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CHAPTER I

INTRODUCTION

1.1 Finite incidence structures

A finite incidence structure (P,B, ε) consists of a finite set P of points,

a set B of blocks, and an incidence relation ε between points and blocks. An

incident point-block pair is called a flag, and a non-incident point-block pair is

called an antiflag. The dual structure of (P,B, ε) is a (B,P, εd) with εd =

{(B, x) : (x,B) ∈ ε}.

A tactical configuration with parameters (v, b, k, r) or 1-design is a finite

incidence structure T = (P,B, ε) with |P| = v and |B| = b such that every block

contains k points and every point belongs to exactly r blocks satisfy vr = bk. For

every point x ∈ P and every block B ∈ B, the number of flags (y, C) such that

yεB, xεC, y 6= x, and C 6= B is denoted by s(x,B). For two distinct points

x, y ∈P and blocks B,C ∈ B, denote λxy the number of blocks containing both

x and y, and µBC the number of common points of B and C. Then for every point

x ∈P and every block B ∈ B we have

s(x,B) =


∑
yεB

λxy =
∑
xεC

µ
BC

if (x,B) /∈ ε,∑
yεB,y 6=x

(λxy − 1) =
∑

xεC,C 6=B
(µ

BC
− 1) if (x,B) ∈ ε.

Let {s(x,B) : x ∈P, B ∈ B and (x,B) /∈ ε} = {α1, α2, . . . , αa} and {s(x,B) :

x ∈ P, B ∈ B and (x,B) ∈ ε} = {β1, β2, . . . , βb}. We may write parameters as

(v, b, k, r;α1, . . . , αa; β1, . . . , βb). If α1, . . . , αa ≥ 1, 3 ≤ k ≤ v−3 and 3 ≤ r ≤ b−3,

then we call T proper. If a = 1, then T is called an α-strongly tactical con-

figuration and if b = 1, then T is called a β-strongly tactical configuration.

In particular, if a = b = 1, then T is called a 11
2
-design.
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Example 1.1.1. Let P be a finite set and let B be a collection of subsets of P.

For x ∈P and B ∈ B, we define xεB if and only if x ∈ B. Then T = (P,B, ε)

is a finite incidence structure.

Example 1.1.2. Let P be a finite set of size n < 2. Let B = {B : B ⊆

P and |B| = t} for 1 < t < n. For x ∈ P and B ∈ B, we define xεB if and

only if x ∈ B. Then the incidence structure T = (P,B, ε) is a 11
2
-design with

parameters
(
n,
(
n
t

)
, t,
(
n−1
t−1

)
; t
(
n−2
t−2

)
; (t− 1)(

(
n−2
t−2

)
− 1)

)
.

Example 1.1.3. Let P = {1, 2, 3, 4, 5}. Let B = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

For x ∈ P and B ∈ B, we define xεB if and only if x ∈ B. Then the incidence

structure T = (P,B, ε) is a β-strongly tactical configuration with parameters

(5, 5, 2, 2; 1, 0; 0).

Example 1.1.4. Let P = {1, 2, . . . , 2n} for some positive integer n ≥ 2. Let

B = {{i, j} ∈P ×P : i is a odd and j is a even }. For x ∈P and B ∈ B, we

define xεB if and only if x ∈ B. Then the incidence structure T = (P,B, ε) is

a 11
2
-design with parameters (2n, n2, 2, n; 1; 0).

Example 1.1.5. This can be rephrased in the graph way as follows. Let Kn,n be

the complete bipartite graph and n ≥ 2. Let P = V(Kn,n) and B = E(Kn,n). For

x ∈P and B ∈ B, we define xεB if and only if x is a B.

1.2 Duplications

In this section, we construct new tactical configurations from a tactical configura-

tion by using duplications of points and blocks.

Proposition 1.2.1. Let (P,B, ε) be a tactical configuration with parameters

(v, b, k, r;α1, . . . , αa; β1, . . . , βb). Then the dual of (P,B, ε) is a tactical config-

uration with parameters (b, v, r, k;α1, . . . , αa; β1, . . . , βb).

Proof. Recall that for every x ∈ P and B ∈ B, xεB if and only if Bεdx.

Then the dual of (P,B, ε) is a tactical configuration (B,P, εd) with parame-

ters (b, v, r, k;α1, . . . , αa; β1, . . . , βb).
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Lemma 1.2.2. [Duplication of points] Let (P,B, ε) be a tactical configuration

with parameters (v, b, k, r;α1, . . . , αa; β1, . . . , βb). Let n ∈ N. Let P ′ = {(x, i) : x ∈

P and i ∈ {1, 2, . . . , n}}. For (x, i) ∈P ′ and B ∈ B, we define (x, i)εDPB if and

only if xεB. Then the incidence structure (P ′,B, εDP ) is a tactical configuration

with parameters (vn, b, kn, r;nα1, . . . , nαa;nβ1+(n−1)(r−1), . . . , nβb+(n−1)(r−

1)).

Proof. It is clear that the incidence structure (P ′,B, εDP ) is a tactical configura-

tion with parameters (vn, b, kn, r). Let (x, i0) ∈ P ′ and B ∈ B. We count the

number of flags ((y, j), C) such that (y, j)εDPB, (x, i0)εDPC, (y, j) 6= (x, i0) and

C 6= B.

Case 1: ((x, i0), B) is an antiflag. Then (x,B) is an antiflag of (P,B, ε) and

s(x,B) = αa′ for some a′ ∈ {1, . . . , a}. Since (y, j)εDPB, (y, j) 6= (x, i0) for all j ∈

{1, 2, . . . , n}. Thus, the number of flags ((y, j), C) such that (y, j)εDPB, (x, i0)εDPC,

(y, j) 6= (x, i0), and C 6= B is nαa′ .

Case 2: ((x, i0), B) is a flag. Then xεB and s(x,B) = βb′ for some b′ ∈

{1, . . . , b}. Thus, the number of flags ((y, j), C) such that (y, j)εDPB, (y, j) 6=

(x, i0)εDPC,C 6= B and y 6= x is nβb′ . Hence, the number of flags ((y, j), C) such

that (y, j)εDPB, (y, j) 6= (x, i0)εDPC,C 6= B and y = x is (n−1)(r−1). Therefore,

the number of flags ((y, j), C) such that (y, j)εDPB, (x, i0)εDPC, (y, j) 6= (x, i0),

and C 6= B is nβb′ + (n− 1)(r − 1).

Remark. If α1, . . . , αa ≥ 1 and 1 ≤ k ≤ v − 1, then we can choose an n ∈ N,

such that (P ′,B, εDP ) is a is a tactical configuration with nα1, . . . , nαa ≥ 1 and

3 ≤ kn ≤ vn− 3.

Lemma 1.2.3. [Duplication of blocks] Let (P,B, ε) be a tactical configuration

with parameters (v, b, k, r;α1, . . . , αa; β1, . . . , βb). Let m ∈ N. Let B′ = {(B, i) :

B ∈ B and i ∈ {1, 2, . . . ,m}}. For x ∈P and (B, i) ∈ B′, we define xεDB(B, i)

if and only if xεB. Then the incidence structure (P,B′, εDB) is a tactical configu-

ration with parameters (v, bm, k, rm;mα1, . . . ,mαa;mβ1+(m−1)(k−1), . . . ,mβb+

(m− 1)(k − 1)).
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Proof. Let (B,P, εd) be the dual of (P,B, ε). It is a tactical configuration with

parameters (b, v, r, k;α1, . . . , αa; β1, . . . , βb) as in Proposition 1.2.1. Let (B′,P, εd
′
)

be the incidence structure obtained from duplicating m points of (B,P, εd) as in

Lemma 1.2.2. It is a tactical configuration with parameters (mb, v,mr, k;mα1, . . . ,

mαa;mβ1 + (m − 1)(k − 1), . . . ,mβb + (m − 1)(k − 1)). Let (P,B′, (εd
′
)d) be

the dual of (B′,P, εd
′
). Then (P,B′, (εd

′
)d) is the incidence structure obtained

from duplicating m blocks of (P,B, ε), so (P,B′, (εd
′
)d) = (P,B′, εDB) is a

tactical configuration with parameters (v, bm, k, rm;mα1, . . . ,mαa;mβ1 + (m −

1)(k − 1), . . . ,mβb + (m− 1)(k − 1)).

Remark. If α1, . . . , αa ≥ 1 and 1 ≤ r ≤ b − 1, then we can choose an m ∈ N,

such that (P ′,B′, εDB) is a tactical configuration with mα1, . . . ,mαa ≥ 1 and

3 ≤ rm ≤ bm− 3.

Let (P,B, ε) be a tactical configuration with parameters (v, b, k, r;α1, . . . , αa;

β1, . . . , βb). The duplication of points and blocks is a incidence structure

(P ′,B′, εDPB) such that n,m ∈ N, P ′ = {(x, i) : x ∈ P and i ∈ {1, 2, . . . , n}},

B′ = {(B, j) : B ∈ B and j ∈ {1, 2, . . . ,m}} and for (x, i) ∈P ′ and (B, j) ∈ B′,

we define (x, i)εDPB(B, j) if and only if xεB.

Theorem 1.2.4. [Duplication of points and blocks] Let (P,B, ε) be a tactical con-

figuration with parameters (v, b, k, r;α1, . . . , αa; β1, . . . , βb). Then the duplication of

points and blocks is the incidence structure such that it is a tactical configuration

with parameters (vn, bm, kn, rm;nmα1, . . . , nmαa;nm(β1 + r+k− 1)−mr−kn+

1, . . . , nm(βb + r + k − 1)−mr − kn+ 1).

Proof. Let (PDP ,BDP , εDP ) be the incidence structure obtained from duplicating

n points of (P,B, ε) as in Lemma 1.2.2. Then it is a tactical configuration with

parameters (vn, b, kn, r;nα1, . . . , nαa;nβ+(n−1)(r−1), . . . , nβb+(n−1)(r−1)).

Let (P ′,B′, εDPB) be the incidence structure obtained from duplicating m blocks

of (PDP ,BDP , εDP ) as in Lemma 1.2.3. Then it is a 11
2
-design with parameters

(vn, bm, kn, rm;nmα1, . . . , nmαa;nm(β1 + r+ k− 1)−mr− kn+ 1, . . . , nm(βb +

r + k − 1) − mr − kn + 1). Hence, (P ′,B′, εDPB) is the incidence structure
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obtained from duplicating n points and m blocks of (P,B, ε) with parameters

(vn, bm, kn, rm;nmα1, . . . , nmαa;nm(β1 + r+ k− 1)−mr− kn+ 1, . . . , nm(βb +

r + k − 1)−mr − kn+ 1).

Theorem 1.2.5. Let (P,B, ε) be a tactical configuration with parameters (v, b, k, r;

α1, . . . , αa; β1, . . . , βb) such that α1, . . . , αa ≥ 1, 1 ≤ k ≤ v − 1, and 1 ≤ r ≤ b− 1.

Then we can construct a proper tactical configuration from (P,B, ε).

Proof. It follows from combining the two remarks mentioned earlier.

Example 1.2.1. Let T be not a proper 11
2
-design with parameters (2n, n2, 2, n; 1; 0)

in Example 1.1.4. Let T ′ be the incidence structure obtained from duplicating c

points and d blocks of T with parameters (2nc, n2d, 2c, nd; cd; cd(n+1)−nd−2c+1)

such that c, d ≥ 3. Then T ′ is a proper 11
2
-design.

We shall apply this duplication techniques to obtain 11
2
-designs from symplectic

geometry and orthogonal geometry over finite local rings in Chapters II and III,

respectively.

1.3 Undirected graphs

A graph is an ordered pair G = (V,E) comprising a set V of vertices with a set

E of edges, consisting of 2-element subsets of V .

A k-regular graph is a graph such that for every vertices there are k adjacent

vertices.

A strongly regular graph with parameters (v, k, λ, µ) is a k-regular graph on

v vertices such that for every pair of adjacent vertices there are λ vertices adjacent

to both, and every pair of non-adjacent vertices there are µ vertices adjacent to

both.

A quasi-strongly regular graph with parameters (v, k, λ, c1, c2) is a k-regular

graph on v vertices such that for every pair of adjacent vertices there are λ vertices

adjacent to both, and every pair of non-adjacent vertices there are c1 or c2 vertices

adjacent to both.
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For a graph G, we write V(G) for its vertex set and E(G) for its edge set. Let

G and H be graphs. A function f from V(G) to V(H) is a homomorphism from

G to H if f(g1) and f(g2) are adjacent in H whenever g1 and g2 are adjacent in G.

It is called an isomorphism if it is a bijection and f−1 is a homomorphism from

H onto G. Moverover, an isomorphism on G is called an automorphism. The

set of all isomorphisms of a graph G is denoted by Aut(G). It is a group under

composition, called the automorphism group of G.

A graph G is vertex transitive if its automorphism group acts transitively

on the vertex set. That is, for any two vertices of G, there is an automorphism

carrying one to the other. An arc in G is a ordered pair of adjacent vertices, and

G is arc transitive if its automorphism group acts transitively on its arcs. Note

that an arc transitive graph is necessarily vertex and edge transitive.

