
FIRST BOOK FOR DATA
STRUCTURES &

ALGORITHMS IN JAVA
VISHNU KOTRAJARAS

First Book for Data

Structures & Algorithms in

Java

Vishnu Kotrajaras

ii

Vishnu Kotrajaras (วิษณุ โคตรจรัส)
First Book for Data Structures & Algorithms in Java / Vishnu Kotrajaras (วิษณุ โคตรจรัส)

1. โครงสร้างข้อมูลและอัลกอริทึม
2. ภาษาโปรแกรม จาวา

พิมพ์คร้ังท่ี 1 จำนวน 100 เล่ม พ.ศ. 2561

สงวนลิขสิทธิ์ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2537/2540
โดย วิษณุ โคตรจรัส
การผลิตและลอกเลียนตำราเล่มนี้ไม่ว่ารูปแบบใดท้ังส้ิน
ต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากเจ้าของลิขสิทธิ์

จัดพิมพ์โดย
วิษณุ โคตรจรัส
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย
พญาไท กรุงเทพฯ 10330

ออกแบบปก: วิษณุ โคตรจรัส
ออกแบบรูปเล่ม: วิษณุ โคตรจรัส
ภาพประกอบ: คามิน กลยุทธสกุล

พิมพ์ท่ี ห้างหุ้นส่วนจำกัด ภานุธร โทรศัพท์ 081-9245642, 086-4265269
26/114 ถนนพระรามท่ี 2 แขวงบางมด กรุงเทพฯ

Vishnu Kotrajaras

First Book for Data Structures & Algorithms in Java / Vishnu Kotrajaras
1. Data Structures and Algorithms

2. Java Programming Language

First Edition, 100 copies, 2018.

Copyright 2018 by Vishnu Kotrajaras.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or transmitted

by any means or media, electronic or mechanical, including, but not limited to, photocopy, recording, or scanning,

without prior permission in writing from the author.

Printed in Thailand by

Vishnu Kotrajaras

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Payathai, Bangkok 10330

Cover Design: Vishnu Kotrajaras

Print Format Design: Vishnu Kotrajaras

Illustration: Kamin Kolyutsakul

Printed at Panuthorn L.P. Tel. 081-9245642, 086-4265269

26/114 Rama 2 Road, Bang Mod, Bangkok, Thailand

iii

To my wife for her love and support.

iv

I

Preface
Data structures is one of the fundamental subjects

students in Computer Science and Computer

Engineering have to learn to master. Usually, this subject

is taught after students passed at least one basic

programming course. The author has been involved with

this subject for over two decades, being a student, a

teaching assistant, and eventually a professor who

teaches the subject. Students who had problems with this

subject were either unable to draw pictures to help them

understand various concepts, or unable to translate from

pictures to code. This textbook, developed from class

notes the author wrote for Fundamental Data Structure

and Algorithm course offered to students in the

International School of Engneering, Chulalongkorn

University, tries to present concepts with many pictures,

together with code explanations, to help students

overcome those problems. The author hopes this

textbook helps improve readers’ understanding and

enjoyment for the subject.

II

III

Table of Contents
CHAPTER 1 : DATA STRUCTURES AND OUR PROGRAM 1

What is a Data Structure? .. 1

This book’s organization .. 6

CHAPTER 2 : INTRODUCTION TO ALGORITHM ANALYSIS 11

Running Time Analysis ... 11

Asymptotic Notation .. 20

Asymptotic Notations and Nested Loop 22

Asymptotic Runtime and Consecutive Operations 25

Asymptotic Runtime and Conditional Operations 26

Asymptotic Runtime and Recursion ... 27

Asymptotic Runtime in Logarithmic Form................................ 28

Asymptotic Runtime and Its Application in Choosing

Implementation ... 38

Best-Case, Worst-Case, and Average Case Runtime 41

Beyond Big-Theta and Big-O ... 44

CHAPTER 3 : LIST ... 49

List and Its Operations ... 49

Implementing a List with Array .. 49

Implementing a List with Linked List .. 58

Doubly-linked list ... 80

Sparse Table .. 97

Skip List ... 100

CHAPTER 4 : STACK .. 109

Stack Operations ... 109

Notable uses of Stack ... 110

Bracket Pairing ... 110

Handling Data for Method Calls ... 114

Postfix Calculation .. 119

Transforming Infix to Postfix Form .. 123

Implementing a Stack with Array ... 137

Implementing a Stack with Linked List .. 141

IV

CHAPTER 5 : QUEUE .. 155

Queue Operations ... 155

Implementing a Queue with Array ... 158

Implementing a Queue with Linked List .. 166

Double-Ended Queue ... 172

Implementing a Double-Ended Queue with Array 174

Double-Ended Queue implemented with Linked List 177

Application of Queue: Radix Sort.. 180

CHAPTER 6 : BINARY TREE .. 195

Interesting properties of A Binary Tree .. 200

Binary Search Tree .. 204

Binary Search Tree Implementation .. 206

Recursive Implementation of Binary Search Tree 233

Recursive Tree Traversal .. 241

Breadth-First Tree Traversal .. 244

CHAPTER 7 : HASH TABLE ... 255

Designing A Hash Function ... 257

Transforming our key .. 257

Making our integer more widely distributed 259

Transforming our value into array index 261

Separate Chaining Hash Table .. 262

Implementation of Separate Chaining Hash Table 263

Runtime Analysis of Separate Chaining Hash Table 269

Open Addressing Hash Table .. 271

Linear Probing .. 271

Quadratic Probing ... 277

Double Hashing... 281

Implementation of Open Addressing Hash Table 282

Separate Chaining VS Open Addressing .. 289

CHAPTER 8 : SORTING ... 293

Bubble Sort .. 293

Selection Sort ... 295

Insertion Sort ... 299

V

Merge Sort ... 301

Array Splitting ... 301

Sorting Each Portion .. 303

Merging Two Sorted Portions ... 304

Implementation and Runtime of Merge Sort 305

Quick Sort ... 310

Choosing a Pivot ... 312

Partitioning .. 313

Implementation and Runtime of Quick Sort 316

Bucket Sort .. 324

CHAPTER 9 : PRIORITY QUEUE .. 331

Implementation Choices .. 333

Linked List Implementation of Priority Queue 334

Heap .. 338

Heap Implementation and Runtime Analysis.................................. 338

Priority Queue Application: Data Compression 350

CHAPTER 10 : AVL TREE ... 365

Rebalancing the Tree .. 367

Implementation of AVL Tree... 371

Node Implementation .. 371

Iterator Implementation .. 374

Tree Implementation ... 374

BIBLIOGRAPHY .. 388

INDEX .. 390

VI

List of Figures
Figure 1-1: Linked list storing 5 integers. ... 3

Figure 1-2: Binary Search Tree that stores 5 integers. 3

Figure 1-3: Maxheap storing 5 integers. .. 4

Figure 1-4: Following pointers to the last data in our linked list. 5

Figure 1-5: Book organization. ... 9

Figure 2-1: Code calculating an average value from a given array.11

Figure 2-2: Running time for each growth rate.15

Figure 2-3: Code 1. ...16

Figure 2-4: Code 2. ...16

Figure 2-5: Growth rates of codes in Figure 2-3 and Figure 2-4.17

Figure 2-6: Big-Theta definition shown by graph.21

Figure 2-7: Program with a conditional exit. ...23

Figure 2-8: Growth rate of code with a conditional exit.24

Figure 2-9: Code with consecutive loops. ..25

Figure 2-10: Code with alternative paths of execution.26

Figure 2-11: Code with recursive calls. ..27

Figure 2-12: Iterative version of code in Figure 2-11.28

Figure 2-13: Starting condition for our binary search example.29

Figure 2-14: Finding the middle data for the 1st time in binary search. .30

Figure 2-15: Finding the middle data of the right half of the array in our

binary search. ...30

Figure 2-16: The required data found by our binary search...................31

Figure 2-17: Code for binary search on an array.32

Figure 2-18: Program that finds the greatest common divisor.34

Figure 2-19: Values of each variable in each iteration of the code in Figure

2-18. ...35

Figure 2-20: Proof of claim - If 𝑎 > 𝑏 then (𝑎%𝑏) < 𝑎2.36

Figure 2-21: Code for calculating 𝑥𝑛. ...38

Figure 2-22: Code for calculating 𝑥𝑛 , written recursively.39

Figure 2-23: Calculating the largest gap between 2 values in a given

array, the exhaustive approach. ...40

Figure 2-24: Calculating the largest gap between 2 values in a given

array, using the maximum and minimum value.40

Figure 2-25: Finding the position of 𝑥 in an array.42

Figure 3-1: List implementation using array. ..50

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892050
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892051
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892052
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892053
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892069
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892069
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892070
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892073
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892073
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892074
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892080

VII

Figure 3-2: Method insert for linked list implemented using array. 52

Figure 3-3: Inserting new data into array. ... 53

Figure 3-4: Method remove of List implemented by array. 54

Figure 3-5: Removing data from an array. .. 55

Figure 3-6: Method head, tail, and append. .. 56

Figure 3-7: Linked list structure concept ... 58

Figure 3-8: Removing data from a linked list. ... 59

Figure 3-9: Inserting data into a linked list. ... 60

Figure 3-10: Inserting new data into the first position. 61

Figure 3-11: A linked list with a header node. .. 61

Figure 3-12: An empty linked list with a header node. 62

Figure 3-13: Implementation of a node that stores an integer. 62

Figure 3-14: A node created from ListNode a = new ListNode(5); 63

Figure 3-15: Simple markers a, b, and c at positions of interest. 63

Figure 3-16: interface Iterator. .. 65

Figure 3-17: Iterator for Linked List implementation. 66

Figure 3-18: List iterator focusing on list header. 66

Figure 3-19: State of List iterator that method hasNext returns false. 67

Figure 3-20: The working of method next. ... 68

Figure 3-21: Linked List implementation (constructor, find, and findKth).

 .. 69

Figure 3-22: Execution steps of method find. ... 70

Figure 3-23: insert method of LinkedList. ... 71

Figure 3-24: Inserting a new value at the start of the list (after the

header). .. 72

Figure 3-25: Inserting after the last data in a list. 72

Figure 3-26: remove method of LinkedList. ... 73

Figure 3-27: Status of variables when findPrevious is called on an empty

list. .. 74

Figure 3-28: Status of variables in each step of execution when

findPrevious is called on a list that stores value. 75

Figure 3-29: Final status of variables when findPrevious is called on a list

that does not store value. ... 76

Figure 3-30: Method head and tail of LinkedList. ... 77

Figure 3-31: Method append of LinkedList... 78

Figure 3-32: Example of a circular doubly-linked list. 80

Figure 3-33: Code of a node of a doubly-linked list. 81

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892081
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892082
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892083
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892085
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892086
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892087
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892088
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892089
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892090
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892091
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892093
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892094
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892097
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892098
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892099
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892100
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892100
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892101
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892102
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892103
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892103
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892104
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892105
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892106
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892106
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892107
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892107
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892108
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892108
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892109
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892110
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892111
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892112

VIII

Figure 3-34: A DListNode created by its default constructor.................81

Figure 3-35: Iterator that can traverse a data structure in two directions.

...82

Figure 3-36: Bi-directional linked list iterator. ...83

Figure 3-37: List iterator creation on a doubly-linked list.84

Figure 3-38: Circular doubly-linked list variables, constructor, and

small utility methods. ..85

Figure 3-39: Making an empty list with method makeEmpty.86

Figure 3-40: Method find of circular doubly-linked list.87

Figure 3-41: Method findKth of circular doubly-linked list.88

Figure 3-42: Method insert of circular doubly-linked list.89

Figure 3-43: Execution steps of insert for doubly-linked list.91

Figure 3-44: Method remove of doubly-linked list.92

Figure 3-45: Method findPrevious and remove(Iterator p) of doubly-linked

list..93

Figure 3-46: The working of findPrevious for doubly-linked list.94

Figure 3-47: How remove(Iterator p) operates in doubly-linked list........95

Figure 3-48: Code for removing data at a specified position.96

Figure 3-49: Two-dimensional array representing games and players’

progresses...98

Figure 3-50: Linked list implementation of a sparce table.99

Figure 3-51: A skip list (shown with 1 direction pointers only in order

to avoid confusion). ... 100

Figure 3-52: Doubly-linked skip list with 5 data. 101

Figure 3-53: Sample code for a skip list node. 103

Figure 4-1: Stack with 3 data inside.. 109

Figure 4-2: Pushing data d onto a stack.. 110

Figure 4-3: Popping data out of a stack.. 110

Figure 4-4: Processing brackets, with excess closing brackets. 111

Figure 4-5: Processing brackets, with incorrect type pairing. 112

Figure 4-6: Processing brackets, with excess opening bracket. 113

Figure 4-7: Excample method calls. .. 114

Figure 4-8: Pseudocode for Infix to Postfix Transformation. 126

Figure 4-9: Pseudocode for Infix to Postfix Transformation, after adding

inside-outside stack priorities. .. 133

Figure 4-10: Stack Operations (interface). .. 136

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892113
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892114
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892114
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892115
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892116
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892117
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892117
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892118
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892119
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892120
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892121
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892122
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892123
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892124
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892124
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892125
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892126
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892127
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892129
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892131
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892132
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892133
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892134
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892135
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892136
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892137
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892138
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892139
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892140
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892141
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892141
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892142

IX

Figure 4-11: Stack implemented by array (fields, constructors, get, set).

 .. 137

Figure 4-12: isEmpty(), isFull(), and makeEmpty() of stack implemented

with array. .. 138

Figure 4-13: Code of method top, for stack implemented with array. . 139

Figure 4-14: top and bottom of stack of size 3 (implemented with

array). ... 139

Figure 4-15: Code of method pop, for stack implemented with array. 140

Figure 4-16: Popping data from a stack implemented with array. 140

Figure 4-17: Code of method push, for stack implemented with array.

 .. 141

Figure 4-18: Pushing data onto stack implemented with array. 141

Figure 4-19: Linked list used as stack. ... 142

Figure 4-20: Code for stack implemented with circular doubly-linked

list (fields and constructors). .. 143

Figure 4-21: isEmpty(), isFull(), and makeEmpty() for stack implemented

with circular doubly-linked list. ... 144

Figure 4-22: top() for stack implemented with circular doubly-linked

list. .. 144

Figure 4-23: pop() for stack implemented with circular doubly-linked

list. .. 145

Figure 4-24: Removing the top of stack in linked list implementation.

 .. 145

Figure 4-25: Method push for stack implemented with circular doubly-

linked list.. 146

Figure 4-26: Pushing new data onto stack implemented with circular

doubly-linked list. ... 146

Figure 5-1: Queueing for services... 155

Figure 5-2: Dequeueing the first data from a queue. 156

Figure 5-3: Enqueueing a new data.. 157

Figure 5-4: Interface for queue storing integer data. 157

Figure 5-5: Dequeue for array implementation..................................... 159

Figure 5-6: Enqueue for array implementation. 160

Figure 5-7: Incrementing front that goes back to the first array slot when

dequeueing. ... 161

Figure 5-8: front+size that goes back to the first array slot when

enqueueing. ... 162

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892143
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892143
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892144
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892144
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892145
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892146
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892146
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892147
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892148
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892149
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892149
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892150
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892151
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892152
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892152
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892153
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892153
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892154
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892154
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892155
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892155
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892156
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892156
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892157
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892157
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892158
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892158
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892159
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892160
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892161
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892162
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892163
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892164
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892165
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892165
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892166
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892166

X

Figure 5-9: fields, constructors, and methods that check for size in the

array implementation of queue. ... 163

Figure 5-10: Code for front() in array implementation of queue. 164

Figure 5-11: Code for back() in array implementation of queue. 164

Figure 5-12: Code for removeFirst() in array implementation of queue.

... 165

Figure 5-13: Code for method insertLast in array implementation of

queue. ... 166

Figure 5-14: Using a circular doubly-linked list to represent a queue. 167

Figure 5-15: Code for field, constructors, isEmpty(), isFull(), size() of

linked list implementation of queue. ... 168

Figure 5-16: Code for front() of linked list implementation of queue. . 168

Figure 5-17: Code for back() of linked list implementation of queue. .. 169

Figure 5-18: Identifying the last data in linked list implementation of

queue. ... 169

Figure 5-19: Code for removeFirst() of linked list implementation of

queue. ... 170

Figure 5-20: Removing the first data in linked list implementation of

queue. ... 171

Figure 5-21: Code for insertLast() of linked list implementation of

queue. ... 171

Figure 5-22: Adding a new data to linked list implementation of queue.

... 172

Figure 5-23: Illustrated concept of removeLast(). 173

Figure 5-24: Illustrated concept of insertFirst(data). 173

Figure 5-25: Java interface for double-ended queue. 174

Figure 5-26: Double-ended queue implementation using array. 174

Figure 5-27: Reducing size without changing front in array

implementation of double-ended queue. .. 175

Figure 5-28: Operations inside insertFirst(77) for array implementation

of double-ended queue. .. 176

Figure 5-29: Linked list implementation of double-ended queue. 177

Figure 5-30: Operations inside removeLast() for linked list

implementation of double-ended queue. .. 178

Figure 5-31: Operations of insertFirst(9) for linked list implementation

of double-ended queue. .. 179

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892167
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892167
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892168
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892169
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892170
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892170
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892171
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892171
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892172
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892173
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892173
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892174
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892175
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892176
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892176
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892177
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892177
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892178
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892178
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892179
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892179
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892180
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892180
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892181
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892182
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892183
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892184
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892185
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892185
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892186
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892186
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892187
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892188
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892188
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892189
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892189

XI

Figure 5-32: Step a), getting numbers into queues, when the least

significant digit is the sorting identifier. ... 181

Figure 5-33: Step b), getting all numbers back to the array. 182

Figure 5-34: Step a), when using the second digit from the right as a

sorting identifier. ... 182

Figure 5-35: Step b), when using the second digit from the right as a

sorting identifier. ... 183

Figure 5-36: Step a), when using the third digit from the right as a

sorting identifier. ... 183

Figure 5-37: Step b), when using the third digit from the right as a

sorting identifier. ... 184

Figure 5-38: Radix sort implementation (part 1). 184

Figure 5-39: Radix sort implementation (part 2). 185

Figure 6-1: A Binary Tree. ... 195

Figure 6-2: Node levels in a tree. .. 198

Figure 6-3: A perfectly balanced tree. .. 198

Figure 6-4: Examples of non-complete/complete binary trees. 199

Figure 6-5: Searching for the number 4 in a Binary Search Tree. 205

Figure 6-6: A node implementation concept of a binary tree............... 206

Figure 6-7: Tree from Figure 6-5, utilizing our implementation idea. . 207

Figure 6-8: Code for binary search tree node. 208

Figure 6-9: Creating a node by using one parameter constructor. 208

Figure 6-10: Node visiting sequence. ... 209

Figure 6-11: Code for tree iterator field and constructor. 210

Figure 6-12: Method hasNext of class TreeIterator. 210

Figure 6-13: Immediate parent contains a larger value. 212

Figure 6-14: Movement of p and temp when the larger value is in some

ancestor node. .. 212

Figure 6-15: Movement of p and temp when a node with larger value

does not exist. .. 213

Figure 6-16: Method hasPrevious of class TreeIterator. 214

Figure 6-17: Code for method next of class TreeIterator. 215

Figure 6-18: Finding node Z, with a value just larger than X, when our

current node, X, has another node as its right. 215

Figure 6-19: Code for method previous of class TreeIterator. 217

Figure 6-20: Code for method set of class TreeIterator. 217

Figure 6-21: Structure of a binary search tree (implementation). 218

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892190
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892190
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892191
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892192
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892192
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892193
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892193
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892194
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892194
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892195
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892195
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892196
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892197
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892198
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892199
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892200
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892201
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892202
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892203
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892204
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892205
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892206
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892207
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892208
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892209
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892210
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892211
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892211
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892212
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892212
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892213
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892214
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892215
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892215
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892216
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892217
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892218

XII

Figure 6-22: Implementation of method findMin for a binary search tree.

... 219

Figure 6-23: Code for method find of binary search tree. 220

Figure 6-24: Adding new data, v, to an empty binary search tree. 222

Figure 6-25:Adding 6 to a binary search tree that does not originally

store 6. .. 223

Figure 6-26: Code for inserting value v into a binary search tree. 224

Figure 6-27: Removing v when v is in a root with no children. 227

Figure 6-28: Removing v when v is in a node (not a root) with no

children... 227

Figure 6-29: Removing v when v is in a root with right child but no left

child. ... 228

Figure 6-30: Removing v when the node, n, that stores v has only its

right child, it is not the tree’s root, and n stores a larger value than its

parent.. 228

Figure 6-31: Removing v when the node, n, that stores v has only its

right child, it is not the tree’s root, and n stores a smaller value than its

parent.. 229

Figure 6-32: Removing v when the node, n, that stores v has both left

and right child.. 230

Figure 6-33: Code for method remove of a binary search tree (part 1). 231

Figure 6-34: Code for method remove of a binary search tree (part 2). 232

Figure 6-35: Instance variables and simple methods of a recursive

binary search tree. ... 234

Figure 6-36: Method findMin of class BSTRecursive. 234

Figure 6-37: Method find of class BSTRecursive. 235

Figure 6-38: Method insert of class BSTRecursive. 236

Figure 6-39: The tree is not modified properly if n.right is not used to

store the result of insert. .. 237

Figure 6-40: Incorrect use of method insert. ... 238

Figure 6-41: How the code in Figure 6-40 works. 238

Figure 6-42: Correction of code from Figure 6-40. 239

Figure 6-43: Code for method remove of class BSTRecursive. 240

Figure 6-44: Tree for use with all traversal examples. 241

Figure 6-45: code for preorder and inorder printing of data in a tree. 243

Figure 6-46: Search sequence by level of a tree. 244

Figure 6-47: Putting root into thisLevel queue. 245

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892219
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892219
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892220
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892221
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892222
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892222
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892223
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892224
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892225
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892225
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892226
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892226
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892227
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892227
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892227
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892228
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892228
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892228
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892229
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892229
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892230
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892231
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892232
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892232
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892233
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892234
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892235
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892236
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892236
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892237
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892238
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892239
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892240
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892241
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892242
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892243
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892244

XIII

Figure 6-48: Removing a node from thisLevel queue and put its left and

right nodes into nextLevel queue. .. 245

Figure 6-49: Removing all nodes from nextLevel queue and putting

them in thisLevel queue. .. 246

Figure 6-50: The queues after nodes with 1 and 8 are removed. 246

Figure 6-51: Removing all nodes from nextLevel queue and putting

them in thisLevel queue for the 2nd time. .. 246

Figure 7-1: A hash table example. .. 256

Figure 7-2: A function that transforms a string into integer. 258

Figure 7-3: A separate chaining hash table. ... 263

Figure 7-4: Fields, constructors, and utility methods for separate

chaining hash table. ... 264

Figure 7-5: Method hash of separate chaining hash table. 266

Figure 7-6: Method find of separate chaining hash table. 267

Figure 7-7: Method add and rehash of separate chaining hash table. ... 268

Figure 7-8: Method remove of separate chaining hash table. 269

Figure 7-9: Putting 1, 11, and 3 into a hash table of size 7, where

ℎ𝑎𝑠ℎ𝑥 = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. ... 272

Figure 7-10: Putting 8 in a hash table from Figure 7-9.......................... 273

Figure 7-11: Putting 9 in a hash table from Figure 7-10. 273

Figure 7-12: Removing 3 and then trying to search for 9, where ℎ𝑎𝑠ℎ𝑥 =

𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. .. 274

Figure 7-13: Lazy deletion prevents premature stopping while sarching

for data. .. 276

Figure 7-14: Adding 8 and 9 to a quadratic probing hash table that

already has 1, 3, and 11, with ℎ𝑎𝑠ℎ𝑥 = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. 277

Figure 7-15: Adding 8, 15, 22 into a quadratic probing hash table that

already has 1, with ℎ𝑎𝑠ℎ𝑥 = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. .. 279

Figure 7-16: Adding 8, 15, 22 into a double hashing hash table that

already has 1, with ℎ𝑎𝑠ℎ𝑥 = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 and ℎ𝑎𝑠ℎ2𝑥 = 3 − (𝑥%3).

 .. 283

Figure 7-17: Fields, constructors, and utility methods for open

addressing hash table. ... 284

Figure 7-18: Fields, constructors, hash functions, and method find of a

double hashing implementation. ... 286

Figure 7-19: Method add of a double hashing implementation. 288

Figure 7-20: Method rehash of a double hashing implementation. 289

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892245
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892245
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892246
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892246
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892247
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892248
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892248
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892249
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892250
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892251
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892252
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892252
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892253
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892254
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892255
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892256
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892257
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892257
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892258
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892259
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892260
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892260
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892261
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892261
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892262
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892262
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892263
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892263
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892264
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892264
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892264
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892265
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892265
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892266
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892266
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892267
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892268

XIV

Figure 7-21: Method remove of a double hashing hash table. 289

Figure 8-1: Bubble Sort. ... 294

Figure 8-2: Code for bubble sort algorithm. .. 295

Figure 8-3: Selection sort. .. 297

Figure 8-4: Code for selection sort. ... 298

Figure 8-5: Insertion sort. .. 300

Figure 8-6: Code for insertion sort.. 301

Figure 8-7: Merge sort concept. .. 302

Figure 8-8: Splitting array into 2 portions for sorting. 303

Figure 8-9: Combining 2 sorted arrays. .. 306

Figure 8-10: Code for merge sort. ... 307

Figure 8-11: Code for combining 2 sorted arrays into one. 307

Figure 8-12: Quick sort concept. ... 311

Figure 8-13: Bad pivot selection. ... 312

Figure 8-14: Code for median of 3. ... 313

Figure 8-15: Partitioning example (part 1). .. 315

Figure 8-16: Partitioning example (part 2). .. 316

Figure 8-17: Code for quick sort. .. 317

Figure 9-1: Priority queue operations. ... 332

Figure 9-2: Priority queue implemented by linked list (part 1)............ 335

Figure 9-3: Priority queue implemented by linked list (part 2)............ 336

Figure 9-4: A min heap example... 339

Figure 9-5: Array representation of heap in Figure 9-4. 339

Figure 9-6: Code for constructor, isEmpty(), and size() of class Heap. .. 340

Figure 9-7: Each step for adding 30 into a heap, showing both the tree

version and its array implementation. ... 342

Figure 9-8: Code for method add of class Heap. 343

Figure 9-9: Code for method top of class Heap. 345

Figure 9-10: Removing a root without using a special algorithm,

destroying a complete binary tree structure.. 345

Figure 9-11: Each step for removing the most important value from a

heap, showing both the tree version and its array implementation. ... 347

Figure 9-12: Code for method pop of class Heap. 348

Figure 9-13: A possible encoding for character ‘a’ to ‘e’ in a text file. . 352

Figure 9-14: Another possible tree for encoding ‘a’ to ‘e’. 353

Figure 9-15: An Example of order of nodes to be retrieved from priority

queue that stores nodes of Huffman tree... 355

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892269
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892270
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892271
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892272
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892273
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892274
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892275
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892276
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892277
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892278
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892279
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892280
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892281
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892282
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892283
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892284
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892285
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892286
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892287
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892288
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892289
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892290
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892291
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892292
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892293
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892293
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892294
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892295
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892296
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892296
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892297
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892297
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892298
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892299
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892300
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892301
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892301

XV

Figure 9-16: Example of Huffman tree creation (first iteration). 356

Figure 9-17: Example of Huffman tree creation (second iteration). 357

Figure 9-18: Example of Huffman tree creation (third iteration). 358

Figure 9-19: Example of Huffman tree creation (fourth iteration)....... 359

Figure 10-1: Examples of AVL trees. .. 366

Figure 10-2: Examples of non-AVL Trees. ... 367

Figure 10-3: Rebalance, 1st possible case. ... 368

Figure 10-4: Rebalance, 2nd possible case. .. 369

Figure 10-5: Rebalance, 3rd possible case. .. 370

Figure 10-6: Rebalance, 4th case. ... 372

Figure 10-7: Code for a node of AVL tree. ... 373

Figure 10-8: Code for AVL Tree (part 1). ... 375

Figure 10-9: Code for AVL Tree (part 2). ... 376

Figure 10-10: Code for rotateLeftChild and rotateRightChild. 377

Figure 10-11: Detailed operation of method rotateLeftChild. 378

Figure 10-12: Code for method rebalance. .. 379

Figure 10-13: Code for method insert of AVL tree. 380

Figure 10-14: Code for method remove of AVL tree. 381

file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892302
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892303
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892304
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892305
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892306
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892307
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892308
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892309
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892310
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892311
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892312
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892313
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892314
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892315
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892316
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892317
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892318
file:///D:/Dropbox/teaching/datastructures/book_kindle/book_ENG.docx%23_Toc526892319

XVI

List of Tables
Table 3-1: List operations ..49

Table 3-2: Asymptotic runtime comparisons on operations of array and

linked list. ...79

Table 4-1: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 1). ... 116

Table 4-2: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 2). ... 117

Table 4-3: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 3). ... 118

Table 4-4: Expressions and their corresponding postfix form.............. 119

Table 4-5: Postfix calculation of 2+3. .. 120

Table 4-6: Calculation of 7 4 3 * - (infix form is 7-4*3). 121

Table 4-7: Calculation of 7 8 9 * + 5 + 10 * (infix form is (7+(8*9)+5)*10).

... 122

Table 4-8: Transforming 2+3 to its postfix counterpart. 124

Table 4-9: Transforming 7-4*3 to its postfix counterpart. 124

Table 4-10: Transforming 7+5-10 to its postfix counterpart. 125

Table 4-11: Operator Priority. ... 128

Table 4-12: Transforming 10*(5-2) into postfix form. 129

Table 4-13: Tranforming an expression with nested brackets into its

postfix form (Part 1). ... 130

Table 4-14: Tranforming an expression with nested brackets into its

postfix form (Part 2). ... 131

Table 4-15: Tranforming an expression with nested brackets into its

postfix form (Part 3). ... 132

Table 4-16: Incorrect postfix transformation due to priorities forcing left

association. ... 134

Table 4-17: Operator Priority, with right associative operator ‘^’. 135

Table 4-18: Correct postfix transformation after fixing right associative

operator. ... 135

Table 7-1: Separate Chaining and Open Addressing Comparison. 290

Table 9-1: Average runtime for method add, top, and pop in linked list

implementation and heap implementation of priority queue. 350

XVII

XVIII

1

Chapter 1 : Data Structures
and Our Program
Data structures are essential for coding. Programmers

who know various types of data structures have more

tools to choose from when they do their coding and they

can program more efficient codes. But what is a data

structure anyway?

What is a Data Structure?

A data structure is a piece of data that can store more

than one instance of other data. Usually, all data stored

in a data structure have the same type, but this is not an

absolute requirement.

A data structure you probably already know is array. We

can use array to store several information of the same

data type. For example, you may declare:

int a = new int[5];

as an array that provides 5 slots for storing integer data.

2

With array, we can work on several data of the same

type. So, if we know how to use array, we also know the

basics of how to work with a data structure.

What does this book going to tell you about data

structures? Well, array is just one kind of data structures.

We need to know about other data structures too because

they have different uses (and you will see). This book

assumes that you are familiar with basic structured

programming, including the use of array.

Data structures used in programming today are based on

what are taught in this book. Therefore, once you have

learned data structures from this book, you will have an

easier time understanding other people’s codes, as well

as be able to apply these data structures in your own

programs. You will not need to reinvent the wheel. Many

programming languages have versions of these basic

data structures available in their libraries.

Understanding the basic data structures will also help

you understand those built-in data structures.

In a program, you may be able to choose a data structure

to store your data. Sometimes it does not really matter

which data structure you choose. But many times, it

matters! One data structure may allow faster data

retrieval than others. Let’s look at an example.

3

Let’s say we want to store 5 integers. There are several

data structures that can be used:

• Of course, our first data structure is an array.

• The second possible choice is a linked list, which is

usually organized as a sequence of slots linked

with one another using special links called

“pointers”. Figure 1-1 shows an example linked list

that we can start access its contents through its first

pointer “p” (don’t worry too much about it. We

will be covering it in detail in its own chapter).

• Our third possible choice is storing data in a tree,

as shown in Figure 1-2. The tree shown here is a

binary search tree (again, a chapter will be

dedicated to it).

Figure 1-1: Linked list storing 5 integers.

Figure 1-2: Binary Search Tree that stores 5 integers.

4

• Another data structure that can be used is a heap,

which is a type of trees. Figure 1-3 shows a

maxheap, which stores larger data at the top.

So, which one do we choose in our implementation?

Figure 1-3: Maxheap storing 5 integers.

5

Of course, it depends on how we want to use the data. If

our program makes use of the smallest data much more

often than others, then the choice would be the linked list

because the smallest data can be accessed directly from

pointer “p”. A sorted array can easily access its smallest

data too, but if the smallest data is going to be regularly

deleted, it will need a lot of time, especially in a large

array, moving other data to the left.

But what if our program will be using the largest data

most of the time? To reach our largest data in the linked

list, we would have to follow the pointer “p” for several

steps, wasting a lot of time especially if the list is long

(see Figure 1-4).

To reach the largest data in our binary search tree (Figure

1-2), we follow a right pointer from each node until we

can follow no further. The number of data nodes needed

to be investigated is lower than when we search our

linked list.

Figure 1-4: Following pointers to the last data in our linked list.

6

 It is even faster for our heap since the maximum value is

already at the data node pointed to by “p”.

As you can see, choosing a different data structure affects

the speed of your program. That is why we need to know

the basics.

This book’s organization

This book is intended to give you information you need

for an introduction to data structures and algorithms

course. All example codes in this book are in Java

language but the codes are organized such that they can

easily be applied in other programming languages. The

chapters in this book are as follows:

• Chapter 2 introduces common terms used in data

structures and the analysis of algorithms, such as

asymptotic runtime.

• Chapter 3 takes you through our first new data

structure: Linked list, including its

implementation.

• Chapter 4 covers the concept and implementation

of stack.

• Chapter 5 establishes the concept and walks you

through how to implement queue.

7

• Chapter 6 is all about binary tree and binary

search tree. These are the first non-sequential data

storage that you will encounter.

• Chapter 7 is all about hash table, a data structure

that allows data retrieval to take constant time on

average.

• Chapter 8 covers sorting algorithms and their

complexity. The algorithms introduced in this

chapter operate on arrays, but can be applied on

data structures as well.

• Chapter 9 gets you familiar with priority queue

and its major implementation, heap.

• Chapter 10 introduces an AVL tree, which is one

of the approaches we can use to maintain a

balanced binary search tree.

All readers should read chapter 2 first in order to get to

know the terms used throughout this book.

Linked list, stack, and queue are used to store data

sequence. They only differ in ways data can be accessed.

Stack and queue can be thought of as linked lists with

special restrictions. Building blocks we used to

implement a linked list can be used to implement stacks

and queues too. Therefore, it is recommended that

chapter 3 be read before chapter 4 and chapter 5.

8

Both our linked list and binary search tree (including

AVL tree) implementations need pointers. Linked list

pointers are easier to understand therefore it is

recommended that you read chapter 3 before chapter 6.

Hash table implementations use both linked list and

array. Therefore, to fully understand chapter 7, it is

recommended that you read chapter 3 first.

Chapter 8 can be read independently of other chapters

(except chapter 2).

Heap in chapter 9 uses the concept of binary tree but the

actual implementation uses an array. It is recommended

that you read chapter 6 (the binary tree part) before

chapter 9.

Chapter 10 should be read after chapter 6 since AVL tree

is a special form of binary search tree.

Figure 1-5 shows our book’s organization.

9

Figure 1-5: Book organization.

10

 Without further ado, let’s start!

11

Chapter 2 : Introduction to

Algorithm Analysis

In this chapter, we will be looking at how we can

estimate the speed of our programs. We will also see

notations commonly used among programmers when

referring to program speed.

Running Time Analysis
Let’s analyze the code in Figure 2-1 that calculates the

average value of all data in a given array.

Figure 2-1: Code calculating an average value from a given array.

If we are to estimate the running time of the above code,

we have the following alternatives:

• Estimate the running time of each

component of the code and add them all up.

• Choose a representative statement of the

code and estimate the running time of that

statement only.

12

Let us try estimating the running time of code

components and adding them up. Let’s look at the code

(Figure 2-1) line-by-line.

Line 1: Variable declaration and assignment. Let a

variable declaration consumes 1 unit of time and an

assignment consumes 1 unit of time also. Therefore, this

line of code takes 2 units of time to run.

Line 2: Variable declaration and assignment also. The

estimated time is also 2 units.

Line 3: This involves quite a few operations:

• Declaration and initialization of variable “i”. Both

are performed only once. So, the time is 2 units (1

for declaration and the other unit is for

initialization).

• Conditional testing of “i”. The first test takes place

when the value of “i” is 0. The last test takes place

when the value of “i” is equal to n. If we let each

conditional testing consume 1 unit of time, this

part of the program consumes n+1 units of time.

• Increment the value of “i” by 1. This part of the

code is executed every time before starting the

next iteration. The first time takes place when the

value of “i” is 0. The last time this code gets

executed is when the value of “i” is n-1. If an

increment operation takes 1 unit of time, then all

increments take n units of time.

13

From the analysis above, the total time (our estimated

unit time) for the execution of line 3 is 2+(n+1)+n, which

is equal to 2n+3.

Line 4 contains an addition and an assignment. If each

action takes 1 unit of time, we therefore have 2 units. But

that is not all. This line of code is within a loop, which

iterates n times. Therefore, the total unit time is 2n.

Line 5 contains a division and a return statement. If each

takes 1 unit of time, then overall it takes 2 units of time

to execute.

If we add the estimated running time of all 5 lines

together, we get 2+2+(2n+3)+2n+2, which is 4n+9 units of

time, where n is the size of our input array.

This method of running time estimation can be used to

compare estimated running time of 2 programs.

However, it is obviously impractical because we need to

work out estimated time for every line of code. A better

method is discussed below.

14

Now, let’s try the method that chooses a representative

statement of the code and estimates the running time of

that statement only.

Let’s choose line 4 as the program’s representative since

it runs in a loop and therefore contributes significantly to

the running time. Line 3 runs with the same loop but

looks much more complex so it is not chosen. With line 4

chosen, we have the estimated running time of 2n. You

can see that it is much easier to obtain compared to the

first method.

This running time, in terms of n, grows with the size of

data. The growth pattern is called a growth rate.

15

Programs can have different growth rates such as

𝑛, 𝑛2, log 𝑛, 2𝑛 depending on how you write them (they

may have nested loops or they may be able to eliminate

data by half at each iteration, etc.). The larger the growth

rate, the longer the program runs, especially when you

have larger data size. Growth rate is more important

than actual running time when it comes to comparing

program performances.

Here is how the running time of each growth rate looks

like as the data size grows. The x-axis indicates data size,

while the y-axis indicates the running time.

Figure 2-2: Running time for each growth rate.

0

10

20

30

40

50

60

70

1 2 3 4 5 6

n

n^2

log n

2^n

Running time

Size(n)

16

You can see that for large n, the running time for each

growth rate can be compared as follows:

Therefore, knowing a program’s growth rate means we

know its performance. We can also compare programs

performances by comparing their growth rates.

Let’s look at the following Code 1 and Code 2 (Figure 2-3

and Figure 2-4) for two different programs.

Figure 2-3: Code 1.

Figure 2-4: Code 2.

If we use the line that has x= x+1 as our code

representative, Code 1 will take the following time to

run:

17

And Code 2 will take the following time to run:

Although their running time is different, both codes have

the same growth rate. Let’s look at their running time as

n (x-axis) increases.

Figure 2-5: Growth rates of codes in Figure 2-3 and Figure 2-4.

It is straightforward to see that their running time (y-

axis) increase with the same rate. Therefore, we can

regard their performances to be equal.

Running time

Size(n)

18

But comparing 2 programs’ growth rates may not be as

simple as in the above example. The following definition

helps you do the comparison without even having to

draw a graph.

Definition 2-1: Faster / Slower growth rates

Instead of comparing graphs, the values of functions

when n is large can be compared.

With this definition, the following running times have

the same growth rate (look at their most significant

term!):

And the following growth rates are shown, from slow to

fast, according to the above definition:

19

The definition helps us compare growth rates in a more

difficult case, such as comparing 𝑙𝑜𝑔 𝑛 and √𝑛. By just

looking at them, it is not obvious which one is slower.

Let’s try to compare them using the definition. Let

𝑓(𝑛) = log 𝑛 and 𝑔(𝑛) = √𝑛.

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= lim

𝑛→∞

log 𝑛

√𝑛

 = lim
𝑛→∞

ln 𝑛

ln 10 √𝑛

 =
1

ln 10
lim

𝑛→∞

ln 𝑛

√𝑛

 =
1

ln 10
lim

𝑛→∞

1/𝑛

1/(2√𝑛)

 =
1

ln 10
lim

𝑛→∞

2

√𝑛

 = 0

Therefore 𝑙𝑜𝑔 𝑛 grows slower than 𝑛0.5. In fact, we can

use this definition to show that ∀𝑐, 𝑘 > 0, (log 𝑛)𝑐 always

grow slower than 𝑛𝑘. Because
log 𝑛

√𝑛
is a factor of

(log 𝑛)𝑐

𝑛𝑘
,

hence lim
𝑛→∞

(log 𝑛)𝑐

𝑛𝑘
= 0.

20

There are some common notations used by computing

people when they talk about running times of programs.

These notations are collectively called asymptotic

notations. For a computer science/ engineering student,

it is crucial to understand these to communicate

effectively with your co-workers and supervisors.

Asymptotic Notation

These notations are used to display growth rates. In this

book, we will mainly focus on two most often used

notations: the big-Theta and big-O.

Definition 2-2: Big-Theta, or 𝛩

𝛩(𝑔(𝑛)) is a set of functions that grow with the same rate

as 𝑔(𝑛). We can define it mathematically using limit, as

done in the last section. There is an alternative definition

also. Let’s have a look at the alternative definition.

Basically, the definition says that 𝑓(𝑛) ∈ 𝛩(𝑔(𝑛)) if and

only if 𝑓(𝑛) is within the bound of 𝑐1𝑔(𝑛) and 𝑐2𝑔(𝑛) for

all n greater than a certain value.

21

Time for an example! Let our program’s running time be

𝑓(𝑛) = 5𝑛2 + 10𝑛 + 18. Let 𝑔(𝑛) = 𝑛2. If we set 𝑐1 to 1

and 𝑐2to 8, the graph of their values is shown in Figure

2-6.

Figure 2-6: Big-Theta definition shown by graph.

The values of 𝑓(𝑛) eventually lie between 1 ∗ 𝑛2 and 8 ∗

𝑛2. Therefore 𝑓(𝑛) has the same growth rate as 𝑛2, or

𝑓(𝑛) ∈ 𝛩(𝑛2), according to Definition 2-2. There are

many possible values for 𝑐1and 𝑐2 that make 𝑓(𝑛) ∈

𝛩(𝑛2). Just finding one pair that works is enough.

Another definition that you will encounter a lot is big-O.

Definition 2-3: Big-O, or 𝛰

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

1*n^2

5n^2+10n+18

8*n^2

Running time

Size(n)

22

𝛰(𝑔(𝑛)) is a set of functions that grow slower, or with the

same rate as 𝑔(𝑛). Its formal definition is given below.

Basically, the definition says that 𝑓(𝑛) ∈ 𝛰(𝑔(𝑛)) if and

only if 𝑓(𝑛) has lesser or equal value to 𝑐𝑔(𝑛) for all n

greater than a certain value.

Looking at this definition and the previous example, we

can see that 𝑓(𝑛) = 5𝑛2 + 10𝑛 + 18 ∈ 𝛰(𝑛2) since 𝑓(𝑛) ≤

8𝑛2 for n = 5 onwards. This means programs that satisfy

𝛩(𝑔(𝑛)) also satisfy 𝛰(𝑔(𝑛)) (but not vice versa).

