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CHAPTER I 

INTRODUCTION 

 

Natural and synthetic volatile fragrance molecules have been used as perfume 

in a broad variety of everyday products, e.g., softeners, detergents, shower creams and 

deodorants, of which pleasantness of the odor and longevity of fragrances are the 

main consumer concerns. Fragrance chemical can be categorized according to their 

chemical functionalities into alcohols, esters, lactone, ethers, ketones, terpenes, and 

aldehydes. Amongst these the most unstable functionality is aldehyde. Odorous 

aldehydes although are popularly used in everyday products, they often lose their odor 

due to both their volatility and their reactive nature which leads to reaction with other 

components during product storage or usage. Volatility and reactivity of other groups 

of fragrance chemicals such as terpenes, were also a serious problem. Therefore it has 

become one of the main issues in the fragrance technology to inherit slow release and 

maintain a fragrance chemical stability [1].  

Controlled release has been defined as a manner that active agents or 

ingredients are allowed to be available at a require site and time with a specific rate 

[2]. Up to now, the controlled fragrance release technology can be divided into two 

groups [3]: (1) Physical Encapsulation, fragrance molecules are encapsulated into 

well designed polymer to prolong the longevity and increase stability of the active 

molecules. Other benefits of encapsulation include ease of production, enhanced 

safety and expanded application in fragrance fields whereas the release behaviors 

depended on fragrances loading and capability of molecules to diffusion out which 

was controlled by vapor pressure and fragrance molecules-polymer matrix interaction 

[4, 5]; (2) Chemical Derivation, fragrance molecules are covalently bonded with 

suitable moieties through appropriated chemical bonds and thus becoming inactive, 

however, upon breaking of such bonds the fragrance molecules re-emerge. The 

fragrance derivatives in this strategy are usually called pro-fragrances [6, 7]. The 

chemical linkages or chemical bonds used in pro-fragrance must be breakable under 

desired condition in order to release the fragrance molecules under the intended 

circumstances (environmental trigger) when the product is being used. Examples of 



 

the feasible environmental triggers include temperature, light, oxidation, enzymes, pH 

as well as water content.  

 

Temperature    

The general approach to break the covalent bond was heating. Several 

situations in everyday life condition like ironing, hair drying and cooking are 

available for bond breaking. For example, release of vanillin from cyclic acetal of 

carbohydrate (Figure 1.1) by thermal activation above 70 oC has been used in cooking 

[8].  

 

Figure 1.1 Example of cyclic acetal of carbohydrate  

 

Light 

Ultraviolet region, green natural energy from sunlight, is a source that can be 

used for covalent bond breaking. UV has been applied in the field of fragrance surface 

coating of which the fragrance molecules are triggered to be released from the surface 

upon an exposure to daylight [9]. Photooxidation of keto-ester is one of the Norrish 

type II reactions that could be employed to generate a good yield of aldehyde or 

ketone and carboxylic acid under outdoor sunlight in the presence of oxygen (Figure 

1.2). Figure 1.3 showed cycloalkyl-oxo acetates as a photo-labile precursor for 

releasing of citronellal molecule [10].    

 

 

Figure 1.2 The mechanism of Norrish type II photooxidation 

 

 

2 



 

 

 

 

Figure 1.3 Example of -keto ester 

 

Oxidation  

As it has been known that oxygen is active species which will easily react with 

various functional chemicals through oxidation reaction. Therefore, oxidation reaction 

has also been used to release fragrance chemicals from their pre-cursor molecules. In 

Figure 1.4, β-amino alcohol represents pro-fragrance precursor which by slow 

oxidation when exposed to the air could release aldehyde [11].  

 

 

 

 

Figure 1.4 Example of oxidative labile fragrance 

 

Enzymes 

  An interesting approach for breaking the designed labile fragrance molecules 

is the use of enzymes or antibacteria. Lipase is the useful enzyme found in the 

extracellular Stratum corneum of the skin [12] and also in skin bacteria [13] and it 

was used to trigger the release of fragrance. For example, the release of citronellol by 

lipase from dendritic substrate composed of branched polyamides conjugated to 

fragrance alcohol through ester bond (Figure 1.5) [14].  

       

 

 

 

 

 

 

Figure 1.5 Dendritic material for enzyme-triggered release of alcohol   
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Hydrolysis and change in pH 

Most personal care products are usually formulated in water base, therefore, it 

is logical to use hydrolytic labile pro-fragrance to control the release of fragrance 

molecules in order to increase fragrance longevity of the products. In some cases, 

hydrolysis may be affected by changing in pH value. Anderson and Fráter [15] 

reported a slow release of alcohol from β-keto ester through an ester hydrolysis with 

decarboxylation under acid- base conditions (Figure 1.6).  

 

 

 

 

 

Figure 1.6 Hydrolysis of β-keto ester to release of fragrance alcohol  

 

1.1 Fragrance aldehyde molecules 

Fragrance molecules are either volatile organic compound isolated from plants 

and other natural sources or products from modern organic synthesis. They are 

generally used as ingredients in perfumes. Their odorous characteristics can be 

categorized into three notes: (1) top note, consisting of a small molecule that quickly 

evaporate to give a fresh, floral or fruity odor (2) middle note, consisting of less 

volatile substantive that give the scent before top note dissipation (3) base note, 

consisting of heavy-molecular weight molecule that slowly evaporate to give a deep 

odor [16].  

Aldehydes represent a large percentage of odorous materials. Thus controlling 

the release of aldehydes will definitely benefits directly to the perfumery industry. In 

this works, selected aldehydes including both aliphatic and aromatic, were being used. 

The detail of each fragrance aldehydes is as follows.  

 

Vanillin  

Vanillin, 4-hydroxy-3-methoxybenzaldehyde (C8H8O3), is a phenolic aldehyde 

compound which is a white solid appearance with the molecular weight of 152.15 

g/mol. This compound contains aldehyde, ether and phenol functional group (Figure 
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1.7). Vanillin is partially soluble in water but well soluble in ethanol and methanol. It 

can be obtained from natural extraction and chemical synthesis. Natural vanillin is 

extracted from seed pods of vanilla. Synthetic vanillin is synthesized in two steps 

from guaiacol and glyoxylic acid precursor. Vanillin is usually used as an ingredient 

in foods, a flavoring additive in beverages and a key element in perfumes [17].  

 

 

 

 

 

 

Figure 1.7 Chemical structure of vanillin  

 

Cinnamaldehyde 

Cinnamaldehyde, 3-phenylprop-2-enal (C9H8O), is an aromatic aldehyde 

compound which is a yellow oil appearance with the molecular weight of 132.16 

g/mol. This compound contains phenyl group and unsaturated aldehyde (Figure 1.8). 