A set I of vertices of a graph G is called an independent set if no two distinct

vertices of I are adjacent.

Example 1.3.1. Let G = (V,E) be a graph such that V = {1, . . . , 8} and E =

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 1}}

1. G is a quasi-strongly regular graph with parameters (8, 2, 0, 1, 0).

2. G is an arc transitive graph.

3. {1, 3, 5} is an independent set but it is not a maximal independent set.

4. {1, 3, 5, 7} is a maximal independent set.

5. {1, 4, 6} is a maximal independent set.
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The thesis is organized as follows. Chapter II works on tacical configurations

arising from symplectic graphs over finite local rings. We construct parallel tacical

configurations from orthogonal graphs over finite local rings in Chapter III. They

provide an applications of duplication of points and blocks. Also the results on

subconstiuens studied in [5, 6, 7, 8, 9] allow as to compute the parameters of the

new configurations explicitly. The final chapter studies the parameters of directed

graphs arising from tacical configurations constructed in Chapters II and III. The

definition of these directed graphs are from Brouwer, Olmez and Song [1].



CHAPTER II

TACTICAL CONFIGURATIONS FROM SYMPLECTIC

GRAPHS OVER FINITE LOCAL RINGS

In this chapter, we discuss symplectic graphs over finite local rings [7, 8, 10] and

construct tactical configurations from symplectic graph over finite local rings.

A local ring is a commutative ring which unique maximal ideal M consisting

of all non-unit elements. We call the field R/M , the residue field of a local ring R.

For example, every field is a local ring with maximal ideal {0} and Zpn , p a prime

and n ∈ N, is a local ring with maximal ideal pZpn and residue field Zpn/pZpn .

2.1 Symplectic graphs over finite local rings

Let R be a finite local ring with unique maximal ideal M and let (V, β) be a

symplectic space of rank 2ν, where ν ≥ 1. That is, V is a free R-module of rank

2ν and possesses a basis B = {~b1,~b2, . . . ,~b2ν} in which

[β]B = K2ν =

 0 Iν

−Iν 0


Therefore, if ~x = x1

~b1 + x2
~b2 + · · · + x2ν

~b2ν and ~y = y1
~b1 + y2

~b2 + · · · + y2ν
~b2ν are

vectors in V , then

β(~x, ~y) =
(
x1 x2 · · · x2ν

)
K2ν

(
y1 y2 · · · y2ν

)T
.

If ~x = α1
~b1 + α2

~b2 + · · ·+ α2ν
~b2ν and αi is a unit in R for some i, then ~x is called

a unimodular vector.
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Example 2.1.1. Let p be a prime number and let R be the ring of integers module

pn,Zpn or the field of pn elements, F, where n ∈ N. For ν ≥ 1, let V denote the

set of 2ν-tuples (x1, . . . , x2ν) of elements in R. Define β : V × V → R by

β
(

(x1, . . . , x2ν), (y1, . . . , y2ν)
)

= (x1, . . . , x2ν)K2ν(y1, . . . , y2ν)
T ,

where K2ν =

 0 Iν

−Iν 0

 and Iν is the ν × ν identity matrix, for all vector

(x1, . . . , x2ν), (y1, . . . , y2ν) ∈ V . Then (V, β) is a symplectic space, and unimod-

ular vectors in V are those (x1, . . . , x2ν) of elements in R such that xi ∈ R× for

some i ∈ {1, . . . , 2ν}.

Define the graph GSpR(V ) whose vertex set V(GSpR(V )) is the set of lines (rank

one submodules) of unimodular vector, namely,

{R~x : ~x is a unimodular vector in V }

and its adjacency condition is given by

R~x is adjacent to R~y ⇐⇒ β(~x, ~y) is a unit in R.

We call GSpR(V ) the symplectic graph of (V, β) over R.

Let R be a finite local ring with unique maximal ideal M and residue field

k = R/M . Let (V, β) be a symplectic space of rank 2ν, where ν ≥ 1. This

symplectic space induces a 2ν dimensional vector space (V ′, β′), where β′ is given

via the canonical map π : R→ k sending a 7→ a+M by

β′(π(~a,~b)) = π(β(~a,~b))

for all ~a,~b ∈ Vδ. Here, we write π(~a) = (π(a1), . . . , π(a2ν)) for all ~a = (a1, . . . , a2ν) ∈

V . It also follows that

β′(π(~a), π(~b)) ∈ k× ⇔ β(~a,~b) ∈ R×
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for all ~a,~b ∈ V , where k× = k r {0} and R× = R rM are the unit groups of k

and of R, respectively.

The next theorem presents the relationship of the symplectic graphs over a

finite local rings and over its residue field.

Theorem 2.1.1. [Lifting Theorem] [8] Under the above set up, let κ = |k|2ν−1
|k|−1

and

let ~x1, . . . , ~xκ be a unimodular vectors in V such that V(GSpk(V ′)) = {kπ(~xi) : i =

1, . . . , κ}. Then the following statements hold.

1. The set Π = {R(~x1 + M2ν), . . . , R(~xκ + M2ν)} is a partition of the vertex

set V(GSpR(V )), where R(~xi + M2ν) = {R(~xi + ~m) : ~m ∈ M2ν} for all i ∈

{1, . . . , κ}. Moreover, for each i ∈ {1, . . . , κ}, any two distinct vertices in

R(~xi +M2ν) are non-adjacent vertices.

kπ(~xi) R(~xi +M2ν)

•

kπ(~x1)

•

kπ(~x2)
...

•

kπ(~xκ)

−→

−→

...

−→

• • • · · · •

R(~x1 + ~m), ~m ∈M2ν

• • • · · · •

R(~x2 + ~m), ~m ∈M2ν

...

• • • · · · •

R(~xκ + ~m), ~m ∈M2ν

2. |R(~xi +M2ν)| = |M |2ν−1 for all i ∈ {1, . . . , κ}.

3. For unimodular vectors ~a,~b ∈ V , we have R~a and R~b are adjacent vertices

in GSpR(V ) if and only if kπ(~a) and kπ(~b) are adjacent vertices in GSpk(V ′).

4. The symplectic graph GSpR(V ) is vertex and arc transitive.

The lifting theorem gives the following parameters.

Theorem 2.1.2. [8, 10] Let R be a finite local ring with maximal ideal M . Let

(V, β) be a symplectic space of rank 2ν, where ν ≥ 1. Then:
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1. If R is a field, then GSpR(V ) is |R|2ν−1 -regular on

|R|2ν − 1

|R| − 1

many vertices. Moreover, it is a strongly regular graph with parameters

λ = |R|2ν−2(|R| − 1) and µ = |R|2ν−2(|R| − 1)

2. If R is a local ring which is not a field, then GSpR(V ) is |R|2ν−1 -regular on

|R|2ν − |M |2ν

|R| − |M |

many vertices. Moreover, it is a quasi-strongly regular graph with parameters

λ = |R|2ν−2(|R| − |M |), c1 = |R|2ν−2(|R| − |M |) and c2 = |R|2ν−1

Let R be a finite local ring with unique maximal ideal M and residue field

k = R/M . Let (V, β) be a symplectic space of rank 2ν, where ν ≥ 1. For

unimodolar vectors ~x1, . . . , ~x`, ~y1, . . . , ~y` in V and ` ≥ 1, we write (~x1, . . . , ~x`) ≈

(~y1, . . . , ~y`) if there exists an automorphism σ of GSpR(V ) such that σ(R~xi) = R~yi

for all i ∈ {1, . . . , `}. Write ~ei for all row vector with 1 at i th row and 0 otherwise

for all i ∈ {1, 2, . . . , 2ν}. Li , Wang and Zhou [7] proved the following results.

Theorem 2.1.3. [7] Let F be a finite field of order q and let (V, β) be a symplec-

tic space of dimension 2ν, where ν ≥ 2. For any distinct vertices F~x,F~y,F~z ∈

V(GSpF(V )), we have the following statements.

1. If F~x is adjacent to F~y, then (~x, ~y) ≈ (~e1 , ~eν+1).

2. If F~x is non-adjacent to F~y, then (~x, ~y) ≈ (~e1, ~e2).

3. If F~x is non-adjacent to F~y, F~x is non-adjacent to F~z and F~y is adjacent to

F~z, then (~x, ~y, ~z) ≈ (~e1 , ~e2 , ~eν+2).

4. If F~x is adjacent to F~y, F~x is adjacent to F~z and F~y is non-adjacent to F~z,

then (~x, ~y, ~z) ≈ (~e1 , ~eν+1 , ~e2 + ~eν+1) or (~e1 , ~eν+1 , ~eν+1 + ~eν+2).
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5. If F~x is adjacent to F~y, F~x is adjacent to F~z and F~y is adjacent to F~z, then

(~x, ~y, ~z) ≈ (~e1 , ~eν+1 , ~e1+aν+1~eν+1), (~e1 , ~eν+1 , ~e1+~e2+aν+1~eν+1) or (~e1 , ~eν+1 , ~e1+

aν+1~eν+1 + ~eν+2) where aν+1 ∈ F×.

Let R be a finite local ring of with unique maximal ideal M and residue field

k = R/M . Let (V, β) be a symplectic space of rank 2ν over R, where ν ≥ 2. Next,

we consider the subconstituents G (i)
SpR(V ), i = 1, 2, defined to be the induced

subgraphs of GSpR(V ) on the vertex sets

V1 = {R~x ∈ V(GSpR(Vδ)) : R~x, is adjacent to R~e1}

V2 = {R~x ∈ V(GSpR(Vδ)) : R~x, is non-adjacent to R~e1 and R~x 6= R~e1}

i = 1, 2, respectively.

Theorem 2.1.4. [7, 8] Let R be a finite local ring and let (V, β) be a symplectic

space of rank 2ν, where ν ≥ 2.

1. If R is a field, then G (1)
SpR(V ) is |R|2ν−2(|R| − 1)-regular on |R|2ν−1 vertices.

Moreover,

(a) every two adjacent vertices of G (1)
SpR(V ) has (|R| − 2)|R|2ν−2 or (|R| −

1)2|R|2ν−3 common neighbors,

(b) every two non-adjacent vertices of G (1)
SpR(V ) has (|R|−1)2|R|2ν−3 common

neighbors,

(c) there are |R| − 1 vertices in G (1)
SpR(V ) adjacent to R~eν+1 such that the

number of their common neighbors is (|R| − 2)|R|2ν−2, and

(d) there are (|R| − 1)(|R|2ν−2 − 1) vertices in G (1)
SpR(V ) adjacent to R~eν+1

such that the number of their common neighbors is (|R| − 1)2|R|2ν−3.

2. If R is a local ring which is not a field, then G (1)
SpR(V ) is |R|2ν−2(|R| − |M |)-

regular on |R|2ν−1 vertices. Moreover,

(a) every two adjacent vertices of G (1)
SpR(V ) has (|R|−2|M |)|R|2ν−2 or (|R|−

|M |)2|R|2ν−3 common neighbors,
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(b) every two non-adjacent vertices of G (1)
SpR(V ) has (|R| − |M |)2|R|2ν−3 or

|R|2ν−2(|R| − |M |) common neighbors,

(c) there are (|R| − |M |)|M |2ν−2 vertices in G (1)
SpR(V ) adjacent to R~eν+1 such

that the number of their common neighbors is (|R| − 2|M |)|R|2ν−2, and

(d) there are (|R| − |M |)(|R|2ν−2 − |M |2ν−2) vertices in G (1)
SpR(V ) adjacent

to R~eν+1 such that the number of their common neighbors is (|R| −

|M |)2|R|2ν−3.

Theorem 2.1.5. [7, 8] Let R be a finite local ring and let (V, β) be a symplectic

space of rank 2ν, where ν ≥ 2.

1. If R is a field, then G (2)
SpR(V ) is |R|2ν−2-regular on |R|2ν−1−|R|

|R|−1
vertices. More-

over,

(a) every two adjacent vertices of G (2)
SpR(V ) has |R|2ν−3(|R| − 1) common

neighbors, and

(b) every two non-adjacent vertices of G (2)
SpR(V ) has |R|2ν−3(|R|−1) or |R|2ν−2

common neighbors.

2. If R is a local ring which is not a field, then G (2)
SpR(V ) is |R|2ν−2|M |-regular on

(|R|2ν−1−|R|)|M |
|R|−|M | vertices. Moreover,

(a) every two adjacent vertices of G (2)
SpR(V ) has |R|2ν−3(|R| − |M |)|M | com-

mon neighbors, and

(b) every two non-adjacenct vertices of G (2)
SpR(V ) has |R|2ν−3(|R| − |M |)|M |

or |R|2ν−2|M | common neighbors.

2.2 Construction of tactical configurations

Let R be a finite local ring of with unique maximal ideal M and residue field

k = R/M and let (V, β) be a symplectic space of rank 2ν, ν ≥ 2.
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2.2.1 11
2-designs from symplectic graphs over finite local

rings

Let P be the set of vertices of symplectic graph GSpR(V ) and let B be collection of

maximal independent sets of the graph. For x ∈P and B ∈ B, we define xεB if

and only if x ∈ B. The next theorem was stuided in [2] by Chai, Feng and Zeng.

