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CHAPTER 1
INTRODUCTION

1.1 Finite incidence structures

A finite incidence structure (2, %, ¢) consists of a finite set & of points,
a set A of blocks, and an incidence relation ¢ between points and blocks. An
incident point-block pair is called a flag, and a non-incident point-block pair is
called an antiflag. The dual structure of (2, %, ¢) is a (B, P, &%) with ¢4 =
{(B,z): (z,B) € }.

A tactical configuration with parameters (v,b,k,r) or 1-design is a finite
incidence structure .7 = (£, %, ) with | 2| = v and | #| = b such that every block
contains k points and every point belongs to exactly r blocks satisfy vr = bk. For
every point z € & and every block B € 4, the number of flags (y, C') such that
yeB, xeC, y # x, and C # B is denoted by s(z, B). For two distinct points
z,y € & and blocks B,C € &, denote ), the number of blocks containing both
x and y, and pupc the number of common points of B and C. Then for every point

x € & and every block B € 4 we have

Z)‘my = ZIMBC if (l‘,B) ¢57

s(x, B) _ yeB zeC ‘
Z (Axy - 1) = Z (:uBc o 1) if ([L’, B) ce.
yeBy#x 2eC,C#B

Let {s(z,B) :x € &, B€ B and (z,B) ¢ e} ={a1,qs,...,a,} and {s(x, B) :
r€ P Be RBand (x,B) € e} = {1,Pa,...,0} We may write parameters as
(v,b, k00, .oy By o). g, ooy, >1,3<k<v—3and3<r <b-—3,
then we call & proper. If a = 1, then .7 is called an a-strongly tactical con-
figuration and if b = 1, then .7 is called a -strongly tactical configuration.
In particular, if a = b =1, then .7 is called a 1%-design.



Example 1.1.1. Let & be a finite set and let B be a collection of subsets of .
Forx € & and B € A, we define xeB if and only if v € B. Then T = (£, %, ¢)

s a finite incidence structure.

Example 1.1.2. Let & be a finite set of sizen < 2. Let B = {B : B C
P and |B| =t} for1 <t <n. Forxz € & and B € A, we define zeB if and
only if © € B. Then the incidence structure J = (£, AB,¢€) is a 1%—design with

parameters (n, (3).t, (72)):(75); (6 = D((122) = 1).
Example 1.1.3. Let 2 = {1,2,3,4,5}. Let B = {{1,2},{2,3},{3,4}, {4,5}, {5, 1}}.
Forx € & and B € B, we define xeB if and only if x € B. Then the incidence

structure I = (P, B, ¢e) is a [-strongly tactical configuration with parameters

(5,5,2,2;1,0;0).

Example 1.1.4. Let & = {1,2,...,2n} for some positive integer n > 2. Let
B={{i,j} e PxP:iisaoddandjisaeven}. Forx e P and B € B, we
define xeB if and only if v € B. Then the incidence structure I = (P, P, ¢€) is
a 1%-desz’gn with parameters (2n,n?,2,n;1;0).

Example 1.1.5. This can be rephrased in the graph way as follows. Let K, , be

the complete bipartite graph and n > 2. Let & = V(K,,) and B = E(K,n). For
re P and B € B, we define xeB if and only if x is a B.

1.2 Duplications

In this section, we construct new tactical configurations from a tactical configura-

tion by using duplications of points and blocks.

Proposition 1.2.1. Let (£, %B,¢) be a tactical configuration with parameters
(v,b, k500, ...y B1y ..oy Bp). Then the dual of (P2, %B,¢) is a tactical config-

uration with parameters (b,v,r, k;aq,...,Qq; B1y-- -, Pp)-

Proof. Recall that for every € £ and B € 4%, xeB if and only if Belx.
Then the dual of (£, %,¢) is a tactical configuration (%, Z,e?) with parame-
ters (b, v, 7, k; o, ... 0 By oy Bp)- a



Lemma 1.2.2. [Duplication of points| Let (£, %,¢) be a tactical configuration
with parameters (v, b, k, 701, . .., Qq; B1y...,Bp). Letn € N. Let ' = {(x,i): x €
P and i€ {1,2,...,n}}. For(z,i) € &' and B € A, we define (x,i)eppB if and
only if xeB. Then the incidence structure (£’ B,cpp) is a tactical configuration
with parameters (vn, b, kn,r;naq, ..., nagnf+(n—1)(r—1),...,n6+n—1)(r—

1)).

Proof. 1t is clear that the incidence structure (&', %, epp) is a tactical configura-
tion with parameters (vn,b, kn,r). Let (x,iy) € &' and B € . We count the
number of flags ((y,7),C) such that (y,j)eppB, (z,i0)epprC, (y,7) # (x,iy) and
C #+ B.

Case 1: ((z,ip), B) is an antiflag. Then (x, B) is an antiflag of (£, %,¢) and
s(x, B) = a for some a’ € {1,...,a}. Since (y,j)eppB, (y,j) # (x,1i) for all j €
{1,2,...,n}. Thus, the number of flags ((y, j), C) such that (y, j)eppB, (z,i9)eppC,
(y,7) # (x,4p), and C' # B is nay.

Case 2: ((z,ip),B) is a flag. Then zeB and s(z,B) = [y for some b €
{1,...,b}. Thus, the number of flags ((y,7),C) such that (y,j)eppB, (y,j) #
(x,i0)eppC,C # B and y # z is nfy. Hence, the number of flags ((y, 5),C) such
that (y,7)eppB, (y,7) # (x,i0)eppC,C # B and y = x is (n—1)(r—1). Therefore,
the number of flags ((y,7),C) such that (y,j)eppB, (z,i0)epprC, (y,7) # (x,ip),
and C' # B is nffy + (n —1)(r — 1). O

Remark. If ay,...,a, > 1 and 1 < k < v — 1, then we can choose an n € N,
such that (2, %4,epp) is a is a tactical configuration with nay, ..., na, > 1 and

3<kn<wn-—3.

Lemma 1.2.3. [Duplication of blocks] Let (£, %,¢) be a tactical configuration
with parameters (v,b,k,r;aq,...,04;081,...,0). Let m € N. Let ' = {(B,1i) :
Be%#andie{l,2,..., m}}. Forx € & and (B,i) € #', we define vepp(B, 1)
if and only if xe B. Then the incidence structure (22, %', cpp) is a tactical configu-
ration with parameters (v, bm, k,rm;may, ..., mag;mpB+(m—1)(k—1),... , mB+

(m—1)(k —1)).



Proof. Let (8, 2,&%) be the dual of (£, %, ¢). It is a tactical configuration with
parameters (b, v, 7, k; a1, ..., a4 B1, ..., B) as in Proposition 1.2.1. Let (%', 2, %)
be the incidence structure obtained from duplicating m points of (%, 2, ¢%) as in
Lemma 1.2.2. Tt is a tactical configuration with parameters (mb, v, mr, k; may, . . .,
mag;mBy + (m — 1)k —1),...,mBy + (m — 1)(k — 1)). Let (2,4, ()% be
the dual of (&', 2,c%). Then (P, %', (¢¥)?) is the incidence structure obtained
from duplicating m blocks of (£, %, ¢), so (2, %', () = (P, A ,epp) is a
tactical configuration with parameters (v, bm,k,rm;may, ..., mag;mpBy + (m —

D(k—1),...,mBy+ (m — 1)(k —1)). O

Remark. If ay,...,a, > 1 and 1 < r < b — 1, then we can choose an m € N,
such that (27,4, epp) is a tactical configuration with may,...,ma, > 1 and

3<rm<bm-—3.

Let (£, %, €) be a tactical configuration with parameters (v, b, k,7; o, . . ., Qq;
B1,...,0). The duplication of points and blocks is a incidence structure
(P, B eppp) such that n,m € N, &' = {(z,i) : x € P and i € {1,2,...,n}},
B ={(B,j):Be Bandjec{l,2,...,m}} and for (z,i) € &' and (B,j) € #,
we define (z,1)eppp(B,J) if and only if zeB.

Theorem 1.2.4. [Duplication of points and blocks]| Let (£, %, €) be a tactical con-
figuration with parameters (v,b,k,r;aq, ..., aq; B, ..., ). Then the duplication of
points and blocks is the incidence structure such that it is a tactical configuration
with parameters (vn, bm, kn,rm;nmay, ... ,nmag;nm(fy +r+k—1) —mr—kn+

L...onm(Bp+r+k—1)—mr—kn+1).

Proof. Let (Zpp, Bpp,epp) be the incidence structure obtained from duplicating
n points of (2, %4, ¢) as in Lemma 1.2.2. Then it is a tactical configuration with
parameters (vn, b, kn,r;naq, ..., nagnf+(n—1)(r—1),... nB+(n—1)(r—1)).
Let (27, %' ,eppp) be the incidence structure obtained from duplicating m blocks
of (Zpp, Bpp,epp) as in Lemma 1.2.3. Then it is a 1%—design with parameters
(vn, bm, kn,rm;nmoy, ... ,nmag;nm(Br+r+k—1) —mr —kn+1,... ., nm(B, +

r+k—1) —mr —kn +1). Hence, (9',%  eppp) is the incidence structure



obtained from duplicating n points and m blocks of (&, %, e) with parameters
(vn, bm, kn,rm;nmay, ... ,nmag;nm(Br+r+k—1)—mr—kn+1,....nm(G, +

r+k—1)—mr—kn+1). O

Theorem 1.2.5. Let (&, A, ) be a tactical configuration with parameters (v, b, k,r;
a1y, 0g; P10, By) such that aq,...,0 > 1, 1<k<v—1,and1 <r <b-1.

Then we can construct a proper tactical configuration from (P, R, ¢).
Proof. 1t follows from combining the two remarks mentioned earlier. O

Example 1.2.1. Let 7 be not a proper 1%—design with parameters (2n,n?, 2,n; 1;0)
in Example 1.1.4. Let T’ be the incidence structure obtained from duplicating c
points and d blocks of T with parameters (2nc, nd, 2c, nd; cd; cd(n+1)—nd—2c+1)
such that ¢,d > 3. Then 7' is a proper 1%—desz’gn.

We shall apply this duplication techniques to obtain lé—designs from symplectic
geometry and orthogonal geometry over finite local rings in Chapters II and III,

respectively.

1.3 Undirected graphs

A graph is an ordered pair G = (V, F) comprising a set V' of vertices with a set
E of edges, consisting of 2-element subsets of V.

A k-regular graph is a graph such that for every vertices there are k adjacent
vertices.

A strongly regular graph with parameters (v, k, A, pt) is a k-regular graph on
v vertices such that for every pair of adjacent vertices there are A vertices adjacent
to both, and every pair of non-adjacent vertices there are pu vertices adjacent to
both.

A quasi-strongly regular graph with parameters (v, k, A, ¢1, ¢2) is a k-regular
graph on v vertices such that for every pair of adjacent vertices there are A vertices
adjacent to both, and every pair of non-adjacent vertices there are c¢; or ¢y vertices

adjacent to both.



For a graph G, we write V(G) for its vertex set and £(G) for its edge set. Let
G and H be graphs. A function f from V(G) to V(H) is a homomorphism from
G to H if f(g1) and f(go) are adjacent in H whenever g; and g, are adjacent in G.
It is called an isomorphism if it is a bijection and f~! is a homomorphism from
H onto GG. Moverover, an isomorphism on G is called an automorphism. The
set of all isomorphisms of a graph G is denoted by Aut(G). It is a group under
composition, called the automorphism group of G.

A graph G is vertex transitive if its automorphism group acts transitively
on the vertex set. That is, for any two vertices of (G, there is an automorphism
carrying one to the other. An arc in G is a ordered pair of adjacent vertices, and
(G is arc transitive if its automorphism group acts transitively on its arcs. Note
that an arc transitive graph is necessarily vertex and edge transitive.

A set I of vertices of a graph G is called an independent set if no two distinct

vertices of I are adjacent.

Example 1.3.1. Let G = (V, E) be a graph such that V = {1,...,8} and E =
{{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8}, {8, 1}}

~

. G is a quasi-strongly regular graph with parameters (8,2,0,1,0).

2. G is an arc transitive graph.

Co

. {1,3,5} is an independent set but it is not a maximal independent set.

E

. {1,3,5,7} is a mazimal independent set.

O

. {1,4,6} is a mazimal independent set.



The thesis is organized as follows. Chapter II works on tacical configurations
arising from symplectic graphs over finite local rings. We construct parallel tacical
configurations from orthogonal graphs over finite local rings in Chapter I1I. They
provide an applications of duplication of points and blocks. Also the results on
subconstiuens studied in [5, 6, 7, 8, 9] allow as to compute the parameters of the
new configurations explicitly. The final chapter studies the parameters of directed
graphs arising from tacical configurations constructed in Chapters II and III. The

definition of these directed graphs are from Brouwer, Olmez and Song [1].



CHAPTER 11
TACTICAL CONFIGURATIONS FROM SYMPLECTIC
GRAPHS OVER FINITE LOCAL RINGS

In this chapter, we discuss symplectic graphs over finite local rings [7, 8, 10] and
construct tactical configurations from symplectic graph over finite local rings.

A local ring is a commutative ring which unique maximal ideal M consisting
of all non-unit elements. We call the field R/M, the residue field of a local ring R.
For example, every field is a local ring with maximal ideal {0} and Z,~, p a prime

and n € N, is a local ring with maximal ideal pZ,» and residue field Z,n /pZ .