Asymptotic Notations and Nested Loop

You may be wondering about how these notations get

used in real programs. Let us recall the earlier example

code from Figure 2-3 (the code is shown below for your

convenience).

23

We already know that the running time is 𝑛2 − 4𝑛 and its

growth rate is the same as 𝑛2.

Now, knowing asymptotic notations, we can write down

the code’s performance in terms of asymptotic runtime,

that is 𝛩(𝑛2). The running time also satisfies 𝛰(𝑛2).

Seeing a program, one can look at its representative

statement (the one that gets run most often. For example,

a loop or a recursive call) and write down its estimated

runtime in asymptotic form. It is fast, convenient, and

easily comparable with other programs (and

mathematically usable too!).

Now, let’s have a look at a slightly modified code in

Figure 2-7. The code has a conditional exit.

Figure 2-7: Program with a conditional exit.

The number of times a representative statement gets to

run can be from 0 to 𝑛2 − 4𝑛, depending on the value of

𝑓(𝑖). A graph showing the runtime growth of this code is

shown in Figure 2-8 (one possibility is shown).

24

Figure 2-8: Growth rate of code with a conditional exit.

From Figure 2-8, there is a point where the running time

no longer grows with n. So, its runtime no longer satisfies

𝛩(𝑛2). It still satisfies 𝛰(𝑛2) though. Many programs

have exit conditions like this and their runtime hence

must be indicated using big-O rather than big-Theta.

Here is a definition for an asymptotic runtime of nested

loops (the definition works for big-O and big-Theta):

-100

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5*n^2

Our code

2*n^2

Running time

Size(n)

25

Definition 2-4: Asymptotic runtime of nested loops.

Asymptotic Runtime and Consecutive Operations

You have already seen that for a nested loop, its

asymptotic runtime is the multiplication of each layer’s

runtime. What about programs with consecutive chunks

of instructions, for example:

Figure 2-9: Code with consecutive loops.

From Figure 2-9, the first loop has its asymptotic runtime

equals to 𝛩(𝑛) while the second loop has its asymptotic

runtime equals to 𝛰(𝑛2).

26

The total runtime is 𝛩(𝑛) + 𝛰(𝑛2). But when n becomes

large, the runtime growth from 𝛰(𝑛2) will totally

dominate the runtime growth from 𝛩(𝑛). Therefore, the

asymptotic runtime that we can write down is just

𝛰(𝑛2).

Definition 2-5: Asymptotic runtime for consecutive

operations (the definition works for big-O and big-

Theta).

Asymptotic Runtime and Conditional Operations

What about alternative statements? What should we use

as their asymptotic runtime? Let’s look at the following

example together:

Figure 2-10: Code with alternative paths of execution.

27

This code in Figure 2-10 either executes Statement 1 or

Statement 2, never both. Since we do not know which

statement will get executed at runtime, the running time

we should assume should be the worst-case scenario,

that is, the most time-consuming statement.

Asymptotic Runtime and Recursion

A recursive program is a program or method that keeps

calling itself. For each successive call, its input size

reduces until a condition where it will not call itself again

is satisfied.

Let us analyze recursive code in Figure 2-11:

Figure 2-11: Code with recursive calls.

From the code, the input is originally n. It reduces by 1

each time mymethod is called. This is similar to executing

a loop for about n times. Therefore, our asymptotic

runtime for this code is 𝛩(𝑛).

28

In short, we analyze how many times the method is

called repeatedly and use that number as our asymptotic

runtime.

Indeed, if we transform this program into its iterative

counterpart (its code is shown in Figure 2-12), its

asymptotic runtime is still 𝛩(𝑛).

Figure 2-12: Iterative version of code in Figure 2-11.

Asymptotic Runtime in Logarithmic Form

Sometimes our programs run in logarithmic time. This

usually happens when we can spend a constant time to

divide a problem into equal parts (reading input data

does not count because it is already 𝛩(𝑛)).

Let’s check out an example. Let’s say we have an array

that stores n positive integers from index 0 to n-1, and the

elements are sorted from small to large. We want to find

an index of a given value, x. If x is not in the array, our

algorithm should return -1.

29

To find the index, we could straightforwardly start

searching from the first element of the array and stop

when we find x. But x can be anywhere, from the first

element to the last, even not in the array. Therefore, the

asymptotic runtime is 𝛰(𝑛).

But we know that the elements are sorted, so we can use

a faster algorithm. This algorithm is called binary search.

We start by looking at the middle element of the array. If

it is less than x, it means x, if it is in the array at all, is on

the right half of the array. On the other hand, if the

middle value is more than x, we know that x, if it is in the

array, is in the left half of the array. Once we know which

half of the array to search, we can search that half of the

array by starting with the middle element of that half,

and so on.

Below (Figure 2-13) is an array we want to work on (of

course we normally do not know all array contents).

Figure 2-13: Starting condition for our binary search example.

If we want to see if the value 7 is in this array, searching

the array from the first element will require us to look

into 7 array slots. Using binary search, however, only

requires us to look into 3 array slots (we use integer

division when calculating the index of the middle

30

element). The middle element we find is at index (0+7)/2,

which is 3 (0 is the index of the first slot, while 7 is the

index of the last slot.). The stored value at that array slot

is 4 (see Figure 2-14).

Figure 2-14: Finding the middle data for the 1st time in binary search.

Since our array is sorted from small to large, we

immediately know that the value 7 must be on the right

half of the array. So, we start searching by looking at the

middle element of that half, which has index (4+7)/2,

which is 5 (the first slot of the half has index value equals

to 4). The stored value at that array slot is 6, as shown

Figure 2-15.

Figure 2-15: Finding the middle data of the right half of the array in

our binary search.

31

Again, at this stage, we know that the value we are

looking for (7) is on the right half of that array portion.

So, we start searching by looking at the middle element

of the portion, which has index (6+7)/2, which is 6 (the

first slot of this portion has index value equals to 6). This

time, we find the value we are looking for (see Figure

2-16). It can be seen that instead of looking at seven array

slots, we only need to look at three of them, saving us

half the time.

Let us look at the program code for this binary search

algorithm (see Figure 2-17).

The longest time that the code runs is when we cannot

find the required number in the array. If the array size is

n, the size of a portion that we need to investigate

reduces by half each iteration.

Figure 2-16: The required data found by our binary search.

32

Figure 2-17: Code for binary search on an array.

This means the number of iterations, i, is related to n in

the following way:

𝑛 = 2𝑖 + 𝑐, where 𝑐 is a constant.

Applying logarithm on both sides, we get:

log2 𝑛 = log2 2𝑖 + log2 𝑐

log2 𝑛 = 𝑖 + log2 𝑐

𝑖 = log2 𝑛 − log2 𝑐

In asymptotic form, the running time is therefore equal

to 𝛰(log 𝑛) (big-Theta is not used because the program

can exit early if the required data is found).

33

The reason we just use log 𝑛 instead of log2 𝑛 is because

the base of the log is not important in its asymptotic

form, as stated in the following definition.

Definition 2-6: Logarithmic asymptotic runtime

The definition can be proven as follows:

Let the running time x, be logarithmic:

log𝑎 n = x and log𝑏 n = y.

Hence, n = ax and n = by. Therefore, we get:

ln n = x ln a = y ln b

x ln a = y ln b

log𝑎 n ∗ ln a = log𝑏 n ∗ ln b

log𝑎 n = log𝑏 n ∗
ln b

ln a

log𝑎 n = log𝑏 n ∗ c

log𝑎 n = 𝛰(log𝑏 n)

34

Therefore, the logarithmic asymptotic runtime can have

so many possible bases, i.e. the bases do not matter.

Another example program that illustrates logarithmic

asymptotic runtime is the program that finds the greatest

common divisor (see Figure 2-18).

 Figure 2-18: Program that finds the greatest common divisor.

From the program code, the value of 𝑛, which is the

remainder, determines whether the program executes its

next loop. How the remainder decreases will therefore

decide our asymptotic runtime.

Let’s run our program, with m = 1974 and n = 1288. The

value of each variable in each loop is shown in Figure

2-19.

The value of n does decrease, but there seems to be no

obvious pattern (Between the 1st and 2nd loop, it decreases

only a little. But between the 2nd and the 3rd loop it seems

to decrease a lot. And between the 3rd and the 4th loop, it

decreases a little again).

35

In order to determine the decrease speed of the

remainder, we need to use the following fact:

If 𝑎 > 𝑏 then (𝑎%𝑏) <
𝑎

2

The above claim can be proven as follows:

• If 𝑏 ≤
𝑎

2
 : since 𝑎%𝑏 < 𝑏, therefore (𝑎%𝑏) <

𝑎

2
 .

• If 𝑏 >
𝑎

2
 : 𝑎/𝑏 will result in 1 and its remainder,

which is 𝑎 − 𝑏. Since we already know that 𝑏 >
𝑎

2
,

Figure 2-19: Values of each variable in each iteration of the code in Figure

2-18.

36

so the value of the remainder is 𝑎 − (>
𝑎

2
), which

is less than
𝑎

2
 .

This proof is illustrated in Figure 2-20.

If we look at the value of each variable in each loop again,

it can be seen that, starting from the third loop, the value

of n in any of the loop comes from the modulo between

the values of n in its previous two loops. For example,

the value of n in the third loop (84) comes from the

modulo between n in the first loop and n in the second

loop.

It means that the value of n reduces by at least half in

every two iterations. This is similar to binary search but

takes twice as long so the number of iterations is in terms

Figure 2-20: Proof of claim - If 𝑎 > 𝑏 then (𝑎%𝑏) <
𝑎

2
.

37

of 2 ∗ log2 𝑛. Thus, its asymptotic runtime is also

𝛩(𝑙𝑜𝑔 𝑛).

Before we move on to a new topic, let us sort growth

rates of programs from small to large:

𝑐 < log 𝑛 < log𝑘 𝑛 < 𝑛 < 𝑛 log 𝑛 < 𝑛2 < 𝑛3 < 2𝑛

38

Asymptotic Runtime and Its Application in
Choosing Implementation

Different solutions for a problem often have different

asymptotic runtime. We can analyze the runtime of each

solution and pick the most efficient solution.

Let us look at an example together. If we are to write a

program that calculates the value of 𝑥𝑛, where 𝑛 is a

positive integer, the code for the program can be

straightforwardly written as shown in Figure 2-21 (we

are not calling any pre-built function).

Figure 2-21: Code for calculating 𝑥𝑛 .

The above program executes its loop 𝑛 times, therefore

having its asymptotic runtime equals to 𝛩(𝑛).

This problem has a better solution, though. We can

employ a divide and conquer approach as follows:

• If n is even, 𝑥𝑛comes from (𝑥 ∗ 𝑥)
𝑛

2 .

• If n is odd, 𝑥𝑛 comes from (𝑥 ∗ 𝑥)
𝑛

2 ∗ 𝑥, where
𝑛

2
uses integer division.

39

Divide and conquer is an algorithm that divides a

problem into equal (or almost equal) portions. Let us

look at the program code using this approach (Figure

2-22).

Figure 2-22: Code for calculating 𝑥𝑛 , written recursively.

Each time the method is called, n is reduced by half. This

is very similar to the binary search problem. Until 𝑛

reaches zero, the number of times method power is

called is proportional to log2 𝑛. Therefore, it has its

asymptotic runtime equals to 𝛩(𝑙𝑜𝑔 𝑛).

By analyzing the asymptotic runtime of both programs,

we can clearly pick the second implementation due to its

smaller growth rate.

Another example is a program that calculates the largest

gap between two values in an array. Below are two

versions of this program. The first version calculates the

difference between every value pair (Figure 2-23).

40

Figure 2-23: Calculating the largest gap between 2 values in a given

array, the exhaustive approach.

The other version finds the maximum and the minimum

value, and then subtracts them (Figure 2-24).

Figure 2-24: Calculating the largest gap between 2 values in a given

array, using the maximum and minimum value.

Let the array size be 𝑛. For the first version of the

program, one loop is nested inside the other. The outer

loop obviously iterates for 𝑛 times. The running time of

the inner loop varies according to the value of 𝑖. When i

is 0, it runs n-1 times. When i is 1, it runs n-2 times, and

so on. Therefore, the combined running time of both

loops (from when i is 0 up to when i is a.length-1) is

(𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯ + 1 + 0 = 𝛩(𝑛2).

41

For the second version of the program, we only need one

loop, running for n iterations, thus its asymptotic

runtime is 𝛩(𝑛).

We can therefore choose to use the second

implementation due to its slower growth rate.

Best-Case, Worst-Case, and Average Case Runtime

Best-case runtime is the fastest possible runtime for a

program, when the input size is n. It has the lowest

possible growth rate. Worst-case runtime is its opposite

(we usually use the worst-case runtime as the upper

bound for our asymptotic runtime).

What about average case runtime? How do we find its

value? Well, the average case runtime is the average

runtime of all possible runs of the program (when the

input size is n). We can find this value from:

• Checking the number of inputs to the program.

• For each input, note down its runtime.

• Average case runtime =

𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑝𝑢𝑡𝑠

• This is, however, based on an assumption that each

input has equal probability of occurrences. If you

42

know that each input does not occur with equal

probability, you must take that into account. This

results in average case runtime =

∑(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖) ∗ (𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑖

𝑖

)

Note that each probability value must be between

(inclusive) 0 and 1. All probability values must add up to

1.

For an example, let us find best-case, worst-case, and

average case runtime for a program that tries to find the

index of value 𝑥 in array size 𝑛. The program code is

shown in Figure 2-25.

Figure 2-25: Finding the position of 𝑥 in an array.

Best-case runtime takes place when 𝑥 is in the first array

slot. Hence the program enters its loop only once and

returns immediately. Therefore, its runtime is constant

(𝛩(1)).

43

Worst-case runtime takes place when 𝑥 is not in the array

at all. The program enters the loop n times. Thus, the

runtime is 𝛩(𝑛).

Asymptotic runtime is neither the worst-case nor the best

case. Its value is 𝑂(𝑛) for this program.

For the average case, if 𝑥 is in the array, it maybe in any

array slot (each slot has equal chance to contain 𝑥). The

case where x is not in the array also has equal chance

compared to other possibilities.

Since there are n array slots, the probability of 𝑥 in a slot

is
1

𝑛+1
. The probability for 𝑥 not being in any slot is also

1

𝑛+1
. The average runtime of this program =

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑙𝑜𝑡) +

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑙𝑜𝑡) + … +

1

𝑛+1
(𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦)

=
1

𝑛 + 1
(1 + 2 + 3 + 4 + ⋯ + (𝑛 + 1))

=
(𝑛 + 1) ∗ (𝑛 + 2)

2(𝑛 + 1)

=
𝑛 + 2

2
= 𝛩(𝑛)

For this array search example, its average case runtime is

equal to its worst-case runtime.

44

Beyond Big-Theta and Big-O
There are other asymptotic notation definitions. Let us

check out some of them for completeness.

Definition 2-7: Big-Omega, or 𝛺

𝛺(𝑔(𝑛)) is a set of functions that grow not slower than

𝑔(𝑛).

Basically, the definition says that 𝑓(𝑛) ∈ 𝛺(𝑔(𝑛)) if and

only if 𝑓(𝑛) has greater or equal value to 𝑐𝑔(𝑛) for all 𝑛

greater than a certain value.

Definition 2-8: Little-O, or 𝑜

𝑜(𝑔(𝑛)) is a set of functions that grow slower than 𝑔(𝑛).

45

Basically, 𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if and only if 𝑓(𝑛) has less

value than 𝑐𝑔(𝑛) for all 𝑛 greater than a certain value. In

other words:

Definition 2-9: Little-Omega, or 𝜔

𝜔(𝑔(𝑛)) is a set of functions that grow faster than 𝑔(𝑛).

Exercises

1. Let 𝑓(𝑛) = 7𝑛 ∗ 𝑙𝑜𝑔2𝑛 and 𝑔(𝑛) = 𝑛2. Find the value

of 𝑛0, where 𝑛0 ≤ 𝑛, that satisfies 𝑓(𝑛) < 𝑔(𝑛).

2. Show that, if))(()(1 NfONT = and))(()(2 NgONT = , then

)))((),((max()()(21 NgONfONTNT =+ .

3. Show that 𝑇(𝑁) = 𝑂(𝑓(𝑁)) if and only if 𝑓(𝑁) =

 (𝑇(𝑁)).

4. Show that 7(n+1) is 𝛰(7n).

5. Show that 𝑛 = 𝑂(𝑛 𝑙𝑜𝑔 𝑛).

6. Prove that 𝑙𝑜𝑔𝑘 𝑛 = 𝑜(𝑛) when k is a constant.

46

7. If 𝑓(𝑛) = 4𝑛 when 𝑛 is an odd number, and 𝑓(𝑛) =

𝑛2 when 𝑛 is an even number. Find the big-O of 𝑓(𝑛).

8. If there are 𝑛 numbers. Write a program that finds the

maximum and minimum values. The number of

comparisons appeared in the program must not

exceed 3𝑛/2 times.

9. Assume we have two programs. The first program has

its worst-case running time = 230 𝑛 log2 𝑛. The other

program has its worst-case running time = 𝑛2. Which

value of 𝑛 does the second program start to have its

running time greater than the first program?

10. An equation, i
n

i

i xaxp
=

=
0

)(can be re-written as:

)...)))(...((()(13210 nn xaaxaxaxaxaxp ++++++= − . This is

called Horner’s method. Write a program to find the

value of 𝑝(𝑥), given an array of 𝑎𝑖. Please also indicate

the asymptotic runtime of your program.

11. Write a method multiply(int x, int y). You are only

allowed to use the addition operator. What is the

asymptotic runtime of your method.

12. Prove that
=

=−
n

i

ni
1

2)12(

13. Show that)log(log
1

2 nni
n

i

=
=

14. A library fines us 𝑥 dollars if we return books late for

1 day. The fine is multiplied by 𝑥 each day. Write a

method that calculates the fine on 𝑛𝑡ℎday of late

return.

47

15. Write a program to find the value of the minimum

sum of a subsequence of integers in array a. What is

the asymptotic runtime of this program?

16. Write a program that checks whether a positive

integer 𝑛 is a prime number. What is the asymptotic

runtime of this program?

17. A program can process 300 input data in 0.25 second.

How much data can it process in 5 minutes if:

• The program runs in 𝑂(𝑛 𝑙𝑜𝑔 𝑛).

• The program runs in 𝑂(𝑛2).

18. Find asymptotic runtime of the following programs:

48

49

Chapter 3 : List

In this chapter, we will look at list, its usage, and how we

can implement it. We will mainly focus on an

implementation called linked list.

List and Its Operations
A list is any structure that can store its data in sequence.

Therefore, an array can be thought of as a list as well.

So, what can we do with a list? The table below shows

possible operations that can be done:

Table 3-1: List operations

Implementing a List with Array
As mentioned earlier, an array can be thought of as a list.

What will happen if we use an array to implement a list?

50

Figure 3-1 to Figure 3-6 show the class that contains

various methods listed in Table 3-1. For simplicity, all

data are assumed to be integers.

From Figure 3-1, the list is implemented as a new class.

Method find attempts to search our list (loop through our

array), ending when it finds the given value (and returns

the value’s position). The method can end quickly if the

Figure 3-1: List implementation using array.

𝑂(𝑛)

𝛩(1)

51

array is null, or if it can find value early. It can also look

at every element in the array and do not find the required

value at all. Therefore, its running time is 𝑂(𝑛), where 𝑛

is the array size.

The method findKth attempts to find the kth element

stored in our list. It therefore accesses our array directly

to find the kth member (corresponding to the kth member

of the list). The method generates an exception if the

given position is illegal for the given array. It can be seen

that the method runs in constant time, 𝛩(1), since it uses

the array access operator to access the required array

element instantly.

Figure 3-2 shows method insert. It attempts to put a new

value into a given position. The method ends quickly if the

array is initially empty or the position value is illegal

(running time of this case is 𝛩(1)). Otherwise, it needs to

loop through the array to expand the array size (this part

takes 𝛩(𝑛)). It also has to shift all elements from the

position to the right (this part takes 𝑂(𝑛) since the number

of shifting elements depends on position).

For example, let us insert 6 into the following array such

that the array remains sorted (Figure 3-3). To keep the

array sorted, 6 will have to be inserted into the slot after

5. Therefore 7 and 8 must be pushed to the right. For large

arrays, there can be a lot of pushes.

52

Figure 3-2: Method insert for linked list implemented using array.

𝛩(1)

𝛩(𝑛)

𝑂(𝑛)

53

The running time of insert is 𝑂(𝑛). Although 𝛩(𝑛) is the

most dominating term, the method can exit early

regardless of the array size due to an illegal position

value.

Figure 3-4 shows method remove. It tries to remove a

specified value from our list. The program can end right

away if the array is empty (nothing to be removed, 𝛩(1)).

Otherwise, it has to loop in order to find value and copy

all data on the right-hand side of the value in the array

one place to the left (𝑂(𝑛)). It also needs to shrink the

array by one slot, causing a need to copy almost the

entire array (𝛩(𝑛)). The overall running time is 𝛩(𝑛).

Conditional exits for this method do not count as

premature exits because they are for cases where array

Figure 3-3: Inserting new data into array.

54

size is 0 or 1. Thus the method runtime is directly

proportional to the array size. There is also a possibility

that value is not in the array and the method will exit on

line 14, but this case requires the whole array to be

searched and therefore its performance is still 𝛩(𝑛).

Figure 3-4: Method remove of List implemented by array.

𝛩(1)

𝑂(𝑛)

𝛩(1)

𝛩(1)

𝑂(𝑛)

𝛩(𝑛)

55

Consider an array in Figure 3-5, if we want to remove 5

from such array, the number 6, 7, and 8 will have to be

copied to their left so that we can access all array slots

from the beginning of the array without getting an

undefined value. This is very time-consuming in a large

array.

Figure 3-5: Removing data from an array.

Method head, tail and append are shown in Figure 3-6.

Method head just tries to access the first member of the

list, which is the first element of the array. Therefore, it

takes constant time (𝛩(1)).

56

Figure 3-6: Method head, tail, and append.

𝛩(𝑛)

𝛩(𝑛)

57

Method tail ends immediately if the array is empty, or it

has to copy the entire array except the first data. The

conditional exit takes place when there is no data in the

array. It will not be considered when we estimate the

runtime since we only make our estimation from the case

where the input size in n.

It basically means that the runtime always depends on

array size, without any other factors to influence it.

Therefore, tail takes 𝛩(𝑛) to run.

Method append returns immediately (𝛩(1)) if both arrays

we want to append do not have any content. Otherwise,

contents from both arrays are copied into the resulting

array, which takes 𝛩(𝑛) if there are n total contents from

the 2 original arrays. To sum up, the running time for

append is 𝛩(𝑛). The conditional exit does not count

because it only happens when the arrays have no

contents.

To summarize, insert and remove take some time to run

because they need array elements to move around. Other

methods such as tail and append take time because we

need to copy data from the original array into a new

array.

Speed improvement is impossible if a new copy of an

array needs to be created. But for methods that just move

data around, if we can find a data structure that does not

58

require elements to move around, we will save time.

Indeed, such data structure exists. It is called a Linked

List.

Implementing a List with Linked List
A linked list concept is shown in Figure 3-7.

A linked list consists of “nodes”. Each node stores a piece

of data and a link to another node, thus storing data in

Figure 3-7: Linked list structure concept

59

sequence. Each element in a list can be reached by

following links from its first node.

Finding a specified value in a list will require searching

from the very first node. Therefore, the running time is

still 𝑂(𝑛). Method findKth can no longer make use of

array index access so it has to count data from the

beginning of a list, thus taking 𝑂(𝑘) to run (it can run in

constant time if the value of k is illegal).

But for any functionalities that used to require array

elements to move around, using linked lists eliminate

such requirements. Let us see how this improvement is

achieved. Figure 3-8 shows how to remove data A2 from

a linked list that originally stores data A1, A2, and A3.

Basically, we need just one change of link (a link can be

called pointer, or reference). In Figure 3-8, the changed

link is identified by a thick arrow. The link coming out of

Figure 3-8: Removing data from a linked list.

60

the node that contains A2 does not have to be changed

because A2 is no longer accessible, causing the link to

become inaccessible as well (Java’s garbage collector will

clear it).

Inserting a new piece of data uses the same concept, as

shown in Figure 3-9. A thick arrow is used to mark the

link that needs to be changed when inserting X into the

list. A new node containing X has to be created. Then, the

link from the node that stores A2 to the node that stores

A3 needs to be changed to point to the node that contains

X. The link from the node that contains X is then set to

point to the node that contains A3. Therefore, we achieve

the effect of inserting X between nodes that store A2 and

A3.

Figure 3-9: Inserting data into a linked list.

61

Note that inserting new data as a new first data in a list

(Figure 3-10) requires different code to be written in the

actual implementation. Since there is no node that can

come before the newly created node (the new node stores

X), we cannot write any code to change a link from a non-

existing node.

To avoid having to write a different code for this case, a

header node (also called a dummy node) is introduced.

The header node does not store any data. It is always in

front of the list. With the addition of a header node, every

node that stores data now has a node in front. Code is

therefore the same. Figure 3-11 illustrates a linked list

with header. Figure 3-12 shows an empty list with

header. Yes, an empty list has a header too, but the

pointer from its header node does not point to any other

node. We call a pointer that does not point to anywhere

a “null pointer”.

Figure 3-10: Inserting new data into the first position.

Figure 3-11: A linked list with a header node.

62

Now let us go through the implementation in detail. We

will be looking at the following code portions

respectively:

1. Node implementation.

2. Node marking implementation.

3. Linked list implementation.

Let us start with the implementation of a node. Figure

3-13 shows the code that defines a node that stores

integer.

Figure 3-13: Implementation of a node that stores an integer.

Figure 3-12: An empty linked list with a header node.

63

A node constructed with statement:

ListNode a = new ListNode(5);

is shown in Figure 3-14.

Regarding node marking, a node we are interested in can

be straightforwardly implemented because each node

has a pointer to it, hence creating a pointer pointing to a

node we are interested in should do the job. We can then

traverse our linked list by following a link on each node.

Figure 3-15 shows a linked list with 3 markers, two of

them marking the same node.

However, traversing a list this way is not recommended.

The reason is that there are usually many data structures

that we need to provide for programmers, and each data

structure is implemented differently. Thus, traversing

Figure 3-14: A node created from ListNode a = new ListNode(5);

Figure 3-15: Simple markers a, b, and c at positions of interest.

64

each data structure requires different implementation-

specific methods, which is not very user-friendly. It is

better to implement implementation-independent

methods and have users call such methods on all data

structures without having to go in-depth into each data

structure implementation.

Here, we introduce iterator, one of the common

implementation-independent approaches. An iterator

for a data structure is an entity that marks and

remembers the position of a single data. Once created, a

programmer can instruct an iterator to mark the next

data and operate on it with the following methods

(regardless of implementation):

• hasNext(): checks if there is a next data in our data

sequence.

• next(): returns the next data in the sequence.

• set(Type value): replaces the last value returned by

next() with value.

To make it implementation-independent, every possible

implementation of each data structure should implement

its own iterator that has the above functionalities. Thus,

an iterator should be written as a Java interface. For our

linked list, a linked list iterator can be created to

implement the Iterator interface. Please note that Java

already has Iterator and List Iterator interface that you

can use. They are different from the implementation in

this book. The implementation in this book focuses on

65

the fundamental knowledge needed to implement your

own data structure from scratch, which is needed if

readers want to customize a data structure of their own.

Figure 3-16 shows our iterator interface, simplified to use

with data structures that store integers. In actual

language libraries, data structures and iterators operate

on more generic data types.

1: public interface Iterator{

2: public boolean hasNext();

3: public int next();

4: public void set(int value);

5: }

Figure 3-16: interface Iterator.

Figure 3-17 shows our implementation of a list iterator

class. Our linked list iterator implementation contains

just one field, currentNode, that represents a node of

which data has just been returned by method next. This

is the node of interest. The list iterator constructor

initializes this node to any given node from a linked list.

For example, if we are to initialize a linked list iterator to

be ready for an iteration from the very first data in a

linked list (assuming that the header node of that linked

list is header), the following statement must be used:

ListIterator itr = new ListIterator(header);

66

Figure 3-18 shows the linked list and linked list iterator

after the above statement was executed.

1: public ListIterator implements Iterator{

2: ListNode currentNode;

3:
4: public ListIterator(ListNode n){

5: currentNode = n;

6: }

7:
8: public boolean hasNext(){

9: return currentNode.nextNode != null;

10: }

11:
12: public int next() throws Exception{

13: //Throw exception if the next data

14: // does not exist.

15: if(!hasNext())

16: throw new NoSuchElementException();

17: currentNode = currentNode.nextNode;

18: return currentNode.data;

19: }

20:
21: public void set(int value){

22: currentNode.data = value;

23: }

24: }

Figure 3-17: Iterator for Linked List implementation.

Figure 3-18: List iterator focusing on list header.

itr

currentNode

null
header

A1 A3 A2

67

The method hasNext checks whether there is a node after

the node of interest. For Figure 3-18, the method returns

true since there is an actual node after currentNode. But

for the list iterator in Figure 3-19, the method returns

false because the node after currentNode does not exist.

Method next creates an exception if the next data does

not exist. Otherwise, it moves currentNode by one

position in the list and returns the data in the node it just

moves to. Figure 3-20 shows an example of a list iterator

status before and after method next is called.

The method set just straightforwardly changes the value

of data in the node that we just focus on.

Now we are ready for our linked list implementation.

Figure 3-21 displays the code for class LinkedList, its

constructor, method find and method findKth.

itr

currentNode

A1 A3 A2

Figure 3-19: State of List iterator that method hasNext returns false.

68

The code for find works in the same way as its array

version, that is, we need to search the data structure, one

data at a time. The method ends immediately if the

linked list is empty or if the value is found. Therefore, its

running time is the same as its array counterpart, which

is 𝑂(𝑛). An example run of this method, where the value

we want to find is 5, is shown in Figure 3-22.

Method findKth suffers from the lack of direct positional

access. Therefore, it requires a loop to look for the kth data

in the list (its code is similar to our code for find). But the

loop can end as soon as the position is found. Thus, its

asymptotic runtime is 𝑂(𝑛) (One could say the runtime

is 𝑂(𝑘), but I prefer 𝑂(𝑛) because it directly informs us

itr

currentNode

next() itr

currentNode

A1 is the return value.

A1 A3 A2

A1 A3 A2

Figure 3-20: The working of method next.

69

about input size). This runtime is worse than its array

counterpart, but the performance increase in insert and

remove outweighs this drawback.

1: public class LinkedList {
2: ListNode header;
3: static int HEADER_MARKER = -9999999;
4:
5: public LinkedList() {
6: header = new ListNode(HEADER_MARKER);

7: }
8:
9: public int find(int value) throws Exception{
10: Iterator itr = new ListIterator(header);

11: int index = -1;

12: while(itr.hasNext()){

13: int v = itr.next();

14: index++;

15: if(v == value)

16: //return the position of value.

17: return index;

18: }

19: //return -1 if the value is not in the list.

20: return -1;

21: }

22:
23: public int findKth(int kthPosition) throws Exception{

24: //If the position number is negative (impossible)

25: if (kthPosition < 0)

26: throw new Exception

27:
28: Iterator itr = new ListIterator(header);

29: int index = -1;

30: while(itr.hasNext()){

31: int v = itr.next();

32: index++;

33: if(index == kthPosition)

34: return v;

35: }

36: throw new Exception();

37: }

38: //This class continues in Figure 3-23.

Figure 3-21: Linked List implementation (constructor, find, and findKth).

𝑂(𝑛)

𝑂(𝑛)

70

Method insert is shown in Figure 3-23. One of the

parameters is different from its array counterpart.

Instead of using a position number, we use an Iterator to

indicate a position before the new data. We avoid using

the position number because using it requires us to

Figure 3-22: Execution steps of method find.

End of 1st iteration

index == -1

itr

currentNode

2 5

itr

currentNode

5

v == 2

index == 0

2

End of 2nd iteration

itr

currentNode

5

v == 5

index == 1 (returned)

2

71

iterate through the list, a very unnecessary time-

consuming process. Using an Iterator to indicate a

position allows our implementation to avoid any loop

completely, thus reducing its asymptotic runtime to a

constant value, 𝛩(1). Please note that we have earlier

seen the running time of insert for arrays, which is 𝑂(𝑛).

A ListNode could also be used to indicate the position

instead of an Iterator. For consistency, this book

prioritizes Iterator when marking a position within a data

structure.

Examples of what happens when method insert is called

are shown in Figure 3-24 and Figure 3-25. They are

slightly different from Figure 3-9 because the list has a

header this time. The header node helps us add the new

first data to the list without requiring any special-case

coding.

1: public void insert(int value, Iterator p) throws Exception
2: {
3: if (p == null || !(p instanceof ListIterator))

4: throw new Exception();

5: ListIterator p2 = (ListIterator)p;

6: if(p2.currentNode == null) throw new Exception();

7: ListNode n =

8: new ListNode(value, p2.currentNode.nextNode);

9: p2.currentNode.nextNode = n;

10: }// This class continues in Figure 3-26.

Figure 3-23: insert method of LinkedList.

72

The code for method remove is shown in Figure 3-26. It

makes a call to method findPrevious and another remove

which uses a position parameter.

Figure 3-24: Inserting a new value at the start of the list (after the header).

Figure 3-25: Inserting after the last data in a list.

null

null

insert(1,p);

header

3 9 5

1
n

p

header

3 9 5

p

p

null

insert(1,p);

header

3 9 5

header

3 9 5

1
n

p

73

Method findPrevious attempts to find a node just before

the node that stores value. It returns null if no such node

exists.

First, two iterators are created focusing on header. Then

we check if the list is an empty list by calling method

hasNext. If the list is empty (method hasNext returns

1: public void remove(int value) throws Exception{
2: Iterator p = findPrevious(value);

3: if(p == null)

4: return;

5: remove(p);

6: }
7:
8: public Iterator findPrevious(int value) throws
9: Exception{
10: Iterator itr1 = new ListIterator(header);

11: Iterator itr2 = new ListIterator(header);

12: if(!itr2.hasNext())

13: return null;

14: int currentData = itr2.next();

15: while(currentData != value && itr2.hasNext()){

16: currentData = itr2.next();

17: itr1.next();

18: }

19: if(currentData == value)

20: return itr1;

21: return null;

22: }
23:
24: public void remove(Iterator p){
25: if(p == null || !(p instanceof ListIterator))

26: return;

27: ListIterator p2 = (ListIterator)p;

28: if(p2.currentNode == null ||

29: p2.currentNode.nextNode == null)

30: return;

31: p2.currentNode.nextNode =

32: p2.currentNode.nextNode.nextNode;

33: }
34: // This class continues in Figure 3-31.

Figure 3-26: remove method of LinkedList.

𝑂(𝑛)

𝛩(1)

74

false), null is returned right away (line 12-13 in Figure

3-26. Also, see Figure 3-27 for our drawing of this case).

If not, we move the position of interest of itr2 by one so

that the position is ahead of the position of interest of itr1

(see Figure 3-28). Then we move the positions of interest

of both iterators until we find value or until there is no

more data to work with. If value is found, we return the

position of interest, itr1, which is the position before the

node that stores value (see the lower part of Figure 3-28).

Otherwise, null is returned because value surely does not

exist in the list (line 21 in Figure 3-26). Figure 3-29 shows

the final state of everything before the method returns,

when value is not in the list.

Method remove (line 24-33 of Figure 3-26) works just as

illustrated in Figure 3-8.

Let us analyze the asymptotic runtime of the whole

remove process. Since we have to search for value, a loop

has to be employed (line 15-18 of Figure 3-26). The loop

Figure 3-27: Status of variables when findPrevious is

called on an empty list.

itr2
itr2.hasNext() returns false for

an empty list and the method

returns null right away because

there is no node that contains value.

itr1

header

75

can exit at any stage hence its asymptotic runtime is

𝑂(𝑛). Other parts of the program take constant time to

run. Therefore, the overall running time of method

remove is 𝑂(𝑛). This running time is equal to its array

counterpart mainly because of the search requirement.

 Figure 3-28: Status of variables in each step of execution when findPrevious is

called on a list that stores value.

 Keep moving both positions of

interest until we find value.

null
3 value 5

itr2

header

itr1

header

3 value 5

itr1 itr2

header

3 value 5

itr1 itr2

This iterator is returned.

header

3 value 5

itr1 itr2

76

If we know the position of the data to be removed in

advance, we can utilize method remove (line 24-33 of

Figure 3-26) and remove the data in constant time. Note

that in the array implementation, even though we may

know the position of the data to be removed, other data

to the right of the to-be-removed data must be shifted,

causing the running time to still be 𝑂(𝑛).

Method head and tail are shown in Figure 3-30. We

introduce isEmpty, which checks whether the list does

not store any data, and makeEmpty, which disconnects

the link from the header to other nodes, effectively make

the list become empty.

Method head is straightforward. It just tries to return data

in the node next to header. So, it runs in constant time just

like its array counterpart.

Method tail exits immediately if the list is empty.

Otherwise it uses a loop to copy data (except the first

Figure 3-29: Final status of variables when findPrevious is called on a list

that does not store value.

If value is not in the list, itr2

stops after moving to the last

node. The method then exits,

returning null.

itr2 itr1

header

3 7 5

77

data) to a new list and return that list. The new list has to

be created so that the original list is still preserved. The

number of iterations is directly proportional to the size

of the list. So, its asymptotic runtime is 𝛩(𝑛). Although

the method can exit early, it does so due to the size of the

list being zero.

1: public boolean isEmpty(){

2: return header.nextNode == null;

3: }

4:

5: public void makeEmpty(){
6: header.nextNode = null;

7: }
8:
9: public int head() throws Exception{
10: if(isEmpty())

11: throw new Exception();

12: return header.nextNode.data;

13:
14: }

15:
16: public LinkedList tail() throws Exception{

17: if(isEmpty())

18: throw new Exception();

19:
20: // Now create a copy of the list

21: // so that the original does not change.

22: // Copy everything except the first data

23: // to the new list.

24: LinkedList list2 = new LinkedList();

25: Iterator p1 = new

26: ListIterator(header.nextNode);

27: Iterator p2 = new ListIterator(list2.header);

28: while(p1.hasNext()){

29: int data = p1.next();

30: list2.insert(data,p2);

31: p2.next();

32: }

33: return list2;

34: } //This class continues in Figure 3-31.

Figure 3-30: Method head and tail of LinkedList.

𝛩(𝑛)

78

If we allow our original list to change, the method can

simply remove the first data and take constant time. But

here we do not want method tail to change our original

list.

Method append (see Figure 3-31) enters loops n times,

where n is the total amount of data from both lists.

Therefore, its asymptotic runtime is 𝛩(𝑛), just like its

array counterpart. This method can be made to run in

constant time if we can mark the last node in our first list

in advance, and connect the two lists together by

changing just the end pointer from our first list (but

doing it this way means any change made to one list will

surely affect the other list). Please note that our append

changes this list.

Figure 3-31: Method append of LinkedList.

1: public void append(LinkedList list2) throws Exception{
2: Iterator p1 = new ListIterator(header);

3: Iterator p2 = new ListIterator(list2.header);

4:
5: //move iterator to the end of our list.

6: while(p1.hasNext())

7: p1.next();

8:
9: //then copy everything from list2 to our list.

10: while(p2.hasNext()){

11: insert(p2.next(),p1);

12: p1.next();

13: }

14: }// end of class LinkedList.

𝛩(𝑛)

79

From our implementation of linked list, the runtime can

greatly be reduced from its array implementation

counterpart when doing insert or remove, if the position

before the node to be inserted or removed can be

identified. This can greatly save time when our program

has a lot of insert and remove. Table 3-2 summarizes

asymptotic runtime comparisons of operations on an

array and a linked list.

Table 3-2: Asymptotic runtime comparisons on operations of array and

linked list.

operations Array Linked list

find 𝑂(𝑛) 𝑂(𝑛)

insert 𝑂(𝑛) 𝛩(1)

findKth 𝛩(1) 𝑂(𝑛)

remove 𝛩(𝑛) 𝛩(1)

head 𝛩(1) 𝛩(1)

tail 𝛩(𝑛) 𝛩(𝑛)

append 𝛩(𝑛) 𝛩(𝑛)

80

Doubly-linked list
A doubly-linked list is very similar to the linked list we

have seen in the previous section. However, its node

stores one extra variable, previousNode, which is a link

back to the node to its left. Having this extra link allows

us to iterate through the list in both directions

(obviously, the list iterator also needs to be expanded).

Extra pointers mean we need to be more careful when

updating them though.

Implementation can also be done such that a header is

linked back to the node that stores the last data. This way,

the list can be traversed in circle, in both directions. A

doubly-linked list that can be traversed in circle is called

a circular doubly-linked list. Figure 3-32 shows a circular

doubly-linked list structure which stores 3, 6, and 4.

Let us go through this list implementation. First of all,

the structure of a ListNode needs to be changed to include

a pointer back to a node that comes before it. Our

extended class is called DListNode. The new pointer is

header

3 6 4
nextNode

previousNode

Figure 3-32: Example of a circular doubly-linked list.

81

named previousNode. Figure 3-33 shows the code of

DListNode.

From Figure 3-33, with 2 pointers to a node before and a

node after it, our DListNode object also has constructors

that initialize the values of both pointers. Figure 3-34

shows a DListNode created by its default constructor (line

6-8 in Figure 3-33), with the code:

DListNode a = new DListNode(9);

1: class DListNode {
2: int data;

3: DListNode nextNode, previousNode;

4:
5: // Constructors

6: DListNode(int data) {

7: this(data, null, null);

8: }

9:
10: DListNode(int theElement, DListNode n, DListNode p) {

11: data = theElement;

12: nextNode = n;

13: previousNode =p;

14: }

15: }

Figure 3-33: Code of a node of a doubly-linked list.

a

9 nextNode previousNode

Figure 3-34: A DListNode created by its

default constructor.

82

For node marking, our iterator has to be able to do a bit

more. Thus, we add the following functions:

• hasPrevious(): returns true if there is a node prior to

the currently interested node. Please note that since

our list is circular, this will always be true. But this

may not be true for some other implementations.

• previous(): returns the value currently marked, then

move our iterator to the node before the current

node. Please note that the returned value is

obtained before the iterator is moved. Therefore,

calling next() and previous() in sequence will return

the same values.

Our modified iterator interface is shown in Figure 3-35.

This iterator interface can be used with any data

structure as long as the data structure allows 2-way

traversal. Note that in Java we can write this new iterator

interface by extending from the iterator in Figure 3-16.

But here, the whole interface is re-written so that readers

can clearly spot the differences between next() and

previous().

1: public interface Iterator {
2: public boolean hasNext();

3: public boolean hasPrevious();

4:
5: // moves iterator to the next position,

6: // then returns the value at that new position.

7: public int next() throws Exception;

8:
9: // returns the value at current position,

10: // then moves the iterator back one position.

11: public int previous() throws Exception;

12:
13: public void set(int value);

14: }

Figure 3-35: Iterator that can traverse a data structure in two directions.

83

The code for our 2-way linked list iterator is shown in

Figure 3-36. Instead of extending from the 1-directional

version, the code is shown here in its entirety in order to

emphasize the differences between next() and previous().

1. public class DListIterator implements Iterator {
2. DListNode currentNode; // interested position
3. DListIterator(DListNode theNode) {
4. currentNode = theNode;
5. }

6.

7. public boolean hasNext() {
8. // always true for circular list.
9. return currentNode.nextNode != null;

10. }

11.

12. public boolean hasPrevious() {
13. // always true for circular list.
14. return currentNode.previousNode != null;

15. }

16.

17. public int next() throws Exception {
18. if (!hasNext())
19. throw new NoSuchElementException();

20. currentNode = currentNode.nextNode;

21. return currentNode.data;

22. }

23.

