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CHAPTER 1
INTRODUCTION

A linear programming problem is a problem of maximizing or minimizing a
linear function (such as maximum profit or minimize cost) based on a set of linear
constraints to ensure the best outcome of a mathematical model. Linear programming
is a special case of mathematical programming, sometimes known as linear
optimization.

There are several fields of study that linear programming can be applied such
as business, economic and industries including transportation, manufacturing, and
telecommunications. Moreover, linear programming is heavily used in microeconomics
and business management such as planning, production, technology and related issues.
Typically, most companies want to maximize the profit or minimize the cost with
limited resources that can be casted as a linear programming problem. This gives rise
to the popular use of linear programming in the field of optimization.

A linear programming problem can be solved by one of the most effective
algorithms called the simplex method. It performs very well in practice on a problem
of small to medium size. In general, the simplex method obtains an optimal solution by
moving progressively from one extreme point to a better adjacent extreme point in the
feasible region. An important step in solving the linear programming problem with the
simplex method is known as a pivot rule. In 1947, Dantzig [4] suggested the most
negative rate of change rule for the minimized problems. Since the Dantzig’s rule could
not guarantee the termination of the simplex method, a new pivot that avoids cycling,
in case of degeneracy was introduced by Bland [2]. In 1973, Klee and Minty [9] showed
that the Dantzig's simplex method was not a polynomial-time algorithm when applied
to their special problems. Moreover, many pivot rules were proposed to improve the
speed and the number of iterations such as the steepest edge pivot rule [5], the devex
rule [6] and the largest-distance pivot rule [11] which avoid visiting all extreme points.
These effect the number of iterations required for solving linear programming
problems. Furthermore, the polynomial-time algorithm for solving a large linear

programming problem was introduced called the interior point method (IPM) [12]



which finds an optimal solution by moving through an interior of the feasible region.
Currently, a large linear programming problem is commonly solved by the interior point
method. Even though, the solution finding method by the interior point method is very
different than the simplex one. There is no dominant method for solving a linear

programming problem in general.

1.1 Definition of linear programming

A linear programming model is an optimization model of maximizing or
minimizing the linear function subject to linear equality or inequality constraints. It can
be expressed in the canonical form of the maximize problem as:

MaX €% +CyX, +++++CX; +++++C X,

St anX +a,X, +o X+t X, < b,

;X X+ X e+ X, < b

Qg Xy F A X, Fo A X et X, < b

Xy Xy Xgsoees Xjyeny X 2 0,
Known coefficients of the linear programming model include cost coefficients C; for
j=12,3,...,n, coefficients a for i=1,2,3...m, j=12,3...,n and the right-hand-
sided valueb, fori=12,3...,m. The unknown variables are decision variables X; for

1=12,3...,n. This linear programming model can be written in summation format as

n n
max chxj min chxj
=1 =1
n n
st. > ax; <b, or st. Y ax; b
= =
X; >0 X; >0

fori=123..,mand j=12,3...,.n.



1.1.1 Standard form

A linear programming model is said to be in the standard form if all constraints

are equalities and all variables are nonnegative; i.e.,
n n
max _lecjxj min lecjxj
j= i=

4 n
s.t. Zl‘,aijxj —b, or s.t, Z;aijxj =b
j= =

xJ.zO szo,

for i=1,23...,mand j=123..,n.

n
Additionally, the inequality constraints Zaijxj >b can be converted to
j=1

equality constraints by subtracting the nonnegative surplus variable s, from the

n
summation leading to Zaijxj —S,=b, and s, >0. On the other hand, inequality
j=1

n
constraints Zaﬁxj <b. can be converted to equality constraints by adding the
j=1

n
nonnegative slack variable s, to the summation leading to Zaijxj +s, =b and

j=1
s, > 0.

1.1.2 Matrix notation

The linear programming problem can be written in the matrix form as

max z=c'X
st. Ax <D
X >0,

where A is an mxn matrix. The vectors x, ¢ are nx1 column vectors and b is the

mx1 column vector.

