Chapter III
CUPARSE Systen
CUPARSE is a software used in this study to implement the
dependency grampar proposed for the parsing of the corpus of 50

sentences. It runs on an IBM AT compatible with 640 KB memory.

3.1 Introduction to CUPARSE

CUPARSE uses chart as data representation and the dependency
theory approach for linguistic analysis. An input sentence must be a
list of segmented words. The output from CUPARSE can be one or more D-
trees and conceptual networks depending on whether the sentence is
ambiguous.

Following is an overview of CUPARSE, with a description of

the concepts of window, rule, link”, and link order.

1. The concepts of windéw scanning and rule organization are
in part adopted from the analysis phase of the PIVOT Machine
Translation system designed by the staff of the NEC laboratory and
used as an implementation system in the joint MT research between the
Ministry of Sciences, Technology and Energy of Thailand and the
Ministry of Internation ! Trade and Industry of Japan. The author
would 1like to express his appreciation to NEC for generously sharing
these concepts with Thai researchers. CUPARSE is an attempt to try

out these concepts in a different systen.

59

3.1.1 Overview of CUPARSE

There are five modules in CUPARSE as follows:

1) a sentence
\
LOAD DICT & CREATE CHART (LDCC)(---===--- DICT
A7
LEXICAL DISAMBIGUATION (LD)(~=mm === LD Rules

l

POSSIBLE PATHS GENERATION (PPG)

‘.,
DEPENDENCY TREE CONSTRUCTION (DTC){(------ DTC Rules

X
CONCEPTUAL CASE ASSIGNMENT (CCA)(-=------- CCA Rules

Y
all possible meaningful representations

Following is an overview of each module.

1. Load Dictionary & Create Chart (LDCC)

) LDCC is the first module in CUPARSE system. Its function
is to load all information of lexemes in the dictionary which
correspond to each wordform in an ‘input sentence, and then creates a
chart structure. Each lexeme occupies an edge in the chart. Ambiguity
results in more than one edge between two vertices in the chart.

2. Lexical Disambiguation (LD)

_ Since each wordform can be ambiguous, this module aims
at reducing the number of ambiguity as much as possible. By using LD
Rules, we can' decide which edge can be deleted from the chart.
However, some ambigui’ °s may still remain. In another word, there
may still be mors than nne edge between two vertices in the chart
because category information is not enough for disambiguation in all

instances.

60

3. Possible Path Generation (PPG)

This module creates a path which is the connection of
edges from the first vertex through the last vertex by selecting only
one edge from each two vertices in the chart. The sequence of lexemes
generated will be treated as a set of possible paths. These possible
paths will be outputted for the syntactic and semantic analysis in
the next module. At this point, it is still possible to have more
than one path if ambiguity still remains.

4. Dependency Tree Construction (DTC)

Every possible path outputted by PPG module, will be
converted into a D-tree with the use of DTC rules which determine
whether or not there is a syntactic relation between each pair of
wordforms on the path. Those which successfully pass through DTC
rules and are converted into D-trees will be inputted to the next
module.

5. Conceptual Case Assignment (CCA)

This module determines whether or not each syntactic
relation linking a pair of nodes in a D-tree can be mapped onto a
conceptual relation. The status of head and depender may be changed
at this stage. A D-tree in which there remain syntactic'relations,
which cannot be converted into conceptual relations, fails at this
stage. The output from this module is one or more conceptual networks
of the input sentence. The multiple outputs result from semantic
ambiguity.

3.1.2 Windows

In any operation - command, we must know the scope of
reference for the operation. In some parsefs, such as the ATN parser,
there is only one foc. =d position as a scope of reference. The
system' perforns operation on one word at a time from the beginning of
the sentence to the end. Some parsers have a wider range of reference. -

PARSIFAL uses three buffers for making a reference of words in an

61

input sentence. CUPARSE‘ also uses a multiple focused approach known
as windows.

3.1.3 Rule file

A rule file is a set of rules used in LD, DTC and CCA
modules of the CUPARSE system. Each rule in a rule file is a set of
operatibn commands, composed of condition and'action commands. All
action commands in a rule will be operated if all condition commands
in that rule are satisfied. Condition and action commands are grouped
and titled with a condition and .an action name respectively. All
rules are referred to by their names in a link. The following is the

example of rule VpN.