Cinnamaldehyde is slightly soluble in water but soluble in ethanol.  It can be obtained 

from the steam-distillation process from the bark of cinnamon trees. Cinnamaldehyde 

is usually used as a flavoring additive in beverages and foods, and as a fragrance 

molecule to give a sweet or fruity scent in perfume. It is also well-known as an 

insecticide, an antioxidant, an anti-microbial and an anti-septic agent [18].     

 

 

Figure 1.8 Chemical structure of cinnamaldehyde  

 

Citronellal  

Citronellal, 3,7-dimethyloct-6-en-1-al (C10H18O), is an aliphatic aldehyde 

compound (Figure 1.9) which is a clear to yellow oil appearance with the molecular 

weight of 154.25 g/mol. This compound is the major component of the citronella oil. 
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Citronellal is insoluble in water but soluble in ethanol, ether, chloroform and acetone. 

It can be isolated from the steam-distillation process of the leaves of different species 

of Cymbopogon grass. Citronellal is usually used as a mosquito repellent, and as a 

fragrance in cosmetic products such as soaps and other toiletries. The compound gives 

a lemon scent. It is also reported that the compound inherits some anti-fungal property 

[19]. 

 

 

 

 

Figure 1.9 Chemical structure of citronellal 

 

Citral 

Citral, 3,7-dimethyl-2,6-octadienal (C10H16O), is an aliphatic aldehyde 

compound (Figure 1.10) which is a pale yellow oil appearance with the molecular 

weight of 152.24 g/mol. This compound is the major component in the lemongrass 

oil, verbena oil, lemon oil, nikkel oil, lime oil, ginger oil, and other plant essential 

oils. Citral is insoluble in water but soluble in ethanol. It is usually used both as a 

flavor, and as a fragrance that gives a strong lemon scent. Citral is also a raw material 

for the synthesis of retinol, ionone and methylionone. It also finds in application as an 

insect repellent with anti-microbial properties [20].  

 

 

 

Figure 1.10 Chemical structure of citral 

  

1.2 Derivatives of fragrance aldehyde molecules  

Fragrances are highly volatile organic compounds thus their odorous 

perceptions are short-lived. As mentioned earlier that many of them, especially 

aldehydes, are unstable functional group that can undergo degradation prior to their 
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use in the products. To avoid these problems, pro-fragrances have been developed to 

prolong the fragrance release and stability. Pro-fragrances recently represent an 

attractive alternative way to conventional encapsulation techniques [7, 16]. They 

release one or several volatile compounds from well-designed precursor molecules 

through the cleavages of selective labile-covalent bond during product usage. Many 

labile chemical bonds have been designed for controlled release of their original 

molecules. The following paragraphs contain details of popular chemical 

functionalities used for this purpose.  

 

Schiff base formation 

 In 1982, Kamogawa et al. [21] synthesized Schiff bases by reacting of m- or p-

aminostyrenes with citral (an aldehyde) (Figure 1.11). The Schiff base products were 

obtained in ethanol without the use of high temperature. The p-Schiff bases 

showedhigher yields and higher melting points than the corresponding m-Schiff bases. 

For the hydrolysis of Schiff base products under acidic aqueous solution, it was found 

that the release rate of citral from the polymer was slower than that of the monomer. 

These demonstrated that the long-time release characteristic of fragrance molecules 

could be made possible when polymeric structure was applied. 

 

 

 

Figure 1.11 Monomeric (left) and polymeric Schiff bases (right). The amounts of 

aldehyde isolated are shown in brackets. 

 

-Acetoxy ethers formation 

In 2005, Bochet and Robles [6] were able to prepare photolabile-aldehyde 

precursors through -acetoxy ethers formation using the reduction reaction of the 

related esters with diisobutylaluminium hydride (DIBAL) and quenching aluminum 
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hemiacetal (an intermediate) with acetic anhydride (Figure 1.12). These precursors 

were able to release aldehyde molecules when being exposed to UV light (at 350 nm). 

This model can be further developed into external-responsive smart materials.   

 

 

Figure 1.12 Preparation of -acetoxy ethers 

 

Reversible hydrazone formation 

In 2006, Herrmann et al. [7] used the concept of reversible covalent reactions 

for the controlled delivery of volatile fragrance molecules. They demonstrated the 

reversible hydrazone formation through the reaction between hydrazine derivatives 

and aldehydes or ketones which had hemiaminal as an intermediate in a two-step 

mechanism (Figure 1.13). The gradual hydrolysis of the hydrazone makes it a highly 

efficient pro-fragrance material. 

 

 

 

 

 

Figure 1.13 Reversible hydrazone formation 

 

Acid-labile acetal formation 

In 2009, Endo et al. [3] attached the volatile fragrance molecules into an 

amphiphilic copolymer through an acetal linkage by reacting of 2,3-dihydroxypropyl 

methacrylate monomer (diol) and lilial (aldehyde). Thus, a lilial-derived cyclic acetal 

attachment was synthesized (Figure 1.14). The obtained polymeric pro-fragrance 

possessed a very low vapor pressure of the fragrance molecule. Therefore, the rapid 

release of the fragrance molecules could be retarded. 
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Figure 1.14
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Step 1: Acid catalyzed addition of the amine to the carbonyl 

 

 

 

 

 

Step 2: Acid catalyzed dehydration 

Figure 1.16 The mechanism of Schiff base formation 

 

1.4 Carrier in fragrance delivery system 

Poor solubility in water of many fragrances usually causes difficulty in 

product formulation. Although surfactant can be used as stabilizing agent, it is still 

faced with other problems such as turbidity, irritation and stability. The encapsulation 

of fragrance into carrier provides both increased solubility and controlled release 

characteristic. Through encapsulation technology, easy handling, increased safety and 

enhanced stability have also been realized. Herein, the recent carriers for long-time 

lasting fragrance release with different types of polymer are being reviewed. 

 

Use of chitosan 

In 2006, Wen et al. [23] prepared microcapsules for volatile essential oil 

encapsulation using oil-in-water (O/W) emulsion process, using chitosan as a wall 

material, citronella oil as an inner core material and coconut oil as a surfactant. The 

prepared sample at chitosan 0.5 wt%, NaOH 1.0 wt% with coconut oil possessed a 

good dispersion character and gave the encapsulation efficiency of 98.2%. The 

particle size of chitosan microcapsules decreased when the emulsification stirring rate 

increased. The release of citronella oil from the microcapsules was investigated by 

determining the time course of the microcapsules weight placed in an Infrared 

Moisture Determination Balance (IMDB). The release rate of citronella oil from 
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smaller microcapsules was faster than that of bigger microcapsules because of larger 

surface area. The release behaviors of the active after thermal pretreatment at 40 oC 

and 60 oC for 1 min were similar, whereas that at 80 oC was significantly slower. The 

author explained the slower release rate at high temperature through the closing of the 

pores induced by the wall shrinkage at high temperature (Figure 1.17). 