Its results show that if R is a field, then the incidence structure T1 = (P,B, ε) is

a 11
2
-design.

Theorem 2.2.1. [2] Let F be a finite field of order q and let (V, β) be a symplectic

space of dimension 2ν, ν ≥ 2. Let P = V(GSpF(V )) and let B be a collection of

maximal independent sets of GSpF(V ). For x ∈ P and B ∈ B, we define xεB if

and only if x ∈ B. Then the incidence structure T ′
1 = (P,B, ε) is a 11

2
-design.

Furthermore, the parameters of T ′
1 is

v = q2ν−1
q−1

, b =
ν∏
i=1

(qi + 1)

k = qν−1
q−1

, r =
ν−1∏
i=1

(qi + 1),

with α1 = 1 and β1 = 0 if ν = 2, and with

α1 = qν−1−1
q−1

·
ν−2∏
i=1

(qi + 1), β1 = q(qν−1−1)
q−1

· (
ν−2∏
i=1

(qi + 1)− 1)

otherwise.

By Theorem 2.1.1 (2) and (3) (Lifting Theorem), T1 is the incidence struc-

ture obtained from duplicating |M |2ν−1 points and 1 blocks of T ′
1 in Theorem

2.2.1. Hence, by Theorem 1.2.4, it is a 11
2
-design with parameters recorded in the

following theorem.

Theorem 2.2.2. Let R be a finite local ring with maximal ideal M and let (V, β)

be a symplectic space of rank 2ν, ν ≥ 2. Let P = V(GSpR(V )
) and let B be a

collection of maximal independent sets of GSpR(V ). For x ∈ P and B ∈ B, we

define xεB if and only if x ∈ B. Then the incidence structure T1 = (P,B, ε) is

a 11
2
-design. Furthermore, the parameters of T1 is
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v = |R|2ν−|M |2ν
|R|−|M | , b =

ν∏
i=1

(|R|i+|M |i)

|M |
(ν+1)ν

2

,

k = |R|ν−|M |ν
|R|−|M | |M |

ν, r =

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

,

with α1 = |M |3 and β1 = (2|R|+ |M |)|M |2− (|R|+ |M |)|M |2− |R|+|M ||M | +1 if ν = 2,

and with

α1 =
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2(ν+1)

2

,

β1 =
(2|R|ν−|R|ν−1|M |−|M |ν)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2ν

2

−
ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

− |R|
ν−|R|ν
|R|−|M | |M |

ν + 1

otherwise.

2.2.2 Other tactical configurations

In this section, we apply results on subconstituents, namely, Theorems 2.1.4 and

2.1.5, in construction other tactical configurations. They are not 11
2
-designs. How-

ever, we can compute the parameters α’s and β’s.

Lemma 2.2.3. Let F be a finite field of order q and let (V, β) be a symplectic space

of dimension 2ν, where ν ≥ 2. Let F~x and F~y be adjacenct vertices in GSpF(V ).

Then the number of edges whose both vertices are common neighbors of F~x and F~y

is given by

ASp = (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2

2
.

Proof. Let C be an edge such that both vertices are common neighbors of F~x and

F~y. Since F~x is adjacent to F~y, there exists σ automorphism carries F~x to F~e1, F~y

to F~eν+1, F~c1 to F~c′1 and F~c2 to F~c′2 where F~c1 and F~c2 are both vertices of C by

Theorem 2.1.3 (1).
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Thus, the number of edges C is the number of 3-cycle at F~eν+1 in G(1)
SpF(V ). We

distinguish two cases.

Case 1: F~c′1 and F~eν+1 have (q − 1)2q2ν−3 common neighbors. It follows from

Theorem 2.1.4 (1d) that the number of 3-cycles at F~eν+1 is given by product that

(q−1)3(q2ν−2−1)q2ν−3

2
.

Case 2: It follows from Theorem 2.1.4 (1c) that the number of 3-cycles at F~eν+1

is given by product that

(q−1)(q−2)q2ν−2

2
.

Hence, the number of edges C is the sum

ASp = (q−1)3(q2ν−2−1)q2ν−3

2
+ (q−1)(q−2)q2ν−2

2
= (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2

2

as desired.

Lemma 2.2.4. Let F be a finite field of order q and let (V, β) be a symplectic space

of dimension 2ν, where ν ≥ 2. Let F~x and F~y be non-adjacent vertices in GSpF(V ).

The number of edges whose both vertices are common neighbors of F~x and F~y is

given by

CSp = q4ν−5(q−1)3

2
.

Proof. Let C be an edge such that both vertices are common neighbors of F~x and

F~y. Since F~x is non-adjacent to F~y, there exists σF~c1 automorphism carries F~x to

F~x′, F~y to F~y′, F~c1 to F~e1 and F~c2 to F~c′2 where F~c1 and F~c2 are both vertices of

C by Theorem 2.1.1 (4).

Thus, the number of edges C is the product of the number of the common

neighbors F~c′1 of F~x′ and F~y′ in GSpF(V ) and half of the number of common neighbor
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of F~x′ and F~y′ in G(1)
SpF(V ). By Theorem 2.1.2 (1) the common neighbors of F~x′ and

F~y′ in GOF(V ) is (q − 1)q2ν−2. The number of common neighbors of F~x′ and F~y′ in

G(1)
SpF(V ) is (q − 1)2q2ν−3 by Theorem 2.1.4 (1b). Hence,

CSp = q4ν−5(q−1)3

2

as desired.

Let R be a finite local ring with unique maximal ideal M and residue field k =

R/M and let (V, β) be a symplectic space of rank 2ν, ν ≥ 2. Let P = V(GOR(V ))

and B = E(GOR(V )). For x ∈ P and B ∈ B, we define xεB if and only if x is a

common neighbor of B. If R is a field, then the incidence structure T2 = (P,B, ε)

was stuided in next theorem.

Theorem 2.2.5. Let F be a finite field of order q of and let (V, β) be a symplectic

space of dimension 2ν, ν ≥ 2. Let P = V(GSpF(V )) and B = E(GSpF(V )). For

F~x ∈ P and B ∈ B, we define F~xεB if and only if F~x is a common neighbor of

B. Then the incidence structure T ′
2 = (P,B, ε) is a tactical configuration with

parameters

v = q2ν−1
q−1

,

b = (q2ν−1)q2ν−1

2(q−1)
,

k = q2ν−2(q − 1),

r = q4ν−3(q−1)
2

,

α1 = (q − 1)2q2ν−3 (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2

2
+ (q − 1)q2ν−3 q

4ν−5(q−1)3

2
,

α2 = (q − 1)q2ν−2 (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2

2
,

β1 = (q − 1)2q2ν−3 (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2−2
2

+ ((q − 1)q2ν−3 − 1) q
4ν−5(q−1)3−2

2
,

β2 = (q − 2)q2ν−2 (q−1)3(q2ν−2−1)q2ν−3+(q−1)(q−2)q2ν−2−2
2

+ (q2ν−2 − 1) q
4ν−5(q−1)3−2

2
.

Proof. Since GSpF(V ) is strongly regular and vertex transitive, T ′
2 is a tactical con-

figuration with parameters ( q
2ν−1
q−1

, (q2ν−1)q2ν−1

2(q−1)
, q2ν−2(q−1), q

4ν−3(q−1)
2

). Let ASp and

CSp be given in Lemmas 2.2.3 and 2.2.4, respectively. Let F~x ∈ P and B ∈ B

such that B is with vertices F~y1 and F~y2.

Case 1: (F~x,B) is an antiflag.

Case 1.1: F~x is adjacent to F~y1 but x is non-adjacent to F~y2. Then (~x, ~y1, ~y2) ≈
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(~eν+1, ~e1, ~e2 + ~eν+1) or (~eν+1, ~e1, ~eν+1 + ~eν+2) by Theorem 2.1.3 (4). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q − 1)2q2ν−3ASp + (q2ν−2(q − 1)− (q − 1)2q2ν−3)CSp
by Theorem 2.1.4 (1b).

Case 1.2: F~x is non-adjacent to F~y1 and F~y2. Then (~x, ~y1, ~y2) ≈ (~e1, ~e2, ~eν+2) by

Theorem 2.1.3 (3). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q2ν−2(q − 1)− (q − 1)q2ν−3)ASp + (q − 1)q2ν−3CSp
by Theorem 2.1.5 (1a).

Case 1.3: F~x = F~y1. Then (~x, ~y2) ≈ (~e1, ~eν+1) by Theorem 2.1.3 (1). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= q2ν−2(q − 1)ASp + (q2ν−2(q − 1)− q2ν−2(q − 1))CSp
by Theorem 2.1.2 (1).

Case 2: (F~x,B) is a flag. Then (~y1, ~y2, ~x) ≈ (~e1, ~eν+1, ~e1 +aν+1~eν+1), (~e1, ~eν+1, ~e1 +

~e2 +aν+1~eν+1) or (~e1, ~eν+1, ~e1 +aν+1~eν+1 +~eν+2) where aν+1 ∈ F× by Theorem 2.1.3

(5) Thus,

s(F~x,B) =
∑

F~yεB,F~y 6=F~x,F~x is adjacent to F~y
(λF~xF~y − 1)+∑

F~yεB,F~y 6=F~x,F~x is non-adjacent to F~y
(λF~xF~y − 1)

= ((q − 1)2q2ν−3)(ASp − 1) + (q2ν−2(q − 1)− 1− (q − 1)2q2ν−3)(CSp − 1) or

(q − 2)q2ν−2(ASp − 1) + (q2ν−2(q − 1)− 1− (q − 2)q2ν−2)(CSp − 1)

by Theorem 2.1.4 (1a).

By Theorem 2.1.1 (2) and (3) (Lifting Theorem), T2 is the incidence structure

obtained from duplicating |M |2ν−1 points and (|M |2ν−1)2 blocks of T ′
2 in Theorems

2.2.5. Hence, by Theorem 1.2.4, it is a tactical configuration with parameters

recorded in the following theorem.

Theorem 2.2.6. Let R be a finite local ring with maximal ideal M and let (V, β)

be a symplectic space of rank 2ν, ν ≥ 2. Let P = V(GSpR(V )) and B = E(GSpR(V )).

For R~x ∈P and B ∈ B, we define R~xεB if and only if R~x is a common neighbor

of B. Then the incidence structure T2 = (P,B, ε) is a tactical configuration with
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parameters

v = |R|2ν−|M |2ν
|R|−|M | ,

b = (|R|2ν−|M |2ν)|R|2ν−1

2(|R|−|M |) ,

k = |R|2ν−2(|R| − |M |),

r = |R|4ν−3(|R|−|M |)
2

,

α1 = (|R| − |M |)2|R|2ν−3 (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2
+

(|R| − |M |)|R|2ν−3|M | |R|
4ν−5(|R|−|M |)3

2
,

α2 = (|R| − |M |)|R|2ν−2 (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2
,

β1 = (|R| − |M |)2|R|2ν−3
(

(|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3

2
+

(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2

)
+ ((|R| − |M |)|R|2ν−3 − |M |2ν−3)

×|M | |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+ |R|2ν−2|M |4ν−2(|R| − |M |) + |R|4ν−3|M |2ν−1(|R|−|M |)

2

−(|M |2ν−1)3 − |R|2ν−2(|R| − |M |)− |R|
4ν−3(|R|−|M |)

2
+ 1,

β2 = (|R| − 2|M |)|R|2ν−2
(

(|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3

2
+

(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2

)
+ (|R|2ν−2 − |M |2ν−2)

×|M | |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+ |R|2ν−2|M |4ν−2(|R| − |M |)+

|R|4ν−3|M |2ν−1(|R|−|M |)
2

− (|M |2ν−1)3 − |R|2ν−2(|R| − |M |)− |R|
4ν−3(|R|−|M |)

2
+ 1.



CHAPTER III

TACTICAL CONFIGURATIONS FROM ORTHOGONAL

GRAPHS OVER FINITE LOCAL RINGS

We use orthogonal graphs over finite local rings to construct tactical configurations

in this Chapter. Results are parallel with Chapter II.

3.1 Orthogonal graphs over finite local rings

Let R be a finite local ring of odd characteristic with unique maximal ideal M and

let (Vδ, β) be an orthogonal space of rank 2ν+δ, where ν ≥ 1, δ ∈ {0, 1, 2}. That

is, Vδ is a free R-module of rank 2ν+δ and possesses a basis B = {~b1,~b2, . . . ,~b2ν+δ}

in which

[β]B = S2ν+δ,∆ =


0 Iν

Iν 0

∆

 ,

where

∆ =


∅(disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,

and z is a fixed non-square unit in R. Therefore, if ~x = x1
~b1+x2

~b2+· · ·+x2ν+δ
~b2ν+δ

and ~y = y1
~b1 + y2

~b2 + · · ·+ y2ν+δ
~b2ν+δ are vectors in V , then

β(~x, ~y) =
(
x1 x2 · · · x2ν+δ

)
S2ν+δ,∆

(
y1 y2 · · · y2ν+δ

)T
.

