## CHAPTER V

## LINEAR OPERATORS AND MEASURE THEORY

This chapter extends the results in [9] which were proven for positive measures or complex measures to quaternion measures.

5.1 <u>Definition</u> Let V be a left vector space over **H**. Then a map •: VxV -> **H** is said to be a <u>left sympletic product</u> (LSP) on V if and only if

(i)  $x_{\cdot}y = \overline{y_{\cdot}x}$  for all  $x_{\cdot}y \in V_{\cdot}$ 

(ii)  $(x+y) \cdot z = x \cdot z + y \cdot z$  for all  $x, y, z \in V$ .

(iii)  $(x \times ) \cdot y = \alpha(x \cdot y)$  for all  $x, y \in V$  for all  $\alpha \in H$ . (iv)  $\forall x \in V, x \cdot x \geqslant 0$  and  $x \cdot x = 0$  iff x = 0.

The consequences of these axioms are: (a) 0.x = 0 = x.0 for all  $x \in V$ .

- (b)  $\forall y \in V$ , the map x x y is a left linear function on V
- (c)  $x \cdot (dy) = (x \cdot y)d$  for all  $x, y \in V$ ,  $d \in \mathbb{H}$ .
- (d)  $x \cdot (y+z) = x \cdot y + x \cdot z$  for all  $x, y, z \in V$ .

If  $\cdot$  is a left sympletic product space on V, then the pair (V,  $\cdot$ ) is called a left sympletic product space(LSPS).

5.2 <u>Definition</u> Let V be a right vector space over  $\mathbb{H}$ . Then a map  $\cdot :VxV \longrightarrow \mathbb{H}$  is said to be a <u>right sympletic product</u> (RSP) on V if and only if

(i) x.y = y.x for all x,y ev.
(ii) x.(y+z) = x.y+x.z for all x,y,z ev.

(iii)  $x \cdot (y d) = (x \cdot y) d$  for all  $x, y \in V$  and for all  $d \in H$ .

(iv) For each  $x \in V$ ,  $x \cdot x \ge 0$  and  $x \cdot x = 0$  if and only if x = 0.

The consequences of these axioms are:

(a) 0.x = 0 = x.0 for all  $x \in V$ .

(b) For each  $y \in V$ , the map  $x \mapsto y \cdot x$  is a right linear function on V.

(c)  $(x \, \alpha) \cdot y = \overline{\alpha} (x \cdot y)$  for all  $x, y \in V, \alpha \in H$ .

(d)  $(x+y) \cdot z = x \cdot z + y \cdot z$  for all  $x, y, z \in V$ .

If  $\cdot$  is a right sympletic product space on V, then the pair (V,  $\cdot$ ) is called a right sympletic product space(RSPS).

5.3 Definition Let V be a LSPS(RSPS) and let  $x \in V$ , define ||x||, the norm of x to be  $\sqrt{x \cdot x}$ .

5.4 Theorem Let V be a LSPS(RSPS). Then  $|x.y| \le ||x|| ||y||$ for all  $x, y \in V$ .

Proof [U]Let 
$$\alpha = \begin{cases} 1 & \text{if } y \cdot x = 0, \\ \frac{|x \cdot y|}{y \cdot x} & \text{if } y \cdot x \neq 0. \end{cases}$$

Then  $|\mathcal{A}| = 1$  and  $\mathcal{A}(y.x) = |x.y| \ge 0$ , hence  $\overline{\mathcal{A}(y.x)} = \mathcal{A}(y.x)$ = |x.y|. For  $r \in \mathbb{R}$ , we have

(1) 
$$0 \leq (x - r \leq y) \cdot (x - r \leq y) = x \cdot x - x \cdot (r \leq y) - (r \leq y) \cdot x + r^{2} (\leq y) \cdot (\leq y)$$
  

$$= x \cdot x - r (x \cdot y) \overline{d} - r \leq (y \cdot x) + r^{2} |d|^{2} (y \cdot y)$$

$$= x \cdot x - r (\overline{y \cdot x}) \overline{d} - r \leq (y \cdot x) + r^{2} (y \cdot y)$$

$$= x \cdot x - r \overline{d(y \cdot x)} - r \leq (y \cdot x) + r^{2} (y \cdot y)$$

$$= ||x||^{2} - 2r |x \cdot y| + r^{2} ||y||^{2} \cdot$$

Case  $||y||^2 = 0$  Then y = 0 and so (x.y) = 0. Hence  $|x.y| \le ||x|| ||y||$ .

Case 
$$\|y\|^2 \neq 0$$
 Let  $r = \frac{|(x,y)|}{\|y\|^2}$ . From (1), we have  
 $0 \leq \|x\|^2 - \frac{|x,y|^2}{\|y\|^2}$ .  
Hence  $\frac{|x,y|^2}{\|y\|^2} \leq \|x\|^2$ , so  $|x,y|^2 \leq \|x\|^2 \|y\|^2$ . Hence  
 $|x,y| \leq \|x\| \|y\| = \#$ 

5.5 The Triangle inequality Let V be a LSPS(RSPS). Then  $||X + y|| \le ||x|| + ||y||$ 

for all  $x, y \in V$ .

Proof Follows from Theorem 5.4 . #

<u>Remark</u>: Let V be a LSPS(RSPS).  $\| \|$  is a map  $\| \|: V \rightarrow \mathbb{R}$ such that

- (1)  $||x|| \ge 0$  for all  $x \in V$  and  $||x|| = 0 \iff x = 0$ .
- (2)  $\| \mathbf{x} \| = \| \mathbf{x} \| \| \mathbf{x} \|$  for all  $\mathbf{x} \in \mathbf{V}$  for all  $\mathbf{x} \in \mathbf{H}$ .
- (3)  $||x+y|| \le ||x|| + ||y||$  for all x, y  $\in V$ .

Let V be a LSPS(RSPS). Define  $d: V \times V \longrightarrow \mathbb{R}$  by d(x,y) = ||x-y||.

Then d is a metric on V, hence V is a topological space. 5.6 <u>Definition</u> Let V be a LSPS(RSPS). Then V is called a <u>left(right)</u> <u>Hilbert space</u> if and only if V is a complete metric space.

Let  $\mathcal{M}$  be a  $\delta$ -finite positive measure on a  $\delta$ -algebra  $\mathcal{M}$  in X.  $L^{2}(\mathcal{M}) = \{f: X \rightarrow \mathcal{H} / f \text{ is measurable and } \|f\|_{2} < \infty \}.$ Define  $\cdot : L^{2}(\mathcal{M}) \times L^{2}(\mathcal{M}) \longrightarrow \mathcal{H}$  by  $f \cdot g = \int_{X} f \overline{g} d\mathcal{M}$ 

for all f,  $g \in L^{2}(\mu)$ . The integrand on the right is in  $L^{1}(\mu)$ , by Theorem 4.85, so that f.g is well-defined. Claim that  $L^{2}(\mu)$  is a LSPS. If  $f \in L^{1}(\mu)$  and  $f = f_{1} + if_{2} + jf_{3} + kf_{4}$  for some real measurable functions  $f_{1}$ ,  $1 \leq 4$ , then  $\int \overline{f} d\mu =$ 

$$\int_{X} (f_1 - if_2 - jf_3 - kf_4) d\mu = \int_{X} f_1 d\mu - i \int_{X} f_2 d\mu - j \int_{X} f_3 d\mu - k \int_{X} f_4 d\mu$$

$$= \int_{X} f_1 d\mu + i \int_{X} f_2 d\mu + j \int_{X} f_3 d\mu + k \int_{X} f_4 d\mu = \int_{X} f d\mu .$$
(i)  $f \cdot g = \int_{X} f \bar{g} d\mu = \int_{X} g \cdot \bar{f} d\mu = \int_{X} g \cdot \bar{f} d\mu = \bar{g} \cdot \bar{f} f d\mu$ 

all f, 
$$g \in L^{2}(\mathcal{M})$$
.

Fo

(ii) 
$$(f+g) \cdot h = \int_X (f+g) h d\mu = \int_X (fh+gh) d\mu = \int_X fh d\mu$$
  
+ $\int_X gh d\mu = f \cdot h + g \cdot h$  for all  $f, g, h \in L^2(\mu)$ .

(iii) 
$$(\alpha f) \cdot g = \int_X (\alpha f) \overline{g} d\mu = \int_X \alpha (f \overline{g}) d\mu = \alpha \int_X f \overline{g} d\mu$$

= $\alpha(f.g)$  for all  $f,g \in L^2(\mu)$  and for all  $\alpha \in \mathbb{H}$ .

(iv) 
$$f \cdot f = \int_X f \bar{f} d\mu = \int_X |f|^2 d\mu \ge 0$$
 for all  $f \in L^2(\mu)$   
r  $f \in L^2(\mu)$ . If  $f \equiv 0$ , then  $f \cdot f = \int_X |f|^2 d\mu = 0$ . If

f.f = 0, then  $\int_X |f|^2 d\mu = 0$ , so  $|f|^2 = 0$  a.e. which implies that f = 0 a.e. Hence we have the claim. Note that

$$\|f\| = (f.f)^{\frac{1}{2}} = \left\{ \int_{X} |f|^{2} d\mu \right\}^{\frac{1}{2}} = \|f\|_{2}.$$

Since  $(L^{2}(\mathcal{M}), \| \|_{2})$  is complete by Theorem 4.90, hence  $(L^{2}(\mathcal{M}), \| \|)$  is complete. Thus  $L^{2}(\mathcal{M})$  is a left Hilbert space

Remark: If we define 
$$\cdot :L^{2}(\mu) \times L^{2}(\mu) \longrightarrow H$$
 by  
f.g =  $\int_{V} \overline{f}_{gd\mu}$ 

for all  $f, g \in L^2(\mathcal{M})$ . Then we have  $L^2(\mathcal{M})$  is a RSPS, so that  $L^2(\mathcal{M})$  is a right Hilbert space.

5.7 Theorem(Riesz Representation Theorem for Hilbert Space) Let V be a LSPS(RSPS) which is also a left(right) Hilbert space and let  $L: V \rightarrow H$  be a continuous left(right) linear function. Then there exists a unique  $y \in V$  such that  $L(x) = x \cdot y$  ( $L(x) = y \cdot x$ ) for all  $x \in V$ .

Proof See [11] . #

5.8 Definition Let V be a left vector space over  $\mathbb{H}$ . A map  $\| \|: V \longrightarrow \mathbb{R}$  is said to be left norm on V if and only if

(i) ||x|| > 0 for all x ∈ V and ||x|| = 0 ↔ x = 0.
(ii) ||dx|| = |d||x|| for all x ∈ V and for all d∈ H.
(iii) ||x+y|| ≤ ||x|| + ||y|| for all x, y ∈ V.

If  $\| \|$  is a left norm on V, then the pair (V,  $\| \|$ ) is called a left normed linear space.

5.9 Definition Let V be a right vector space over H. A map  $\| \| : V \longrightarrow \mathbb{R}$  is said to be right norm on V if and only if

(i) ||x||≥0 for all x ∈ V and ||x|| = 0 ↔ x = 0.
(ii) ||x d|| = ||x|||d| for all x ∈ V and for all d∈ H.
(iii) ||x+y|| ≤ ||x|| + ||y|| for all x, y ∈ V.

If || is a right norm on V, then the pair (V, ||) is called a right normed linear space.

5.10 Definition Let V be a vector space over H. Then  $(V, \|\|\|)$  is called a normed linear space if  $\|\|\|$  is both a left norm and right norm.

Example Let X be a locally compact Hausdorff space. Then  $C_0(X)$  with the supremum norm is a left(right) normed linear space. Also,  $C_0(X)$  is a normed linear space with respect to the supremum norm.

5.11 Theorem Let  $V_{\nu}W$  be left(right) normed linear spaces and  $F:V \rightarrow W$  is a left(right) linear map. If F is continuous. at one point, then F is continuous everywhere.

Proof See [11]. #

5.12 <u>Definition</u> Let V,W be left(right) normed linear spaces and  $F:V \rightarrow W$  a left(right) linear map. Define the <u>norm</u> of F by

$$||F|| = \sup_{x \neq 0} \left\{ \frac{||F(x)||}{||x||} \right\}.$$

Observe that  $||F(x)|| \leq ||F|| ||x||$  for all  $x \in X$ . If  $||F|| < \infty$ , then F is said to be bounded left(right) linear map.

5.13 Theorem Let V, W be left(right) normed linear spaces and  $F: V \rightarrow W$  a left(right) linear map. Then F is continuous if and only if F is bounded.

5.14 <u>Theorem</u> Let V, W be left(right) normed linear spaces and  $F: V \rightarrow W$  a left(right) linear map. Then

$$\|F\| = \sup_{x \neq 0} \left\{ \frac{\|F(x)\|}{\|x\|} \right\} = \sup_{\|x\| = 1} \left\{ \|F(x)\| \right\} = \sup_{\|x\| \le 1} \left\{ \|F(x)\| \right\}.$$

<u>Proof</u> See [11] . #

5.15 <u>Theorem(Hahn-Banach)</u> Let V be a left(right) normed linear space and W is a left(right) linear subspace of V. Let F:  $W \rightarrow H$  be a bounded left(right) linear functional on W. Then there exists a bounded left(right) linear functional F on V such that  $F_{1,2} = f$  and ||f|| = ||F||.