24. public int previous() throws Exception{

25. if (!hasPrevious())

26. throw new NoSuchElementException();

27. int data = currentNode.data;

28. currentNode = currentNode.previousNode;

29. return data;

30. }

31.

32. public void set(int value) {
33. currentNode.data = value;
34. }

35. }

Figure 3-36: Bi-directional linked list iterator.

84

Statement DListIterator itr = new DListIterator(header);

creates an iterator pointing to header, as shown in Figure

3-37.

The code for circular doubly-linked list can be written by

extending from its singly-linked list counterpart, but due

to a very different logic in list traversal, where there is no

end of the list in this new circular implementation, all

methods have to adapt this logic. This makes it difficult

to write each method based on its existing counterpart.

Therefore, the code shown in this section will be a

complete rewrite, with differences highlighted in the

code explanation.

header

3 6 4
nextNode

previousNode

header

3 6 4
nextNode

previousNode

itr
DListIterator itr = new

DListIterator(header);

Figure 3-37: List iterator creation on a doubly-linked list.

85

Figure 3-38 shows our doubly-linked list class,

CDLinkedList, with its variables, constructor, and method

isEmpty, makeEmpty, and size.

For variables, we now have size. With it, now we can

keep track of the number of data stored in the list without

having to do any list traversal. We only need to update

the value of size when adding and removing data from

the list.

1: public class CDLinkedList {
2: DListNode header;

3: int size;

4: static final int HEADERVALUE = -9999999;

5:
6: public CDLinkedList() {

7: size =0;

8: header = new DListNode(HEADERVALUE);

9: makeEmpty(); //necessary, otherwise

10: // next/previous node will be null.

11: }

12:
13: public boolean isEmpty() {

14: return header.nextNode == header;

15: }

16:
17: public void makeEmpty() {

18: header.nextNode = header;

19: header.previousNode = header;

20: }

21:
22: public int size(){

23: return size;

24: }

25: //The class continues in Figure 3-40.

Figure 3-38: Circular doubly-linked list variables, constructor, and

small utility methods.

86

For the constructor (which creates an empty list), when

creating the header, we cannot simply write:

header = new DListNode(HEADERVALUE,header,header);

The statement above will initialize nextNode and

previousNode to null because the default value for header

is null (the right-hand side of the assignment operator is

executed before the left-hand side). In order to make

nextNode and previousNode point to header, to create an

empty list which is circular, we need to set their values

after header is actually created (line 8-9, 17-20 of Figure

3-38). This process utilizes method makeEmpty, which can

be used to reset any list back to an empty list.

Figure 3-39: Making an empty list with method makeEmpty.

header

3 6 4

header

3 6 4

makeEmpty();
This is now the

only visible node.

87

Figure 3-39 shows the working of method makeEmpty. It

makes any generic list an empty list. All nodes except

header are no longer accessible from any named

variables and will be removed from memory by garbage

collector.

The method isEmpty no longer checks for null. Since the

list now goes in circle, header of an empty list has its

nextNode and previousNode points to itself (see Error!

Reference source not found.).

The implementation of the find method, that returns the

position of value in the list (the first data is at position

0), is shown in Figure 3-40.

The method is quite similar to its singly-linked list

counterpart (see Figure 3-21 and Figure 3-22), but instead

1: public int find(int value) throws Exception {
2: Iterator itr = new DListIterator(header);
3: int index = -1;
4: while (itr.hasNext()) {
5: int v = itr.next();

6: index++;

7: DListIterator itr2 = (DListIterator) itr;

8: if (itr2.currentNode == header) //not found

9: return -1;

10: if (v == value)

11: //return position of the value.

12: return index;

13: }

14: return -1;

15: }

Figure 3-40: Method find of circular doubly-linked list.

88

of checking if the iterator has reached null, we check if

the iterator has reached header instead (line 7-8 in Figure

3-40) because reaching header means we have looked at

all data in our circular list. The performance of method

find is 𝑂(𝑛), just like its singly-linked list counterpart

because the list iterator may run through all data but the

method can also exit early.

The implementation of method findKth is shown in

Figure 3-41. It operates in almost the same way as its

singly-linked list counterpart (its asymptotic runtime is

also 𝑂(𝑛)). The only difference is that it checks for header

instead of null when determining whether the last data

in the list has been processed (line 15 in Figure 3-41).

1: public int findKth(int kthPosition) throws Exception{

2: if (kthPosition < 0)

3: throw new Exception();

4: // exit the method if the position is

5: // less than the first possible

6: // position, throwing exception in the

7: //process.

8: Iterator itr = new DListIterator(header);

9: int index = -1;

10: while(itr.hasNext()){

11: int v = itr.next();

12: index++;

13: DListIterator itr2;

14: itr2 = (DListIterator) itr;

15: if (itr2.currentNode == header)

16: throw new Exception();

17: if(index == kthPosition)

18: return v;

19: }

20: throw new Exception();

21: }

Figure 3-41: Method findKth of circular doubly-linked list.

𝑂(𝑛)

89

The code for method insert is shown in Figure 3-42.

Method insert (Figure 3-42) tries to add value into our

linked list, by putting the value at position just behind a

node that is marked by p. First, if p has illegal value, then

an exception is thrown since we cannot insert new data

after an illegal position.

Illegal values of p are:

• p is null (line 3 in Figure 3-42).

• p is not an iterator that can navigate a doubly-

linked list (line 3 in Figure 3-42).

• Value of currentNode stored in p is null, meaning p

does not mark any position in the linked list (line

5-6 in Figure 3-42).

After we make sure that p is legal (in the code, p is now

casted to p2 to allow field access since p is just a normal

1: public void insert(int value, Iterator p) throws Exception
2: {
3: if (p == null || !(p instanceof DListIterator))
4: throw new Exception();

5: DListIterator p2 = (DListIterator) p;
6: if (p2.currentNode == null)
7: throw new Exception();

8:
9: DListIterator p3 = new
10: DListIterator(p2.currentNode.nextNode);

11: DListNode n;
12: n = new DListNode(value,p3.currentNode,p2.currentNode);
13: p2.currentNode.nextNode = n;
14: p3.currentNode.previousNode = n;
15: size++;
16: }

Figure 3-42: Method insert of circular doubly-linked list.

90

Iterator, not DListIterator), a new iterator (p3) is created to

mark the node after the node marked by p. This new

DListIterator, together with p2, are then used to create a

new node with value inside. The pointers to/from the new

node are also adjusted (see bottom half of Figure 3-43).

The pointers adjustment does not need any loop, so the

asymptotic runtime of this insert method is 𝛩(1).

Let us view an example in Figure 3-43. In the example,

we insert 5 after the position that stores 3. Dotted line

marked changes made in each step.

91

n

p3 = new

DListIterator(p2.currentNode.nextNode);

p2
header

3 6 4

n = new DListNode(5, p3.currentNode,

p2.currentNode);

p2
header

3 6 4

p3

p2.currentNode.nextNode = n;

p3.currentNode.previousNode =n;

p2
header

3 6 4

p3

5

p2
header

3 6 4

p3

5 n

Figure 3-43: Execution steps of insert for doubly-linked list.

92

The code for method remove updated for a doubly-linked

list is shown in Figure 3-44, with its utility method

findPrevious and remove(Iterator p) shown in Figure 3-45.

The method remove is almost the same as its singly-linked

list counterpart. In fact, the code in Figure 3-44 is the

same as its singly-linked list version. Its core concept

does not change. That is, we must find the position prior

to value, then remove the node at that position by

changing pointers. Thus, calls to method findPrevious and

remove(Iterator p) are still needed (their codes are in

Figure 3-45). This time, however, method findPrevious

needs to check for header instead of null to determine

whether all data in the list are examined. Also,

remove(Iterator p) needs to check for header instead of null.

But since everything else does not change, (except one

more previousNode pointer got updated) the asymptotic

runtime of remove(Iterator p) is still 𝛩(1). The runtime for

method findPrevious is also still 𝑂(𝑛). Thus, the overall

runtime of the remove method in Figure 3-44 is 𝑂(𝑛),

which is the same as its singly-linked list counterpart.

1: // remove the first instance of the given data.
2: public void remove(int value) throws Exception {
3: Iterator p = findPrevious(value);

4: if (p == null)

5: return;

6: remove(p);

7: }

Figure 3-44: Method remove of doubly-linked list.

93

1: // Return iterator at position before the first
2: // position that stores value.
3: // If the value is not found, return null.
4: public Iterator findPrevious(int value) throws
5: Exception {
6: if (isEmpty())
7: return null;

8: Iterator itr1 = new DListIterator(header);
9: Iterator itr2 = new DListIterator(header);
10: int currentData = itr2.next();

11: while (currentData != value) {

12: currentData = itr2.next();

13: itr1.next();

14: if (((DListIterator) itr2).currentNode ==

15: header)

16: return null;

17: }

18: if (currentData == value)

19: return itr1;

20: return null;

21: }

22:
23: //Remove content at position just after the given

24: // iterator. Skip header if found.

25: public void remove(Iterator p) {

26: if (isEmpty())

27: return;

28: if (p == null || !(p instanceof DListIterator))

29: return;

30: DListIterator p2 = (DListIterator) p;

31: if (p2.currentNode == null)

32: return;

33: if (p2.currentNode.nextNode == header)

34: p2.currentNode = header;

35: DListIterator p3;

36: p3 = new

37: DListIterator(p2.currentNode.nextNode.nextNode);

38:
39: p2.currentNode.nextNode = p3.currentNode;

40: p3.currentNode.previousNode = p2.currentNode;

41: size--;

42: }

Figure 3-45: Method findPrevious and remove(Iterator p) of doubly-

linked list.

94

Again, if a position is known in advance, data removal

takes constant time.

An illustrated example of findPrevious code from Figure

3-45 is shown in Figure 3-46. Here we execute command

findPrevious(4). Figure 3-46 shows the execution after line

10.

itr2
header

3 6 4

After a while loop iteration:

itr1
header

3 6 4

itr2

itr1

After another loop iteration:

itr2
header

3 6 4

itr1

The loop stops when currentData == 4. The method then

returns itr1, the position before our value.

Figure 3-46: The working of findPrevious for doubly-linked list.

95

An example of remove with iterator parameter from

Figure 3-45 is shown in Figure 3-47. Dotted lines show

pointer changes. It can be seen that at the end, no pointer

is connected to the node that stores 4, thus effectively

rendering the node that contains 4 inaccessible from the

rest of the list. The node that contains 4 will be cleaned

up by a garbage collector (in languages without

automatic memory management, you may have to

remove the node by yourself, depending on the

language).

p3.currentNode.previousNode

= p2.currentNode;

header

3 6 4

p2 p3

p2.currentNode.nextNode =

p3.currentNode;

header

3 6 4

p2 p3

header

3 6 4

p2 p3

Figure 3-47: How remove(Iterator p) operates in doubly-linked list.

96

Our remove method from Figure 3-44 mainly removes

the first instance of a specified value. The remove

method in Figure 3-45 removes data behind a specified

position. What if we want to remove data at a specified

position? The code for this is shown in Figure 3-48.

1: // Remove data at position p.
2: // if p points to header or the list is empty, do
3: // nothing.
4: public void removeAt(Iterator p) throws Exception{
5: if (isEmpty() || p == null

6: || !(p instanceof DListIterator)

7: ||((DListIterator) p).currentNode == null

8: ||((DListIterator) p).currentNode ==

9: header)

10: return;

11: DListIterator p2

12: =(DListIterator)(findPrevious(p));

13: remove(p2);

14: }

15:
16: //return iterator pointing to location before p.

17: public Iterator findPrevious(Iterator p) throws

18: Exception {

19: if ((p == null)

20: || !(p instanceof DListIterator)

21: || ((DListIterator) p).currentNode == null)

22: return null;

23:
24: DListIterator p1 = ((DListIterator) p);

25: DListIterator p2 = new

26: DListIterator(p1.currentNode.previousNode);

27: return p2;

28: }

Figure 3-48: Code for removing data at a specified position.

97

In findPrevious(Iterator p), we can easily find a node in

front of the node marked by p by just following its

previousNode pointer (line 26 from Figure 3-48). Once that

position is identified, a remove(Iterator p) can be called to

simply remove a node behind p. The overall process of

removeAt therefore does not require any loop operation.

Thus, it runs in constant time, 𝛩(1).

Method head, tail, and append for a doubly-linked list can

use codes almost exactly the same as its singly-linked list

counterpart. In fact, the only difference is the list type.

This is because those codes utilized method next and

insert to add new data to the list. These two methods are

also implemented for our doubly-linked list, so they

already dealt with extra pointers manipulation for us.

Thus, codes using these methods work perfectly with

doubly-linked lists.

Sparse Table

Storing data which can be arranged in row-column

format usually requires a 2-dimensional array. However,

some data set has a lot of empty data. This means that

there will be wasted array slots reserved in memory. This

kind of data set is called a sparse table. One way to avoid

wasting such memory reservation is to use a set of linked

lists to store only necessary data.

98

Let’s say we have data of all gamers who play games on

Steam, together with their achievement percentage for

each game. We want to arrange data such that:

• For each gamer, we must be able to find all the

games he plays and his achievement for each

game.

• For each game, we must be able to find all gamers

who play the game.

A 2-dimensional array representation of such data is

shown in Figure 3-49. There are many empty slots

because a gamer does not play every game and each

game is not played by every gamer.

Ann Ben Cathy Don Jim

D.D. 20% 72%

MTG 25% 74% 21%

Orc

Sky 99%

T2 11% 33%

Figure 3-49: Two-dimensional array representing games and players’

progresses.

A linked list that corresponds to data set from Figure

3-49 is shown in Figure 3-50.

99

The less data it has, the more memory saving we can

achieve. Following links can still be slow, however. We

can speed the search for game names and gamer names

by adding direct links to game name and gamer name for

each node.

Ann Ben Cat Don Jim

D.D

MTG 25

20

74

72

21

 33

Sky
99

Orc

11 T2

Figure 3-50: Linked list implementation of a sparce table.

100

Skip List
Searching for data in a linked list can be slow because we

need to follow links through each and every node. One

way to speed up the search is to implement a skip list. A

node in a skip list can have more than one pointer, each

one pointing to different nodes in the list (Figure 3-51).

Figure 3-51: A skip list (shown with 1 direction pointers only in order

to avoid confusion).

Hence in a sorted skip list, we can start by following the

link that skips most data. Then if we go beyond the

intended data, we can go back by one link and start

searching again with a lower level link. In Figure 3-51, to
find the number 15, we follow the link from the header

to the node that stores number 8, but the link from the

node that stores 8 goes to a node that stores a larger

number than 15. We therefore start the search again from

the node that contains 8, following links that skip fewer

number of nodes. This time we successfully find 15.

2 6

8

5

12

2

15

101

Finding (or not finding) a required data can take O(log n)

with a doubly-linked version of skip list. The skipping

works the same way as a binary search.

Maintaining a skip list can be a problem though. If we

want to maintain well distributed links for each level of

links, we need to change all links when a data is inserted

or removed from the list. This is impractical. Therefore,

we resort to just maintain the number of links in each

level when we add a new data.

Let’s say we want to have 3 levels of links (level 0 to 2).

level nth starts at the 2𝑛-1 position (not counting header).

Node level n links to 2𝑛 th node to its right. A skip list

with this scheme, with 5 data, is shown in Figure 3-52.

If we are to expand the list in Figure 3-52 to have 20

nodes (not including header) while maintaining evenly

distributed nodes of all level, we will have a list with the

following nodes:

header

0th 1st 2nd 3rd 4th

Figure 3-52: Doubly-linked skip list with 5 data.

102

• Nodes level 0 (linked to its next node): 0th, 2nd, 4th,

6th, 8th, 10th, 12th, 14th, 16th, 18th node. There are 10

nodes in total.

• Nodes level 1 (linked to its next node and a node 2

places away): 1st, 5th, 9th, 13th,17th node. There are 5

nodes in total.

• Nodes level 2 (linked to its next node, a node 2

places away, and a node 4 places away): 3rd, 7th 11th,

15th, 19th node. There are 5 nodes in total.

The ratio of each node level from above is what we need

to maintain when adding a new node (we do not change

node type of any node when a node is removed because

it is messy). We can achieve this by creating a random

number between 1 and 20.

• If the number is between 1 and 10, we add node

level 0.

• If the number is between 11 and 15, we add node

level 1.

• If the number is between 16 and 20, we add node

level 2.

In actual implementation, since there can be more than

one next and previous pointers, you may want to

implement array of pointers, as shown in a sample code

in Figure 3-53.

103

Exercises

1. Write method public void insertAtFront(int x) for

class CDLinkedList. This method inserts a new list

node, with data x inside, between header and other

nodes.

2. Write method public int removeAtLast() for class

CDLinkedList. This method removes the node at the

last position from the list, and returns the data stored

inside that node as the method’s return value.

3. Write method public CDLinkedList reverseList() for

class CDLinkedList. This method returns a new linked

list that has all elements from this list, but the

elements are arranged in reverse order. You are

allowed to change this list.

4. Write method public boolean isInFront(int x, int y)

for class CDLinkedList. This method returns true if x is

stored in some node before y (when we search from

left to right, starting from header). It returns false

otherwise. If x or y is not in the list, this method

returns false.

5. For class LinkedList (our singly-linked version), write

method public void setify(). This method changes our

1: class SKNode{
2: int data;
3: SKNode[] next;
4: SKNode[] previous;
5: }

Figure 3-53: Sample code for a skip list node.

104

list by removing all duplicated data so that there is

only one copy of each data.

6. For class CDLinkedList, write method public void

removeBefore(DListIterator p). This method removes

a node before the node marked to by p, but it does not

remove header. Do nothing if p is not valid.

7. For class CDLinkedList, write method public void

removeMin(). This method removes the smallest data

from the linked list.

8. For class LinkedList, write method public void

moveToFront(ListNode n). This method moves the

content of n to the front of the list. Other contents’

relative ordering remains unchanged.

For example

9. For class CDLinkedList, write method public void

clone(CDLinkedList in), which removed all data from

this list and then copies all items from the input list in

to itself. In this case if you change any data in the new

C A B D

A B C D

n

moveToFront(n)

105

list, the data in the original input list must not be

changed.

10. Write code for method public CDLinkedList

partition(int value) of class CDLinkedList. This

method removes all values greater than value from

this list. The method returns a list containing all the

removed values in order from left to right from the

this list (or empty list of no value is removed). For

example, if the original this list is:

then calling partition(5) will change this to:

And the returned list from the method will be:

header

3 6 4
nextNode

previousNode
7

3 4
nextNode

previousNode

6 7
nextNode

previousNode

106

11. Implement a polynomial (such as 5𝑥36 − 3𝑥17 + 8)

using class Linkedlist. Write code to multiply 2

polynomials.

12. If the first element of a list has index == 0, explain how

you would exchange the value of element with index

number x and y in a list, provided that x and y are

really legal positions in the given list (drawing can

help your explanation). Write method public void

swap(int x, int y) for class LinkedList that will perform

such work.

13. Explain how to modify a list of numbers such that

even numbers are in the front portion of the list and

odd numbers are in the back portion (drawing can

help). Write method public void evenOdds() for class

LinkedList that performs such task. You cannot create

another LinkedList or array.

14. For class LinkedList, write method public LinkedList

specificElements(LinkedList C, int[] P) This method

creates a new list by taking elements form C, as

specified by their indices in P. For example, if P

contains 1,3,4,6 the answer will be a linked list which

has the 1st, 3rd, 4th, and 6th element from C. If a specified

index does not exist in C, ignore it. P does not have to

be sorted. Discuss the asymptotic runtime of your

solution.

15. For class CDLinkedList, write method public

CDLinkedList union(CDLinkedList a, CDLinkedList

b) that creates a new list which is a result from the

107

union of a and b. a and b must remain unchanged.

Only one copy of each data is allowed in a result list.

16. For class CDLinkedList, write method public

CDLinkedList intersect(CDLinkedList a,

CDLinkedList b) that creates a new list which is a

result from the intersection of a and b. a and b must

remain unchanged. Only one copy of each data is

allowed in a result list.

17. For class CDLinkedList, write method public

CDLinkedList diff(CDLinkedList a, CDLinkedList b)

that creates a new list which has data which are in a

but not in b. Only one copy of each data is allowed in

a result list.

18. Illustrate how to swap two adjacent data in a

CDLinkedList by only changing pointers.

19. For class CDLinkedList, write method public void

swapChunk(DListIterator start, DListIterator end,

DListIterator p). This method changes our list by

moving data from position start to end (inclusive) to

position in front of p. Assume that the list is not

empty, all iterators actually point to positions in the

list, start is always to the left of end, and p is not a

position between start and end (inclusive).

108

109

Chapter 4 : Stack
A stack is a bucket. It stores data in layers. We can only

insert and remove data from the top of the bucket. The

way data can only be added or removed at the top is

called LIFO (last in, first out). Figure 4-1 shows a stack:

• data a, b and c are stored inside.

• A new data will sit on top of c.

• b cannot be accessed unless c is removed first.

• a cannot be accessed unless c and b are removed.

Stack Operations

Operations that we do with data on a stack are:

• Push: put a new data on top of the stack (Figure

4-2).

• Pop: remove the top most data (Figure 4-3).

• Top: read the data at the top without changing

stack content.

b

a

c

Figure 4-1: Stack with 3 data inside.

110

Notable uses of Stack
Bracket Pairing

We can check to see if our program source code has the

correct number/pairing of brackets. We do this by

checking the source code character by character. Then:

• If we find an opening bracket, push it onto sack.

• If we find a closing bracket, pop data from stack.

o If there is nothing in the stack to be popped,

it means we have more closing brackets than

opening brackets.

b

a

c

b

c

a

d
push d

Figure 4-2: Pushing data d onto a stack.

Figure 4-3: Popping data out of a stack.

b

a

c
pop

b

a

111

o If the popped bracket is not the same type as

the closing bracket, we know we have an

incorrect bracket type pairing.

• When the entire source code is read, if there are still

opening brackets in the stack, we know we have

too many opening brackets. Otherwise, the bracket

pairings are correct.

1: public class Myclass {
2: int a;
3: public Myclass() {
4: a = 0;

5: for (int i =0; i<10; i++){

6: a = a+1;

7: }
8: }
9: }
10: }// this is an excess bracket.

{

{ ((

{

)

{

{

{

{ (

{

Same type

{)

{

(

Same type

{ {

{

{

{

}

Same type

{

{

line 3 line 5

line 5
}

line 7 line 8

Same type

{

}

line 9

Same type

}
line 10

No matching opening bracket to be popped!!

Figure 4-4: Processing brackets, with excess closing brackets.

112

Figure 4-4 shows each stage of data inside our stack after

reading each bracket from a given code. Each thick arrow

shows a bracket being read (lines of code is also given in

most cases to help readers map the code and the picture

in the figure).

The code has an excess closing bracket on line 10. This

excess bracket is discovered when we try to pop an

empty stack after reading that bracket.

1: public class Myclass {
2: int a;
3: public Myclass() {
4: a = 0;

5: for (int i =0; i<10; i++{ //missing ‘)’

6: a = a+1;

7: }

8: }
9: }

{

{ ((

{

)

{

{

{

{ (

{

Same type

{ {

{

(

{ }

{

{

(

}

Different type
{

line 3 line 5

line 7 line 8

The pair does not match!!

(

line 5

Figure 4-5: Processing brackets, with incorrect type pairing.

113

Figure 4-5 shows each stage of data inside our stack after

reading each bracket, this time the code pairs different

type of brackets because it is missing a bracket on line 5.

When the process reads the closing curly bracket on line

8, before popping the stack, it checks the type of the

bracket stored in the stack. And it discovers a different

type of bracket. Therefore, the pairing is incorrect.

1: public class Myclass {
2: int a;
3: public Myclass() {
4: a = 0;

5: for (int i =0; i<10; i++){

6: { //excess bracket

7: a = a+1;

8: }

9: }
10: }

11:

{

{ ((

{

)

{

{

{

{ (

{

Same type

{)

{

(

Same type

{ {

{

{

{

{ {

{

line 3 line 5

line 5
}

line 6 line 8

{

}

line 9

}
line 10

{

{

Same type

{

{

{

{

Same type

{

Figure 4-6: Processing brackets, with excess opening bracket.

114

Figure 4-6 shows each stage of data inside our stack after

reading each bracket, this time the code has an extra

opening bracket on line 6. When the process ends, the

stack still has an opening bracket inside. Therefore, it

means we run out of all closing brackets to pair with it.

Hence it is an excess bracket.

Handling Data for Method Calls

In quite a few programming languages, including Java, a

stack is used to store data of method calls (including

nested calls). A data stored in this kind of stack is called

a stack frame.

• When a method is called, a stack frame containing

data specific to that method is created and pushed

onto the stack.

• Data inside the top stack frame are visible to a

language’s runtime system (other globally visible

data are also visible, but data from other method

calls are not visible).

• When a method exits, a stack frame corresponding

to that method is popped off the stack. Data that

belong to that method are destroyed.

1: public static void main(String[] args){
2: int v = m1(2);

3: System.out.print(v + m2(v););

4: }
5: public static int m1(int n){
6: return n+5;

7: }
8: public static int m2(int i){
9: i++;

10: int v = i+m1(i);

11: return v;

12: }

Figure 4-7: Excample method calls.

115

Figure 4-7 shows an example of method calls. Table 4-1

to Table 4-3 shows what happen to method stack when

the code in Figure 4-7 is executed. Execution Point

column identifies the sequence of execution as the code

gets run, while Stack Status shows what are on the stack

at each execution point.

Each stack data (data for 1 method call) contains method

parameters, local variables of the method, and a return

address. A return address tells the runtime system where

the execution should continue after a current method

returns (For simplicity, we just use line number in Table

4-1 to Table 4-3).

รูปสาวน้อยก าลเังรียงบล็อกส่ีห้าบล็อกทบักนัเป็นแสตก เป็นภาพน่ังบนโต๊ะ จะเห็นตวัคร่ึงบน บล็อกก็วางบน
โต๊ะ

116

Table 4-1: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 1).

Execution point Stack status

Enter main.

Enter m1(2) //line 2.

return n+5 i.e. 2+5 (return

value is kept by the

system) and exit method.

int v = the returned value.

Enter m2(7) //line 3.

args: null

return address: system

args: null

return address: system

args: null

return address: system

n: 2

return address: line 2

v: 7

args: null

return address: system

v: 7

args: null

return address: system

i: 7

return address: line 3

117

Table 4-2: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 2).

Execution Point Stack Status

i++

Enter m1(8) //line 10.

return n+5 i.e. 8+5 (return value is

kept by the system) and exit

method.

v: 7

args: null

return address: system

i: 8

return address: line 3

v: 7

args: null

return address: system

i: 8

return address: line 3

n: 8

return address: line 10

v: 7

args: null

return address: system

i: 8

return address: line 3

118

Table 4-3: Various stages of stack for storing methods data when code

in Figure 4-7 is executed (part 3).

Execution Point Stack Status

int v = i + the returned value (this

is not the same v as in the bottom

of stack since it is created as part

of the execution of m2)

The value of i in the current stack

is 8. And the return value is 13

from the last method call.

return v and exit method (return

value (21) is kept by the system).

Enter print(v+ returned value).

Exit print.

Exit main. Nothing remains in the stack.

v: 7

args: null

return address: system

v: 21

i: 8

return address: line 3

v: 7

args: null

return address: system

v: 7

args: null

return address: system

to print: 7+21 = = 28

return address: line 3

v: 7

args: null

return address: system

119

Postfix Calculation

A postfix expression is an arithmetic expression written

by putting operands in front of their corresponding

operator. Table 4-4 shows some expressions in their

normal form (infix) and their corresponding postfix

form.

Table 4-4: Expressions and their corresponding postfix form.

Infix Expression Postfix Expression

2+3 2 3 +

5-3+2 5 3 – 2 +

7-4*3 7 4 3 * -

(5-1)*3 5 1 – 3 *

((7+8)*9+5)*10 7 8 + 9 * 5 + 10 *

(7+(8*9)+5)*10 7 8 9 * + 5 + 10 *

It is easier for machines to evaluate postfix expression.

The machine evaluation of postfix expression, using a

stack, is as follows:

• Read a token from a postfix notation.

o If the token is actually a number, push that

number onto the stack.

o If the token is actually an operator, pop data

off the stack to use with that operator (the

number of data to pop depends on the

number of parameters needed for that

operator). After the calculation is completed,

push a resulting data onto the stack.

120

• Repeat the above process until there is no more

token to be read. At this point, a data on top of the

stack is our calculated result.

Let us see an example. Let us perform the calculation 2+3.

Its postfix form is 2 3 +. Table 4-5 shows this operation

step-by-step (top row to bottom row).

Table 4-5: Postfix calculation of 2+3.

Token

Read

Operation after

Reading the Token

Stack Status

2 Push 2 onto stack.

3 Push 3 onto stack.

+ Pop the top 2 data

on stack to add them.

Then put the result back

on the stack.

More complicated examples are shown in Table 4-6 and

Table 4-7.

Now that you know how machines perform arithmetic

calculations using a stack, you may wonder how

machines get its arithmetic input in postfix form even

2

2

3

3

2

5

5

121

though we always input data into computers in infix

form. The answer is – we have another algorithm, also

using a stack, that can transform any infix arithmetic

expression into its postfix counterpart.

Table 4-6: Calculation of 7 4 3 * - (infix form is 7-4*3).

Token

Read

Operation after

Reading the Token

Stack Status

7 Push 7 onto stack.

4 Push 4 onto stack.

3 Push 3 onto stack.

* Pop the top 2 data

on stack to multiply

them.

Then put the result back

on the stack.

- Pop the top 2 data

on stack to subtract

them.

Then put the result back

on the stack.

12

7

7

4

7

4

3

7

4

3

7

12

12

7 -5

-5

122

Table 4-7: Calculation of 7 8 9 * + 5 + 10 * (infix form is (7+(8*9)+5)*10).

Token

Read

Operation after

Reading the Token

Stack Status

7 Push 7 onto stack.

8 Push 8 onto stack.

9 Push 9 onto stack.

* Pop the top 2 data

on stack to multiply

them. Then put the result

back on the stack.

+ Pop the top 2 data

on stack to add them.

Then put the result back

on the stack.

5 Push 5 onto stack.

+ Pop the top 2 data

on stack to add them.

Then put the result back

on the stack.

10 Push 10 onto stack.

* Pop the top 2 data

on stack to multiply

them. Then put the result

back on the stack.

840

84

79

72

8

9

7 7

72

7

72

79

79

5

79

5

84

8

9

7

84

10

84

10

840

7

7

8

123

Transforming Infix to Postfix Form

The algorithm is as follows:

• For each token:

o If it is an operand, append it to the output.

o If it is an operator

▪ Pop operators on the stack and append

them to the output if the current token

has equal or less priority.

▪ Otherwise, do not pop them.

▪ Then push the new operator onto the

stack.

• When finish reading the input:

o pop all operators and append them to the

output.

Table 4-8 to Table 4-10 show examples of infix to postfix

transformations. Each table shows what happens when

each token is read one by one (top row to bottom row).

7 - 4 * 3 -

*

7 4 3

output

stack

124

Table 4-8: Transforming 2+3 to its postfix counterpart.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

2 Append token to

output.

empty 2

+ Push the operator onto

stack.

2

3 Append token to

output.

2 3

No

more

token

Pop all on stack and

append to output.

empty 2 3 +

Table 4-9: Transforming 7-4*3 to its postfix counterpart.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

7 Append token to

output.

empty 7

- Push the operator onto

stack.

7

4 Append token to

output.

7 4

* Do not pop anything

because ‘*’ has more

priority than ‘–’ on the

stack. Push ‘*’ onto the

stack.

7 4

3 Append token to

output.

7 4 3

No

more

token

Pop all on stack and

append to output.

empty 7 4 3 * -

+

+

-

-

-

*

-

*

125

Table 4-10: Transforming 7+5-10 to its postfix counterpart.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

7 Append token to

output.

empty 7

+ Push the operator onto

stack.

 7

5 Append token to

output.

 7 5

- ‘-‘ has equal priority to

‘+’ on the stack. Hence

we pop ‘+’ to the output,

then push ‘-‘.

 7 5 +

10 Append token to

output.

7 5 + 10

No

more

token

Pop all on stack and

append to output.

empty 7 5 + 10 -

The algorithm can also be expressed as pseudocode, as

seen in Figure 4-8. The pseudocode assumes the

availability of function isOperand, which tests whether a

token is an operand or an operator, and function priority,

which outputs a priority value of a given token.

I hope the examples teach you some applications of stack

in computing problems so that you understand why a

data structure like stack exists. Before we move on to

look at stack implementation, I would like to cover more

details on this infix to postfix transformation.

+

+

-

-

126

Our example so far did not address two common things

found in arithmetic expressions. They are:

• brackets

• right associative operators

Let us look at brackets first. To group operations inside

brackets, tokens between an opening bracket and its

corresponding closing bracket should be processed just

like they belong to a separate expression, independent of

any part of the whole expression that comes before it or

after it. We could use another stack to process the

1: String infix2postfix(String infix) {
2: String[] tokenArray = infix.split(“\\s”);
3: String postfix = ""; // our output string
4: Stack s = new Stack();
5: for (int i=0; i<tokenArray.length; i++) {
6: String token = tokenArray[i];
7: if(isOperand(token)){ //token is an operand
8: postfix += token;
9: } else { //token is an operator
10: int pToken = priority(token);

11: int pTop = priority(s.top());

12: while(!s.isEmpty()&& pToken <= pTop){

13: postfix += s.top();

14: s.pop();

15: pTop = priority(s.top());

16: }

17: s.push(token);

18: }

19: }

20: while(!s.empty()) {

21: postfix += s.top();

22: s.pop();

23: }

24: return postfix;

25: }

Figure 4-8: Pseudocode for Infix to Postfix Transformation.

127

bracketed expression separately, but it is also possible to

use a single stack to do the job, as long as we make sure

that:

• when an opening bracket is read, it is always

pushed onto the stack.

• any operator (except the closing bracket) that

follows the opening bracket does not cause the

opening bracket to be popped from the stack.

• when a closing bracket is read, all data inside the

stack down to the opening bracket are popped out

and processed.

The above constraint ensures that a bracketed expression

is treated as if it is processed on its own mini stack,

without any interference to/from anything that comes

before/after it.

• To make sure that an opening bracket is always

pushed onto the stack, it must have the highest

priority compared to any possible operator on top

of the stack.

• To make sure that any operator (except the closing

bracket) that follows the opening bracket does not

cause the opening bracket to be popped from the

stack, the opening bracket must have the lowest

priority.

• To make sure that when a closing bracket is read,

all data inside the stack down to the opening

bracket are popped and processed, the closing

128

bracket must have the lowest priority, but higher

priority than the opening bracket on the stack (so

that it does not interfere with operators stored on

the stack before the opening bracket. Then, we can

detect the opening bracket and pop it from the

stack ourselves).

An opening bracket has the highest priority and the

lowest priority at the same time! How can we make this

work? The answer is: we create two priority values for

each operator, one value is used when the operator is

read from input, the other value is used when the

operator is on the stack. Thus, an opening bracket can

now have the highest priority when read from input, and

the lowest priority when read from the stack. Table 4-11

shows priority values (when read from input and when

read from the stack) of common arithmetic operators,

including brackets.

Table 4-11: Operator Priority.

operator + - * / ()

Priority when read from input 3 3 5 5 9 1

Priority inside stack 3 3 5 5 0 None

(never get stored)

To show how these priority values of brackets inside and

outside the stack work, let us transform 10*(5-2) into its

postfix form (see Table 4-12).

129

Table 4-12: Transforming 10*(5-2) into postfix form.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

10 Append token to

output.

empty 10

* Push the operator onto

stack.

 10

(‘(‘ from input has

priority = 9, while ‘*’ on

the stack has priority

=5 . Hence ‘(‘ is pushed

onto the stack.

10

5 Append token to

output.

 10 5

- ‘-‘ from input (priority =

3) has more priority

than ‘(’ on the stack

(priority = 0). Hence we

push ‘-’ onto the stack.

10 5

2 Append token to

output.

 10 5 2

) ‘)’ has lower priority

than ‘-‘ on the stack but

has higher priority than

‘(‘ on the stack. So ‘-‘ is

popped to output. And

now that ‘(‘ is on top of

the stack, we pop it.

 10 5 2 -

No

more

token

Pop all on stack and

append to output.

empty 10 5 2 - *

*

*

(

*

(

*

(

-

*

(

-

*

5-2 is

grouped.

130

This way of priority arrangement keeps part of the

expression in a bracket together. From Table 4-12, the

subexpression (5-2) is guaranteed to become 5 2 – before

getting processed with other subexpressions.

Let us try a more complicated example. This time we

have nested brackets. The expression is 10 * ((7+8)*9). The

transformation is shown in Table 4-13 to Table 4-15.

Table 4-13: Tranforming an expression with nested brackets into its

postfix form (Part 1).

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

10 Append token to

output.

empty 10

* Push the operator onto

stack.

10

(‘(‘ from input has

priority = 9, while ‘*’ on

the stack has priority

=5 . Hence ‘(‘ is pushed

onto the stack.

10

(‘(‘ from input has

priority = 9, while ‘(‘ on

the stack has priority = 0.

Hence the new ‘(‘ is also

pushed onto the stack.

10

7 Append token to

output.

10 7

*

*

(

*

(

(

*

(

(

Opening bracket

always get

pushed.

131

Table 4-14: Tranforming an expression with nested brackets into its

postfix form (Part 2).

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

+ ‘+‘ from input (priority

= 3) has more priority

than ‘(’ on the stack

(priority = 0). Hence we

push ‘+’ onto the stack.

10 7

8 Append token to

output.

10 7 8

) ‘)’ has lower priority

than ‘+‘ on the stack but

has higher priority than

‘(‘ on the stack. So ‘+‘ is

popped to output. And

now that ‘(‘ is on top of

the stack, we pop it.

10 7 8 +

* ‘*‘ from input (priority =

5) has more priority

than ‘(’ on the stack

(priority = 0). Hence we

push ‘*’ onto the stack.

10 7 8 +

9 Append token to

output.

10 7 8 + 9

*

(

(

+

*

(

(

+

*

(

*

*

(

*

*

(

7+8 is

grouped.

132

Table 4-15: Tranforming an expression with nested brackets into its

postfix form (Part 3).

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

) ‘)’ has lower priority

than ‘*‘ on the stack but

has higher priority than

‘(‘ on the stack. So ‘*‘ is

popped to output. And

now that ‘(‘ is on top of

the stack, we pop it.

10 7 8 + 9 *

No

more

token

Pop all on stack and

append to output.

empty 10 7 8 + 9 * *

Our pseudocode for infix to postfix transformation, after

adding inside-outside stack priorities, is shown in Figure

4-9. All changes from Figure 4-8 are indicated using bold

texts. Now, finding priority values when data is read

from input and when data is on the stack require

different functions.

*

9 is grouped

with the result

of 7 + 8.

133

The last remaining issue for this postfix transformation

is right associative operators. Our algorithm currently

does not support right associative operators. For

example, 223
 (written as 2^2^3) should be 2 2 3 ^ ^ in its

postfix form because the rightmost operation must be

carried out first. Our algorithm, so far, regards the same

operator (apart from brackets) to have the same priority

when read from input and when on stack. Therefore, the

1: String infix2postfix(String infix) {
2: String[] tokenArray = infix.split(“\\s”);

3: String postfix = ""; // our output string

4: Stack s = new Stack();

5: for (int i=0; i<tokenArray.length; i++) {

6: String token = tokenArray[i];

7: if(isOperand(token)){ //token is an operand

8: postfix += token;

9: } else { //token is an operator

10: int pToken = outsidePriority(token);

11: int pTop = insidePriority(s.top());

12: while(!s.isEmpty()&& pToken <= pTop){

13: postfix += s.top();

14: s.pop();

15: pTop = insidePriority(s.top());

16: }

17: if(token == “)”)

18: s.pop(); // pop “(“ on top of stack

19: else

20: s.push(token);

21: }

22: }

23: while(!s.empty()) {

24: postfix += s.top();

25: s.pop();

26: }

27: return postfix;

28: }

Figure 4-9: Pseudocode for Infix to Postfix Transformation, after

adding inside-outside stack priorities.

134

postfix form of 2^2^3 by our algorithm will be 2 2 ^ 3 ^,

which is incorrect (see Table 4-16).

This can easily be fixed without any change to our code,

however, by giving right associative operators higher

priorities when it is outside the stack (being read from

input), so that the same operator does not get popped out

to our output earlier than it should.

Table 4-16: Incorrect postfix transformation due to priorities forcing left

association.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

2 Append token to

output.

empty 2

^ Push the operator onto

stack.

 2

2 Append token to

output.

 2 2

^ ‘^‘ has equal priority to

‘^’ on the stack. Hence

we pop ‘^’ to the output,

then push ‘^‘.

 2 2 ^

3 Append token to

output.

2 2 ^ 3

No

more

token

Pop all on stack and

append to output.

empty 2 2 ^ 3 ^

The corrected priority of ‘^’ is shown in Table 4-17. The

correct postfix transformation of 2^2^3 due to our fix is

shown in Table 4-18.

^

^

^

^

Now it is left

associated.

135

Table 4-17: Operator Priority, with right associative operator ‘^’.

operator + - * / () ^

Priority when read from input 3 3 5 5 9 1 8

Priority inside stack 3 3 5 5 0 None

7

Table 4-18: Correct postfix transformation after fixing right associative

operator.

Token

Read

Operation after

Reading the Token

Stack

Status

Current Output

2 Append token to

output.

empty 2

^ Push the operator onto

stack.

 2

2 Append token to

output.

 2 2

^ ‘^‘ has more priority to

‘^’ on the stack. Hence

we push ‘^’ onto stack.

 2 2

3 Append token to

output.

2 2 3

No

more

token

Pop all on stack and

append to output.

empty 2 2 3 ^ ^

Now that we have seen some uses of stack, let us

investigate how we can implement it. Figure 4-10 shows

methods available from our implementation in this

^

^

^

^

^

^

136

chapter (our implementation is a stack that stores integer

data). To summarize, we have the following methods:

• isEmpty(): returns true if our stack does not store

any data. Otherwise, it returns false.

• isFull(): returns true if our stack reaches its

maximum capacity. Otherwise, it returns false.

• makeEmpty(): gets rid of all data stored inside our

stack.

• top(): returns data on top of our stack (the stack

does not change). The method throws an

exception if there is no data to be returned.

• pop(): removes data on top of our stack. The

method throws an exception if there is no data to

be popped.

• push(int data): put a given data on top of our stack.

the method throws an exception if the the push is

somehow unsuccessful (caused by stack being full

or from other reasons).

1: public interface MyStack {
2: public boolean isEmpty();

3: public boolean isFull();

4: public void makeEmpty();

5: public int top() throws Exception;

6: public void pop() throws Exception;

7: public void push(int data) throws Exception;

8: }

Figure 4-10: Stack Operations (interface).

137

Implementing a Stack with Array
Figure 4-11 to Figure 4-18 show our implementation, the

class StackArray. We split the code into several figures so

that we can explain each part of the code separately.

Figure 4-11 shows fields, constructors, and get/set

methods of our stack. Our stack contains an array

1: public class StackArray implements MyStack{
2: private int[] theArray;

3: private int currentSize;

4: private static final int DEFAULT_SIZE = 10;

5:
6: public StackArray(){ // create an empty stack

7: this(DEFAULT_SIZE);

8: }

9:
10: public StackArray(int intendedCapacity){

11: theArray = new int[intendedCapacity];

12: currentSize =0;

13: }

14:
15: public int[] getTheArray() {

16: return theArray;

17: }

18:
19: public void setTheArray(int[] theArray) {

20: this.theArray = theArray;

21: }

22:
23: public int getCurrentSize() {

24: return currentSize;

25: }

26:
27: public void setCurrentSize(int currentSize) {

28: this.currentSize = currentSize;

29: }

30: //continued in Figure 4-12.