If ~x = α1
~b1 + α2

~b2 + · · · + α2ν+δ
~b2ν+δ and αi is a unit in R for some i, then ~x is

called a unimodular vector.
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Example 3.1.1. Let p be an odd prime number and let R be the ring of integers

modulo pn,Zpn or the field of pn elements, F, where n ∈ N. For ν ≥ 1, δ ∈ {0, 1, 2},

let V denote the set of 2ν + δ-tuples (x1, . . . , x2ν+δ) of elements in R. Define

β : V × V → R by

β
(

(x1, . . . , x2ν+δ), (y1, . . . , y2ν+δ)
)

= (x1, . . . , x2ν+δ)S2ν+δ,∆(y1, . . . , y2ν+δ)
T ,

where S2ν+δ,∆ =


0 Iν

Iν 0

∆

 , such that ∆ =


∅(disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,

z is a fixed non-square unit in R and Iν is the ν × ν identity matrix, for all

vector (x1, . . . , x2ν+δ), (y1, . . . , y2ν+δ) ∈ V . Then (V, β) is an orthogonal space,

and unimodular vectors in V are those (x1, . . . , x2ν+δ) of elements in R such that

xi ∈ R× for some i ∈ {1, . . . , 2ν + δ}.

Define the graph GOR(Vδ) whose vertex set V(GOR(Vδ)) is the set of lines (rank

one submodules) of unimodular vectors of zero norm, namely,

{R~x : ~x is a unimodular vector in Vδ and β(~x, ~x) = 0}

and its adjacency condition is given by

R~x is adjacent to R~y ⇐⇒ β(~x, ~y) is a unit in R.

We call GOR(Vδ) the orthogonal graph of (Vδ, β) over R.

If k is a finite field and V ′δ is an orthogonal space over k of dimension 2ν + δ,

where ν ≥ 1 and δ ∈ {0, 1, 2}, then Gu and Wan [4] showed that GOk(V ′δ ) is a

|k|ν+δ−1 +1-partite graph with partite sets X1, X2, . . . , X|k|ν+δ−1+1 such that |Xi| =
|k|ν−1
|k|−1

for all i ∈ {1, 2, . . . , |k|ν+δ−1 + 1}.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and residue field k = R/M . Let (Vδ, β) be an orthogonal space of rank 2ν + δ,

where ν ≥ 1 and δ ∈ {0, 1, 2}. This orthogonal space induces a 2ν+ δ dimensional
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vector space (V ′δ , β
′), where β′ is given via the canonical map π : R → k sending

a 7→ a+M by

β′(π(~a,~b)) = π(β(~a,~b))

for all ~a,~b ∈ Vδ. Here, we write π(~a) = (π(a1), . . . , π(a2ν+δ)) for all ~a = (a1, . . . , a2ν+δ) ∈

Vδ. It also follows that

β′(π(~a), π(~b)) ∈ k× ⇔ β(~a,~b) ∈ R×

for all ~a,~b ∈ Vδ, where k× = k r {0} and R× = R rM are the unit groups of k

and of R, respectively.

The next theorem given the relationship of the orthogonal graphs over a finite

local rings and over its residue field. It is the lifting theorem for orthogonal graphs.

Theorem 3.1.1. [Lifting Theorem] [9] Under the above set up, let κ = |k|ν+δ−1 +1

and l = |k|ν−1
|k|−1

. For each i ∈ {1, . . . , κ}, let Xi = {~xi1 , . . . , ~xil} be the set of

unimodular vectors in Vδ with zero norm such that {{kπ(~xis) : s = 1, . . . , l} : i =

1, . . . , κ} is a partition of V(GOk(V ′δ )) satisfying kπ(~xis) and kπ(~xit) are non-adjacent

vertices for all s 6= t. Then the following statements hold.

1. The set Π = {R(X1 +M2ν+δ), . . . , R(Xκ+M2ν+δ} is a partition of the vertex

set V(GOR(Vδ)), where R(Xi + M2ν+δ) = {R(~xis + ~m) : s ∈ {1, . . . , l}, ~m ∈

M2ν+δ and β(~xis + ~m, ~xis + ~m) = 0} for all i ∈ {1, . . . , κ}. For each i,

the lifting of the vertices corresponding with elements in Xi to vertices in

R(Xi +M2ν+δ) is demonstrated below.
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Xi R(Xi +M2ν+δ)

•

kπ(~xi1)

•

kπ(~xi2)
...

•

kπ(~xil)

−→

−→

...

−→

• • • · · · •

R(~xi1 + ~m), ~m ∈M2ν+δ and β(~xi1 + ~m, ~xi1 + ~m) = 0

• • • · · · •

R(~xi2 + ~m), ~m ∈M2ν+δ and β(~xi2 + ~m, ~xi2 + ~m) = 0
...

• • • · · · •

R(~xil + ~m), ~m ∈M2ν+δ and β(~xil + ~m, ~xil + ~m) = 0

Moreover, for each i ∈ {1, . . . , κ}, any two distinct vertices in R(Xi+M
2ν+δ)

are non-adjacent vertices. Hence, GOR(Vδ) is a κ-partite graph.

2. |R(Xi +M2ν+δ)| = l|M |2ν+δ−2 for all i ∈ {1, . . . , κ}.

3. For unimodular vectors with zero norm ~a,~b ∈ Vδ, we have R~a and R~b are ad-

jacent vertices in GOR(Vδ) if and only if kπ(~a) and kπ(~b) are adjacent vertices

in GOk(V ′δ ).

4. For i, j ∈ {1, . . . , κ}, s, t ∈ {1, . . . , l} and s 6= t, if kπ(~xis) and kπ(~xjt) are

adjacent vertices, then R(~xis + ~m1) and R(~xjt + ~m2) are adjacent vertices in

the graph GOR(Vδ) for all ~m1, ~m2 ∈ M2ν+δ such that β(~xis + ~m1, ~xis + ~m1) =

β(~xjt + ~m2, ~xjt + ~m2) = 0.

5. The orthogonal graph GOR(V ) is vertex and arc transitive.

The Lifting Theorem gives the following parameters.

Theorem 3.1.2. [4, 9] Let R be a finite local ring of odd characteristic with max-

imal ideal M . Let (V, β) be an orthogonal space of rank 2ν + δ, where ν ≥ 1 and

δ ∈ {0, 1, 2}.

1. If R is a field, then GOR(V ) is |R|2ν+δ−2 -regular on

(|R|ν − 1)(|R|ν+δ−1 + 1)

|R| − 1



24

many vertices. Moverover,

(a) If ν = 1, then it is a strongly regular graph with parameters

λ = |R|δ − 1 and µ = dδ/2e|R|δ

(b) If ν ≥ 2, then it is a strongly regular graph with parameters

λ = |R|2ν+δ−2 − |R|2ν+δ−3 − |R|ν−1 + |R|ν+δ−2

µ = (|R| − 1)|R|2ν+δ−3.

2. If R is a local ring which is not a field, then GOR(V ) is |R|2ν+δ−2 -regular on

(|R|ν − |M |ν)(|R|ν+δ−1 + |M |ν+δ−1)

|R| − |M |

many vertices. Moverover,

(a) If ν = 1, then it is a strongly regular graph with parameters

λ = |R|δ − |M |δ and µ = dδ/2e|R|δ

(b) If ν ≥ 2, then it is a quasi-strongly regular graph with parameters

λ = |R|2ν+δ−2 − |R|2ν+δ−3|M | − |R|ν−1|M |ν+δ−1 + |R|ν+δ−2|M |ν

c1 = (|R| − |M |)|R|2ν+δ−3 and c2 = |R|2ν+δ−2

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and residue field k = R/M . Let (Vδ, β) be an orthogonal space of rank 2ν + δ,

where ν ≥ 1 and δ ∈ {0, 1, 2}. For unimodolar vectors ~x1, . . . , ~x`, ~y1, . . . , ~y` in Vδ

with zero norm and ` ≥ 1, we write (~x1, . . . , ~x`) ≈ (~y1, . . . , ~y`) if there exists an

automorphism σ of GOR(V ) such that σ(R~xi) = R~yi for all i ∈ {1, . . . , `}. Write ~ei

for all row vector with 1 at i th row and 0 otherwise for all i ∈ {1, 2, . . . , 2ν + δ}.

Gu and Wan [6] obtained the following results.

Theorem 3.1.3. [6] Let F be a finite field of odd order q and let (V, β) be an

orthogonal space of dimension 2ν + δ, where ν ≥ 2 and δ ∈ {0, 1, 2}. For any

distinct vertices F~x,F~y,F~z ∈ V(GOF(V )), we have the following statements.
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1. If F~x is adjacent to F~y, then (~x, ~y) ≈ (~e1 , ~eν+1).

2. If F~x is non-adjacent to F~y, then (~x, ~y) ≈ (~e1, ~e2).

3. If F~x is non-adjacent to F~y, F~x is non-adjacent to F~z and F~y is adjacent to

F~z, then (~x, ~y, ~z) ≈ (~e1 , ~e2 , ~eν+2).

4. If F~x is adjacent to F~y, F~x is adjacent to F~z and F~y is non-adjacent to F~z,

then (~x, ~y, ~z) ≈ (~e1 , ~eν+1 , ~e2 + ~eν+1).

5. If F~x is adjacent to F~y, F~x is adjacent to F~z and F~y is adjacent to F~z, then

(~x, ~y, ~z) ≈ (~e1 , ~eν+1 , ~e1 + ~e2 + a~eν+1 − a~eν+2) where a ∈ F×.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and residue field k = R/M . Let (Vδ, β) be an orthogonal space of rank 2ν + δ over

R, where ν ≥ 2, δ = {0, 1, 2}. Next, we consider the subconstituents G(i)
OR(Vδ)

,

i = 1, 2, defined to be the induced subgraphs of GOR(Vδ) on the vertex sets

V1 = {R~x ∈ V(GOR(Vδ)) : R~x, is adjacent to R~e1}

V2 = {R~x ∈ V(GOR(Vδ)) : R~x, is non-adjacent to R~e1 and R~x 6= R~e1}

i = 1, 2, respectively.

Theorem 3.1.4. [5, 6, 9] Let R be a finite local ring of odd characteristic with

maximal ideal M . Let (V, β) be an orthogonal space of rank 2ν + δ, where ν ≥ 2

and δ ∈ {0, 1, 2}.

1. If R is a field, then G(1)
OR(V ) is |R|2ν+δ−2−|R|2ν+δ−3 + |R|ν+δ−2−|R|ν−1-regular

on |R|2ν+δ−2 many vertices. Moverover,

(a) If δ = 0, then any two adjacent vertices have (|R|ν − 2|R|ν−1 + |R|ν−2−

2|R| + 3)|R|ν−2 common neighbors and any two non-adjacent vertices

have (|R| − 1)(|R|ν−1 − |R|ν−2 − 1)|R|ν−2 common neighbors.

(b) If δ = 1, then any two adjacent vertices have |R|2ν−3(|R − 1)2 or

|R|ν−2(|R|ν+1 − 2|R|ν + |R|ν−1 + 2|) common neighbors and any two

non-adjacent vertices have |R|2ν−3(2|R| − 3) common neighbors.
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(c) If δ = 2, then any two adjacent vertices have |R|2ν−2|R|2ν−1 + |R|2ν−2 +

2|R|ν − 3|R|ν−1 common neighbors and any two non-adjacent vertices

have (|R| − 1)(|R|2ν−1 − |R|2ν−2 + |R|ν−1) common neighbors.

2. If R is a local ring which is not a field, then G(1)
OR(V ) is |R|2ν+δ−2−|R|2ν+δ−3|M |+

|R|ν+δ−2|M |ν−|R|ν−1|M |ν+δ−1-regular on |R|2ν+δ−2 many vertices. Moverover,

(a) If δ = 0, then any two adjacent vertices have (|R|ν − 2|R|ν−1|M | +

|R|ν−2|M |2−2|R||M |ν−1 +3|M |ν)|R|ν−2 common neighbors and any two

non-adjacent vertices have (|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

or (|R| − |M |)(|R|ν−1 − |M |ν−1)|R|ν−2 common neighbors.

(b) If δ = 1, then any two adjacent vertices have |R|2ν−3(|R| − |M |)2 or

|R|ν−2(|R|ν+1 − 2|R|ν |M | + |R|ν−1|M |2 + 2|M |ν+1) common neighbors

and any two non-adjacent vertices have |R|2ν−3(2|R||M | − 3|M |2) or

|R|2ν−2(|R| − |M |) common neighbors.

(c) If δ = 2, then any two adjacent vertices have |R|2ν − 2|R|2ν−1|M | +

|R|2ν−2|M |2+2|R|ν |M |ν−3|R|ν−1|M |ν+1 common neighbors and any two

non-adjacent vertices have (|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1|M |ν)

or (|R| − |M |)(|R|2ν−1 + |R|ν−1|M |ν) common neighbors.

Theorem 3.1.5. [5, 6, 9] Let R be a finite local ring of odd characteristic with

maximal ideal M . Let (Vδ, β) be an orthogonal space of rank 2ν + δ, where ν ≥ 2

and δ ∈ {0, 1, 2}.