2.1 Symplectic graphs over finite local rings

Let R be a finite local ring with unique maximal ideal M and let (V) /) be a

symplectic space of rank 2v, where v > 1. That is, V is a free R-module of rank

2v and possesses a basis B = {51, by, . .., 521,} in which
0 I,
[/B]B - K2l/ —
-1, 0

Therefore, if ¥ = Ilgl + $252 4+ 4 :B21,521, and § = ylgl + ’yggg + e+ yQVZ;QV are

vectors in V, then

T
(377?7)2<$1 Tg - 902;/) Ko, (2/1 Ya - ?/21/> .

@

If 7= 04151 + 04252 + e+ 0421,521, and «; is a unit in R for some 7, then 7 is called

a unimodular vector.



Example 2.1.1. Let p be a prime number and let R be the ring of integers module
p",Zyn or the field of p" elements, F, where n € N. For v > 1, let V' denote the
set of 2vu-tuples (x1,...,xa,) of elements in R. Define f:V xV — R by

B((xb cee ,1'21,), (yla s 71/21/)) = (3717 S 7-7321/)[(21/(917 s ,3/2V)T;

0 I
where Ko, = | and I, is the v X v identity matriz, for all vector

-1, 0
(X1, .-y 22), (Y1, y2) € V. Then (V,B) is a symplectic space, and unimod-

ular vectors in V are those (x1,...,xq,) of elements in R such that x; € R* for

some i € {1,...,2v}.
Define the graph Gg,,(v) whose vertex set V(Ggp,(v)) is the set of lines (rank
one submodules) of unimodular vector, namely,
{RZ : 7 is a unimodular vector in V'}
and its adjacency condition is given by

R7 is adjacent to Ry <= [B(Z,¥) is a unit in R.

We call Gg,,(vy the symplectic graph of (V, 3) over R.

Let R be a finite local ring with unique maximal ideal M and residue field
k = R/M. Let (V,3) be a symplectic space of rank 2v, where v > 1. This
symplectic space induces a 2v dimensional vector space (V', '), where 8 is given

via the canonical map 7 : R — K sending a — a + M by

for all a@, bec V5. Here, we write 7(d) = (w(a1),...,m(ay,)) foralld = (ay,...,as,) €

V. It also follows that

- -

B'(n(a@), n(b)) € K* < B(d,b) € R
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for all @,b € V, where k* = k ~ {0} and R* = R~ M are the unit groups of k

and of R, respectively.
The next theorem presents the relationship of the symplectic graphs over a

finite local rings and over its residue field.

Theorem 2.1.1. [Lifting Theorem] /8] Under the above set up, let k = ST and
let @v,. .., be a unimodular vectors in V' such that V(Gsp (v1)) = {Km(Z;) : i =

1,...,k}. Then the following statements hold.

1. The set I = {R(Z; + M*),..., R(T, + M*)} is a partition of the vertex
set V(Gspr(v)), where R(Z; + M*) = {R(Z; + m) : m € M*} for all i €
{1,...,Kk}. Moreover, for each i € {1,...,Kk}, any two distinct vertices in

R(Z; + M*") are non-adjacent vertices.

kr(Z;) R(&; + M)

° — ) ° ° °
kr(Z) R(Zy +m), m € M

° —_— ) ° ° )
k7 (Zs) R(Zy +m), m € M*

) — ° ) ) )
kr(Z,) R(Z. +m), m € M%

2. |R(Z; + M*)| = [M|*~! for alli € {1,... K}

3. For unimodular vectors Ei,l; € V, we have Ra and Rb are adjacent vertices

-,

in Gspr(vy if and only if Kr(a@) and Kr(b) are adjacent vertices in Ggp, (v).
4. The symplectic graph Gs,, vy is vertez and arc transitive.
The lifting theorem gives the following parameters.

Theorem 2.1.2. [8, 10] Let R be a finite local ring with mazimal ideal M. Let
(V,B) be a symplectic space of rank 2v, where v > 1. Then:
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If R is a field, then Gsp,(vy is |R[* ™! -regular on

R 1
A1

many vertices. Moreover, it is a strongly reqular graph with parameters
A= [R* (IR - 1) and p = |R[*7*(|R| — 1)

If R is a local ring which is not a field, then Gg,, vy is |R|* ™ -reqular on

’R|2V _ |M|2I/
|R| —[M]

many vertices. Moreover, it is a quasi-strongly reqular graph with parameters

A= |RP2(|R] — [M]), er = [RI* (IR — [M]) and c; = [R[*

Let R be a finite local ring with unique maximal ideal M and residue field

k = R/M. Let (V,3) be a symplectic space of rank 2v, where v > 1. For

unimodolar vectors ¥y, ..., T, Y1,...,¥ in V and £ > 1, we write (Zy,...,7;) ~

(U1, .-

,Ue) if there exists an automorphism o of Gg,,(v) such that o(RZ;) = Ry

for all i € {1,...,¢}. Write ¢; for all row vector with 1 at ¢ th row and 0 otherwise

for all i € {1,2,...,2v}. Li, Wang and Zhou [7] proved the following results.

Theorem 2.1.3. [7] Let F be a finite field of order q and let (V,5) be a symplec-

tic space of dimension 2v, where v > 2. For any distinct vertices FZ,Fy,FZ €

V(Gspe(v), we have the following statements.

1.

If FZ is adjacent to Fy, then (Z,) ~ (€,,€,11).
If FZ is non-adjacent to Fy, then (Z,y) ~ (€1, é3).

If FZ is non-adjacent to Fij, FX is non-adjacent to FZ and Fy is adjacent to

—

FZ, then (7,4, 2) = (€,,€,,€,,,).

If FX is adjacent to Fy, FX is adjacent to FZ and Fi is non-adjacent to FZ,

- = — —

then (f7 _’7 g) ~ (617 6u+1’ 62 + €V+l) or (517 €u+1’ 6l/+1 + gy+2)'
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5. If X is adjacent to Fy, FZ is adjacent to FZ and Fy is adjacent to FZ, then
(f, y_: 5) ~ (517 €u+17 51—|—(IV+1€,,+1>, (517 _)7/—‘,-17 €1+€2+au+1gu+l) or (517 gy+1a €1+

ay11€,41 + €,42) where a, 1 € F*.

Let R be a finite local ring of with unique maximal ideal M and residue field
k=R/M. Let (V, ) be a symplectic space of rank 2v over R, where v > 2. Next,

we consider the subconstituents 4" t = 1,2, defined to be the induced

Spr(V)
subgraphs of Ggy,, (1) on the vertex sets
Vi = {R7 € V(Gspyvy)) : RT, is adjacent to Re:}
Vo = {RZ € V(Gspp(vy)) - RT, is non-adjacent to Ré; and RT # Ré}}

1 = 1,2, respectively.

Theorem 2.1.4. [7, 8] Let R be a finite local ring and let (V,3) be a symplectic

space of rank 2v, where v > 2.

1. If R is a field, then gé;L(V) is |R|*72(|R| — 1)-regular on |R|**~1 wvertices.

Moreover,

(a) every two adjacent vertices of gé;z{(v) has (|R| — 2)|R|*~2 or (|R| —
1)?|R|?*=3 common neighbors,
(b) every two non-adjacent vertices of%é;;(v) has (|R|—1)%|R|**~3 common

neighbors,

(c) there are |R| — 1 wvertices in gé;;(v) adjacent to Ré,y1 such that the

|21/—2
’

number of their common neighbors is (|R| — 2)|R and

(d) there are (|R| — 1)(|R[* 2 — 1) wvertices in gé;L(v) adjacent to Ré, 4

such that the number of their common neighbors is (|R| — 1)?|R|* 3.

2. If R is a local ring which is not a field, then E{é;;(v) is |[RI*2(|R| — |M])-

reqular on |R|*~! vertices. Moreover,

(a) every two adjacent vertices ofgéi,;(v) has (|R|—2|M|)|R|**=% or (|R| —

|M|)?|R|**=3 common neighbors,
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(b) every two mon-adjacent vertices of %g;L(V) has (|R| — |M|)?|R|*~3 or
|R|*72(|R| — |M]) common neighbors,

(c) there are (|R|— |M|)|M|*~2 vertices in gé;L(V) adjacent to Re, 1 such
that the number of their common neighbors is (|R| — 2| M|)|R|**~2, and

(d) there are (|R| — |M|)(|R[**72 — |M|**~2) wvertices in %S(,;L(V) adjacent

to Re, .1 such that the number of their common neighbors is (|R| —

| M)?|RI* 2.

Theorem 2.1.5. [7, 8] Let R be a finite local ring and let (V,3) be a symplectic

space of rank 2v, where v > 2.

1. If R is a field, then gs(*iig(‘/) is |R|**~2-regular on % vertices. More-

over,

(a) every two adjacent vertices of %S(;L(V) has |R|*73(|R| — 1) common
neighbors, and

(b) every two non-adjacent vertices OfgéiL(V) has |R|**73(|R|—1) or |R|*~2
common neighbors.

2. If R is a local ring which is not a field, then %éi)R(V) is |R|* =2 M|-regular on

(R**—1—|R)|M]|

vertices. Moreover
|R|—|M]| ’

(a) every two adjacent vertices of %gﬁ;(v) has |R|*73(|R| — |M|)|M| com-

mon neighbors, and

(b) every two non-adjacenct vertices of %ézz(v) has |R|*73(|R| — |M|)| M|
or |R|* 72| M| common neighbors.
2.2 Construction of tactical configurations

Let R be a finite local ring of with unique maximal ideal M and residue field

k= R/M and let (V, ) be a symplectic space of rank 2v, v > 2.
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2.2.1 1%-designs from symplectic graphs over finite local
rings

Let & be the set of vertices of symplectic graph Gg,,(v) and let # be collection of
maximal independent sets of the graph. For x € & and B € 4, we define zeB if
and only if x € B. The next theorem was stuided in [2] by Chai, Feng and Zeng.
Its results show that if R is a field, then the incidence structure 7 = (£, %, ¢) is

a lé—design.

Theorem 2.2.1. [2] Let F be a finite field of order q and let (V, ) be a symplectic
space of dimension 2v, v > 2. Let & = V(Gspe(v)) and let B be a collection of
mazimal independent sets of Gspevy. For x € &2 and B € A, we define veB if
and only if x € B. Then the incidence structure J = (P, B, ¢) is a 1%—design.

Furthermore, the parameters of 7} is

v=221 h=T[(¢ +1)
=1

v—=1
k:qq:ll’ T = 1:[1((]7'—'—1),

with oy =1 and B1 =0 if v =2, and with

v—2 v—2

=2 T+ 1), B =220 (T +1) - 1)

i=1 =1

otherwise.

By Theorem 2.1.1 (2) and (3) (Lifting Theorem), 7] is the incidence struc-
ture obtained from duplicating |M|*~! points and 1 blocks of .Z; in Theorem
2.2.1. Hence, by Theorem 1.2.4, it is a 1%—design with parameters recorded in the

following theorem.

Theorem 2.2.2. Let R be a finite local ring with mazimal ideal M and let (V, )
be a symplectic space of rank 2v, v > 2. Let & = V(Gspy ) and let B be a
collection of mazimal independent sets of Gsppnvy. For v € & and B € A, we
define xeB if and only if x € B. Then the incidence structure I = (22, A, ¢€) is

a 1%-design. Furthermore, the parameters of 7 is
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v — |R|2V—‘M|2V b _ 11;11(|R|Z+|M‘1)
|R|—[M] 7 (w+r
M| 2
v—1
[T (R +|M[)
_ |RP =M v _ =
k= rmmr M7 r ==y
M| 2
with a1 = M and 6y = (2/R|+ M)\ M = (|| + MM = B0 41 v =2,
and with B
(IRl" =1 =[M]"—1) _l;[l(\R|i+\M|i)
a1 = - (w—2)—2(v+1)
(RI=|M))|M] 2 3
(2|R[*—|R[*~!|M|=|M|") ,1;[1(\R|i+\M|i) _1;[1(\R|i+\MV) RIY—|R)” ,
pr = -1 (v—2)—2v - v=Dv ~ R|=|M] | M +1
~ (RI=IM])IM] 2 M| 2
otherwise.

2.2.2 Other tactical configurations

In this section, we apply results on subconstituents, namely, Theorems 2.1.4 and
2.1.5, in construction other tactical configurations. They are not 1%—designs. How-

ever, we can compute the parameters o’s and ’s.