## Proof See [11] . #

5.16 <u>Theorem</u>(Lebesgue-Radon-Nikodym Theorem for a Quaternion Measure) Let A be a  $\delta$ -finite positive measure on a  $\delta$ -algebra  $\mathfrak{M}$  in X. Suppose  $\lambda$  is a quaternion measure on  $\mathfrak{M}$ . Then

(a) There is a unique pair of quaternion measures  $\lambda_{\rm a}, \, \lambda_{\rm s}$  on M such that

Remark: (1) The pair  $\lambda_a$  and  $\lambda_s$  is called the <u>Lebesgue</u> decomposition of  $\lambda$  relative to  $\mu$ .

(2) Assertion (b) is known as the <u>Radon-Nikodym</u> Theorem.

Proof Uniqueness of  $\lambda_{a}$  and  $\lambda_{s}$  Let  $\lambda'_{a}$  and  $\lambda'_{s}$ 

be quaternion measures such that

 $\lambda = \lambda_{a} + \lambda_{s}, \quad \lambda_{a} < \mu, \quad \lambda_{s} \perp \mu.$ Then  $\lambda_{a} - \lambda_{a} = \lambda_{s} - \lambda_{s}$ . Since  $-\lambda_{a} < \mu$  and  $\lambda_{a} < \mu$ ,  $\lambda_{a} - \lambda_{a} < \mu$  by Theorem 2.51 (d). Since  $\lambda_{s} \perp \mu$  and  $-\lambda_{s} \perp \mu$ ,  $\lambda_{s} - \lambda_{s} \perp \mu$  by Theorem 2.51 (c). Hence  $\lambda_{a} - \lambda_{a} = 0 = \lambda_{s} - \lambda_{s}$ by Theorem 2.51 (g). Then  $\lambda_{a} = \lambda_{a}$  and  $\lambda_{s} = \lambda_{s}$ .

Uniqueness of h Suppose there exists  $h_1 \in L^1(\mu)$  such that  $\lambda_a(E) = \int_E h_1 d\mu$  (E  $\in M$ ).

Then  $h-h_1 \in L^1(\mathcal{M})$  and  $\int_E (h-h_1) d\mathcal{M} = 0$  for all  $E \in \mathcal{M}$ . Hence  $h-h_1 = 0$  a.e.  $\mathcal{M}$  on X by Theorem 4.74 (a), so  $h_1 = h$  a.e.  $\mathcal{M}$  on X.

Step I Assume  $\mu$  and  $\lambda$  are finite positive measures on  $\mathcal{M}$ . Put  $\mathcal{Q} = \lambda + \mu$ . Then  $\mathcal{Q}$  is a finite positive measure on  $\mathcal{M}$ . Then for all  $E \in \mathcal{M}$ ,

$$\int_{X} \chi_{E} d\lambda + \int_{X} \chi_{E} d\mu = \lambda(E) + \mu(E) = \Psi(E) = \int_{X} \chi_{E} d\Psi,$$

Hence  $\int_X sd\lambda + \int_X sd\mu = \int_X sd\Psi$  for all simple measurable

functionss. Let f be a non negative measurable function. Then there exists a sequence of simple measurable functions  $(s_n)_{n \in \mathbb{N}}$  on X such that

 $0 \le s_1 \le s_2 \le \dots$  and  $\lim_{n \to \infty} s_n(x) = f(x)$  for all  $x \in X$ .

By Lebesgue's Momotone Convergence Theorem,

$$\lim_{n \to \infty} \int_{X} s_{n} d\varphi = \int_{X} f d\varphi, \lim_{n \to \infty} \int_{X} s_{n} d\lambda = \int_{X} f d\lambda \text{ and}$$

$$\lim_{n \to \infty} \int_{X} s_{n} d\mathcal{A} = \int_{X} f d\mathcal{A} \quad \text{Hence}$$

$$\int_{X} f d\mathcal{Q} = \lim_{n \to \infty} \int_{X} s_{n} d\mathcal{Q} = \lim_{n \to \infty} (\int_{X} s_{n} d\lambda + \int_{X} s_{n} d\mathcal{A})$$

$$= \lim_{n \to \infty} \int_{X} s_{n} d\lambda + \lim_{n \to \infty} \int_{X} s_{n} d\mathcal{A}$$

$$= \int_{X} f d\lambda + \int_{X} f d\mathcal{A} \quad .$$

Lt follows that  $\int_{X} f d\varphi = \int_{X} f d\lambda + \int_{X} f d\mu$  for all  $f \in L^{1}(\varphi)$ . If  $f \in L^{2}(\varphi)$ , then  $f \in L^{1}(\mu)$  (since  $1 \in L^{2}(\varphi)$ ;  $f.1 \in L^{1}(\varphi)$ ) so  $f \in L^{1}(\lambda)$ . If  $f \in L^{2}(\varphi)$ , then  $|\int_{X} f d\lambda| \leq \int_{X} |f| d\lambda \leq \int_{X} |f| d\lambda| \leq \int_{X} |f| d\lambda| \leq \int_{X} |f| d\mu| \leq \int_$ 

(1)  $\int_X f d\lambda = \int_X f dx$ for all  $f \in L^2(\mathcal{Q})$ .

If Q(E) = 0 for all  $E \in \mathcal{M}$  then let  $\lambda_a = \lambda_s = 0$ and  $h \equiv 0$  and we have the theorem.

For  $E \in M$  such that  $\mathcal{Q}(E) > 0$ , we have  $\mathcal{Q}(E) \ge \lambda(E) = \int_X \mathcal{X}_E d\lambda = \int_X \mathcal{X}_E g d \mathcal{Q} = \int_E g d \mathcal{Q} \ge 0$ ,

so  $0 \le \frac{1}{\varphi(E)} \int_E g d\varphi \le 1$ . By Theorem 4.75, we have  $g(x) \in [0,1]$ 

a.e. [4] on X. We may therefore assume that  $0 \le g(x) \le 1$  for all x  $\in X$ , without affecting (1). From (1), we have (2)  $\int_X f(1-g) d\lambda = \int_X fg dM$ for all  $f \in L^2(\Psi)$ . Put  $A = \{x \in X/g(x) \in [0,1)\}$ ,  $B = \{x \in X/g(x) = 1\}$ , and define  $\lambda_a(E) = \lambda(E \cap A)$ ,  $\lambda_s(E) = \lambda(E \cap B)$ for all  $E \in M$ . Then  $\lambda_a$  and  $\lambda_s$  are finite positive measures,  $\lambda = \lambda_a + \lambda_s$  and  $\lambda_a \perp \lambda_s$ . From (2),  $\mathcal{M}(B) = \int_B 1 dM = \int_B g dM$  $= \int_X \chi_B g dM = \int_X \chi_B (1-g) d\lambda = \int_B (1-g) d\lambda = 0$ . Thus  $\lambda_s \perp \mathcal{M}$ (since  $\lambda_s$  is concentrated on B and  $\mathcal{M}$  is concentrated on B<sup>C</sup>) Since g is bounded and  $\Psi$  is finite,  $(1+g+g^2+\ldots+g^n) \chi_E$  $\in L^2(\Psi)$  for all  $n = 1, 2, 3, \ldots$ ,  $E \in M$ ; and from (2), we have  $\int_E (1+g+g^2+\ldots+g^n)(1-g) d\lambda = \int_E (1+g+g^2+\ldots+g^n) g d\mathcal{M}$ 

SO

 $\int_{E} (1-g^{n+1}) d\lambda = \int_{E} (1+g+g^{2}+\ldots+g^{n}) g d\mu$ Since E = (E \Lambda A) U(E \Lambda B) and g(x) = 1 for all x \in E, we have. (3)  $\int_{E \wedge A} (1-g^{n+1}) d\lambda = \int_{E} (1+g+g^{2}+\ldots+g^{n}) g d\mu$ for all n \in N and for all E \in M. If x \in A, g^{n+1}(x) \rightarrow 0 monotonically, so lim(1-g^{n+1})(x) = 1 and |(1-g^{n+1})(x)| < 1 n \rightarrow 0 for all x \in A and for all n \in N. By Lebesgue's Dominated Convergence Theorem;

(4)  $\lim_{n \to \infty} \int_{E \cap A} (1 - g^{n+1}) d\lambda = \int_{E \cap A} 1 d\lambda = \lambda(E \cap A) = \lambda_a(E)$ for all  $E \in \mathcal{M}$ .

Let 
$$h(x) = \lim(1+g+g^2+\ldots+g^n)g(x)$$
 for all  $x \in X$ .  
 $n \to \infty$ 

Then h is a non negative measurable function and  $0 \le g \le (1+g)g \le (1+g+g^2)g \le \dots \le \infty$ . By Lebesgue's Monotone Convergence Theorem,

(5) 
$$\lim_{n \to \infty} \int_{E} (1+g+g^2+\ldots+g^n) g d\mu = \int_{E} h d\mu$$

for all  $E \in M$ . By (3), (4) and (5),

$$\lambda_{a}(E) = \int_{E} h d\mu$$

for all  $E \in M$ . Hence  $\lambda_a \ll \mu$ . Since  $\int_X |h| d\mu = \int_X h d\mu = \lambda_a(X) \leq \lambda(X) < \infty$ ,  $h \in L^1(\mu)$ .

Step II Assume  $\mu$  is a 6-finite positive measure on  $\mathbb{M}$  and  $\lambda$  is a finite positive measure on  $\mathbb{M}$ . Then there exists  $x_1, x_2, \ldots$   $\in \mathbb{M}$  such that

$$X = \bigcup_{n=1}^{\infty} X_n, \quad \mathcal{M}(X_n) < \infty \quad , n \in \mathbb{N}$$

Let  $Y_1 = X_1$ ,  $Y_n = X_n (Y_1 \cup Y_2 \cup \dots \cup Y_{n-1})$  if  $n \ge 2$ . Then  $X = \bigcup_{n=1}^{\infty} Y_n$ ,  $Y_1 \wedge Y_j = \emptyset$  if  $i \ne j$ ,  $\mathcal{M}(Y_n) < \mathcal{O}$  for all  $n \in \mathbb{N}$ . For each  $n \in \mathbb{N}$ , let  $\mathcal{M}_n = \{E \cap Y_n / E \in \mathcal{M}\}$  and let  $\mathcal{M}_n = \mathcal{M} | \mathcal{M}_n$ and  $\lambda_n = \lambda | \mathcal{M}_n$ . By Stepl, for each  $n \in \mathbb{N}$  there exist unique positive measures  $\lambda_n^{(n)}$ ,  $\lambda_n^{(n)}$  on  $\mathcal{M}_n$  such that

$$\lambda_{n} = \lambda_{a}^{(n)} + \lambda_{s}^{(n)}, \quad \lambda_{a}^{(n)} \ll \mu_{n}, \quad \lambda_{s}^{(n)} \perp \mu_{n}$$

and there exist unique  $h_n \in L^{\perp}(\mathcal{M}_n)$  such that

$$\lambda_{a}^{(n)}(E) = \int_{E}^{h} n^{d} \mu_{n}$$

for all  $E \in M_n$ . Note that  $h_n$  is positive (by Stepl) for all  $n \in N$ . Define  $\lambda_a$ ,  $\lambda_s$ , h by

$$\begin{split} \lambda_{\mathbf{a}}(\mathbf{E}) &= \sum_{n=1}^{\infty} \lambda_{\mathbf{a}}^{(n)} (\mathbf{E} \cap \mathbf{Y}_{n}), \\ \lambda_{\mathbf{s}}(\mathbf{E}) &= \sum_{n=1}^{\infty} \lambda_{\mathbf{s}}^{(n)} (\mathbf{E} \cap \mathbf{Y}_{n}), \end{split}$$

$$h(x) = h_n(x) \text{ if } x \in Y_n.$$
  
Since  $\infty > \lambda(x) = \sum_{n=1}^{\infty} \lambda(Y_n) \text{ and } 0 \leq \lambda_a^{(n)}(Y_n) \leq \lambda_n(Y_n) = \lambda(Y_n),$   
 $\lambda_a(x) = \sum_{n=1}^{\infty} \lambda_a^{(n)}(Y_n) \leq \sum_{n=1}^{\infty} \lambda(Y_n) < \infty$ . Then  $\infty > \lambda_a(x) = \sum_{n=1}^{\infty} \lambda_a^{(n)}(Y_n) = \sum_{n=1}^{\infty} \int_{Y_n} h_n d_n = \sum_{n=1}^{\infty} \int_{Y_n} h d_n = \int_{X} h d_n, \text{ hence}$   
 $h \in L^1(\mathcal{M}).$  For each n,  $\lambda_a^{(n)}$  and  $\lambda_s^{(n)}$  are positive measures, so  $\lambda_a$  and  $\lambda_s$  are positive measures.