1. If R is a field, then G (2)
OR(Vδ)

is |R|2ν+δ−3|M |-regular on
|R|(|R|ν−1 − 1)(|R|ν+δ−2 + 1)

|R| − 1
many vertices. Moreover,

(a) If ν = 2, then it is a strongly regular graph with parameters

λ = |R|δ+1 − |R| and µ = |R|δ+1,

respectively.
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(b) If ν ≥ 3, then it is a quasi-strongly regular graph with parameters

λ = |R|ν−2(|R|ν+δ−1 − |R|ν+δ−2 − |R|+ |R|δ),

c1 = |R|2ν+δ−4(|R| − 1) and c2 = |R|2ν+δ−3,

respectively.

2. If R is not a field, then G (2)
OR(Vδ)

is |R|2ν+δ−3|M |-regular on

|R|(|R|ν−1 − |M |ν−1)(|R|ν+δ−2 + |M |ν+δ−2)|M |
|R| − |M |

many vertices. Moreover,

(a) If ν = 2, then it is a strongly regular graph with parameters

λ = (|R|δ+1 − |R||M |δ)|M | and µ = |R|δ+1|M |,

respectively.

(b) If ν ≥ 3, then it is a quasi-strongly regular graph with parameters

λ = |R|ν−2(|R|ν+δ−1|M | − |R|ν+δ−2|M |2 − |R||M |ν+δ−1 + |R|δ|M |ν),

c1 = |R|2ν+δ−4(|R| − |M |)|M | and c2 = |R|2ν+δ−3|M |,

respectively.

3.2 Construction of tactical configurations

Let R be a finite local ring of odd characteristic with unique maximal ideal M and

residue field k = R/M and let (Vδ, β) be an orthogonal space of rank 2ν+ δ, ν ≥ 2

and δ ∈ {0, 1, 2}.
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3.2.1 11
2-designs from orthogonal graphs over finite local

rings

Let P be the set of vertices of orthogonal graph GOR(V ) and let B be collection of

maximal independent sets of the graph. For x ∈P and B ∈ B, we define xεB if

and only if x ∈ B. The next theorem was stuided in [3] by Feng, Zhoa and Zeng.

Its results show that if R is a field, then the incidence structure T3 = (P,B, ε) is

a 11
2
-design.

Theorem 3.2.1. [3] Let F be the finite field of odd order q and let (V, β) be an

orthogonal space of rank 2ν+δ, ν ≥ 2 and δ ∈ {0, 1, 2}. Let P = V(GOF(V )) and let

B be a collection of maximal independent sets of GOF(V ). For x ∈P and B ∈ B,

we define xεB if and only if x ∈ B. Then the incidence structure T ′
3 = (P,B, ε)

is a 11
2
-design with parameters

v = (qν−1)(qν+δ−1+1)
q−1

, b =
ν∏
i=1

(qi+δ−1 + 1),

k = qν−1
q−1

, r =
ν−1∏
i=1

(qi+δ−1 + 1),

with α1 = 1 and β1 = 0 if ν = 2, and with

α1 = qν−1−1
q−1

·
ν−2∏
i=1

(qi+δ−1 + 1), β1 = q(qν−1−1)
q−1

· (
ν−2∏
i=1

(qi+δ−1 + 1)− 1)

otherwise.

By Theorem 3.1.1 (2) and (3) (Lifting Theorem), T3 is the incidence struc-

ture obtained from duplicating |M |2ν+δ−2 points and 1 blocks of T ′
3 in Theorem

3.2.1. Hence, by Theorem 1.2.4, it is a 11
2
-design with parameters recorded in the

following theorem.

Theorem 3.2.2. Let R be a finite local ring of odd characteristic with maximal

ideal M and let (V, β) be an orthogonal space of rank 2ν+δ, ν ≥ 2 and δ ∈ {0, 1, 2}.

Let P = V(GOR(V )) and let B be a collection of maximal independent sets of

GOR(V ). For x ∈ P and B ∈ B, we define xεB if and only if x ∈ B. Then the

incidence structure T3 = (P,B, ε) is a 11
2
-design with parameters



29

v = (|R|ν−|M |ν)(|R|ν+δ−1+|M |ν+δ−1)
|R|−|M | , b =

ν∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−1)ν

2

,

k = |R|ν−|M |ν
|R|−|M | |M |

ν+δ−1, r =

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

,

with α1 = |M |2+δ and β1 = |R|δ+1|M |−δ + |R| − |M |2+δ − |R|2−|M |2
|R|−|M | |M |

δ+1 −
(|R|δ+1+|M |δ+1)

|M |(δ+1) + 1 if ν = 2, and

α1 =
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

(|R|−|M |)|M |
(ν+2δ−3)(ν−2)−2(ν+δ)

2

,

β1 = |R|ν |M |δ−2+|R|ν+δ−1|M |−1−|R|ν+δ−2−|M |ν+δ−2

|R|−|M |

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−3)(ν−2)−2(ν+1)

2

−
ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

− |R|
ν−|M |ν
|R|−|M | |M |

ν+δ−1 + 1

otherwise.

3.2.2 Other tactical configurations

In this section, we apply result on subconstituents, namely, Theorems 3.1.4 and

3.1.5, in construction other tactical configurations. They are not 11
2
-designs. How-

ever, we can compute the parameters α’s and β’s for δ = 0 or 2.

Lemma 3.2.3. Let F be a finite field of odd order q and let (V, β) be an orthogonal

space of dimension 2ν + δ, where ν ≥ 2 and δ ∈ {0, 2}. Let F~x and F~y be adjacent

vertices in GOF(V ). Then the number of edges whose both vertices of C are common

neighbors of F~x and F~y is given by

AO,δ =


(q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4

2
if δ = 0,

(q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2

2
if δ = 2.

Proof. Let C be an edge such that both vertices are common neighbors of F~x and

F~y. Since F~x is adjacent to F~y, there exists σ automorphism carries F~x to F~e1, F~y

to F~eν+1, F~c1 to F~c′1 and F~c2 to F~c′2 where F~c1 and F~c2 are both vertices of C by

Theorem 3.1.3 (1).
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Thus, the number of edges C is the number of 3-cycle at F~eν+1 in G(1)
OF(V ). It

is the product of the number of the common neighbors c′1 of F~e1 and F~eν+1 in

GOF(V ) and half of the number of common neighbors of F~c′1 and F~eν+1 in G(1)
OF(V ).

By Theorem 3.1.2 (1) the common neighbors of F~e1 and F~eν+1 is

(q − 1)(qν−1 − 1)qν−2 if δ = 0,

(q − 1)(qν + 1)qν−1 if δ = 2.

The number of common neighbor of F~c′1 and F~eν+1 is

(qν − 2qν−1 + qν−2 − 2q + 3)qν−2 if δ = 0,

(qν+1 − 2qν + qν−1 + 2q − 3)qν−1 if δ = 2.

by Theorem 3.1.4 (1a) and (1c), respectively. Hence,

AO,δ =


(q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4

2
if δ = 0,

(q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2

2
if δ = 2.

as desired.

Lemma 3.2.4. Let F be a finite field of odd order q and let (V, β) be an orthogonal

space of dimension 2ν+δ, where ν ≥ 2 and δ ∈ {0, 1, 2}. Let F~x and F~y be distinct

non-adjacent vertices in GOF(V ). The number of edge whose both vertices of C are
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common neighbor of F~x and F~y is given by

CO,δ =


(q−1)q2ν−3(q−1)(qν−1−qν−2−1)qν−2

2
if δ = 0,

(q−1)q2ν−2q2ν−3(2q−3)
2

if δ = 1,

(q−1)q2ν−1(q−1)(q2ν−1−q2ν−2+qν−1)
2

if δ = 2.

Proof. Let C be an edge such that both vertices are common neighbors of F~x and

F~y. Since F~x is non-adjacent to F~y, there exists σF~c1 automorphism carries F~x to

F~x′, F~y to F~y′, F~c1 to F~e1 and F~c2 to F~c′2 where F~c1 and F~c2 are both vertices of

C by Theorem 3.1.1 (5).

Thus, the number of edges C is the product of the number of the common

neighbors F~c′1 of F~x′ and F~y′ in GOF(V ) and half of the number of common neighbor

of F~x′ and F~y′ in G(1)
OF(V ). By Theorem 3.1.2 (1) the common neighbors of F~x′ and

F~y′ in GOF(V ) is 
(q − 1)q2ν−3 if δ = 0,

(q − 1)q2ν−2 if δ = 1,

(q − 1)q2ν−1 if δ = 2.

The number of common neighbors of F~x′ and F~y′ in G(1)
OF(V ) is


(q − 1)(qν−1 − qν−2 − 1)qν−2 if δ = 0,

q2ν−3(2q − 3) if δ = 1,

(q − 1)(q2ν−1 − q2ν−2 + qν−1) if δ = 2.
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by Theorem 3.1.4 (1a), (1b) and (1c), respectively. Hence,

CO,δ =


(q−1)q2ν−3(q−1)(qν−1−qν−2−1)qν−2

2
if δ = 0,

(q−1)q2ν−2q2ν−3(2q−3)
2

if δ = 1,

(q−1)q2ν−1(q−1)(q2ν−1−q2ν−2+qν−1)
2

if δ = 2.

as desired.

Remark. The case δ = 1 involves solving a more complicated equation in order

to determine AO,δ. Therefore, we can compute α’s and β’s only for δ = 0 or 2.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and residue field k = R/M and let (Vδ, β) be an orthogonal space of rank 2ν + δ,

ν ≥ 2 and δ ∈ {0, 2}. Let P = V(GOR(V )) and B = E(GOR(V )). For x ∈ P and

B ∈ B, we define xεB if and only if x is a common neighbor of B. If R is a

field, then the incidence structure T4,δ = (P,B, ε) was stuided in the next two

theorems.

Theorem 3.2.5. Let F be a finite field of odd order q and let (V, β) an orthogonal

space of dimension 2ν, ν ≥ 2. Let P = V(GOF(V )) and B = E(GOF(V )). For

F~x ∈P and B ∈ B, we define F~xεB if and only if F~x is a common neighbor of B.

Then the incidence structure T ′
4,0 = (P,B, ε) is a β-strongly tactical configuration

with parameters
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v = (qν−1)(qν−1+1)
q−1

,

b = (qν−1)(qν−1+1)q2ν−2

(q−1)2
,

k = q2ν−2 − q2ν−3 − qν−1 + qν−2,

r = q2ν−2(q2ν−2−q2ν−3−qν−1+qν−2)
2

,

α1 = (q − 1)(qν−1 − qν−2 − 1)qν−2 (q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4

2
+

(q − 1)q2ν−4 (q−1)q2ν−3(q−1)(qν−1−qν−2−1)qν−2

2
,

α2 = (qν − 2qν−1 + qν−2)qν−2 (q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4

2
+

(qν−1 − qν−2 − q + 1)qν−2 (q−1)q2ν−3(q−1)(qν−1−qν−2−1)qν−2

2
,

α3 = (q2ν−2 − q2ν−3 − qν−1 + qν−2) (q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4

2
,

β1 = (qν − 2qν−1 + qν−2 − 2q + 3)qν−2 (q−1)(qν−1−1)(qν−2qν−1+qν−2−2q+3)q2ν−4−2
2

+

((qν−1 − qν−2 + q − 2)qν−2 − 1) (q−1)q2ν−3(q−1)(qν−1−qν−2−1)qν−2−2
2

.

Proof. Since GOF(V ) is strongly regular and vertex transitive, T ′
4,0 is a tactical con-

figuration with parameters ( (qν−1)(qν−1+1)
q−1

, (qν−1)(qν−1+1)q2ν−2

(q−1)2
, q2ν−2 − q2ν−3 − qν−1 +

qν−2, q
2ν−2(q2ν−2−q2ν−3−qν−1+qν−2)

2
). Let AO,0 and CO,0 be given in Lemmas 3.2.3 and

3.2.4, respectively. Let R~x ∈P and B ∈ B such that B is with vertices F~y1 and

F~y2.

Case 1: (F~x,B) is an antiflag.

Case 1.1: F~x is adjacent to F~y1 but F~x is non-adjacent to F~y2. Then (~x, ~y1, ~y2) ≈

(~eν+1 , ~e1 , ~e2 + ~eν+1) by Theorem 3.1.3 (4). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q − 1)(qν−1 − qν−2 − 1)qν−2AO,0 +
(
q2ν−2 − q2ν−3 − qν−1 + qν−2−

(q − 1)(qν−1 − qν−2 − 1)qν−2
)
CO,0

by Theorem 3.1.4 (1a).

Case 1.2: F~x is non-adjacent to F~y1 and F~y2. Then (~x, ~y1, ~y2) ≈ (~e1 , ~e2 , ~eν+2) by

Theorem 3.1.3 (3). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q2ν−2 − q2ν−3 − qν−1 + qν−2 − (q − 1)(qν−2 − 1)qν−2)AO,0+

(qν−1 − qν−2 − q + 1)qν−2CO,0
by Theorem 3.1.5 (1).