Figure 4-11: Stack implemented by array (fields, constructors, get, set).

138

theArray to store data. It has variable currentSize to keep

track of how many data are stored the stack.

Figure 4-12 shows method isEmpty, isFull, and

makeEmpty. Method isEmpty and isFull can easily check

currentSize to find out the number of data stored inside

the stack, without having to check the array. Method

makeEmpty works by resetting theArray and currentSize.

Figure 4-13 shows method top, which returns the

topmost value stored in our stack. From line 4, it can be

seen that:

• Our top of stack is at position currentSize-1 in the

array.

• Data at position 0 in the array is considered to be

on the bottom of stack.

1: public boolean isEmpty(){

2: return currentSize ==0;

3: }
4:
5: public boolean isFull(){
6: return currentSize == theArray.length;

7: }
8:
9: public void makeEmpty(){
10: theArray = new int[DEFAULT_SIZE];

11: currentSize =0;

12: }

13: //continued in Figure 4-13.

Figure 4-12: isEmpty(), isFull(), and makeEmpty() of stack implemented

with array.

139

Let us look at an example in Figure 4-14. Our stack,

although has theArray that contains 5 data, has

currentSize = = 3. This means only data in slot 0, 1 and 2

are regarded as data on the stack. The data that is

regarded as on the bottom of the stack is stored at

position 0 in the array. The top data on the stack is at

position currentSize -1 = 3-1 =2.

Figure 4-15 shows the code for method pop. Its main

operation is just decrementing currentSize by 1. Thus the

top of stack changes position.

1: public int top() throws Exception{

2: if(isEmpty())

3: throw new Exception();

4: return theArray[currentSize-1];

5: }
6: //continued in Figure 4-15.

Figure 4-13: Code of method top, for stack implemented with array.

Figure 4-14: top and bottom of stack of size 3

(implemented with array).

5 3 4 1 9

currentSize = = 3

Top data is at position

currentSize-1 = 3-1 = 2

Bottom data is

at position 0.

Not on stack
5

3

4

Use array to

implement

140

Figure 4-16 shows the effect of pop() when applied to our

stack implementation. Since currentSize is reduced, our

top of stack (position currentSize – 1) is moved to the left

of the previous top data on the stack. This means 4 is no

longer regarded as on the stack.

Figure 4-17 shows code of method push. If the stack is

already full (the array is full), we expand theArray to

twice its original size. Then we simply overwrite data in

the slot next to our top data and change currentSize so

that the top data on the stack becomes that new data.

Figure 4-18 shows what happen when 7 is pushed onto a

stack that originally stores 2 integers.

1: public void pop() throws Exception{

2: if(isEmpty())

3: throw new Exception();

4: currentSize--;

5: }
6: //continued in Figure 4-17.

Figure 4-15: Code of method pop, for stack implemented with array.

5 3 4 1 9

currentSize = = 3

Top of stack

pop()

5 3 4 1 9

Top of stack

currentSize = = 2

Figure 4-16: Popping data from a stack implemented with array.

Not on stack Not on stack

141

Implementing a Stack with Linked List
In this section, a circular doubly-linked list is used to

store data as our stack. The first data of the list is

regarded as the data on top of our stack, while the very

last data in the list is considered to be at the bottom of

our stack (see Figure 4-19). Therefore, stack operations

1: public void push(int data) throws Exception{

2: if(isFull())

3: doubleCapacity();

4: theArray[currentSize] = data;

5: currentSize++;

6: }
7:
8: public void doubleCapacity(){

9: //resize array to twice the original size

10: int[] temp = new int[theArray.length*2];

11: System.arraycopy(theArray, 0, temp, 0,

12: theArray.length);

13: theArray = temp;

14: }

15: } //end of class StackArray

Figure 4-17: Code of method push, for stack implemented with array.

push(7)

7 5 3 4 1 9

currentSize = = 2

Top of stack

5 3 1 9

currentSize = = 3

New top of stack

overwrite

Figure 4-18: Pushing data onto stack implemented with array.

Not on stack
Not on stack

142

used in this implementation mainly involves

adding/removing data from the node after header.

Our implementation, class StackLinkedList, is shown in

Figure 4-20 to Figure 4-26.

Figure 4-20 shows field and constructors for this linked

list implementation. We only have one field, theList,

which is a circular doubly-linked list from chapter 3. This

list will be used as our stack, as seen in Figure 4-19. There

are two constructors. A default constructor (line 5-7) just

creates an empty linked list. The other constructor is a

copy constructor, which takes a linked list and copies

each data from that list to theList. By copying data into

Figure 4-19: Linked list used as stack.

header

3 6 4

Top of stack Bottom of stack

4

6

3

Use linked list to

implement

143

our stack, any change in theList does not affect the input

list, and vice versa.

Figure 4-21 shows code for isEmpty(), isFull(), and

makeEmpty() in this linked list implementation. Method

isEmpty is performed by checking if the linked list is

empty. Method isFull always returns false because there

is no predefined space when we use a linked list. Method

makeEmpty also makes use of makeEmpty of linked list.

Mainly, we are just calling linked list methods.

1: public class StackLinkedList implements MyStack{

2: private CDLinkedList theList;

3:
4: // create an empty stack

5: public StackLinkedList(){

6: theList = new CDLinkedList();

7: }

8:
9: public StackLinkedList(CDLinkedList l) throws

10: Exception {

11: super();

12: DListIterator iParam;

13: iParam = new DListIterator(l.header);

14: DListIterator iThis;

15: iThis = new DListIterator(theList.header);

16: while (iParam.hasNext()) {

17: int v = iParam.next();

18: if (iParam.currentNode == l.header)

19: return;

20: theList.insert(v, iThis);

21: iThis.next();

22: }

23: }

24: //continued in Figure 4-21.

Figure 4-20: Code for stack implemented with circular doubly-linked

list (fields and constructors).

144

Figure 4-22 shows code for method top of this linked list

implementation. The method throws exception if the

stack is empty, since there is no data to return.

Otherwise, it returns data stored in the node next to

header, which we consider to be at the top of our stack

(as illustrated in Figure 4-19, the returned data is 3).

Figure 4-23 shows our code for the linked list

implementation of method pop. Again, the method

throws an exception if there is no data on our stack. If

there is a data on top of our stack, we pop it out by calling

remove method of our linked list implementation to

remove the node after header (see illustration in Figure

1: public boolean isEmpty(){
2: return theList.isEmpty();
3: }
4:
5: public boolean isFull(){
6: return false;
7: }
8:
9: public void makeEmpty(){
10: theList.makeEmpty();
11: }

12: //continued in Figure 4-22.

Figure 4-21: isEmpty(), isFull(), and makeEmpty() for stack implemented

with circular doubly-linked list.

1: public int top() throws Exception{
2: if(isEmpty())

3: throw new Exception();

4: return theList.header.nextNode.data;

5: }
6: //continued in Figure 4-23.

Figure 4-22: top() for stack implemented with circular doubly-linked

list.

145

4-24), thus effectively removing our top data from the

stack.

Figure 4-25 shows code for method push in our linked list

implementation. Similar to method pop, this method

1: public void pop() throws Exception{

2: if(isEmpty())

3: throw new Exception();

4: Iterator itr;

5: itr = new DListIterator(theList.header)

6: theList.remove(itr);

7: }
8: //code continued in Figure 4-25.

Figure 4-23: pop() for stack implemented with circular doubly-linked

list.

header

3 6 4

Top of stack Bottom of stack itr

header

3 6 4

Top of stack
Bottom of stack itr

theList.remove(itr);

Figure 4-24: Removing the top of stack in linked list implementation.

146

mainly calls method of linked list. For this particular

operation, it calls insert method of a linked list, to insert

a new data next to header (illustrated in Figure 4-26).

1: public void push(int data) throws Exception{

2: Iterator itr;

3: itr = new DListIterator(theList.header)

4: theList.insert(data, itr);

5: }
6: } // end of class StackLinkedList

Figure 4-25: Method push for stack implemented with circular doubly-

linked list.

header

3 6 4

Top of stack Bottom of stack itr

header

3 6 4

New top of stack

Bottom of stack itr

theList.insert(7,itr);

7

Figure 4-26: Pushing new data onto stack implemented with circular

doubly-linked list.

147

There we are. We have covered stack’s usage and its

implementations. Now it is time for you to test your

knowledge.

Exercises

1. There is a maze

1 1 1 1 1 1

1 1 1 0 0 1

1 0 0 0 F 1

1 0 S 0 1 1

1 1 1 1 1 1

The number 1 represents wall and number 0 represents

walkway. Let S be the starting point and F be the end

point of travel (they are also walkways). We can

systematically find a way from S to F by:

• recording the coordinate (X, Y) that we can travel

to (at that moment in time) onto a stack. The order

of storage is north, south, west, and east of the

current position respectively (Let the coordinate of

the most left-bottom number 1 be (0, 0)).

148

The original state of our stack will be:

• Walking is done by popping stack and then

moving the current position to the popped

coordinate. Then push the information of empty

spaces surrounding that coordinate onto the stack

(using north, south, west and east again) (we

never push the coordinates that we have visited).

We repeat this until we reach the destination.

When the destination is reached, we do not push

anything onto the stack.

What is the final stage of the stack?

2. Explain, step by step, how you can sort integers stored

in a stack (after sorting, the smallest value must be at

the top of the stack), using only one additional stack

and two integer variables. You are not allowed to

create array, linked list, or any data structure that can

store a collection of values. A starting and ending

state of an example stack are given below:

(3,1)

Top of stack

(2,2)

(1,1)

north of S

west of S

east of S

149

5

1

4

 2

3

3. Write method:

public void addNoDuplicate (StackLinkedList s2) of

class StackLinkedList. This method removes and

pushes all contents (except for those that this already

has) from s2 into this. Contents that are duplicated

must remain in s2, in their original ordering. You are

not allowed to create arrays, linked lists, trees and

other kinds of data structures except

StackLinkedList. Give the estimated running time of

your implementation.

4. Assume we are using stack from class Stack, which has

the code of all methods defined in the following Java

interface (class Stack also has a working default

constructor):

public interface MyStack {

public boolean isEmpty();

public boolean isFull();

public void makeEmpty();

//Return data on top of stack.

//Throw exception if the stack is empty.

public int top() throws Exception;

1

2

3

4

5

5

1

4

2

3

150

//Remove data on top of stack.

//Throw exception if the stack is empty.

public void pop() throws Exception;

//Add new data on top of stack.

//Throw exception if the operation is somehow

//unsuccessful.

public void push(int data) throws Exception;

}

We are using stack in our own class TestStack, which is:

Class TestStack{

Stack s;

public void removeDup(){

// You have to write code for this method.

}

}

You are to implement method removeDup, which

removes duplicated data from s. For example, if the

original data inside s is

Then stack s after the method is called, is

1

4

3

3

1

1

4

3

151

Where 1, 4, and 3 can be in any order on the stack, i.e.

order does not matter. In other words, method

removeDup makes a set out of existing data on s.

• You do not know the internal workings of s, so

you can only use methods provided by MyStack

interface.

• You are allowed to create primitive type

variables.

• You are not allowed to create non-primitive type

variables, or any data structure, except Stack(s).

a. Explain, with illustrated example, the inner

workings of removeDup(). Your explanation

should be clear and step-by-step.

b. Write code for removeDup().

5. For the same stack as in the previous question, write

method removeMin(), which removes the smallest

value (and any copies of it) from the stack. Other

values must remain in their original order. You are

only allowed to create primitive type variables and

another stack.

6. For the same stack as in the previous question, write

method removeBottom(), which removes the data at

the bottom of the stack. Other values must remain in

their original order. You are only allowed to create

primitive type variables and another stack.

152

7. A palindrome is a sequence of integers (or letters) that

reads the same left-to-right and right-to-left. For

example, "abadacadaba", "1234321". Write your

explanation on how to use a stack to check whether a

given string is a palindrome.

8. Assume that values are always sorted from large to

small in our stack, write the following methods of

class StackArray:

• public void putIn(int x): this method adds

number, x, into the stack. After this new value is

added, the stack must remain sorted. For

example, if putIn(5) is called by the following

stack:

10

8

2

1

The resulting stack will be:

10

8

5

2

1

Top of stack

153

You are only allowed to create primitive variables and

another stack. You are not allowed to create lists, arrays,

or other data structures.

9. We have an infix expression a*(b/c) – b*d. If we use a

stack to convert this expression to its postfix form,

what will be left on the stack after we just read the last

input? What is on the stack at that point in time?

10. Convert a+(b-c)*(d-e) to its postfix form using stack.

Illustrate this operation step by step.

11. Given a postfix expression 1 2 5 * 4 2 + + * 3 – .

Illustrate, step by step, how a resulting value can be

evaluated using stack.

12. Write factorial(int n) that calculates a factorial of

integer n, using only recursion. Draw what happens

to stack frames of methods when factorial(3) is called

from main method.

13. Compare asymptotic runtime of all stack methods

from class StackArray and StackLinkedList.

14. Write method int power(int x, int y) for class

MyCalculation (this is a newly created class), which

calculates the value of 𝑥𝑦, using class StackLinkedList.

154

155

Chapter 5 : Queue

A queue is a data structure that stores a sequence of data.

It is very much like a list, but it has extra restrictions:

• Remove (also called “dequeue”) can only be done

on the first data of the sequence.

• A new data can be added (also called “enqueued”)

to the queue only after the last data.

The way data can only be added or removed this way is

called FIFO (first in, first out). It is similar to how people

queue for services (see Figure 5-1).

Queue Operations
Common operations that we do with a queue are as

follows:

• front(): return the very first data in the queue.

• back(): return the very last data in the queue.

Welcome

!

Leave queue when served.

New person at the back of

the queue.

Figure 5-1: Queueing for services.

156

• removeFirst(): remove the first data from the queue.

It returns that data. This is “dequeue” (illustrated

in Figure 5-2).

• insertLast(data): add new data following the current

last data. This is “enqueue” (illustrated in Figure

5-3).

• isEmpty(): check if the queue stores no data. It

returns true if the queue does not store any data

and false otherwise.

• isFull(): check if the queue has no more space to

store data.

• size(): return the number of data currently stored in

the queue.

front
7 2 6 9

back

removeFirst()

7 2 6 9

The queue after removing the first data.

Figure 5-2: Dequeueing the first data from a queue.

157

The operations can be put into a Java interface (named

MyQueue) (see Figure 5-4). This queue is for integer.

front
7 2 6 9

back

insertLast(3)

7 2 6 9

The queue after adding a new data

3

Figure 5-3: Enqueueing a new data.

1: public interface MyQueue {
2:
3: //return the first data.

4: public int front() throws Exception;

5:
6: //return the last data.
7: public int back() throws Exception;

8:
9: //remove the first data (return its value too).
10: public int removeFirst() throws Exception;

11:
12: //insert new data after the last data.

13: public void insertLast(int data) throws Exception;

14:
15: //check if the queue is empty.

16: public boolean isEmpty();

17:
18: //check if the queue has no more space to store new

19: //data.

20: public boolean isFull();

21:
22: //return the number of data currently stored in the

23: //queue.

24: public int size();

25: }

Figure 5-4: Interface for queue storing integer data.

158

Implementing a Queue with Array
In this section, we show our array implementation for a

queue that stores integer data. Let us first go through the

concept.

• We use array to store data.

• To manage enqueueing and dequeueing, we need

the following variables:

o front: an integer that is an index of the front

data.

o size: an integer indicating the number of

currently stored data.

Let us name our array theArray. By having front and size,

the following methods can easily be implemented:

• front(): we can just return theArray[front].

• isEmpty(): we can simply check if size = = 0. Our

theArray will always have slots, so checking for size

is the only way to find out if our queue is empty.

• isFull(): we can simply check whether size = =

theArray.length. This means there is absolutely no

space left anywhere in theArray.

• size(): we can simply return the value of the

variable size.

• removeFirst(): we can produce the effect of

removing the first data from the queue by

incrementing front by 1 (and, of course reducing

size by 1). This removal is shown in Figure 5-5

when our queue has 3 data: 7, 2, and 6. Thus, the

next time the front of the queue is to be accessed,

159

we get the data stored behind the original front

data. In Figure 5-5, the new front data is 2. The

queue after removeFirst() finishes contains 2 and 6.

This implementation prevents us from having to

shift array contents after a data is removed.

• insertLast(int data): this is done by adding the new

data after the last data (and incrementing size by 1).

The last data is at position front+size-1 so the new

data goes into position front+size. See Figure 5-6,

which actually carries out its insertLast method

right after the operation in Figure 5-5. In Figure 5-6,

the original data sequence in the queue is 2 and 6.

The data sequence after method insertLast executes

is 2, 6, and 5.

Figure 5-5: Dequeue for array implementation.

front =0

size = 3 7 2 6 9

removeFirst()

2 6 9

front =1

size = 2
The last data

The last data is at position

front+size-1 = 0+3-1 = 2

7

160

Method removeFirst and insertLast, although simple to

implement, actually cause another problem. That is,

when enqueue and/or dequeue are performed for some

time, the last slot of our array will be occupied, while

some slots at the front of the array are not used. This

means we can no longer add another data because the

position to add will exceed the rightmost array slot, even

though there may be empty slots somewhere at the front

of the array. In Figure 5-6, after method insertLast is

executed, the last array slot is occupied by data 5, while

the first slot is no longer used. If we want to enqueue a

new data, it will have to be in position front+size = 1+3 =

4, which goes beyond the last array slot. So, it cannot be

added, even though the first slot is available.

Figure 5-6: Enqueue for array

implementation.

The last data

The last data
front =1

size = 2

7 2 6 9

insertLast(5)

2 6 5

front =1

size = 3

7

Overwrite at position front+size (1+2 =

3). Then size is incremented.

161

We can fix this problem by allowing array index to go

from the back to the front of the array. Thus, method

removeFirst, instead of having front = front +1, will have

front = (front+1) % theArray.length. An example of a call to

method removeFirst is shown in Figure 5-7, where the

original data sequence is 4, 2, 1 and the end data

sequence is 2, 1.

For method insertLast, instead of having a new data go

into position front+size, we will have the new data go into

position (front+size)%theArray.length. In Figure 5-8, the

data sequence is 2, 6, 5. The position to add the new data

is (1+3)%4 = 0. Thus, the new data is put into the first slot,

which is next to the position that stores 5 when we make

The last data

2

front =3 size = 3

2 1 8 4

removeFirst()

1 8 4

front =0 size = 2

Figure 5-7: Incrementing front that goes back to

the first array slot when dequeueing.

The last data

162

the aray index go back to the start of the array. The data

sequence then becomes 2, 6, 5, 1.

• back(): by making the index able to move from the

last array slot back to the first array slot, the last

position of data is at position (front+size-

1)%theArray.length. Method back simply returns

data stored in that position.

The code for the class, fields, constructors, and methods

that check for the value of size is shown in Figure 5-9, in

class QueueArray. Although the constructors create an

array (line 12), the array slots do not store any data for

Figure 5-8: front+size that goes back to the first

array slot when enqueueing.

The last data

front =1

size = 3

7 2 6 5

insertLast(1)

2 6 5

front =1

size = 4

1

The last data

163

our queue. That is why the value of front is set to -1

instead of 0 (line 14). If front is set to 0, it will mean there

is one data in the queue, which is not true at the stage of

queue creation.

All methods in Figure 5-9 do not have any loop in their

codes, so each method has 𝛩(1) as its asymptotic

runtime.

1: public class QueueArray implements MyQueue {
2: private int[] theArray;

3: private int size;//number of currently stored data.

4: private int front; //index of the first data.

5: static final int DEFAULT_CAPACITY = 5;

6:
7: public QueueArray() {
8: this(DEFAULT_CAPACITY);

9: }

10:
11: public QueueArray(int capacity) {

12: theArray = new int[capacity];

13: size =0;

14: front = -1;

15: }

16: public boolean isEmpty() {

17: return size == 0;

18: }

19: public boolean isFull() {

20: return size == theArray.length;

21: }

22: public void makeEmpty() {

23: size = 0;

24: front = -1;

25: }

26: public int size() {

27: return size;

28: }

29: // This class continues in Figure 5-10.

Figure 5-9: fields, constructors, and methods that check for size in the

array implementation of queue.

164

We have makeEmpty() (line 22-25) as an additional utility

method. It basically resets size and front just like when we

run a constructor, but it does use existing array.

The code for front() is shown in Figure 5-10. It can be seen

that we can just return data in position front. But if the

queue is empty, we will not be able to return any data.

That is why an exception is thrown (the class

EmptyQueueException just extends from class Exception).

The asymptotic runtime of front() is 𝛩(1) since there is no

looping.

The code for back() is shown in Figure 5-11. It returns data

at position (front+size-1)%theArray.length, as discussed

earlier. It also needs to check if the queue is empty and

throws an exception if so, since it will be impossible to

return any value. The runtime of this method is 𝛩(1)

since there is no looping.

1: public int front() throws EmptyQueueException {

2: if (isEmpty())

3: throw new EmptyQueueException();

4: return theArray[front];

5: }
6: //This class continues in Figure 5-11.

Figure 5-10: Code for front() in array implementation of queue.

1: public int back() throws EmptyQueueException {
2: if (isEmpty())

3: throw new EmptyQueueException()

4: return theArray[(front + size - 1) %

5: theArray.length];

6: }
7: //This class continues in Figure 5-12.

Figure 5-11: Code for back() in array implementation of queue.

165

The code for removeFirst() is shown in Figure 5-12. Its

illustrated operations are shown in Figure 5-5 and Figure

5-7. The method also needs to throw an exception if the

queue is empty. It also needs to store the data at the front

of the queue (line 5) in order to be able to return that data

after front is incremented. Its execution does not involve

any loop, therefore its asymptotic runtime is 𝛩(1).

The code for method insertLast is shown in Figure 5-13.

Its illustrated operations are shown in Figure 5-6 and

Figure 5-8. It simply overwrites data at position

(front+size)%theArray.length. But if the array is full, a new

array of twice the original array size is created to replace

the original (line 10-17). All data from the original array

must be copied into a new array. Therefore, the copying

process takes 𝛩(𝑛), making method insertLast run in

𝑂(𝑛) since it either runs in constant time or in 𝛩(𝑛).

1: public int removeFirst() throws EmptyQueueException{
2: if (isEmpty())

3: throw new EmptyQueueException();

4: size--;

5: int frontItem = thearray[front];

6: front = (front + 1) % thearray.length;

7: return frontItem;

8: }
9: //This class continues in Figure 5-13.

Figure 5-12: Code for removeFirst() in array implementation of queue.

166

Implementing a Queue with Linked List
In this section, a circular doubly-linked list is used to

store data as our queue. The first data of the list is

regarded as the first data in the queue, while the very last

data in the list is considered to be the last data in the

queue (see Figure 5-14). Therefore, our queue

implementation using a linked list is just a linked list, but

with restrictions forbidding any removal of data except

the first, and any addition of new data except after the

last data.

1: public void insertLast(int data) throws

2: EmptyQueueException {
3: if (isFull())

4: doubleCapacity();

5: theArray[(front + size)%theArray.length] = data;

6: size++;

7: }
8:
9: // resize array to twice its original size.
10: public void doubleCapacity() {

11: int[] temp = new int[theArray.length * 2];

12: for (int i = 0; i < size; i++) {

13: temp[i] = theArray[(front+i)%theArray.length];

14: }

15: theArray = temp;

16: front =0;

17: }

18: // end of class QueueArray.

Figure 5-13: Code for method insertLast in array implementation of

queue.

167

Figure 5-15 shows code for field, constructors, isEmpty(),

isFull(), size() for this linked list implementation of a

queue (the class name is QueueLinkedList). We only have

one field, theList, which is a circular doubly-linked list

from chapter 3. This list will be used as our queue. There

are two constructors. A default constructor (line 4-6) just

creates an empty linked list. The other constructor is a

copy constructor, which takes a linked list and makes

that list our data storage. Of course, we could do the

same as in class StackLinkedList in chapter 3 and copy all

data to a separate list. In this chapter, however, we opt

for code simplicity. Method isEmpty, isFull, and size

simply called their corresponding linked list methods in

class CDLinkedList.

Figure 5-16 shows code for method front of our linked list

implementation of queue. The method throws exception

if the queue is empty (we check the list if it is empty),

since there is no data to return. Otherwise, it returns data

stored in the node next to header, using method findKth of

header

3 6 4

First data in queue Last data in

queue

Figure 5-14: Using a circular doubly-linked list to represent a queue.

168

CDLinkedList to find data. The asymptotic runtime of this

method is the asymptotic runtime of findKth(0), which is

𝛩(1), since only the first iteration of the loop in findKth(0)

is executed.

1: public class QueueLinkedList implements MyQueue {

2: CDLinkedList theList;

3:
4: public QueueLinkedList() {

5: this(new CDLinkedList());

6: }

7:
8: public QueueLinkedList(CDLinkedList theList) {

9: this.theList = theList;

10: }

11:
12: public boolean isEmpty() {

13: return theList.isEmpty();

14: }

15:
16: public boolean isFull() {

17: return theList.isFull();

18: }

19:
20: public int size() {

21: return theList.size();

22: }

23: //continued in Figure 5-16.

1: public int front() throws Exception {
2: if (isEmpty())

3: throw new EmptyQueueException();

4: return theList.findKth(0);

5: }
6: // continued in Figure 5-17.

Figure 5-15: Code for field, constructors, isEmpty(), isFull(), size() of

linked list implementation of queue.

Figure 5-16: Code for front() of linked list implementation of queue.

169

The code for method back is shown in Figure 5-17. The

method returns the last data in the queue, which is also

the last data in the linked list that we use. The method

throws an exception if the queue has no data.

Figure 5-18 illustrates pointers from header to the last

data (its corresponding code is at line 4 of Figure 5-17).

There is no loop execution so the asymptotic runtime is

𝛩(1).

Figure 5-19 shows our code for the linked list

implementation of method removeFirst. Again, the

method throws an exception if there is no data in our

queue. If there is the first data, it is removed by calling

method removeAt of our linked list implementation to

1: public int back() throws EmptyQueueException {
2: if (isEmpty())

3: throw new EmptyQueueException();

4: return theList.header.previousNode.data;

5: }
6: //continued in Figure 5-19.

Figure 5-17: Code for back() of linked list implementation of queue.

header

3 6 4

First data in queue Last data in

queue

Figure 5-18: Identifying the last data in linked list implementation of

queue.

170

remove the node after header. Figure 5-20 shows what

happens just before and after removeAt(itr), from line 7 of

Figure 5-19, is executed. The runtime of removeFirst()

directly depends on the runtime of method removeAt,

which is 𝛩(1).

Figure 5-21 shows code for method insertLast in our

linked list implementation. Again, this method mainly

calls a method of our linked list. For this particular

operation, it calls insert method of a linked list, to insert

a new data next to the last node. Figure 5-22 shows what

happens just before and after theList.insert(7, itr), at line 5

of the code in Figure 5-21, is executed. The asymptotic

runtime of method insertLast directly depends on the

runtime of theList.insert(data, itr), which is 𝛩(1).

1: public int removeFirst() throws Exception {
2: if (isEmpty())
3: throw new EmptyQueueException();

4: DListIterator itr;
5: itr = new DListIterator(theList.header);
6: int data = itr.next();
7: theList.removeAt(itr);
8: return data;
9: }
10: // continued in Figure 5-21.

Figure 5-19: Code for removeFirst() of linked list implementation of

queue.

171

1: public void insertLast(int data) throws Exception {

2: DListIterator itr;

3: itr = new DListIterator(theList.header);

4: itr.previous();

5: theList.insert(data, itr);

6: }
7: } // end of class QueueLinkedList

header

3 6 4

First data Last data

itr

header

3 6 4

First data
Last data

itr

theList.removeAt(itr);

Figure 5-20: Removing the first data in linked list implementation of

queue.

Figure 5-21: Code for insertLast() of linked list implementation of

queue.

172

Double-Ended Queue

In a few programming languages, there is a queue-like

data structure that is more flexible than the queue we

saw in the previous section. This double-ended queue

allows the following additional operations:

7

header

3 6 4

First data Last data
itr

header

3 6 4

New last data

First data
itr

theList.insert(7, itr);

Figure 5-22: Adding a new data to linked list implementation of queue.

173

• removeLast(): remove the last data from a sequence

of data stored in our queue. It also returns the

removed data. Its concept is shown in Figure 5-23.

• insertFirst(data): add a new data into the queue.

This data becomes the first data in the sequence. Its

concept is shown in Figure 5-24.

front
7 2 6 9

back

removeLast()

7 2 6 9

The queue after removing the last data.

Figure 5-23: Illustrated concept of removeLast().

front
7 2 6 9

back

insertFirst(3)

7 2 6 9

The queue after adding a new data to the front.

3

Figure 5-24: Illustrated concept of insertFirst(data).

174

These operations can be shown as a Java interface in

Figure 5-25. The interface presented here inherits from

the interface in Figure 5-4. Basically, it is our existing

queue, with two additional methods.

Implementing a Double-Ended Queue with
Array

Our implementation extends from QueueArray so that we

only need to implement the two new functions (see

Figure 5-26).

1: public interface DeQ extends MyQueue {

2:
3: // remove the last data (return its value too).
4: public int removeLast() throws Exception;

5:
6: // insert new data as the first data.
7: public void insertFirst(int data) throws

8: Exception;
9: }

Figure 5-25: Java interface for double-ended queue.

1: public class DeQArray extends QueueArray implements DeQ{

2: public int removeLast() throws Exception {

3: int data = back();

4: size--; //change all fields to protected!

5: return data;

6: }
7:
8: public void insertFirst(int data) throws Exception {

9: if (isFull())

10: doubleCapacity();

11: front = front-1;

12: if(front <0)

13: front = theArray.length-1;

14: theArray[front] = data;

15: size++;

16: }
17: } //end of class DeQArray.

Figure 5-26: Double-ended queue implementation using array.

175

From Figure 5-26, removeLast() records data at the back of

the queue, then simply reduces size by 1 before returning

the recorded value. The effect of reducing size by 1,

without changing front, is illustrated in Figure 5-27. The

sequence of data stored in our queue is 4, 2, 1. The

variable size determines the number of data considered

to be in our queue, starting from data at position front.

Reducing size means we consider smaller number of data

from the position of front to be in our queue. Thus, we

lose data at the back of the queue. The data sequence

after the reduction of size is 4, 2.

The operation removeLast() does not require any loop.

Therefore, its asymptotic runtime is 𝛩(1).

2

front =3 size = 3

2 1 8 4

size--

1 8 4

front =3 size = 2

The last data

The last data

Figure 5-27: Reducing size without changing front

in array implementation of double-ended queue.

176

From Figure 5-26, method insertFirst reduces the value of

front by 1 (it also changes front to identify the last array

slot if its value becomes negative). Then it sets data at

position of the new front to a given value, and increments

size. This effectively adds a new data in front of the

queue. Figure 5-28 illustrates line 11-14 from code in

Figure 5-26, when insertFirst(77) is called on a queue with

data 2, 1. The resulting data sequence is 77, 2, 1.

theArray[front] = data;

front =3 The last data

front =3 The last data

front = -1

front =0 size = 2

2 1 8 4

front = front -1;

1 8 4 2

The last data

The last data

if(front < 0)

 front = theArray.length-1;

1 8 4 2

1 8 77 2

Figure 5-28: Operations inside insertFirst(77) for array

implementation of double-ended queue.

177

Most of the time, method insertFirst does not require any

loop execution. But occasionally, method doubleCapacity

will have to be called to expand the array. This array

resize causes the asymptotic runtime to be 𝛰(𝑛).

Double-Ended Queue implemented with
Linked List
We can build on top of our existing linked list

implementation. Thus, we only need to add method

removeLast and insertFirst. Our implementation using a

circular doubly-linked list is shown in Figure 5-29.

From Figure 5-29, method removeLast throws an

exception if the queue is empty. Otherwise, it creates a

linked list iterator and moves the iterator to the left until

1: public class DeQLinkedList extends QueueLinkedList
2: implements DeQ {
3:
4: public int removeLast() throws Exception {

5: if (isEmpty())

6: throw new EmptyQueueException();

7: DListIterator itr = new DListIterator(theList.header);

8: itr.previous();

9: int data = itr.previous();

10: theList.remove(itr);

11: return data;

12: }

13:
14: public void insertFirst(int data) throws Exception {
15: DListIterator itr = new DListIterator(theList.header);

16: theList.insert(data, itr);

17: }
18: } // end of class DeQLinkedList

Figure 5-29: Linked list implementation of double-ended queue.

178

it identifies position before the last data. Then method

remove of our circular doubly-linked list is called to

remove the node after that position. The removed node

is therefore the node that stores the last data.

itr

itr

itr

data =itr.previous();

header

3 6 4

First data in queue Last data in queue

header

3 6 4

itr.previous();

header

3 6 4

data = = 4

header

3 6 4

itr

theList.remove(itr);

Figure 5-30: Operations inside removeLast() for linked list

implementation of double-ended queue.

179

Once again, our implementation utilizes methods from

linked list. The execution from line 8-10 in Figure 5-29 is

illustrated in Figure 5-30. There is no loop so the runtime

of removeLast() is 𝛩(1).

From Figure 5-29, method insertFirst just adds a new

node (containing new data) after header, by calling

method insert of our linked list. The operation for

insertFirst(9) is illustrated in Figure 5-31.

header

3 6 4

First data in queue Last data in queue

itr = new

DListIterator(theList.header);

header

3 6 4

itr

header

3 6 4

theList.insert(data, itr);

9

itr

Figure 5-31: Operations of insertFirst(9) for linked list implementation of

double-ended queue.

180

There is no loop, so the runtime is 𝛩(1).

Application of Queue: Radix Sort

Apart from using queue(s) to simulate a FIFO data

storage, there is a very interesting application to point

out. That is, using queues to sort numbers with radix sort

algorithm.

So, what is a radix sort? It is a method we can use to sort

numbers. Let us have an array storing various numbers

(let assume they are integers). What we do is as follows:

1) create 10 queues for storing numbers. The queues are

labelled 0 to 9.

2) For each number, we use the value of its least

significant digit as our “sorting identifier”.

a) For each number in the array, look at its sorting

identifier, then enqueue (method insertLast) that

number into a queue with the same label as that

sorting identifier.

b) For each queue, starting from the queue that has

label ‘0’, dequeue (method removeFirst) all numbers

from that queue back to the array. Do it until all

queues are empty.

c) Change the digit of the sorting identifier to the next

significant digit, then repeat step a) to c) until there

is no more possible sorting identifier.

181

Let us see an example. Let us sort 321, 521, 354, 324, 150

and 237 in an array. At the beginning, our sorting

identifier is the value of the least significant digit. So, to

do step a), we look at our array from the leftmost slot to

the rightmost slot. Each number is put into a queue

according to the sorting identifier. Thus, the number 321

and 521 go into queue 1. The number 354 and 324 go into

queue 4. The number 150 goes into queue 0. The number

237 goes into queue 7 (see Figure 5-32).

Now, to do step b), we start from queue 0. We dequeue

all numbers from it back to the array. We do the same for

queue 1, 2, 3, etc. (see Figure 5-33).

321 521 354 324 150 237

0 1 2 3 4 5 6 7 8 9

Figure 5-32: Step a), getting numbers into queues, when the least

significant digit is the sorting identifier.

182

Now that all numbers are back in the array, we change

the value of the sorting identifier to the value of the next

significant digit. That is the number 150 will now have 5

as its sorting identifier. The number 321 will have 2 as its

sorting identifier. Then we repeat step a) again with a

new sorting identifier for each number (see Figure 5-34).

Remember, we go through the array from left to right.

2 1 0

237 150
324

354

521

321

3 4 5 6 7 8 9

Figure 5-33: Step b), getting all numbers back to the array.

2 1 0

150 321 521 354 324 237

3 4 5 6 7 8 9

Figure 5-34: Step a), when using the second digit from the right as a

sorting identifier.

183

And then step b) is carried out by doing removeFirst() on

every queue, from left to right, and put the removed data

back into our array (see Figure 5-35).

Then, we change the sorting identifier for the last time

(since all numbers in our example have the maximum

digit number equal to 3). Now, the number 321 has 3 as

its sorting identifier. The number 521 has 5 as its sorting

identifier. And we carry out step a) (Figure 5-36) and step

b) (Figure 5-37) as before.

5 0 1 2

237 150

354 521

321

3 4 6 7 8 9

324

Figure 5-35: Step b), when using the second digit from the right as a

sorting identifier.

2 1 0

321 521 324 237 150 354

3 4 5 6 7 8 9

Figure 5-36: Step a), when using the third digit from the right as a sorting

identifier.

184

After the actions carried out in Figure 5-37, all data in the

array are sorted. The code for radix sort is shown in

Figure 5-38 and Figure 5-39.

0 1 2 9 6 5 3

521 237 321

4 7 8

324
150

354

Figure 5-37: Step b), when using the third digit from the right as a

sorting identifier.

1: public class RadixSort {
2: int[] theArray;

3:

4: public RadixSort(int[] theArray) {
5: this.theArray = theArray;

6: }
7:
8: // Return the kth digit of v.
9: // The least significant digit is 0.
10: public int getKthDigit(int v, int k) {

11: for (int i = 0; i < k; i++)

12: v /= 10;

13: return v % 10;

14: }

15:

16: // Find the number of digits of a value v.

17: public int numberOfDigit(int v) {

18: int total = 1;

19: while ((v / 10) > 0) {

20: total++;

21: v = v / 10;

22: }

23: return total;

24: }

25: //continued in Figure 5-39.

Figure 5-38: Radix sort implementation (part 1).

185

1: // Get the number of digits of
2: // the longest number in theArray.
3: public int maxDigit() {
4: int maxDigit = 1;
5: for (int i = 0; i < theArray.length; i++) {
6: int n = numberOfDigit(theArray[i]);
7: if (n > maxDigit)
8: maxDigit = n;
9: }
10: return maxDigit;

11: }

12:

13: public void sort() throws Exception {

14: int maxDigit = maxDigit();

15: MyQueue[] allQueues = new MyQueue[10];

16:

17: // initialize all 10 queues

18: for (int i = 0; i < 10; i++)

19: allQueues[i] = new QueueLinkedList();

20:

21: // for each digit

22: for (int k = 0; k < maxDigit; k++) {

23: // for each data in array

24: for (int i = 0; i < theArray.length; i++) {

25: int value = theArray[i];

26: MyQueue q = allQueues[getKthDigit(value, k)];

27: q.insertLast(value);

28: }

29:

30: // index of array when we put data in from each

31: // queue.

32: int j = 0;

33:

34: // for each queue

35: for (int i = 0; i < 10; i++) {

36: // empty each queue and output to theArray.

37: while (!allQueues[i].isEmpty()) {

38: int data = allQueues[i].removeFirst();

39: theArray[j++] = data;

40: }

41: }

42: } //end outer for

43: } //end method

44: } //end class

Figure 5-39: Radix sort implementation (part 2).

186

The main working of the code is in method sort in Figure

5-39. It uses the same sorting mechanism concept that has

already been explained. For easier mapping of the

concept, we summarize the code below:

• First, the maximum number of digits is calculated

(line 14).

• Then all 10 queues are initialized (line 17-19).

• Then, starting from k = 0 (and ending when k

reaches the maximum number of digit), we use k

as the digit of our sorting identifier. For each k (line

22):

o For each and every data in the array (line 24):

▪ We identify the queue that the data

must go to, by using its sorting

identifier (line 26).

▪ Then we use method insertLast to put

the value into that queue (line 27).

o For each queue, starting at queue 0 (line 35):

▪ Until the queue is empty, we use

method removeFirst to remove data

from the queue and put it in our array

(line 37-40). We put data in a different

array slot each time.

Radix sort is very interesting because of its asymptotic

runtime. Let us analyze the code of method sort together:

187

• The outer for loop (line 22) is only done MaxDigit

number of times. This number is generally small,

so it does not dominate the growth rate.

• The first inner for loop (line 24):

o Method getKthDigit (line 26) also works

mainly on small value of k, so its runtime can

be regarded as constant.

o Method insertLast only takes 𝛩(1) since we

use a linked list here.

o Therefore, the first inner for loop (line 24)

only consumes time for the loop itself. Thus,

it has growth rate = 𝛩(𝑛). Where n is the

number of data.

• The second inner for loop (line 35):

o The most times the while loop gets run is

𝛩(𝑛), equal to the number of data.

▪ removeFirst is only 𝛩(1).

o The second inner for loop itself runs only 10

times, so we can regard its growth rate to be

𝛩(1).

Thus, the growth rate of method sort is dominated by

𝛩(𝑛) of the first inner for loop and 𝛩(𝑛) of the while loop

that follows. Therefore, the growth rate of the whole sort

operation is 𝛩(𝑛) + 𝛩(𝑛) = 𝛩(𝑛).

Normally, if you are to write method sort that works on

any number of data, you will need 2 for loops, each with

its asymptotic runtime of 𝛩(𝑛). So, the runtime is

188

generally 𝛩(𝑛2). Therefore, the fact that radix sort has its

the runtime equal to 𝛩(𝑛) means it is much faster then

conventional methods.

Exercises

1. If we have existing stack1 and stack2, we want to use

stack1 to represent a queue and use stack2 for any

bookkeeping (see a picture below). The data type for

stack in this question is MyStack from chapter 4.

Explain how we can use these 2 stacks to implement

method insertLast and removeFirst. Remember, stacks can

only be manipulated by popping and pushing.

Write the code for your insertLast and RemoveFirst.

2. Assume we already have our own class Q, a queue

that stores integers, and implement MyQueue

interface of this chapter (assume all methods from

MyQueue are implemented).

Front of

queue

back of queue = top of stack

stack1 stack2

189

a. Explain how we can manipulate the queue’s

content so that only even number remains

(drawing can help). Write method public void

removeOdd() of class Q that performs this task.

b. Write method public void removeOddIndex() of

class Q. This method removes all data that are

in odd positions from our queue. For example,

if data in the queue are “a, b, c, d, e, f”, this

method will change the queue to “a, c, e” (the

leftmost data is at position 0). You must use

only methods available for MyQueue and you

are not allowed to create non-primitive

variables.

c. Write code for public void moveBackToFront()

of class Q. This method moves the last integer

stored in the queue to the front of the queue.

Other stored integers remain unchanged. You

are not allowed to create any new array, linked

list, stack, or queue.

d. Explain how you can move integer x from

anywhere in the queue to the front of the queue,

without changing the ordering of other integers

in the queue. You are only allowed to create

primitive variables and another queue. You

are not allowed to create arrays, linked lists,

stacks, trees and other kinds of data structures.

If x is not in the queue, do nothing. Following

your description, write public void

moveToFront(int x) for class Q. Give the

190

asymptotic runtime of your solution (Assume

that each given method of Q in this question

takes constant time to run).

e. Write method public void reverseQueue() for

class Q. This method reverses the ordering of

elements in the queue. You are only allowed to

create primitive variables and a stack (any

stack implementation from chapter 4 is fine).

You are not allowed to create arrays, linked

lists, trees and other kinds of data structures.

Assume that each given method of this question

takes constant time to run, give the estimated

runtime of your implementation.

f. Write method public Q merge(Queue q1, Queue

q2) for class Q. This method receives two

queues, q1 and q2. Each of the queues has

elements in sorted order (from small number to

large number). The method creates a new queue

that has all elements from q1 and q2. The new

queue still has its elements in sorted order. You

are allowed to destroy or change q1 and q2.

g. In order to sort elements in a queue, you can do

the following

i. Divide the elements in the queue in half

(each half has equal, or almost equal

numbers of elements).

ii. Put elements in the first half of the queue

into a new queue.

191

iii. Put elements in the last half of the queue

into another new queue.

iv. Sort the new queues.

v. Combine the elements from the new

queues to form the answer queue.