Lemma 2.2.3. Let F be a finite field of order q and let (V, 3) be a symplectic space
of dimension 2v, where v > 2. Let FT and Fy be adjacenct vertices in Ggp_(v).
Then the number of edges whose both vertices are common neighbors of FX and Fy

15 given by

Agp = (qfl):*(472”‘271)f12”;3+(qfl)(q72)qz”‘2 '

Proof. Let C' be an edge such that both vertices are common neighbors of FZ and
Fy. Since FZ is adjacent to Fy, there exists o automorphism carries FZ to Fey, Fy
to Fe,. 1, Fei to Fc_’i and Fé; to Fc_g where F¢i and Fc; are both vertices of C' by

Theorem 2.1.3 (1).
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Thus, the number of edges C' is the number of 3-cycle at Fe,, in Qg?F Wv)- We
distinguish two cases.
Case 1: Fc_’i and Fé,,; have (¢ — 1)%¢**~3 common neighbors. It follows from
Theorem 2.1.4 (1d) that the number of 3-cycles at Fe,; is given by product that

(=132 -1)¢>~*
5 :

Case 2: It follows from Theorem 2.1.4 (1c) that the number of 3-cycles at Fé, 1y

is given by product that

(g—1)(g—2)¢?* 2
A

Hence, the number of edges C' is the sum

_1\3(,2v—2__ 2v—-3 _ _ 2v—2 _1\3(,2v—2_ 2v—3 _ _ 2v—2
Agp = (g=1)°(q - Dq 4+ 1)(q22)q _ (=1)°( g - +(g=1)(g—2)q

as desired. O

Lemma 2.2.4. Let F be a finite field of order q and let (V,3) be a symplectic space
of dimension 2v, where v > 2. Let FT and Fyj be non-adjacent vertices in Ggp,(v).
The number of edges whose both vertices are common neighbors of FT and Fi is

given by

Proof. Let C be an edge such that both vertices are common neighbors of FZ and
Fy. Since FZ is non-adjacent to Fy, there exists ops automorphism carries FZ to
Fq?’, Fy to Fg]’, Fei to Fe and Feé; to F072 where F¢; and Fé, are both vertices of

C by Theorem 2.1.1 (4).

Thus, the number of edges C is the product of the number of the common

neighbors Fc71 of Fz’ and Fy_7 in Ggpe(v) and half of the number of common neighbor
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of Fz/ and Fy/ in Qg?p(v). By Theorem 2.1.2 (1) the common neighbors of Fa/ and
Fy' in Gor(v) is (¢ — 1)¢**~2. The number of common neighbors of F2” and Fy’ in

gé?F(V) is (¢ — 1)%¢**~3 by Theorem 2.1.4 (1b). Hence,

4v—5 3
_q (g=1)
C’Sp = —F

as desired. [

Let R be a finite local ring with unique maximal ideal M and residue field k =
R/M and let (V, ) be a symplectic space of rank 2v, v > 2. Let & = V(Go,v))
and B = E(Goyv)). For v € & and B € A, we define xeB if and only if x is a
common neighbor of B. If R is a field, then the incidence structure 9% = (%, %, ¢)

was stuided in next theorem.

Theorem 2.2.5. Let F be a finite field of order q of and let (V, 3) be a symplectic
space of dimension 2v, v > 2. Let & = V(Gspe(v)) and B = E(Gspe(vy). For
F¥r e & and B € B, we define FreB if and only if FX is a common neighbor of

B. Then the incidence structure Jy = (P, A, ¢) is a tactical configuration with

parameters

vo= L5

p = e
o= ¢ (¢-1),
o= q“”‘3(q71)7

24203 (q—1)3(qQ”""—1)!12”;3+(q—l)(q—2)z12”‘2 +(q— 1)q2u73 q“”‘f’;q—l)?’7

2w_2 (q_1)3(q2u—2_1)q2u73+(q_1)(q_2)q2u72

(¢—1)

az = (q¢—1)q 5 ,
(¢—1)
(¢ —2)

o =

b =
By =

Proof. Since Ggp(v) is strongly regular and vertex transitive, .7 is a tactical con-

q 2

q—2 q2u72(q—1)3(q2”‘2—1)q2”‘z+(q—1)(q—2)q2”‘2—2 + (g2 — 1)q4”‘5(q2—1)3—2‘

2

. . 2v 21/_1 2v—1 v 4v—3 -1
figuration with parameters (qq_ll, (g Q(qqu) L2 (qg—1), qT(q)). Let Ag, and
Csp be given in Lemmas 2.2.3 and 2.2.4, respectively. Let F¥ € & and B € #
such that B is with vertices Fy; and Fys.
Case 1: (FZ, B) is an antiflag.

Case 1.1: FZ is adjacent to Fy; but x is non-adjacent to Fy;. Then (Z, 91, y5) ~

2 20-3(q—1)3(¢*2—1)¢> 3+ (¢—1)(¢—2)g* 22 +((q - 1>q2u—3 . 1)114”*5(«171)3*2

Y
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(€,41,€1, €2+ €,11) OF (€11, €1, 6,11 + €,12) by Theorem 2.1.3 (4). Thus,
s(FZ,B) = > Arerg + > AFzFg

Fye B,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fg

= (¢—1*¢* 7 Asp + (™ (g — 1) — (¢ — 1)¢*°)Cs,
by Theorem 2.1.4 (1b).

Case 1.2: F7 is non-adjacent to Fyj and Fys. Then (%, 41, 9y2) ~ (€1, €2, €,.2) by
Theorem 2.1.3 (3). Thus,

s(FZ,B) = > ArzFy + > AFzFy

FyeB,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fy

= (®q—1) = (¢—1)¢* *)Agp + (¢ — 1)¢*>Cs)
by Theorem 2.1.5 (1a).

Case 1.3: F¥ = Fy;. Then (Z,93) =~ (€1, €,+1) by Theorem 2.1.3 (1). Thus,
s(FZ,B) = > AFzFy + > AFzFy

Fye B,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fy

= ¢ q—1DAsp+ (¢® (g —1) = ¢ 2(q—1))Csp
by Theorem 2.1.2 (1).

Case 2: (FZ, B) is a flag. Then (91, 95, %) = (€1, €,41, €1+ ay11€v11), (€1, 611,61+
€y 4 ay11€,41) Or (€1, €41, €1+ ay11€,11+E,40) where a,; € F* by Theorem 2.1.3
(5) Thus,

s(Fz,B) = > (Arzrg — 1)+

Fye B,Fy#FZ,FZ is adjacent to Fy

(Arzry — 1)

Fije B,Fij#F#,F& is non-adjacent to Fj
= ((@=12¢" ) (Asp = D)+ (¢ (= 1) = 1= (¢ = 1)°¢*7*)(Cgp — 1) 0r
(7 =2)¢**(Asp = )+ (¢* (¢ — 1) = 1= (¢ = 2)¢**)(Csp — 1)
by Theorem 2.1.4 (1a). O
By Theorem 2.1.1 (2) and (3) (Lifting Theorem), % is the incidence structure
obtained from duplicating |M |*~! points and (|M|?*~1)? blocks of .7, in Theorems
2.2.5. Hence, by Theorem 1.2.4, it is a tactical configuration with parameters

recorded in the following theorem.

Theorem 2.2.6. Let R be a finite local ring with mazimal ideal M and let (V, )
be a symplectic space of rank 2v, v > 2. Let &2 = V(Ggpp(v)) and B = E(Gspu(v))-
For R¥ € & and B € A, we define R¥eB if and only if R¥ is a common neighbor
of B. Then the incidence structure 5 = (2, B, ¢) is a tactical configuration with
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parameters
v |R|2V—‘M|2V
|R|—|M] >
I (R[*—|MP)| R[>~
2(|R|—[MT) ’
202
ko= [RP*(R| = |M]),
r = [R|* 3 (|R|=|M])
2 )

_ 2| p|2v—3 (IRI=IM)3(|R|?¥~2 = |M|**~2)|R|** ~3+(|R|=|M])(|R|—2|M|)|R|?* 2| M|?—2
ap = |R|_|M| |R| 2 +

)
‘R’ . |M’)|R’2”_3|M‘ |R\4”75(|§\—\M|)37
2v—2 (|RI=IM)3(|R|>* 2= |M[**~)|R|** 3+ (|RI—=|M|)(|R|—2|M|)|R|>* 2| M|?—2
|R| — [M])|R] 5

)

b =

(
(
as = |
(|R| = |M|)?|R|?3 ((|R|—|M|)3(|Rl2”_22—|M\2”_2)|M|2”_3+
(

R|—|M R|—2|M R21/72 M2V727 M4l/72 v v
[RIZIM(RI=2IM IR 2 M2 )+((|R\—|M|)|R|2 3 M)
R4V75 R|—|M 3_ M4u72 v v R4V73M2V71 R|—|M
><|M||| (|\|2|) 2| M| —1—|R|2 2|M|4 2(|R|—|M|)+I| | |2 (IR[=1M])
v— v— |R|*" 3 (|R|-|M])
—(IMPP=1)% — |R*72(IR| — |M]) — ; +1,

By = (|R|—2|M|)|R|?? ((|R|—|M|)3(|R\2”—22—\M|2”—2)|M|2”—3+

R|—|M)(|R|—2|M|)|R|2*—2|M|?¥~2—2| M|+ —2 v— v—
(IRI=IMD(R|—-2] \)II2 |M] | M] )+(|R[2 2—]M|2 2)

R4u—5 R|l—|M 3_ M41/—2 v v
><|]\4||| (x| |2\) 2| M| +|R|2 2|M|4 2(|R|—|M|)+

R4V73M2V71 R|—|M v v R4IJ73 R|—|M
R MR (| ppjv-1y | RI2-2(|R| — |M]) — BRI |




CHAPTER I11
TACTICAL CONFIGURATIONS FROM ORTHOGONAL
GRAPHS OVER FINITE LOCAL RINGS

We use orthogonal graphs over finite local rings to construct tactical configurations

in this Chapter. Results are parallel with Chapter II.

3.1 Orthogonal graphs over finite local rings

Let R be a finite local ring of odd characteristic with unique maximal ideal M and
let (Vs, B) be an orthogonal space of rank 2v+4, where v > 1,0 € {0,1,2}. That
is, Vj is a free R-module of rank 2v+ ¢ and possesses a basis B = {l;l, 52, . ,521,+5}

in which
0 I,

1Bls = Sovisa= |1, 0 :

where )

@(disappear) if 6 =0,

A=14(1)or (2) if 0 =1,

diag(1l,—2) if 6 =2,

and z is a fixed non-square unit in R. Therefore, if Z = x1b1 +xobo+- - -+ 29,1 602,16

and § = y151 + y252 + -+ yg,,Jr(;l;Q,,Jﬂ; are vectors in V', then

T
5(5737):(:161 Ty - xgy+5) S2u+5,A (yl Ya - ?/2u+5> :

If ¥ = a1by + agby + -+ + aoy,y5ba, s and «; is a unit in R for some 4, then ¥ is

called a unimodular vector.
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Example 3.1.1. Let p be an odd prime number and let R be the ring of integers
modulo p",Z,n or the field of p" elements, F, wheren € N. Forv > 1,6 € {0,1,2},
let V' denote the set of 2v + d-tuples (x1,...,x9,.5) of elements in R. Define
B:VxV —= R by

ﬁ((‘rh <. Jx2l/+6>7 (y17 s 7y2u+6)) = ('rla S 7$2V+5>521/+5,A(y17 v 7y21/+5)T7

¢

0 I, @ (disappear) if 6 =0,
where Soyisa = | I, 0 , such that A = (1) or (2) if 6 =1,
A diag(1,—2)  if§ =2,

\

z s a fixed non-square unit in R and I, is the v X v identity matriz, for all
vector (T1,...,Toyss), (Y1, .- Yowrs) € V. Then (V,B) is an orthogonal space,
and unimodular vectors in V' are those (xy,...,Ta,15) of elements in R such that

x; € R* for some i € {1,...,2v+0}.

Define the graph Go,,(v,) whose vertex set V(Go,(v;)) is the set of lines (rank

one submodules) of unimodular vectors of zero norm, namely,
{RZ : ¥ is a unimodular vector in Vy and §(Z,Z) = 0}
and its adjacency condition is given by
R7 is adjacent to Ry <= [B(Z,¥) is a unit in R.

We call Go,,(v;) the orthogonal graph of (V;, 3) over R.

If K is a finite field and Vj is an orthogonal space over K of dimension 2v + 4,
where v > 1 and § € {0,1,2}, then Gu and Wan [4] showed that Go,(v;) is a
|k|*T9=1 + 1-partite graph with partite sets X1, X, ... , Xjkp+6-141 such that | X;| =

Nt forallie {1,2,.. [kt 413

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and residue field k = R/M. Let (Vs,3) be an orthogonal space of rank 2v + 9,

where v > 1 and § € {0,1,2}. This orthogonal space induces a 2v + ¢ dimensional
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vector space (V4,3'), where ' is given via the canonical map 7 : R — K sending

a+— a+ M by
B'(n(a@,b)) = m(8(a,b))

for all d@, be V. Here, we write w(@) = (m(ay), ..., m(ag,4s)) foralld = (aq, ..., a9,+5) €

Vs. It also follows that

- -

B'(r(@), m(b)) € K* « B(a@,b) € R
for all @,b € Vs, where k* = k ~ {0} and R* = R~ M are the unit groups of k
and of R, respectively.

The next theorem given the relationship of the orthogonal graphs over a finite

local rings and over its residue field. It is the lifting theorem for orthogonal graphs.

Theorem 3.1.1. [Lifting Theorem| [9] Under the above set up, let k = |k‘”+5*1 +1
and | = K= o cach i € {1,...,k}, let X; = {Z;,,..., T} be the set of

K—1
unimodular vectors in Vs with zero norm such that {{km(Z;)) : s =1,...,1} :i =
1,...,k} is a partition of V(Go,(vy)) satisfying K (Z;,) and K (Z;,) are non-adjacent

vertices for all s # t. Then the following statements hold.