Case 1.3: F~x = F~y1. Then (~x, ~y2) ≈ (~e1, ~eν+1) by Theorem 3.1.3 (1). Thus,
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s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= q2ν−2 − q2ν−3 − qν−1 + qν−2AO,0 +
(
q2ν−2 − q2ν−3 − qν−1 + qν−2−

(q2ν−2 − q2ν−3 − qν−1 + qν−2)
)
CO,0

by Theorem 3.1.2 (1).

Case 2: (F~x,B) is a flag. Then (~y1, ~y2, ~x) ≈ (~e1 , ~eν+1 , ~e1 +~e2 +a~eν+1−a~eν+2) where

a ∈ F× by Theorem 3.1.3 (5). Thus,

s(F~x,B) =
∑

F~yεB,F~y 6=F~x,F~x is adjacent to F~y
(λF~xF~y − 1)+∑

F~yεB,F~y 6=F~x,F~x is non-adjacent to F~y
(λF~xF~y − 1)

= (qν − 2qν−1 + qν−2 − 2q + 3)qν−2(AO,0 − 1) +
(
q2ν−2 − q2ν−3 − qν−1 + qν−2 − 1−

(qν − 2qν−1 + qν−2 − 2q + 3)qν−2
)

(CO,0 − 1)

by Theorem 3.1.4 (1a).

Theorem 3.2.6. Let F be a finite field of odd order q and let (V, β) an orthogonal

space of dimension 2ν + 2, ν ≥ 2. Let P = V(GOF(V )) and B = E(GOF(V )). For

F~x ∈P and B ∈ B, we define F~xεB if and only if F~x is a common neighbor of B.

Then the incidence structure T ′
4,2 = (P,B, ε) is a β-strongly tactical configuration

with parameters

v = (qν−1)(qν+1+1)
q−1

,

b = q2ν(qν−1)(qν+1+1)
2(q−1)

,

k = q2ν − q2ν−1 − qν−1 + qν ,

r = q2ν(q2ν−q2ν−1−qν−1+qν)
2

,

α1 = (q2ν − 2q2ν−1 + q2ν−2 + qν + qν−1) (q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2

2
+

(q2ν−1 − q2ν−2 − 2qν−1) (q−1)q2ν−1(q−1)(q2ν−1−q2ν−2+qν−1)
2

,

α2 = (q2ν − 2q2ν−1 + q2ν−2 − qν−1 + qν−2) (q−1)q2ν−1(q−1)(q2ν−1−q2ν−2+qν−1)
2

+

(q2ν−1 − q2ν−2 + qν − qν−2) (q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2

2
,

α3 = (q2ν − q2ν−1 − qν−1 + qν) (q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2

2
,

β1 = (q2ν − 2q2ν−1 + q2ν−2 + 2qν − 3qν−1) (q−1)(qν+1)(qν+1−2qν+qν−1+2q−3)q2ν−2−2
2

+

(q2ν−1 − q2ν−2 − qν + 2qν−1) (q−1)q2ν−1(q−1)(q2ν−1−q2ν−2+qν−1)−2
2

.

Proof. Since GOF(V ) is strongly regular and vertex transitive, T ′
4,2 is a tactical

configuration with parameters ( (qν−1)(qν+1+1)
q−1

, q
2ν(qν−1)(qν+1+1)

2(q−1)
, q2ν − q2ν−1 − qν−1 +
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qν , q
2ν(q2ν−q2ν−1−qν−1+qν)

2
). Let AO,2 and CO,2 be given in Lemmas 3.2.3 and 3.2.4,

respectively. Let F~x ∈P and B ∈ B such that B is with vertices F~y1 and F~y2.

Case 1: (F~x,B) is an antiflag.

Case 1.1: F~x is adjacent to F~y1 but F~x is non-adjacent to F~y2. Then (~x, ~y1, ~y2) ≈

(~eν+1 , ~e1 , ~e2 + ~eν+1) by Theorem 3.1.3 (4). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= qν−1(q − 1)(qν − qν−1 + 1)AO,0 +
(
q2ν − q2ν−1 − qν−1 + qν−

qν−1(q − 1)(qν − qν−1 + 1)
)
CO,0

by Theorem 3.1.4 (1c).

Case 1.2: F~x is non-adjacent to F~y1 and F~y2. Then (~x, ~y1, ~y2) ≈ (~e1 , ~e2 , ~eν+2) by

Theorem 3.1.3 (3). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q2ν − q2ν−1 − qν−1 + qν − (qν+1 − qν + q2 − q)qν−2)AO,0+

(qν+1 − qν + q2 − q)qν−2CO,0
by Theorem 3.1.5 (1).

Case 1.3: F~x = F~y1. Then (~x, ~y2) ≈ (~e1, ~eν+1) by Theorem 3.1.3 (1). Thus,

s(F~x,B) =
∑

F~yεB,F~x is adjacent to F~y
λF~xF~y +

∑
F~yεB,F~x is non-adjacent to F~y

λF~xF~y

= (q2ν − q2ν−1 − qν−1 + qν)AO,0 +
(
q2ν − q2ν−1 − qν−1 + qν−

(q2ν − q2ν−1 − qν−1 + qν)
)
CO,0

by Theorem 3.1.2 (1).

Case 2: (F~x,B) is a flag. Then (~y1, ~y2, ~x) ≈ (~e1 , ~eν+1 , ~e1 +~e2 +a~eν+1−a~eν+2) where

a ∈ F× by Theorem 3.1.3 (5). Thus,

s(F~x,B) =
∑

F~yεB,F~y 6=F~x,F~x is adjacent to F~y
(λF~xF~y − 1)+∑

F~yεB,F~y 6=F~x,F~x is non-adjacent to F~y
(λF~xF~y − 1)

= qν−1(qν+1 − 2qν + qν−1 + 2q − 3)(AO,0 − 1) +
(
q2ν − q2ν−1 − qν−1 + qν − 1−

qν−1(qν+1 − 2qν + qν−1 + 2q − 3))
(
CO,0 − 1)

by Theorem 3.1.4 (1c).

By Theorem 3.1.1 (2) and (3) (Lifting Theorem), T4,δ is the incidence structure

obtained from duplicating |M |2ν+δ−2 points and (|M |2ν+δ−2)2 blocks of T ′
4,δ in
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Theorems 3.2.5 and 3.2.6. Hence, by Theorem 1.2.4, it is a β-strongly tactical

configuration with parameters recorded in the following two theorems.

Theorem 3.2.7. Let R be a finite local ring of odd characteristic with maximal

ideal M and let (V, β) be an orthogonal space of rank 2ν, ν ≥ 2. Let P = V(GOR(V ))

and B = E(GOR(V )). For R~x ∈P and B ∈ B, we define R~xεB if and only if R~x

is a common neighbor of B. Then the incidence structure T4,0 = (P,B, ε) is a

β-strongly tactical configuration with parameters

v = (|R|ν−|M |ν)(|R|ν−1+|M |ν−1)
|R|−|M | ,

b = (|R|ν−|M |ν)(|R|ν−1+|M |ν−1)|R|2ν−2

(|R|−|M |)2 ,

k = (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν),

r = |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

,

α1 =
(

(|R| − |M |)(|R|ν−1 − |R|ν−2|M | − |M |ν−1)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2

)
+

(|R| − |M |)|R|2ν−4|M | (|R|−|M |)|R|
2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2
,

α2 =
(

(|R|ν − 2|R|ν−1|M |ν−1 + |R|ν−2|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2

)
+(

(|R|ν−1 − |R|ν−2|M | − |R||M |ν−2 + |M |ν−1)|R|ν−2|M |

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2

)
,

α3 = (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2
,

β1 =
(

(|R|ν − 2|R|ν−1|M |+ |R|ν−2|M |2 − 2|R||M |ν−1 + 3|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4−2|M |4ν−4

2

)
+(

((|R|ν−1 − |R|ν−2|M |+ |R||M |ν−2 − 2|M |ν−1)|R|ν−2|M | − |M |2ν−2)

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2−2|M |4ν−4

2

)
+(

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)|M |4ν−4+

|M |2ν−2 |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

− |M |6ν−6
)

−(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

− |R|
2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)

2
+ 1.
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Theorem 3.2.8. Let R be a finite local ring of odd characteristic with maxi-

mal ideal M and let (V, β) be an orthogonal space of rank 2ν + 2, ν ≥ 2. Let

P = V(GOR(V )) and B = E(GOR(V )). For R~x ∈ P and B ∈ B, we define

R~xεB if and only if R~x is a common neighbor of B. Then the incidence structure

T4,2 = (P,B, ε) is a β-strongly tactical configuration with parameters

v = (|R|ν−|M |)(|R|ν+1+|M |ν+1)
|R|−|M | ,

b = |R|2ν(|R|ν−|M |ν)(|R|ν+1+|M |ν+1)
2(|R|−|M |) ,

k = (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν),

r = |R|2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)
2

,

α1 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + |R|ν |M |ν + |R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 − 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,

α2 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 − |R|ν−1|M |ν+1 + |R|ν−2|M |ν+2)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 + |R|ν |M |ν − |R|ν−2|M |ν+2)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,

α3 = (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2
,

β1 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + 2|R|ν |M |ν − 3|R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2−2|M |4ν
2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 − |R|ν |M |ν + 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |−2|M |4ν
2

)
+

|M |4ν(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)+

|M |2ν |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
− |M |6ν

−(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)

− |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
+ 1.



CHAPTER IV

DIRECTED REGULAR GRAPHS

In this Chapter, we introduce directed graph and construct directed regular

graph from tactical configuration.

4.1 Directed graphs

A directed graph is a graph, where the edges have a direction associated with

them. In formal terms, a directed graph is an ordered pair Γ = (V(Γ), E(Γ)) where

V(Γ) is a set whose elements are called vertices and E(Γ) is a set of ordered pairs

of vertices are called directed edges. For any x, y ∈ V (Γ), we say that x is

adjacent to y, denoted by x → y, that there is directed edge from x to y, and

x is not adjacent to y otherwise, which denoted by x 9 y. If x → y, then y is

out-neighbor of x and x is in-neighbor of y. A directed graph is called a simple

directed graph if it has no loops or multiple edges. All graphs considered in this

thesis will be finite directed simple graphs.

A directed regular graph with parameters (n; k) is a finite directed graph

Γ = (V(Γ), E(Γ)) such that |V(Γ)| = n and every vertex has k out-neighbors and

k in-neighbors. For every vertices x, y ∈ V(Γ), the number of vertices z such that

x→ z and z → y is denoted by t(x, y).

Let {t(x, x) : x ∈ V(Γ)} = {t1, . . . , tt′}. Let {t(x, y) : x, y ∈ V(Γ), x 6=

y and x → y} = {λ1, . . . , λλ′}. Let {t(x, y) : x, y ∈ V(Γ), x 6= y and x 9 y} =

{µ1, . . . , µµ′}. We may write parameters as (n, k; t1, . . . , tt′ ;λ1, . . . , λλ′ ;µ1, . . . , µµ′).

If t′ = 1, then Γ is called directed t-strongly regular graph. If λ′ = 1, then Γ is

called directed λ-strongly regular graph. If µ′ = 1, then Γ is called directed

µ-strongly regular graph. If t′ = λ′ = µ′ = 1, then Γ is called directed
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strongly regular graph.

Example 4.1.1. Let P = {1, 2, 3, 4} and B = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}. For

x ∈ P and B ∈ B, we defined xεB if and only if x is a B. Then the incidence

structure T = (P,B, ε) is a 11
2
-design with parameters (4, 4, 2, 2; 1; 0). Let Γ =

Γ(T ) be the directed graph defined by

V (Γ) = {(x,B) ∈P ×B : (x,B) ∈ ε} and

(x,B)→ (y, C) if and only if (x,B) 6= (y, C) and (x,C) ∈ ε.

Then Γ is a directed strongly regular graph with parameter (8, 3; 2; 1; 1).

4.2 Directed regular graph from tactical configuration

Let T = (P,B, ε) be a tactical configuration. We define two directed graphs.

1. Γ = Γ(T ) is the directed graph defined by V (Γ) = {(x,B) ∈ P × B :

(x,B) /∈ ε} and (x,B)→ (y, C) if and only if (x,C) ∈ ε.

2. Γ′ = Γ′(T ) is the directed graph defined by V (Γ′) = {(x,B) ∈ P × B :

(x,B) ∈ ε} and (x,B)→ (y, C) if and only if (x,B) 6= (y, C) and (x,C) ∈ ε.

Theorems 4.2.1 and 4.2.2 were proved by Brouwer, Olmez and Song in [1].
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Theorem 4.2.1. [1] Let T = (P,B, ε) be a tactical configuration with parameters

(v, b, k0, r). Let Γ = Γ(T ) be the directed graph defined by V (Γ) = {(x,B) ∈

P ×B : (x,B) /∈ ε} and (x,B) → (y, C) if and only if (x,C) ∈ ε. Then Γ is a

directed strongly regular graph with parameters

n = b(v − k0),

k = r(v − k0),

t1 = µ1 = k0r − α1,

λ1 = k0r − (β1 + r + k0 − 1)

if and only if T is a 11
2
-design with parameters (v, b, k0, r;α1; β1).