 

 

 

 

 

 

 

 

 

Figure 1.17 Time course of oil release from microcapsules at various temperatures 

[23] 

 

Use of cyclodextrin  

In 2007, Tarimci et al. [24] made the linalool and benzylacetate inclusion 

complexes using 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) to improve the water 

solubility, stability, and control the release property of the two fragrance compounds. 

The inclusion complexes were confirmed using 1H-NMR spectroscopy and circular 

dichroism spectroscopy. The results of the solubility experiments showed that the 

inclusion complex at molar ratio of guest:host of 1:1 increased the solubility for 5.9 

4.2 folds for linalool and benzylacetate, respectively. The results of the 6-month-

stability test showed less decrease of the fragrance concentration in the gel 

formulations with prepared inclusion complexes comparing to that with the 

uncomplexed fragrances. Furthermore, the results of the controlled release study 

showed slower fragrance released from the gel formulation with the inclusion 

complexes comparing to that with the uncomplexed fragrances (Figure 1.18).  
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Figure 1.19 TGA curves of pure perfume, perfume–SiO2 and polyelectrolyte-

encapsulating perfume–SiO2 [25] 

 

Use of homo- and copolymers 

In 2009, Landfester et al. [26] encapsulated the hydrophobic fragrance 1,2-

dimethyl-1-phenyl-butyramide (DMPBA) into nanocapsules using one-step 

miniemulsion polymerization process. Polymeric shell of nanocapsules was fabricated 

with different types of homopolymers (poly(methylmethacrylate)  (PMMA) and 

polystyrene (PS)) and copolymer (poly(methylmethacrylate-co-2-ethylhexyl 

methacrylate) P(MMA-co-2-EHA)). The different polymer shells possessed different 

glass transition temperatures (Tg). The release behaviors of the pure DMPBA and the 

encapsulated DMPBA at various fragrance contents were analyzed using 1H NMR 

spectroscopy. At 20 oC below the Tg of polymer/fragrance, no release of fragrance 

was observed. The temperature of over 55 oC (T>Tg) caused significantly release of 

the fragrance (Figure 1.20). The results indicated that the release rate of the fragrance 

molecules can be easily controlled by changing capsule shell. In other words, the rate 

of fragrance release could be adjusted by selecting appropriated polymer shell of 

desired Tg. 
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Figure 1.20 Release profiles at 55 OC of a pure DMPBA miniemulsion, 30 wt% 

DMPBA in nanocapsules and 50 wt% DMPBA in nanocapsules [26]  

 

Use of polymer blend  

In 2010, Sansukcharearnpon et al. [5] encapsulated the six fragrances, 

camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl into 

polymer blend based ethylcellulose (EC), hydroxypropylmethylcellulose (HPMC) and 

poly(vinylalcohol) (PV(OH)). The encapsulation process was carried out by solvent 

displacement method. This process gave nanospherical particles with the fragrance 

loading capacity and encapsulation efficiency of ≥40% and ≥80%, respectively, at 

weight ratio of the fragrance: polymer of 1:1. The release profiles of all encapsulated 

fragrances and pure fragrances were determined using thermogravimetric analysis 

(TGA) and electronic nose (e-nose). The results from both techniques were agreeably 

and it was concluded that the release of all tested fragrances except limonene could be 

prolonged by encapsulation into the polymer blend (Figure 1.21).   
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Figure 1.21

 

1.5 Chitosa

Am

as fragranc

biopolymer

walls, by a

chitin must

in many ar

science, an

chitosan c

chitosan po

canafford s

great prope

microbial a

1 Release pr

an 

mongst many

ce delivery

r derived fro

alkaline de

t be transfor

reas such a

nd currently

consist of 

ossesses pr

several pos

erties such a

activities [27

rofiles of the

y polymers,

y host. Chi

om chitin, n

acetylation 

rmed into a

as food, bi

y in gene th

glucosamin

rimary hydr

ssibilities fo

as biodegra

7-30]. 

e encapsula

 chitosan ha

tosan (β-(1

naturally fou

reaction. T

amino group

otechnolog

herapy [23,

ne (GlcN), 

roxyl, secon

or chemical

adability, bi

ated fragran

as been an 

1→4)-2-ami

und in crust

To make c

ps (Figure 1

y, drugs an

, 27-30]. B

N-acetylg

ndary hydr

l derivatiza

iocompatibi

ce by e-nos

interesting 

ino-2-deoxy

tacean outer

chitosan, ac

1.22). Chito

nd pharmac

Because the 

glucosamine

roxyl and a

ation. Chito

ility, mucoa

 

se [5] 

candidate f

y-β-D-gluca

r skin or fun

cetamide gr

osan is used

ceuticals, m

repeating 

e (GlcNAc

amino grou

osan also po

adhesivity a

for using 

an) is a 

ngal cell 

roups of 

d widely 

materials 

units of 

c) units, 

ups, thus 

ossesses 

and anti-

15 



 

 

Figure 1.22 Deacetylation reaction of chitin 

 

1.6 Carrier from chemical modification of chitosan 

Although chitosan possesses many advantages, the compound is insoluble in 

almost all solvents except acids owing to its high compact-crystalline structure and 

high molecular weight. Consequently, many researchers have been working with 

chemically modified chitosan.  

 

Chitosan-poly(acrylic acid) nanoparticles 

In 2002, Yang et al. [31] prepared chitosan-poly(acrylic acid) complex 

nanoparticles (CS-PAA nanoparticles) using template polymerization. The 

polymerization of acrylic acid in chitosan solution (CS as the template) was initiated 

by K2S2O8. After successful polymerization, the solution changed from a clear 

solution to an emulsion. The inter- and intra- molecular complexation between 

negative charge from carboxyl groups (COO-) of PAA and positive charge from 

amino groups (NH3
+) of CS leading to the formation of nanoparticles. The obtained 

particles, at pH 4.5 in aqueous solution, showed well dispersion and good particle 

stability, and possesses positive charge and small size in the range of 200 - 300 nm 

(Figure 1.23).  