1. The set Tl = {R(X;+M?>*9) ... R(X,.+ M**°} is a partition of the vertex
set V(Gon(vy)), where R(X; + M* ) = {R(%;, +m) : s € {1,...,l},m €
M0 and B(Z;, + m, T, +m) = 0} for all i € {1,...,k}. For each i,
the lifting of the vertices corresponding with elements in X; to vertices in

R(X; + M?*7%9) is demonstrated below.
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X; R(X; + M*7%9)

[ ] — [ ] () o e °
k(i) R(F5, + 1), m € M2 and B(&, + 1, &, +17) = 0

[ ] — [ J [ ] () “ e Y
kn(Z,,) R(Fs, + 1), m € M2 and B(&, + 1, &, +17) = 0

[} — ® ° ° . °
k(i) R(Z, + 1), 1 € M0 and (%, + 1, T, +17) = 0

Moreover, for eachi € {1,...,k}, any two distinct vertices in R(X;+ M?*+°)

are non-adjacent vertices. Hence, Go,(vy) s a k-partite graph.
2. |R(X; + M2+ | = [|M|***9=2 for alli € {1,...,K}.

3. For unimodular vectors with zero norm d, be Vs, we have Ra and Rb are ad-

-,

jJacent vertices in Goy(vy) if and only if Kr(@) and Km(b) are adjacent vertices

mn on(vg) .

4. Fori,j e {l,...,k}, s,t € {1,...,1} and s # t, if Kn(Z;,) and kr(Z},) are
adjacent vertices, then R(Z;, +my) and R(Z;, +m2) are adjacent vertices in
the graph Goy(vy) for all mq, ma € M> 0 such that B(Z;, + 1, T, + 1m1) =

5(5]2 + mQa fjt + Tﬁz) = 0.
5. The orthogonal graph Go, vy is vertexr and arc transitive.
The Lifting Theorem gives the following parameters.

Theorem 3.1.2. [4, 9] Let R be a finite local ring of odd characteristic with maz-
imal ideal M. Let (V,[) be an orthogonal space of rank 2v + §, where v > 1 and
5 €{0,1,2}.

1. If R is a field, then Go,vy is |R|* =% -regular on

(=" = DR +1)
R =1
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many vertices. Moverover,
(a) If v =1, then it is a strongly reqular graph with parameters
A= |R|° -1 and p = [§/2]|R)
(b) If v > 2, then it is a strongly regular graph with parameters
A = |R|?"+9-2 — |R|2+3-3 — |R|"~1 + |R|+6-2
p= (IR = 1)|R**~3.
2. If R is a local ring which is not a field, then Go, ) is |R|?¥+9=2 _regular on

(R)” — [M")(IRP7 + [M]7H)
|R| = [M]

many vertices. Moverover,
(a) If v =1, then it is a strongly reqular graph with parameters
A=|R|" = [M|° and pu = [6/2]|R|?
(b) If v > 2, then it is a quasi-strongly regular graph with parameters

\ = |R|2y+572 _ |R|2u+673|M| _ |R|V*1|M|V+5*1 + |R|V+5*2|M|l/
1 = (1| = MR and ey = | R+

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and residue field k = R/M. Let (V5,3) be an orthogonal space of rank 2v + 4,
where v > 1 and 6 € {0,1,2}. For unimodolar vectors &y, ..., Z¢, 41, ..., ¥ in Vy
with zero norm and ¢ > 1, we write (Z1,...,%Z¢) =~ (¥1,...,Y) if there exists an
automorphism o of Go,,(v) such that o(RZ;) = Ry; for all ¢ € {1,...,¢}. Write ¢
for all row vector with 1 at ¢ th row and 0 otherwise for all i € {1,2,...,2v + d}.

Gu and Wan [6] obtained the following results.

Theorem 3.1.3. [6] Let F be a finite field of odd order q and let (V, ) be an
orthogonal space of dimension 2v + 0, where v > 2 and 6 € {0,1,2}. For any

distinct vertices F¥, Fij,FZ € V(Gog(v)), we have the following statements.



25

. If FZ is adjacent to Fyj, then (Z,7) =~ (€,,€,41)-

1
. If FZ is non-adjacent to Fy, then (T,y) =~ (€}, €2).

. If FZ is non-adjacent to Fy, F¥ is non-adjacent to FZ and Fy is adjacent to

FZ, then (Z,7,2) ~ (€,,€,,€,,,).

. If FX is adjacent to Fy, FT is adjacent to FZ' and Fy is non-adjacent to FZ,

then (Z,v,2) = (€,,€,,,,6, +€,,,).

. If FX is adjacent to Fy, F¥ is adjacent to FZ and Fy is adjacent to FZ, then

(ZL’, Y, Z) ~ (617 €,11:6 te + ae, ., —ae, .,

) where a € F*.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and residue field k = R/M. Let (Vs, ) be an orthogonal space of rank 2v + § over

R, where v > 2, § = {0,1,2}. Next, we consider the subconstituents QgL(V(s

)7

i = 1,2, defined to be the induced subgraphs of Go,(v;) on the vertex sets

Vi = {RZ € V(Go,,) : RZ, is adjacent to Ré;}
Vo = {RZ € V(Go,vy)) : RZ, is non-adjacent to Rey and RZ # Re}

1 =1, 2, respectively.

Theorem 3.1.4. /5, 6, 9] Let R be a finite local ring of odd characteristic with

mazximal ideal M. Let (V,[3) be an orthogonal space of rank 2v + 0, where v > 2
and § € {0,1,2}.

1. If R is a field, then Qg;(v) is |R|# 072 — | R|2FO-3 4| R|V 02 — | R|¥-regular

on |R|*+°=2 many vertices. Moverover,

(a) If 6 = 0, then any two adjacent vertices have (|R]Y —2|R| ™' +|R|*" 2 —
2|R| + 3)|R|"™2 common neighbors and any two non-adjacent vertices
have (|R| — 1)(|R]*™' — |R|*~2 — 1)|R|""? common neighbors.

(b) If § = 1, then any two adjacent vertices have |R|**73(|R — 1)% or
|R|"72(|R|"** — 2|R|” + |R|*™" + 2|) common neighbors and any two

non-adjacent vertices have |R|**73(2|R| — 3) common neighbors.
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(c) If § = 2, then any two adjacent vertices have |R|* —2|R|* '+ |R|* 2+
2|R|Y — 3|R|"~' common neighbors and any two non-adjacent vertices

have (|R| — D)(|R[* ' — |R|*~2 + |R|*™!) common neighbors.

2. If R is a local ring which is not a field, then g(ol,i(V) is |R|? 02— | R|* O3 | M|+

|R[“FO=2| M |¥—|R|" =Y M |* = -regular on | R|* =2 many vertices. Moverover,

(a) If § = 0, then any two adjacent vertices have (|R|” — 2|R|*7'|M| +
|R|" 2| M > =2|R||M|*~ ' +3|M|")|R|"~? common neighbors and any two
non-adjacent vertices have (|R|—|M|)(|R|*~'—|R[* 72| M |—|M|*~1)|R|*~*
or (|R| — |M|)(|R|"™* — |M|*~1)|R|""2 common neighbors.

(b) If § = 1, then any two adjacent vertices have |R[*3(|R| — |M|)? or
|R|"72(|R|"T" — 2|R|*|M| + |R|*"YM|?* + 2|M[**) common neighbors
and any two nmon-adjacent vertices have |R|**~3(2|R||M| — 3|M|?) or
|R|*72(|R| — |M|) common neighbors.

(c) If 6 = 2, then any two adjacent vertices have |R|* — 2|R|* M| +
| R 72| M *+2|R|"|M|" —=3|R|* " M|"T' common neighbors and any two
non-adjacent vertices have (|R|—|M|)(|R|* ' —|R|* 2| M |+|R|*~ | M|")
or (|R| — |M|)(|R[*~! + |R|*"'|M|") common neighbors.

Theorem 3.1.5. /5, 6, 9] Let R be a finite local ring of odd characteristic with
maximal ideal M. Let (Vs, B) be an orthogonal space of rank 2v + 6, where v > 2
and 6 € {0,1,2}.

[RI(R" = DR +1)

1. If R is a field, then %gR)(Vé) is | R|*+973| M |-regular on R-1

many vertices. Moreover,

(a) If v =2, then it is a strongly reqular graph with parameters
A= |R[*"" —|R| and p = |R|*"",

respectively.
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(b) If v > 3, then it is a quasi-strongly reqular graph with parameters

A=|RP2(RPTN =[R2 — R+ |RP),

¢ = ‘R|2u+574<|R| . 1) and Cy = |R‘2u+673’

respectively.

2. If R is not a field, then %gR)(V&) is |R|?*+973| M |-regular on
[RI(R" — [M" D ([ RI"72 4 [M]"+02) | M]

many vertices. Moreover
|R| — [M] ’

(a) If v =2, then it is a strongly reqular graph with parameters
A= (R —|RI|M|")|M| and p = |R]"*|M],

respectively.

(b) If v > 3, then it is a quasi-strongly reqular graph with parameters

A= |RIPZ(IRIOTM] = (R MP — [ RI[MT 4 |RIPIMY),

a1 = [RP"F7H(IR| = [M))M] and c; = [R[* %] M],

respectively.

3.2 Construction of tactical configurations

Let R be a finite local ring of odd characteristic with unique maximal ideal M and
residue field K = R/M and let (Vj, 8) be an orthogonal space of rank 2v +§, v > 2
and 0 € {0, 1,2}.
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3.2.1 1%-designs from orthogonal graphs over finite local
rings

Let &2 be the set of vertices of orthogonal graph Go,,(v) and let % be collection of
maximal independent sets of the graph. For x € & and B € 4, we define zeB if
and only if x € B. The next theorem was stuided in [3] by Feng, Zhoa and Zeng.
Its results show that if R is a field, then the incidence structure 75 = (£, %, ¢) is

a lé—design.

Theorem 3.2.1. [3] Let F be the finite field of odd order q and let (V,3) be an
orthogonal space of rank 2v+0, v > 2 and 6 € {0,1,2}. Let & = V(Gogv)) and let
P be a collection of mazimal independent sets of Gogvy. Forx € & and B € 4,
we define xeB if and only if x € B. Then the incidence structure I3 = (P, B, ¢)

8 a lé—design with parameters

v (qy_l)(;;:afwl)? h— H(qi+6—1 +1),
i=1
v—1
k; = qq:ll; r = 11 (ql‘f’(s*]. + 1)7
with ay =1 and 1 =0 if v = 2, and with
¢ T i1 0@ =) (T i1
ar =5 [l +1), i = L= ([ +1) - 1)

i=1 =1

otherwise.

By Theorem 3.1.1 (2) and (3) (Lifting Theorem), .73 is the incidence struc-
ture obtained from duplicating |M|**+°=2 points and 1 blocks of 7 in Theorem
3.2.1. Hence, by Theorem 1.2.4, it is a lé—design with parameters recorded in the

following theorem.

Theorem 3.2.2. Let R be a finite local ring of odd characteristic with maximal
ideal M and let (V, 3) be an orthogonal space of rank 2v+9, v > 2 and § € {0, 1,2}.
Let & = V(Gonv)) and let & be a collection of maximal independent sets of
Gopv). Forx € & and B € A, we define xeB if and only if x € B. Then the

incidence structure I3 = (P, B, €) is a 1%—design with parameters
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v

[T (RO +M[H07T)

v = (RlY =M (|R[* Ot 4| M| +o 1) h— i=L S
- _ ) - v+25—1)v )
|R|—|M| o
Y
[T (|R[Fo=4|M|iHo—1)
k= |R[Y—|M]|” |M|V+6—1 _ =1
~ |R[-|M] ’ r= (ORI | S
| M| 2

with oy = |M* and B, = |RI*YM|™ + |R| — |M>+® — BLZME prieet

|R|—|M]
QRPVHIMI) g ifv=2, and

[AIC+D
v—2 . .
(IR[" = =M |"=1) TT (IR["FO = [ M[*Fo~1)
— =1
a1 = (v125-3)(v—2)—2(v19) ’
(I1R|—|M])|M]| 2

v—2

Ri+5—1+ Mi+5—1
g, — IR R e yers=2 LU M)
=

[R|—|M] |M‘(u+25—3)(l/2—2)—2(1/+1)
v—1
[T (IR[* o= Mo . .
_ =l I _ R"—|M] |M‘”+5—1—|—1
v+26—2)(vr—1 —
g R |R|—|M]
otherwise.

3.2.2 Other tactical configurations

In this section, we apply result on subconstituents, namely, Theorems 3.1.4 and
3.1.5, in construction other tactical configurations. They are not 1%-designs. How-

ever, we can compute the parameters o’s and 3’s for § =0 or 2.

Lemma 3.2.3. Let F be a finite field of odd order q and let (V, 3) be an orthogonal
space of dimension 2v + 6, where v > 2 and 6 € {0,2}. Let FZ and Fy be adjacent
vertices i Gog(vy. Then the number of edges whose both vertices of C' are common

neighbors of FX and Fi is given by

1 uflil v_9 v—1 u7272 3 2v—4 .
(¢=1)(q )(g q2 +4q a+3)q if 6 =0,

Aos =

-1 v 1/+1_2 v v—1 20— 2v—2 .
(a=1)(¢"+1)(q g+q +2¢—3)q if 6 =2.