(2) <(CVpN\> . ==) (Condition name>
[intersect (¥.MAJCAT,"V"); ==) [Condition command;
intersect (+.MINCAT, "PREP") 5 ==) Condition command;
intersect (r.MAJCAT,"N")3 ==) Condition commands
] ==) 1]
CAVDND : ==) (Actipn name>
L rlink(k,4)s ==) [Action command;

Action commands

1
i
~

rlink(+,1r)3

add (*.PATT, +.5YNTC) 3 ==) Action command;

copy (¥.MAJCAT."V")3; ==) Action commands;

copy(r.MAJCAT,"N"); ==) Action command;

combine(+,r); ==) Action command;

combine(¥,+)3 ==) Action command;
] ==>]

' 3.1.4 Link file |

A link file is a set of links used in LD, DTC and CCA

modules. A link is one p.'t of process in a module. The whole process
of analysis in eacu module depends on the 1inks put into order. A
link is composed of rules branching as a rule tree. The rules are

referred by condition names or action names. Condition names begin

62

with a character "C" while action names begin with a character "A".

The following is an example of a link.

(3) <LRel> ==) (Lname>
£{ CR1SubMiss -> Adummy ==) [{ nodel
{ CRMSubAgt & CR1csSAGT -> AR1Agt } =) { node?2 }
{ CRMSubObj & CR1csOBJ -> AR1Obj } ==) { node3 }
} ==) }
{ CR2SubMiss -)> e ==) { noded @
{ CkMSubAgt & CR1cSAGT -> AR1Agt } ==) { node5 }
{ CR¥3ubIns -> ==) { node6
{ CR1csINS | CR1dfINS -> AR1Ins} } ==) { node7 }}
{ CRMFobObj & CR2csOBJ -> ARZ0Lj} ==) { node8 3
3] | ==) 31
The symbols "i{" and "&" used for conditions "OR" and

"AND" vrespectively between condition names. Curly brackets { }

enclose each node in the rule tree. The node at the inner boundary is

the child node of the node at the nearest outer boundary. For example,

{ - CRMSubAgt & CR1csAGT -> AR1Agt)} or { node2 } is the child node of

{ CR1SubMiss -» Adummy } or { nodel }. The rule tree structure of the

link in (3) is organized as follows.

49 root
nodel //;Pdeg*
node2- node3 hodes node6 node8

node7

The head node can have two types of child nodes in a

rule tree, inclusive_or child ncde and exclusive_or child node. The

former, which is marked by the symbol @ at the head node, such as the

nodes 5., 6 and 8, is used in case more than one successful child node
is allowed. The latter, such as nodes 2 and 3, is used in case only
one successful child node is allowed.

The format "condition -» action” is like the conditional
statement. "if...then...else", in a computer language. A link.
therefore, is like a computer program that is the combination of
conditional statements. Three types of conditional statement
combhinations can be represented in a link as follows:

1. Multi-branch if

This combination corresponds to exclusive_or child nodes
combination in a rule tree. For example, (5a) corresponds to (5b) as
follows.

(5) a) if CR1SubMiss then Adummy
if CRMSubAgt and CR1csAGT then AR1Agh

else if CRMSubObj and CR1csOBJ then AR10bI

endif
endif
b) { CR1SubMiss -> Adumny
{ CRMSubAg¢t & CR1csAGT -> AR1Agt)}

{ CRMSubObj & CR1csOBJ -> AR10bj }

In this cace, only one action is performed. If CRMSubAgt
and CRicsAgt succeed then AR1Agt operates. But if one of them fails,
CRMSubObj and CR1csOBJ will be checked and if they succeed AR10bj
will operate. |

2. Sequence of single-branch if.

This combination corresponds to inclusive_or child nodes
combination in a rule t. 2. For example, (6a) corresponds to (8b) as

follows.

64

&

(6) a» if CR2SubMiss then

if CRMSubAg¢t and CR1csAGT then AR14gt endif
if CRMSubIns then

if CR1csINS or CR1dfINS then AR1Ins endif
endif
if CRMFobObi and CR2csOBJ then AR20bj endif

endif

b) { CR2SubMiss -> €

{ CRMSubAgt & CR1csAGT -> AR1Agt 3

{ CRMSubIns ->

{ CR1csINS | CRI1dfINS -> AR1Ins} }

{ CRMFobObj & CR2csSOBJ -> AR20bj)

In this case, thé conditions "CRMSubAgt and CR1csAGT",
"CRMSubIns", and "CRMFobObi and CR2csOBJ" do not affect each other.
If any condition succeeds, the action that corresponds to it will
operate. |

3. Nesting-if

This combination corresponds to the combination of head
nodes and child nodes. For éxample, (7a) corresponds to (7b) as
follows.