Claim that  $\lambda(E) = \lambda_{a}(E) + \lambda_{s}(E)$  for all  $E \in \mathbb{M}$ . To, prove this, let  $E \in \mathbb{M}$ . Then  $\lambda_{a}(E) + \lambda_{s}(E) = \sum_{n=1}^{\infty} \lambda_{a}^{(n)}(E \cap Y_{n}) + \sum_{n=1}^{\infty} \lambda_{s}^{(n)}(E \cap Y_{n}) = \sum_{n=1}^{\infty} (\lambda_{a}^{(n)} + \lambda_{s}^{(n)})(E \cap Y_{n}) = \sum_{n=1}^{\infty} \lambda_{n}(E \cap Y_{n}) = \sum_{n=1}^{\infty} \lambda(E \cap Y_{n}) = \lambda(\sum_{n=1}^{\infty} (E \cap Y_{n})) = \lambda(E \cap X) = \lambda(E \cap X)$ =  $\lambda(E)$ .

Claim that  $\lambda_a \ll M$ . To prove this, let  $E \in \mathcal{M}$  be such that  $\mathcal{M}(E) = 0$ . Then  $0 = \mathcal{M}(E) = \mathcal{M}(E \cap (\bigcup_{n=1}^{\infty} Y_n)) =$  $\sum_{n=1}^{\infty} \mathcal{M}(E \cap Y_n) = \sum_{n=1}^{\infty} \mathcal{M}_n(E \cap Y_n)$ , hence  $\mathcal{M}_n(E \cap Y_n) = 0$  for all  $n \in \mathbb{N}$ . Since  $\lambda_a^{(n)} \ll \mathcal{M}_n$  for all  $n \in \mathbb{N}$ ,  $\lambda_a^{(n)}(E \cap Y_n) = 0$  for all  $n \in \mathbb{N}$ . Hence  $\lambda_a(E) = 0$ . So we have the claim.

Claim that  $\lambda_{s} \perp \mu$ . We have that for each  $n \in N$ ,  $\lambda_{s}^{(n)} \perp \mu_{n}$ , so there exist  $\lambda_{n}, B_{n} \in \mathcal{M}_{n}$  such that  $A_{n} \cap B_{n} = \emptyset$ ,  $\lambda_{s}^{(n)}$  is concentrated on  $\Lambda$  and  $\mu_{n}$  is concentrated on  $B_{n}$ . Let  $\Lambda = \bigcup_{n=1}^{\infty} A_{n}$  and  $B = \bigcup_{n=1}^{\infty} B_{n}$ . Then  $A, B \in \mathcal{M}$ . Since  $Y_{i} \cap Y_{j} = \emptyset$  if  $i \neq j$ , it follows that  $A \cap B = \emptyset$ . Let  $E \in \mathcal{M}$  be such that  $E \cap \Lambda = \emptyset$ . Then  $E \cap A_{n} = \emptyset$  for all  $n \in N$ , so  $(E \cap Y_{n}) \cap A_{n}$  $= \emptyset$  for all  $n \in N$ . Hence  $\lambda_{s}^{(n)}(E \cap Y_{n}) = 0$  for all  $n \in N$ . Hence  $\lambda_s(E) = \sum_{n=1}^{\infty} \lambda_s^{(n)}(E \cap Y_n) = 0$ . Thus  $\lambda_s$  is concentrated on A. Next, let F  $\in M$  be such that F  $\cap B = \emptyset$ , so F  $\cap B_n = \emptyset$ for all  $n \in \mathbb{N}$ . Hence  $(E \cap Y_n) \cap B_n = \emptyset$  for all  $n \in \mathbb{N}$ , hence  $\mathcal{M}_n(E \cap Y_n) = 0$  for all  $n \in \mathbb{N}$ . Thus  $\mathcal{M}(E) = \sum_{n=1}^{\infty} \mathcal{M}_n(E \cap Y_n)$ = 0. Hence  $\mathcal{M}$  is cocentrated on B. This proves that  $\lambda_s \perp \mathcal{M}$ .

For 
$$E \in \mathcal{M}$$
,  $\lambda_a(E) = \sum_{n=1}^{\infty} \lambda_a^{(n)}(E \cap Y_n) = \sum_{n=1}^{\infty} \int_{E \cap Y_n} h_n d_n$   
=  $\sum_{n=1}^{\infty} \int_{E \cap Y_n} h d_n = \int_E h d_n$ .

Step III Assume  $\mu$  is a 6-finite positive measure on  $\mathfrak{M}$  and  $\lambda$  is a quaternion measure on  $\mathfrak{M}$ . Then

$$\lambda = \lambda_1 + i \lambda_2 + j \lambda_3 + k \lambda_4$$

for some real meaures  $\lambda_1'$ ,  $1 \leq 4$ . Then  $\lambda_1^+$ ,  $\lambda_1^-$  are finite positive measures for 1 = 1, 2, 3, 4. By Step II, there exist unique positive measures  $\lambda_a^1$ ,  $\lambda_s^1$ ,  $\lambda_a^{-1}$ ,  $\lambda_s^{-1}$ , 1 = 1, 2, 3, 4such that

$$\lambda_{1}^{+} = \lambda_{a}^{1} + \lambda_{s}^{1}, \quad \lambda_{a}^{1} < \mu, \quad \lambda_{s}^{1} \perp \mu,$$
  
$$\lambda_{1}^{-} = \lambda_{a}^{-1} + \lambda_{s}^{-1}, \quad \lambda_{a}^{-1} < \mu, \quad \lambda_{s}^{-1} \perp \mu,$$

for 1 = 1, 2, 3, 4, and there exist unique  $h_1, h_2, h_3, \dots, h_8$ positive measurable functions in  $L^1(\mathcal{M})$  such that

$$\lambda_{a}^{1}(E) = \int_{E} h_{1} d\mu, \quad \lambda_{a}^{-1}(E) = \int_{E} h_{2} d\mu, \quad \lambda_{a}^{2}(E) = \int_{E} h_{3} d\mu,$$
$$\lambda_{a}^{-2}(E) = \int_{E} h_{4} d\mu, \quad \lambda_{a}^{3}(E) = \int_{E} h_{5} d\mu, \quad \lambda_{a}^{-3}(E) = \int_{E} h_{6} d\mu,$$
$$\lambda_{a}^{4}(E) = \int_{E} h_{7} d\mu, \quad \lambda_{a}^{-4}(E) = \int_{E} h_{8} d\mu,$$

for all E  $\in$  M. Define  $\lambda_a$ ,  $\lambda_s$ , h by

$$\lambda_{\mathrm{a}} = (\lambda_{\mathrm{a}}^{1} - \lambda_{\mathrm{a}}^{-1}) + \mathrm{i}(\lambda_{\mathrm{a}}^{2} - \lambda_{\mathrm{a}}^{-2}) + \mathrm{j}(\lambda_{\mathrm{a}}^{3} - \lambda_{\mathrm{a}}^{-3}) + \mathrm{k}(\lambda_{\mathrm{a}}^{4} - \lambda_{\mathrm{a}}^{-4}),$$

$$\begin{split} \lambda_{s} &= (\lambda_{s}^{1} - \lambda_{s}^{-1}) + i(\lambda_{s}^{2} - \lambda_{s}^{-2}) + j(\lambda_{s}^{3} - \lambda_{s}^{-3}) + k(\lambda_{s}^{4} - \lambda_{s}^{-4}), \\ h &= (h_{1} - h_{2}) + i(h_{3} - h_{4}) + j(h_{5} - h_{6}) + k(h_{7} - h_{8}). \end{split}$$
 Then  $\lambda_{a}$  and  $\lambda_{s}$  are quaternion measures.  $\lambda_{a} + \lambda_{s} = (\lambda_{a}^{1} + \lambda_{s}^{1}) - (\lambda_{a}^{-1} + \lambda_{s}^{-1}) + i((\lambda_{a}^{2} + \lambda_{s}^{2}) - (\lambda_{a}^{-2} + \lambda_{s}^{-2})) + i((\lambda_{a}^{3} + \lambda_{s}^{3}) - (\lambda_{a}^{-3} + \lambda_{s}^{-3})) + k((\lambda_{a}^{4} + \lambda_{s}^{4}) - (\lambda_{a}^{-4} + \lambda_{s}^{-4})) = \lambda_{1}^{+} - \lambda_{1}^{-1} \\ + i(\lambda_{2}^{+} - \lambda_{2}^{-}) + j(\lambda_{3}^{+} - \lambda_{3}^{-}) + k(\lambda_{4}^{+} - \lambda_{4}^{-1}) = \lambda + \text{Hence } \lambda_{a} + \lambda_{s} = \lambda. \end{split}$  Let  $E \in \mathcal{M}$  be such that  $\mathcal{M}(E) = 0$ . Then  $\lambda_{a}^{1}(E) = \lambda_{a}^{-1}(E) = 0$  for  $1 = 1, 2, 3, 4$ . Hence  $\lambda_{a}(E) = 0$ . Thus  $\lambda_{a} < \mathcal{M}$ . Since  $\lambda_{s}^{1} \perp \mathcal{M}, -\lambda_{s}^{-1} \perp \mathcal{M}, i \lambda_{s}^{2} \perp \mathcal{M}, -i \lambda_{s}^{-2} \perp \mathcal{M}, j \lambda_{s}^{3} \perp \mathcal{M}, -j \lambda_{s}^{-3} \perp \mathcal{M}, k \lambda_{s}^{4} \perp \mathcal{M} \text{ and } -k \lambda_{s}^{-4} \perp \mathcal{M}, by$  Theorem 2.51 (c), we have

$$((\lambda_s^1 - \lambda_s^{-1}) + i(\lambda_s^2 - \lambda_s^{-2}) + j(\lambda_s^3 - \lambda_s^{-3}) + k(\lambda_s^4 - \lambda_s^{-4})) \perp \mu$$
,  
that is  $\lambda_s \perp \mu$ . By Theorem 4.70, we have

 $h = (h_1 - h_2) + i(h_3 - h_4) + j(h_5 - h_6) + k(h_7 - h_8) \in L^{1}(\mu)$ 

and

$$\lambda_{a}(E) = (\lambda_{a}^{1}(E) - \lambda_{a}^{-1}(E)) + i(\lambda_{a}^{2}(E) - \lambda_{a}^{-2}(E)) + i(\lambda_{a}^{3}(E) - \lambda_{a}^{-3}(E)) + k(\lambda_{a}^{4}(E) - \lambda_{a}^{-4}(E)) = \int_{E}^{h} h_{1} d\mu - \int_{E}^{h} h_{2} d\mu + i(\int_{E}^{h} h_{3} d\mu - \int_{E}^{h} h_{4} d\mu) + i(\int_{E}^{h} h_{5} d\mu - \int_{E}^{h} h_{6} d\mu) + k(\int_{E}^{h} h_{7} d\mu - \int_{E}^{h} h_{8} d\mu) = \int_{E}^{h} ((h_{1} - h_{2}) + i(h_{3} - h_{4}) + j(h_{5} - h_{6}) + k(h_{7} - h_{8})) d\mu$$

for all  $E \in M$ . #



5.17 Theorem Let  $\mathcal{M}$  be a quaternion measure on a 6-algebra  $\mathcal{M}$  in X. Then there is a quaternion measurable function h such that |h(x)| = 1 for all  $x \in X$  and such that

 $\mathcal{M}(E) = \int_{E} h d \mathcal{M} \left( E \in \mathcal{M} \right) .$ 

<u>Proof</u> Suppose that  $\mu \equiv 0$ , then  $\mu \equiv 0$ . Let  $h \equiv 1$ . Then  $\mu(E) = \int_{E} h d\mu for all E \in \mathbb{M}$ , so done.

Hence we may assume that  $\mu \not\equiv 0$ . Clearly,  $\mu \leftarrow f\mu$ . Hence by the Lebesgue-Radon-Nikodym Theorem, there exists  $h \in L^{1}(|\mu|)$  such that

$$\mu(E) = \int_{E} h d\mu I$$

for all EE M.

Let  $r \in [0,1)$  and  $A_r = \{x \in X/ |h(x)| < r\}$ . Let  $(E_j)_{j \in N}$ be a partition of  $A_r$ . Then  $\sum_{j=1}^{\infty} |\mathcal{M}(E_j)| = \sum_{j=1}^{\infty} |\int_{E_j} hd|\mathcal{M}| \le \sum_{j=1}^{\infty} \int_{E_j} hd|\mathcal{M}| \le \sum_{j=1}^{\infty} r|\mathcal{M}|(E_j)| = r|\mathcal{M}|(A_r)$ . Then  $|\mathcal{M}|(A_r) \le r|\mathcal{M}|(A_r)| \le r$ 

$$\left| \frac{1}{\operatorname{Jul}(E)} \int_{E} \operatorname{hdjul} \right| \leq \left| \frac{\operatorname{Jul}(E)}{\operatorname{Jul}(E)} \right| \leq 1$$
.

By Theorem 4.75, we have

$$\begin{split} \|h\| \leq 1 \text{ a.e. } [|\mu|]. \\ \text{fhen } \mu(\{x \in X/ |h(x)| > 1\}) &= 0. \text{ Let} \\ &= \{x \in X/ |h(x)| \neq 1\} = \{x \in X/ |h(x)| > 1\} \cup \{x \in X/ |h(x)| < 1\}. \end{split}$$

Thus  $|\mu|(B) = 0$ . Define  $h: X \rightarrow H$  by

$$\hat{h}(x) = \begin{cases} h(x) & \text{if } x \in B^{C}, \\ 1 & \text{if } x \in B. \end{cases}$$

Then  $\hat{h}$  is measurable and  $|\hat{h}| = 1$  and for all  $E \in \mathcal{M}$ 

$$\mathcal{M}(E) = \int_{E} hdy u = \int_{E \cap B} hdy u + \int_{E \cap B} hdy u = \int_{E} hdy u$$

5.18 <u>Theorem</u> Assume  $\mu$  is a  $\delta$ -finite positive measure on a  $\delta$ -algebra  $\mathcal{M}$  in X,  $g \in L^{1}(\mu)$  and  $\lambda(E) = \int_{E} g d\mu$  ( $E \in \mathcal{M}$ ). Then

 $|\lambda|(E) = \int_{E} |g| d\mu$  ( $E \in M$ ).