Proof. Let C' be an edge such that both vertices are common neighbors of FZ and
Fy. Since FZ is adjacent to Fy, there exists ¢ automorphism carries F¥' to Fe’, Fi/
to Fe, 1, Fei to Fc_’i and Fé; to Fc_’; where Fc¢i and Fc;y are both vertices of C' by

Theorem 3.1.3 (1).
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Thus, the number of edges C' is the number of 3-cycle at Fé,,; in QSF)(V). It
is the product of the number of the common neighbors ¢ of Fe; and Fe, ; in
Gor(vy and half of the number of common neighbors of Fc71 and Fe, ;1 in ggg(v).

By Theorem 3.1.2 (1) the common neighbors of Fé; and Fé,; is

(q—1)(¢g" ' =1)g"? if6=0,

(¢—D(¢" +1)g" ! if 6 = 2.
The number of common neighbor of Fc71 and Fé, 4 is

(qu_2qu—1+qu—2_2q+3)qu—2 lf(SZO,

("t —2¢" + "1 +2¢ = 3)g ! if =2

by Theorem 3.1.4 (1a) and (1c), respectively. Hence,

(@=D(¢" 1 =1)(a" =29 14" 2 =2q43)¢> " e 5 0,

1 2
0,8 +1 1 2v—2
_1 v 1 v _2 v v— 2 _ vV— .
(¢=1)(¢"+1)(q g +¢" "' +29-3)q if 5 =09,

as desired. O

Lemma 3.2.4. Let F be a finite field of odd order q and let (V, 3) be an orthogonal
space of dimension 2v+9, where v > 2 and § € {0,1,2}. Let FZ and Fy be distinct

non-adjacent vertices in Gog(vy. The number of edge whose both vertices of C' are
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common neighbor of FX and Fy is given by

(

(11—1)(12”*3(<1—1)(q2”*1—qV*Q—l)q”’2 if § =0,

Cos = (qfl)q2”*232”*3(2q73) if 6 =1,

(q—l)tf”‘l(q—l)(q§”‘1—q2“‘2+q“‘1) if § = 2.

\

Proof. Let C be an edge such that both vertices are common neighbors of FZ and
Fy. Since FZ is non-adjacent to Fy, there exists ops automorphism carries FZ' to
F$_7, Fiy to ng’, Fci to Fé and Feé; to Fc72 where F¢; and Fé; are both vertices of

C by Theorem 3.1.1 (5).

Thus, the number of edges C' is the product of the number of the common
neighbors Fc_’i of Fz/ and Fgf/ in Gog(v) and half of the number of common neighbor
of F2/ and Fy/ in ggg(v). By Theorem 3.1.2 (1) the common neighbors of Fa/ and
Fy in Gopvy is

(

(q—1)g*3 ifd=0,

(¢—1g>2 ifd=1,

(q— )¢t ifd=2.

\

The number of common neighbors of Fz' and FyJ’ in g(olF)(V) is

;

(q _ 1)(qu—1 _ qV—2 _ 1)qu—2 if 6 = 0,
329 — 3) if§ =1,

(a= D@ =g +¢") ifo=2

\
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by Theorem 3.1.4 (1a), (1b) and (1c), respectively. Hence,

;

(r1—1)¢12”‘3(q—l)(qz”‘l—t;t”‘2—1)¢1”‘2 if § =0,

Cos = (q—l)q2”*232”*3(2q—3) if§ =1,

(=D Ha=D@ =4 5 — o

2
\

as desired. [

Remark. The case § = 1 involves solving a more complicated equation in order

to determine Ap 5. Therefore, we can compute a’s and 3’s only for § = 0 or 2.

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and residue field k = R/M and let (Vj, 5) be an orthogonal space of rank 2v + 0,
v >2and d € {0,2}. Let & =V(Go,v)) and B = E(Gouv)). For v € & and
B € A, we define xzeB if and only if z is a common neighbor of B. If R is a
field, then the incidence structure Z,5 = (&, %,¢) was stuided in the next two

theorems.

Theorem 3.2.5. Let F be a finite field of odd order q and let (V,3) an orthogonal
space of dimension 2v, v > 2. Let & = V(Gopwv)) and B = E(Gogv)). For
Fi¥e & and B € B, we define FreB if and only if FX is a common neighbor of B.
Then the incidence structure F = (¥, %, ) is a B-strongly tactical configuration

with parameters
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_ (@=D(¢"'+1)

voo= pa ,
p = (@=D(@+he*?
(¢—1)2 ’
k — q21/72 . q21/73 - qufl + qI/72’
. 21/72( 2v—2_ 2v—3_ V71+ V72)
r = R s )
a1 = (=D —¢"2—1)¢" 2 (q—l)(q”*l—1)(q”—2q’;’1+q”’2—2q4r3)q2”’4+
2v—4 (a=1)¢* 3(q=1)(¢" ' —¢">~1)¢" 2
(q - 1)q . 2 )
ay = (¢¥ —2¢" ' + qz/fz)qufz(q—l)(q”‘l—1)(q”—2q;‘1+q”‘2—2q+3)q2”‘4+
(" =g 2 —q+ 1)g 2 (q—l)qQ”*B(q—l)(q;*l—qV*Q—l)q”’Q7
as = (22— g v (g=1)(g" ' =1)(¢¥ =2¢" " " +¢" > —2¢+3)¢* ~*
2 )
B = (¢ —2¢" ' +q"2—2q+ 3)qu—2(q—l)(q“‘l—1)(q“—2q”‘1+q”‘2—2q+3)q2”‘4—2_|_
2
v—1 v—2 v—2 (¢=1)¢* *(¢=1)(¢" ' —¢"*~1)g"*~2
(" — "2 4 q—2)g" 2 — 1) e Dle” q ‘

Proof. Since Go,(v) is strongly regular and vertex transitive, 7 is a tactical con-

(@"=D(@ '+ (¢"=D)(¢""'+1)g*" 2
q—1 ’ (¢—1)2 4

figuration with parameters ( WL g gt 4

7“2, qQV_Q(q2u_2_q2;_3_qy_l+qu_2)). Let Ao and Cpp be given in Lemmas 3.2.3 and

3.2.4, respectively. Let R¥ € & and B € 4 such that B is with vertices Fy; and
Fys.

Case 1: (FZ, B) is an antiflag.

Case 1.1: F7 is adjacent to Fy; but FZ is non-adjacent to Fy;. Then (Z,y1,v3) &~
(€,,,€,€ +¢€,.,) by Theorem 3.1.3 (4). Thus,

v+1) v+1

s(FZ,B) = > AFzFy + > AFzFy

Fye B,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fg

— (q _ 1)(q1/71 _ ql/72 _ 1)(]”72/10’0 + <q21/72 _ q21/73 _ qufl + qqu_

(=@ —g¢* - 1)q”‘2>Co,o
by Theorem 3.1.4 (1a).
Case 1.2: FZ is non-adjacent to Fy; and Fy3. Then (Z,v1,v3) = (€,,€,,€,.,) by
Theorem 3.1.3 (3). Thus,
s(FZ,B) = > ArzFy + > AFzFy

FyeB,FZ is adjacent to Fy FyeB,FZ is non-adjacent to Fy

— (q21/72 . q21/73 - qufl + qufZ - (q _ 1)((]”72 . 1)(]1/72)14070_}_

(qu—l _ qu—2 —q + 1)q1/—200,0
by Theorem 3.1.5 (1).

Case 1.3: FZ = Fy;. Then (Z,y3) ~ (€1, €,+1) by Theorem 3.1.3 (1). Thus,
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s(FZ,B) = > Arerg + > AFzFg

FyeB,FZ is adjacent to Fy FyeB,FZ is non-adjacent to Fy
_ 2v—-2 2v—-3 v—1 v—2 2v-2 2v—-3 v—1 v—2
= ¢ ¢+ Ao,o+<q - = -

(@2 — g3 — g+ qy—2)> Coo
by Theorem 3.1.2 (1).

Case 2: (FZ, B) is a flag. Then (y1,43,7) = (€,,€,,,,€, +€,+ae,,, —ae ) where
a € F* by Theorem 3.1.3 (5). Thus,

S(Ff, B) = 2 ()\FZF* — 1)—'—
Fye B,Fy#FZ,FZ is adjacent to Fy

(AFzFg — 1)

Fye B,Fy#FZ,FZ is non-adjacent to Fg
— (qu _ 2(]1/71 + quf2 _ 2q + 3)(]1/72(140,0 _ 1) + <q21/72 _ q21/73 _ qzlfl + qu72 —1-

<q1/ _ qu—l + qu—2 _ 2(] + 3>qy—2) (CO,O _ 1)
by Theorem 3.1.4 (1a). O

Theorem 3.2.6. Let F be a finite field of odd order q and let (V,3) an orthogonal
space of dimension 2v +2, v > 2. Let &2 = V(Gopv)) and B = E(Gogv)). For
Fi¥e & and B € B, we define FreB if and only if FZ is a common neighbor of B.
Then the incidence structure F o = (P, %, ) is a B-strongly tactical configuration

with parameters

v = D@t

qg—1
p o= @=L+
2(¢-1) ’
k — q21/ _ q21/—1 _ qy—l + qzl7
, _ QQU(QZV*(]Q'J;I*(]V_I+(]V)7
ar = (¢ =27 ¢4 gV + g 1)(q 1)(g"+1)(q ”“—23”+q”‘1+2q—3)q2”‘2_|_
20— 1 ) v—1 ( _1) 2v— 1( _1)( 2v—1_ 2v— 2+ l/*l)
(q — gqv1)la=lie q q2 q )
ay = (¢ —2¢%" 1+q2u 2 qu—l_i_qy—2)(qfl)qQ“*l(q—l)(qz?"*lfq2V*2+qV*1)+
Wl _ 22 ¢? (a—1D)(g"+1)(¢" T —2¢" +¢" ' +2¢—3)¢*" 2
(g +q¢" —q¢"7?) 5 :
_ v 2v—1 v—1 vy (=1 (¢ +1)(g¥ 1 —2¢" +¢ 1 +2¢—3) g 2
as = (g A B e
B = (q2u 2u 1+q21/ 2+2q 3qy—1)(q—l)(qV—i-l)(qu+1_2qV2+qV—1+2q—3)q2V72_2+
w—1 v—1\ (a=D¢* " (g=1)(¢* ' —¢*" "2 +¢" 1) -2
(q -’ +2¢"71) 5 :

Proof. Since Gop(v) is strongly regular and vertex transitive, ), is a tactical

configuration with parameters ((qyflzl(_qzﬂﬂ), QQV(qV;(}Z)_(%JFIH) R L Sy Lo
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q’, q%(qb*qzy;l*q%lﬂu)). Let Apo and Cp o be given in Lemmas 3.2.3 and 3.2.4,

respectively. Let F¥ € & and B € 4 such that B is with vertices Fy; and Fys.
Case 1: (FZ, B) is an antiflag.

Case 1.1: FZ is adjacent to Fy; but FZ is non-adjacent to Fys. Then (%, 47, y5) ~
(€,.,,€,6 +¢€,,) by Theorem 3.1.3 (4). Thus,

s(FZ,B) = > Aezrg + > AFzFg

FyeB,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fy

¢ Mg —=1D(¢" —¢"" + 1 Aoo + <q2” — T =T -
g = 1)(¢" ~ ¢ +1))Coo
by Theorem 3.1.4 (1c).
Case 1.2: FZ is non-adjacent to Fy; and Fy;. Then (Z,v1,v42) = (€,,€,,€,,,) by
Theorem 3.1.3 (3). Thus,
s(FZ,B) = > AezFg + > AFzFg

FyeB,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fy
_ 2v 2v—1 v—1 v v+1 v 2 v—2
= (@ =" =¢" +¢" = (" ="+ ¢ = q)q" ) Aot

<qv+1 _ qu 4 q2 . Q)CJV—2CO,0
by Theorem 3.1.5 (1).
Case 1.3: F¥ = Fy;. Then (Z,y3) ~ (€1, €,41) by Theorem 3.1.3 (1). Thus,
s(FZ,B) = > Arzrg + > AFzFy

FyeB,FZ is adjacent to Fy Fye B,FZ is non-adjacent to Fy

= (@ = = ) Ao + (q21/ B

(@ —¢* =g+ CJ")> Co
by Theorem 3.1.2 (1).

)

Case 2: (FZ, B) is a flag. Then (y1,95, %) = (€,,€,,,,€, +€,+ae,,, —a€, ) where
a € F* by Theorem 3.1.3 (5). Thus,
S(Ff, B) = Z ()\Ff':g‘ - 1)—|—

Fye B,Fy#FZ,FZ is adjacent to Fy

(Arzrg — 1)

Fije B,FjAFZ,F7 is non-adjacent to Ff
= Mg =20 + ¢ + 20— 3) (Ao — 1) + <q21/ I
¢ U = 2¢" + " + 2 — 3))<Co,o ~1)
by Theorem 3.1.4 (1c). O
By Theorem 3.1.1 (2) and (3) (Lifting Theorem), .7, 5 is the incidence structure
obtained from duplicating |M[**°~2 points and (|M]**°=2)? blocks of Z/; in
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Theorems 3.2.5 and 3.2.6. Hence, by Theorem 1.2.4, it is a [-strongly tactical

configuration with parameters recorded in the following two theorems.