 

 

 

 

 

 

 

Figure 1.23 TEM micrograph of CS-PAA nanoparticles at pH 4.5 [31] 
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N-phthaloylchitosan-grafted mPEG nanospheres 

In 2004, Yokson et al. [32] successfully produced N-phthaloylchitosan-grafted 

poly(ethylene glycol) methyl ether (mPEG) nanospheres by grafting mPEG-COOH 

(hydrophilic segment) onto the hydroxyl group of N-phthaloylchitosan. The grafted 

product displayed a turbid appearance when dispersed in water and other solvents. 

These colloidal phenomena indicating that the aggregated behavior of chitosan chains 

which was induced by the hydrophobic-hydrophilic interaction results in the sphere 

formation. The size of spheres was 80-100 nm (Figure 1.24).  

 

 

 

 

 

 

Figure 1.24 TEM and SEM micrographs of N-phthaloylchitosan-grafted mPEG 

nanospheres [32] 

 

Chitosan-g-poly(n-butyl acrylate) particles 

In 2005, Li et al. [33] synthesized a novel core-shell particles consisting of 

poly(n-butyl acrylate) (PBA) and chitosan by an emulsion copolymerization of BA in 

acidic chitosan solution with a small amount of t-butyl hydroperoxide. The core-shell 

structure of PBA-chitosan particles was well observed by transmission electron 

microscopy (TEM).  TEM micrograph (Figure 1.25) could greatly define that the 

particle had a soft core PBA which was covered with a chitosan shell. In addition, the 

PBA-chitosan nanoparticles were positively charged with an average diameter of 300 

nm. 

 

 

 

 

 

Figure 1.25 TEM micrographs of PBA-chitosan particles [33] 
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N-succinyl-chitosan nanospheres 

 In 2006, Zhu et al. [34] synthesized N-succinyl-chitosan nanospheres 

(NSCS), succinyl was substituted at hydrogen atom of amino group in chitosan 

chains. In distilled water, NSCS easily dispersed into the stable and transparent 

dispersion. Examining of the dispersion indicated an assembling of polymer into 

spherical particles. The self-assembly of the obtained nanospheres probably induce 

from the decrease in intermolecular H-bonding thus lower the crystallinity of the 

chitosan. The average size of the NSCS nanospheres was about 50–100 nm (Figure 

1.26).  

 

 

 

 

 

 

 

Figure 1.26 TEM micrographs of NSCS nanospheres [34] 

 

1.7 Research goals 

The aim of this research is to prepare the nanocarrier based biopolymer 

containing fragrance aldehyde molecules in order to effectively control the release of 

the fragrance aldehydes. The system consisted of succinylchitosan shell as a physical 

barrier and aldehyde linked to amine group of nanoparticles as a chemical barrier. The 

work included: 

1. Preparation of N-succinylchitosan (N-SCS) 

2. Preparation of fragrance aldehyde nanoparticles (imine-N-succinylchitosan 

nanoparticles) 

 - Preparation of N,N-vanillidene-succinylchitosan 

 - Preparation of N,N-cinnamylidene-succinylchitosan 

 - Preparation of N,N-citronellalidene-succinylchitosan 

 - Preparation of N,N-citralidene-succinylchitosan 
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3. Chemical structure, morphological observation and surface characterization of 

prepared nanoparticles   

4. Controlled release study of imine-N-succinylchitosan nanoparticles compared with 

free fragrance aldehyde  
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operating at 400 MHz. Attenuated total reflectance-Fourier transform infrared (ATR-

FTIR), a ContinuµmTM infrared microscope equipped with a mercury-cadmium-

telluride (MCT) detector and connected to a Nicolet 6700 FT-IR spectrometer 

(Thermo Electron Corporation, Madison, WI, USA) and ATR accessory consisting of 

a slide-on miniature germanium (Ge) as the internal reflection element was used, 

collecting with 64 scans in the mid-infrared region (4000 – 650 cm–1). X-ray 

diffraction (XRD), a Rigaku DMAX 2200/Ultima+ diffractometer (Rigaku 

International Corporation, Tokyo, Japan), using Cu K radiation operating at 40 kV 

and 30 mA and UV/Vis, a UV2500 spectrophotometer (Shimadzu Corporation, 

Kyoto, Japan), measuring in a quartz cell of pathlength 1 cm with thermostated at 25 
0C, were also used during material characterization. 

N-succinylchitosan (N-SCS): 75% yields of white powder and 0.18 degree of 

succinyl grafting. 1H NMR (D2O, 400 MHz, , ppm): 2.01 (H of acetyl groups), 2.42-

2.50 (methylene protons of the succinyl), 2.80 (H2 of glucosamine, GlcN), 3.50-3.92 

(H2 of N-acetylglucosamine, GlcNAc, H3, H4, H5 and H6 of GlcNAc and GlcN), 

4.54 (H1 of GlcNAc and GlcN). ATR-FTIR (cm-1):  3282 (N-H stretching and O-H 

stretching vibration), 2864 (C-H stretching vibration), 1652 (amide I (C=O 

stretching)), 1555 (amide II), 1406 (symmetric stretching vibration of COO- and 

amide III), 1319 (amide III (C-N stretching)), 1143 (C-O-C stretching vibration), and 

1027 (C-O stretching vibration). UV/Vis (deionized water, 25oC)  max: 252 nm, : 

0.0278 M-1cm-1(equivalent of monomeric unit). 

 

2.3 Nanoparticle formation 

Particles were simply prepared by dispersion of N-SCS (20 mg) into 20 mL 

deionized water thus the transparent colloid was obtained. Morphology of particles 

was visualized by scanning electron microscopy (SEM), a JSM-6400 (JEOL, Tokyo, 

Japan). A drop of nanoparticles dispersion was placed on a glass slide and dried 

overnight. The sample was coated with a gold layer under vacuum at 15kV for 90s 

then mounted on a SEM stud for visualization at an accelerating voltage of 15kV.  A 

JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan) was also acquired 
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Finding the optimum ratio between N-SCS nanoparticles and aldehyde 

 For finding the optimum ratio between aldehyde and amine (no unreacted 

aldehyde left after the reaction but with maximum Schiff base formation), the same 

procedure as describe above was used but with the 4 h sonication time. The amine in 

N-SCS nanoparticles was allowed to react with aldehyde in the vanillin structure at 

the weight ratio of N-SCS to vanillin of 1:1, 2:1, 3:1, 4:1 and 5:1. The imine bond 

formation was characterized through ATR-FTIR.   