<u>Proof</u> By Theorem 4.69,  $\lambda$  is a quaternion measure on  $\mathbb{M}$ , hence by Theorem 5.17, there exists a measurable function h such that |h| = 1 on X and  $\lambda(E) = \int_E hdl\lambda l$  for all  $E \in \mathbb{M}$ . Then  $\lambda(E) = \int_E hdl\lambda l = \int_E gd\mu$  for all  $E \in \mathbb{M}$ . Hence  $\int_E \overline{hd} \lambda = \int_E \overline{hhdl} \lambda l = \int_E \overline{hgd\mu}$  for all  $E \in \mathbb{M}$  (by Theorem 4.69). Since  $\overline{hh} = |h|^2 = 1$ ,  $\int_E dl\lambda l = \int_E \overline{h_2d\mu}$ , so  $|\lambda|(E) = \int_E \overline{hgd\mu}$ for all  $E \in \mathbb{M}$ . Claim that  $\overline{hg} \ge 0$  a.e.  $[\mu]$ . To prove this, assume  $\overline{hg} = u_1 + iu_2 + ju_3 + ku_4$  for some real measurable functions  $u_1'$ ,  $1 \le 4$ . Then  $|\lambda|(E) = \int_E \overline{hgd\mu} = \int_E u_1 d\mu + i \int_E u_2 d\mu + j \int_E u_3 d\mu$  $+k \int_E u_4 d\mu$  for all  $E \in \mathbb{M}$ . Since  $|\lambda|(E) \ge 0$ ,  $\int_E u_2 d\mu = \int_E u_3 d\mu$  $= \int_E u_4 d\mu = 0$  for all  $E \in \mathbb{M}$ , hence, by Theorem 4.74 (a),  $u_2 = u_3 = u_4 = 0$  a.e. [A]. Hence hg is real a.e. [A]. Then there exists  $B \in M$  such that hg is real on B and  $\mathcal{M}(B^C) = 0$ . Let  $E = \{x \in B/(hg)(x) < 0\}$ . For each n, let  $E_n = \{x \in E/hg(x) < -\frac{1}{n}\}$ . Then  $E_1 \subseteq E_2 \subseteq E_2 \subseteq \dots$  and  $\bigcup_{n=1}^{\infty} E_n = E_n$ . For each n,

$$0 \leq |\lambda| (E_n) = \int_{E_n} \overline{hgd} \mu = -\int_{E_n} -\overline{hgd} \mu \leq -\int_{E_n} \frac{1}{n} d\mu = -\frac{1}{n} \mu(E_n)$$

 $\leq 0. \text{ Hence } \mathcal{M}(E_n) = 0 \text{ for all } n, \text{ so } \mathcal{M}(E) = 0. \text{ Then } \overline{hg} \ge 0$ on  $B \setminus E$  and  $\mathcal{M}((B \setminus E)^C) = 0$ , so  $\overline{hg} \ge 0$  a.e.  $[\mathcal{M}]$ . Since  $|\overline{h}| = 1$ , we see that  $|g| = |\overline{hg}| = \overline{hg}$  a.e.  $[\mathcal{M}]$ . Hence  $\int_E |g| d\mathcal{M} = \int_E \overline{hg} d\mathcal{M}$  for all  $E \in \mathcal{M}$ , so  $|\mathcal{M}|(E) = \int_E |g| d\mathcal{M}$ for all  $E \in \mathcal{M} \cdot \#$ 

Let  $\mu$  be a  $\delta$ -finite positive measure on a  $\delta$ -algebra M in X and  $1 \le p \le \infty$ . Let q be the exponent conjugate to p. Let  $g \in L^{q}(\mu)$ . Define  $\phi_{g}: L^{p}(\mu) \longrightarrow H$  by  $\phi_{g}(f) = \int_{X} f_{g} d\mu \quad (\int_{X} gf d\mu)$ 

Then  $\phi_g$  is a left(right) linear functional on  $L^p(\mathcal{M})$  and

$$\begin{split} \| \phi_{g} \| &= \sup \left\{ \frac{\| \phi_{g}(f) \|}{\| f \|}_{p} \right\} \\ &\leq \sup \left\{ \frac{\int \| f \| g \|}{\| f \|_{p}} \right\} \\ &\leq \sup \left\{ \frac{\int \| f \| g \| g \|}{\| f \|_{p}} \right\} \\ &\leq \sup \left\{ \frac{\| f \| g \| g \|}{\| f \|_{p}} \right\} \\ &\leq \sup \left\{ \frac{\| f \| g \| g \|}{\| f \|_{p}} \right\} \\ &= \| g \|_{q} < \infty \quad . \end{split}$$

Hence  $\phi_g$  is a bounded left(right) linear functional on  $L^p(\mu)$ 

5.19 Theorem Suppose  $1 \le p \le \infty$ . Let  $\mu$  be a non trivial finite positive measure on a  $\delta$ -algebra  $\mathcal{M}$  in X, and  $\phi$  a bounded left(right) linear functional on  $L^p(\mu)$ . Then there exists a unique function  $g \in L^q(\mu)$  where q is the exponent conjugate to p, such that

(1)  $\phi(f) = \int_X fgdm (\int_X gfdm)$  ( $f \in L^p(m)$ ). Moreover, if  $\phi$  and g are related as in (1), we have (2)  $\|\phi\| = \|g\|_q$ .

Proof Uniqueness of g Suppose there exists  $g_1 \in L^q(\mathcal{M})$  such that  $\int_X fgd\mathcal{M} = \int_X fg_1 d\mathcal{M}$ for all  $f \in L^p(\mathcal{M})$ . Since  $\mathcal{M}(X) < \infty$ ,  $1 \in L^1(\mathcal{M})$ . Hence  $\int_X gd\mathcal{M} = \int_Y g_1 d\mathcal{M}$ , so  $\int_Y (g-g_1) d\mathcal{M} = 0$  which implies that

 $g = g_1$  a.e. [m]. We have shown that  $\|\phi\| \le \|g\|_q$ . If  $\|\phi\| = 0$ , then  $\phi \equiv 0$ , so (1) and (2) hold with  $g \equiv 0$ . Assume  $\|\phi\| > 0$ .

Define  $\lambda: \mathfrak{M} \longrightarrow \mathfrak{H}$  by

 $\lambda(E) = \phi(X_E).$ 

If E,F $\in \mathcal{M}$  is such that E $\cap$ F =  $\phi$ , then  $\lambda$ (EUF) =  $\phi(\chi_{EUF})$ =  $\phi(\chi_{E} + \chi_{F}) = \phi(\chi_{E}) + \phi(\chi_{F}) = \lambda(E) + \lambda(F)$ . Let E be the union of countable many disjoint measurable sets  $E_{i}$ . For each k, let

 $A_{k} = E_{1} \cup \dots \cup E_{k} \cdot \underset{\infty}{\longrightarrow}$ Then  $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \dots$  and  $\bigcup_{k=1}^{} A_{k} = E$ , so  $E \setminus A_{1} \supseteq E \setminus A_{2} \supseteq \dots$ , hence for each k, we see that

$$\|\chi_{E}^{-}\chi_{A_{k}}\|_{p} = \left\{\int_{X} |\chi_{E}^{-}\chi_{A_{k}}|^{p} d_{\mathcal{M}}\right\}^{\frac{1}{p}} = \left\{\int_{X} |\chi_{E^{-}A_{k}}|^{p} d_{\mathcal{M}}\right\}^{\frac{1}{p}}$$
$$= \left\{\int_{E^{-}A_{k}} 1 d_{\mathcal{M}}\right\}^{\frac{1}{p}} = \left(\mathcal{M}(E^{-}A_{k})\right)^{\frac{1}{p}} \rightarrow 0 \text{ as } k \rightarrow \infty$$

(Because  $\lim_{k\to\infty} \mathcal{M}(E \setminus A_k) = \mathcal{M}(\bigwedge_{k=1}^{\infty}(E \setminus A_k)) = \mathcal{M}(\phi) = 0).$ Since  $\phi$  is bounded, by Theorem 5.13,  $\phi$  is continuous. Then  $\phi(\mathcal{A}_{A_k}) \longrightarrow \phi(\mathcal{A}_E)$  as  $k \longrightarrow \infty$ , so  $\lambda(A_k) \longrightarrow \lambda(E)$  as  $k \longrightarrow \infty$ Hence  $\lambda(E) = \lim_{k\to\infty} \lambda(A_k) = \lim_{k\to\infty} \lambda(\bigcup_{i=1}^{k}E_i) = \lim_{k\to\infty} \sum_{i=1}^{k} \lambda(E_i) = \sum_{k\to\infty}^{\infty} \lambda(E_i).$  Therefore  $\lambda$  is a quaternion measure. Claim that  $\lambda << \mathcal{M}$ . To prove this, let  $E \in \mathcal{M}$  be such that  $\mathcal{M}(E) = 0.$  Then  $\|\mathcal{X}_E\|_p = \{\int_X |\mathcal{X}_E|^p d\mathcal{M}\}^{\frac{1}{p}} = (\mathcal{M}(E))^{\frac{1}{p}} = 0.$ Since  $|\phi(\mathcal{X}_E)| \leq \|\phi\| \|\mathcal{X}_E\|_p = 0$ , we have  $\lambda(E) = 0$ . So we the claim. By Lebesgue-Radon-Nikodym Theorem, there exists  $g \in L^1(\mathcal{M})$  such that

 $\lambda(E) = \int_{E} g d\mu$ 

for all  $E \in M$ . Then  $\phi(\chi_E) = \int_E g d\mu = \int_X \chi_E g d\mu$  for all  $E \in M$ . By linearity, it follows that

$$\phi(s) = \int_X sgd\mu$$

for every simple measurable function s.

Let  $f \in L^{\infty}(\mu)$ . Then  $|f(x)| \leq ||f||_{\infty}$  for almost all x, so there exists  $N \in \mathbb{M}$  such that  $\mathcal{M}(N) = 0$  and  $|f(x)| \leq ||f||_{\infty}$ for all  $x \in N^{\mathbb{C}}$ . Consider  $f \geqslant 0$ . By the proof of Theorem 3.15 there exists a sequence  $(s_n)_{n \in \mathbb{N}}$  of simple measurable functions such that  $s_n \rightarrow f$  uniformly on  $N^{\mathbb{C}}$ . Then  $||f-s_n||_{p} \rightarrow 0$  as  $n \rightarrow \infty$ . Since  $\phi$  is conitinuous, we have

Claim that  $\lim_{n\to\infty} \int_{X} s_n g d\mu = \int_{X} f g d\mu$ . To prove this, we can choose M>O such that  $|s_n| \leq M$  on N<sup>C</sup> for all  $n \in \mathbb{N}$ . Since  $\lim_{n\to\infty} s_n g(x) = fg(x)$  for all  $x \in \mathbb{N}^C$ ,  $|s_n g| \leq |Mg|$  on N<sup>C</sup> for all  $n \to \infty$  $n \in \mathbb{N}$  and  $Mg \in L^1(\mu)$  (since  $g \in L^1(\mu)$ ), by Lebesgue's Dominated Convergence Theorem,

(4) 
$$\lim_{n \to \infty} \int_{X} s_n g d\mu = \int_{X} f g d\mu ,$$

so we have the claim. By (3) and (4), we see that

$$\phi(f) = \lim_{n \to \infty} \phi(s_n) = \lim_{n \to \infty} \int_X s_n g d\mu = \int_X f g d\mu$$

Next, consider f is real. Then  $f = f^+ - f^-$ , so

$$\delta(f) = \phi(f^{+}-f^{-}) = \phi(f^{+})-\phi(f^{-})$$
$$= \int_{X} f^{+}gd\mu - \int_{X} f^{-}gd\mu = \int_{X} (f^{+}-f^{-})gd\mu = \int_{X} fgd\mu .$$

Finally, consider f is quaternion. Then  $f = f_1 + if_2 + jf_3 + kf_4$ for some real measurable functions  $f_1$ ,  $1 \le 4$ . Then

$$\begin{split} \phi(f) &= \phi(f_1) + i\phi(f_2) + j\phi(f_3) + k\phi(f_4) \\ &= \int_X f_1 g d\mu + i \int_X f_2 g d\mu + j \int_X f_3 g d\mu + k \int_X f_4 g d\mu \\ &= \int_X (f_1 + i f_2 + j f_3 + k f_4) g d\mu = \int_X f g d\mu \quad . \end{split}$$
  
Hence  $\phi(f) &= \int_X f g d\mu$  for all  $f \in L^{\infty}(\mu)$ .