Write method public Queue sortQueue() for

class Q. This method performs the above

algorithm.

h. Explain how you can put a new data x at

position i in a queue (the leftmost data in your

data sequence is at position 0). The data that

used to be at position i (and all data stored after

it) must move one position to the right. You are

not allowed to create any new data structure.

From your explanation, write method public

void jumpQueue(int x, int i) of class Q.

3. Assume we have Class Queue, a double-ended queue

that stores integers. This class already implements all

methods defined in the following interfaces:

public interface MyQueue {
 //Return the first data.
 //Throw Exception if the queue is empty.
 public int front() throws Exception;

 //Return the last data.
 //Throw Exception if the queue is empty.
 public int back() throws Exception;

 //Remove the first data (return its value too).
 //Throw Exception if the queue is empty.
 public int removeFirst() throws Exception;

192

 //Insert new data after the last data.
 //Throw exception if the insert fails for some reason.
 public void insertLast(int data) throws Exception;

 //Check if the queue is empty.
 public boolean isEmpty();

 //Check if the queue has no more space to store new data.
 public boolean isFull();

 //Return the number of data currently stored in the queue.
 public int size();
}
public interface DeQ extends MyQueue {

// Remove the last data (return its value too).
// Throw Exception if the queue is empty.
public int removeLast() throws Exception;

// Insert new data as the first data.
// Throw Exception if the insert is not successful
// for some unknown reason.
public void insertFirst(int data) throws Exception;

}

We are using a double-ended queue in our own class

TestQueue, which is:

Class TestQueue{
 Queue q;

 public int findValue(int i){
 //return a value at ith position in q
 //(the position number starts from 0).
 // This method is assumed to be completed and working with
 // runtime = O(n).
 // It assumes that the value of i must be from 0 to
 // size()-1.
 // Do not code this method!
 }

 public void swap(int p1, int p2){
 // You have to write code for this method.
 }
}

193

You are to implement method swap, which exchanges

values stored in position p1 and p2 of q, where p1 and

p2’s value must be from 0 to size()-1. For example, if the

original data inside q is: {1,2,3,4,5} and swap(1,3) or

swap(3,1) is called, then the final data in the queue will be

{1,4,3,2,5}. Please note that:

• You do not know the internal workings of q, so you

can only use methods provided by the interfaces.

• You are allowed to create primitive type variables.

• You are not allowed to create non-primitive type

variables, or any data structure.

a. Write code for method swap.

b. Draw pictures and explain your code. Do the

explanation and drawings at the side of your code

so that each part of the code is clearly explained.

c. Analyze asymptotic runtime for each part of your

code and give the overall asymptotic runtime of

method swap.

15. For our doubly-linked list implementation of queue,

extend it so that each data has a priority value. When

adding new data to the queue, the data with more

priority value is stored so that it is removed before

data with lower priority values. Rewrite methods if

necessary.

194

195

Chapter 6 : Binary Tree
A binary tree is a sequence of nodes, similar to a linked

list. However, a node of a tree can have at most 2 next

nodes. Thus, a linked list can be regarded as a form of

binary tree that each node only has one next node. An

illustrated example of a tree is shown in Figure 6-1.

In Figure 6-1, a tree is formed by connecting node a, b, c,

…, i together. Below are some terms we need to be

familiar with regarding this data structure.

9

3 13

11 6 18

7 5 15

root

c

a b

d e

f g h

8

Depth

of c

Height

of c

Tree

height

Figure 6-1: A Binary Tree.

i

Left

subtree

196

• A root is the very first node of a tree. From Figure

6-1, a root is the node that stores the number 9.

• For a tree, its root links to its left subtree and right

subtree. From Figure 6-1, our tree has its left

subtree being a tree that has node ‘a’ as its root.

Similarly, its right subtree is a tree that has node ‘b’

as its root.

• A parent of node n is the node directly linked just

above n. From Figure 6-1, node ‘a’ is a parent of

node ‘c’. Node ‘c’ is a parent of node ‘f’ and node

‘g’.

• A child of node n is the node directly linked just

below it. From Figure 6-1, node ‘c’ is a child of node

‘a’. Node ‘f’ and node ‘g’ are children of node ‘c’.

• An ancestor of node n is a node that can find only

downward link(s) to n. From Figure 6-1, if we

consider node ‘g’, we can see that root, node ‘a’,

and node ‘c’ are ancestors of node ‘g’. Node ‘b’ is

not an ancestor of node ‘g’ because we cannot reach

node ‘g’ from node ‘b’ with downward links alone.

• A leaf of a tree is the node that has no children.

From Figure 6-1, node ‘f’, ‘i’, ‘d‘ and ‘h’ are the

leaves.

• The depth of node n is the largest number of links

we can follow upwards from n (not including the

root). From Figure 6-1, the depth of node ‘c’ is 2.

The depth of node ‘h’ is 3.

• The height of node n is the largest number of links

we can follow downwards from n (not including

197

itself). From Figure 6-1, the height of node ‘c’ is 2.

The height of root is 4.

• The height of a tree is the height of its root. From

Figure 6-1, the height of our tree is 4.

o A tree that has only one node (that is, only a

root) has its height equal to 0.

o An empty tree, which is a tree with no node,

has its height equal to -1.

o The height of a tree can be calculated from

the height of its tallest subtree +1. From

Figure 6-1, our tallest subtree is the tree

which has node ‘a’ as its root (and it has its

height equal to 3). Therefore, our tree has

height equal to 3+1 = 4.

• Please note that there is only 1 path from a root to

a node.

Nodes in a tree can be at different levels, as shown in

Figure 6-2.

A perfectly balanced (or a perfect) binary tree looks like

a complete triangle, as shown in Figure 6-3. A full

binary tree (or strict binary tree) is a tree that each node

either has 0 or 2 children.

198

9

3 13

11 6 18

7 5 15

root

c

a b

d e

f g h

8

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 6-2: Node levels in a tree.

9

3 13

11 6 18 1

root

a b

d e fc

Figure 6-3: A perfectly balanced tree.

199

A complete binary tree is the tree filled up at least to the

level before the highest level, from left to right. Once a

node is missing, all other nodes in the same level (we

look from left to right) and in the levels after that must

not exist. Thus, a perfectly balanced tree is also a full and

complete binary tree, but a complete (or full) binary tree

does not have to be perfectly balanced.

The tree in Figure 6-4 (a) is not a complete binary tree

because in the last level, nodes do not fill from left to

right (one node is missing along the way). The tree in

Figure 6-4 (b) and Figure 6-4 (c) are complete binary trees

because when a node is missing, other nodes to the right

and to other levels do not exist also.

e

(a) (b) (c)

Figure 6-4: Examples of non-complete/complete binary trees.

200

Interesting properties of A Binary Tree
Let us define the followings:

• leaves(t): the number of leaves in the tree t.

• n(t): the number of nodes of tree t.

• height(t): the height of t.

• leftsubtree(t): the left subtree of t.

• rightsubtree(t): the right subtree of t.

• max(a,b): a maximum value from a and b.

For a non-empty binary tree, the following definitions

are true:

Definition 6-1:

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0

Definition 6-2:

𝑛(𝑡)+1

2.0
≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

Definition 6-3:

If t is a full binary tree, then 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) =
𝑛(𝑡)+1

2.0

Definition 6-4:

If 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) =
𝑛(𝑡)+1

2.0
 , then t is a full binary tree.

201

Definition 6-5:

If t is a perfect binary tree, then
𝑛(𝑡)+1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

Definition 6-6:

If
𝑛(𝑡)+1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) , then t is a perfect binary tree.

These definitions can be proven using discrete

mathematics. In our context, we are not interested in how

they are proven, but on how they can be used. Here, we

give a short proof for 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 :

We use mathematical induction. The base case is when

our tree has only its root.

• Thus leaves(t) is 1 because the root itself is the only

leaf.

• The value of
𝑛(𝑡)+1

2.0
 is

1+1

2.0
 , which is 1.

• Therefore 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
is true for this base

case.

Let the inductive case happens when our tree has height

equal to h. Thus 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 is true when the tree

height is h.

Now, we must prove that when the tree height is h+1,

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡)+1

2.0
 still holds. So, for a tree of height h+1,

the following is true:

202

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) = 𝑙𝑒𝑎𝑣𝑒𝑠(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 𝑙𝑒𝑣𝑒𝑠(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡))

Since t has height equal to h+1, its left subtree and right

subtree must have their height less than h+1, meaning

the property of the inductive case is true for them.

Therefore, we can replace 𝑙𝑒𝑎𝑣𝑒𝑠(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) with
𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡))+1

2.0
. The same can be done for the right

subtree. Hence, we get:

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1

2.0
+

𝑛(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1

2.0

And since we know that:

𝑛(𝑡) = 𝑛(𝑙𝑒𝑓𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 𝑛(𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑡)) + 1

We can substitute 𝑛(𝑡) into our previous equation and

eventually get:

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡) ≤
𝑛(𝑡) + 1

2.0

This completes our proof.

These properties are very important for optimizing how

data are stored. For example, let us look at definitions

about height (Definition 6-2, Definition 6-5, and

Definition 6-6). From these definitions, we can deduce

that if data are well distributed such that the tree is a

perfect (or almost perfect) binary tree, the height of the

203

tree will have the lowest value possible. This leads to the

lowest possible search time when we want to find a data

stored inside (we start our search from the root). This

height is related to the number of nodes according to

Definition 6-5 and Definition 6-6.

𝑛(𝑡) + 1

2.0
= 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

We can take log for the above equation and come up

with:

log2

𝑛(𝑡) + 1

2.0
= log2 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

log2(𝑛(𝑡) + 1) − log2 2 = ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

log2(𝑛(𝑡) + 1) − 1 = ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)

The number of stored data in a tree is equal to the

number of nodes. Therefore, in a binary tree that has

good distribution of data, if there is a way to choose

which node (left or right) to go search for the data, the

process of searching can take a number of steps equal to

the height of the tree, which is directly proportional to

the logarithm of the number of data. In other words,

searching a binary tree can take as little time as 𝛰(log 𝑛),

where n is the number of data in the tree.

204

With certain data storage policy, the above performance

can be achieved. A tree with such policy is called a binary

search tree, which is discussed in the next section.

Definitions regarding the number of leaves can also be

useful. We will touch upon the use of these definitions

when we discussed priority queues.

Binary Search Tree
A binary search tree is either an empty tree, or a binary

tree with the following properties:

• For each node, every data in its left subtree has

smaller (or equal) value than the data stored in that

node.

• For each node, every data in its right subtree has

larger (or equal) value than the data stored in that

node.

Binary trees shown in Figure 6-1 to Figure 6-3 are binary

search trees.

Searching for data is easy. Let us look at a binary search

tree in Figure 6-5. Let us try to find number 4.

• When we look at the root, it stores the number 7, so

4 must be on the left side of the root. We therefore

follow the link to node ‘a’.

205

• Node ‘a’ stores 5. Due to the data arrangement of a

binary search tree, our data is surely on the left side

of ‘a’. We therefore follow the link to node ‘c’.

• Node ‘c’ stores 2. Our number, 4, must be to the

right of node ‘c’. So, we follow the link to node ‘f’

and eventually find 4 there.

As mentioned earlier, if data are distributed well, the

searching time only depends on the height of the tree,

which is log 𝑛, where n is the number of data stored

inside the tree.

7

5 11

4

6 14 2

root

a b

d

f

e c

Figure 6-5: Searching for the number

4 in a Binary Search Tree.

206

Binary Search Tree Implementation
We define the followings:

• Node.

• Node marking and how to go through data.

• Binary Search Tree.

Let us start by defining the node that uses to store data.

In our example code, data will be integer.

A node is a pointer to the space we store data. The

following data are stored (Figure 6-6):

• A value (integer value in our example).

• A pointer to another node on the left.

• A pointer to another node on the right.

• A pointer to the node’s parent node.

Figure 6-7 shows how the tree from Figure 6-5 will look

like under our implementation idea. If we focus at

node ’a’, we can see that:

• Its space stores the value 5.

5

parent

value

pointer to node

on the left
pointer to node

on the right

node

Figure 6-6: A node implementation concept of a

binary tree.

207

• The pointer to the node on the left is ‘c’.

• The pointer to the node on the right is ‘d’.

The pointer to the parent node is root (we name the

pointer according to its destination. Since that

destination already has a name “root”, we use that

name).

Parent of root is null. The pointer to the node on the left

or on the right of a node can also be null.

The code for our node implementation is shown in class

BSTNode (Figure 6-8). A one parameter constructor

Figure 6-7: Tree from Figure 6-5,

utilizing our implementation idea.

7

5 11

4

6 14 2

root

a b

d

f

e c

208

creates a node that simply stores data, but does not

connect to left/right subtree and it does not have a parent

(see Figure 6-9 for illustration).

For node marking, we need to be able to determine a

sequence for visiting all nodes in the tree, from the node

that stores the smallest value to the node that stores the

largest value. If we use the tree from Figure 6-7, the

1: public class BSTNode {

2: int data; // value stored in the node.

3: BSTNode left; //pointer to lower left BSTNode.

4: BSTNode right; //pointer to lower right BSTNode.

5: BSTNode parent; //pointer to the BSTNode above.

6:
7: public BSTNode(int data){

8: this(data,null,null,null);

9: }

10:
11: public BSTNode(int data, BSTNode left, BSTNode right,

12: BSTNode parent) {

13: this.data = data;

14: this.left = left;

15: this.right = right;

16: this.parent = parent;

17: }

18: }

Figure 6-8: Code for binary search tree node.

BSTNode b = new BSTNode(9);

14

b

Figure 6-9: Creating a node by using

one parameter constructor.

209

sequence is shown in Figure 6-10. Round square labels

indicate the visiting order for method next of our iterator.

This is not quite straightforward. You can see that going

from label 2 to 3 (or 4 to 5) requires more than one link

traversal. With a higher tree, we will require even more

link traversal. For the tree created from Figure 6-1, going

from the node that stores 8 and the node that stores 9

requires 4 link traversals. Therefore, our implementation

of a binary search tree iterator must support this.

Figure 6-11 shows how we implement a field and a

constructor for our tree iterator (class TreeIterator). Our

Figure 6-10: Node visiting sequence.

root

a b

d

f

e
c

1

2

3

4

5

6

7

210

iterator only marks a node and the constructor is

straightforward.

Figure 6-12 shows the implementation of method

hasNext, which determines whether there is a next data

(data with the next larger value from the current data) to

look at.

Method hasNext works as follows:

• If the currently marked node has another node to

its right, then there definitely is a larger value to

1: public class TreeIterator implements Iterator {
2: BSTNode currentNode;

3:
4: public TreeIterator(BSTNode currentNode) {

5: this.currentNode = currentNode;

6: }
7: // continued in Figure 6-12.

Figure 6-11: Code for tree iterator field and constructor.

1: public boolean hasNext() {

2: BSTNode temp = currentNode;

3: if (temp.right != null)

4: return true;

5: BSTNode p = temp.parent;

6: while (p != null && p.right == temp) {

7: temp = p;

8: p = temp.parent;

9: }

10: if (p == null)

11: return false;

12: else

13: return true;

14: }

15: // continued in Figure 6-16.

Figure 6-12: Method hasNext of class TreeIterator.

211

visit via its right field. So, the method returns true

right away (line 3-4 of Figure 6-12).

o As an example, consider the tree in Figure

6-10. If the node with label 3 is the currently

marked node. It has the node with label 4 as

its right field, so there is definitely a larger

value to go visit. Thus, our method returns

true for this case.

• If the currently marked node does not connect to

any node by its right field, a value larger than the

one stored in that node can be at one of its ancestor

nodes. So, we need to follow the link up the tree

until we find that ancestor node, or until there is no

more link to follow (line 6-9 of Figure 6-12).

o An example is shown in Figure 6-13. If temp

is the node that contains value 5, its parent

will be the node that contains value 6. It is the

larger value we are looking for, so we know

there is a next node. Indeed, our code (line 6

of Figure 6-12) evaluates that node p.right is

not temp so the code does not even enter the

loop. The value of p is not null so the code

returns true.

o Another example is shown in Figure 6-14. In

this case, our current node temp stores value

8 (see the left-hand side of the figure). A node

that stores a larger value is an ancestor quite

further away. But our code will find it. Its

loop will move p and temp up the tree until p

212

marks that node (see the right-hand side of

the figure).

Figure 6-13: Immediate parent contains

a larger value.

Figure 6-14: Movement of p and temp when the larger value is in some

ancestor node.

temp

p
3

6

7 5

root

a

cb

9

d

e

3

6

7 5

root

a

c

b

8

temp

p

9

d

e

3

6

7 5

root

a

c

b

8

p

temp

213

o It is also possible that a node that contains a

larger value does not exist. In Figure 6-15 (left

hand side of the figure), our current node

stores 8. It is obvious that there exists no node

that stores a larger value. So, there should not

be a next node. Our code will loop to move p

and temp up the tree until p is null (see the

right-hand side of the figure). The code will

then return false.

Figure 6-15: Movement of p and temp when a node with larger value does

not exist.

c

d

3

6

7 5

root

b

a

8

d

e

3

6

7 5

root

c

b

8

p
temp

p

temp

214

The code for method hasPrevious is shown in Figure 6-16.

The code is the same as hasNext, except right is changed

to left because the logic is the same.

Now, let us see the code for method next. It is shown in

Figure 6-17. It uses the same logic as method hasNext.

This time we not only have to determine if there is a next

node that stores a larger value, but we also need to

navigate to that very node and return the data stored

there.

When our current node has another node as its right field.

We navigate to right, then follow left until we can go no

further. This way, we will always navigate to the node

that stores data just larger than our current node. This

1: public boolean hasPrevious() {

2: BSTNode temp = currentNode;

3: if (temp.left != null) {

4: return true;

5: }
6:
7: BSTNode p = temp.parent;

8: while (p != null && p.left == temp) {

9: temp = p;

10: p = temp.parent;

11: }

12: if (p == null)

13: return false;

14: else

15: return true;

16: }

17: //continued in Figure 6-17.

Figure 6-16: Method hasPrevious of class TreeIterator.

215

navigation is illustrated in Figure 6-18. Its corresponding

code is in line 3-7 of Figure 6-17.

1: public int next() throws Exception {
2: BSTNode temp = currentNode;
3: if (temp.right != null) {
4: temp = temp.right;
5: while (temp.left != null) {
6: temp = temp.left;
7: }
8: } else {
9: BSTNode p = temp.parent;
10: while (p != null && p.right == temp) {

11: temp = p;

12: p = temp.parent;

13: }

14: temp = p;

15: }

16: if(temp == null) //hasNext() == false

17: throw new NoSuchElementException();

18: currentNode = temp;

19: return currentNode.data;

20: }

21: //continued in Figure 6-19.

Figure 6-17: Code for method next of class TreeIterator.

X

Y

Z

Figure 6-18: Finding node Z, with a value just larger than X,

when our current node, X, has another node as its right.

216

When the right field of our current node does not connect

to any node, we search the tree upwards, just like what

we did with method hasNext, until we find the ancestor

node that has a larger value, or until there is no more link

to follow. This part of the code (line 10-13 of Figure 6-17)

is the same as in method hasNext.

After finding the next node, method next then does some

additional work from method hasNext by throwing an

exception if the next node does not exist. Otherwise, it

updates the current node and return the value stored

inside the new current node. This is implemented in line

16-20 of Figure 6-17.

Method previous of our iterator (code shown in Figure

6-19) works the same way as next(). The code mainly

switches left and right. But there is one important point

to note. That is, the data returned by the method must be

the data before currentNode is updated.

Lastly, we add method set to our tree iterator to allow the

iterator to set the value stored in the current node (code

shown in Figure 6-20).

217

Now, let us look at the implementation of binary search

tree. We will implement it as class BST, with the

following methods:

• findMin(): return iterator that marks the node that

stores the minimum value.

1: public void set(int value) {

2: currentNode.data = value;

3: }
4: } //end of class TreeIterator.

Figure 6-20: Code for method set of class TreeIterator.

1: public int previous() throws Exception {
2: BSTNode temp = currentNode;

3: int d = currentNode.data;

4: if (temp.left != null) {

5: temp = temp.left;

6: while (temp.right != null) {

7: temp = temp.right;

8: }

9: } else {

10: BSTNode p = temp.parent;

11: while (p != null && p.left == temp) {

12: temp = p;

13: p = temp.parent;

14: }

15: temp = p;

16: }

17: if(temp == null) //hasPrevious() == false

18: throw new NoSuchElementException();

19: currentNode = temp;

20: return d;

21: }

22: //continued in Figure 6-20.

Figure 6-19: Code for method previous of class TreeIterator.

218

• find(Type v): return an iterator that marks the node

that stores the given v. If v is not in the tree, this

method returns null.

• insert(Type v): add v as a new data inside the tree.

This method returns an iterator that focuses on the

tree node that contains the new data v.

• remove(Type v): remove a node that stores v from

the tree.

The class structure of BST (without methods) is shown in

Figure 6-21. Our binary search tree contains a root, which

is a BSTNode, and a size, which indicates the number of

data stored inside the tree.

Method findMin is shown in Figure 6-22. It starts its

search at the tree root (creating a temp node there), then

it tries to move temp down the tree (using its while loop)

to the left as far as possible. The last possible value of

temp then identifies the location of the smallest value in

the tree.

1: public class BST {
2: BSTNode root;

3: int size;

4:

5: public BST(BSTNode root, int size) {
6: this.root = root;

7: this.size = size;

8: }

9:
10: //continued in Figure 6-22.

Figure 6-21: Structure of a binary search tree (implementation).

219

The code for method find is shown in Figure 6-23. It

creates a temp node at the root and then tries to move

temp down the tree (using its while loop) until temp

reaches where the value v is stored, or until temp is null

(which means v is not inside the tree). temp is then used

to return the position of v inside the tree, or return null if

v is not inside the tree.

1: public Iterator findMin() {
2: BSTNode temp = root;

3: if(temp == null)

4: return null;

5: while (temp.left != null) {

6: temp = temp.left;

7: }

8: Iterator itr = new TreeIterator(temp);

9: return itr;

10: }

11:
12: //continued in Figure 6-23.

Figure 6-22: Implementation of method findMin for a binary search tree.

220

Now, let us look at method insert. To insert a new data,

v, into a binary search tree, we do the followings:

• First, we try to find v in the tree. We can utilize the

same code as method find, moving temp node down

the tree (code is shown on line 8-16 of Figure 6-26).

1: public Iterator find(int v) {

2: BSTNode temp = root;

3: while (temp != null && temp.data != v) {

4: if (v < temp.data) {

5: temp = temp.left;

6: } else {

7: temp = temp.right;

8: }

9: }

10: if (temp == null) // data not found

11: return null;

12: return new TreeIterator(temp);

13: }

14: //continued in Figure 6-26.

Figure 6-23: Code for method find of binary search tree.

6

v =5

3

1 5 8 11

9

221

But we will also have to keep track of the parent of

temp in order to know where to add our new node

that contains v later on.

o If v is found, we do nothing (in our

implementation, we do not want to add

duplicated data into the tree).

o If v is not found, we create a new node that

contains v (code is shown on line 19 of Figure

6-26). The new node’s parent is set to be the

parent of temp, then:

▪ If parent of temp is null: this is only

possible when the tree has no node. So

we set the root of the tree to be the new

node (line 20-21 of Figure 6-26).

▪ If v is less than the value stored inside

the parent of temp, add the newly

created node to the left of that parent

node (line 22-23 of Figure 6-26).

▪ If v is greater than the value stored

inside the parent of temp, add the newly

created node to the right of that parent

node (line 24-25 of Figure 6-26).

An example showing what happens when adding v to an

empty tree is shown in Figure 6-24. Another example, an

addition of value 6 to a non-empty tree, is shown in

Figure 6-25. The code for method insert is illustrated in

Figure 6-26.

222

root = = null,

parent = = null

Does not find v.

So, create a new

node.
v

n

root

parent is null,

which means

our original tree

is empty.

So, we set root =

n. Thus, our

new tree is

finished.

v

root

Figure 6-24: Adding new data, v, to an empty binary search tree.

6

v =7

3

1 5 8 11

9

223

3

7

8 5

root

9

parent
temp

3

7

8 5

root

9

parent

3

7

8 5

root

9

parent
temp

Trying to add 6.

Move temp down

the tree. For

parent, it must be

updated to be

parent of temp.

3

7

8 5

root

9

parent

temp

Then create a

new node,

storing the new

data, and

connect

parent.left or

parent.right to it

depending on

the stored value.

6

Figure 6-25:Adding 6 to a binary search tree that does not originally store 6.

n

224

Our next method is method remove. So how do we

remove a value, v, stored in a binary search tree? Let us

follow these steps:

• First, we try to locate where v is stored. We can use

the same procedure as method find.

1: public Iterator insert(int v) {

2: BSTNode parent = null;

3: BSTNode temp = root;

4:
5: // This while loop is almost the same as in

6: // method find, but it has an extra pointer

7: // called parent.

8: while (temp != null && temp.data != v) {

9: if (v < temp.data) {

10: parent = temp;

11: temp = temp.left;

12: } else {

13: parent = temp;

14: temp = temp.right;

15: }

16: }

17:
18: if (temp == null) {

19: BSTNode n = new BSTNode(v, null, null, parent);

20: if(parent == null){

21: root = n;

22: } else if (v < parent.data) {

23: parent.left = n;

24: } else {

25: parent.right = n;

26: }

27: size++;

28: return new TreeIterator(n);

29: } else {

30: // we do nothing since

31: // we don't want to add duplicated data.

32: return null;

33: }

34: }

35: //continued in Figure 6-33.

Figure 6-26: Code for inserting value v into a binary search tree.

225

o If v is not stored in the tree, we end our

execution since there is nothing to be

removed from the tree.

o If v is stored in node n:

▪ If n has no child node:

• If n is the root of the tree, thus n

is the only node of the tree, we

can just remove it from the tree

by setting root to null (see Figure

6-27 for an illustration and see

the code on line 13 of Figure

6-33).

• If there is a node above n, just cut

the links to/from n from its parent

(see Figure 6-28 for an illustration

and see the code on line 14-19 of

Figure 6-33). The tree will no

longer has access to node n. The

code needs to test whether n is to

the right or left of its parent in

order to cut the correct links.

▪ If n has a right child, but no left child:

• If n is the tree’s root, make the

root point to n’s right child. This

will effectively bypass n. To

completely disconnect n from the

tree, n.right then needs to be set

to null and the new root’s parent

will have to be disconnected

226

from n (see Figure 6-29 for an

illustration and see the code on

line 24-28 of Figure 6-33).

• If n is not the tree’s root, and n

stores a larger value than its

parent, link n.parent.right to

n.right instead of n.parent to n (see

Figure 6-30 for an illustration and

see the code on line 29-34 of

Figure 6-33).

• If n is not the tree’s root, and n

stores a smaller value than its

parent, link n.parent.left to n.right

instead of n.parent to n (see

Figure 6-31 for an illustration and

see the code on line 35-40 of

Figure 6-33).

▪ If n has a left child, but no right child,

we perfrom the same tasks as when n

has only its right child, but the tasks

have to be done like in a mirror. The

code is shown on line 44-65 of Figure

6-34.

▪ If n has both left and right child, we

need to find the node that stores the

smallest value in n’s right subtree (let

us name that node x), then replace v in

n with the value in x. After that, remove

x. Removing x uses simple code

227

because we know x does not have its

left child (see Figure 6-32 for an

illustration and see code on line 66-81

of Figure 6-34).

v

root
n

v

root
n

disconnect

Figure 6-27: Removing v when v is in a root

with no children.

v

parent

n

v

n

disconnect

parent

Figure 6-28: Removing v when v is in a node

(not a root) with no children.

228

x

root
n

v

x

root
n

v

Figure 6-29: Removing v when v is in a root with right

child but no left child.

x

parent

n

v

x

n

v

m m

parent

Figure 6-30: Removing v when the node, n, that stores v

has only its right child, it is not the tree’s root, and n

stores a larger value than its parent.

229

x

parent

n

v

x

n

v

m m

parent

Figure 6-31: Removing v when the node, n, that stores v

has only its right child, it is not the tree’s root, and n

stores a smaller value than its parent.

230

 Figure 6-32: Removing v when the node, n, that stores v

has both left and right child.

Smallest

value in

tree that

has

n.right

as its

root.

z

n

v

x

i

j

m

k

z

n

j

x

i

j

m

k

z

n

j

x

i

j

m

k

z

n

j

x

i

j

m

k

Now,

remove

this one

instead.

231

1: public void remove(int v) {

2: BSTNode parent = null;

3: BSTNode n = root;

4: TreeIterator i = (TreeIterator) find(v);

5: if (i == null) //not found, we can not remove it

6: return;

7: n = i.currentNode;

8: parent = n.parent;

9: size--;
10: if (n.left == null && n.right == null) {

11: //both subtrees are empty

12: if (parent == null) {

13: root = null;

14: } else if (parent.left == n) {

15: parent.left = null;

16: n.parent = null;

17: } else {

18: parent.right = null;

19: n.parent = null;

20: }

21: }

22: else if (n.left == null && n.right !=null){

23: // only right child

24: if (parent == null) {

25: //the node to remove is a root

26: root = n.right;

27: root.parent = null;

28: n.right = null;

29: } else if (parent.right == n) {

30: BSTNode q = n.right;

31: q.parent = parent;

32: parent.right = q;

33: n.parent = null;

34: n.right = null;

35: } else { // parent.left == n

36: BSTNode q = n.right;

37: q.parent = parent;

38: parent.left = q;

39: n.parent = null;

40: n.right = null;

41: }

42: }

43: // This method continues in Figure 6-34.

Figure 6-33: Code for method remove of a binary search tree (part 1).

232

44: else if (n.right == null && n.left != null) {

45: if (parent == null) {

46: root = n.left;

47: root.parent = null;

48: n.left = null;

49: } else if (parent.right == n) {

50: // a mirror image of line 35-40

51: // from Figure 6-33

52: BSTNode q = n.left;

53: q.parent = parent;

54: parent.right = q;

55: n.parent = null;

56: n.left = null;

57: } else {

58: // a mirror image of line 29-34

59: // from Figure 6-33

60: BSTNode q = n.left;

61: q.parent = parent;

62: parent.left = q;

63: n.parent = null;

64: n.left = null;

65: }

66: } else {// n has two subtrees

67: BSTNode q = n.right;

68: TreeIterator itr = findMin(q);

69: BSTNode minInSubtree = itr.currentNode;

70: n.data = minInSubtree.data;

71: BSTNode parentOfMin = minInSubtree.parent;

72: if(parentOfMin.left == minInSubtree){

73: parentOfMin.left = minInSubtree.right;

74: }else{//min is the only node in the subtree

75: parentOfMin.right = minInSubtree.right;

76: }

77: if(minInSubtree.right != null){

78: minInSubtree.right.parent=parentOfMin;

79: minInSubTree.right = null;

80: }

81: minInSubTree.parent = null;

82: }

83: } //end of method.

84: } //end of class BST.

Figure 6-34: Code for method remove of a binary search tree (part 2).

233

Recursive Implementation of Binary Search
Tree
A recursive implementation of a binary search tree can

be useful and is easier to understand for some students.

In this section, the recursive implementation is shown.

For a node, we need not change anything, so we simply

use class BSTNode (Figure 6-8).

For an iterator, we can also use class TreeIterator (Figure

6-11 to Figure 6-20).

What needs to be changed is class BST. The instance

variables, constructor, and some simple methods remain

unchanged, but other methods need to be changed to

incorporate recursive tree traversals.

Let us name our recursive binary search tree class

BSTRecursive. Let us break down our implementation

into parts. First, the code for our instance variables and

simple methods is shown in Figure 6-35.

Now, let us look at method findMin of this recursive

implementaion. The code is shown in Figure 6-36. For the

method to be called recursively, we have to write a new

method that takes a parameter. The parameter is the

node that the method uses to start searching its tree.

Method findMin will be recursively called, each time its

parameter changes to go left down the tree. It stops when

234

there is no left branch to use as the method parameter.

When this happens, our current method parameter is the

node that stores the smallest data. This is just like using

a loop, but we just change the method parameter as the

method gets called instead.

1: public class BSTRecursive {
2: BSTNode root;

3: int size;

4:
5: public BSTRecursive(BSTNode root, int size) {

6: this.root = root;

7: this.size = size;

8: }

9:
10: public boolean isEmpty() {

11: return size == 0;

12: }

13:
14: public void makeEmpty() {

15: root = null;

16: size = 0;

17: }

18: // continued in Figure 6-36.

1: public Iterator findMin() {

2: return findMin(root);

3: }
4:

5: public Iterator findMin(BSTNode n) {

6: if (n == null)

7: return null;

8: if (n.left == null) {

9: Iterator itr = new TreeIterator(n);

10: return itr;

11: }

12: return findMin(n.left);

13: }

14: // continued in Figure 6-37.

Figure 6-35: Instance variables and simple methods of a recursive

binary search tree.

Figure 6-36: Method findMin of class BSTRecursive.

235

Method find is also implemented with the same idea as

its non-recursive version. Like method findMin, we need

to write another method that can take an extra

parameter, so that we can supply the starting point of our

tree search for each call. Again, we change parameter

value, just like changing the value in each loop, as each

instance of the method gets called. The code is shown in

Figure 6-37.

For method insert, it also uses the same idea as its

iterative counterpart. That is, find the node that will be

the parent of the node that stores the new data, then

connect that node to the node with the new data.

Our code locates this parent node by updating the 4th

parameter in each call to insert, until no more call is

possible. The code is shown in Figure 6-38. The method

1: public Iterator find(int v) {
2: return find(v, root);

3: }
4:
5: public Iterator find(int v, BSTNode n) {
6: if (n == null)

7: return null;

8: if (v == n.data)

9: return new TreeIterator(n);

10: if (v < n.data)

11: return find(v, n.left);

12: else

13: return find(v, n.right);

14: }

15: // continued in Figure 6-38.

Figure 6-37: Method find of class BSTRecursive.

236

returns BSTNode instead of an iterator, however. We

need to return BSTNode because we need to use BSTNode

to update the tree branches when insert is repeatedly

called. TreeIterator cannot help us with such update. The

mentioned branch update is shown on line 13 and 15 of

Figure 6-38. Instead of just calling insert, we update n.left

and n.right to be the result of insert.

Let us focus on line 15 of Figure 6-38. On this line of code,

we cannot just call insert without setting n.right. Let us

see what happens if line 15 does not set n.right. Let us

assume we have a tree with one node, containing value

1. If we call insert(5) on this tree, what happens is shown

in Figure 6-39 .

1: public BSTNode insert(int v) {

2: root = insert(v, root, null);

3: return root;

4: }
5:

6: // return the node n after v was added into the

7: // tree.

8: public BSTNode insert(int v, BSTNode n, BSTNode

9: parent) {

10: if (n == null) {

11: n = new BSTNode(v, null, null, parent);

12: size++;

13: } else if (v < n.data) {

14: n.left = insert(v, n.left, n);

15: } else if (v > n.data) {

16: n.right = insert(v, n.right, n);

17: }

18: return n;

19: }

20: // continued in Figure 6-43.

Figure 6-38: Method insert of class BSTRecursive.

237

1

j

t.root

t.insert(5)

calls t.insert(5,root,null)

Start our recursive call instance for

t.insert(5,root,null).

5 is our v, root is our n, null is our parent

calls line 15 (without setting n.right)

v, n, and parent are created

locally for each call.

1

j

t.root
n

insert(5,n.right,n)

Start another recursive call instance.

Let all arguments for this instance has 2 in its name. So we

have v2 == 5, n2 == n.right, parent2 == n

1

j

t.root
n

n2

parent2

It executes n2= new BSTNode(v2, null, null, parent2),

which does the following:

1

j

t.root
n

n2

parent2

1

j

root cannot reach n2 (although

n2 can reach root). This is

because the assignment of

n.right is missing from this

method’s caller.

This is the caller!

Figure 6-39: The tree is not modified properly if n.right is not used to

store the result of insert.

238

A same type of mistake can cause problem in our main

method, even with the assignment of n.left and n.right in

Figure 6-38. For example, see the code for main method

in Figure 6-40. The code first creates an empty tree, then

it tries to add a new node with 1 inside.

How this code operate is shown in Figure 6-41.

1: public static void main(String[] args){

2: BSTRecursive t = new BSTRecursive(null,0);

3: t.insert(1);

4: }

Figure 6-40: Incorrect use of method insert.

Start our recursive call instance for t.insert(1,root,null).

1 is our v, root is our n (which is null), null is our parent

t.insert(1)

calls t.insert(1,root,null)

It executes n= new BSTNode(v, null, null, parent),

which does the following:

1

j

n
n is returned to its caller,

and eventually returned in

the main method, without

actually connecting to the

root.

t.root

t.root n parent

t.root parent

Figure 6-41: How the code in Figure 6-40 works.

239

The reason the code fails to work is that the original tree

is not set to connect to the newly created node. Therefore,

we need to set the connection from the original tree. A

correct version of code in Figure 6-40 is shown in Figure

6-42. To sum up, when a part of a tree is changed due to

recursive call(s), you must set the connection from the

unchanged part of the tree to that new part.

Now. Let us move on to method remove. The idea is

exactly the same as our iterative version, and the code

reflects the idea.

The code is shown in Figure 6-43. Similar to insert, it

needs to set n.left and n.right (see line 12 and 14 of the

code) in order to connect our tree to its changed part.

1: public static void main(String[] args){

2: BSTRecursive t = new BSTRecursive(null,0);

3: t.root = t.insert(1);

4: }

Figure 6-42: Correction of code from Figure 6-40.

240

1: public BSTNode remove(int v) {
2: return remove(v, root, null);

3: }

4:

5: // return the node n after v was removed from the

6: //tree

7: public BSTNode remove(int v, BSTNode n, BSTNode

8: parent) {

9: if (n == null)

10: ; // do nothing, there is nothing to be removed

11: else if (v < n.data) {

12: n.left = remove(v, n.left, n);

13: } else if (v > n.data) {

14: n.right = remove(v, n.right, n);

15: } else {

16: if (n.left == null && n.right == null) {

17: n.parent = null; //disconnect from above

18: n = null; //disconnect from below

19: size--;

20: } else if (n.left != null && n.right == null) {

21: BSTNode n2 = n.left;

22: n2.parent = parent;

23: n.parent = null; //disconnect from above

24: n.left = null; //disconnect from below

25: n = n2; //change to the node below

26: //to prepare for connection from parent

27: size—-;

28: } else if (n.right != null && n.left == null) {

29: BSTNode n2 = n.right;

30: n2.parent = parent;

31: n.parent = null; //disconnect from above

32: n.right = null; //disconnect from below

33: n = n2; //change to the node below

34: //to prepare for connection from parent

35: size--;

36: } else {

37: TreeIterator i;

38: i = (TreeIterator) findMin(n.right);

39: int minInRightSubtree = i.currentNode.data;

40: n.data = minInRightSubtree;

41: n.right= remove(minInRightSubtree, n.right, n);

42: }

43: }

44: return n;

45: } // end of method.

46: } // end of class BSTRecursive.

Figure 6-43: Code for method remove of class BSTRecursive.

241

Recursive Tree Traversal
By visiting each the nodes recursively, we can go

through every data in a tree (the tree does not have to be

a binary search tree) in a few number of ways:

• Preorder traversal: we visit the root, then left

subtree, then right subtree. Within a subtree, we

visit its root first, then its left subtree, then its right

subtree, and so on. An example tree (this one is a

binary search tree) is shown in Figure 6-44. For

simplicity, we only draw downward pointers. Let

us name each node after a data stored inside it.

A preorder visit of the data will give us the

following sequence of node visiting:

o 6, left subtree of 6, right subtree of 6

Expanding the sequence within the subtree

traversal recursively, we get:

o 6, (1, left subtree of 1, right subtree of 1), (8,

left subtree of 8, right subtree of 8)

6

1 8

7 10 3

Figure 6-44: Tree for use with all

traversal examples.

242

o 6, (1, null, (3, left subtree of 3, right subtree of

3))(8, (7, left subtree of 7, right subtree of 7),

(10, left subtree of 10, right subtree of 10))

o 6, (1, null, (3, null, null))(8, (7, null, null), (10,

null, null))

o 6, 1, 3, 8, 7, 10

• Postorder traversal: we visit the left subtree, then

right subtree, then root. Within a subtree, we visit

its left subtree first, then its right subtree, then its

root, and so on. Using the tree in Figure 6-44, our

traversal sequence is as follows:

o Left subtree of 6, right subtree of 6, 6

o (left subtree of 1, right subtree of 1, 1), (left

subtree of 8, right subtree of 8, 8), 6

o (null, (left subtree of 3, right subtree of 3, 3),

1), ((left subtree of 7, right subtree of 7, 7),

(left subtree of 10, right subtree of 10, 10), 8),

6

o (null, (null, null, 3), 1), ((null, null, 7), (null,

null, 10), 8), 6

o 3, 1, 7, 10, 8, 6

• Inorder traversal: we visit the left subtree, then the

root, then the right subtree. Within each subtree,

we visit its left subtree, then its root, then its right

subtree, and so on. Using the tree in Figure 6-44,

our traversal sequence is as follows:

o Left subtree of 6, 6, right subtree of 6

243

o (left subtree of 1, 1, right subtree of 1), 6, (left

subtree of 8, 8, right subtree of 8)

o (null, 1, (left subtree of 3, 3, right subtree of

3)), 6, ((left subtree of 7, 7, right subtree of 7)

, 8, (left subtree of 10, 10, right subtree of 10))

o (null, 1, (null, 3, null)), 6, ((null, 7, null) , 8,

(null, 10, null))

o 1, 3, 6, 7, 8, 10

With a binary search tree, inorder traversal visits

data from small to large.

The implementations of these traversals are

straightforward. Figure 6-45 shows code (that can be

part of class BSTRecursive) for printing all data from a

tree using preorder traversal and inorder traversal.

1: public void preOrderPrint() {
2: preOrderPrint(root);

3: }
4:

5: public void inOrderPrint() {

6: inOrderPrint(root);

7: }
8:

9: public void preOrderPrint(BSTNode n){

10: if (n == null)

11: return;

12: System.out.println(n.data);

13: preOrderPrint(n.left);

14: preOrderPrint(n.right);

15: }
16:

17: public void inOrderPrint(BSTNode n){

18: if (n == null)

19: return;

20: inOrderPrint(n.left);

21: System.out.println(n.data);

22: inOrderPrint(n.right);

23: }

Figure 6-45: code for preorder and inorder printing of data in a tree.

244

Notice that although the code is simple, and we do not

require the use of any iterator, an iterator is still useful if

we want to mark the location for use later in other parts

of the program.

Breadth-First Tree Traversal

All tree traversals that we have looked at so far do not

provide any way for us to go through our data level-by-

level. For example, with the tree in Figure 6-46, we may

want to look through 6, 1, 8, 3, 7, 10 in sequence.

In order to handle this special kind of tree traversal, we

have to utilize another data structure, a queue. In fact, we

will be using 2 queues to help us. The two queues are

called:

• thisLevel: store nodes that are in the current level

of our tree.

• nextLevel: store nodes that are in the next level of

our tree.

6

1 8

7 10 3

Figure 6-46: Search sequence by level of a tree.

245

Using the tree in Figure 6-46 as our example:

• When our traversal starts, both queues are empty.

• The root of the tree is then read. The node is then

put into thisLevel (Figure 6-47).

• Then, we remove a node from thisLevel. This is

where we can read the node’s data. We then put

the node’s left and right node into nextLevel. Repeat

until thisLevel is empty. From our example, we only

have one node to remove from thisLevel at this

state. Therefore, our program reads data 6 from the

node and the state of the queues after thisLevel

becomes empty is shown in Figure 6-48.

• At this state, remove all nodes from nextLevel and

put them in thisLevel (shown in Figure 6-49).

thisLeve

l

nextLevel

6

Figure 6-47: Putting root into thisLevel queue.

thisLeve

l

nextLevel

1 8

Figure 6-48: Removing a node from thisLevel

queue and put its left and right nodes into

nextLevel queue.