Various aldehydes for imine-N-SCS nanoparticles formation 

In this experiment, both aliphatic and aromatic aldehydes were employed as 

perfumery aldehyde. Vanillin and cinnamaldehyde are representatives of aromatic 

aldehyde while citronellal and citral are representatives of aliphatic aldehyde. All the 

experiments were carried out under the optimal condition obtained from the above 

experiment (the weight ratio of polymer to aldehyde was 3:1 and sonication time of 

about 4h). Briefly, 20 mg of the aldehyde in 4 mL ethanol was added into the 

suspension of N-SCS (60 mg, 16 mL) under sonication environment, after 4h the 

product was left dry and then characterized through ATR-FTIR.    

N,N-vanillidene-succinylchitosan: Degree of vanillin substitution: 0.34. ATR-

FTIR (cm-1): 3282 (N-H stretching and O-H stretching vibration), 2867 (C-H 

stretching vibration), 1635 (C=N stretching vibration), 1592 and 1512 (C=C 

stretching vibration of aromatic), 1555 (amide II), 1143 (C-O-C stretching vibration), 

and 1027 (C-O stretching vibration). 

N,N-cinnamylidene-succinylchitosan: Degree of cinnamaldehyde substitution: 

0.29.  ATR-FTIR (cm-1): 3282 (N-H stretching and O-H stretching vibration), 2867 

(C-H stretching vibration), 1632 (C=N stretching vibration), 1592 (C=C stretching 

vibration of aromatic), 1552 (amide II), 1147 (C-O-C stretching vibration), and 1024 

(C-O stretching vibration). 

N,N-citronellalidene-succinylchitosan: Degree of citronellal substitution: 

0.38. ATR-FTIR (cm-1): 3282 (N-H stretching and O-H stretching vibration), 2870 

(C-H stretching vibration), 1638 (C=N stretching vibration), 1612 (C=C stretching 
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vibration), 1552 (amide II), 1147 (C-O-C stretching vibration), and 1024 (C-O 

stretching vibration). 

N,N-citralidene-succinylchitosan: Degree of citral substitution: 0.38.  ATR-

FTIR (cm-1): 3282 (N-H stretching and O-H stretching vibration), 2874 (C-H 

stretching vibration), 1638 (C=N stretching vibration), 1612 (C=C stretching 

vibration), 1555 (amide II), 1143 (C-O-C stretching vibration), and 1027 (C-O 

stretching vibration). 

Morphology, Hydrodynamic diameter and Zeta potential of the nanoparticles 

The particle morphology of the products was observed using SEM, TEM and 

atomic force microscopy (AFM, a Nanoscope IV scanning probe microscope (Veeco 

Metrology Group, California, USA), operating in tapping mode). For the AFM 

analysis, before visualization, a drop of nanoparticles dispersion was placed on a glass 

slide and dried overnight. The average hydrodynamic diameter, polydispersity index 

(PDI) and zeta potential values of samples were conducted by dynamic light 

scattering (DLS).  

Steady-state fluorescence spectroscopy 

 The emission spectra of the mixture between imine-N-SCS nanospheres (N,N-

citronellalidene-succinylchitosan nanospheres) of various concentrations and a 

fluorescence probe (pyrene at a selected concentration) were recorded on 

spectrofluorimeter. The measurement was carried out using the same procedure as 

described in N-SCS (λexcite = 334 nm, the emission was recorded from 350 to 450 nm). 

The change in I372/I384 as the intensities of pyrene at the first and the third peaks were 

used to determine the range of critical aggregation concentration (cac) value.  

Chemical composition at the surface 

 Functional groups present on chitosan surface and surface of the fabricated 

nanospheres of the modified material (N-SCS, N-vanillidenechitosan, N,N-

vanillidene-succinylchitosan nanospheres) were obtained through X-ray photoelectron 

spectroscopy (XPS), a Kratos AXIS Ultra DLD instrument (Kratos, Manchester, 

25 



 

England), using a monochromatic Al K X-ray source (1486.6 eV). The X-ray source 

was operated at 150 W (15 kV and 10 mA). The base pressure in the XPS analysis 

chamber was about 5 × 10-8 torr during the measurement. All binding energies (BEs) 

were referenced to the hydrocarbon C 1s peak at 285 eV. High resolution spectra for 

the C1s and N1s were acquired using pass energy of 20 eV and energy steps of 0.1 

eV. Data analysis was performed with the Kratos Vision Processing software.  

 

2.6 The release of aldehyde from Schiff base nanoparticles 

 
UV-visible spectroscopic analysis 

 Five milliliters of each Schiff base dispersion (N,N-vanillidene-

succinylchitosan, N,N-cinnamylidene-succinylchitosan, N,N-citronellalidene-

succinylchitosan and  N,N-citralidene-succinylchitosan at polymer and aldehyde 

concentration of 7500 and 2500 ppm, respectively) was loaded in a 20 mL flat bottom 

headspace vial for 7 vials per each of the dispersion and all of the vials were left 

uncovered at 32 oC. When reach the 0, 1, 2, 5, 8, 12 and 16 days, the sample vial was 

adjusted volume to 10 mL by adding 20% v/v ethanol, changed to pH 1.0 with 1 M 

HCl, filled with 15 mL of hexane, and then immediately capped with headspace 

aluminum crimp caps with PTFE/silicone septa. The hexane layer was then subjected 

to aldehyde quantitation using a UV-visible spectrophotometer with the aid of a 

calibration curve of each standard aldehyde comparing with free perfumery 

aldehydes.  

The release of perfumery aldehydes was also evaluated in dry samples at 40 
OC. Here 10 ml of the freshly prepared imine-N-SCS nanoparticle suspensions 

(prepared at final concentration of aldehyde of 2500 ppm) were left in the uncapped 

20 ml flat bottom-headspace-vial for 60 days. Under this condition the samples 

became dry after 20 days, as no water was added into the vials, and the dry samples 

were kept at the same condition until the 60-day period was reached. Control samples 

were solutions of corresponding aldehydes at 2500 ppm (in 20% (v/v) ethanol-water).  
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Then after 60 days, each sample vial was filled with 15 ml of 50% (v/v) ethanol-

water, the sample was kept 24 h, and the ethanol-water phase was subjected to 

aldehyde quantification as described above. 
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Spheres 
Hydrodynamic diameter Zeta potential  

 (nm.) PDI (mV) 

N,N-citronellalidene-

succinylchitosan 109.6 ± 1.6 0.1986 +38.3 ± 2.4 

N,N-citralidene-

succinylchitosan 80.9 ± 1.7 0.1668 +42.4 ± 0.6 

    

 All imine- N-SCS nanospheres show larger positive zeta potential comparing 

to the N-SCS nanoparticles (Table 3.1).  