We want to prove that  $g \in L^{q}(\mu)$  and that (2) holds. Case I p = 1. Then for all  $E \in M$ ,

$$\left|\int_{E} g d\mu\right| = \left|\int_{X} \chi_{E} g d\mu\right| = \left|\phi(\chi_{E})\right| \le \left\|\phi\|\|\chi_{E}\|_{1} = \|\phi\|\mu(E).$$

Hence  $\left|\frac{1}{\mathcal{M}(E)}\int_{E} gd\mu\right| \leq \|\phi\|$  for all  $E \in \mathcal{M}$  such that  $\mathcal{M}(E) > 0$ . By Theorem 4.75,  $|g(x)| \leq \|\phi\|$  a.e.  $[\mathcal{M}]$ , hence  $\|g\|_{\infty} \leq \|\phi\| < \infty$ . Therefore  $g \in L^{\infty}(\mathcal{M})$  and  $||g||_{\infty} = ||\phi||$ .

<u>Case II</u>  $1 . Since g is quaternion measurable, similar to Corollary 3.5 (e), there exists a quaternion measurable function <math>\measuredangle$  such that  $|\measuredangle| = 1$  and  $|g| = \measuredangle g$ . For each n, let

 $E_n = \{x \in X / |g(x)| \le n\}$ and put  $f_n = \chi_{E_n} |g|^{q-1} \chi$ . Since q is the exponent conjugate to p,  $|f_n|^p = |g|^q$  on  $E_n$ . Since  $|f_n|^{-1}(n^{q-1}, \omega) =$  $(\chi_{E_n} |g|^{q-1})^{-1} (n^{q-1}, \infty] = \phi$ , we have  $||f_n||_{\infty} =$  $\inf \left\{ \beta \in [0, \infty) / \mathcal{M}(|f_n|^{-1}(\beta, \infty]) = 0 \right\} \leq n^{q-1} < \infty, \text{ hence}$  $f_n \in L^{\infty}(\mu)$ . Also,  $f_n \in L^p(\mu)$  since  $f_n$  is bounded.  $\int_{E} |g|^{q} dm = \int_{E} |g|^{q-1} |g| dm = \int_{X} \chi_{E_{n}} |g|^{q-1} dg dm = \int_{X} f_{n} g dm$  $= \phi(f_n) \leq \|\phi\| \|f_n\|_p = \|\phi\| \left\{ \int_E |g|^q d\mu \right\}^{\frac{1}{p}} \text{ for all } n \in \mathbb{N}. \text{ If }$  $\int_{E} |g|^{q} d\mu = 0 \text{ for all } n \in \mathbb{N} \text{ . Then } |g|^{q} = 0 \text{ a.e. } [\mu] \text{ on } X,$ hence  $\int_{V} |g|^{q} d\mu = 0$ , hence  $g \in L^{q}(\mu)$  and  $||g||_{q} = 0 \leq ||\phi||$ . Since  $\|\phi\| \le \|g\|_q$ , we see that  $\|g\|_q = \|\phi\|$ . If there exists  $n_0 \in \mathbb{N}$ , such that  $\int_E |g|^{q} d\mu > 0$ . Since  $E_n \subseteq E_{n+1}$  for all  $n \in \mathbb{N}$ we have  $\int_{E} |g|^{q} d\mu > 0$  for all  $n \ge n_0$ . Since  $\int_{E} |g|^{q} d\mu \le E$  $\|\|\phi\| \left\{\int_{E} \|g\|^{q} d\mu\right\}^{\frac{1}{p}}$  for all  $n \in \mathbb{N}$ ,  $\left\{\int_{E} \|g\|^{q} d\mu\right\}^{\frac{1}{p}} \leq \|\phi\|$  for all  $n \ge n_0$ . Hence  $\left\{ \int_V \chi_{E_0} |g|^q d\mu \right\}^{\frac{1}{p}} \le ||\phi||$  for all  $n \ge n_0$ . Since

all  $x \in X$ , by Lebesgue's Monotone Convergence Theorem, we have

$$\lim_{n \to \infty} \int_{X} \chi_{E_n} |g|^q d\mu = \int_{X} |g|^q d\mu,$$

hence .

$$\lim_{n \to \infty} \left\{ \int_{X} \chi_{E_n} |g|^q d\mu \right\}^{\frac{1}{q}} = \left\{ \int_{X} |g|^q d\mu \right\}^{\frac{1}{q}}.$$

Therefore

$$\left\{\int_{X} |g|^{q} d\mu\right\}^{\frac{1}{q}} \leq \|\phi\|$$

that is  $\|g\|_q \leq \|\phi\| < \infty$ . Hence  $g \in L^q(\mathcal{M})$  and (2) holds.

For all  $f_1, f \in L^p(\mu), \left| \int_X fgd\mu - \int_X f_1gd\mu \right| =$  $\left| \int_X (f - f_1)gd\mu \right| \leq \int_X |f - f_1||g| d\mu \leq ||f - f_1||_p ||g||_q \text{ by Hölder's}$ 

inequality. Hence the map  $f \longrightarrow \int_X fgd\mu$  is continuous on  $L^p(\mu)$ 

Now  $L^{\infty}(\mathcal{M})$  contains  $\mathcal{G} = \{s \text{ is a quaternion simple} \\$  measurable function}. By Theorem 4.92,  $\mathcal{G}$  is dense in  $L^{p}(\mathcal{M})$ , hence  $L^{\infty}(\mathcal{M})$  is dense in  $L^{p}(\mathcal{M})$ .

To show that  $\phi(f) = \int_X fgd\mathcal{A}$  for all  $f \in L^p(\mathcal{A})$ , let  $f \in L^p(\mathcal{A})$ . Then there exists a sequence  $(f_n)_{n \in \mathbb{N}}$  in  $L^{\infty}(\mathcal{A})$ such that  $\lim_{n \to \infty} f_n = f$ . Since  $\phi$  is continuous,  $\lim_{n \to \infty} \phi(f_n) = \frac{1}{n \to \infty}$   $\phi(f)$ . Hence  $\lim_{n \to \infty} \int_X f_n gd\mathcal{A} = \phi(f)$ . Since the map  $f \mapsto \int_X fgd\mathcal{A}$  is continuous on  $L^p(\mathcal{A})$ ,  $\lim_{n \to \infty} \int_X f_n gd\mathcal{A} = \int_X fgd\mathcal{A}$ . Hence  $\phi(f) = \int_X fgd\mathcal{A} \cdot \#$ .

5.20 Theorem Let  $\mu$  be a quaternion(Borel) measure on a  $\delta$ -algebra  $\mathfrak{M}$  in a topological space X. If  $f \in L^{1}(\mu)$ , then

$$\int_{X} f d\mu = \int_{X} f h d\mu$$

$$( [\int_{X} (d\mu) f] = \int_{X} h f d\mu$$

for some quaternion (Borel) measurable function h such that |h| = 1 on X.

<u>Proof</u> By Theorem 5.17, there is a quaternion(Borel) measurable function h such that |h| = 1 on X and  $\mathcal{M}(E) = \int_{E} hd\mu I$  for all  $E \in \mathcal{M}$ . By Theorem 4.69, we have the theorem.#

5.21 <u>Theorem</u> Let  $\mu$  and  $\lambda$  be quaternion(Borel) measures on a  $\sigma$ -algebra  $\mathcal{M}$  in a topological space X. If  $f \in L^{1}(\mu + \lambda)$ then

$$\int_{X} f d(\mu + \lambda) = \int_{X} f d\mu + \int_{X} f d\lambda$$

$$( [\int_{X} (d(\mu + \lambda))f] = [\int_{X} (d\mu)f] + [\int_{X} (d\lambda)f] ).$$

<u>Proof</u> <u>Case I</u>  $f = \chi_E$  for some  $E \in \mathcal{M}$ . Since  $\mu + \lambda$ is a quaternion measure, we have  $\int_X \chi_E^d(\mu + \lambda) = (\mu + \lambda)(E)$  $= \mathcal{M}(E) + \lambda(E) = \int_X \chi_E^d \mu + \int_X \chi_E^d \lambda$ .

Case II f is simple. Then

$$f = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$$

where  $\alpha_1, \ldots, \alpha_n$  are distinct values of f and  $E_i = f^{-1}(\alpha_i)$ for all  $i = 1, 2, \ldots, n$ . Then

$$\int_{X} f d(\mu + \lambda) = \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}} d(\mu + \lambda) = \sum_{i=1}^{n} \alpha_{i} \int_{X} \chi_{E_{i}} d(\mu + \lambda)$$
$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}} d\mu + \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}} d\lambda$$

$$= \int_{X} f d\mu + \int_{X} f d\lambda$$

Case III  $f \ge 0$ . Then there exists a sequence  $(s_n)_{n \in \mathbb{N}}$  of simple measurable functions such that  $0 \le s_1 \le s_2 \le \cdots$  and lim  $s_n(x) = f(x)$  for all  $x \in X$ . By Lebesgue's Monotone  $n \rightarrow \infty$ Convergence Theorem, we have

 $\lim_{n \to \infty} \int_{X} s_n d\mu = \int_{X^4} f d\mu$ 

and

$$\lim_{n \to \infty} \int_{X} s_n d\lambda = \int_{X} f d\lambda$$

Also,  $\lim_{n \to \infty} \int_{X} \int_{n}^{s} d(\mu + \lambda) = \int_{X}^{s} f d(\mu + \lambda)$ . But  $\lim_{n \to \infty} \int_{X}^{s} \int_{x}^{s} d(\mu + \lambda)$ =  $\lim_{n \to \infty} \int_{X}^{s} \int_{x}^{s} d\mu + \lim_{n \to \infty} \int_{X}^{s} \int_{x}^{s} f d\mu + \int_{X}^{s} f d\lambda$ . Hence

$$\int_{X} fd(\mu + \lambda) = \int_{X} fd\mu + \int_{X} fd\lambda .$$

Case IV f is real. Then  $f = f^{+}-f^{-}$ . By Case III, we see that

$$\int_{X} f d(M + \lambda) = \int_{X} (f^{+} - f^{-}) d(M + \lambda)$$

$$= \int_{X} f^{+} d(M + \lambda) - \int_{X} f^{-} d(M + \lambda)$$

$$= \int_{X} f^{+} dM + \int_{X} f^{+} d\lambda - (\int_{X} f^{-} dM - \int_{X} f^{-} d\lambda)$$

$$= \int_{X} (f^{+} - f^{-}) dM + \int_{X} (f^{+} - f^{-}) d\lambda$$

$$= \int_{X} f dM + \int_{X} f d\lambda$$

<u>Case V</u> f is quaternion. Then  $f = f_1 + if_2 + jf_3 + kf_4$  for some real measurable functions  $f_1'$ ,  $1 \le 4$ . By Case IV, we see that

$$\begin{split} \int_{X} f d(\mu + \lambda) &= \int_{X} f_{1} d(\mu + \lambda) + i \int_{X} f_{2} d(\mu + \lambda) + j \int_{X} f_{3} d(\mu + \lambda) + i \int_{X} f_{3} d(\mu + \lambda) +$$

5.22 <u>Definition</u> Let M be a quaternion Borel measure on a 6-algebra M in a topological space X. M is called <u>regular</u> if [M] is regular.

The map

$$f \mapsto \int_X f d\mu \left( \left[ \int_X (d\mu) f \right] \right)$$

is a bounded left(right) linear functional on  $C_0(X)$  whose norm is no larger than  $|\mathcal{M}|(X)$ .