(7) a) if CR1SubMiss then Adummy ‘ ’

if CRMSubAgt and CR1csAGT then AR14gt endif

if CRMSubObj and CR1csOBJ then AR10bi endif
endif

b) { CR1SubMiss -»> Adummy

{ CRMSubAgt & CR1cSAGT -) AR1Agt)

{ CRMSubObj & C. -sOBJ -> AR10bj }

|~

This case is different from the conditional statement in

a computer language in that the actions "adupmy" and "ARIAGT" will

65

operate only when the conditions "CR1SubMiss" and "CRMSubAgt and
CR1csAGT" succeed. If one of these conditions fails. none of the
actions will be taken.

These three constructions are the basic structures of the
rule tree in CUPARSE. The system uses a rule tree, or a link. as a
flow of operations. By searching through the rule tree, the CUPARSE
system will find only one successful path from the root node through
to the leaf node, and then perform the operations as specified by the
actions along that successful path. The successful path means that
all conditions of each node in that path succeed. The successful path
will be searched as a depth-first left search. The successful path
and the actions taken in the link (2) -is either one of these

following paths searched in order.

(8) CR1SubMiss-CRMSubAgt-CR1CcSAGT ==) Adummy-AR1Agt

CR1SubMiss-CRMSubOb.i-CR1csOBJ ==) Adurmy-AR10bi

CRZSubMiss-CRMSubAgt—CRlcsAGT-CRMSubInS-CRlcsINS-CRHFObObj-CRZCSOBJ
' ===) AR1Agt-AR1Ins-AR20bj
CRZSubMiss-CRMSubAgt—CRlcsAGT—CRMSubIns—CRldfINS-CRHFobObj-CRZCSOBJ

=== AR1Agt-AR1Ins-AR20bj
CR2SubMiss-CRMSubAgt-CR1cSAGT-CRMSubIns-CR1csINS
4 ===) AR1Agt-AR1lIns
CR2SubMiss-CRMSubAgt-CR1cSAGT-CRMSubIns-CR1df INS
===) AR1Agt-AR1Ins

CR2SubHiss-CRHSubAgt-CRlcsAGT ==) AR1Agt

3.1.5 Link order file

A link order file is a set of link orders. A link order
is a sequence of links used in a module. The analysis of each module
depends on these links. CUPARSE 1is designed to have more than one
link order so it will analyze the input séntence in every possible
link order because each link order is a different alternative for the

analysis. This is to account for syntactic smbiguity such as in the

66

following sentence.
(9) "The robot moves the box in the room.”
The ambisuity occurs because the noun phrase "in the

roon" can modify either "the box" or "moves"; therefore, two link
orders are possible. The former link order handles the modification
of NP while the latter handles the modification of the verb. Multiple
link orders make it possible to obtain duplicate output. The
following is an example of a link order.
(10) <Linkorderil»

LRelMissSubFob

LCaseAssign

LCaseAssignl

LCaseFrane

’

3.2 LDCC Module

LDCC’s function is to 1load all information of the lexeme
which correspond to each wordform in the input sentence in the
diptionary,. and then create a chart structure. A chart is a graph. or
a set of vertices, each pair of which is linked by an edge. Lexemes
loaded from‘the dictionary will be arranged as different edges in the
chart. It is possible that one wordform may match more than one
lexere in the dictionary, a case of 1lexical or word ambiguity;
therefore; there may be rore than one edge between two vertices in a
chart.

For example, If the correspondence between wordforms and
lexemes in the dictionarv is like in (11a), after dictionary loading.

the chart structure ~reatec will be like (11b).

67

(11) a) Wordform: W1 Lexemes: L13, L18, L25
Wordform: W2 Lexemes: L4, L5
Wordform: W3 Lexemes: L9, L11
Vordform: W4 Lexemes: L53, L60

b) W1 W2 W3 W4

chart structure
3.3 LD Module

LD’s task is to reduce the lexical ambiguity or the number of.
edges between two vertices through the operation of LD rules.
Following is a description of windows, commands, control strategy,
and type of rules in this module.

3.3.1 Windows

In this module, tﬁere are five continuous windows as follows:

1. TFocus Window (#): This is the central window. It is used
to refer to the focused position of a rule.

2. Next Window (+): This window is used to refer to the right
adjacent position of the focused window.

3. Prior Window (-): This window is used to refer to the left
adjacent position<df the focused window.

4. Right Boundary Window (r): This is the right boundary of
the window scope. It is used to refer to the right position next to
the + window. |

5. Left Boundary window (1): This is the left boundary of the
window scope. It is wused to refer to the left position adjacent to

the - window.