In theory a high negative or positive zeta potential of the nanoparticles will 

make them repel each other and thus minimize their aggregation. Acceptable zeta 

potentials of stable particles are more positive than +30 mV or more negative than -30 

mV [38]. It should be noted here that the obtained zeta potentials of the obtained 

suspensions were above +30 mV, indicating stable suspensions obtained though 

aldehyde grafting on the N-SCS particles. 

 

3.5 Micelle forming behavior   

 Aggregation behavior of the micelles was monitored by fluorescence 

spectroscopy with pyrene as a fluorescence probe. We compared two aqueous 

systems, N-SCS and N,N-citronellalidene-succinylchitosan. The samples (the test 

polymer of various concentrations ranging from 0.05 to 0.60 mg/ml in the presence of 

pyrene) were excited at 334 nm and the emission of pyrene was recorded from 350 to 

450 nm. The intensity ratio between the first peak at 372 nm (I372) and the third peak 

at (I384) of pyrene emission spectrum was used for monitoring the behavior of 

polymer aggregation around the pyrene molecules. The I372/I384 value plot versus 

polymer concentrations was further calculated for prediction of the polymer critical 

aggregation concentration (cac). The method is based on the fact that fluorescent of 

pyrene is usually affected by the environment around pyrene molecules. The I372/I384 
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value is high when pyrene is in the hydrophilic environment. In contrast, with the 

aggregation of the polymer, the pyrene will be moved into the hydrophobic core of 

the aggregates and the value of I372/I384 will decrease (the environment of the pyrene 

molecules changed from hydrophilic to hydrophobic) [39]. Figure 3.21 suggested that 

the cac value of N,N-citronellalidene-succinylchitosan is 0.15–0.4 mg/ml. When the 

concentration of N,N-citronellalidene-succinylchitosan is above 0.15 mg/ml, the 

I372/I384 value showed more decrease comparing to that of N-SCS (see slope of the 

graph), agreeing with the scenario that the interior of the N-SCS is less hydrophobic 

than the interior of the imine-N-SCS.    

 

 

 

 

 

 

Figure 3.21 Change of intensity ratio (I372/I384) versus concentration of polymers (a) 

N-SCS and (b) N,N-citronellalidene-succinylchitosan  

  

3.6 Chemical composition at the surface 

 X-ray photoelectron spectroscopy (XPS) has been used for determining the 

chemical composition of the solid surface. It is an extremely surface sensitive 

technique for detecting surface modification of materials and studying the adsorption 

and retention of chemical agents. Information from XPS technique usually is at the 

surface with less than 8 nm depth.  

  Since the aim of this work is to create a novel controlled release system with 

both chemical barrier and physical barrier, it is essential to confirm the two features. 

The imine bond which is a chemical barrier could be clearly confirmed by IR 
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technique. Here we used the XPS technique to confirm the second feature which is the 

physical barrier. The grafted imine moieties should not be present at the surface if the 

physical barrier is to be claimed.  In this study four samples were compared, original 

chitosan, self-assembled N-succinylchitosan nanospheres, non self-assembled N-

vanillidenechitosan and self-assembled N,N-vanillidene-succinylchitosan spheres.  

The deconvoluted peaks from high resolution XPS spectra gave the surface 

chemical composition of prepared product as follows: 

Chitosan  

The C 1s core-level spectrum of chitosan could be fit into three peaks [40]: a 

peak at the binding energy (BE) of 285.1 eV which was assignable to C-H, the peak at 

the BE of 286.5 eV which was assignable to C-OH, and the peak at the BE of 287.9 

eV which was assignable to both O-C-O and HN-C=O. The N 1s core-level showed 

two species of nitrogen: primary amine (-NH2) at the BE of 399.4 eV and amide        

(-HN-C=O) at the BE of 400.2 eV (Figure 3.22a). 

Self-assembled N-SCS spheres  

The XPS spectrum of self-assembled N-SCS spheres displays new peaks at the 

BE of 288.5 eV (O-C=O) in the C1s spectrum and at the BE of 401.8 eV (-NH3
+) in 

the N1s spectrum (Figure 3.22b). 

Non-self-assembled N-vanillidenechitosan  

For non-self-assembled Schiff base product, the XPS spectra demonstrated an 

additional peak of imine bond (C=N) at the BE of 285.4 and 399.1 eV, respectively 

(Figure 3.22c).  

Self-assembled N,N-vanillidene-succinylchitosan 

In the high resolution spectra of self-assembled Schiff base spheres, the C 1s 

spectrum showed only four peaks assignable to C-H, C-OH, O-C-O/HN-C=O and O-

C=O. Moreover, an increase in amide peak intensity also corresponded well with the 

grafted succinyl moiety. Very importantly, its N 1s spectrum showed only three peaks 

for primary amine (-NH2), amide (-HN-C=O) and protonated amine (-NH3
+) (Figure 
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In conclusion, all the grafted aldehydes were hydrophobic thus in the water 

medium they would oriented themselves away from polar environment and moved to 

the inside the spheres. Thus here the specific location of the grafted chemical 

functionality was reported for the first time for soft polymeric nanoparticles. The 

result confirms the frequently used theory which state that in a polar environment, 

amphiphilic polymer chains will self-assemble in the way that the hydrophobic 

moieties will be at the particles’cores while the hydrophilic moieties will be at the 

surface of the particles.  This theory extended to the reorganization of the preformed 

spheres in which surface modification was carried out. It should be noted here that in 

fact the N-SCS particles were quite physically stable as they could hold the spherical 

shape upon drying, SEM, and TEM processing. Thus though the particles were 

physically stable, the reorganization could still take place. 

 

3.7 The release of aldehyde from Schiff base nanoparticles 

UV/Vis spectroscopic analysis 

A double barrier controlled release system in this work should be able to 

protect the aldehyde from the external trigger and should show slow rate of aldehyde 

release. The release mechanism involves diffusion of water into the spheres, the imine 

hydrolysis, and the diffusion of the hydrolysed aldehydes out of the spheres. To 

investigate effect of aldehyde structure on the release rate, both aromatic (vanillin and 

cinnamaldehyde) and aliphatic aldehydes (citronellal and citral) were employed. We 

examined the release of aldehyde by quantitating the remaining aldehyde molecules. 

