step, what happens when we add 10,

15, 20, 18, 35, 19 to an empty AVL tree.

6. An AVL Tree looks like:

Draw, step by step, what happens when we delete 80. 

7. For class AVLTree, write code for method:

public AVLTree merge(BST t)

This method combines all data in our AVL tree and in 

a binary search tree, t. It returns an AVL tree that has 

all data from both trees as a result.   

60 

35 70 

19 40 80 

38 50 
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on the most basic data structures and algorithms,

with lots of illustrated examples. 
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