68

A window is used to refer to all edges between two vertices
(or a segment). In other words, all lexemes between two vertices are
referred to by windows during the operation of a rule. In addition,
there are six extra windows, A B C D E F, used in the same manner as
the five continuous windows. These windows make references by the use
of "lsearch"Aor "rsearch” command.

3.2.2 Commands

The symbol "~" is added to reverse the return value of the
coumand. There are 9 commands as follows:

1. (") wbind(W);

This command checks whether or not the window specified is
bound to any segment. It returns SUCCESS or FAIL.

2. (") single(¥W)s

This command checks whether or not at the position specified
by the window, there is only one lexeme.

3. (7) intersect(argl, arg2);

This command checks vhether or not there is any intersection
value between arsument 1 and argument 2. Arguments 1 and 2 refer to
the segments bound; therefore, the command checks ‘whether there is at
least one intersection value between the lexemes specified by
arcument 1 and the lexeres specified by argument 2 or not. Argument 2
may be constant values specified in the command, or values of the
specified window and feature. If the constant value is null, the
comzand will check whether or not argument 1 exists. If there is no
such specified feature in the argument 1 or 2, it returns FAIL.

4. (7) subset(argl, arg2);

This . command is like the "intersect” command, but it checks
whether argument 2 is a su set of argumiut 1.

5. () equal(argl, arg2);

This command is 1like the "intersect" command, but it checks

whether or not argument 2 is equal in value to argument 1.

69

6. cut(W, (FIVI,FLV],..})5

This command will delete any lexeme or edge at the segment
bound, if it has the features and values as specified in the list.

7. select (W, {FL[V1,FLV],..})s

This command is the opposite of the "cut" command. It deletes
the edges that do not correspond to the conditions specified.

Bs) rsearch(W,EW,{condition listesw)5

This command searches for the first segment that matches all
conditions specified in the condition list. It begins searching from
the next segment to the right of argument 1 through to the last
cegment in the chart. It will stop searching when it finds the
segnent that matchLes the conditions specified. If it cannot find that
segmert, it returns FAIL, but if that segment is found, it will bind
that segment with the extra window specified by argument 2. The
condition command specified in the condition list is "intersect”,
"subset", or "equal" command.

9. (~) lsearch(W,EW,{ condition list... })3

This command is like the "rsearch” command except that it
begins searching -leftward.

3.3.3 Control strategy

Each link in a link order is applied in sequence. At the
initial state, the * window is bound to the first segment in the
chart. The engine will find a successful path in a link, and then
perform the action commands if the successful path is found. The
window scope will be shifted right for one position regardless of
whether or not a successful path 1is obtained. Each link will be
stopped when the ¥ windew finds no segmnent to bind.

3.3.4 Types of LD .nle

Disambiguation usually involves more than one segment. Three

disambiguation methods are used in this module.

70

1. Deletion rule

There must be at least one lexeme specified by the rule to
the left or the right of the focuéed position.

(12) a) if X then the left must be P.Q.R....
b) if X then the right must be P.Q.R....

X 1is the lexeme at the focused segment. If to the left or

right of this segment none of the lexemes specified (P,Q.R...) exists.
then X is not a correct lexeme for this see¢ment. By this rule we can
delete lexeme X from the segment.

b. Selection rule

At the focused position which is not ambiguous. we can check
what can be to its left or right. |

(13) a) if X then the left must be P, @, R....
must not be A, B, C....

b) if X then the right must be P. @, R....
must not be A, B, C,...

X is the' unambiguous Ilexeme at the focused position. This
rule deletes those lexemes to its left or right, which violate this
rule. The lexemes A, B, C... and the lexemes other than P, @, R,..
will be deleted. |

¢. Probability Rule

Although all segments are often ambiguous, there are frequent
patterns which are helpful in the disambiguation process. For example,
if (14a) is the ambiguous sequence and (14b) is one of the
probability patterns, other lexemes that are not B, P, Y will be
deleted by this fule and (14c) will be selected.

(14) a) segmentl secment2 segment3
A P W
B Q X
C R 2y
D Z

71

b) if the pattern B P Y is found select this pattern.
¢) segmentl segment2 segment 3

B P Y
3.4 PPG Module

More than one edge may repain in a segment in the output of
LD module. This module will create a path by selecting one edge in
each segment, from the first segment through to the last segment. The
nunber of possible paths generated is equal to the multiplication of
the number of edges of each of the segments. All possible paths are
treated as alternatives of analysis. Each path which is a lexeme
sequence will be analyzed independently. For example, (15a) is the

output from LD and (15b) lists the possible paths generated from PPG.