Hexane extraction coupled with acid hydrolysis was used to quantitate the remaining 

aldehyde. As shown in Figures 3.23-3.26, the remaining amount of aldehyde 

decreased with passing times. All release profiles indicated sustained aldehyde release 

for the Schiff base nanoparticles comparing to free aldehyde.  
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Some applications of fragrance aldehydes would involve dry condition, the 

release of the fragrance aldehydes from the dry samples was evaluated after 60 days 

(some 40 days as dry samples) at 40 OC. Hydrolysis of the samples followed with 

aldehyde quantification indicated (Mean + S.D.) 2.88 ± 0.20, 0.77 ± 0.02, 4.52 ± 0.31 

and 1.31 ± 0.10 mg of vanillin, cinnamaldehyde, citronellal and citral in the 

corresponding imine-N-SCS samples, which was significantly higher (79.9-, 85.4-, 

20.1- and 29.1-fold, respectively) than the free aldehyde levels in the control samples 

at 0.036 ± 0.001, 0.009 ± 0.002, 0.225 ± 0.092 and 0.045 ± 0.002 mg of vanillin, 

cinnamaldehyde, citronellal and citral, respectively. Comparing this result to those in 

aqueous state, the dry Schiff base nanospheres were un-swelled thus making the 

difficult and slow penetration of water molecules into the inside of the particles where 

the imine linkages located. It was obvious that the prolonged release of the double 

barrier-carriers was much more pronounced in the dry state.  
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CHAPTER IV 

CONCLUSION 

 

 A new carrier from chitosan derivative having a double barrier (physical and 

chemical barriers) for controlled release of aldehyde was prepared. The physical 

barrier was simply made by self-assembly of N-succinylchitosan (N-SCS) with degree 

succinyl substitution of 0.18 to obtain transparent colloidal suspension, and a 

chemical barrier involved imine formation from the grafting reaction of representative 

aromatic (vanillin and cinnamaldehyde) and aliphatic (citronellal and citral) 

perfumery aldehydes onto amino group of N-SCS nanoparticles. All four Schiff base 

products, N,N-vanillidene-succinylchitosan, N,N-cinnamylidene-succinylchitosan, 

N,N-citronellalidene-succinylchitosan and N,N-citralidene-succinylchitosan, had a 

degree of imine substitution in the range of 0.29-0.38. The obtained products remain 

spherical shape and the particle size determined from DLS increased from 50 nm for 

N-SCS to 80-165 nm for Schiff base products. It is necessary for investigation the 

location of imine moieties in order to claim the physical barrier and to predict the 

difficulty of chemical barrier hydrolysis. X-ray photoelectron spectroscopic analysis 

(XPS) results suggested that amino groups of N-SCS were at the particle surface. 

After reaction between aldehyde molecules and amino groups at the surface to form 

imine, the grafted imine moved to the inside of the spheres. Release profiles of 

aldehydes from all Schiff base nanospheres in both aqueous suspension and dry state 

clearly indicated prolonged release of the aldehyde comparing to the system of free 

aldehyde. The controlled release system based on a double barrier carrier not only 

gave an applicable fragrance controlled release system, but also demonstrated that 

reorganization of the soft polymeric nanoparticles could be taking place upon surface 

modification. This reorganization possibility should be applicable to the design of 

other novel nanostructured materials. 
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APPENDIX  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

1. Determination of degree of succinyl substitution  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1. 1H NMR spectrum of N-succinylchitosan2 (N-SCS2) 
 
The degree of grafting could be determined using equation (1): 
 

  DG =
Igraft x DD

  n x Ics 
 

 
Igraft = the intensity of grafted moiety  
DD = the amount of deacetylation degree  
n    = number of protons of grafted moiety  
Ics   = the intensity of hydrogen atom of chitosan’s glucosamine unit  
 
From the 1H NMR spectrum (Figure A1), using the integral ratio between 4H from 
ethyl group of succinyl (2.42-2.50 ppm) and 1H from C2 of glucosamine unit (at 2.8 
ppm) with 85% deacetylation degree: 

DG =
0.86 x 0.85

  4 x 1
 

           
       DG = 0.18 
 

The degree of succinyl substitution could be estimated as 0.18. 

(1) 
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Figure A2. ATR-FTIR spectrum of chitosan 
 
 
 

 
 
 
Figure A3. ATR-FTIR spectrum of N-succinylchitosan (N-SCS) 
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Figure A4. ATR-FTIR spectrum of N-vanillidenechitosan 
 
 
 

 
 
 
Figure A5. ATR-FTIR spectrum of N,N-vanillidene-succinylchitosan 
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Figure A6. ATR-FTIR spectrum of N,N-cinnamylidene-succinylchitosan 
 
 
 

 
 
Figure A7. ATR-FTIR spectrum of N,N-citronellalidene-succinylchitosan 
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The amount of N-SCS = 37.5 mg, molecular weight = 185.30 

  Mole of N-SCS = 37.5/185.30      = 0.202 mol 

Degree of grafting (DG) = mol of grafted moiety/mol of N-SCS 

                                 DG = 0.058/0.202 = 0.29                                

The degree of citral grafting could be estimated as 0.29 

 

3. Controlled release study 

3.1 The amount of remained vanillin  

- Vanillin from hydrolysis of nanoparticles suspension at 0 day 

From equation (2)                            Y = 0.105X - 0.012 

                                                   0.491 = 0.105X - 0.012 

                                                         X = 4.79  

Dilution factor = 143 

             X = 4.79 x 143 

                                                         X = 685 ppm 

Weight of vanillin in 15 mL                = 685 x 0.015 

                                                             = 10.28 mg 

 Relative amount of vanillin remained at 0 day = (10.28/10.28)x100 

                                                                                 = 100% 

- Vanillin from hydrolysis of nanoparticles suspension at 16 day 

From equation (2)                            Y = 0.105X - 0.012 

                                                   0.125 = 0.105X - 0.012 

                                                         X = 1.30  

Dilution factor = 143 

             X = 1.30 x 143 

                                                         X = 185.9 ppm 

Weight of vanillin in 15 mL                = 185.9 x 0.015 

                                                             = 2.80 mg 

 Relative amount of vanillin remained at 16 day = (2.80/10.28)x100 

                                                                                 = 27.20% 

- Vanillin from hydrolysis of free aldehyde solution at 0 day 

From equation (2)                            Y = 0.105X - 0.012 
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                                                   0.517 = 0.105X - 0.012 

                                                         X = 5.04  

Dilution factor = 143 

             X = 5.04 x 143 

                                                         X = 721 ppm 

Weight of vanillin in 15 mL                = 721 x 0.015 

                                                             = 10.81 mg 

 Relative amount of vanillin remained at 0 day = (10.81/10.81)x100 

                                                                                 = 100% 

- Vanillin from hydrolysis of free aldehyde solution at 16 day 

From equation (2)                            Y = 0.105X - 0.012 

                                                   0.047 = 0.105X - 0.012 

                                                         X = 0.562  

Dilution factor = 143 

             X = 0.562 x 143 

                                                         X = 80.37 ppm 

Weight of vanillin in 15 mL                = 80.37 x 0.015 

                                                             = 1.21 mg 

 Relative amount of vanillin remained at 16 day = (1.21/10.81)x100 

                                                                                 = 11.20% 

 