246

• Then we start our process again. We remove each

node from thisLevel (and visit its data) and put each

node’s left and right node into nextLevel (not putting

null though). From our example in Figure 6-49, the

data that are visited are 1 and 8. The state of the

queues after all the nodes are removed from

thisLevel is shown in Figure 6-50.

• At this state, remove all nodes from nextLevel and

put them in thisLevel. This is shown in Figure 6-51.

thisLeve

l

nextLevel

1 8

Figure 6-49: Removing all nodes from nextLevel

queue and putting them in thisLevel queue.

thisLeve

l

nextLevel

3 7 10

Figure 6-50: The queues after nodes with 1 and

8 are removed.

thisLeve

l

nextLevel

3 7 10

Figure 6-51: Removing all nodes from nextLevel

queue and putting them in thisLevel queue for

the 2nd time.

247

• We then start our process again by removing each

node from thisLevel (and reading their

information), and putting each node’s left and right

nodes into nextLevel. From our example, the data

that are read are 3, 7, 10 respectively. There are no

nodes to be put in nextLevel. Both queues are now

empty and we end our traversal.

From the example, the sequence of read data is 6, 1, 8, 3,

7, 10. Which is from left to right, one level to the next.

We will leave the implementation of this breadth-first

traversal as an exercise for readers.

Exercises

1. For class BST, write code for a method that performs

the following task:

a. It receives a value v, as its method parameter.

b. The method returns an integer in the tree that is

just lower than v, if such value exists.

2. For class BST, write code for a method that performs

the following task:

a. It receives a value v, as its method parameter.

b. The method returns an integer in the tree that is

just larger than v, if such value exists.

3. For class BST, write a non-recursive code for a method

that checks whether our tree is a binary search tree.

248

4. For class BSTRecursive, write a recursive code for a

method that checks whether our tree is a binary search

tree.

5. For class BSTNode write code for method public

boolean isLeaf(). This method tests whether the node

is a leaf node.

6. For class BSTRecursive, write code for method private

int height(BSTNode n). This method calculates the

height of a subtree in a recursive fashion. Note that:

• A tree is one level higher than its highest subtree.

• The height of an empty subtree is -1.

7. For class BSTRecursive, write code for method public

int maxNumNodes(). This method calculates the

maximum number of nodes that the tree can contain

based on its current height.

8. For class BST, write the code for method:

a. public int numNodes(): this non-recursive

method calculates the number of nodes in our

tree.

b. public int numLeaves(): this non-recursive

method count the number of leaves in the tree.

9. For class BSTRecursive, write the code for method:

a. public int numNodes(): this recursive method

calculates the number of nodes in our tree.

b. public int numLeaves(): this recursive method

count the number of leaves in the tree.

249

BSTNode findParent (BSTNode n, BSTNode d, BSTNode

parent): this method finds the parent of a given node (in

a subtree) without following parent link up from that

node. It returns null if no parent can be found.

• n is the node that roots the subtree we want to

work on.

• d is the node that we want to find its parent node.

• parent is our temporary node that will move down

the tree. Its final value will be our return value.

10. An expression tree is a tree that represents an

arithmetic expression. It is not a binary search tree.

For example, to represent 2+3*(4-1), we can use the

following tree:

Each node now stores a String instead of an integer.

Write a method double evaluate(BSTNode n). This

method receives a root of our expression tree and

calculates the value of the expression.

+

2 *

3 -

4 1

250

11. Explain, with drawings, how you would generate the

most balanced binary search tree possible from any

given binary search tree. The most balanced tree

possible has all data filled from left to right, top to

bottom, except at the last level. It must still be a

binary search tree. You are allowed to create any new

data structures and objects.

For example:

Write code for method

public void constructMostBalanced() of class

BSTRecursive according to your explanation. The method

must reconstruct the tree from an existing tree so that the

most balanced arrangement possible is obtained.

12. Write code for method boolean sameData(BST t1,

BST t2) of a generic class that can access BST and

related classes. This method returns true if t1 and t2

have the same data. It returns false otherwise. After

7

5 9

1

3

11

becomes

5

1 9

11 3 7

251

the method finishes its execution, t1 and t2 must not

change.

13. Write code for method boolean same(BST t1, BST t2)

of a generic class that can access BST and its related

classes. This method returns true if t1 and t2 have the

same shape and the same content. It returns false

otherwise. After the method finishes its execution, t1

and t2 must not change.

14. Write code for method

BSTNode createMirror(BSTNode n) of class

BSTRecursive. This method creates a completely new

tree that looks to be a mirror image of a tree that has

n as its root. It returns the root of the new tree. The

new tree is a binary search tree, but data is arranged

from large to small. The original tree must not be

changed.

For example:

n

7

0

2

0
8

5

1

0
5

5

3

3

6

9

4

4

Create

mirror

n

7

0

2

0
8

5

1

0
5

5

3

3

6

9

4

4

252

15. For a generic class that has access to class BST and all

other related classes, write code for method public int

average(BST t). This method calculates the average

value from all nodes in the tree.

16. Let us look at the following binary tree:

What is the sequence of data when we traverse this tree

with:

• Preorder traversal

• Inorder traversal

• Postorder traversal

17. Explain how we can convert a postfix expression to an

expression tree. Write your pseudocode for this

conversion.

18. For class BST and BSTRecursive, write code for

method findMax(). This method returns an iterator

that marks the node that stores the maximum value.

The code in class BST must be non-recursive, while

the code in class BSTRecursive must be recursive.

19. For class BST, write code for method public void

combine(BST t). This method combines this with a

a

c t

o d e n

f k s m g l

253

binary search tree, t. The result is this, with all data

from t also inside it. this must still be a binary search

tree.

254

255

Chapter 7 : Hash Table

A hash table is basically an array that allows for fast data

searching. If done right, we can find our data in constant

time. Due to the way hash table data are arranged, there

is no sorting of data. In fact, the only operations we will

use on a hash table are:

• Find a data.

• Add a new data.

• Remove a data.

To find a data X (after that, we can try to add or remove

X from our hash table), we do the followings:

• Use part of X as a “key”.

• Use the “key” as an input for our hash function. A

hash function takes a key as its input, and return

the array index, i, of a position that X should be in.

• Look at the array at position i.

o If X is stored in that position, we have found

it and we can decide to remove it from the

array.

o If X is not stored in that position, it means X

does not exist in the array. We can then

decide whether to put X in that array

position.

An example of a hash table and its usage is shown in

Figure 7-1 . Our hash table is an array that stores cars. A

256

car has many information, but to identify each car, we

may only need some information. In our example, let us

use brand, model, and color to identify a car in our array.

We will use brand, model, and color as a key for our hash

function when we want to find/add/remove a car from

our array. Thus from Figure 7-1:

• hash(“Toyota”, “yaris”, “black”) returns 1.

• hash(“Nissan”, “sunny”, “black”) returns 3.

• hash(“Toyota”, “camry”, “black”) returns 4.

hash(“Toyota”, “camry”, “black”) returns 4.

Car:-

Brand: Toyata

Model: yaris

Color: black

Etc…

Car:-

Brand: Nissan

Model: sunny

Color: black

Etc…

Car:-

Brand: Toyata

Model: camry

Color: black

Etc…

To find a car, we call hash(brand,model, color). An integer

returned from hash is the position of the car.

Figure 7-1: A hash table example.

257

Everything depends on our hash function. A hash

function should:

• be fast to calculate. The runtime of a hash function

directly dictates the speed that our data can be

found.

• be appropriate for a given type of data (if

calculated from data). Each type of data will

certainly give us different keys.

• returns different values when supplied with

different keys.

Designing A Hash Function
When designing a hash function, we try to make our

hash function distribute its data all over the array. We

generally use the following steps:

1. Transform our key into an integer.

2. Make our integer more widely distributed with

some rules of transformation.

3. Transform the number we got in step 2 into array

index.

Transforming our key

To transform our key into an integer, we can:

• convert it to integer using available methods.

• convert true to 1, false to 0.

• convert a string or strings to its ASCII values.

• combine integer conversions of various pieces of

data into one integer.

258

Let us see an example. For this example, a key “john” can

be converted to “j”+“o”+“h”+“n” = 106 + 97 + 118 +

 110 = 431 according to each letter’s ASCII value.

But this may cause a problem or two.

• Since an ASCII value is at most 127, therefore the

sum of 4 characters never exceeds 127 ∗ 4 = 508.

So, even though we may have an array of size

10000, our data will only be stored in the first 508

array slots.

• “john” and “hojn” will be represented by the same

integer value. The array slot calculated from “john”

and “hojn” will therefore be the same.

A better approach is to regard each character as a digit in

a base-26 number (there are 26 characters in English

alphabets so we use base-26). Using this new approach,

“john” gets converted to 106 ∗ (263) + 97 ∗ (262) +

118 ∗ (261) + 110 ∗ (260) = 1863056 + 65572 + 3068 +

110 = 1931806. This is obviously more usable with a

larger array. Also, “hojn” is converted to 118 ∗ (263) +

97 ∗ (262) + 106 ∗ (261) + 110 ∗ (260) = 2073968 +

65572 + 2756 + 110 = 2142406. This gives us a

different value. The code for this example is shown in

Figure 7-2.

1: public static int f(String key) {
2: int val =0;

3: for(int i=0; i<key.length();i++)

4: val = 26*val+key.charAt(i);

5: return val;

6: }

Figure 7-2: A function that transforms a string into integer.

259

The code may seem a bit strange, but it is really

calculating (𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 26 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(1)) ∗
26 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(2) . ..

For simplicity, let us assume that our string has only 3

characters. So, the above expression can be rearranged to
𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 262 + 𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(1) ∗ 261 +

𝑘𝑒𝑦. 𝑐ℎ𝑎𝑟𝐴𝑡(0) ∗ 260 , which is what we want to

calculate. The code works for any number of characters.

The reason we avoid method power in our code is that the

method takes long time to run compared to our

approach.

The execution of our example code may still take some

time if we have a long key. We can fix this by selecting

only a few characters.

Making our integer more widely distributed

Our key may already be an integer. But the integer may

be too organized. This means two data have their integer

representations too close to one another. In order to have

the widest possible range of integers, so that we can use

them as indices for our well-distributed array, we need

to transform our integer.

There are several ways that we can generate more widely

distributed integers from existing ones. In this book,

three techniques are given.

260

The first technique is removing a too repetitive digit. For

example, students in the same year have their ids as their

unique identifiers. Student 1 and student 2 have the

following ids: 5831380721 and 5830401221. These two

numbers are too similar because they both have 583 at

their front and 21 at their back. We can make better

distributed numbers by removing 583 and 21. Thus both

numbers are now 13807 and 04012.

The second technique is folding your integer. For

example, if your integer is 5831380721, you split this

number into 583, 1380 and 721. Then you just add them

up, which results in 583 + 1380 + 721 = 2684. Or if your

integer is 5830401221, you get 583 + 0401 + 221 =

 1205. Any prior similarity between the two integers is

gone. Apart from adding, you can also do something else

that combines them, such as doing XOR operation and

other bitwise operations.

The third technique is to divide our integer with a

number and record its remainder as our transformed

integer. Choosing the divisor is very important here.

• Do not choose a divisor which is a power of 10.

Because the remainder will just be a few last digits

(and will likely be the same for original integers

with certain patterns). For example, if our original

integers are 5831380721 and 5830401221, and we

choose to divide each number by 100, their

261

remainders will be the same number, 21. This is not

what we want.

• Do not choose a divisor which has a small common

factor with its numerator. This is because the

common factor will be a factor of the remainder as

well. Hence our result will not be well distributed.

As an example, let our original data be 100 and 200.

If we use 55 as our divisor (value 5 is our common

factor here), our result will be 100%55 = 45 and

200%55 = 35. Both the number 45 and 35 have 5

as their factor. They cannot be effectively used as

positions in our array because other positions not

divisible by 5 will simply not be used.

Transforming our value into array index

Once we have our integers from each data, these integers

are likely to spread out. To use them as positions for our

array, we simply need to make sure that their values do

not fall out of possible array index range. The best way

to handle this is to divide each integer with the array size

and use the remainder as its corresponding array index

value. But we have to be careful when using remainders,

since the problem caused by the small common factor, as

mentioned in the previous section, can arise. To prevent

the small common factor problem, a prime number is

often used as the array size.

If our hash function is well designed, the chance that 2

data will get the same position in our array is greatly

262

reduced. However, it is very hard to make a perfect hash

function. Some data will end up being assigned to the

same array position (this is called “collision”). When this

happens, we have to organize these data in a systematic

way to be able to store all of them in the array and be able

to quickly find them later. There are two implementation

ideas of a hash table that can deal with collision. They are

called:

• Separate chaining

• Open addressing

Separate Chaining Hash Table
This idea can simply be explained as follows:

• Each of our array slots, instead of storing one data,

stores a linked list of data instead.

• All data that have the same value from our hash

function go into the same linked list.

• To find a data, use a hash function to find a linked

list that stores the data, then search the data

sequentially in that linked list.

• To add a new data, use a hash function to find a

linked list that will (or already) store that data.

Then search the list for that data.

o If the list already has the data, we do nothing.

There is no point for adding a duplicated

data. A hash table has no use for duplicated

copies of data, since it is only used to check

whether a data is available.

263

o If the list does not store the data, we add the

data in front of the list. Statistically, a new

data is more likely to be accessed than older

data. That is why we put it in front of the list.

A separate chaining hash table (implemented using

circular doubly-linked lists) is illustrated in Figure 7-3. In

this example, our array has 5 slots and the slots are

shown vertically to allow linked listeds to be drawn

horizontally. Data 0, 5, and 10 are stored in the same

linked list, indicating that our hash function put them in

the same array slot.

Implementation of Separate Chaining Hash Table

In Java, every object can call method hashCode. This

method maps the object’s memory address to an integer

value. This gives an evenly distributed integer. Our

implementation makes use of this hashCode method. Our

header
0 5 10

3 8

2

Figure 7-3: A separate chaining hash table.

264

code (class SepChaining) is shown in Figure 7-4, Figure

7-7 and Figure 7-8.

1: public class SepChaining{
2: private static int DEFAULT_SIZE = 101;
3: private static int MAXLOAD = 2;
4: private CDLinkedList[] lists;
5: private int currentSize =0;
6:
7: public SepChaining(){
8: this(DEFAULT_SIZE);
9: }
10:
11: public SepChaining(int size){

12: int nextPrimeSize = nextPrime(size);

13: lists = new CDLinkedList[nextPrimeSize];

14: for(int i=0; i<lists.length; i++){

15: lists[i] = new CDLinkedList();

16: }

17: }

18:
19: private static boolean isPrime(int n){

20: if(n == 2 || n == 3)

21: return true;

22: if(n == 1 || n % 2 == 0)

23: return false;

24: for(int i = 3; i*i <= n; i+= 2)

25: if(n%i == 0)

26: return false;

27: return true;

28: }

29:
30: private static int nextPrime(int n){

31: if(n % 2 == 0)

32: n++;

33: for(; !isPrime(n); n += 2){}

34: return n;

35: }

36:
37: // continued in Figure 7-7.

Figure 7-4: Fields, constructors, and utility methods for separate

chaining hash table.

265

Figure 7-4 shows fields, constructors, and utility

methods for our separate chaining hash table. Our

implementation contains the following fields (line 2-5 in

Figure 7-4):

• DEFAULT_SIZE: a default value for the number of

array slots. This must be a prime number to avoid

the small common factor problem.

• MAXLOAD: a maximum number of data that we

want to store per list, on average. We do not want

the average number of data (per list) to be long.

This is because a list is searched sequentially.

Longer list means longer search time. So, we need

to check our current average number of data

against MAXLOAD. If our value exceeds

MAXLOAD, it means our lists are too long, we

should make a larger array and redistribute our

data into the new array (this is called rehash) so

that lists within the new array are shorter.

• lists: an array that stores linked lists. This is our

main data storage of our hash table. Our linked

lists are circular doubly-link lists from chapter 3

(class CDLinkedList), but the code for class

CDLinkedList and DListIterator has to be modified

so that our list can store Objects, instead of integers

(this modification is left for readers).

• currentSize: a total number of data stored in our

hash table.

266

For constructors, we have a default one, which calls our

main constructor. Our main constructor (line 11-17 in

Figure 7-4) creates an array of linked list that has its

number of slots equal to a prime number equal to or next

to a given value (again, avoiding the small common

factor problem). Once the slots are created, a list for each

slot is created using the constructor of CDLinkedList.

To facilitate the generation of a given prime number, we

have two utility methods, isPrime and nextPrime (line 19-

35 of Figure 7-4).

Method hash (shown in Figure 7-5) returns the position

that a given data is supposed to be stored in out array. It

simply calls hashCode(), then makes sure the returned

number is positive and the returned number is not

outside possible positions.

Method find (shown in Figure 7-6) returns -1 if a given

data is not stored in our hash table. Otherwise, it returns

a non-negative value. This non-negative value is a

position within a linked list that the data is stored (it is

not the same value that we get from method hash).

1: public int hash(Object data){
2: int hashValue = data.hashCode();

3: int abs = Math.abs(hashValue);

4: return abs%lists.length;

5: } //continued in Figure 7-7.

Figure 7-5: Method hash of separate chaining hash table.

267

Method add (shown in Figure 7-7) does the followings:

• It first identifies a linked list that may store our

given data, by calculating its slot in our array (line

2-3 in Figure 7-7).

• Once the list is identified, it searches the list for the

data using method find of linked list (line 4 in

Figure 7-7).

o If the data is not in the list, it adds the data in

front of the list (line 4-8 in Figure 7-7), using

method insert of CDLinkedList.

o If the data is in the list, we do nothing since

adding a duplicated data into a hash table

does not help us with anything.

• Once the addition is done, we need to check if our

current average number of data (per list) exceeds

MAXLOAD. If so, we need to create a larger array

(and new linked lists within the new array) and put

all existing data from our array inside the new

array. We achieve this by calling method rehash

(also shown in Figure 7-7).

1: public int find(Object data){
2: int pos = hash(data);

3: CDLinkedList theList = lists[pos];

4: return theList.find(data);

5: } //continued in Figure 7-7.

Figure 7-6: Method find of separate chaining hash table.

268

Please note that, for method rehash to work, we need to

add new data using method add. We cannot simply copy

data into new lists because a value returned from

hashing each data is different due to the array changing

its size.

1: public void add(Object data){
2: int pos = hash(data);

3: CDLinkedList theList = lists[pos];

4: if(theList.find(data) == -1){ // not found

5: DListIterator itr =

6: new DListIterator(lists[pos].header);

7: lists[pos].insert(data, itr);

8: currentSize++;

9: }

10: if(currentSize/lists.length >= MAXLOAD){

11: rehash();

12: }

13: }

14:
15: public void rehash(){

16: CDLinkedList[] oldLists = lists;

17: int newLength = nextPrime(2*lists.length);

18: lists = new CDLinkedList[newLength];

19: for(int i=0; i<lists.length; i++){

20: lists[i] = new CDLinkedList();

21: }

22: for(int i=0; i<oldLists.length; i++){

23: DListIterator itr;

24: itr = new DListIterator(oldLists[i].header);

25: while(itr.currentNode.nextNode !=

26: oldLists[i].header){

27: add(itr.next());

28: }

29: }

30: } //continued in Figure 7-8.

Figure 7-7: Method add and rehash of separate chaining hash table.

269

Method remove (shown in Figure 7-8) does the

followings:

• It first identifies a linked list that may store our

given data, by calculating its slot in our array (line

2-3 in Figure 7-8).

• Once the list is identified, it searches the list for the

data using method find of linked list (line 4 in

Figure 7-8).

o If the data is not in the list, we do nothing.

o If the data is in the list, we call method remove

of CDLinkedList (line 5 in Figure 7-8).

Runtime Analysis of Separate Chaining
Hash Table
First, we need to define a term that is commonly used

when analyzing hash tables. It is called a load factor (or

λ – pronounced lambda). A load factor is defined as

follows:

1: public void remove(Object data){
2: int pos = hash(data);

3: CDLinkedList theList = lists[pos];

4: if(theList.find(data) != -1){ //data found

5: theList.remove(data);

6: currentSize--;

7: }

8: }
9: } //end of class SepChaining

Figure 7-8: Method remove of separate chaining hash table.

270

Definition 7-1:

𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

For a separate chaining hash table, a load factor is

therefore an average length of each linked list.

The time spent when searching a separate chaining hash

table can be calculated from:

Seach time = time to do hashing + time to search a list

 = very small value + time to search a list

 ≅ time to searh a list

If the data that we want to find is not in our hash table at

all, our search time is approximately equal to the time to

search an entire list. This is directly proportional to an

average list length, which is our load factor.

If our data is in one of the lists, on average, we will have

to search half of that list. Assume that our hash function

can distribute data evenly, each linked list in our hash

table should be of equal size. The average search time is

therefore directly proportional to half an average list

length, which is half our load factor.

In both cases, the time for searching a data depends on

the value of the load factor.

271

Open Addressing Hash Table
An open addressing hash table does not use any linked

list. Instead, if a collision is found, we find a new slot for

our data. We need a considerably larger array (compared

to a separate chaining approach) because there are no

lists to help store data.

There is a pattern for finding slot(s).

• If the data is 𝑥, we first check array slot ℎ0(𝑥).

• If the data collides with another existing data, we

try slot ℎ1(𝑥) in the array.

• If the data still collides, we try slot ℎ2(𝑥), etc.

 Where ℎ𝑖(𝑥) = (ℎ𝑎𝑠ℎ(𝑥) + 𝑓(𝑖))%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

 𝑓(0) = 0

There are several ways to define 𝑓(𝑖). In this chapter, 3 of

them are discussed. They are:

• Linear Probing

• Quadratic Probing

• Double Hashing

Linear Probing

In this approach, we have:

𝑓(𝑖) = 𝑖

As an example, let us store integer data into an empty

hash table of size 7. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

272

The data to put in our example hash table are 1, 11, 3, 8,

9.

Putting in 1, 11, and 3 are straightforward, since there is

no collision. The process of putting these values inside

the array is shown in Figure 7-9.

Putting 8 in the array (using ℎ0(8)), however, causes a

collision with 1. So, we need to inspect a slot next to the

slot that stores 1, that is slot number ℎ1(8). Fortunately,

that slot is empty. Hence, we put 8 in that slot (see Figure

7-10).

Figure 7-9: Putting 1, 11, and 3 into a hash table of size 7,

where ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

1

1

1 11

11

3

ℎ0(11) = ℎ𝑎𝑠ℎ(11) = 11%7 = 4

273

Following 8, 9 is to be stored in the array. But using ℎ0(9),

9 now collides with 8. So, what we do is look for the next

slot, each one is at position ℎ𝑖(9), where 𝑖 starts from 1,

and keep looking until we find an empty slot.

Searching and removing data use this same procedure.

To remove 9, we have to start from position ℎ0(9), and

work our way through each ℎ𝑖(9) until we find 9 or until

we find an empty slot (which indicates that 9 is not in our

hash table).

Figure 7-10: Putting 8 in a hash table from Figure 7-9.

8

1 3 11

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 1)%7 = 2

1 8 3 11

9

ℎ0(9) = ℎ𝑎𝑠ℎ(9) = 9%7 = 2

ℎ1(9) = (ℎ𝑎𝑠ℎ(9) + 1)%7 = 3
ℎ2(9) = (ℎ𝑎𝑠ℎ(9) + 2)%7 = 4

ℎ3(9) = (ℎ𝑎𝑠ℎ(9) + 3)%7 = 5

Figure 7-11: Putting 9 in a hash table from Figure 7-10.

274

Removing data can cause a problem, however. Let us

remove 3 and then try to search for 9, using a hash table

in Figure 7-12.

It can be seen that after 3 is removed, the search for 9 will

stop prematurely, at the position that used to store 3 (but

now it is an empty slot). Our algorithm misinterprets that

the array does not store 9 because it finds this empty slot

during its search. This premature stopping takes place

in every open addressing approach discussed in this

chapter.

Figure 7-12: Removing 3 and then trying to search for 9,

where ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

1 8 11 9

1 8 11 9

1 8 3 11 9

remove 3

search for 9

Find an empty slot, and stop

searching.

275

So, seeing an empty slot does not mean we should stop

our search. When do we stop our search then? This can

be handled by lazy deletion.

What is lazy deletion? Lazy deletion works as follows:

• When a data is to be deleted from an array slot,

mark that array slot instead of deleting the data.

o Marking can be done on the data, or a special

kind of data can be inserted into that array

slot to replace the original data.

Let us see lazy deletion in action in Figure 7-13, using the

same array as in Figure 7-12. We try to do the same thing,

that is, removing 3 and then searching for 9. This time,

when a data is to be deleted, we replace it with a special

data, DL.

It can be seen that DL prevents the search for 9 from

stopping prematurely, since the search regards DL as a

data.

Although using DL to replace the original data solves

our problem, readers may wonder that we are wasting

spaces that should be reclaimed for other data. But we

cannot simply use this space right away when adding a

new data. From Figure 7-13 (at the bottom), if we want to

add 9, we will have to search beyond DL anyway

because there is no guarantee that 9 is not stored

anywhere further than DL in the array (and in this case

276

it was stored!). It is only when 9 is not found anywhere,

that the first discovered DL slot can be used.

Apart from the deletion problem, linear probing has its

own shortcoming. Readers may have already noticed

from Figure 7-11 that when collisions take place near to

one another, several consecutive array slots are very

likely to be occupied. This can cause a problem when

another collision takes place in one of these occupied

slots. Because linear probing just searches one slot away

each time, it can take a long time to find an empty array

slot. This problem is called primary clustering.

1 8 DL 11 9

1 8 DL 11 9

1 8 3 11 9

remove 3

search for 9

Figure 7-13: Lazy deletion prevents premature stopping while

sarching for data.

277

Quadratic Probing

In this approach, we have:

𝑓(𝑖) = 𝑖2

An example is shown Figure 7-14. We store integer data

into a hash table of size 7. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

and let the hash table originally store 1, 3, and 11. Then

we try to add 8 and 9 to the hash table.

For each data, the more it collides, the more it is put

further away. This prevents primary clustering.

ℎ1(9) = (ℎ𝑎𝑠ℎ(9) + 𝑓(1))%7 = (2 + 12)%7 = 3

ℎ2(9) = (ℎ𝑎𝑠ℎ(9) + 𝑓(2))%7 = (2 + 22)%7 = 6

8

1 3 11

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 12)%7 = 2

1 8 3 11

9 ℎ0(9) = ℎ𝑎𝑠ℎ(9) = 9%7 = 2

Figure 7-14: Adding 8 and 9 to a quadratic probing hash

table that already has 1, 3, and 11, with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

278

But a data that collides in the same slot as other several

data before it will still have to go through the same

calculation for each ℎ𝑖 and thus it can take some time to

find the array slot that stores/will store the data. As an

example, let us try to add 8, 15, 22 to a hash table with

size 7, ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒. The table already has

integer 1 stored inside. What happens is shown in Figure

7-15.

It can be seen that, to add 15, we need to repeat the

operations done when adding 8. To Add 22, we need to

repeat the operations done when adding 15. Thus, the

more data that collide at the same slot, the longer it takes

to search our hash table. This problem is called

secondary clustering. It takes place because every data

has the same calculation when avoiding the same array

slot.

Another problem with quadratic probing hash table is

that we may not be able to put our data into our array

even though there are still some empty slots. Consider

adding 29 to our aray in Figure 7-15. You can see that its

ℎ𝑖 always collide with existing data. This is even more

likely to happen if the array size is not prime.

Therefore, a quadratic probing hash table needs to be

larger than other types of hash tables in order to store the

same amount of data.

279

1 8

8

1

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 12)%7 = 2

15
ℎ1(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(1))%7 = (1 + 12)%7 = 2

ℎ2(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(2))%7 = (1 + 22)%7 = 5

1 8 15

22 ℎ1(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(1))%7 = (1 + 12)%7 = 2
ℎ2(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(2))%7 = (1 + 22)%7 = 5

ℎ3(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(3))%7 = (1 + 32)%7 = 10%7 = 3

Figure 7-15: Adding 8, 15, 22 into a quadratic probing hash table

that already has 1, with ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

280

How large do we need it to be? Here is a fact that can

help us. It has been proven that if a quadratic probing

hash table is not yet half full and the table size is prime,

then we can always find a slot for a new data.

Let us look at the proof:

Let the array size be prime number larger than 3 and 0 ≤

𝑖, 𝑗 ≤ ⌊
𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

2
⌋(this indicates that we still do not fill up

to half of the array), where 𝑖 and 𝑗 are not equal (this

represents different calculations).

Assume that position (ℎ(𝑥) + 𝑖2)%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 collides

with position (ℎ(𝑥) + 𝑗2)%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

Doing the math, we get:

ℎ(𝑥) + 𝑖2 = ℎ(𝑥) + 𝑗2 % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒
 𝑖2 = 𝑗2 % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

(𝑖 − 𝑗)(𝑖 + 𝑗) = 0 % 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

So, ((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0.

For the above statement to be true, one of the followings

has to be true:

• 𝑖 − 𝑗 = 0
• 𝑖 + 𝑗 = 0
• 𝑖 − 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

281

• 𝑖 + 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

• ((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0

The statement 𝑖 − 𝑗 = 0 , or 𝑖 = 𝑗 is impossible since we

demand that 𝑖 and 𝑗 are from different calculations in the

first place.

𝑖 + 𝑗 = 0 is also impossible since they are both non-

negative, and are not equal. So, they cannot both be 0.

𝑖 − 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 is impossible because both values are

non-negative and the value of 𝑖 is never larger than the

array size.

𝑖 + 𝑗 = 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 is also impossible because both values

do not reach half of the array size at the same time.

((𝑖 − 𝑗)(𝑖 + 𝑗))%𝑎𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 = 0 is impossible because the

array size is prime.

So, our assumption that the two positions collide must

be wrong! Therefore, they do not collide. Thus, if the

array size is prime and not yet half full, we can find a

position for our new data.

Double Hashing

This approach can avoid primary clustering and

secondary clustering.

282

For this type of open addressing hash table:

𝑓(𝑖) = 𝑖 ∗ ℎ𝑎𝑠ℎ2(𝑥), where x is our data.

Using another hash function (hash2) means that each

data is likely to have a different pattern when avoiding

collisions. Therefore, we can prevent both primary and

secondary clusterings.

As an example, let us try to add 8, 15, 22 to a double

hashing hash table with size 7, ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒.

Let ℎ𝑎𝑠ℎ2(𝑥) = 3 − (𝑥%3). The table already stores 1.

This is shown in Figure 7-16.

From Figure 7-16, it can be seen that although 8, 15, and

22 collide with 1, all of them find different alternate

positions. We thus avoid secondary clustering that was

present in Figure 7-15.

Implementation of Open Addressing Hash Table

Fields, constructors, and utility methods of an open

addressing hash table (the class name is OpenAddressing)

is shown in Figure 7-17. Fields consist of:

• DEFAULT_SIZE: a default hash table size, which is

prime.

• DELETED: a placeholder data to replace a deleted

data. This is how we mark an array slot as deleted.

283

• MAXFACTOR: a default load factor that this table

can tolerate. If a load factor exceeds this value, we

need to do a rehash.

• currentSize: a number of data stored in our array.

• array: the array that stores our data.

1 8

8

1

ℎ0(8) = ℎ𝑎𝑠ℎ(8) = 8%7 = 1

ℎ1(8) = (ℎ𝑎𝑠ℎ(8) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 8%3))%7 = 2

15
ℎ1(15) = (ℎ𝑎𝑠ℎ(15) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 15%3))%7 = 4

1 8 15

22

ℎ1(22) = (ℎ𝑎𝑠ℎ(22) + 𝑓(1))%7 = (1 + 1 ∗ (3 − 22%3))%7 = 3

Figure 7-16: Adding 8, 15, 22 into a double hashing hash table that already

has 1, with ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 and ℎ𝑎𝑠ℎ2(𝑥) = 3 − (𝑥%3).

284

Constructors just create our array, making its size prime.

Method isPrime and nextPrime are exactly the same as in

Figure 7-4.

A double hashing hash table (shown from Figure 7-18 to

Figure 7-21) is defined by extending from

1: public class OpenAddressing{
2: private static int DEFAULT_SIZE = 101;

3: Private static final Object DELETED = new

4: Object();

5: private static int MAXFACTOR = 0.5;

6: private int currentSize =0;

7: private Object[] array;

8:
9: public OpenAddressing(){
10: this(DEFAULT_SIZE);

11: }

12:
13: public OpenAddressing(int size){

14: int nextPrimeSize = nextPrime(size);

15: array = new Object[nextPrimeSize];

16: }

17:
18: private static boolean isPrime(int n){

19: //Same code as in our

20: //separate chaining hash table.

21: // You can rewrite method isPrime and nextPrime

22: // in a separate utility class.

23: . . .

24: }

25:
26: private static int nextPrime(int n){

27: // Same code as in our separate chaining hash

28: // table.

29: . . .

30: }

31: } // end of class OpenAddressing.

Figure 7-17: Fields, constructors, and utility methods for open

addressing hash table.

285

OpenAddressing. We do not show the implementation of

linear probing and quadratic probing in this book. Their

codes are similar to a double hashing hash table except

their function ℎ𝑖.

Shown in Figure 7-18, our double hashing hash table

(class DoubleHashing) has its own MAXFACTOR so that

we can use our own default value. Its hash uses hashCode.

hash2 can use any function that produces unique

number, but it must be different to hash because we do

not want data that collide in the same array slot to use

the same collision avoidance pattern.

It also has a new field, occupiedSlots. This field records the

number of slots that store data or DELETED object. We

use this field to determine whether to rehash (see method

add in Figure 7-19).

Method find calculates ℎ𝑖(𝑑𝑎𝑡𝑎) until it finds our data, or

finds an empty slot, or tries enough number of times. The

calculation of each ℎ𝑖, starting from 𝑖 = 0, is carried out

by a for loop (line 26-30 in Figure 7-18). The number of

iterations is enough for us to look at every array slot

because the array size is prime.

If you want to implement a linear probing or a quadratic

probing hash table, simply change the code on line 30 in

Figure 7-18 according to each type of hash table. Method

find returns the position of our data (or the position of the

286

empty slot) if the data (or the empty slot) is found.

Otherwise, it returns -1, which means we cannot find our

data and there is no empty array slot.

 1: class DoubleHashing extends OpenAddressing
2: private static int MAXFACTOR = 0.75;

3: private int occupiedSlots = 0;

4:
5: public DoubleHashing(){
6: this(DEFAULT_SIZE);
7: }
8:
9: public DoubleHashing(int size){

10: super(size);

11: }

12:
13: public int hash(Object data){

14: int hashValue = data.hashCode();

15: int abs = Math.abs(hashValue);

16: return abs%array.length;

17: }

18:
19: public int hash2(Object data){

20: return //any unique number function different

21: //from hash.

22: }

23:
24: public int find(Object data){

25: int h = hash(data);

26: int hash2Result = hash2(data);

27: for(int i=0; i<currentSize; i++){

28: if(array[h] == null || array[h].equals(data))

29: return h;

30: h = (h + hash2Result)%array.length;

31: }

32: return -1;

33: }

34:
35: //continued in Figure 7-19.

Figure 7-18: Fields, constructors, hash functions, and method find of a

double hashing implementation.

287

For your information, the code on line 30 should be

changed to h = (h + 1)%array.length for linear probing, and

h = (h+2*i-1)%array.length for quadratic probing.

Figure 7-19 shows method add. The first part of method

add (line 6-14) is almost the same as method find, that is,

we attempt to find our data through the calculation of ℎ𝑖.

The only major difference in this part is that in method

add, if our search encounters a slot that is marked

deleted, we record this slot position. This slot position

will be the position we add our new data. Reusing a

DELETED slot helps save space.

After the attempt to find our data, if the data or an empty

slot is not found, it means that our data is not in the array

and the array is full somehow. So, we have to rehash and

then attempt to add the data again (line 15-17).

Otherwise, if the data is found, we do nothing since there

is no point adding a duplicated data.

But if the empty slot is found, we add the data to the

array (add to the DELETED slot if its position was

recorded earlier) (see line 20-25). Then we update

currentSize and call method rehash if the current load

factor exceeds our specified value (line 26-30).

288

Method rehash (see Figure 7-20) makes a new array that

is larger, then adds all data (DELETED objects are not

true data so they are not added) from our original array

into the new array. The new additions have to be done

using method add so that the correct position for each

data can be determined by our hash function.

1: public void add(Object data) throws Exception{
2: int h = hash(data);

3: int hash2Result = hash2(data);

4: int emptySlotPosition = -1;

5: int i;

6: for(i=0; i<currentSize; i++){

7: if(array[h] == null || array[h].equals(data))

8: break;

9: if(array[h] == DELETED &&

10: emptySlotPosition == -1){

11: emptySlotPosition = h;

12: }

13: h = (h + hash2Result)%array.length;

14: }

15: if(i >= currentSize){

16: rehash();

17: add(data);

18: } else {

19: if(array[h] == null){

20: if(emptySlotPosition != -1){

21: array[emptySlotPosition] = data;

22: } else{

23: array[h] = data;

24: occupiedSlots++;

25: }

26: currentSize++;

27: double currentLoadFactor =

28: (double)(occupiedSlots/array.length);

29: if(currentLoadFactor > MAXFACTOR)

30: rehash();

31: }

32: }

33: }

34: //continued in Figure 7-20.

Figure 7-19: Method add of a double hashing implementation.

289

Method remove (see Figure 7-21) first attempts to find our

data. If the data is found, we replace it with a DELETED

object.

Separate Chaining VS Open Addressing

Table 7-1 shows advantages and disadvantages from

using both types of hash tables. It is up to readers to

choose the type they believe to be suitable for their

works.

1: public void rehash(){

2: Object[] oldArray = array;

3: array = new Object[nextPrime(array.length*2)];

4: currentSize = 0;

5: occupiedSlots = 0;

6: for(int i=0; i<oldArray.length; i++){

7: if(oldArray[i] != null &&

8: oldArray[i]!=DELETED)

9: add(oldArray[i]);

10: }

11: }

12: //continued in Figure 7-21.

Figure 7-20: Method rehash of a double hashing implementation.

1: public void remove(Object data){

2: int index = find(data);

3: if(index != -1 && array[index]!=null){

4: array[index] = DELETED;

5: currentSize--;

6: }
7: }
8: } // end of class DoubleHashing.

Figure 7-21: Method remove of a double hashing hash table.

290

Table 7-1: Separate Chaining and Open Addressing Comparison.

Separate Chaining Open Addressing

Simple add and remove. More complicated add and

remove.

A lot of space required to store

references.

Less space required, even though

the load factor is small.

Collisions only affect data in the

same linked list.

Collisions may affect an entire

table.

Exercises

1. A hash table of size 11 with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ uses double hashing. Index of a data

when collision takes place is ℎ𝑎𝑠ℎ(𝑥) + 𝑓(𝑖), where

𝑓(𝑖) = 𝑖 ∗ ℎ𝑎𝑠ℎ2(𝑥). The value of i starts at 1. Let

ℎ𝑎𝑠ℎ2(𝑥) = 5 − 𝑥%5.

We use lazy deletion. A new data does not overwrite

old data even though the old data may already be

marked as DELETED.

The array currently has only one data:

4

What will happen if we sequentially do the following

actions:

• Add 15

• Add 26

• Add 8

• Delete 26

• Add 19

291

Explain what happens in each step. Draw picture for

each step too.

2. Given a double hashing hash table for integer data of

size 13. Let ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ and

ℎ𝑎𝑠ℎ2(𝑥) = 7 − 𝑥%7. Show and explain (step by step)

what happens when 1, 5, 18, 8 are inserted into the

hash table in order, using double hashing.

3. In open addressing hash table, explain the reason for

the use of lazy deletion. Give example(s) too.

4. A hash table of size 13 with ℎ𝑎𝑠ℎ(𝑥) =

𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ uses quadratic probing with lazy

deletion , where DELETED slot can be reused.

We sequentially do the following actions:

• Add 5

• Add 10

• Add 18

• Add 19

• Add 31

• Delete 18

• Add 32

Draw what happens to the hash table in each step.

5. A special kind of separate chaining hash table works

as follows:

• When a new data is added, if a linked list

obtained using our hash function contains at

least one data, but it does not store the new data,

292

we find a new empty position in our array (using

linear probing) and add that new data in a node

linked to that array slot. Then the linked list

obtained from our hash function is linked to this

newly created node.

For example, let us add 0, 5, 10 (all these collide in the

first array slot) to this hash table respectively (size 5,

ℎ𝑎𝑠ℎ(𝑥) = 𝑥%𝑎𝑟𝑟𝑎𝑦. 𝑙𝑒𝑛𝑔𝑡ℎ). Below is our hash table

after adding the three numbers. It can be seen that it is

quite different from a normal separate chaining hash

table. Our link on a linked list actually links to other

linked lists.

Explain how to delete data from this kind of hash

table. Write your code for method find, add, and remove

using this table.

6. For a separate chaining hash table, what if we use

ArrayLists instead of doubly-linked lists in our

implementation? Write code for method find, add, and

remove for this new implementation.

0

5

10

293

Chapter 8 : Sorting

In this chapter, we will be looking at various algorithms

that can sort data (from small to large) stored in an array.

Bubble Sort

This is done by:

1. Comparing 2 adjacent values in an array, starting

with the first two values. Swap the values if the

value on the left is larger than the value on the

right.

2. Then compare the next pair of values. The leftmost

value maybe the one swapped from the previous

comparision.

3. Once the last two values in the array are compared

and/or swapped, start again with data in the first

and second slot. Repeat.

An example is shown in Figure 8-1. But how many times

do we need these swaps? Let us think of it this way:

• The number of swaps must be enough for moving

the largest value from the leftmost array slot to the

rightmost array slot.

• The number of swaps must also be enough for

moving the smallest value from the rightmost

array slot to the leftmost array slot.

294

When the array size is n. The first n-1 swaps are enough

to move a value from the leftmost position to the

rightmost position. But the value in the rightmost

position can only move 1 position to the left. This is

clearly shown in the left half of Figure 8-1, where the first

n-1 swaps (n is 4) can move 5 from the leftmost array slot

to the rightmost array slot, but 2 (originally at the

rightmost slot) can only move one slot to the left.

In order to move the rightmost data all the way to the left

of the array, we need to repeat the moves in the above

Figure 8-1: Bubble Sort.

5 4 3 2

4 5 3 2

4 3 5 2

4 3 2 5

3 4 2 5

3 2 4 5

3 2 4 5

2 3 4 5

swap

swap

swap

swap swap

No

swap

swap

295

paragraph n-1 times. Therefore, the number of

comparisions (and possibly, swaps) that we need is (𝑛 −

1) × (𝑛 − 1). Hence the estimated runtime of bubble sort

is 𝛩(𝑛2). Our code for bubble sort is shown in Figure 8-2.

Please note that we write all sorting methods as static

methods so they can be implemented in their own java

classes.

The nested loop structure also confirms that 𝛩(𝑛2) is our

asymptotic runtime. The worst-case (requires the most

number of swaps) running time for bubble sort takes

place when the array is sorted from large to small. Figure

8-1 is also an example of the worst-case scenario.

Selection Sort
A selection sort algorithm can be described as follows:

1. Store the index of the first array element in

variable maxindex.

1: public static void swap(int[] array, int a, int b){
2: int temp = array[a];

3: array[a]= array[b];

4: array[b]= temp;

5: }

6:
7: public static void bubblesort(int[] array){
8: for (int p = 1; p <=array.length-1; p++)

9: for(int e =0; e <= array.length –2; e++)

10: if(array[element] > array[element+1])

11: swap(array, element, element +1);

12: }

Figure 8-2: Code for bubble sort algorithm.

296

2. Check each array member one by one. If a

member value is greater than array[maxindex],

change maxindex to store the index of that

member. Continue until all members (not

including a sorted portion of the array) are

checked.