(15) a) segment 1 segment2 segment segment 4
A B c D
E . F G
b) The possible paths generated
ABCD, ABCG, ABFD,
ABFG, AECD, - AECG,
A EFD, AEFG,

3.5 DTC Module

DTC is the most important part in CUPARSE. Its main task is
to create a D-tree from a lexeme sequence. A D-tree consists of nodes
and arcs linking nodes. A node is labeled wi@h a wordform while an
arc is labeled with = synta tir case.

In the following example, nodes X and Y are treated as
content nodes while node R is treated as a case node. In CUPARSE, the

same data structure is used for both types of node.

(4

(16) X------- Y is treated as X--->R---->YV.

Each node contains information of the lexeme it represents or
case information. New informaﬁion may be added during the process. It
consists not only of syntactic information but also semantic
information, which will be used in the CCA part too.

CUPARSE provides a set of operation commands for constructing
a D-tree. One lexeme sequence may output more than one D-tree
depending on the number of link orders.

The first step in this module is to make sure that the input
sentence is a non-projective sentence (see 2.2.1) because this type
of sentence will violate the simple adjacency principle (see 2.2.4)
adopted for CUPARSE analysis. If non-projectivity exists, it has to
be undone - first by moving the critical lexeme to the appropriate

position, as in the following examples.

(17) a) b)
ST e
A B C D ==) A B D {

There is a crossing dependency between A->C and B->D in (17a).
CUPARSE cannot construct the relstion between B and ﬁ because B is
nbt adjacent to D. This lexeme sequence must be adiusted by moving D
to the position adiacent to B as in (17b) before any relation with B

is constructed.

(18) a)) b)
A— O\ oy
A B C D ==) A D B C

C is the' top node in (18a). A->D is an arc covering the top
node. CUPARSE cannot co. <truct the relation- between A and D because
they are not adiacent to each other. The lexeme sequence must be
adjusted by moving D next to A as in (18b) before any relation with A

is constructed.

3.5.1 Windows

There are five continuous windows (1 - % + r) and six extra
windows (A B C D E F) in this module like in LD module. A window is
used to refer to a lexeme in the active path. The extra windows are
bound to any lexemes by tﬁe use of "rsearch” or "lsearch” command.

3.5.2 Active path

The active path is a sequence of lexemes linked as a list. A
dependency relation will be constructed only on the lexemes which are
on the active path. After the relation is constructed, the depender
lexeme will be moved out of the active path and the linking of
lexemes on the active path will be changed. For example, if (1%a) is
an initial state of the active path, and (18b) is a construction
product, then the active path will be changed to (19¢). At the end of
DTC analysis, there should be only one lexeme in the active path as
the root node of a D-tree unless that input path syntactically fails.

(19) a) Active path: A BCDEF G H
b) construction: E->F
¢) Active path: ‘A BCDEGH

3.5.3 Commands

The comménds in this module are like the commands in LD, but
the windows specified in this module is used to refer to the lexemes
in the active path, not the segments in the chart. There are 15
conmands in this module. Six. namely "wbind", "intersect”, "subset”,
"equal”, "lsearch", and "rsearch”, are the same as those in LD module
(see 3.3.2). The following commands are added.

1. add(argl, arg2);

This is an action command. It adds the'values from argument 2
to argument 1. If thc spec.”ied feature in argument 1 does not exist,
the feature will be created and the value from argument 2 will be

added to it.

T4

2. copy(argl, arg2);

This command is like the "add" command except that the
existing value in argument 1 is replaced by the value of argument 2.

3. delete(argl, arg2);

This command deletes all values specified in argument 2 from
argument 1. If no such specified feature in argument 1 exits, it

returns FAIL.

4. combine(W.¥)s

This command combines the lexemes specified in arguments 1
and 2. Arguments 1 and 2 must be adjacent windows, such as (¥,+), (4,
¥), etc. Argument 1 is the bead node while argument 2 is the depender.