Theorem 4.2.2. [1] Let T = (P,B, ε) be a tactical configuration with parameters

(v, b, k0, r). Let Γ′ = Γ′(T ) be the directed graph defined by V (Γ′) = {(x,B) ∈

P × B : (x,B) ∈ ε} and (x,B) → (y, C) if and only if (x,B) 6= (y, C) and

(x,C) ∈ ε. Then Γ′ is a directed strongly regular graph with parameters

n = vr,

k = rk0 − 1,

t1 = β1 + r + k0 − 2,

λ1 = β1 + r + k0 − 3,

µ1 = α1,

if and only if T is a 11
2
-design with parameters (v, b, k0, r;α1; β1).

Remark. Let T = (P,B, ε) be a tactical configuration with parameters (v, b, k0, r).

Γ and Γ′ are a directed strongly regular graph in Theorems 4.2.1 and 4.2.2, respec-

tively. Thus, ε 6= ∅,P ×B. So 1 ≤ k0 ≤ v − 1.

In this section, we apply the definition of Brouwer, Olmez and Song’s directed

graphs to tactical configurations. We obtain regular directed graphs which may not

be directed strongly regular graph. By Theorems 4.2.1 and 4.2.2, it is a directed

strongly regular graphs if and only if a tactical configuration is a 11
2
-design. We

use the tactical configuration obtained in the previous chapters to provide some

examples of this directed graphs. We can compute all parameters for these graphs.
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Lemma 4.2.3. Let T = (P,B, ε) be a tactical configuration with parameters

(v, b, k, r). For every point x ∈ P and every block B ∈ B, the number of flags

(y, C) such that yεB and xεC is denoted by s′(x,B). Then for every point x ∈P

and every block B ∈ B, we have

s′(x,B) =

s(x,B) if(x,B) /∈ ε,

s(x,B)+r+k-1 if(x,B) ∈ ε

Proof. Let x ∈P and B ∈ B. Thus, s′(x,B) =
∑
yεB

λxy.

Case 1: (x,B) is an antiflag. Therefore, s′(x,B) =
∑
yεB

λxy = s(x,B).

Case 2: (x,B) is a flag. Therefore, s′(x,B) =
∑

yεB,y 6=x
λxy + r

= s(x,B) + r + k − 1.

The relationship between parameters of a tactical configulation T = (P,B, ε)

and parameter of directed graph Γ(T ) and Γ′(T ) are as follows.

Theorem 4.2.4. Let T = (P,B, ε) be a tactical configuration with parameters

(v, b, k0, r) such that k0 ≤ v − 1. Let Γ = Γ(T ) be the directed graph defined

by V (Γ) = {(x,B) ∈ P × B : (x,B) /∈ ε} and (x,B) → (y, C) if and only if

(x,C) ∈ ε. Then Γ is a directed regular graph with parameters

n = b(v − k0),

k = r(v − k0),

ti = µi = k0r − αi, where i = 1, . . . , a

λj = k0r − (βj + r + k0 − 1) where j = 1, . . . , b

if and only if T is a tactical configuration with parameters (v, b, k0, r;α1, . . . , αa;

β1, . . . , βb).

Proof. Assume that Γ is a directed graph with the given parameters. We now

proceed count α’s and β’s. Let x ∈P and B ∈ B.

Case 1: (x,B) is an antiflag. Since t((x,B), (x,B)) is the number of (y, C) ∈ V (Γ)

such that (x,B)→ (y, C) and (y, C)→ (x,B), it is the number of (y, C) ∈P×B

such that yεB, xεC and (y, C) /∈ ε. Therefore, the number of (y, C) ∈ P ×B

such that yεB, xεC and (y, C) ∈ ε is s′(x,B) = k0r − t((x,B), (x,B)) = k0r − ti
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for some i = 1, . . . , a. So s(x,B) = k0r − ti for some i = 1, . . . , a.

Case 2: (x,B) is a flag. Since k0 ≤ v − 1, there exist (x,B1), (x2, B) /∈ ε. Since

t((x,B1), (x2, B)) is the number of (y, C) ∈ V (Γ) such that (x,B1) → (y, C) and

(y, C) → (x2, B), it is the number of (y, C) ∈ P ×B such that yεB, xεC and

(y, C) /∈ ε. Therefore, the number of (y, C) ∈ P ×B such that yεB, xεC and

(y, C) ∈ ε is s′(x,B) = k0r − t((x,B1), (x2, B)) = k0r − λj for some j = 1, . . . , b.

So s(x,B) = k0r − λj − r − k + 1 for some j = 1, . . . , b.

Conversely, since T is a tactical configuration, n = b(v−k0) and k = r(v−k0).

Let (x,B1), (x2, B) ∈ V (Γ′).

Case 1: (x,B1) = (x2, B) is (x,B) /∈ ε. Since t((x,B1), (x2, B)) is the number of

(y, C) ∈ V (Γ) such that (x,B1) → (y, C) and (y, C) → (x2, B), it is the number

of (y, C) ∈ P ×B such that yεB, xεC and (y, C) /∈ ε. Therefore, the number

of (y, C) ∈ P × B such that yεB, xεC and (y, C) /∈ ε is t((x,B1), (x2, B)) =

k0r − s′(x,B) = k0r − αi for some i = 1, . . . , a.

Case 2: (x,B1)→ (x2, B) is (x,B) ∈ ε. Since t((x,B1), (x2, B)) is the number of

(y, C) ∈ V (Γ) such that (x,B1) → (y, C) and (y, C) → (x2, B), it is the number

of (y, C) ∈ P ×B such that yεB, xεC and (y, C) /∈ ε. Therefore, the number

of (y, C) ∈ P × B such that yεB, xεC and (y, C) /∈ ε is t((x,B1), (x2, B)) =

k0r − s′(x,B) = k0r − (βj + r + k − 1) for some j = 1, . . . , b.

Case 3: (x,B1) 9 (x2, B) is (x,B) /∈ ε. Since t((x,B1), (x2, B)) is the number of

(y, C) ∈ V (Γ) such that (x,B1) → (y, C) and (y, C) → (x2, B), it is the number

of (y, C) ∈ P ×B such that yεB, xεC and (y, C) /∈ ε. Therefore, the number

of (y, C) ∈ P × B such that yεB, xεC and (y, C) /∈ ε is t((x,B1), (x2, B)) =

k0r − s′(x,B) = k0r − αi for some i = 1, . . . , a.

Theorem 4.2.5. Let T = (P,B, ε) be a tactical configuration with parameters

(v, b, k0, r) such that k0 ≥ 1. Let Γ′ = Γ′(T ) be the directed graph defined by

V (Γ′) = {(x,B) ∈ P × B : (x,B) ∈ ε} and (x,B) → (y, C) if and only if

(x,B) 6= (y, C) and (x,C) ∈ ε. Then Γ′ is a directed regular graph with parameters

n = vr,

k = rk0 − 1,
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tj = βj + r + k0 − 2, where j = 1, . . . , b

λj = βj + r + k0 − 3, where j = 1, . . . , b

µi = αi where i = 1, . . . , a

if and only if T is a tactical configuration with parameters (v, b, k0, r;α1, . . . , αa;

β1, . . . , βb).

Proof. Assume that Γ′ is a directed graph with the given parameters. We now

proceed count α’s and β’s. Let x ∈P and B ∈ B.

Case 1: (x,B) is an antiflag. Since k0 ≥ 1, there exist (x,B1), (x2, B) ∈ ε.

Since t((x,B1), (x2, B)) is the number of (y, C) ∈ V (Γ′) such that (x,B1)→ (y, C)

and (y, C) → (x2, B), it is the number of (y, C) ∈ P ×B such that yεB, xεC,

(y, C) 6= (x,B1), (x2, B) and (y, C) ∈ ε. Hence, it is the number of (y, C) ∈P×B

such that yεB, xεC and (y, C) ∈ ε. Therefore, the number of (y, C) ∈ P ×B

such that yεB, xεC and (y, C) ∈ ε is s′(x,B) = t((x,B1), (x2, B)) = µi for some

i = 1, . . . , a. So s(x,B) = µi for some i = 1, . . . , a.

Case 2: (x,B) is a flag. Since t((x,B), (x,B)) is the number of (y, C) ∈ V (Γ′)

such that (x,B)→ (y, C) and (y, C)→ (x,B), it is the number of (y, C) ∈P×B

such that yεB, xεC, (y, C) 6= (x,B) and (y, C) ∈ ε. Therefore, the number of

(y, C) ∈P×B such that yεB, xεC, (y, C) 6= (x,B) and (y, C) ∈ ε is s′(x,B)−1 =

t((x,B), (x,B)) = tj for some j = 1, . . . , b. So s(x,B) = tj − r − k + 2, for some

j = 1, . . . , b.

Conversely, since T is a tactical configuration, n = vr and k = rk0 − 1. Let

(x,B1), (x2, B) ∈ V (Γ′).

Case 1: (x,B1) = (x2, B) is (x,B) ∈ ε. Since t((x,B1), (x2, B)) is the number of

(y, C) ∈ V (Γ′) such that (x,B1)→ (y, C) and (y, C)→ (x2, B), it is the number of

(y, C) ∈ P ×B such that yεB, xεC, (y, C) 6= (x,B1) and (y, C) ∈ ε. Therefore,

the number of (y, C) ∈P×B such that yεB, xεC, (y, C) 6= (x,B1) and (y, C) ∈ ε

is t((x,B1), (x2, B)) = s′(x,B)− 1 = βj + r + k − 2 for some j = 1, . . . , b.

Case 2: (x,B1) → (x2, B) is (x,B) ∈ ε. Since t((x,B1), (x2, B)) is the number

of (y, C) ∈ V (Γ′) such that (x,B1) → (y, C) and (y, C) → (x2, B), it is the

number of (y, C) ∈ P × B such that yεB, xεC, (y, C) 6= (x,B1), (x2, B) and
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(y, C) ∈ ε. Therefore, the number of (y, C) ∈P×B such that yεB, xεC, (y, C) 6=

(x,B1), (x2, B) and (y, C) ∈ ε is t((x,B1), (x2, B)) = s′(x,B)− 2 = βj + r + k − 3

for some j = 1, . . . , b.

Case 3: (x,B1) 9 (x2, B) is (x,B) /∈ ε. Since t((x,B1), (x2, B)) is the number of

(y, C) ∈ V (Γ′) such that (x,B1) → (y, C) and (y, C) → (x2, B), it is the number

of (y, C) ∈ P ×B such that yεB, xεC, (y, C) 6= (x,B1), (x2, B) and (y, C) ∈ ε.

Hence, it is the number of (y, C) ∈ P ×B such that yεB, xεC and (y, C) ∈ ε.

Therefore, the number of (y, C) ∈ P ×B such that yεB, xεC and (y, C) ∈ ε is

t((x,B1), (x2, B)) = s′(x,B) = αi for some i = 1, . . . , a.

Remark. Let T = (P,B, ε) be a tactical configuration with parameters (v, b, k0, r).

1. If k0 = v, then V (Γ) = ∅ in Theorem 4.2.4.

2. If k0 = 0, then V (Γ′) = ∅ in Theorem 4.2.5.

4.3 Directed regular graphs from symplectic graphs and

orthogonal graphs

Finally, we apply Theorems 4.2.4 and 4.2.5 to compute the parameters of the

directed graphs arising from the tactical structures constructed in Charpters II

and III

Theorem 4.3.1. The directed graph Γ1 = Γ(T1) is strongly regular with parame-

ters

n =

ν∏
i=1

(|R|i+|M |i)

|M |
(ν+1)ν

2

( |R|
2ν−|M |2ν
|R|−|M | −

|R|ν−|R|ν
|R|−|M | |M |

ν),

k = ( |R|
2ν−|M |2ν
|R|−|M | −

|R|ν−|M |ν
|R|−|M | |M |

ν)

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

,

t1 = µ1

= (|R|+ |M |)2|M | − |M |3,

λ1 = (|R|+ |M |)2|M | − (2|R|+ |M |)|M |2.
if ν = 2, and
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t1 = µ1

= |R|ν−|R|ν
|R|−|M | |M |

ν

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

−
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2(ν+1)

2

,

λ1 = |R|ν−|R|ν
|R|−|M | |M |

ν

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

−
(2|R|ν−|R|ν−1|M |−|M |ν)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2ν

2

.

otherwise.