3. Swap the last data that has not been sorted with

array[maxindex] (no swapping needed if both are

the same member).

4. Then, consider all other data not yet in their

correct position, repeat the above 3 steps. This

means we gradually build up a sorted portion of

our array from right to left. We repeat until all

data are in the sorted array portion.

The algorithm is illustrated in Figure 8-3. In each step,

maxindex is updated to the position of the maximum

unsorted value. Then that value (identified by maxindex),

is swapped with the rightmost value in the unsorted

portion of the array.

We only need to do a value swap when we find the

largest unsorted value. Hence, selection sort is expected

to be faster than bubble sort.

297

The code for selection sort is given in Figure 8-4. The

code has nested loops, each loop is estimated to run for

at most about 𝑛 times, where 𝑛 is the array size.

Therefore, the asymptotic runtime of selection sort is

𝛩(𝑛2). This is the same asymptotic runtime as bubble

sort, even though selection sort is supposed to be faster.

maxindex =0, then updated to 2.

3 4 5 1

3 4 1 5

3 1 4 5

1 3 4 5

maxindex reset to 0,

then updated to 1.
Sorted

portion

.

maxindex reset

 to 0, then

updated to 0.

swap

swap

Sorted

portion

swap

Figure 8-3: Selection sort.

298

The inner loop (line 6-8 in Figure 8-4) looks through

every data in the unsorted portion of the array and stores

the position of the maximum value amongst them.

The outer loop just swaps the maximum value with the

rightmost unsorted value (line 11 in Figure 8-4). It also

resets the value of maxindex before entering the inner

loop.

The worst-case running time (maximum number of

comparisons and maximum number of swaps) takes

place when there is a swap for every round of

comparisons, which happens when the data are almost

sorted but the smallest value is the last data, such as

2,3,4,5,1.

1: public static void selectionSort(int[] a){
2: int maxindex; //index of the largest value

3: int unsorted;
4: for(unsorted=a.length; unsorted > 1; unsorted--){
5: maxindex = 0;

6: for(int index= 1; index < unsorted; index++){

7: if(array[maxindex] < array[index])

8: maxindex = index;

9: }

10: if(a[maxindex] != a[unsorted -1])

11: swap(array, maxindex, unsorted -1);

12: }

13: }

Figure 8-4: Code for selection sort.

299

Insertion Sort
This algorithm is as follows:

1. Split the array into 2 sides, left and right. The left

side is consider sorted. Therefore, at the beginning,

there is only one member in the left side.

2. Check the leftmost value on the right side. Store it

in temp variable.

3. If the value of temp is smaller than the last member

of the left side, put the value of temp in its correct

place on the left side. To put the value of temp in its

correct position on the left side, we need to keep

moving other values to the right so that we have

space to put our temp value.

4. Repeat the whole steps again. Each time, the left

side (sorted side) will grow by 1. Repeat until all

members are moved to the left side.

This algorithm is illustrated in Figure 8-5. The source

code is shown in Figure 8-6. The inner loop (line 5-11)

shifts data in the sorted array portion so that a correct

position for the first data from an unsorted portion is

ready. The outer loop makes sure that every data is

examined and put in a prepared position.

The asymptotic runtime, from the code, is 𝛩(𝑛2). The

worst-case runtime takes place when there are maximum

number of data shifting. That means, for each inner loop,

all data must move. This happens when the array is

initially sorted from large to small.

300

5 2 4 3

5 5 4 3

2 5 4 3

temp =2. We compare it with

5. It has smaller value than 5,

so we copy 5 to the right.

No more value to compare with

temp, so we copy it to the first slot.

The sorted portion also grows.

2 5 5 3

Sorted

portion

.

temp =4. We compare it with 5.

It has smaller value than 5, so

we copy 5 to the right.

2 4 5 3

temp =4. We compare it with 2. It

has larger value than 2, so we copy

4 to the slot behind 2. The sorted

portion grows.

2 4 5 5

2 4 4 5

2 3 4 5

temp =3. We compare it with 4.

It has smaller value than 4, so

we copy 4 to the right.

temp =3. It has larger value than 2,

so we copy it to slot behind 2. The

sorted portion also grows. We

finish sorting.

temp =3. We compare it with 5.

It has smaller value than 5, so

we copy 5 to the right.

Figure 8-5: Insertion sort.

301

Merge Sort
So far, we have looked at sorting algorithms with

performance 𝛩(𝑛2). Merge sort is an algorithm that has

better performance. Here is how the algorithm works:

1. Split a part of the array that we want to sort into

two portions (with equal size).

2. Sort each portion with merge sort.

a. Each portion can be further divided. Hence,

we have a recursion here.

3. Then combine the sorted portions.

The above concept is illustrated in Figure 8-7.

Array Splitting

In this part of the algorithm, we divide the data that we

want to sort into two equal halves. We do not really need

to create 2 new arrays. What we need to do is just

1: public static void insertionSort(int[] a){
2: int index;

3: for(int sorted = 1; sorted < a.length; sorted++){

4: int temp = a[sorted];

5: for(index = sorted; index >0; index--){

6: if(temp< a[index-1]){

7: a[index] = a[index –1];

8: } else{

9: break;

10: }

11: }

12: a[index] = temp;

13: }

14: }

Figure 8-6: Code for insertion sort.

302

identifying array slots that are in the first half and the

second half.

For ease of implementation, we define the following

variables:

• left: an integer indicating the leftmost position of

the array portion that we want to sort.

• right: an integer indicating the rightmost position

of the aray portion that we want to sort.

• center: an integer indicating the position halfway

between left and right.

2 7 5 3 9 4 6 2 1 5 8

Split the unsorted array into 2 portions.

2 3 4 5 7 9 1 2 5 6 8

Each portion sorts its data (recursively).

1 2 2 3 4 5 5 6 7 8 9
Combine the sorted portions to complete our sort.

Figure 8-7: Merge sort concept.

303

The values of left and right can identify any portion of the

array that we want to sort. We need to be able to identify

any portion because we will be dividing the array

recursively.

We only apply our algorithm to data stored between left

and right. Figure 8-8 shows an array where we want to

sort data from slot number 2 to slot number 7. Therefore

𝑙𝑒𝑓𝑡 = 2, 𝑟𝑖𝑔ℎ𝑡 = 7, 𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑙𝑒𝑓𝑡+𝑟𝑖𝑔ℎ𝑡

2
=

2+7

2
= 4.

Consequently, the first array portion is from slot 2 to slot

4. The second array portion is from slot 5 to slot 7. This is

how we identify the two portions.

Sorting Each Portion

We need to call merge sort recursively. Let our method

mergeSort return a new array that contains a sorted

sequence from index left to right of its input array.

The method looks like:

int[] mergeSort(int[] unsort, int left, int right)

2 7 5 3 9 4 6 2 1 5 8

left = 2
right = 7 center =

(2+7)/2 = 4

Figure 8-8: Splitting array into 2 portions for sorting.

304

Method mergeSort receives 3 parameters:

• unsort: our array to be sorted.

• left: the leftmost position of the data we want to

sort.

• right: the rightmost position of the data we want to

sort.

Using the array splitting mechanism mentioned

previously, the first half of the array can be sorted by

using :

• int[] result1 = mergeSort(unsort,left,center);

Similarly, the second half of the array can be sorted by

using :

• int[] result2 = mergeSort(unsort,center+1,right);

Generally, result1 and result2 will be just about half the

size of unsort.

If left = = right, it means the part of the array we want to

sort only contains 1 data. In such case, we do not need to

call mergeSort recursively. We can simply return a one-

slot array with that very data stored inside as our sorting

result.

Merging Two Sorted Portions

After we get two sorted arrays (result1 and result2 from

the previous section), we combine them into one sorted

array with following algorithm:

305

1. Create integer i and j to mark the first slot of result1

and result2 respectively.

2. Create a result array (let us name it answer) that can

hold all data from both result1 and result2. Also,

create integer k to mark the first slot of answer.

3. Repeat until we look at all data in either result1 or

result2:

a. Compare result1[i] and result2[j].

b. Copy the smaller value to answer[k], then

increment k and the index of the array that

stores the value. For example, if result1[i] <

result2[j], then answer[k++] = result1[i++]. If

compared values are equal, you can do the

copying from either result1 or result2.

4. Copy all remaining contents from the array that we

have not finished copying into the remaining slots

of answer.

Figure 8-9 shows what happen when we combine

{1,5,8,9} with {2,4,6,7}.

Implementation and Runtime of Merge Sort

Code for merge sort is shown in Figure 8-10. Code for

combining 2 sorted arrays is shown in Figure 8-11. To

work out the asymptotic runtime of merge sort, we need

to know the time used for combining 2 arrays first. From

the code in Figure 8-11, the runtime for array

combination is 𝛩(𝑛).

306

1 5 8 9

result2

j

result1

i

answer

k

2 4 6 7

result1[i] < result2[j]

1 5 8 9

1 result2

j

result1

i

answer

k

2 4 6 7

Compare and copy until either i

or j is beyond its last possible

position.

1 5 8 9

result2 j

result1

i

answer k

2 4 6 7
The only thing left to do is

copying the rest of result1 to

answer.

6 7 1 2 4 5

Figure 8-9: Combining 2 sorted arrays.

307

1: public static int[] mergeSort(int[] a, int
2: left, int right){
3: if(left == right){//only 1 data to sort
4: int[] x = new int[1];

5: x[0] = a[left];

6: return x;

7: }

8: else if(left<right){

9: int center = (left+right)/2;

10: int[] result1 = mergeSort(a,left,center);

11: int[] result2 = mergeSort(a,center+1,right);

12: return merge(result1,result2); //combine arrays

13: }

14: }

Figure 8-10: Code for merge sort.

1: public static int[] merge(int[] a, int[] b){
2: int aIndex = 0; int bIndex = 0; int cIndex = 0;

3: int aLength = a.length;

4: int bLength = b.length;

5: int cLength = aLength + bLength;

6: int[] c = new int[cLength];

7:
8: // compare a and b then move a smaller value

9: // into c until one array is spent.

10: while((aIndex < aLength) && (bIndex < bLength){

11: if(a[aIndex]<=b[bIndex]){

12: c[cIndex++] = a[aIndex++];

13: }else{

14: c[cIndex++] = b[bIndex++];

15: }

16: }

17:
18: //copy the remaining data into c

19: if(aIndex == aLength){ //if a is spent.

20: while(bIndex<bLength){

21: c[cIndex++] = b[bIndex++];

22: }

23: }else{ //if b is spent.

24: while(aIndex<aLength){

25: c[cIndex++] = a[aIndex++];

26: }

27: }

28: return c;

29: }

Figure 8-11: Code for combining 2 sorted arrays into one.

308

Indeed, what the program in Figure 8-11 does is visiting

each data once. Therefore, if the resulting array stores n

data, the program simply traverses those data.

Now, let us try to estimate the runtime for merge sort.

Let the time for executing method mergesort from Figure

8-10 be 𝑇(𝑛).

If there is only 1 data, our method (line 3-7 from Figure

8-10) runs in constant time. Therefore:

𝑇(1) = 𝛩(1)

If there are many data, the time used is the sum of the

time to sort the left portion, the time to sort the right

portion, and the time to combine the sorted portions. For

simplicity, we assume that the left and the right portion

has equal number of data. Hence:

𝑇(𝑛) = 2 × 𝑇 (
𝑛

2
) + 𝛩(𝑛)

We can divide both sides of the above equation by n. So,

we get:

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 1

309

If we keep changing 𝑛 to
𝑛

2
,

𝑛

4
,

𝑛

8
, . .. we get the following

sets of equations:

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 1

𝑇(
𝑛
2

)

𝑛
2

=
𝑇 (

𝑛
4

)

𝑛
4

+ 1

𝑇(
𝑛
4

)

𝑛
4

=
𝑇 (

𝑛
8

)

𝑛
8

+ 1

. . .

𝑇(2)

2
=

𝑇(1)

1
+ 1

From observation, it can be seen that:

2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑛

Therefore:
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = log2 𝑛

310

If we add all of the above equations, most of the contents

will cancel out, and we will get:
𝑇(𝑛)

𝑛
=

𝑇(1)

1
+ log2 𝑛

𝑇(𝑛) = 𝑛 × 𝛩(1) + 𝑛 log2 𝑛

Hence, 𝑇(𝑛) = 𝛩(𝑛 log2 𝑛), which is faster than 𝛩(𝑛2).

Quick Sort

Although merge sort has better performance than all the

previous sorting algorithms, the algorithm needs to

create a new array to store the sorted result. Quick sort

uses similar principle, but it operates on the input array.

Therefore, required space is reduced.

The quick sort algorithm (see Figure 8-12) is as follows:

1. If the input array has one data or less, that input

array is our answer (we do not need to move any

value inside the input array). The algorithm ends

here in such case.

2. For a small input array (e.g. 20 data or less), other

sorting algorithms are faster because the

advantage of splitting the input array into 2

portions does not outweigh the overhead for

partitioning. Hence, we just call other sorting

methods such as insertion sort. The algorithm then

ends here.

311

3. Choose a value in the input array. That value

becomes our “pivot”.

4. “Partitioning” the input array by the following

steps:

a. Moving all values that are less than our pivot

to the left of the pivot.

b. Similarly, all values greater than the pivot

should be moved to the right of the pivot.

c. For values equal to the pivot, distribute them

evenly on both sides of the pivot.

5. At this stage, the pivot is in a correct position. We

then call quick sort on parts of the array on both

sides of the pivot.

Figure 8-12: Quick sort concept.

quick sort

Let’s choose this as our pivot

9 5 6 2 3 8 1 4

partitioning

9 5 6 8 3 2 1 4

quick sort

5 6 8 9 1 2 3 4

312

Choosing a Pivot

An ideal pivot should be the median value amongst all

values stored in the input array. This is so that

partitioning can divide the array into 2 equal halves (the

smaller the array can be reduced to, the faster quick sort

recursive calls can finish).

But it is impractical to find a median because you will

have to investigate all the stored values. You cannot

simply choose the first or the last value as your pivot

either because if the array (or its portion that you are

working on) is already sorted, partitioning will just

reduce the array size by one (because one of the two

portions will be empty). This bad pivot selection is

shown in Figure 8-13.

Empty on this

side.

9 5 6 2 1 8 3 4

Choosing the first data as pivot. This

happens to be the smallest data.

partitioning

9 5 6 2 1 8 3 4

On this side, the number of data to look at

only reduces by 1.

Figure 8-13: Bad pivot selection.

313

So how do we select a good pivot? Since we do not know

how the data is arraged, choosing a pivot randomly is

likely to get us even partitions. However, a random

number is slow to generate.

To get a fast selection and a number that can generally

divide the array in half, we will use a method that

statistically works in most cases. The method is called

“median of 3”. Basically, we find the median amongst the

first data, the last data, and the middle data from our

input array. The code for “median of 3” is shown in

Figure 8-14 as method pivotIndex, which returns the

position of our chosen pivot.

Partitioning

Once a pivot is selected, we can partition our array (let

us name our array “a”) using the following algorithm:

1. Get the pivot out of the way by swapping it with

the last data.

1: static int pivotIndex(int[] a, int l, int r){
2: int c = (l+r)/2;

3: if((a[l]<=a[r] && a[l]>=a[c]) ||

4: (a[l]>=a[r] && a[l]<=a[c]))

5: return l;

6: if((a[c]<=a[l] && a[c]>=a[r]) ||

7: (a[c]>=a[l] && a[c]<=a[r])

8: return c;

9: return r;

10: }

Figure 8-14: Code for median of 3.

314

2. Let i be the index of the first position and j be the

index of the before-last position (the pivot is in the

last position).

3. Keep incrementing i until a[i] >= pivot value.

4. Keep decrementing j until a[j] <= pivot value.

5. If i is on the left of j, swap a[i] and a[j]. This is an

attempt to move smaller value to the left and larger

value to the right of the array. If i is not on the left

of j, go to step 8.

6. Increment i by 1 and decrement j by 1. This is just

avoiding the slots that we just swap their values.

7. Go to step 3.

8. Swap a[i] with pivot. We will get the array with the

pivot in its correct position. To the pivot’s left will

be the smaller values and to its right will be the

larger values.

An example is illustrated in Figure 8-15, followed by

Figure 8-16.

Using a[i] >= pivot value and a[j] <= pivot value in step 3

and 4 allows copies of our pivot to be evenly distributed

on both sides of our partition. Any other conditions (a[i]

> pivot value and a[j] < pivot value, or a[i] > pivot value and

a[j] <= pivot value) will simply distribute the copies in one

side of the partition only.

315

j

pivot

4 0 9 6 7 2 5 1 3 8

Swap pivot with the last

data.

i j

Try to increment i and decrement j,

but both are in their stopping

conditions. So, no change there.

8 0 9 6 7 2 5 1 3 4

Swap a[i] and a[j], then increment

i and decrement j.

i

8 0 9 6 3 2 5 1 7 4

i j

Increment i until a[i] >= pivot

value and decrement j until a[j] <=

pivot value.

8 0 9 6 3 2 5 1 7 4

i j

Figure 8-15: Partitioning example (part 1).

8 0 9 6 7 2 5 1 3 4

316

Implementation and Runtime of Quick Sort

Code for quick sort is given in Figure 8-17. It follows our

algorithm in the previous section. The method receives

the following inputs:

• int[] a: the input array.

Swap a[i] and a[j], then increment

i and decrement j.

8 0 9 6 3 2 5 1 7 4

i j

8 5 9 6 3 2 0 1 7 4

i j

Increment i until a[i] >= pivot

value and decrement j until a[j] <=

pivot value.

8 5 9 6 3 2 0 1 7 4

i j

The value of i is now more than j.

so now we swap pivot with a[i],

and the partitioning is complete.

4 5 9 6 3 2 0 1 7 8

Figure 8-16: Partitioning example (part 2).

317

• int l: the leftmost position of the input array that

our sorting algorithm applies.

• int r: the rightmost position of the input array that

our sorting algorithm applies.

The method performs quick sort from data at position l

to r in the array. It changes the contents of the input

array.

 1: static void quicksort(int[] a,int l, int r){
2: if(l+CUTOFF>r){
3: insertionSort(a,l,r);

4: } else {

5: //find pivot using median of 3.
6: int pIndex = pivotIndex(a,l,r);
7:
8: //get pivot out of the way.

9: swap(a,pIndex,r);

10: int pivot = a[r];
11:
12: //start partitioning.

13: int i=l, j=r-1;

14: for(; ;){

15: while(i<r && a[i]<pivot)i++;

16: while(j>l && a[j]>pivot)j--;

17: if(i<j){

18: swap(a,i,j);

19: i++;

20: j--;

21: }else{

22: break;

23: }

24: } //end partitioning.

25:
26: //swap pivot into its correct position.

27: swap(a,i,r);

28:
29: //quick sort on subarrays.
30: quicksort(a,l,i-1);

31: quicksort(a,i+1,r);

32: }

33: }

Figure 8-17: Code for quick sort.

318

There are some parts of the code worth noting:

• CUTOFF: this value is the array length for when we

choose to do another sorting algorithm instead of

quick sort.

• insertionSort(int[] a, int left, int right): this is an

insertion sort that applies only from position left to

right inclusively. The code for this mehod is not

given in this book. It is recommended that readers

modify the code from regular insertion sort.

• swap(int[] a, int i, int j): this is a method that swaps

value between position i and j in a given array. The

code for this mehod is not given in this book. It is

simple to implement, however.

To allow straightforward analysis of the runtime, we

assume that random pivot selection is used and other

sorting algorithms are not used when the array is small.

Let𝑇(𝑛) = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑠 𝑛.

Therefore 𝑇(0) = 1 and 𝑇(1) = 1.

For other cases, the runtime is the sum of:

• time for pivot selection. If we use the median of 3

method, this time is constant and thus can be

ignored.

• time for partitioning. This depends directly on the

array size. Let the time be 𝑐 × 𝑛, where c is a

constant and n is our array size.

• time for quick sorts on left and right subarrays.

319

If the left subarray has size equal to i, then

 𝑇(𝑛) = 𝑇(𝑖) + 𝑇(𝑛 − 𝑖 − 1) + 𝑐 × 𝑛.

Let us first analyze the worst-case runtime. This case

takesplace when all our pivots happen to be the smallest

value. In such situation, one subarray is always empty,

the other’s length is always reduced by 1 each time.

Therefore, 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(0) + 𝑐 × 𝑛.

With various n, we create the following set of equations:

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(0) + 𝑐 × 𝑛
𝑇(𝑛 − 1) = 𝑇(𝑛 − 2) + 𝑇(0) + 𝑐 × (𝑛 − 1)
𝑇(𝑛 − 2) = 𝑇(𝑛 − 3) + 𝑇(0) + 𝑐 × (𝑛 − 2)

 …
𝑇(2) = 𝑇(1) + 𝑇(0) + 𝑐 × 2

Adding all the equations above, we get:

𝑇(𝑛) = 𝑇(1) + (𝑛 − 1) × 𝑇(0) + 𝑐 × (2 + 3 + 4 + ⋯ + 𝑛)

which simplifies to:

𝑇(𝑛) = 𝑇(1) + (𝑛 − 1) + 𝑐 ∑ 𝑖

𝑛

𝑖=2

= 𝛩(𝑛2)

From our deduction, the worst-case runtime is similar to

other sorting algorithms.

320

What about the best case? This happens when our pivot

selection always divides the array in half. Our analysis

for this is similar to merge sort.

The equation for 𝑇(𝑛) becomes:

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑇 (

𝑛

2
) + 𝑐 × 𝑛

Dividing both sides by n, we get:

𝑇(𝑛)

𝑛
=

𝑇(
𝑛

2
)

𝑛

2

+ 𝑐

Varying the value of n, we get the following set of

equations:

𝑇(𝑛)

𝑛
=

𝑇 (
𝑛
2

)

𝑛
2

+ 𝑐

𝑇(
𝑛
2

)

𝑛
2

=
𝑇 (

𝑛
4

)

𝑛
4

+ 𝑐

𝑇(
𝑛
4

)

𝑛
4

=
𝑇 (

𝑛
8

)

𝑛
8

+ 𝑐

…

𝑇(2)

2
=

𝑇(1)

1
+ 𝑐

321

Adding them all up (exactly like what we did with our

analysis of merge sort), we get:

𝑇(𝑛)

𝑛
=

𝑇(1)

1
+ 𝑐 × log2 𝑛

Multiplying both sides by n, we get:

𝑇(𝑛) = 𝑛 + 𝑐 × 𝑛 × log2 𝑛 = 𝛩(𝑛 log 𝑛)

Therefore, its best case performs at the same level as

merge sort.

When sorting real life data, worst-case and best-case

scenarios are unlikely to take place, however. The more

useful runtime is the average case. For this, a subarray

can have any size, from 0 to n-1 (a subarray cannot have

size n because we are not counting the pivot).

For every subarray size to have equal chance of

happening, each has a probability of
1

𝑛
. Our equation for

𝑇(𝑛) becomes:

𝑇(𝑛) =
1

𝑛
∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+
1

𝑛
∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+ 𝑐 × 𝑛

=
2

𝑛
∑ 𝑇(𝑗)𝑛−1

𝑗=0 + 𝑐 × 𝑛

322

Multiplying both sides by n, we get:

𝑛 × 𝑇(𝑛) = 2 ∑ 𝑇(𝑗)

𝑛−1

𝑗=0

+ 𝑐 × 𝑛2

Substituting n with n-1, we get another equation:

(𝑛 − 1) × 𝑇(𝑛 − 1) = 2 ∑ 𝑇(𝑗)

𝑛−2

𝑗=0

+ 𝑐 × (𝑛 − 1)2

Subtracting the new equation from the previous one, we

get:

𝑛 × 𝑇(𝑛) − (𝑛 − 1) × 𝑇(𝑛 − 1) = 2 × 𝑇(𝑛 − 1) + 2𝑐𝑛 − 𝑐

Ignoring a constant c, then move (𝑛 − 1) × 𝑇(𝑛 − 1) to

the right-hand side, we get:

𝑛 × 𝑇(𝑛) = (𝑛 + 1) × 𝑇(𝑛 − 1) + 2𝑐𝑛

Dividing both sides by 𝑛(𝑛 + 1), we get:

𝑇(𝑛)

𝑛 + 1
=

𝑇(𝑛 − 1)

𝑛
+

2𝑐

𝑛 + 1

Again, we can generate a set of equations:

𝑇(𝑛)

𝑛 + 1
=

𝑇(𝑛 − 1)

𝑛
+

2𝑐

𝑛 + 1

𝑇(𝑛 − 1)

𝑛
=

𝑇(𝑛 − 2)

𝑛 − 1
+

2𝑐

𝑛

323

𝑇(𝑛 − 2)

𝑛 − 1
=

𝑇(𝑛 − 3)

𝑛 − 2
+

2𝑐

𝑛 − 1
…

𝑇(2)

3
=

𝑇(1)

2
+

2𝑐

3

When we add all equations in this set, we get:

𝑇(𝑛)

𝑛 + 1
=

𝑇(1)

2
+ 2𝑐 ∑

1

𝑖

𝑛+1

𝑖=3

where, ∑
1

𝑖

𝑛
𝑖=1 is a harmonic number. It is defined as:

∑
1

𝑖

𝑛
𝑖=1 = ln 𝑛 + 𝛾 +

1

2𝑛
−

1

12𝑛2
+

1

120𝑛4
− 𝜀, where 𝑛 ≥

1, 0 < 𝜀 <
1

256𝑛6
 , 𝛾 ≈ 0.5772

Substituting the value of ∑
1

𝑖

𝑛
𝑖=1 into our

𝑇(𝑛)

𝑛+1
 equation, we

get:

𝑇(𝑛)

𝑛 + 1
=

𝑇(1)

2
+ 2𝑐(ln 𝑛 + 𝛾 +

1

2𝑛
−

1

12𝑛2
+

1

120𝑛4
− 𝜀 − 1 −

1

2
)

It can be seen that the right-hand side is dominated by

ln 𝑛. Therefore, when we get rid of 𝑛 + 1 on the left-hand

side, 𝑇(𝑛) = 𝛩(𝑛 log 𝑛). So, in general, quick sort

performs at the same level as merge sort.

324

Bucket Sort
Bucket sort is a type of sorting algorithms that generally

performs well because we know where each data will go.

For example, putting each card in a 52-card deck on a

table.

• We only need to prepare a space for each card.

• When we look at a card, just put it at its provided

space.

• Therefore, picking a card means we know its

position automatically.

• The running time is 𝛩(𝑛), which is the time to look

at n cards.

A space for each card is called a bucket. For the above

example, one bucket stores one data.

Let us look at another example. If we have n numbers in

a range of 1 to m, where n<m, we can sort these numbers

by:

• Creating an array, a, of size m. This will be a

frequency array. Position 1 stores the frequency of

value 1. Position m stores the frequency of value m.

• Each array slot initially stores 0.

• Read each number, for number k, we increment a[k]

by 1.

• When finish reading all the data, we will get a

frequency of each number.

325

• We can then read the frequency array and

construct our sorted data.

• The running time is 𝛩(𝑛) for constructing the

frequency array and 𝛩(𝑚) for constructing our

sorted result.

A bucket may store more than one distinct objects. As an

example, consider the problem of sorting exam papers

collected from 49 students:

• At collection time, an examiner can divide students

into 5 groups (1-9,10-19,…,40-49).

• Within a group, we can use a sorting method such

as insertion sort.

• After sorting within a group, simply put all groups

in sequence.

• The running time depends on the method used to

sort within buckets.

Bucket sort can be designed according to our knowledge

of data. The more we know about the data, the better our

sorting algorithm can be created.

Exercises

1. Use recursion to implement insertion sort.

2. Draw what happen when we perform a merge sort on

array {4,78,3,34,1,45,7,8}.

3. Draw what happen when we perform a quick sort on

array {4,78,3,34,1,45,7,8,10,20,15,24}.

326

4. In quick sort, instead of normal partitioning, we do

the followings:

a) Compare all data with the leftmost data of the

portion we want to sort. Count how many data are

smaller than the leftmost data. Hence, we now

know the correct position of the leftmost data.

b) Move the leftmost data to the position found in the

previous step.

Is there anything wrong with this method of

partitioning? If so, please show an example.

5. Show how you derive the asymptotic runtime of

quicksort when data in the input array are already

sorted. Do it for the case when our pivot is always the

first data, and when our pivot is chosen randomly.

6. Show how you derive the asymptotic runtime of

quicksort when data in the input array are already

sorted from large to small. Do it for the case when our

pivot is always the first data, and when our pivot is

chosen randomly.

7. If we know that there are many copies of each data, in

quick sort, we can partition our input array into 3

portions: data that are more than our pivot, data that

are less then our pivot, and data that are equal to our

pivot. Please rewrite the code for this new quick sort.

8. Compare insertion sort, quicksort and bucket sort.

Explain their differences. In what circumstances will

you choose one over others.

9. Write a special selection sort such that:

327

• For any two odd numbers, they are arranged

from small to large.

• For any two even numbers, they are arranged

from small to large.

• Odd numbers always come before even numbers.

10. We have a class ListQuickSort which will be used to

implement quick sort for linked list.

public class ListQuickSort{

 CDLinkedList theList; //linked list from chapter 3

}

Implement the following methods. For each method

state its asymptotic runtime.

DListIterator listIterator(int i)

This method returns a list iterator that focuses on

position i in thelist (the first position on the left of the

list has index = 0). If the position given by i is not in the

list, the method returns an iterator that points to null.

DListIterator findPivot()

This method returns a list iterator that points to the

median amongst the first, the middle, and the last

element of the list. (throw exception if our list has less

than 3 elements.)

public void swap(DListIterator i, DListIterator j)

This method swaps the positions of two elements

(each one identified by a list iterator).

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator(int)

328

public void partition(DListIterator itr)

This method receives an iterator (that represents a

pivot), then move all elements which are less than or

equal to the pivot value to the left of the pivot and

elements that are greater than or equal to the pivot

value to the right of the pivot.

Write code for quick sort. Is there anything you need

to make change?

11. If you want to sort an array of positive integers

containing n numbers but you do not know the range

of the values in the array, explain and write code for

method:

public static int[] sort(int[] input)

This method sorts the array so that the big O is less

than 𝑂(𝑛 log 𝑛). Discuss the big O of your code and any

limitation your code has.

12. Write code for method:

void sortTwoArrays(int[] a1, int[] a2).

This method sorts two arrays. When finishes, both

arrays must be sorted (from small to large numbers)

and all numbers in a1 must be smaller than all

numbers in a2. Assume that a1 and a2 are not null and

you can call void sort(int[] a) that can sort values in a

given array from small to large.

329

For example:

If a1 = {8,4,7,5,2} and a2 = {6,10,3,0,11,1}. After the

method is called, a1 will be {0,1,2,3,4} and a2 will be

{5,6,7,8,10,11}.

13. Write code for insertion sort that operates on a

doubly-linked list. Write code as part of class

CDLinkedList from chapter 3.

14. For class BSTRecursive in chapter 6, Write code for

method:

int[] toSortedArray()

This method returns an array of elements contained

in the tree, where:

• Elements in the returned array must be sorted

from small to large.

• The tree must still contain all its contents when

the method finishes its execution.

What is the asymptotic runtime of your code.

15. Write code for method:

public int[] sortFirstN(int[] a, int n)

This method sorts the first n integer in a from small to

large. There is no change to other integers in the array.

The method returns a modified array. Assume n is

smaller than array size.

330

331

Chapter 9 : Priority Queue
A priority queue is a queue that accesses its elements

according to their importance. For example, at a hospital,

a person with broken back should be treated before a

person with minor wounds, even though he arrives later.

In this book, small value is regarded as more important

than large value. If two data have equal priority, we may

regard the data that exists longer in the queue to be more

important.

To compare data stored inside a priority queue, we can

use Comparable interface or Comparator interface in the

Java language.

In this book, Comparator interface is used. It has method:

compare(Object o1, Object o2)

o1’s type has to be compatible with o2. This method

returns a negative value if o1 is less than o2, a positive

value if o1 is greater than o2, and it returns 0 otherwise.

Priority queue has the following operations:

• size(): returns the number of data currently stored

in the priorit queue.

• isEmpty(): returns true if our priority queue does

not store any item, and false otherwise.

332

• add(Object data): adds data to the priority queue.

• top(): returns the most important data (the smallest

data).

• pop(): removes and returns the most important

data.

These operations are defined in a Java interface in Figure

9-1.

1: public interface PriorityQ {
2: // Postcondition: return the number of

3: // data in this priority queue.

4: int size();

5:
6: // Postcondition: return true if this priority

7: // queue does not store any data, otherwise

8: // return false.

9: boolean isEmpty();

10:
11: // Postcondition: element is

12: // added to priority queue.

13: void add(Object element) throws Exception;

14:
15: // Throws NoSuchElementException if heap is

16: // empty.

17: // Postcondition: return the most important data.

18: public Object top() throws Exception;

19:
20: // Throws NoSuchElementException if heap is

21: // empty.

22: // Postcondition: remove and return the most

23: // important data.

24: public Object pop() throws Exception;

25: }

Figure 9-1: Priority queue operations.

333

Implementation Choices
There ae quite a few possible implementations for a

priority queue. Let us briefly investigate each possible

implementation.

• normal queue: cannot be used because it does not

have priority.

• Array of queues (each queue is used for each

priority): if there are many possible values for

priorities, the array will consume too much space

because we have to reserve space in advance.

• Linked list of queues:

o does not have the space problem like array of

queues do, but instant access to each priority

is eliminated. Searching for a priority will

require the runtime of 𝛰(𝑝), where p is the

number of priorities. If every data has a

different priority, the time is 𝛰(𝑛).

o pop() and top() has runtime = 𝛩(1). The first

data in the first queue is always accessed

first.

• ArrayList:

o add(data) takes time to find a position to add

data. Finding the position takes 𝛰(log 𝑛) if a

binary search is used. Furthermore, many

data have to be shifted to the right to make

space for the added value (takes 𝛰(𝑛)).

Therefore, adding a new data takes 𝛰(𝑛),

which is not very good.

334

o top() takes 𝛩(1) because we just return the

first data in the ArrayList.

o pop() takes 𝛩(𝑛) because we have to shift all

data after the leftmost data is removed.

• Linked list:

o top() and pop() take 𝛩(1) because we can

return the front of the list right away and

removing data in a linked list does not

require shifting other data.

o add() takes 𝑂(𝑛), it still needs to search the

position to add, but does not need to shift

other data when adding.

o The performance is about equal to using

linked list of queues.

Using a linked list seems to be a good implementation.

Let us see the actual implementation using linked list

(class CDLinkedList from chapter 3).

Linked List Implementation of Priority
Queue
The linked list implementation is in class PQDLinkedList

(shown in Figure 9-2 and Figure 9-3). Our

implementation contains a comparator and a linked list

to store data. Our linked list in this chapter is modified

to store Object instead of int. Figure 9-2 shows fields,

constructors, size(), isEmpty(), and method compare.

Method compare checks if we have a comparator, if so, it

335

compares the two input data using that comparator (line

27). Otherwise, a compareTo method for the stored data is

used (that class must implement Comparable interface).

This compareTo method is defined as follows:

• data1.compareTo(data2) returns a negative integer if

data1 is less than data2.

• data1.compareTo(data2) returns zero if data1 is equal

to data2.

• data1.compareTo(data2) returns a positive integer if

data1 is larger than data2.

1: public class PQDLinkedList implements PriorityQ {
2: CDLinkedList list;

3: Comparator comp;

4:
5: public PQDLinkedList() {

6: list = new CDLinkedList();

7: comp = null;

8: }

9:
10: public PQDLinkedList(CDLinkedList l,Comparator c)

11: {

12: this.list = l;

13: this.comp = c;

14: }

15:
16: public int size() {

17: return list.size;

18: }

19:
20: public boolean isEmpty() {

21: return list.isEmpty();

22: }

23:
24: protected int compare(Object d1, Object d2) {

25: return (comp == null ?

26: ((Comparable) d1).compareTo(d2) :

27: comp.compare(d1, d2));

28: }

29: // this class continues in Figure 9-3.

Figure 9-2: Priority queue implemented by linked list (part 1).

336

Method top, pop, and add are shown in Figure 9-3.

Method top throws an exception if our list is empty.

Otherwise, it returns a data stored in a node next to

header. This is the first data. Method top runs in 𝛩(1) since

there is no loop.

1: public Object top() throws Exception {

2: if (list.isEmpty())

3: throw new Exception();

4: return list.header.nextNode.data;

5: }
6:
7: public Object pop() throws Exception {
8: if (list.isEmpty())

9: throw new Exception();

10: Object result = top();

11: list.remove(new DListIterator(list.header));

12: return result;

13: }

14:
15: public void add(Object d) throws Exception {

16: if (list.isEmpty()) {

17: DListIterator i =

18: new DListIterator(list.header);

19: list.insert(d, i);

20: } else if (compare(d,

21: list.header.previousNode.data)) >= 0){

22: DListIterator last =

23: new DListIterator(list.header.previousNode);

24: list.insert(d,last);

25: } else {

26: DListIterator itr =

27: new DListIterator(list.header.previousNode);

28: while (compare(d, itr.currentNode.data)< 0)

29: itr.previous(); // back up one position

30: list.insert(d, itr);

31: }

32: } // end of class PQDLinkedList.

Figure 9-3: Priority queue implemented by linked list (part 2).

337

Method pop is similar. It throws an exception if our list is

empty. Otherwise, it records data stored in the node after

header, removes that node from our list, and returns the

recorded value. Its runtime is also 𝛩(1) since there is no

loop.

Method add is used to add a new data into our priority

queue. It receives the new data, d, as its input. It does the

followings:

• If our list for data storage is empty (line 16-19):

create a new node and store d inside that node.

Then add the new node just behind the list’s header.

The runtime for this action is 𝛩(1) since it does not

involve any loop.

• If d is larger than or equal to the last data in our

linked list (line 20-24): add a new node (with d

inside) just after the last node of the list. The

runtime for this part is also 𝛩(1).

• Otherwise (line 26-30): we create an iterator

pointing to the last node in the list. We keep

moving our iterator to the left until d is larger than

or equal to the data pointed to by our iterator. We

then add a new node (with d inside) right after the

node pointed to by our iterator. This process takes

𝛰(𝑛) since the loop may finish early or may go all

the way through the entire list.

338

Heap
In this section, we will look at another implementation of

priority queue that is more popular than using a linked

list. This implementation is called heap.

A heap is a complete binary tree (a complete binary tree

is defined in chapter 6) that has the following properties:

• It is an empty tree, or

• A tree that has its most important data in its root.

• Left and right subtrees must be heaps too (and so

as their left and right subtrees, recursively).

Please note that a heap is not a binary search tree! A heap

stores its data in a completely different manner.

The implementation in this text regards the most

important data to be the smallest data (we call this kind

of heap a min heap).

A min heap is shown in Figure 9-4. Every subtree stores

its smallest value at its root.

Heap Implementation and Runtime
Analysis
A complete binary tree can be represented by an array.

We just need to traverse the tree from left to right down

the trees’ levels (breadth-first). Thus, the tree in Figure

9-4 is represented by an array in Figure 9-5.

339

Although the representation is now an array (an array

slot represents a node of the actual tree), we can still

traverse to left child, right child, and parent of each node

using the following rules:

• If our current data is in slot number i,

o the slot that represents slot i’s left child is slot

2*i+1.

o Similarly, the slot that represents slot i’s right

child is slot 2*i+2.

o The slot that represents slot i’s parent is slot
𝑖−1

2
 .

26

40 31

99 48 55

36 48 50 85

57 88

Figure 9-4: A min heap example.

26 40 31 48 50 85 36 99 48 55 57 88

Figure 9-5: Array representation of heap in Figure 9-4.

340

Let us see an example. From Figure 9-5, value 50 is in the

4th slot:

• By the rules, the value at its left is in the (2*4+1) =

9th slot. That value is 55 (which is correct according

to Figure 9-4).

• The value at 50’s right is in the (2*4+2) = 10th slot.

That value is 57 (which is correct according to

Figure 9-4).

• The value at 50’s parent is in the
4−1

2
= 1st slot.

That value is 40 (which is correct according to

Figure 9-4).

The code for class Heap is shown from Figure 9-6 to

Figure 9-12.

1: public class Heap implements PriorityQ {
2: Object[] mData;

3: int size = 0;

4:
5: public Heap() {

6: final int DEFAULT_CAPACITY = 11;

7: mData = new Comparable[DEFAULT_CAPACITY];

8: }

9:
10: public boolean isEmpty() {

11: return size == 0;

12: }

13:
14: public int size() {

15: return size;

16: }

17: // this class continues in Figure 9-8.

Figure 9-6: Code for constructor, isEmpty(), and size() of class Heap.

341

In Figure 9-6, fields, constructor, method isEmpty and

method size are defined. Our heap simply stores its data

in array mData. It has another field, size, for recording the

number of data currently stored in the array. Method

isEmpty and size simply use the field.

For method add(Object data), we use the following

algorithm:

1. We add data as the last data in the last tree level.

2. Then we swap data with the one in its parent node

if data is smaller.

3. We keep swapping data up the tree until the tree is

heap once more.

Moving data up the tree after putting it in is called

“percolate up”. An example of what happens when

adding 30 to a heap is shown in Figure 9-7.

First, 30 is added as the last data (in the last level) in our

heap. Then it is compared with the data in its parent

node, which is 48, causing 30 and 48 to be swapped. Then

30 is compared to the data in its parent node, which is

now 40. They got swapped because 30 has smaller value

(more important). After that, 30 is compared to 26 in its

parent node, but 26 is smaller so 30 does not get swapped

with 26. Our procedure then ends.

342

26

40 31

99 30

36 48 50 85

26 40 31 48 50 85 36 99 30

New data is added as the last data in the last

level.

26

40 31

99 48

36 30 50 85

26 40 31 30 50 85 36 99 48

26

30 31

99 48

36 40 50 85

26 30 31 40 50 85 36 99 48

Figure 9-7: Each step for adding 30 into a heap, showing both the tree

version and its array implementation.

343

Although class Heap is defined to store data of type

Object, examples in this chapter uses integer data for

easier understanding.

The code for method add is shown in Figure 9-8. The

worst-case runtime for method percolateUp takes place

when the newly added data has to be moved up the

entire height of our tree. Hence, we can write down the

runtime of method percolateUp as 𝛰(log 𝑛), where 𝑛 is the

number of data. The asymptotic runtime for method add

1: public void add(Object element) {
2: if (++size == mData.length) {
3: Object[] newHeap;
4: newHeap = new Object[2 * mData.length];
5: System.arraycopy(mData, 0, newHeap, 0, size);
6: mData = newHeap;
7: }
8: mData[size - 1] = element;
9: percolateUp();
10: }

11:

12: protected void percolateUp() {

13: int parent;

14: int child = size - 1;

15: Comparable temp;

16: while (child > 0) {

17: parent = (child - 1) / 2;

18: if (((Comparable)

19: mData[parent]).compareTo(mData[child]) <= 0)

20: break;

21: temp = (Comparable) mData[parent];

22: mData[parent] = mData[child];

23: mData[child] = temp;

24: child = parent;

25: }

26: } //this class continues in Figure 9-9.

Figure 9-8: Code for method add of class Heap.

344

is the worst-case runtime from method percolateUp

(called on line 9 of Figure 9-8) and other parts of the code.

It turns out that the worst-case runtime for method add

takes place when our array needs to be resized (line 2-7

of Figure 9-8). For such case, all data need to be copied to

an expanded array, therefore the runtime is 𝛰(𝑛). This

runtime is worse than the worst-case runtime of method

percolateUp (𝛰(log 𝑛)). Therefore, the runtime for method

add is 𝛰(𝑛), which is the same as the time for method add

when using a linked list or other implementations.