Since this command moves the lexeme specified by argument 2 out of
the active path, updates the linking in the active psath, and
automatically changes the binding between windows and lexemes, it
must be used after all linking has been made; otherwise it causes an
error. |

5. move(W, W3

This command moves and connects tﬁe _lexeme specified by
argument 2 to the right of the lexeme specified by argument 1, and
updates the linking of the lexemes in the active path. Arguments 1
“and 2 may be either the regular window or the extra window. This
cozrand moves any lexeme in the active path, and rearranges the
sequence of lexemes in the active path. After this command, the
window status will change to the initial state in which the ¥ window
is bound to the first lexeme in the resulting active path.

- alloc(N)s;

This command crestes one new node for further use by other
coemands such as "1link"™ aud "rlink" in dependency construction
operation.

7. 11link(Wi N, Wi N s

This command assigns a dependency relation between two nodes

7o

specified by arguments 1 and 2. Argument 1 is the head of argument 2.
This command is used when the depender is on the left of the head.
8. rlink(Wi N, Wi N)3
This compand is like "1link" command except that it is used
when the depender is on the right of the head.
9. shift(R{ LI E! B)3
This is a window moving command. There are four possible
novements in this comrand.
a. Shift(R): This command moves the window scope one
position to the right.
b. Shift(L)s This command moves the window scope one
position to the left.
¢. Shift(B)s This command éhanges the window scope to
the initial state where the * window is bound to the first lexeme in
the active path.
d. Shift(E); This command changes the window scope to
the ending state where all windows are not bound io any lexeme in the
active path.

3.5.4 Control strategy

Esch link will be applied in sequence as specified in the
link order. At the initial state, the % window is bound to the first
lexeme in the active path. The engine will fiﬂd a successful path in
a link. If a successful path is not found, the window scope will
shift one position rightward automatically and try to find a
successful path in that link again. After a successful path is found,
the actiop conmands will be performed and the search for successful
path continues. Each link will be applied until the * window is out
of the active path.

All operation commands will operate on the active path, and
the window scope and the 1linking of lexemes on the active path is

automatically changed after dependency construction. The system does

76

not shift the window scope to the right when a successful path is
found as in the LD module. Shifting is operated only by the use of

"shift" command, or in the case that a successful path is not found.

2.6 CCA Module

cCcA is the last module in CUPARSE. It assigns a conceptual
case and determines conceptual dependency direction to the dependency
relation between lexemes 1in a D—trée. This section describes this
nodule in details.

3.6.1 ¥Windows

Unlike in earlier modules, there are only three continuous
windows (- % 4) in the reference scope. The movement of the ﬁindow
scope in this module is different from that in LD and DTC modules. In
this module, the window scope scans a D-tree in the depth-first left
search manner.

1. Focus Window (%): This is the central window. It is used
to refer to a case node.

9. Next Window (+): This window is used to refer to the
syntactic depender. .

3. pPrior ¥indow (-): This window is used to refer to the
syntactic head. 5

There are six extra windows (A B C D E F) in this module.
They can be bound to any nodes by the use of "nsearch", "csearch", or
"child" command.

3.6.2 Commands

The commands in thi. wodule are like those in DTC nodule, but
the windows used in this module refer to nodes in a D-tree. There are
10 commands in this module. Six, namely "intersect”, "subset",

"equal”, "add", "copy", and "delete” are the same as those in DTC

(i

podule (see 3.5.2). The following commands are added.

1. semlink(W, W3

This command assigns a conceptual dependency direction
between two nodes. Argument 1 is the head of argument 2.

2. child(w, W)s

This compand binds the extra window specified in argument 2
to the node that is the first child node of argument 1.

3. (~) csearch(+! -, W.{condition list... })3

This command searches for the case node which is the child
node of argument 1 and matches all conditions in the condition list.
If that cese node is found, it will be bound with the extra window
specified by argument 2. Argument 1 can be either the %, or - window.

‘4. (™) nsearch(+! -. W.{cndition list... 3)3

This command is like "csearch” command except that it
searches for a concept node which is the grandchild node of argument
1 and matches all condition specified in the condition list.

3.6.3 Control strategy

Each link in this module 1is applied in the same manner as
that described in LD, and DIC wmodules. The difference is in the
scanning of‘ the window scope. Af the initial state, the - window is
bound to the root node, the * and + windows are bound the first child
and grandchild node of the root respectively. If neither of a
successful path is found or not, thé window scope is shifted to the
next deeper level. If no such level exists, the windows will be bound
to the sister node at the same level. This depth-first left

traversing can be represented as in the following example.

(20)

78

	Chapter 3
 Cuparse System
	3.1 Introduction to CUPARSE
	3.2 LDCC Module
	3.3 LD Module
	3.4 PPG Module
	3.5 DTC Module
	3.6 CCA Module