5.23 The Riesz Representation Theorem Let X be a locally compact,  $\delta$ -compact Hausdorff space. To each bounded left (right) linear functional  $\phi$  on C<sub>0</sub>(X), there corresponds a unique quaternion regular Borel measure  $\mathcal{M}$  such that

(1) 
$$\phi(f) = \int_X f d\mu \left( \left[ \int_X (d\mu) f \right] \right)$$

for all  $f \in C_{O}(X)$ . Moreover, if  $\phi$  and  $\mu$  are related as in (1), then

(2)  $||\phi|| = |\mu|(X).$ 

Proof Uniqueness of M Suppose M and M are quaternion regular Borel measures such that

for all 
$$f \in C_0(X)$$
. Note that  $f \in C_0(X) \Rightarrow f$  is bounded  $\Rightarrow$   
 $f \in L^1(\mathcal{M})$ . Then  
(3)  $\int_X f d(\mathcal{M} - \mathcal{M}) = 0$   
for all  $f \in C_0(X)$ . Let  $\mathcal{M} = \mathcal{M} - \mathcal{M}$ . By Theorem 5.17, there  
exists a quaternion Borel function h such that  $|h| = 1$  on X and  
 $H \in M \int_E d\mathcal{M} = \int_E h d\mathcal{M} ||$ . For any sequence  $(f_n)_n \in \mathbb{N}$  of  $C_0(X)$ ,  
 $\int_{\mathcal{M}} ||(X)| = \int_X f_n d\mathcal{M} ||(X) - \int_X f_n d\mathcal{M} ||(X)| = \int_X f_n d\mathcal{M} ||(X)| = \int_X f_n h d\mathcal{M}$ 

 $\int f d\mu = \int f d\mu'$ 

Since  $C_{c}(X)$  is dense in  $L^{1}(\mathcal{M})$  and  $\overline{h} \in L^{1}(\mathcal{M})$ , there exists a sequence  $(f_{n})_{n \in \mathbb{N}}$  in  $C_{c}(X)$  such that  $f_{n} \rightarrow \overline{h}$  in  $L^{1}(\mathcal{M})$ , so

$$\begin{split} &\int_{X} \left\| \bar{h} - f_{n} \right\| d\mu n' \right\| = \left\| \bar{h} - f_{n} \right\|_{1} \longrightarrow 0 \text{ as } n \longrightarrow \infty \text{ .} \\ &\text{Hence } \left\| \mu'' \right\| (X) = 0 \text{ . Since } \left\| \mu''(E) \right\| \le \left\| \mu'' \right\| (E) \le \left\| \mu'' \right\| (X) = 0 \text{ for} \\ &\text{all } E \in \mathcal{M}, \ \mu'' \equiv 0 \text{ which implies that } \mu = \mu' \text{ .} \end{split}$$

If  $\|\phi\| \equiv 0$ , then  $\phi \equiv 0$ , so put  $\mathcal{M} \equiv 0$ . Assume without loss of generality that  $\|\phi\| = 1$  ( If  $0 < \|\phi\| \neq 1$ , then we put  $\phi_1 = \frac{\phi}{\|\phi\|}$ ). Let

 $C_{c}^{+}(X) = \{f \in C_{c}^{-}(X) / f \text{ is non negative real}\}.$ For  $f \in C_{c}^{+}(X)$ , define

$$\begin{split} & \Lambda f = \sup \left\{ | \phi(h) | / h \in C_c(X), |h| \leq f \right\}. \\ & \text{Then } \Lambda f \geqslant 0 \text{ for all } f \in C_c^+(X), 0 \leq f_1 \leq f_2 \text{ in } C_c^+(X) \longrightarrow \Lambda f_1 \leq \Lambda f_2, \\ & \text{and for } c \in [0, \infty), \Lambda(cf) = c \Lambda f. \text{ Also, for } f \in C_c(X), \end{split}$$

 $\Lambda(|f|) = \sup \{ |\phi(h)| / h \in C_{c}(X), |h| \le |f| \}$ 

 $\leq \sup \{ \| \phi \| \| h \| / h \in C_{c}(X), \| h \| \leq \| f \| \}$ =  $\sup \{ \| h \| / h \in C_{c}(X), \| h \| \leq \| f \| \} \leq \| f \| ,$ 

hence

$$(4) \quad |\phi(f)| \leq \Lambda(|f|) \leq ||f|| .$$

Let  $f, g \in C_c^*(X)$ . To show that  $\bigwedge (f+g) = \bigwedge f + \bigwedge g$ . To prove this let  $\epsilon > 0$  be given. Then there exist  $h_1, h_2 \in C_c(X)$  such that  $\lfloor h_1 \rfloor \leq f, \lfloor h_2 \rfloor \leq g$  and

 $Af \leq |\phi(h_1)| + \varepsilon , \quad Ag \leq |\phi(h_2)| + \varepsilon .$ Let  $d_1, d_2 \in \text{H}$  be such that  $|d_1| = |d_2| = 1$  and

 $\alpha'_1 \phi(h_1) = [\phi(h_1)], \quad \alpha'_2 \phi(h_2) = [\phi(h_2)].$ 

Then

Sinc

$$\begin{aligned} &\Lambda f + \Lambda g \leq |\phi(h_1)| + |\phi(h_2)| + 2\xi \\ &= \alpha_1' \phi(h_1) + \alpha_2' \phi(h_2) + 2\xi \\ &= \phi(\alpha_1' h_1 + \alpha_2' h_2) + 2\xi \\ &\leq \Lambda (|h_1| + |h_2|) + 2\xi \text{ (by the definition of } \Lambda), \\ &\leq \Lambda (f+g) + 2\xi \text{ (since } |h_1| + |h_2| \leq f+g) \end{aligned}$$

Let  $h \in C_c(X)$  such that  $|h| \leq f+g$ . Let  $V = \{x \in X / f(x) + g(x) > 0\}$ , and define

$$h_{1}(x) = \frac{f(x)h(x)}{f(x)+g(x)}, \quad h_{2}(x) = \frac{g(x)h(x)}{f(x)+g(x)} \quad \text{if } x \in V,$$
  
$$h_{1}(x) = h_{2}(x) = 0 \quad \text{if } x \notin V.$$

Then  $h_1$  and  $h_2$  are continuous on V. Let  $x_0 \notin V$ . Then  $h(x_0) = 0$  since  $|h| \notin f+g$ . By the definition of  $h_1$ ,  $|h_1(x)| \notin |h(x)|$  for all  $x \notin X$ . Let  $\pounds > 0$  be given. Since h is continuous at  $x_0$ , there exists a nbhd N of  $x_0$  such that  $|h(x)-h(x_0)| < \pounds$  for all  $x \notin N$ , so  $|h_1(x)-h_1(x_0)| = |h_1(x)| \leqslant$   $|h(x)| = |h(x) - h(x_0)| < \varepsilon$  for all  $x \in N$ . Thus  $h_1$  is continuous at  $x_0$ . This shows that  $h_1$  is continuous on X. Since  $|h_1| \le |h|$  and  $h \in C_c(X)$ , it follows that  $h_1 \in C_c(X)$ . Similarly,  $h_0 \in C_c(X)$ .

Because  $h_1 + h_2 = h$  and  $|h_1| \leq f$ ,  $|h_2| \leq g$ , we have  $|\phi(h)| = |\phi(h_1 + h_2)| = |\phi(h_1) + \phi(h_2)| \leq |\phi(h_1)| + |\phi(h_2)| \leq \Lambda f + \Lambda g$ (since  $|h_1| \leq f$  and  $\Lambda f = \sup \{|\phi(h)| / h \in C_c(X), |h| \leq f\}$ ). Hence  $\Lambda(f+g) \leq \Lambda f + \Lambda g$ . Thus  $\Lambda(f+g) = \Lambda f + \Lambda g$  for all  $f, g \in C_c^+(X)$ .

Let f be a real function,  $f \in C_c(X)$ . Since  $2f^+ = |f| + f$  and  $2f^- = |f| - f$ , we have  $f^+, f^- \in C_c^+(X)$ . Define

 $\Lambda f = \Lambda f^+ - \Lambda f^-$ .

If  $f = f_1 + if_2 + jf_3 + kf_4 \in C_c(X)$  for some real measurable functions  $f_1'$ ,  $1' \leq 4$ , we define

 $\Lambda f = \Lambda f_1 + i\Lambda f_2 + j\Lambda f_3 + k\Lambda f_4$ .

From the proof of Theorem 4.70, we have  $\Lambda$  is a positive left linear functional on  $C_c(X)$ . By Theorem 4.76, there exists a 6-finite positive Borel measure  $\lambda$  such that

$$\Lambda f = \int_X f d\lambda$$
.

for all  $f \in C_c(X)$  and  $\lambda$  is regular if  $\lambda(X) < \infty$ . From the proof of Theorem 4.76, since X is open in X,

$$\begin{split} \lambda(\mathbf{X}) &= \sup \left\{ \Lambda \mathbf{f} / \mathbf{f} \in \mathbf{C}_{\mathbf{C}}(\mathbf{X}), \ 0 \leq \mathbf{f} \leq 1 \right\}. \\ \text{If } \mathbf{f} \in \mathbf{C}_{\mathbf{C}}(\mathbf{X}) \text{ is such that } 0 \leq \mathbf{f} \leq 1, \ \Lambda \mathbf{f} &= \Lambda(|\mathbf{f}|) \leq ||\mathbf{f}|| \leq 1 \text{ by} \\ (4), \text{ so } \lambda(\mathbf{X}) \leq 1. \text{ By } (4) \text{ again, } |\phi(\mathbf{f})| \leq \Lambda(|\mathbf{f}|) = \int_{\mathbf{X}} |\mathbf{f}| \, \mathrm{d} \lambda \\ &= \|\mathbf{f}\|_{1} (\|\|\|_{1} \text{ in } \mathbf{L}^{1}(\lambda)) \text{ for all } \mathbf{f} \in \mathbf{C}_{\mathbf{C}}(\mathbf{X}). \text{ Hence} \end{split}$$

 $\phi:C_{c}(X) \longrightarrow \mathbb{H}$  is left linear with  $\|\phi\| \leq 1$ , with respect to  $L^{1}(\lambda)$ -norm on  $C_{c}(X)$   $(C_{c}(X) \subseteq L^{1}(\lambda))$ . By Theorem 5.15 (Hahn-Banach), there is a norm-preserving extension of  $\phi$  to a left linear functional on  $L^{1}(\lambda)$ . By Theorem 5.19 (the case p = 1), there exists a Borel function  $g \in L^{\infty}(\lambda)$ . such that

$$\phi(f) = \int_X fgd\lambda$$

for all  $f \in C_c(X)$  and  $|g| \leq 1$  a.e.  $[\lambda]$  on X (because  $||g||_{\mathscr{O}} = ||\varphi|| \leq 1 \Longrightarrow |g(x)| \leq 1$  for almost all  $x \in X$ ). By Theorem 1.43,  $C_c(X)$  is dense in  $C_o(X)$ . Let  $f \in C_o(X)$ . Then there exists a sequence  $(f_n)_{n \in \mathbb{N}}$  in  $C_c(X)$  such that  $f_n \longrightarrow f$  as  $n \longrightarrow \mathscr{O}$ . Since  $\varphi$  is continuous,  $\lim_{n \to \infty} \varphi(f_n) = \varphi(f)$ , hence  $\lim_{n \to \infty} \int_X f_n g d\lambda = \varphi(f)$ . Since the map  $f \mapsto \int_X f g d\lambda$  is continuous on  $C_o(X)$ , we have  $\lim_{n \to \infty} \int_X f_n g d\lambda = \int_X f g d\lambda$ . Hence  $(5) \qquad \varphi(f) = \int_X f g d\lambda$ 

for all  $f \in C_0(X)$ . For  $E \in \mathcal{M}$ , define  $\mathcal{M}(E) = \int_E g d\lambda$ . Then  $\mathcal{M}$  is a quaternion measure on  $\mathcal{M}$ , and  $\int_X f d\mathcal{M} = \int_X f g d\lambda = \phi(f)$  for all  $f \in C_0(X)$ . Hence (1) holds.

Since 
$$\|\phi\| = 1$$
 and from (5), we have  

$$\int_{X} |g| d\lambda \ge \sup \{ |\phi(f)| / f \in C_0(X), \|f\| \le 1 \}$$

$$= \|\phi\| \text{ (by Theorem 5.14)} = 1.$$

Since  $|g| \leq 1$  a.e.  $[\lambda]$  on X and  $\lambda(X) \leq 1$ ,  $\int_X |g| d\lambda \leq \lambda(X) \leq 1$ , hence  $\lambda(X) = 1$  and  $\int_X |g| d\lambda = 1$ . Thus  $\int_X |g| d\lambda = \lambda(X) = 1$ . Since  $\mu(E) = \int_{E} g d\lambda$  for all  $E \in \mathcal{M}$ , by Theorem 5.18, we have

$$\int u(E) = \int g |g| d\lambda$$

for all E∈M. Hence

$$\int \mathcal{M}(X) = \int_X |g| d\lambda = 1 = ||\phi|| \cdot \#$$

5.24 Definition Suppose  $\delta$  is a  $\delta$ -algebra in a set X and  $\mathcal{J}$  is a  $\delta$ -algebra in a set Y. A measurable rectangle of XXY is a set of the form AXB where  $A \in \delta$ ,  $B \in \mathcal{J}$ .

If  $Q = R_1 \cup \cdots \cup R_n$  where each  $R_i$  is a measurable rectangle and  $R_1 \cap R_j = \emptyset$  if  $i \neq j$ , we say that  $Q \in \mathcal{C}$ , the class of all <u>elementary sets</u>. Then every measurable rectangle is an elementary set.

5.25 Definition  $\int x \mathcal{J}$  is defined to be the smallest  $\delta$ -algebra in XxY containing all measurable rectangles.

5.26 Definition Let  $E \subseteq XxY$ , and  $x \in X$ ,  $y \in Y$ , we define

 $E_{x} = \{y \in Y / (x, y) \in E\}, \quad E^{y} = \{x \in X / (x, y) \in E\}.$   $E_{x} \text{ and } E^{y} \text{ are called the } \underline{x-\text{section}} \text{ of } E \text{ and the } \underline{y-\text{section}}$ of E, respectively. Note that  $E_{x} \subseteq Y$  and  $E^{y} \subseteq X$ .

5.27 <u>Theorem</u> If  $E \in \delta \times \mathcal{J}$ , then  $E_x \in \mathcal{J}$  for all  $x \in X$  and  $E^y \in \delta$  for all  $y \in Y$ .

Proof See [9]. #

5.28 <u>Theorem</u> If  $P,Q \in \mathcal{C}$ , then  $P \cap Q$ ,  $P \cap Q$  and  $P \cup Q$  belong to  $\mathcal{C}$ .