Theorem 3.2.7. Let R be a finite local ring of odd characteristic with maximal
ideal M and let (V, 8) be an orthogonal space of rank 2v, v > 2. Let & = V(Go,(v))
and B = E(Goyvy). For Rt € & and B € B, we define R¥eB if and only if R¥
is a common neighbor of B. Then the incidence structure Ty9 = (P, B, <) is a

B-strongly tactical configuration with parameters
(Bl = IM[*)(IR]"— ' +|M]" 1)

vo= [R|—|M] ’
b - URI=IMP)(RP M R
(RI—TM])2 ’
k= (|R*?—|RP7?|IM| — |R" ' M"~' + |R[" 2| M),

|RI**—2(| R[> 2 |R[>* 3| M|~ |R["" | M|"~ ' +|R|[""2| M|")
2 )

a = ((\RI—\Ml)(\Rl”‘l—!R\”‘2!M\—!M\”‘I)IR!H

x (IR\—\MI)(IRl”‘l—\M\”‘l)(IRI”—2|R\”‘1|M|+|RI”‘2|M\”+2—2IRI\Ml”‘1+3IMl“)|R\Q”‘4>+
2

)

v— R|—|M R2u73 R|—|M Rufl_RL/fQM_Mufl Ru72
(IR| = |M])|R|? 4|M‘(II\ DIR* = (R[=|M])(] |2 |R[" 72| M| | M]"™ )| R|

as = ((IRl”—2|R|”‘1|JV-’|”_1+|R|”_2|M|”)|11?1|”_2

X (lR\—\M|)(|R|V*1—\M\V*1><|R|V—2|R\V*1|M|+|R|H|M\"+2—2|R|\M|V*1+3|M|">|R\2”*4>+
2

((1RP=t = |RI21M | = |RIIMP2 4+ MR 2 M)

5

IRHMI)\RI”’?’(IRI*IMI)(\RIV’LIRI”’Q\lelMl”’l)IRI”’Q)
2 )

as = ([R7 = [R¥7P[M] = [RI"H M=+ R M)

[R[=[MD (R~ =M~ (|R]¥ 2| R[* " [ M|+|R|*~2|M|"*2 2| R]| M|"~ 1+ 3| M|") | R[**~*

(
X 2 Y

o= ((IRl” = 2[RI"TH M+ R M|* = 2RI M|~ + 3[M|")| R

o URI=IMD (R | M"Y (IR =2| RIY 1 MI+|R|* 2| M| 2 2| R M|” " 3| M|") | R[> A =2 M| 1

2
(((|Rl”‘1 — [RI"72| M| + [RI[M["=* = 2| M "~ )| R|"=?| M| — [M]*?)

5

IR\—\MI)\RIQ”’:”(IRI—IMI)(\Rl”’l—IRI”’Q\Ml—IMI”’l)IRl”’Q—QIM\“”"*)+
2

(C1RI22 = |R23)M | = R M o R M) M

2y—2 | RV (RI>*=?~|RP* 3| M| | Rl = |M|" = +|R]*~?|M]") 606
| M| 5 — |M]

—(|R*=2 = [RI*7?|M| — R M|~ + R M]")

_ R 2(RPY 2RV TAMIC| R TMP T R T2IMIY) |
2 + 1

)+
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Theorem 3.2.8. Let R be a finite local ring of odd characteristic with mazi-
mal ideal M and let (V, () be an orthogonal space of rank 2v + 2, v > 2. Let
P = V(Gonwv)) and B = E(Gopvy). For RT € & and B € A, we define
RZeB if and only if RT is a common neighbor of B. Then the incidence structure

Tho = (P, B, ¢) is a B-strongly tactical configuration with parameters

o =  URP=IMDQRI M
R[] ’
b LRPYORP MR M
2(RI-[M]) ’
ko= (IR — [RP" M| — |R"HM[" + |R[Y | M),

= [BEZQRPZY R THMI- R M RV M)
- Y

2
a = ((IRIQ” — 2[R[*HM[ + R 72 M| + [RI| M| + [R[" M["*)

x (IR\—\Ml)(IRl”+|M\”)(|R\”+1—2IR|”|M|+|Rl”*1|M|2+2\R|lMl“—3|M\”“)|RI2”*2)+
2

((IRIQ”‘1!M| =[R2 M]? = 2| R M)

w

IR\—\MI)\RIQV’l(IRI—IMI)(\RI”’l—IR\Q”*QIMIHRI”*)IMI>
2 )

ay = ((IRI” = 2[RPPTHM + R 72 MPP — [RIPH M|+ [RI772 M)

> (IR\—\Ml)(IRl”+IM\”)(IR\”+1—2|R|”|M|+IRIV’1|M|2+2\R|IMl”—3IM\”“)IRl21”2>+
2

(1R AL = |RP2|MP + [RI|MP = R M)

(IR\*\MI)\Rlz”’l(IRI*IMI)(\RIQ”**IR\Q“”IMIHRI”*)IMI)
2 )

X
as = (IRY = [R¥7M[ = [R" M+ R M]”)

5

RI= MR +MI YR 2R IMEHRE (M 42U RN 310} R
b = <(|R|2” — 2[R[*THM] + R 72 M + 2| R|"[M]” — 3|R|"H[M]"*)

(IRHMI)(|R|”+IM\”)(IR\”“—2|R|”|M|+|RI”’1|M|2+2\R|IMl”—3IM\”“)IRIZV’Q—QIMI“”>+
2

X
((|RI2”*1|M| — [RI*72MP? = R [M|” + 2| R["~ [ M]"*)

5

IR\—\MI)\RIQ”’l(IRI—IMI)(\RIQ”’l—IR\Q“’Q|M|+\Rl”’1)|M|—2lM\4”)+
2

[M|™ (IR = [RPZHM| = [RIZHM 4 RV IM)+

20 [P ([RPY | B>~ | M| | R [M|"+ 4 R [M”) ov
| M] 2 — | M]

—(IR[* — [RP* = [M] = [R]" M + R | M)

_[RPY(IRPY—| R[>~ M|~ |R["" M |" 1 4| R | M]") +1
5 .




CHAPTER IV
DIRECTED REGULAR GRAPHS

In this Chapter, we introduce directed graph and construct directed regular

graph from tactical configuration.

4.1 Directed graphs

A directed graph is a graph, where the edges have a direction associated with
them. In formal terms, a directed graph is an ordered pair I' = (V(I'), £(I")) where
V(I") is a set whose elements are called vertices and £(I') is a set of ordered pairs
of vertices are called directed edges. For any z,y € V(I'), we say that x is
adjacent to y, denoted by x — y, that there is directed edge from z to y, and
x is not adjacent to y otherwise, which denoted by = - y. If x — y, then y is
out-neighbor of x and x is in-neighbor of y. A directed graph is called a simple
directed graph if it has no loops or multiple edges. All graphs considered in this
thesis will be finite directed simple graphs.

A directed regular graph with parameters (n;k) is a finite directed graph
I' = (V(I'),E(T)) such that |V(I')| = n and every vertex has k out-neighbors and
k in-neighbors. For every vertices x,y € V(I'), the number of vertices z such that
x — z and z — y is denoted by t(z,y).

Let {t(z,z) : x € V(I)} = {t1,....tv}. Let {t(z,y) : z,y € V), z #
yand z — y} = {\,..., \v}. Let {t(z,y) : 2,y € V(I'),x # yand x » y} =
{m1, ..., '} We may write parameters as (n, k;t1, ...ty Ay ooy Avs a0y fyr)-
If = 1, then I is called directed t-strongly regular graph. If A’ = 1, then I is
called directed A-strongly regular graph. If i/ = 1, then I is called directed
pu-strongly regular graph. If ¢ = XN = ' = 1, then I' is called directed
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strongly regular graph.

Example 4.1.1. Let 2 = {1,2,3,4} and B = {{1,2},{1,4},{2,3}, {3,4}}. For
xr € X and B € B, we defined xeB if and only if x is a B. Then the incidence
structure T = (P, B, ¢) is a 15-design with parameters (4,4,2,2;1;0). Let ' =
() be the directed graph defined by

V) ={(z,B) € Z x B :(x,B) €c} and
(x,B) = (y,C) if and only if (x, B) # (y,C) and (z,C) € €.

Then T is a directed strongly reqular graph with parameter (8,3;2;1;1).

4.2 Directed regular graph from tactical configuration

Let T = (£, %,¢) be a tactical configuration. We define two directed graphs.

1. I' = I'(7) is the directed graph defined by V(I') = {(z,B) € & x £ :
(x,B) ¢ €} and (z, B) — (y,C) if and only if (z,C) € e.

2. IV =T'(7) is the directed graph defined by V(I') = {(z,B) € & x & :
(x,B) € ¢} and (z, B) — (y,C) if and only if (z, B) # (y,C) and (z,C) € ¢.

Theorems 4.2.1 and 4.2.2 were proved by Brouwer, Olmez and Song in [1].
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Theorem 4.2.1. [1] Let T = (£, A, <) be a tactical configuration with parameters
(v,b, ko, 7). Let I' = T'(.7) be the directed graph defined by V(I') = {(z,B) €
P XxB:(x,B) ¢ e} and (x,B) — (y,C) if and only if (x,C) € €. Then T is a
directed strongly reqular graph with parameters

n =b(v— ko),

k=r(v—kp),

t1 = p1 = kor — oy,

M =kor —(Bi+r+ko—1)

if and only if T is a 15-design with parameters (v,b, ko, 73 aq; ).

Theorem 4.2.2. [1] Let 7 = (£, %, <) be a tactical configuration with parameters
(v,b, ko, 7). Let I = I"(7) be the directed graph defined by V(I") = {(z,B) €
P x B (x,B) € ¢} and (,B) — (y,C) if and only if (x,B) # (y,C) and
(x,C) € e. Then T’ is a directed strongly reqular graph with parameters

n =or,

k=rky—1,

=0 +r+k —2,

M=p01+r+ky—3,

H1 = a1,

if and only if 7 is a 1%—desz’gn with parameters (v,b, ko, 7; a1; 51).

Remark. Let .7 = (&, 4, ¢) be a tactical configuration with parameters (v, b, ko, ).
I’ and I are a directed strongly regular graph in Theorems 4.2.1 and 4.2.2, respec-
tively. Thus, e # &, Z x B. So 1 <ky <wv— 1.

In this section, we apply the definition of Brouwer, Olmez and Song’s directed
graphs to tactical configurations. We obtain regular directed graphs which may not
be directed strongly regular graph. By Theorems 4.2.1 and 4.2.2, it is a directed
strongly regular graphs if and only if a tactical configuration is a lé—design. We
use the tactical configuration obtained in the previous chapters to provide some

examples of this directed graphs. We can compute all parameters for these graphs.
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Lemma 4.2.3. Let T = (P, %B,¢) be a tactical configuration with parameters
(v,b,k,r). For every point x € & and every block B € A, the number of flags
(y, C) such that ye B and zeC' is denoted by s'(x, B). Then for every point x € &
and every block B € %, we have

(s.B) if(@B) ¢ <,
s(r,B)+r+k-1 if(r,B) € ¢

s'(z, B) =

Proof. Let x € & and B € #. Thus, §'(x,B) = > Ay

yeB
Case 1: (z, B) is an antiflag. Therefore, s'(x, B) = Y Ay = s(z, B).
yeB
Case 2: (z,DB) is a flag. Therefore, s'(z,B) = >, Ay +7
yeB,y#x
=s(x,B)+r+k—1 O

The relationship between parameters of a tactical configulation .7 = (£, 4, ¢)

and parameter of directed graph I'(.7) and I"(.7) are as follows.

Theorem 4.2.4. Let T = (P, %,¢) be a tactical configuration with parameters
(v, b, ko, 1) such that kg < v —1. Let I' = I'(J) be the directed graph defined
by V(I') = {(z,B) € & x AB : (x,B) ¢ €} and (x,B) — (y,C) if and only if

(x,C) € e. Then T is a directed reqular graph with parameters

n = b(v — ky),
k=r(v—kp),
t; =y = kor — a, where 1 =1,...,a

N =kor — (B; +17+ko— 1) where 7 =1,...,b
if and only if 7 is a tactical configuration with parameters (v, b, ko, T; a1, . . ., Q;

ﬁla"'aﬁb)-

Proof. Assume that I' is a directed graph with the given parameters. We now
proceed count «’s and 8’s. Let x € & and B € A.

Case 1: (z, B) is an antiflag. Since t((z, B), (x, B)) is the number of (y, C') € V(I')
such that (z, B) — (y,C) and (y,C') — (z, B), it is the number of (y,C) € & x A
such that yeB, zeC and (y,C) ¢ €. Therefore, the number of (y,C) € & x £
such that yeB, zeC and (y,C) € € is §'(x, B) = kor — t((z, B), (z, B)) = kor — t;
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for some i = 1,...,a. So s(z, B) = kor — t; for some i =1,..., a.
Case 2: (z,B) is a flag. Since kg < v — 1, there exist (z, By), (22, B) ¢ €. Since
t((z, By), (9, B)) is the number of (y,C) € V(I') such that (z, B;) — (y,C) and
(y,C) — (x2, B), it is the number of (y,C) € & x A such that yeB, reC and
(y,C) ¢ . Therefore, the number of (y,C) € & x A such that yeB, zeC and
(y,C) € eis §'(x,B) = kor — t((z, By), (x2, B)) = kor — A; for some j =1,...,b.
So s(z,B) = kor — A\j —r —k +1 for some j =1,...,b.