The advantage of using heap over other

implementations comes when we consider the average

runtime. On average, a newly added value will be the

value in the middle of existing values (if sorted from left

to right). Since our heap is a complete binary tree, half of

the heap’s values are at its leaves. This means swapping

the newly added value up the tree just once will get it to

its correct position. Therefore, it takes constant time (on

average) to add a new data into a heap.

Method top is shown in Figure 9-9. If there is no data, the

method cannot return any value, so it throws an

exception. Otherwise, the method returns the data stored

inside the root of our heap, which is the first array slot in

our implementation.

345

To pop a data out of our heap, we have to be careful

because removing a node can destroy our complete

binary tree structure (even though we can preserve the

data ordering from the root), thus destroying our array

representation of the heap, as shown in Figure 9-10.

To preserve our complete binary tree, we must use the

following algorithm when removing the most important

value:

• Overwrite the value at the root with the last value

from the last level of our complete binary tree.

1: public Object top() throws Exception {
2: if (size == 0)
3: throw new Exception("Empty");
4: return mData[0];
5: } //this class continues in Figure 9-12.

Figure 9-9: Code for method top of class Heap.

1

5 3

9 6 8 7

3

5 7

9 6 8

Remove 1

Figure 9-10: Removing a root without using a special algorithm,

destroying a complete binary tree structure.

346

• Swap the value at the root down the tree (swap

with the most important child) until the tree

becomes heap again.

Swapping our data down the tree is called “percolate

down”. Figure 9-11 shows what happens when we

remove 26 (the most important value) from the heap we

obtained in Figure 9-7.

First, the data at the root (26) is replaced by the last data.

Hence the data at the root now becomes 48. Then 48 is

compared with data in its left and right child (30 and 31).

The value 30 is the smallest of the two children values

and it is smaller than 48 so it is swapped with 48. After

this swap, 48 is then compared to data in its new left and

right child (40 and 50). The value 40 is the smallest of the

two and it is smaller than 48, so 48 is swapped with it.

After that, 48 is then compared with data in its new left

child (99) (no right child to compare since we consider it

removed from our heap). This time, no swap occurs since

48 is already smaller than 99.

The code for method pop is shown in Figure 9-12.

347

Figure 9-11: Each step for removing the most important value from a

heap, showing both the tree version and its array implementation.

48

30 31

99 48

36 40 50 85

48 30 31 40 50 85 36 99 48

48 (our last data)

overwrites 26.

30

48 31

99 48

36 40 50 85

30 48 31 40 50 85 36 99 48

30

40 31

99 48

36 48 50 85

30 40 31 48 50 85 36 99 48

48 no longer in our heap.

348

From Figure 9-12, if the heap is empty, we throw an

exception because there is nothing to return (line 2-3).

Otherwise, we replace the data at the root with the last

data (line 5), reduce the value of size (line 6) so that the

last data is treated as no longer in the heap, then call

method percolateDown to move the new value in the root

down the tree, before returning the original data at the

root.

1: public Object pop() throws Exception {
2: if (size == 0)
3: throw new Exception("Priority queue empty.");
4: Object minElem = mData[0];
5: mData[0] = mData[size - 1];
6: size--;
7: percolateDown(0);
8: return minElem;
9: }
10:

11: protected void percolateDown(int start) {

12: int parent = start;

13: int child = 2 * parent + 1;

14: Object temp;

15: while (child < size) {

16: Comparable lVal = (Comparable)mData[child];

17: if (child < size – 1)

18: Comparable rVal =(Comparable)mData[child+1];

19: if(lVal.compareTo(rVal) > 0)

20: child++;

21:

22: Comparable pVal = (Comparable) mData[parent];

23: if(pVal.compareTo(mData[child]) <= 0)

24: break;

25: temp = mData[child];

26: mData[child] = mData[parent];

27: mData[parent] = temp;

28: parent = child;

29: child = 2 * parent + 1;

30: }

31: } //end of code for class Heap.

Figure 9-12: Code for method pop of class Heap.

349

Method percolateDown receives the position index of the

root as its input. We then initialize 2 variables, parent and

child. Variable parent indicates the position (in our array

representation) of our to-be-moved-down-the-tree data.

Variable child indicates the position of parent’s child that

stores the more important value amongst the left child

and the rigt child. Before every iteration, this is set to the

position of the left child (line 13 and line 29).

The loop iteration is performed as long as child does not

go beyond the last possible position in the last level of

our tree (line 15). Inside the loop, child can change to

indicate the right child of parent if the right child exists

(line 17) and it stores a more important value than the left

child (line 19). After child is updated, it is compared with

the value stored in position parent (line 23). If position

parent stores a more important value, we exit the method

since there is no need to do any swap (line 24).

Otherwise, values in position parent and child need to be

swapped, and new parent and child are set to reflect the

new position of our data that gets swapped down the

tree (line 25-29).

The asymptotic runtime of method pop depends on the

runtime of method percolateDown. The worst-case

runtime for percolateDown takes place when we have to

swap our data down the entire tree. Thus, it directly

depends on the tree’s height. If the number of data is 𝑛,

our runtime for method pop is therefore 𝛰(log 𝑛).

350

For an average case, the new root data has value in the

middle of all existing values. That means, half of the

tree’s data have greater values. But because we use a

complete binary tree, half the data must be at its leaves.

Method percolateDown will have to move the root data

down to the level before last. So, it is almost like the

worst case.

Table 9-1 summarizes the average runtime of each

method for linked list implementation and heap

implementation of a priority queue.

Table 9-1: Average runtime for method add, top, and pop in linked list

implementation and heap implementation of priority queue.

Method Linked list

implementation

Heap

implementation

add 𝛰(𝑛) 𝛩(1)

top 𝛩(1) 𝛩(1)

pop 𝛩(1) 𝛰(log 𝑛)

Priority Queue Application: Data
Compression
Let us try to store a text file with 100,000 characters.

Normally, we need 16 bits to represent a character.

Therefore 100,000 characters need 1,600,000 bits.

351

We can reduce the number of bits by introducing our

own encoding. For example, we can represent a character

using only 3 bits:

• ‘a’ is 000

• ‘b’ is 001

• ‘c’ is 010

• ‘d’ is 011

• ‘e’ is 100

If our 100,000-character file contains only characers ‘a’ to

‘e’, we only need 300,000 bits to store the file.

Can the number of bits be reduced further? Yes, we can

try the following encoding:

• ‘a’ is 0

• ‘b’ is 1

• ‘c’ is 00

• ‘d’ is 01

• ‘e’ is 10

With the new encoding, the number of bits is reduced

even more, but a new problem arises. The problem is we

can compress the file, but when we try to uncompress it,

we can’t get the original characters back because the

decoded result is ambiguous.

For example, if our compressed file contains 001010. We

can decode it as “aababa”, or “cee”, or “adae”, or any

other possible values. There is no way that we can be

352

sure we will get the original string (before compressed)

back.

How do we encode and prevent ambiguity at the same

time? We can do it by utilizing a binary tree. Drawing a

binary tree with enough leaves, a leaf represents a

character in our text file. A character encoding is

indicated by a sequence of 0s and 1s marked on braches

from root to the leaf. A left branch represents 0, a right

branch represents 1. Figure 9-13 shows a possible

encoding of ‘a’ to ‘e’, using a binary tree. For this

encoding, ‘a’ is 010, ‘b’ is 11, ‘c’ is 00, ‘d’ is 10, and ‘e’ is

011 (follow the marked branches from root to each leaf).

With this encoding, there is no ambiguity. Bit string

001010 in our text file can only be interpreted as “cdd”.

No other strings are possible.

a e

c d b

0

0

0

0

1

1 1

1

Figure 9-13: A possible encoding

for character ‘a’ to ‘e’ in a text file.

353

But there are more than one possible trees that can be

constructed. Figure 9-14 shows another possible tree that

we can use.

So which tree is better? The answer is - it depends on a

file we try to compress. Basically, if a character is very

frequent in our file, we want that character to be

represented using as few number of bits as possible in

order to minimize the total number of bits for our

compression.

That means, for each file to compress, we have to build a

tree. Each file will have a different tree.

1

1

1

1

0

0

0

0

a

c

e d

b

Figure 9-14: Another possible

tree for encoding ‘a’ to ‘e’.

354

An optimum encoding tree for a file is called a Huffman

tree. Please note that a Huffman tree is neither a binary

search tree nor a heap. It is a tree that shows our

encoding of data.

A Huffman tree can be constructed using a priority

queue. First, we have to prepare our priority queue with

the following algorithm:

1. Count the frequency of all characters in our to-be-

compressed text file.

2. For each character, make a “node” of data that

consists of:

a. That character

b. The frequency of that character

c. left (will later point to another node)

d. right (will later point to another node)

3. Put all the nodes (these will be nodes in our

Huffman tree) of data we made into a priority

queue. Our priority queue regards the node with

the lowest frequency as the most important data.

Then our Huffman tree can be constructed using the

following algorithm:

1. Remove two nodes with the smallest frequency

from the priority queue.

2. Create a new node using:

a. the first removed node as its left branch.

b. the second removed node as its right branch.

c. The new node character is ‘’.

355

d. The new node frequency is the sum of the

frequency from both removed nodes.

3. Put the new node back into our priority queue.

4. Go back to do step 1 to 3 again until there is only

one node left in our priority queue. That node is the

root of our encoding tree (it will have already been

linked with the rest of the tree).

Let us compress a text file with only characters ‘a’ to ‘e’.

Let the frequency count of each character be as follows:

• ‘a’ = 5000

• ‘b’ = 10000

• ‘c’ = 20000

• ‘d’ = 31000

• ‘e’ = 34000

Our priority queue constructed from these data stores

the nodes to be retrieved in the order (from left to right)

shown in Figure 9-15. We choose to represent our

priority queue as a sequence of to-be-retrieved nodes in

order to keep readers away from any particular priority

queue implementation and focus on Huffman tree

construction.

a, 5000 b, 10000 c, 20000 d, 31000 e, 34000

Figure 9-15: An Example of order of nodes to be retrieved

from priority queue that stores nodes of Huffman tree.

356

From our example text file, our Huffman tree

construction is shown from Figure 9-16 to Figure 9-19.

Each figure represents one iteration in our Huffman tree

construction algorithm.

Figure 9-16: Example of Huffman tree creation (first iteration).

a, 5000 b, 10000 c, 20000 d, 31000 e, 34000

‘’, 15000

a, 5000 b, 10000

c, 20000 d, 31000 e, 34000

Remove 2 nodes

to create a new

node.

Add the new node back

into priority queue.

‘’, 15000

a, 5000 b, 10000

357

Figure 9-17: Example of Huffman tree creation (second iteration).

‘’, 15000

a, 5000 b, 10000

c, 20000 d, 31000 e, 34000

‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

Remove 2 nodes

to create a new

node.

Add the new node back into priority queue.

d, 31000 e, 34000 ‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

358

Figure 9-18: Example of Huffman tree creation (third iteration).

d, 31000 e, 34000 ‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

‘’, 65000

d, 31000 e, 34000

Remove 2 nodes

to create a new

node.

Add the new node back

into priority queue.

‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

‘’, 65000

d, 31000 e, 34000

359

‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

‘’, 65000

d, 31000 e, 34000

‘’, 35000

‘’, 15000

a, 5000 b, 10000

c, 20000

‘’, 65000

d, 31000 e, 34000

Remove 2 nodes to

create a new node.

Now there is only one node to put inside

our priority queue. It is the root of our

finished Huffman tree.

‘’, 100000

Figure 9-19: Example of Huffman tree creation (fourth iteration).

360

The code for Huffman tree construction is left as an

exercise for readers.

Exercises

1. Define a new class for a node of a Huffman tree (let us

call it class HuffmanNode). Then write a method that

creates a Huffman tree from a given heap. The

method returns a HuffmanNode.

2. Let your data (to be stored in a heap) be of type:

public class Student {

String name; //name

int mark; // score

public Student(String n, int m){

name = n; mark = m;

}

}

Let class StudentHeap extend from class Heap (but

students with more marked are popped first). Currently,

StudentHeap does not have any method. Write the

following methods in class StudentHeap :

• public Heap mergeHeap(Heap secondHeap): This

method combines secondHeap of Student with our

heap and return a new heap with all data from both

heaps (for each data, a new copy of it must be

created before being put in a new heap). The array

mData of this and secondHeap must not change.

What is the worst-case runtime of your code?

• public static boolean isAHeap(Heap h): This

method tests heap of Student and returns true if

361

students with more marks are organized to be

popped before students with less marks, i.e. a

student has more score than all students below

him/her in the heap (Assume that h.size() is correct

but the data inside the heap’s array may not be

ordered correctly according to the definition of

Heap).

• public void changemark(String name, int

newMark): Change the mark of any one student.

Our student heap then must still preserve its heap

properties.

3. we want to compress a text file that stores only

alphabet a, b, c, d, e. where the frequency of each

alphabet is as follows:

a: 370

b: 80

c: 60

d: 150

e: 30

When putting these data inside a heap, the popping

sequence of the heap (from left to right) is:

(e: 30), (c: 60), (b: 80), (d: 150), (a: 370)

Assume that you always use the first value taken from

the heap as left branch of your construction of Huffman

tree, and the second value from the heap as right branch,

draw a popping sequence and a partial Huffman tree

362

for each step of removing 2 smallest-frequency values

from the heap, until the Huffman tree is complete. Then

after you have a complete Huffman tree, write down a

bit string that represents each alphabet.

4. A heap of integer (smallest number is most important)

is implemented using tree structure that has parent

link.

class HeapNode{

int data;

HeapNode left, right, parent;

public HeapNode(int v){

data =v;

left = null;

right = null;

parent = null;

}

}

class Heap{

HeapNode root;

}

A queue that can store HeapNode object is also available,

with the following methods:

• public Queue(): constructor that creates an empty

queue.

• public void insertLast(HeapNode n): this method puts

node n at the back of the queue.

• public HeapNode removeFirst(): this method removes

the node stored in front of the queue. It returns the

removed node.

• public boolean isEmpty(): this method returns true if

the queue is empty, otherwise it returns false.

363

• public HeapNode front(): this method returns the

node stored in front of the queue, without

changing the queue.

Write code for the following methods of the above

Heap:

• public void percolateUp(HeapNode n). This

method moves the value stored in n up the tree of

our Heap until the tree becomes heap again (the

method is used to fixed the tree after adding a new

data).

• public void add(int v). This method adds new data,

v, into our heap, then arranges the heap so that it

retains all properties of heap.

• public int pop(). This method removes the node

that contains the smallest value from the heap,

arranges the heap so that it retains all properties of

heap, and returns the integer inside the removed

node.

5. For class Heap in this chapter, write method public

void removeValue(Object value). This method

removes specified value stored in our array

implementation. The array after the removal must still

have the quality of heap.

6. Assume that our Heap contains at least 3 elements and

the smallest value is the most important value. Write

code for method public void removeSecond(). This

method removes the value next to the smallest value

from the heap. After the method finishes, the heap

must still have all the qualities of heap.

364

7. For class Heap defined by array in this chapter, write

method public int calculateMaxIndex(). This method

returns the index of the maximum value in our array.

8. A min-max heap of integer looks like the following:

Even levels are like min heap (small value is more

important). Odd levels are like max heap (greater value

is more important).

A member in an even level must have smaller value than

the value in its direct parent. For example, 8 and 5 are

less than 80. Similarly, a member in an odd level must

have larger value than the value in its direct parent. For

example, 30 and 8 are greater than 4.

Write code for method void add(int newnumber) of this

new data structure. This method adds a new number to

the min-max heap. When the addition finishes, the heap

must still be a min-max heap.

1

1

30

0

9

80

5 8 4

10 85

Level 0

Level 1

Level 2

Level 3

365

Chapter 10 : AVL Tree

For a binary search tree, the more it looks like a perfectly

balanced tree, the less time for searching, since the tree

height will be low. But we have no control over how a

binary search tree will look like. It might look like a

linked list, which gives us the worst possible search time.

An AVL tree (AVL is an abbreviation of Adelson-Velskii

and Landis) is a binary search tree that has a rule

controlling its height. The rule is as follows:

For each node, n, in an AVL tree, let the height of its left

subtree be ℎ𝐿, and the height of its right subtree be ℎ𝑅.

Then |ℎ𝐿 − ℎ𝑅| ≤ 1.

In other words, the difference of height between a left

and right subtree must never go beyond 1. This means

we are trying to make our tree as flat as possible prevent

parts of the tree forming a linked list.

Examples of AVL trees are shown in Figure 10-1. Non-

AVL Trees are shown in Figure 10-2. The nodes that fail

the height condition are marked.

366

With this condition, we are certain that our tree height is

still in terms of log2 𝑛.

The problem is how we can maintain this height

condition after adding/removing data. What we actually

need to do is: we add/remove just like what we do in

binary search tree, but we rebalance the tree after the

change.

31

36 25

11

40

33 50

19 57 45

48

26 26

31

Figure 10-1: Examples of AVL trees.

367

Rebalancing the Tree
There are only 4 possible cases that a node can become

non-AVL after adding/removing data from/to an

existing AVL tree. We will go through each case.

1. A node is heavy to its left (its ℎ𝐿 − ℎ𝑅 = 2,

becoming non-AVL), and its left subtree is also

heavy to its left (its ℎ𝐿 − ℎ𝑅 = 1).

26

31

43

26

31

28

31

36 25

11

5

32

34

40

35 50

22 57 45

11

Figure 10-2: Examples of non-AVL Trees.

368

This part of our tree can be made AVL again by rotating

the left subtree up, as shown in Figure 10-3. The method

that we will implement for this fix will be called

rotateLeftChild. Rotating a node up a tree is not as difficult

as readers may think. We just need to change pointers so

that the part of our tree that needs fixing changes

accordingly.

2. A node is heavy to its right (its ℎ𝐿 − ℎ𝑅 = −2,

becoming non-AVL), and its right subtree is also

heavy to its right (its ℎ𝐿 − ℎ𝑅 = −1). This part of

our tree can be made AVL again by rotating the

right subtree up, as shown in Figure 10-4. The

method that we will implement for this fix will be

called rotateRightChild.

𝑛

𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛)

ℎ𝐿 − ℎ𝑅 = 2

ℎ𝐿 − ℎ𝑅 = 1

x

y

A

B

C

y

x

C B
A

Figure 10-3: Rebalance, 1st possible case.

369

3. A node is heavy to its left (its ℎ𝐿 − ℎ𝑅 = 2,

becoming non-AVL), and its left subtree is heavy

to its right (its ℎ𝐿 − ℎ𝑅 = −1). A rotation that fix

this case is shown in Figure 10-5. One

rotateLeftChild(n) will not solve the problem

because the longest branch (connecting to the node

that stores z) does not move up even one level. For

this case, the rotation must be done twice. First,

rotateRightChild(n.left), then rotateLeftChild(n).

ℎ𝐿 − ℎ𝑅 = −2

ℎ𝐿 − ℎ𝑅 = −1

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛)

y

x

C
A B

x

y

C

B

A

n

Figure 10-4: Rebalance, 2nd possible case.

370

𝑛

ℎ𝐿 − ℎ𝑅 = 2

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛. 𝑙𝑒𝑓𝑡)

ℎ𝐿 − ℎ𝑅 = −1

z

x

y

A

D

B C

x

y

D

A B

C

z

n

x y

D A B C

z

𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛)

Figure 10-5: Rebalance, 3rd possible case.

371

4. A node is heavy to its right (its ℎ𝐿 − ℎ𝑅 = −2,

becoming non-AVL), and its right subtree is heavy

to its left (its ℎ𝐿 − ℎ𝑅 = 1). A rotation that fix this

case is shown in Figure 10-6. One

rotateRightChild(n) will not solve the problem

because the longest branch (connecting to the node

that stores z) does not move up even one level. For

this case, the rotation has to be done twice. First,

rotateLeftChild(n.right), then rotateRightChild(n).

Implementation of AVL Tree
The implementation is very similar to class BST. But we

cannot extend from BSTNode because left, right, parent

will then be BSTNode.

Node Implementation

First, we look at a node of an AVL tree. It is implemented

by class AVLNode. It is almost the same as a node of a

binary search tree, with one extra variable, height, which

stores the height of the tree (counting down from the

node).

The following methods are needed for a node:

• int getHeight(AVLNode n): returns the height of a

given node, n, by reading the value of variable

height. We need to use a node as a parameter here

because it allows the node to be null.

372

• void updateHeight(AVLNode n): recalculates the

height of n, and set the value of height, assuming

that n.left and n.right have correct height.

• int tiltDegree(AVLNode n): calculates ℎ𝐿 − ℎ𝑅 of

node n. This is necessary when we rebalance the

tree.

𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑛. 𝑟𝑖𝑔ℎ𝑡)

ℎ𝐿 − ℎ𝑅 = −2

ℎ𝐿 − ℎ𝑅 = 1
x

y

D

A

CB

z

x

A

y

z

n

B

DC

𝑟𝑜𝑡𝑎𝑡𝑒𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑛)

z

x y

A DCB

Figure 10-6: Rebalance, 4th case.

373

The code for a node of an AVL tree is shown in Figure

10-7.

1: public class AVLNode {
2: int data;

3: AVLNode left, right, parent;

4: int height;

5:
6: public AVLNode(int data) {

7: this.data = data;

8: left = null;

9: right = null;

10: parent = null;

11: height = 0;

12: }

13:
14: public AVLNode(int data, AVLNode left, AVLNode

15: right, AVLNode parent, int height) {

16: this.data = data;

17: this.left = left;

18: this.right = right;

19: this.parent = parent;

20: this.height = height;

21: }

22:
23: public static int getHeight(AVLNode n) {

24: return (n == null ? -1 : n.height);

25: }

26:
27: public static void updateHeight(AVLNode n) {

28: if (n == null)

29: return;

30: int leftHeight = getHeight(n.left);

31: int rightHeight = getHeight(n.right);

32: n.height = 1 + (leftHeight < rightHeight ?

33: rightHeight : leftHeight);

34: }

35:
36: public static int tiltDegree(AVLNode n) {

37: if (n == null)

38: return 0;

39: return getHeight(n.left) - getHeight(n.right);

40: }

41: }

Figure 10-7: Code for a node of AVL tree.

374

Iterator Implementation

Since an AVL tree is still a binary search tree, an iterator

for an AVL tree works in the same manners as an iterator

for a binary search tree. Therefore, the implementation is

the same except all BSTNode get replaced by AVLNode.

We call the class for this iterator AVLTreeIterator. The

code for this iterator class is left as an exercise for readers.

Tree Implementation

An AVL tree class (AVLTree) contains root and size, just

like our binary search tree, except the root is of type

AVLNode.

Almost all methods remain the same as its binary search

tree counterpart (but AVLNode replaces BSTNode and

AVLTreeIterator replaces TreeIterator. See Figure 10-8 and

Figure 10-9), except method insert and remove, where we

need to rebalance the tree. There are also 3 new methods:

• AVLNode rotateLeftChild(AVLNode n): this method

rotates the left child of n (the root of our subtree we

are working on) up the tree. It returns the new root

of our subtree after the rotation finishes.

• AVLNode rotateRightChild(AVLNode n): this method

rotates the right child of n (the root of our subtree

we are working on) up the tree. It returns the new

root of our subtree after the rotation finishes.

• AVLNode rebalance(AVLNode n): this method

rebalances the subtree that has n as its root

according to the 4 cases discussed in the last section

375

(page 367-371). It returns a new root of the subtree

after the rebalance finishes.

1: public class AVLTree {
2: AVLNode root;

3: int size;

4:
5: public AVLTree() {

6: root = null;

7: size = 0;

8: }

9:
10: public boolean isEmpty() {

11: return size == 0;

12: }

13:
14: public void makeEmpty() {

15: root = null;

16: size = 0;

17: }

18:
19: public Iterator findMin() {

20: return findMin(root);

21: }

22:
23: public Iterator findMin(AVLNode n) {

24: if (n == null)

25: return null;

26: if (n.left == null) {

27: Iterator itr = new AVLTreeIterator(n);

28: return itr;

29: }

30: return findMin(n.left);

31: }

32: // continued in Figure 10-9.

Figure 10-8: Code for AVL Tree (part 1).

376

Method rotateLeftChild updates the tree according to

Figure 10-3. Method rotateRightChild updates the tree

1: public Iterator findMax() {
2: return findMax(root);

3: }
4:
5: public Iterator findMax(AVLNode n) {
6: if (n == null)

7: return null;

8: if (n.right == null) {

9: Iterator itr = new AVLTreeIterator(n);

10: return itr;

11: }

12: return findMax(n.right);

13: }

14:
15: public Iterator find(int v) {

16: return find(v, root);

17: }

18:
19: public Iterator find(int v, AVLNode n) {

20: if (n == null)

21: return null;

22: if (v == n.data)

23: return new AVLTreeIterator(n);

24: if (v < n.data)

25: return find(v, n.left);

26: else

27: return find(v, n.right);

28: }

29: //continued in Figure 10-13.

Figure 10-9: Code for AVL Tree (part 2).

377

according to Figure 10-4. Their codes are shown in Figure

10-10.

How the code for method rotateLeftChild manipulates the

tree is shown in Figure 10-11. For method

rotateRightChild, it is the same except it is mirrored.

1: public AVLNode rotateLeftChild(AVLNode n) {

2: AVLNode l = n.left;

3: AVLNode lr = n.left.right; // can be null

4: n.left = lr;

5: if (lr != null) {

6: lr.parent = n;

7: }

8: l.right = n;

9: l.parent = n.parent;

10: n.parent = l;

11: AVLNode.updateHeight(n);

12: AVLNode.updateHeight(l);

13: return l;

14: }

15:
16: public AVLNode rotateRightChild(AVLNode n) {

17: AVLNode r = n.right;

18: AVLNode rl = n.right.left; // can be null

19: n.right = rl;

20: if (rl != null) {

21: rl.parent = n;

22: }

23: r.left = n;

24: r.parent = n.parent;

25: n.parent = r;

26: AVLNode.updateHeight(n);

27: AVLNode.updateHeight(r);

28: return r;

29: }

30: // continued in Figure 10-13.

Figure 10-10: Code for rotateLeftChild and rotateRightChild.

378

The code for method rebalance is shown in Figure 10-12.

Method rebalance merges the 1st case and the 3rd case from

𝑙

𝑛

l.right = n;

l.parent = n.parent;

𝑙r

𝑛

x

y

A

B

C

n.left = lr;

if (lr != null)

{

lr.parent = n;

}

x

y

A
C B

𝑙

𝑙r

x

y

B

C

A

x

y

A

B

C

𝑙
n.parent = l;

point to n.parent

𝑛

Figure 10-11: Detailed operation of method rotateLeftChild.

379

page 367-371 (code is shown on line 6-9 of Figure 10-12).

It also merges the 2nd case and the 4th case (code is shown

on line 11-14 of Figure 10-12).

The code for method insert is shown in Figure 10-13. The

code is the same as its binary search tree counterpart (the

recursive version) except AVLNode is used instead of

1: public AVLNode rebalance(AVLNode n) {
2: if (n == null)

3: return n;

4: int balance = AVLNode.tiltDegree(n);

5: if (balance >= 2) {

6: if (AVLNode.tiltDegree(n.left) <= -1)

7: //3rd case

8: n.left = rotateRightChild(n.left);
9: n = rotateLeftChild(n); //1st case

10: } else if (balance <= -2) {

11: if (AVLNode.tiltDegree(n.right) >= 1)

12: //4th case

13: n.right = rotateLeftChild(n.right);

14: n = rotateRightChild(n); //2nd case

15: }

16: AVLNode.updateHeight(n);

17: return n;

18: } // continued in Figure 10-13.

Figure 10-12: Code for method rebalance.

380

BSTNode, and method rebalance is called right at the end

(on line 18) to fix any non-AVL nodes.

The code for method remove is shown in Figure 10-14. It

works in the same way as its binary search tree

counterpart. Similar to insert, it calls rebalance at the end.

1: public AVLNode insert(int v) {
2: return insert(v, root, null);

3: }
4:
5: // n is the root of our subtree.
6: // this method returns the new root of the
7: // subtree after v is added to the tree.
8: public AVLNode insert(int v, AVLNode n, AVLNode
9: parent) {
10: if (n == null) {

11: n = new AVLNode(v, null, null, parent, 0);

12: size++;

13: } else if (v < n.data) {

14: n.left = insert(v, n.left, n);

15: } else if (v > n.data) {

16: n.right = insert(v, n.right, n);

17: }

18: n = rebalance(n);

19: return n;

20: }

21: //continued in Figure 10-14.

Figure 10-13: Code for method insert of AVL tree.

381

1: public AVLNode remove(int v) {
2: return remove(v, root, null);

3: }
4:
5: public AVLNode remove(int v, AVLNode n, AVLNode
6: parent) {
7: if (n == null)

8: ; // do nothing (nothing to be removed)

9: else if (v < n.data) {

10: n.left = remove(v, n.left, n);

11: } else if (v > n.data) {

12: n.right = remove(v, n.right, n);

13: } else {

14: if (n.left == null && n.right == null) {

15: n.parent = null;

16: n = null;

17: size--;

18: } else if(n.left != null && n.right == null) {

19: AVLNode n2 = n.left;

20: n2.parent = parent;

21: n.parent = null;

22: n.left = null;

23: n = n2;

24: size--;

25: } else if(n.right != null && n.left == null) {

26: AVLNode n2 = n.right;

27: n2.parent = parent;

28: n.parent = null;

29: n.right = null;

30: n = n2;

31: size--;

32: } else {

33: AVLTreeIterator i = (AVLTreeIterator)

34: findMin(n.right);

35: int minInRIght = i.currentNode.data;

36: n.data = minInRight;

37: n.right = remove(minInRight, n.right, n);

38: }

39: }

40: n = rebalance(n);

41: return n;

42: }

43: // class AVLTree ends here.

Figure 10-14: Code for method remove of AVL tree.

382

This is all we need for implementing an AVL tree. Please

revise your knowledge with the exercises.

Exercises

1. Draw the following AVL trees after a value is inserted

or deleted. If a double rotation is used, draw each step

of the rotation separately.

a)

 ?
15

10 30

5 25

20

45

35 50

insert 40

383

b)

c)

insert 40

?
25

10 50

5 35

30

55

45 60

15

remove 55

?
45

15 60

10 50

5

65

20 35

30

55

25 40

384

d)

2. For class BSTRecursive in chapter 6, write code for

method:

public BSTNode moveFurthestDown(BSTNode n).

This method regards n as the root of a subtree we are

interested in. It rotates data in n down the longest path

possible from n until that data is in a leaf. Note that

the longest path changes for each rotation. The

method returns a new root of this subtree.

Hint:

- You can call public BSTNode

rotateRightChild(BSTNode n) and public

BSTNode rotateLeftChild(BSTNode n). Both

remove 5

?
15

10 25

5 20 30

35

385

methods work just like they do in an AVL

tree.

- You can call public int max(int a, int b). This

method returns the maximum value among

value a and b.

- A null node has its height equals to -1.

An example is shown below

25

15 30

10 20 35

5

25

10 30

5 15 35

20

this node is returned

25

10 30

5 20 35

This value is moved to leaf 15

n

15

10 25

5 20 30

35

386

3. For class AVLTree, write code for method:

public boolean isAVL(AVLNode n)

This method tests to see whether node n and all nodes

below it satisfy the structural requirement of AVL

tree.

4. For class BST, write code for method:

public BSTNode addUP(int num, BSTNode n)

This method adds num to part of the tree that has n as

its root. After num is added, it must be at the root of

that part of the tree (use rotation to move a newly

added number up the tree). An example is shown

below.

n

addUp(8,n) 10

5 15

10

5 15

8

10

5

15 8

8

5 10

15

387

5. Draw, step by step, what happens when we add 10,

15, 20, 18, 35, 19 to an empty AVL tree.

6. An AVL Tree looks like:

Draw, step by step, what happens when we delete 80.

7. For class AVLTree, write code for method:

public AVLTree merge(BST t)

This method combines all data in our AVL tree and in

a binary search tree, t. It returns an AVL tree that has

all data from both trees as a result.

60

35 70

19 40 80

38 50

388

 Bibliography
Bailey, D. (2002). Java Structures: Data Structures in Java for the Principled

Programmer (2nd Edition). McGraw-Hill.

Burnette, E. (2005). Eclipse IDE Pocket Guide: Using the Full-Featured IDE.

O'Reilly Media.

Collins, W. J. (2011). Data Structures and the Java Collections Framework

(3rd Edition). Wiley.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd Edition). The MIT Press.

cplusplus.com. (n.d.). c++ Language Tutorial. Retrieved 2018, from

http://www.cplusplus.com/doc/

Deitel, H. M., & Deitel, P. J. (2007). Java How to Program (7th Edition).

Prentice Hall.

Drozdek, A. (2000). Data Structures and Algorithms in Java. Course

Technology.

Feldman, M. B. (1987). Data Structures with Modula-2. Prentice-Hall.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data

Structures and Algorithms in Java (6th Edition). Wiley.

Horstmann, C. S. (2007). Big Java (3rd Edition). Wiley.

Horstmann, C. S. (2016). Core Java Volume I--Fundamentals (10th Edition).

Prentice Hall.

Lemay, L., & Cadenhead, R. (2002). Sam's Teach Yourself Java 2 in 21

Days (3rd Edition). Pearson Education.

Oracle. (n.d.). The Java Tutorial. Retrieved 2018, from

https://docs.oracle.com/javase/tutorial/

Rosen, K. H. (2011). Discrete Mathematics and Its Applications (7th

Edition). McGraw-Hill Education.

Sedgewick, R. (1983). Algorithms. Addison-Wesley.

Sedgewick, R. (2002). Algorithms in Java, Parts 1-4: Fundamentals, Data

Structures, Sorting, Searching (3rd Edition) . Addison-Wesley

Professional.

Tutorialspoint. (n.d.). c++ Tutorial. Retrieved 2018, from

https://www.tutorialspoint.com/cplusplus/

Weiss, M. A. (2011). Data Structures and Algorithm Analysis in Java.

Pearson.

389

Zakhour, S. B., Hommel, S., Royal, J., Rabinovitch, I., Risser, T., &

Hoeber, M. (2006). The Java Tutorial: A Short Course on the Basics

(4th Edition). Addison-Wesley Professional.

สมชาย ประสิทธ์ิจูตระกูล. (2552). โครงสร้างข้อมลูฉบับวาจาจาวา. ส านักพิมพแ์ห่งจุฬาลงกรณ์มหาวิทยาลยั.

390

 Index

A

Algorithm Analysis, 11
analysis of algorithms, 6
arithmetic calculations, 120
array, 1, 3
Asymptotic Notation, 20
asymptotic runtime, 6
AVL tree, 7, 365

AVLNode, 371
getHeight, 371
height, 371
tiltDegree, 372
updateHeight, 372

AVLTree, 374
insert, 379
rebalance, 374, 378
remove, 380
rotateLeftChild, 374, 377
rotateRightChild, 374, 377

iterator, 374
rebalance, 366
rotateLeftChild, 368
rotateRightChild, 368
rotating, 368

B

Big-O, 21
Big-Omega, 44
Big-Theta, 20
binary search, 29
binary search tree, 3, 7, 204

Breadth-First Tree Traversal, 244
BST, 218

find, 219
findMin, 218
insert, 220
remove, 224

BSTNode, 207
BSTRecursive, 233

find, 235
findMin, 233
insert, 235

remove, 239
Inorder, 242
node, 206
node marking, 208
Postorder, 242
Preorder, 241
Recursive Tree Traversal, 241
TreeIterator, 209

hasNext, 210
hasPrevious, 214
next, 214
previous, 216
set, 216

binary tree, 7, 195
ancestor, 196
child, 196
complete, 199
depth of node, 196
full, 197
height, 197
height of node, 196
leaf, 196
levels, 197
parent, 196
perfectly balanced, 197
root, 196
subtree, 196

bubble sort, 295
bucket sort, 324

C

complexity, 7
Conditional Operations, 26

asymptotic runtime, 26
Consecutive Operations, 25

asymptotic runtime, 26

D

data compression, 350
dequeue, 155
double-ended queue, 172

insertFirst, 173, 176
linked list implementation, 177

391

insertFirst, 179
removeLast, 177

removeLast, 173, 175
doubly-link list

DListNode, 81
doubly-linked list, 80

CDLinkedList, 85
append, 97
find, 87
findKth, 88, 167
findPrevious, 92, 94, 97
head, 97
insert, 89, 170
isEmpty, 85, 87
makeEmpty, 85, 86
remove, 92, 95
removeAt, 97, 169
size, 85
tail, 97

circular, 80, 84
DListIterator, 84

hasPrevious, 82
next, 82
previous, 82

DListNode, 80
iterator, 82
previousNode, 80

douly-linked list
CDLinkedList

garbage collector, 95

E

enqueued, 155

F

FIFO, 155
first in, first out, 155

G

growth rate, 14, 16, 18

H

hash function, 257
SepChaining

DEFAULT_SIZE, 265
hash table, 7, 255

double hashing, 281
DoubleHashing, 285

add, 287
find, 285
rehash, 288
remove, 289

lazy deletion, 275
linear probing, 271
load factor, 269
open addressing, 271
OpenAddressing, 282
primary clustering, 276
quadratic probing, 277
secondary clustering, 278
separate chaining, 262, 263
SepChaining, 264

add, 267
currentSize, 265
find, 266
hash, 266
lists, 265
MAXLOAD, 265
rehash, 267
remove, 269

hashCode, 263
heap, 4, 7, 338
Huffman tree, 354, 355

I

infix to postfix, 123
insertion sort, 299
isPrime, 266

L

lazy deletion, 275
LIFO, 109
linked list, 3, 58

header node, 61
insert, 60
iterator, 64

hasNext, 64
next, 64
set, 64

iterator interface, 65
LinkedList, 67

append, 78
find, 68
findKth, 68

392

findPrevious, 72
head, 76
insert, 70
remove, 72
tail, 76

ListIterator, 66
hasNext(), 66
next(), 66
set(int value), 66

ListNode, 63, 71
node, 58
node implementation, 62
node marking, 63
remove, 59

Linked list, 6
list, 49

array, 49
append, 57
find, 50
findKth, 51
head, 55
insert, 51
remove, 53
tail, 57

operations, 49
Little-O, 44
Little-Omega, 45
Logarithmic asymptotic runtime, 33
Logarithmic Form, 28

greatest common divisor, 34
running time, 32

M

median of 3, 313
merge sort, 301

N

Nested Loop, 22
asymptotic runtime, 24
exit conditions, 24
running time, 23

nextPrime, 266
null pointer, 61

P

postfix, 119
priority queue, 7, 331

data compression, 350
heap, 338

complete binary tree, 338
pop, 345

Heap, 340
add, 341
isEmpty, 341
percolateDown, 349
pop, 346
size, 341
top, 344

Huffman tree, 354, 356
implementations, 333
linked list implementation, 334
percolate down, 346
percolate up, 341
PQDLinkedList, 334

add, 337
compare, 334
isEmpty, 334
pop, 337
size, 334
top, 336

Q

queue, 6, 155
array implementation, 158

back, 162
front, 158
insertLast, 159, 161
isEmpty, 158
isFull, 158
removeFirst, 158, 161
size, 158

back, 155
constructors, 162
double-ended queue, 172
front, 155
insertLast, 156
isEmpty, 156
isFull, 156
MyQueue, 157
QueueArray, 162

back, 164
front, 164
insertLast, 165
makeEmpty, 164

QueueLinkedList, 167
back, 169

393

front, 167
insertLast, 170
isEmpty, 167
isFull, 167
removeFirst, 169
size, 167

removeFirst, 156
size, 156

quick sort, 310
median of 3, 313

implementation, 316
partitioning, 311, 313
pivot, 311

R

radix sort, 180, 184, 186
recursive program, 27

asymptotic runtime, 28
representative statement, 11, 14
return address, 115
right associative operators, 133
running time, 11
runtime, 41

average case, 41
best-case, 41
worst-case, 41

S

selection sort, 295, 297
skip list, 100, 101
sorting, 293

bubble sort, 293
bucket sort, 324
insertion sort, 299
merge sort, 301
quick sort, 310

average case, 321
best case, 320
implementation, 316
median of 3, 313
partitioning, 311, 313
pivot, 311
worst-case runtime, 319

selection sort, 295
sorting algorithms, 7
sparse table, 97
speed, 11
stack, 6, 109

bracket pairing, 110
infix to postfix, 123, 132

bracket, 127
brackets, 126
priority values, 128, 132
right associative operators, 126,

133
isEmpty, 136
isFull, 136
makeEmpty, 136
method calls, 114
pop, 109, 136
postfix, 119
push, 109, 136
stack frame, 114
StackArray, 137

currentSize, 138
isEmpty, 138
isFull, 138
makeEmpty, 138
pop, 139
push, 140
theArray, 138
top, 138

StackLinkedList, 142
isEmpty, 143
isFull, 143
makeEmpty, 143
pop, 144
push, 145
top, 144

top, 109, 136

T

tree, 3

U

unit of time, 12

This book is intended for students who have learned
the basics of programming and now want to expand
their knowledge into data structures and algorithms.
Intended for all levels of students, the book focuses
on the most basic data structures and algorithms,

with lots of illustrated examples.

	Cover
	Title Page
	Licence Page
	Acknowledgement
	Preface
	Table of Content
	Chapter 1 : Data Structures and Our Program
	What is a Data Structure?
	This book's organization

	Chapter 2 : Introduction to Algorithm Analysis
	Running Time Analysis
	Asymtotic Notation
	Asymptotic Notations and Nested Loop
	Asymtotic Runtime and Consecutive Operations
	Asymtotic Runtime and Conditional Operations
	Asymtotic Runtime in Logarithmic Form
	Asymptotic Runtime and Its Application in Choosing Implementation
	Best-Case, Worst-Case, and Average Case Runtime

	Beyond Big-Theta and Big-O

	Chapter 3 : List
	List and Its Operations
	Implementing a List with Array
	Implementing a List with Linked List
	Doubly-linked list
	Sparse Table
	Skip List

	Chapter 4 : Stack
	Stack Operations
	Notable uses of Stack
	Bracket Pairing
	Handling Data for Method Calls
	Postfix Calculation
	Transforming Infix to Postfix Form

	Implementing a Stack with Array
	Implementing a Stack with Linked List

	Chapter 5 : Queue
	Queue Operations
	Implementing a Queue with Array
	Implementing a Queue with Linked List
	Double-Ended Queue
	Implementing a Double-Ended Queue with Array
	Double-Ended Queue implemented with Linked List
	Application of Queue : Radix Sort

	Chapter 6 : Binary Tree
	Interenting properties of A Binary Tree
	Binary Search Tree
	Binary Search Tree Implementation
	Recursive Implementation of Binary Search Tree
	Recursive Tree Traversal
	Breadth-First Tree Traversal

	Chapter 7 : Hash Table
	Designing A Hash Function
	Transforming our key
	Making our integer more widely distributed
	Transforming our value into array index

	Separate Chaining Hash Table
	Implementation of Separate Chaining Hash Table

	Runtime Analysis of Separate Chaining Hash Table
	Open Addressing Hash Table
	Linear Probing
	Quadratic Probing
	Double Hashing
	Implementation of Open Addressing Hash Table

	Separate Chaining VS Open Addressing

	Chapter 8 : Sorting
	Bubble Sort
	Selection Sort
	Insertion Sort
	Merge Sort
	Array Splitting
	Sorting Each Portion
	Merging Two Sorted Portions
	Implementation and Runtime of Merge Sort

	Quick Sort
	Choosing a Pivot
	Partitioning
	Implementation and Runtime of Quick Sort

	Bucket Sort

	Chapter 9 : Priority Queue
	Implementation Choices
	Linked List Implementation of Priority Queue
	Heap
	Heap Implementation and Runtime Analysis
	Priority Queue Application : Data Compression

	Chapter 10 : AVL Tree
	Rebalancing the Tree
	Implementation of AVL Tree
	Node Implementation
	Iterator Implementation
	Tree Implementation

	Bibliography
	Index