Proof See [9]. #

5.29 Theorem  $\delta \times \mathcal{J}$  is the smallest monotone class which contains all elementary sets.

Proof See [9]. #

5.30 <u>Definition</u> Let f be a function on XxY. For each  $x \in X$ , let  $f_x$  be the function on Y defined by

$$f_{x}(y) = f(x,y)$$

and for each  $y \in Y$ , let  $f^{y}$  be the function on X defined by

$$f^{y}(x) = f(x,y).$$

5.31 Theorem Let f be an  $(S \times T)$  - measurable function on XxY. Then

(a) for all  $x \in X$ ,  $f_x$  is a  $\mathcal{T}$ -measurable function,

(b) for all  $y \in Y$ ,  $f^{y}$  is an S - measurable function.

<u>Proof</u>[9]Let V be an open set in  $\mathbb{H}$ . Then  $f^{-1}(V) \in \delta \times \mathcal{J}$  ( $f^{-1}(V) = \{(x,y) \in XxY/ f(x,y) \in V\}$ ). Let  $x \in X$ ,  $y \in Y$ . Then  $(f^{-1}(V))_x \in \mathcal{J}$  and  $(f^{-1}(V))^y \in \delta$  by Theorem 5.27. But  $(f^{-1}(V))_x = \{y' \in Y/ f(x,y') \in V\} = \{y' \in Y/ f_x(y') \in V\} = f_x^{-1}(V)$  $\in \mathcal{J}$  and  $(f^{-1}(V))^y = \{x' \in X/ f(x',y) \in V\} = \{x' \in X/ f^y(x') \in V\} = (f^y)^{-1}(V) \in \delta$ . #

5.32 <u>Theorem</u> Suppose that  $(X, \delta, \mathcal{M})$  and  $(Y, \mathcal{J}, \lambda)$  are quaternion measure spaces,  $Q \in \delta \times \mathcal{J}$  and  $[\lambda](B) \mathcal{M}(A) =$  $[\mathcal{M}](A) \lambda(B)$  for all  $A \in \delta$ ,  $B \in \mathcal{J}$ . Let  $\mathcal{Q}(x) = [\lambda](Q_x)$ ,  $\mathcal{V}(y) = [\mathcal{M}](Q^y)$  for all  $x \in X$ ,  $y \in Y$ . Then  $\mathcal{C}$  is  $\delta$ -measurable,  $\Psi$  is  $\mathcal{J}$ -measurable and  $\int_{X} \psi d\mu = \int_{Y} \psi d\lambda$ . Note that if  $\delta = [\phi, X]$ ,  $\mathcal{J} = \{\phi, Y\}$ ,  $\mu(X) = i$  and  $\lambda(Y) = j$ , then  $|\lambda|(Y) \mu(X) \neq |\mu|(X) \lambda(Y)$ .

<u>Proof</u> The definition of  $\varphi$  and  $\psi$  make sense by Theorem 5.27.

Let  $\triangle$  be the class of all  $Q \in \mathcal{J} \times \mathcal{J}$  for which the conclusion of the theorem holds. We claim that  $\triangle$  has the following properties:

(a) ~ contains all measurable rectangles.

(b) If  $Q_1, Q_2, \dots \in \mathbb{A}$  such that  $Q_1 \leq Q_2 \leq \dots$ , then  $\bigcup_{i=1}^{\infty} Q_i \in \mathbb{A}$ .

(c) If  $(Q_i)_{i \in N}$  is a disjoint collection of members of A, then  $\bigcup_{i=1}^{\infty} Q_i \in A$ .

(d) If  $A \times B \in \mathcal{S} \times \mathcal{J}$ ,  $Q_1, Q_2, \ldots \in \mathcal{A}$  and  $A \times B \supseteq Q_1 \supseteq Q_2 \supseteq \mathcal{Q}_1$ , then  $\bigcap_{i=1}^{\infty} Q_i \in \mathcal{A}$ .

For each QEJxJ, let

 $\begin{aligned} \varphi_Q(x) &= |\lambda|(Q_x), \quad \Psi_Q(y) = \int u|(Q^y) \\ \text{for all } x \in X, \quad y \in Y. \end{aligned}$ 

To prove (a), let  $A \in \delta$ ,  $B \in \mathcal{J}$ . Then  $\mathcal{Y}_{A \times B}(x) = |\lambda|((A \times B)_{X}) = |\lambda|(B) \mathcal{X}_{A}(x)$  for all  $x \in X$  and  $\mathcal{Y}_{A \times B}(y) = |\mu|((A \times B)^{y}) = |\mu|(A) \mathcal{X}_{B}(y)$  for all  $y \in Y$ . Hence  $\mathcal{Y}_{A \times B}$  is  $\delta$ -measurable,  $\mathcal{Y}_{A \times B}$  is  $\mathcal{J}$ -measurable,  $\int_{X} \mathcal{Y}_{A \times B} d\mathcal{A} = \int_{Y} |\mu|(A) \mathcal{X}_{B} d\lambda$ 

$$= \int_{\mathcal{A}} I(A) \lambda(B). \quad \text{But } |\lambda|(B) \mu(A) = \int_{\mathcal{A}} I(A) \lambda(B), \text{ so}$$

$$\int_{X} \varphi_{AXB} d\mu = \int_{Y} \varphi_{AXB} d\lambda \quad .$$
To prove (b), for all x \in X for all y \in Y,  

$$(Q_{1})_{X} \subseteq (Q_{2})_{X} \subseteq \dots; \quad Q_{1}^{Y} \subseteq Q_{2}^{Y} \subseteq \dots \quad .$$
Then for all x \epsilon X,  $\lim |\lambda|((Q_{n})_{X}) = |\lambda|(\bigcup_{i=1}^{\infty} (Q_{i})_{X}) =$ 

$$|\lambda|((\bigcup_{i=1}^{\infty} Q_{i})_{X}) \text{ and for all } y \in Y, \lim |\mu|(Q_{n}^{Y}) = |\mu|(\bigcup_{i=1}^{\infty} Q_{i}^{Y})$$

Theorem, we see that  $( \varphi_{\alpha} )$  is  $\delta$ -measurable,  $\psi_{\alpha}$  is  $i = 1^{Q_{i}}$ 

 $\mathcal{J}$ -measurable,  $\lim_{n \to \infty} \int_{X} \varphi_n d\mu = \int_{X} \varphi_\infty d\mu$  and  $\lim_{i=1} Q_i$ 

 $\lim_{n \to \infty} \int \Psi_{Q_n} d\lambda = \int \Psi_{Q_n} \psi_{Q_n} d\lambda \quad \text{Since } Q_n \in \mathbb{R} \text{ for all } n \in \mathbb{N},$  $\int_{Y} \Psi_{Q_n} d\mu = \int \Psi_{Q_n} d\lambda \text{ for all } n \in \mathbb{N}. \text{ It follows that}$ 

$$\int_{X} \psi_{i=1}^{\infty} Q_{i}^{d} \mathcal{H} = \int_{Y} \psi_{i=1}^{\infty} Q_{i}^{d} \mathcal{H}$$

To prove (c), let  $Q_1, Q_2 \in \mathbb{A}$  be such that  $Q_1 \cap Q_2 = \emptyset$ . For  $x \in X$ ,  $(\mathcal{Q}_1 \cup Q_2)(x) = |\lambda| (Q_1 \cup Q_2)_X = |\lambda| ((Q_1)_X \cup (Q_2)_X) = |\lambda| (Q_1)_X + |\lambda| (Q_2)_X$ . But  $|\lambda| (Q_1)_X + |\lambda| (Q_2)_X = |\lambda| (Q_2)_X = |\lambda| (Q_1)_X + |\lambda| (Q_2)_X$ .

$$\begin{split} & \Psi_{Q_1}(\mathbf{x}) + \Psi_{Q_2}(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathbf{X}. \quad \text{Then } \Psi_{Q_1 \cup Q_2}(\mathbf{x}) = \Psi_{Q_1}(\mathbf{x}) + \\ & \Psi_{Q_2}(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathbf{X}. \quad \text{Since } \Psi_{Q_1} \quad \text{and } \Psi_{Q_2} \quad \text{are } \delta \text{-measurable} \\ & \Psi_{Q_1 \cup Q_2}(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathbf{X}. \quad \text{Similarly}, \quad \Psi_{Q_1 \cup Q_2}(\mathbf{x}) \quad \text{is } \int \text{-measurable} \\ & \int_{\mathbf{x}} \Psi_{Q_1 \cup Q_2} d\mathcal{M} = \int_{\mathbf{x}} (\Psi_{Q_1} + \Psi_{Q_2}) d\mathcal{M} = \int_{\mathbf{x}} \Psi_{Q_1} d\mathcal{M} + \int_{\mathbf{x}} \Psi_{Q_2} d\mathcal{M} = \\ & \int_{\mathbf{y}} \Psi_{Q_1} d\mathcal{A} + \int_{\mathbf{y}} \Psi_{Q_2} d\mathcal{A} \quad = \int_{\mathbf{y}} (\Psi_{Q_1} + \Psi_{Q_2}) d\mathcal{A} \quad = \int_{\mathbf{y}} \Psi_{Q_1 \cup Q_2} d\mathcal{A} \quad (\text{since} \\ & \Psi_{Q_1} + \Psi_{Q_2} = \Psi_{Q_1 \cup Q_2} \quad \text{as proof similar to } \Psi_{Q_1 \cup Q_2} = \Psi_{Q_1} + \\ & \Psi_{Q_2}). \quad \text{Hence } Q_1 \cup Q_2 \in \mathbb{R}. \quad \text{So if } Q_1, Q_2, \dots, Q_n \in \mathbb{R} \quad \text{for all } n \in \mathbb{N} \\ & \text{Let } P_n = \bigcup_{i=1}^{n} Q_i \quad \text{for all } n \in \mathbb{N}. \quad \text{Then } P_n \in \mathbb{A} \quad \text{for all } n \in \mathbb{N} \\ & \text{and } P_1 \subseteq P_2 \subseteq P_3 \subseteq \dots \quad \text{By } (b), \text{ we have } \bigcup_{i=1}^{n} P_i \in \mathbb{R} . \quad \text{But} \\ & \bigcup_{i=1}^{n} P_i = \bigcup_{i=1}^{n} Q_i, \text{ so } \bigcup_{i=1}^{n} Q_i \in \mathbb{R} . \end{split}$$

To prove (d), let  $x \in X$ ,  $y \in Y$ . Then  $(A \times B)_{X} \supseteq (Q_{1})_{X} \supseteq (Q_{2})_{X} \supseteq \cdots$  and  $(A \times B)^{Y} \supseteq Q_{1}^{Y} \supseteq Q_{2}^{Y} \supseteq \cdots$ . Then  $\lim_{n \to \infty} |\lambda|((Q_{n})_{X}) = |\lambda|((\bigcap_{i=1}^{\infty} (Q_{i})_{X})) = |\lambda|((\bigcap_{i=1}^{\infty} Q_{i})_{X}))$  and  $\lim_{n \to \infty} |\mu|((Q_{n}^{Y})) = |\mu|(((\bigcap_{i=1}^{\infty} Q_{i})^{Y}))$ . Thus  $\lim_{n \to \infty} \varphi_{n} = (x)_{i=1}^{\infty} Q_{i}$ and  $\lim_{n \to \infty} \Psi_{Q_{n}}(y) = \Psi_{\infty}(y)$ . Since  $Q_{n} \in \mathcal{A}$  for all  $n \in \mathbb{N}$ ,  $\lim_{n \to \infty} (x) = |\lambda| (Q_{n})_{X} \leq |\lambda| (A \times B)_{X} = |\lambda|(B) \mathcal{X}_{A}(x)$  for all  $n \in \mathbb{N}$  for all  $x \in X$ ,  $\int_X |\lambda|(B) \chi_A^{d|\mu|} = |\lambda|(B) |\mu|(\Lambda) < \omega$ , so  $|\lambda|(B) \chi_A \in L^1(\mu)$ . Similarly,  $\Psi_{Q_n}(y) \leq |\mu|(\Lambda) \chi_B(y)$  for all  $n \in N$  for all  $y \in Y$  and  $|\mu|(\Lambda) \chi_B \in L^1(\lambda)$ . By Lebesgue's Dominated Convergence Theorem, we have

$$\lim_{n \to \infty} \int \varphi_{Q_n} d\mu = \int Y_{\substack{\alpha \\ i=1}Q_i} d\mu, \lim_{n \to \infty} \int \varphi_{Q_n} d\lambda = \int Y_{\substack{\alpha \\ i=1}Q_i} \varphi_{\alpha} d\lambda.$$

Since for all  $n \in N$ ,  $Q_n \in A$ ,  $\int_X \varphi_{Q_n} d\mu = \int_Y \varphi_{Q_n} d\lambda$  for all  $n \in N$ . Hence  $\int_X \varphi_{Q_n} d\mu = \int_Y \varphi_{Q_n} d\lambda$ . So we have (d).

Now, let  $X = \bigcup_{i=1}^{\infty} X_i$  and  $Y = \bigcup_{j=1}^{\infty} Y_j$  be disjoint unions. where  $X_i \in S$  for all  $i \in N$  and  $Y_j \in \mathcal{J}$  for all  $j \in N$ . For m,  $n \in N$ ,  $Q \subseteq X_X Y$ , define

 $Q_{mn} = Q \cap (X_n \times Y_m)$ .

Let  $\mathcal{M} = \{ Q \in S \times \mathcal{J} | Q_{mn} \in \mathcal{A} \text{ for all } m, n \in \mathbb{N} \}$ . Then (b) and (d) shows that  $\mathcal{M}$  is a monotone class.