Conversely, since .7 is a tactical configuration, n = b(v—kg) and k = (v — ko).
Let (x, By), (9, B) € V().
Case 1: (z,B) = (29, B) is (x, B) ¢ €. Since t((z, By), (2, B)) is the number of
(y,C) € V(I') such that (z,B;) — (y,C) and (y,C) — (22, B), it is the number
of (y,C) € & x A such that yeB, zeC and (y,C) ¢ . Therefore, the number
of (y,C) € & x % such that yeB, xeC and (y,C) ¢ ¢ is t((x, By), (22, B)) =
kor — §'(z, B) = kor — «y; for some i = 1,... a.
Case 2: (z,B;) — (29, B) is (x, B) € . Since t((z, By), (x2, B)) is the number of
(y,C) € V(I') such that (z,By) — (y,C) and (y,C) — (x9, B), it is the number
of (y,C) € & x A such that yeB, zeC and (y,C) ¢ . Therefore, the number
of (y,C) € P x A such that yeB, xeC and (y,C) ¢ ¢ is t((x, By), (22, B)) =
kor — s'(x, B) = kor — (B; + 7+ k — 1) for some j =1,...,b.
Case 3: (z,B;) -+ (22, B) is (z, B) ¢ €. Since t((x, By), (z2, B)) is the number of
(y,C) € V(I') such that (x,B;) — (y,C) and (y,C) — (22, B), it is the number
of (y,C) € & x X such that yeB, zeC and (y,C) ¢ . Therefore, the number
of (y,C) € & x A such that yeB, zeC and (y,C) ¢ ¢ is t((z, By), (22, B)) =

kor — §'(z, B) = kor — «y; for some i = 1,... a. ]

Theorem 4.2.5. Let T = (P, HB,¢) be a tactical configuration with parameters

(v, b, ko, 1) such that kg > 1. Let I = I"(.7) be the directed graph defined by

VI = {(z,B) € XA : (¢,B) € €} and (x,B) — (y,C) if and only if

(x,B) # (y,C) and (z,C) € €. Then 1" is a directed reqular graph with parameters
n=ur,

]’C:Tk’o—l,
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tj=p0;+r+ko—2, where 7 =1,...,b
)\]:6]+r+k0—3, wherej:]w""b

i = Q; where 1 =1,...,a
if and only if 7 is a tactical configuration with parameters (v, b, ko, 1504, ..., ay;
By Pp)-

Proof. Assume that I" is a directed graph with the given parameters. We now
proceed count o’s and 3’s. Let x € & and B € A.
Case 1: (z,B) is an antiflag. Since ko > 1, there exist (z, By), (22, B) € e.
Since t((x, By), (z2, B)) is the number of (y,C) € V(I') such that (x, By) — (y,C)
and (y,C) — (x2, B), it is the number of (y,C) € & x £ such that yeB, zeC,
(y,C) # (z, By), (z2, B) and (y,C) € . Hence, it is the number of (y,C) € & x A
such that yeB, xeC and (y,C) € . Therefore, the number of (y,C) € & x A
such that yeB, xeC and (y,C) € € is §'(z, B) = t((x, By), (z2, B)) = p; for some
i=1,...,a. So s(x,B) = p; for some i =1,..., a.
Case 2: (z,B) is a flag. Since ¢((x, B), (z, B)) is the number of (y,C) € V(I")
such that (z, B) — (y,C) and (y,C') — (z, B), it is the number of (y,C) € & x A
such that yeB, zeC, (y,C) # (z,B) and (y,C) € e. Therefore, the number of
(y,C) € P x A such that ye B, zeC, (y,C) # (z,B) and (y,C) € eis §'(x, B)—1 =
t((z,B), (z,B)) =t; for some j =1,...,b. So s(z,B) =t; —r — k + 2, for some
j=1,...b

Conversely, since .7 is a tactical configuration, n = vr and k = rkqg — 1. Let
(x, By), (zq, B) € V(I).
Case 1: (x,B;) = (29, B) is (x, B) € e. Since t((z, By), (z2, B)) is the number of
(y,C) € V(I") such that (z, By) — (y,C) and (y,C) — (x2, B), it is the number of
(y,C) € P x A such that yeB, xeC, (y,C) # (x, By) and (y,C) € €. Therefore,
the number of (y, C') € & x A such that yeB, xzeC, (y,C) # (x, By) and (y,C) € €
is t((x, B1), (9, B)) = §'(x,B) — 1 = ; +r+ k — 2 for some j =1,...,0b.
Case 2: (z,B;) — (29, B) is (x,B) € €. Since t((x, By), (22, B)) is the number
of (y,C) € V(I") such that (z,By) — (y,C) and (y,C) — (xq,B), it is the
number of (y,C) € & x A such that yeB, zeC, (y,C) # (x,By), (22, B) and
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(y,C) € e. Therefore, the number of (y,C') € & x % such that ye B, zeC, (y,C) #
(x,B1), (22, B) and (y,C) € € is t((x, By), (22, B)) = s'(z,B) —2=p; +r+k—3
for some j =1,...,0.

Case 3: (z,By) » (29, B) is (x, B) ¢ €. Since t((z, By), (x2, B)) is the number of
(y,C) € V(I") such that (z, B;) = (y,C) and (y,C) — (x2, B), it is the number
of (y,C) € & x A such that yeB, zeC, (y,C) # (z, By), (22, B) and (y,C) € «.
Hence, it is the number of (y,C) € & x A such that yeB, zeC and (y,C) € e.
Therefore, the number of (y,C') € & x £ such that yeB, zeC and (y,C) € € is
t((z, B1), (x2, B)) = §'(x, B) = o; for some i = 1,.. ., a. O

Remark. Let .7 = (£, %, <) be a tactical configuration with parameters (v, b, ko, 7).
1. If kg = v, then V(I') = @ in Theorem 4.2.4.

2. If kg =0, then V(I'V) = @ in Theorem 4.2.5.

4.3 Directed regular graphs from symplectic graphs and
orthogonal graphs

Finally, we apply Theorems 4.2.4 and 4.2.5 to compute the parameters of the
directed graphs arising from the tactical structures constructed in Charpters II

and III

Theorem 4.3.1. The directed graph T'y = T'(%) is strongly reqular with parame-

ters
[T (IRI*+|M[%)
n = =t IR\Q”*IM\Q”_\RI”*\RI”‘M’u)
(+l)v |R|—|M]| |R[—|M| !
M| 2
v—1
[T (IRI*+[M]")
P = (IRIQ”—IMIQ”_\RI”—\M|”| I/)z’:l
|R|—|M| |R|—|M]| (v=lv >
M| 2
1 =

= (IR|+[M])?| M| — [M],

A= (IR[+ MM = (2|R| + [M])| M.
ifv=2, and
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ty = [
v—1 X . —
_IRP-IRP H(IRl“rIM\)_ (IR" =1 =|M["~1) l;[l(\Rl ‘+I M%)
|R|—|M (v=1v (=) (v=2)—2(v+1) "’
ij\ 2 (IR|—|M1)| M| 2 B
L o IT (IRF+IMY) (IR —|R|"~M[—|M[") H(IRI ‘| M|%)
\, = IBI=IR| M=t -
L [R[=[M] =1y NI
‘ [M] 2 (|R|—|M])|M]| 2
otherwise.

Theorem 4.3.2. The directed graph T's = T'(%) is reqular with parameters

no = S (e — R (R~ M),
- |R|4”‘3(\2RI—IM\)(IR‘\;:I%}Q” — |R]Z2(|R| — |M])),
i =
= [RP2(1R| — (M) PR (R) — (M) R
s URIZIM]P(|RI2Y 2 —| M|2072) | RJ2V 3;r(lR\—lMl)(lRl—2lM|)\RIQ”*Q\MIQ”*"’Jr
(|R| — |M])|RP~3| M| \R|4”*5<|2R|—|M|>3>’
lo = lo
— |RP2(|R| — | M) 2GR (R — 0| R
s URIZIM]P (| RV 2| M|2072) | RV 3+(|R\7|M|)(|le2|M|)\RIQ”‘Q\MIQ”‘Q)7
Moo= [RPCH(R] - MBS (R - (M) R

s URIZIM|)P (R 2| M 207 2) | M|~ 3+(\RI—\Ml)(IR\—2\M\)II%I2”‘2IMP”‘Q—2IM|“”‘2Jr
2
v— v— [R|*S(|R[=|M])*—2|M|*—2
((IRI = M|~ — |M[>=5)|M] ; +
R 2| M2 | — | M])  FEMEUREDD — (apr=te),
o = |RIPH(|R] — M) EEREND (<|R|—2|M|>|R|2” ’

s URIZIMDP(R2Y =2 | M2 =2) | M2 =34 (| RI— | M) (| R| =2 M| RI* QIM\Q”‘2*2|MI4”‘2+
2

(|R[?*~2 — |M|>2)| M| \RI4”_5(|R|—|1\24\)3—2|M\4”_2+

4v—3 2v—1 _ _
|R[22| M|"~2(|R| — |M]) + |R|* 3| M| . (IR[=[M]) _ (| M[> 1)3>‘

Theorem 4.3.3. The directed graph I's = T'(%3) is strongly reqular with parame-

ters

N

H(IR\”‘; LM y (| Bl s Y ”
i=1 ((\RI —|M[")(|BHO7 M7 RV | M| |M|7+o-1)
Y

no= Pz |R|—]M] e

v—1
IT (BR[O M| +oT) y DN Pl pto Y Y
i=1 (R["=[M[")(IRP O H|M[" ) R —|M| | M| o-1)

ko= = -
v+26—2)(v—1 — -
g EEEIEET RI=TM] TR 1M)]
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lh = I
|R|2—|M|? 5+1 (IR|°+| M%) 246
R i~ IME
_ |RP—M? 5+1 (|RI°+| M%) 541 ) 246
Moo= T Mg — [RIPTIMT 4 [R| — | M
if v =2 and,
tv =
v—1 v—2
[T (RO (R = (M) TR+
_ |R\"—|M|"‘M|u+§—1i=1 _ i=1
- R|—|M (+25-2)(v=1) (v +25-3)(v—2)—2(v+9) ]
A= N (IRI~|M]) M| :
v—1
Ri+571+ Mi«HSfl
Al _ |R|V7|M|V|M‘V+§—1 11;[1(| | | | )
|R|—|M|

(r+26—2)(v—1)
| =2

v—2
Ri+571+ M i+5—1
|R|”‘M‘6_2+|R|"+5_1|M‘_17|R‘”+5_27‘M|V+5_2 zl;ll(‘ | | | )

R|—|M
RI-TH] o

(V+2673)(V272)72(V+1) .

otherwise.

Theorem 4.3.4. The directed graph I'yo = I'(T40) is A-strongly reqular with pa-

rameters
e (\RI“—IMI”)(\RI”‘1+|M|”‘1)IR\2”‘2((\RI”—\Ml”)(IRI”‘1+\Ml”‘1)_
(IR]-M])2 [R|—[M]
(IR =2 =[R2 |M| — |R]"HM |~ + |R|”‘2|M!”)),
E = IR\Z”’Q(IRIQV’Q—IRIQV’SIM\—IRl”’l\Ml”*1+\Rl”*2|M\”)((IR\”—IMl”)(\Rl”*“rlMl”*l)_
2 [R|—[M]
(IR =2 =[R2 |M| — |R]"H M|~ + |R|”‘2|M!”)>,
hh =
= (R = [RP*|M| — [RI" M~ + |R["*| M)
s (B2 2(R2 2| R P IMI—|RI" MY RV T2 M)
2
((IRI — |M)(IR[" = |R|"?|M| — [M|"~1)|R|">
s URIZIMD(R =M= ) (|RIY =2| RIY Y M|+| R|Y 2| M|V +2 2| R]| M|"~ 1 43|M|") | R[>~
2
v—4 (|RI=IMDIRP>3(R|=IM)(R]* ' —|R|*"2|M|—-|M|*~1)|R]¥ 2
(IR] = [MIRP4 M| 2 ).
to = o2

= (RP = (RPN = [RPMP 4 (R P)

o R 2 (R | RS- RP UM R M )
2

<(!R|” — 2[R["THM[ 4 (R M )| R|2

\RI—IMD(IRI”‘I—IMI“‘I)(IR\”—%RI”‘I\M|+|R\”‘2|M|”+2—2IRIIM|”‘1+3\M|”)\Rl2”‘4+
2

(IR[" = [RIPZ2 M| = [RIM["=2 + |[M "= )| R["=*| M|
y <\R|f|M\)|R\2"*3(|R|7\M|>(|R\;*7|R|"*2|M\7\M|"*1>|R\"*2)

5«
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3 = U3

= (IR = [RP*ZP|M| = [R"HM | + [R["2 | M]”)
S R (RP =2 |RP =3 M| | R M~ 4 RIP=2|M)
2

(1RI*=2 =[R2 M| = [R]"7HM["™ + [R["2| M)