Theorem 4.3.2. The directed graph Γ2 = Γ(T2) is regular with parameters

n = (|R|2ν−|M |2ν)|R|2ν−1

2(|R|−|M |) ( |R|
2ν−|M |2ν
|R|−|M | − |R|

2ν−2(|R| − |M |)),

k = |R|4ν−3(|R|−|M |)
2

( |R|
2ν−|M |2ν
|R|−|M | − |R|

2ν−2(|R| − |M |)),

t1 = µ1

= |R|2ν−2(|R| − |M |) |R|
4ν−3(|R|−|M |)

2
−
(

(|R| − |M |)2|R|2ν−3

× (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2
+

(|R| − |M |)|R|2ν−3|M | |R|
4ν−5(|R|−|M |)3

2

)
,

t2 = µ2

= |R|2ν−2(|R| − |M |) |R|
4ν−3(|R|−|M |)

2
−
(

(|R| − |M |)|R|2ν−2

× (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2

)
,

λ1 = |R|2ν−2(|R| − |M |) |R|
4ν−3(|R|−|M |)

2
−
(

(|R| − |M |)2|R|2ν−3

× (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2
+

((|R| − |M |)|R|2ν−3 − |M |2ν−3)|M | |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+

|R|2ν−2|M |4ν−2(|R| − |M |) + |R|4ν−3|M |2ν−1(|R|−|M |)
2

− (|M |2ν−1)3
)
,

λ2 = |R|2ν−2(|R| − |M |) |R|
4ν−3(|R|−|M |)

2
−
(

(|R| − 2|M |)|R|2ν−2

× (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2
+

(|R|2ν−2 − |M |2ν−2)|M | |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+

|R|2ν−2|M |4ν−2(|R| − |M |) + |R|4ν−3|M |2ν−1(|R|−|M |)
2

− (|M |2ν−1)3
)
.

Theorem 4.3.3. The directed graph Γ3 = Γ(T3) is strongly regular with parame-

ters

n =

ν∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−1)ν

2

( (|R|ν−|M |ν)(|R|ν+δ−1+|M |ν+δ−1)
|R|−|M | − |R|

ν−|M |ν
|R|−|M | |M |

ν+δ−1),

k =

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

( (|R|ν−|M |ν)(|R|ν+δ−1+|M |ν+δ−1)
|R|−|M | − |R|

ν−|M |ν
|R|−|M | |M |

ν+δ−1),
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t1 = µ1

= |R|2−|M |2
|R|−|M | |M |

δ+1 (|R|δ+|M |δ)
|M |δ) − |M |2+δ,

λ1 = |R|2−|M |2
|R|−|M | |M |

δ+1 (|R|δ+|M |δ)
|M |δ − |R|δ+1|M |−δ + |R| − |M |2+δ

if ν = 2 and,

t1 = µ1

= |R|ν−|M |ν
|R|−|M | |M |

ν+δ−1

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

−
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

(|R|−|M |)|M |
(ν+2δ−3)(ν−2)−2(ν+δ)

2

,

λ1 = |R|ν−|M |ν
|R|−|M | |M |

ν+δ−1

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

−

|R|ν |M |δ−2+|R|ν+δ−1|M |−1−|R|ν+δ−2−|M |ν+δ−2

|R|−|M |

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−3)(ν−2)−2(ν+1)

2

.

otherwise.

Theorem 4.3.4. The directed graph Γ4,0 = Γ(T4,0) is λ-strongly regular with pa-

rameters

n = (|R|ν−|M |ν)(|R|ν−1+|M |ν−1)|R|2ν−2

(|R|−|M |)2

(
(|R|ν−|M |ν)(|R|ν−1+|M |ν−1)

|R|−|M | −

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)
)
,

k = |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

(
(|R|ν−|M |ν)(|R|ν−1+|M |ν−1)

|R|−|M | −

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)
)
,

t1 = µ1

= (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× |R|
2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)

2
−(

(|R| − |M |)(|R|ν−1 − |R|ν−2|M | − |M |ν−1)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2
+

(|R| − |M |)|R|2ν−4|M | (|R|−|M |)|R|
2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2

)
,

t2 = µ2

= (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× |R|
2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)

2
−(

(|R|ν − 2|R|ν−1|M |ν−1 + |R|ν−2|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2
+

(|R|ν−1 − |R|ν−2|M | − |R||M |ν−2 + |M |ν−1)|R|ν−2|M |

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2

)
,
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t3 = µ3

= (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× |R|
2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)

2
−

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2
,

λ1 = (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× |R|
2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)

2
−((

(|R|ν − 2|R|ν−1|M |+ |R|ν−2|M |2 − 2|R||M |ν−1 + 3|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4−2|M |4ν−4

2

)
+(

((|R|ν−1 − |R|ν−2|M |+ |R||M |ν−2 − 2|M |ν−1)|R|ν−2|M | − |M |2ν−2)

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2−2|M |4ν−4

2

)
+(

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)|M |4ν−4+

|M |2ν−2 |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

− |M |6ν−6
))
.

Theorem 4.3.5. The directed graph Γ4,2 = Γ(T4,2) is λ-strongly regular with pa-

rameters

n = |R|2ν(|R|ν−|M |ν)(|R|ν+1+|M |ν+1)
2(|R|−|M |)

(
(|R|ν−|M |)(|R|ν+1+|M |ν+1)

|R|−|M | −

(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν)
)
,

k = |R|2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)
2

(
(|R|ν−|M |)(|R|ν+1+|M |ν+1)

|R|−|M | −

(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)
)
,

t1 = µ1

= (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν)
|R|2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
−(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + |R|ν |M |ν + |R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2
+

(|R|2ν−1|M | − |R|2ν−2|M |2 − 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,
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t2 = µ2

= (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν)

× |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
−(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 − |R|ν−1|M |ν+1 + |R|ν−2|M |ν+2)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2
+

(|R|2ν−1|M | − |R|2ν−2|M |2 + |R|ν |M |ν − |R|ν−2|M |ν+2)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,

t3 = µ3

= (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν)

× |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
−

(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2
,

λ1 = (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν)

× |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
−,((

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + 2|R|ν |M |ν − 3|R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2−2|M |4ν
2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 − |R|ν |M |ν + 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |−2|M |4ν
2

)
+

|M |4ν(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)+

|M |2ν |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
− |M |6ν

)
.

Theorem 4.3.6. The directed graph Γ′1 = Γ′(T1) is strongly regular with parame-

ters

n = |R|2ν−|M |2ν
|R|−|M |

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

,

k =

ν−1∏
i=1

(|R|i+|M |i)

|M |
(ν−1)ν

2

|R|ν−|M |ν
|R|−|M | |M |

ν − 1,

t1 = (2|R|+ |M |)|M |2 − 1,

λ1 = t1 − 1,

µ1 = |M |3
if ν = 2, and
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t1 =
(2|R|ν−|R|ν−1|M |−|M |ν)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2ν

2

− 1,

λ1 = t1 − 1,

µ1 =
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+|M |i)

(|R|−|M |)|M |
(ν−1)(ν−2)−2(ν+1)

2

.

otherwise.

Theorem 4.3.7. The directed graph Γ′2 = Γ′(T2) is regular with parameters

n = |R|2ν−|M |2ν
|R|−|M |

|R|4ν−3(|R|−|M |)
2

,

k = |R|4ν−3(|R|−|M |)
2

|R|2ν−2(|R| − |M |)− 1,

t1 = (|R| − |M |)2|R|2ν−3
(

(|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3

2
+

(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2

)
+ ((|R| − |M |)|R|2ν−3 − |M |2ν−3)|M |

× |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+ |R|2ν−2|M |4ν−2(|R| − |M |) + |R|4ν−3|M |2ν−1(|R|−|M |)

2

−(|M |2ν−1)3 − 1,

t2 = (|R| − 2|M |)|R|2ν−2
(

(|R|−|M |)3(|R|2ν−2−|M |2ν−2)|M |2ν−3

2
+

(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2−2|M |4ν−2

2

)
+ (|R|2ν−2 − |M |2ν−2)|M |

× |R|
4ν−5(|R|−|M |)3−2|M |4ν−2

2
+ |R|2ν−2|M |4ν−2(|R| − |M |) + |R|4ν−3|M |2ν−1(|R|−|M |)

2

−(|M |2ν−1)3 − 1,

λ1 = t1 − 1,

λ2 = t2 − 1,

µ1 = (|R| − |M |)2|R|2ν−3 (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2
+

(|R| − |M |)|R|2ν−3|M | |R|
4ν−5(|R|−|M |)3

2
,

µ2 = (|R| − |M |)|R|2ν−2 (|R|−|M |)3(|R|2ν−2−|M |2ν−2)|R|2ν−3+(|R|−|M |)(|R|−2|M |)|R|2ν−2|M |2ν−2

2
.

Theorem 4.3.8. The directed graph Γ′3 = Γ′(T3) is strongly regular with parame-

ters

n = (|R|2−|M |2)(|R|δ+1+|M |δ+1)
|R|−|M |

(|R|δ+|M |δ)
|M |δ ,

k = (|R|δ+|M |δ)
|M |δ

|R|2−|M |2
|R|−|M | |M |

δ+1 − 1,

t1 = |R|δ+1|M |−δ + |R| − |M |2+δ − 1,

λ1 = t1 − 1,

µ1 = |M |2+δ

if ν = 2, and
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n = (|R|ν−|M |ν)(|R|ν+δ−1+|M |ν+δ−1)
|R|−|M |

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

,

k =

ν−1∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−2)(ν−1)

2

|R|ν−|M |ν
|R|−|M | |M |

ν+δ−1 − 1,

t1 = |R|ν |M |δ−2+|R|ν+δ−1|M |−1−|R|ν+δ−2−|M |ν+δ−2

|R|−|M |

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

|M |
(ν+2δ−3)(ν−2)−2(ν+1)

2

− 1,

λ1 = t1 − 1,

µ1 =
(|R|ν−1−|M |ν−1)

ν−2∏
i=1

(|R|i+δ−1+|M |i+δ−1)

(|R|−|M |)|M |
(ν+2δ−3)(ν−2)−2(ν+δ)

2

.

otherwise.

Theorem 4.3.9. The directed graph Γ′4,0 = Γ′(T4,0) is t, λ-strongly regular with

parameters

n = (|R|ν−|M |ν)(|R|ν−1+|M |ν−1)
|R|−|M |

|R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

,

k = |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

×(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)− 1,

t1 =
(
|R|ν − 2|R|ν−1|M |+ |R|ν−2|M |2 − 2|R||M |ν−1 + 3|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4−2|M |4ν−4

2

)
+
(

((|R|ν−1 − |R|ν−2|M |+ |R||M |ν−2 − 2|M |ν−1)|R|ν−2|M | − |M |2ν−2)

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2−2|M |4ν−4

2

)
+(

(|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)|M |4ν−4+

|M |2ν−2 |R|2ν−2(|R|2ν−2−|R|2ν−3|M |−|R|ν−1|M |ν−1+|R|ν−2|M |ν)
2

− |M |6ν−6
)
− 1,

λ1 = t1 − 1,

µ1 =
(

(|R| − |M |)(|R|ν−1 − |R|ν−2|M | − |M |ν−1)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2

)
+

(|R| − |M |)|R|2ν−4|M | (|R|−|M |)|R|
2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2
,

µ2 =
(

(|R|ν − 2|R|ν−1|M |ν−1 + |R|ν−2|M |ν)|R|ν−2

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2

)
+(

(|R|ν−1 − |R|ν−2|M | − |R||M |ν−2 + |M |ν−1)|R|ν−2|M |

× (|R|−|M |)|R|2ν−3(|R|−|M |)(|R|ν−1−|R|ν−2|M |−|M |ν−1)|R|ν−2

2

)
,

µ3 = (|R|2ν−2 − |R|2ν−3|M | − |R|ν−1|M |ν−1 + |R|ν−2|M |ν)

× (|R|−|M |)(|R|ν−1−|M |ν−1)(|R|ν−2|R|ν−1|M |+|R|ν−2|M |ν+2−2|R||M |ν−1+3|M |ν)|R|2ν−4

2
.
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Theorem 4.3.10. The directed graph Γ′4,2 = Γ′(T4,2) is t, λ-strongly regular with

parameters

n = (|R|ν−|M |)(|R|ν+1+|M |ν+1)
|R|−|M |

|R|2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)
2

,

k = |R|2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)
2

×(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)− 1,

t1 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + 2|R|ν |M |ν − 3|R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2−2|M |4ν
2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 − |R|ν |M |ν + 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |−2|M |4ν
2

)
+

|M |4ν(|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)+

|M |2ν |R|
2ν(|R|2ν−|R|2ν−1|M |−|R|ν−1|M |ν+1+|R|ν |M |ν)

2
− |M |6ν − 1,

λ1 = t1 − 1,

µ1 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 + |R|ν |M |ν + |R|ν−1|M |ν+1)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 − 2|R|ν−1|M |ν+1)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,

µ2 =
(

(|R|2ν − 2|R|2ν−1|M |+ |R|2ν−2|M |2 − |R|ν−1|M |ν+1 + |R|ν−2|M |ν+2)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2

)
+(

(|R|2ν−1|M | − |R|2ν−2|M |2 + |R|ν |M |ν − |R|ν−2|M |ν+2)

× (|R|−|M |)|R|2ν−1(|R|−|M |)(|R|2ν−1−|R|2ν−2|M |+|R|ν−1)|M |
2

)
,

µ3 = (|R|2ν − |R|2ν−1|M | − |R|ν−1|M |ν+1 + |R|ν |M |ν)

× (|R|−|M |)(|R|ν+|M |ν)(|R|ν+1−2|R|ν |M |+|R|ν−1|M |2+2|R||M |ν−3|M |ν+1)|R|2ν−2

2
.
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