To show  $\mathscr{B} \subseteq \mathscr{M}$ , let  $A \in \mathscr{S}$ ,  $B \in \mathscr{I}$ . Then for all  $m, n \in \mathbb{N}$ ,  $(A \times B) \land (X_n \times Y_m) = (A \land X_n) \times (B \land Y_m) \in \mathbb{A}$  by (a). Then  $A \times B \in \mathbb{M}$ . Hence  $\mathbb{M}$  contains all measurable rectangle. By (c),  $\mathscr{B} \subseteq \mathbb{M}$ . Since  $\delta \times \mathscr{I}$  is the smallest monotone class which contains  $\mathscr{B}$ ,  $\delta \times \mathscr{I} \subseteq \mathbb{M}$ . By the definition of  $\mathbb{M}$ ,  $\mathbb{M} \subseteq \delta \times \mathscr{I}$ . Hence  $\mathbb{M} = \delta \times \mathscr{I}$ .

Let  $Q \in S \times J$ , so  $Q \in M$ . Then  $Q_{mn} \in \mathfrak{A}$  for all m, n  $\in N$ .  $Q = Q \cap (X \times Y) = Q \cap (\underset{m, n \in \mathbb{N}}{\bigcup} (X_n \times Y_m)) = \underset{m, n \in \mathbb{N}}{\bigcup} (Q \cap (X_n \times Y_m))$   $m, n \in \mathbb{N} \mathbb{Q}_{mn}$  which is a disjoint union. By (c), we have  $Q \in \mathbb{A}$ . #

5.33 <u>Definition</u> Let  $(X, \delta, M)$  and  $(Y, \mathcal{J}, \lambda)$  be quaternion measure spaces such that  $|\lambda|(B)M(A) = M|(A)\lambda(B)$  for all  $A \in \delta, B \in \mathcal{J}$ . If  $Q \in \delta \times \mathcal{J}$ , we define

$$(\mu \times \lambda)(Q) = \int_X |\lambda|(Q_X) d\mu(x) = \int_Y |\mu|(Q^Y) d\lambda(y)$$

We call  $\mu \times \lambda$  the product of quaternion measures  $\mu$  and  $\lambda$ .  $\mu \times \lambda$  is really a quaternion measure on  $\delta \times \mathcal{T}$  follows immediately from Theorem 4.67.

5.34 The Fubini Theorem Let  $(X, \delta, \mathcal{M})$  and  $(Y, \mathcal{I}, \lambda)$  be quaternion measure spaces such that  $I\lambda I(B)\mathcal{M}(A) = I\mathcal{M}I(A)\lambda(B)$ for all  $A \in \delta$ ,  $B \in \mathcal{I}$ . Suppose f is an  $\delta \times \mathcal{I}$ -measurable function on  $X \times Y$ ,

(a) If  $0 \le f \le \infty$ , and if (1)  $\Psi(x) = \int_{Y} f_x d|\lambda|$ ,  $\Psi(y) = \int_{X} f^y d|\mu|$  (x  $\in X, y \in Y$ ), then  $\Psi$  is  $\delta$ -measurable and  $\Psi$  is  $\mathcal{I}$ -measurable, and (2)  $\int_{X} \psi d|\mu = \int_{X \times Y} f d(\mu \times \lambda) = \int_{Y} \psi d\lambda$ . (b) If f is quaternion and  $|f| < \infty$ , then the functions  $\Psi$  and  $\Psi$ , defined by (1), are in  $L^{1}(\mathcal{M})$  and  $L^{1}(\lambda)$ , respectively, and (2) holds.

Proof of (a) Let  $0 \le f \le \infty$ , and let  $\Psi(x) = \int_{Y} f_x dIdI$   $\Psi(y) = \int_{X} f^y dJ dI$  for all  $x \in X$ ,  $y \in Y$ . By Theorem 5.31,  $f_x$  is  $\mathcal{I}$ -measurable and  $f^y$  is  $\delta$ -measurable. Then the definition of  $\Psi$  and  $\Psi$  make sense.

Suppose  $Q \in \delta \times \mathcal{J}$  and  $f = \chi_Q$ . Then  $\Psi(x) = \int_Y (\chi_Q)_X di\lambda i$   $= \int_Y (\chi_Q)_X di\lambda i = i\lambda i(Q_X)$  for all  $x \in X$  and  $\Psi(y) = \int_X (\chi_Q)^Y dy i$   $= \int_X (\chi_Q y) dy i = j\mu i(Q^Y)$  for all  $y \in Y$ . By Theorem 5.32,  $\Psi$  is  $\delta$ -measurable,  $\Psi$  is  $\mathcal{J}$ -measurable and  $\int_Y \varphi d\mu = \int_Y \psi d\lambda$ . But  $\int_Y \varphi d\mu = \int_X i\lambda i(Q_X) d\mu = (\mu \times \lambda)(Q) = \int_{X \times Y} \chi_Q d(\mu \times \lambda)$  and  $\int_Y \psi d\lambda = \int_Y j\mu i(Q^Y) d\lambda = (\mu \times \lambda)(Q) = \int_{X \times Y} \chi_Q d(\mu \times \lambda)$ . Hence-(a) holds for all non negative simple  $\delta \times \mathcal{J}$ -measurable functions.

Let f be such that  $0 \le f \le \infty$ . Then there exists a sequence of simple measurable functions  $(s_n)_{n \in \mathbb{N}}$  such that  $0 \le s_1 \le s_2 \le \cdots$  and  $\lim_{n \to \infty} s_n(x,y) = f(x,y)$  for all  $x \le X$  for all  $n \to \infty$  $y \le Y$ . For each  $n \in \mathbb{N}$ , let  $(\mathcal{Y}_n(x) = \int_Y (s_n)_X dl\lambda)$ ,  $\mathcal{Y}_n(y) = \int_X (s_n)^y dl\mu$  for all  $x \in X$ ,  $y \in Y$ . Then we have  $(\mathcal{Y}_n)$  is

5-measurable,  $\Psi_n$  is 7-measurable and  $\int_X \Psi_n dM =$  $\int_{v=v} s_n d(\mu \times \lambda) = \int_v \psi_n d\lambda \quad \text{for all } n \in \mathbb{N}. \text{ By Lebesgue's}$ Monotone Convergence Theorem,  $\lim_{n \to \infty} \int_{X \times Y} s_n d(\mu \times \lambda) =$  $\int_{\mathbf{x} \in \mathbf{x}} \mathrm{fd}(\mu \times \lambda). \text{ Since for all } x \in \mathbf{X}, \ 0 \leq (s_1)_{\mathbf{x}} \leq (s_2)_{\mathbf{x}} \leq \cdots$ and  $\lim_{n \to \infty} (y) = f_{x}(y)$  for all  $y \in Y$ , by Lebesgue's Monotone Convergence Theorem,  $\lim_{n \to \infty} \int_{Y} (s_n)_x d\lambda = \int_{Y} f_x d\lambda and$  $0 \leq \int_{V} (s_1)_x di \lambda l \leq \int_{V} (s_2)_x di \lambda l \leq \dots$  Then  $\lim_{n \to \infty} \varphi(x) = \varphi(x)$ and  $0 \leq \varphi_1(x) \leq \varphi_2(x) \leq \ldots$  By Lebesgue's Monotone Convergence Theorem,  $\Psi$  is  $\delta$ -measurable and  $\lim_{n \to \infty} \int_{Y} \Psi_n d\mu =$  $\int \Psi d\mu$ . Similarly,  $\Psi$  is  $\mathcal{J}$ -measurable and  $\lim_{n \to \infty} \int \Psi_n d\lambda =$  $\int_{Y} \psi d\lambda$ . But for all  $n \in N$ ,  $\int_{Y} \psi_n d\mu = \int_{X \times Y} s_n d(\mu \times \lambda) =$  $\int_{V} \Psi_n d\lambda$  . Hence

$$\int_{X} \varphi d\mu = \int_{X \times Y} f d(\mu \times \lambda) = \int_{Y} \psi d\lambda .$$

<u>Proof of (b)</u> Let f be a quaternion measurable function and  $|f| < \infty$ . Since  $|\mu \times \lambda| (X \times Y) < \infty$ ,  $\int_{X \times Y} f d[\mu \times \lambda] < \infty$ , so  $f \in L^{1}(\mu \times \lambda)$ .

Step I f is real. Then 
$$f = f^+ - f^-$$
. Let  
 $\Psi_1(x) = \int_Y (f^+)_X dl\lambda l$ ,  $\Psi_2(x) = \int_Y (f^-)_X dl\lambda l$ ,  
 $\Psi_1(y) = \int_X (f^+)^y dl\mu l$ ,  $\Psi_2(y) = \int_X (f^-)^y dl\mu l$ ,

for all  $x \in X$  for all  $y \in Y$ . By (a), we have

$$\int_{X} \varphi_{1} d\mu = \int_{X \times Y} f^{\dagger} d(\mu \times \lambda) = \int_{Y} \varphi_{1} d\lambda ,$$
  
$$\int_{X} \varphi_{2} d\mu = \int_{X \times Y} f^{\dagger} d(\mu \times \lambda) = \int_{Y} \varphi_{2} d\lambda .$$

Since  $(f^{+})_{x} = |(f^{+})_{x}| \leq |f| < \infty$  and  $|\lambda| (Y) < \infty$ .  $\mathcal{P}_{1}(x) < \infty$ for all x  $\in X$ . Similarly,  $\mathcal{P}_{2}(x) < \infty$  for all  $x \in X$ ,  $\mathcal{P}_{1}(y) < \infty$ for all  $y \notin Y$  and  $\mathcal{P}_{2}(y) < \infty$  for all  $y \notin Y$ . Since  $|\lambda|(Y) < \infty$ and  $|\mathcal{M}|(X) < \infty$ ,  $\mathcal{P}_{1}$ ,  $\mathcal{P}_{2} \in L^{1}(\mathcal{M})$  and  $\mathcal{P}_{1}$ ,  $\mathcal{P}_{2} \in L^{1}(\lambda)$ . Since  $f_{x} = (f^{+})_{x} - (f^{-})_{x}$  and  $f^{y} = (f^{+})^{y} - (f^{-})^{y}$ ,  $\mathcal{P}(x) = \int_{Y} f_{x} d|\lambda|$  $= \int_{Y} (f^{+})_{x} d|\lambda| - \int_{Y} (f^{-})_{x} d|\lambda| = \mathcal{P}_{1}(x) - \mathcal{P}_{2}(x)$  and  $\mathcal{P}(y) =$  $\int_{X} f^{y} d|\mathcal{M}| = \int_{X} (f^{+})^{y} d|\mathcal{M}| - \int_{X} (f^{-})^{y} d|\mathcal{M}| = \mathcal{P}_{1}(y) - \mathcal{P}_{2}(y)$ . Hence  $\mathcal{P} \in L^{1}(\mathcal{M})$  and  $\mathcal{P} \in L^{1}(\lambda)$ . Thus  $\int_{X} \mathcal{P}_{d}\mathcal{M} = \int_{Y} \mathcal{P}_{1} d\mathcal{M} - \int_{X} \mathcal{P}_{2} d\mathcal{M} = \int_{X \times Y} f^{+} d(\mathcal{M} \times \lambda) - \int_{X \times Y} f^{-} d(\mathcal{M} \times \lambda) = \int_{Y} \mathcal{P}_{1} d\lambda - \int_{Y} \mathcal{P}_{2} d\lambda = \int_{Y} \mathcal{P}_{d}\lambda$ . Hence  $\int_{Y} \mathcal{P}_{2} d\lambda = \int_{Y} \mathcal{P}_{d} d\lambda$ . Hence

Step II f is quaternion. Then  $f = f_1 + if_2 + jf_3 + kf_4$  for some real measurable functions  $f_1'$ ,  $1 \le 4$ . Since  $f_x = (f_1)_x + i(f_2)_x$  $+ j(f_3)_x + k(f_4)_x$ ,  $\Psi(x) = \int_Y f_x dl\lambda = \int_Y (f_1)_x dl\lambda + i \int_Y (f_2)_x dl\lambda + j \int_Y (f_3)_x dl\lambda + k \int_Y (f_4)_x dl\lambda = \int_Y (f_1)_y + i(f_2)_y + j(f_3)_y + k(f_4)_y$ ,  $\Psi(y) = \int_X f^y dl\mu =$ 

$$\begin{split} \int_{X} (f_{1})^{y} d\mathcal{J}\mathcal{M} + i \int_{X} (f_{2})^{y} d\mathcal{J}\mathcal{M} + j \int_{X} (f_{3})^{y} d\mathcal{J}\mathcal{M} + k \int_{X} (f_{4})^{y} d\mathcal{J}\mathcal{M} + i \int_{X} (f_{2})^{y} d\mathcal{J}\mathcal{M} + k \int_{X} (f_{4})^{y} d\mathcal{J}\mathcal{M} + i \int_{X} (f_{1})^{y} d\mathcal{J}\mathcal{J} + i \int_{X} (f_{1})^{y} d\mathcal{J} + i \int_{X} (f_{1})^$$

Hence  $\int_{X} \psi d\mu = \int_{X \times Y} f d(\mu \times \lambda) = \int_{Y} \psi d\lambda \cdot \#$