(RI=[MD (R | M"Y (|RY =2 RI" [ M| +|R[* 2| M|"*2 2| R|| M|*~ 1+ 3| M|")| R]>* %
2 )

M= (R = BP9 = [REM P R M)

N L (e el e 17 ol el 17 e el 7 0 B
2

X

((QRY = 2ARP 1M+ |RP2( M = 2| RI M 4 3|0 R] 2

o <|R|—|M|)(\R|V*1—|M|”*1>(|R|V—2\R|"*1|M\+|R|V*2\M|V+2—2\R||M|V*1+3\M|V)\R|2”*4—2\M|4”*4) n
2

(((IRI”‘1 — [RI"Z2 M| + |RI[M["=* = 2|M[""1)|R]"=*| M| — [M[*~?)

w«

IRI—IMI)IR\2”’3(\RI—\M\)(IR\””—IRI”’QIMI—\Ml”’l)lRl”’z—ﬂMl“”"‘>+
2

((IRIQV‘2 — [RPZPIM| = [RIPTHM = 4 [RIPZ2M ) MY

22 |RP*~2(1 B2 =2 | R =3| M|~ |R"~} |[M|*~* 4| RI*—*|M]") 606
| M| 5 — | M| :

Theorem 4.3.5. The directed graph I'yo = I'(T42) is A-strongly regular with pa-

rameters
n |R|2¥ (|RI" =M |") (| R[* Tt | M|" ) ((IR\”—IMI)(\RI”“HMV’“) _
2(|R|—|M]) |R|—|M|

(IR = [RI-1|M| = [RIM 4RI )

JA— IR\Q“(\RIQV*lR\Q”*IIlelRl”*llM\”“HRl”IMl”)((\Rl”*\Ml)(IR\”“HMl”H)_
2 |R|—|M]|

(IR]* — |R[* M| — |R|" M+ + IRI”IMI”)),

i =

= (IR = [RP"7HM| = [R]"H M + |RJ)

[RI? (IR = | R[>V~ M| |R[" M|V +|RI|M]”)
2

<(!R|2” — 2[R[*THM + R 2 MP + [RIIM | + [R]"H M)

> (\RI—IM\)(|R|”+|M|”)(\R|”“—2IRIV\M\+|R\”*1|M|2+2|R|\Ml”—3lM|”“)lR|2”’2+
2

(IRP=HM| =[R2 M[* = 2| R|"H M)

5«

\RI*IM\)IR\Q””(lRI*\MI)(IR\Q”‘L\RIQ”‘Q\M|+|RI”‘1)IM|)
2

Y



t3

= ILL2
= (R[> —[R7M| = [R"HM | + |R])
o [B2V(RIZ = | R T M| |RI" T MY 4R | MY)
2

((IRI2” — 2{RPTHM| + R MP? — R M|+ | R]772 M)
o (RI= MR+ |M ) (R =2 R [MIRE = M2+ 2RI M= 3M ) R 2
2

(IR M| =[R2 M + |R[7|M|” — |R"=*[M["*2)

w«

\RI—IM\)IR\Q”’I(IRI—\MI)(IR\Q"’l—\RIQ”’?\MIHRI””)\MI)
2 Y

= (IR[* = [R7 M| — [R"HM|" + [R])

o \BEY (R | RV M- |RI" 7MY 4| R M)
2

(IRI* = [R*ZHM| = [R]"H M| 4 [R["| M)

s URI=IMD(R M) (R =2| RIY| M|+ RV M 2+2| R M|” =3|M|" )| R[22
2

Y
= (IR[* = [R*7M| — [RI"H M| + [R]")
S LRI (RPY— R~ M- R~ M + R MP)
2

((QRP = 2R M|+ [R22 M2 + 2RI M = 3Rl M)

s URIZIMD(R M) (| R 2| RV M|+ RIY Y M2 42| R|| M7 =3|M|" )| R[Y 2 —2| M |1

2
(LR 0] =[R2 = (R IMP + 2| R M)

5

IRI*IMI)IR\Q”‘I(\RI*\M\)(IR\Q”‘I*\RIQV‘Q\MIHR\”‘I)\M|*2\M|4”>+
2

(M (IR = [RI*=HM| = [RI"7HM |+ R M])+
VRQV R2V7R2u—1M7RV—1MV+1 R|¥|M|¥ v
|2 ORI ||2\||\+\||\>_|M|e)'
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)+

Theorem 4.3.6. The directed graph 'y = 1"(Z) is strongly reqular with parame-

ters

n

131
A

H1

v—1 . .
‘R|21/7|M|2u ‘[Il(‘RP'HMV)
|| M] (v=Dv >
|M] 2
v—1 . .
T1 (R +MT)
i=

_ R IM”
= wow o | ML

M| 2
= (2|R[+[M[)|M[* -1,
= -1,
= |MJ

if v=2, and
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v—2 ) X
(2IR|¥—=|R["~1|M|—|M]") _l:[l(lRlz+|M|’)

ti = (v—1)(v—2)—2v -1,
(|R|—=|M])| M| 2
/\1 - tl - 17
(1R~ =101~ TLIRF+HMI
H1 = D (—2)—2(w+1)
~ (IR|=[M])|M] 2
otherwise.

Theorem 4.3.7. The directed graph Ty = T"(%) is reqular with parameters
|RI>" —|M|> |R[*3(|R|=|M])

n =

|R|—|M]| 2 '

ko= MEGEERD Rz R - (M) - 1,

- (,R‘_’szlR,gu_g<<\R|—|M\)3<|RP“*22—\M|2V*2>|M|2”*3+
<\R|—|M\><|R|—2|M|)|R\22v-2|M|2"-2—2|M|4"-2) + (IR = [M])|R?=3 — | M=3)| M|
s B2 GRIIM 2IMIV 2 ) prov—) ppav=2(| R| — |p]) + BN R0
(|,

ty = (|R|_2|M|)|R|2u72((IRI—|M|)3(|RI2”*22—|M\2”*2)|M|2”*3+
<\R|7|M\><|R|72|M|>|R\22“—2|M|2"-272|M|4V—2) +(IR?2 — M|>2)| M|
s B RIM—20MI 2 ) prov—) ppav=2(| R| — | Mf]) 4 [B&TIME T (R
(|,

Moo=t —1,

o = to—1,

m = (|R| - ’M|>2|R’2u—3(IRI—\M|)3(|Rl2”’2—|M|2”’2)IRI2”’3;(\RI—IM\)(IRI—2IMDIR\2”’2IMIZ”’Q+
(IR| — [M])|RJ2=3| M| B (B0,

s = (|R|— |M|)|R|2u72(IR\—|M|)3(\RIQ”‘Q—IMI”‘Q)\RIQ”‘P’;(IRI—\MI)(IR\—2\M|)IR|2”‘2IM\2”‘2.

Theorem 4.3.8. The directed graph I'y = I"(.%3) is strongly regular with parame-

ters

N (R~ |M2)(RIF + M) (R MP)
TR IAT] nE

_ (RPIMP) [RP-|M | 6t

ko= Tam o qaeng M7 -

t1 = |RPTHM| + |R| — [M[** —1,

/\1 = tl—l,

=

ifv=2, and
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v—1
i+6—1 i+6—1
(\R|”—\M|V)(|R|”+571+|M|”+571) il;[1(|R|z 'H]MlZ )

n
— (r+26—2)(v—1) )
|R|—|M] N
"L R4 Mo 1)
R[FHI=14 | p|i+o—
Eo= = \Rl”*lMl”|M|u+6—1_1
= M| (1/+26722)(V71) [R—| M| )
v—2
s e N s vas_y TL(IR[FO=I4 M|i+o-1)
t |R[V|M|°—2+4|R"H— M|~ —|R" -2 — | M |vHo—2 z':l( S ——
— v+26—3)(r—2)—2(v+1 9
|R|—|M] M| E
)\1 = 1 —1,
v—2 . .
(IRI* =1 =|M|=1) _1:[1(|R\1+5*1+|M\1+5*1)
H1 = 13— (=220 F9)
‘ (|R|—=|M])|M]| 2
otherwise.

Theorem 4.3.9. The directed graph ') = T"(T40) is t, \-strongly regular with

parameters

P (Rl =IM")(|R[* " +[M[*~ 1) |RI?Y“2(|R|** ~2—|R|** “3| M|~ | R[* ' |M|"~ ' +|R[* "2 |M|")
[R|—|M]| 2 ;

= [BPTARPYTRPY MR MY T AR 2 M)
- 2

X (IR = [RIP3[M] = [RIHMP~ 4 [RP2|MP) - 1,
te = (1Rl = 2[RI (M| + R M = 2/RI[M|"" + 3|M[") | R"

X (IRI*IMI)(\RI”’l*IMl”’l)(IRI"ﬁ\RI”’lIM\+|RI”’2\Ml”“*Z\RIIMl”’1+3\M|“)\Rlz”"‘*?\Ml“”"‘>
2

Jr(((IRI”’1 — [RI"72IM[ + |R||M["=2 = 2 M ") |R["*| M| — [M[*~2)

s URIZIMDIRZY =S (R = | M) (IR]" ™ = | R|¥ 2| M| |M|" 1) | R|* 22| M|t~ +
2

((IW”‘2 — [RPZPIM| = [RIPZHM 4[R2 M) M

202 |R*" 2 ([RI*Y 2 —|R[>* 3| M|—|R|" | M|"" ' +|R|]"2|M|") 6v—6
| M| 5 — |M]| -1

)\1 - tl—l,
mo= ((IRI = [MDARPE =[R2 M| = [M[" )R

w

|R|—|M|)<\R|H—|M|"*1><\R|"—2|R|"*1|M\+|R|"*2\M|V+2—2\R||M|"*1+3|M\”>|RI2”*“)+
2

v— R|l—|M R2u—3 R|l—|M RU—I_RU—QM_MU—I Rt/72
(IR| = |M|)|R|? 4|M|(| |=IMDIR* (| R|=|M])(] |2 |R[" 2| M|—|M]"~ )| R|

I

(IR]” = 2[R"H M= + [R["=2 | M|")| R~

(RI= MR = <[ M=) (R ~21 R~ M+ R ]2 2| R M= 3] M )| R~
X 5 +
((IRI”‘1 — [RI"Z2 (M| = [RI[M]"=2 + |[M["=) | R|"~*|M]|
X

(IRI—IMI)lRlz”*g(\Rl—lM\)(lRl”*l—IR\”*ZIMI—\M\”*)\RI”*Z)
2

9

ps = (R = [R¥7P|M| = R M["=" + |R|"2 M)

|B|—[MD (B —|M|"" ) (|R|¥ 2| R[*" ' [M|+|R|"2|M|" "2 —2|R|| M|"~ ' +3|M|")|R]>*—*

x 5




o1

Theorem 4.3.10. The directed graph I'y , = I"(T}2) is t, A-strongly regular with

parameters
o (B[ =MD (R[* T +|M" 1) |RI* (IR = |R[*" ! M|~ |R[" [M|" 1 +|R["|M|")
|R|—|M] 2 ’
k= \Rlz”(IRI”*\RI”*l\M|*2|Rl”’1|M|”+1+|RIVIM|”)
<(|RI* = [RI*~HM| — [RI"THM" + R MY) — 1,
th = ((IR|2” = 2| R M| + |RP72[MI? + 2| R [ MY = 3[R|"H M |"*)

« (IRI*IMI)(\Rl”HMl”)(IRI”H*Z\RI”IMIHRI”‘l\M\2+2|R\IM\”*3\Ml”+1)|RI2”‘2*2IM\4”>+
2

((IRP"‘IIM\ =[R2 M]* = [RI"|M|” + 2| R [ M]"*)

w

IRI*IMI)IRP”‘I(\RI*IM\)(IRIQ”‘I*IRIQ”‘QIM\HR\”‘I)\M\*2\Ml4”>_|_
2

(MM (IRI* = [R[*HM| = R M" + R IM[")+
| M2 IR AP R MR MY RPN | ppje

/\1 = tl—l,
o= ((IRPV — 2[R[HM| + [RI* 72 M + [RI"|M|” + | R]"H M)

« (IRI*IMI)(\RI”HMI”)(IRI”“*?\RI”IMIHRI”‘l\M\2+2|R\IM\”*3\M|”+1)|R|2”‘2)
2

_l’_
((IR!2”‘1|M\ — [RI*Z2M]? = 2| R M)

5«

IRI—IMI)IRIQ”‘I(\RI—IM\)(IRIQ”‘I—IRIQ”‘2IM\+|R\”‘1)\M\)
2 Y

p = ((1RPY — 20RP M|+ |RPHME = |RP M 4 B2 ]2)

w

IRI—IMI)(\RIVHMI”)(IRI”“—2\R|”|M|+\R|”’1\M\2+2IR\IM\”—3\M|”“)IR|2”’2>+
2

<(|R|2”’1|M| — |[RI*72MP + |RI"[M]” — |R|"2|M|"*?)

« (IRI—IMI)IRIQ”’I(\RI—IM\)(IRI”’I—IRlz”’QIMHIR\”’l)\M\)
2 Y

ps = (R — R M| = [RI"H M + R M]")

w

[R|=[MD (R +|M")(|RI"* —2|R|¥|M|+| R[" ' | M|?+2| R]| M| —3|M|"*1)| R|?*—2
5 .
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