3.2 The amount of remained cinnamaldehyde  

- Cinnamaldehyde from hydrolysis of nanoparticles suspension at 0 day 

From equation (3)                            Y = 0.243X - 0.022  

                                                   0.465 = 0.243X - 0.022 

                                                         X = 2.004                                                                                          

Dilution factor = 333                       

         X = 2.004 x 333 

                                                         X = 668 ppm 

Weight of cinnamaldehyde in 15 mL  = 668 x 0.015 

                                                             = 10.02 mg 

 Relative amount of cinnamaldehyde remained at 0 day = (10.02/10.02)x100 
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                                                                                 = 100% 

- Cinnamaldehyde from hydrolysis of nanoparticles suspension at 16 day 

From equation (3)                            Y = 0.243X - 0.022  

                                                     0.36 = 0.243X - 0.022 

                                                         X = 1.57                                                                                            

Dilution factor = 333                       

         X = 1.57 x 333 

                                                         X = 523 ppm 

Weight of cinnamaldehyde in 15 mL  = 523 x 0.015 

                                                             = 7.85 mg 

 Relative amount of cinnamaldehyde remained at 16 day = (7.85/10.02)x100 

                                                                                 = 78.30% 

- Cinnamaldehyde from hydrolysis of free aldehyde solution at 0 day 

From equation (3)                            Y = 0.243X - 0.022  

                                                   0.476 = 0.243X - 0.022 

                                                         X = 2.05                                                                                           

Dilution factor = 333                       

         X = 2.05 x 333 

                                                         X = 683 ppm 

Weight of cinnamaldehyde in 15 mL  = 683 x 0.015 

                                                             = 10.25 mg 

 Relative amount of cinnamaldehyde remained at 0 day = (10.25/10.25)x100 

                                                                                 = 100% 

- Cinnamaldehyde from hydrolysis of free aldehyde solution at 16 day 

From equation (3)                            Y = 0.243X - 0.022  

                                                   0.144 = 0.243X - 0.022 

                                                         X = 0.68                                                                                            

Dilution factor = 333                       

         X = 0.68 x 333 

                                                         X = 226 ppm 

Weight of cinnamaldehyde in 15 mL  = 226 x 0.015 

                                                             = 3.40 mg 
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 Relative amount of cinnamaldehyde remained at 16 day = (3.40/10.02)x100 

                                                                                 = 33.90% 

3.3 The amount of remained citronellal 

- Citronellal from hydrolysis of nanoparticles suspension at 0 day 

From equation (4)                            Y = 0.001X - 0.003                                                                        

                                                     0.60 = 0.001X - 0.003  

                                                         X = 603                                                                                             

Weight of citronellal in 15 mL            = 603 x 0.015 

                                                             = 9.045 mg 

 Relative amount of citronellal remained at 0 day = (9.045/9.045)x100 

                                                                                   = 100% 

- Citronellal from hydrolysis of nanoparticles suspension at 16 day 

From equation (4)                            Y = 0.001X - 0.003                                                                        

                                                   0.419 = 0.001X - 0.003  

                                                         X = 422                                                                                             

Weight of citronellal in 15 mL            = 422 x 0.015 

                                                             = 6.33 mg 

 Relative amount of citronellal remained at 16 day = (6.33/9.045)x100 

                                                                                     = 70.00% 

- Citronellal from hydrolysis of free aldehyde solution at 0 day 

From equation (4)                            Y = 0.001X - 0.003                                                                        

                                                   0.897 = 0.001X - 0.003  

                                                         X = 900                                                                                             

Weight of citronellal in 15 mL            = 900 x 0.015 

                                                             = 13.50 mg 

 Relative amount of citronellal remained at 0 day = (13.50/13.50)x100 

                                                                                   = 100% 

- Citronellal from hydrolysis of free aldehyde solution at 16 day 

From equation (4)                            Y = 0.001X - 0.003                                                                        

                                                   0.241 = 0.001X - 0.003  

                                                         X = 244                                                                                             

Weight of citronellal in 15 mL            = 244 x 0.015 
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                                                             = 3.66 mg 

 Relative amount of citronellal remained at 16 day = (3.66/13.50)x100 

                                                                                     = 27.10% 

3.4 The amount of remained citral 

- Citral from hydrolysis of nanoparticles suspension at 0 day 

From equation (5)                            Y = 0.109X - 0.003                                                      

                                                   0.634 = 0.109X - 0.003 

                                                         X = 5.84                                                                                            

Dilution factor = 100                       

         X = 5.84 x 100 

                                                         X = 584 ppm 

Weight of citral in 15 mL                    = 584 x 0.015 

                                                             = 8.76 mg 

 Relative amount of citral remained at 0 day = (8.76/8.76)x100 

                                                                                 = 100% 

- Citral from hydrolysis of nanoparticles suspension at 16 day 

From equation (5)                            Y = 0.109X - 0.003                                                      

                                                   0.239 = 0.109X - 0.003 

                                                         X = 2.22                                                                                            

Dilution factor = 100                       

         X = 2.22 x 100 

                                                         X = 222 ppm 

Weight of citral in 15 mL                    = 222 x 0.015 

                                                             = 3.33 mg 

 Relative amount of citral remained at 0 day = (3.33/8.76)x100 

                                                                                 = 38.00% 

- Citral from hydrolysis of free aldehyde solution at 0 day 

From equation (5)                            Y = 0.109X - 0.003                                                      

                                                   0.826 = 0.109X - 0.003 

                                                         X = 7.61                                                                                            

Dilution factor = 100                       

         X = 7.61 x 100 
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                                                         X = 761 ppm 

Weight of citral in 15 mL                    = 761 x 0.015 

                                                             = 11.42 mg 

 Relative amount of citral remained at 0 day = (11.42/11.42)x100 

                                                                                 = 100% 

- Citral from hydrolysis of free aldehyde solution at 16 day 

From equation (5)                            Y = 0.109X - 0.003                                                      

                                                   0.054 = 0.109X - 0.003 

                                                         X = 0.52                                                                                            

Dilution factor = 100                       

         X = 0.52 x 100 

                                                         X = 52 ppm 

Weight of citral in 15 mL                    = 52 x 0.015 

                                                             = 0.78 mg 

 Relative amount of citral remained at 16 day = (0.78/11.42)x100 

                                                                                 = 6.80% 
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