1.1.3 Geometric definitions

Geometric definitions of a linear programming problem are stated as follows.



Convex set:

Aset X in R" is called a convex set if given any two points x, and
X, In X, then Ax, + 1—A)x, e X for each A [0,1].
Ray and direction:

A ray is a collection of points of the form {x, + Ad: A >0}, where d
is a nonzero vector. The pointx, is called the vertex of the ray, and d is the

direction of the ray.
Direction of a convex set:

A nonzero vector d is called a direction of the convex set X if for

each x, € X, theray {x, +Ad: 1 > 0} also belongs to the set.

Extreme point:

A point X in a convex set X is called an extreme point of X if
X =Ax, +(1—A)x, with 2 e(0,2) andx,,x, € X, then x =x, =x,.

Extreme direction:

An extreme direction of a convex set X is a direction of the set that
cannot be represented as a positive combination of two distinct directions of
the set. Vectors d, and d, are said to be distinct if d, cannot be
represented as a positive multiple of d,.

Hyperplane:

A hyperplane H € R" is a set of the form {x:p"x =k}, where p

is a nonzero vector in R" and Kk is a scalar. This p is called the normal or

the gradient of the hyperplane.
Half-Space:

A hyperplane divides R" into two regions, called half-spaces. A

half-space is a collection of points of the form {x:p"x >k}or{x:p"x <k}.

The union of the two half-spaces is R".
Polyhedral set:

A polyhedral set represents a special case of a convex set. A
polyhedral set or a polyhedron is the intersection of a finite number of half-



spaces. It can be represented by {x : Axsb}. A bounded polyhedral set is

called a polytope.
9. Binding Constraint:

Let g(x) <b be a constraint in an optimization problem. If at point
X, € R" satisfies g(x,) <b, and g(x,) =b, then the constraint g(x) <b, is
said to be binding at x,.

10. Face and Edge:
Let P be a polyhedral set defined by P={xeR"|Ax<b} where

AcR™and beR". If XcP is defined by a non-empty set of binding

linearly independent hyperplanes, then X is a face of P. An edge of a

polyhedral is defined by any face of dimension one.

1.2 Related work and literature review

In 2014, Lawanyawut, Sirirat, and Yawila [10] proposed a new approach to
obtain an initial basis for the simplex method by moving (or “jumping”) from the origin
in the direction of the objective gradient to an extreme point on the other side of the
feasible region in 2 and 3-dimensional linear programming models.

The jump required additional constraints to construct a sub-problem, with a
smaller feasible region where an edge was in line with the objective gradient. After
starting at the origin, a number of pivots were performed to move along that edge and
to a nearby extreme point, which became the initial basis for the simplex method. Once
the initial basis was obtained, additional constraints were removed before starting the
simplex method. The approach was empirically compared with the regular simplex
method with the standard initial basis using a number of generated small-sized 2 and 3-
dimensional linear programming problems. The performance improvement provided
by this approach was shown in terms of the number of iterations.

Moreover, there are some literatures having an idea to improve the initial basis
of the simplex method, for example, an improved initial basis for the simplex algorithm
by Junior and Lins in 2005 [7]. This paper suggested an initial basis which determined

the vertex in the feasible region that was closer to the optimal vertex than the initial
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solution applied by the simplex method. The main idea presented one constraint that
made the closest angle with the objective function. They considered which constraints
of the primal problem:

max b’y

st. Aly+s=c

s>0,

forming the basis of the dual problem. The angles between the gradient vectors to the
hyperplanes defining to each constraint and gradient vector to the objective function

.
)b

was calculated by the angle «9(xj):arccosm, j=123,..,n, where x, is the
I

variable of primal problem. The vector a is the column vector of the matrix A.

1.3 Objective of the thesis

In this thesis, a principal objective is to offer the concept and insights of a new
approach for determining an efficient initial basis for the simplex method solving in the

n dimensional linear programming problem.

1.4 Scope of the thesis

Maximizing a linear programming problem is considered in a canonical form
(all constraints are of < type) such that all cost coefficients in the objective function
and the right-hand-side values of all constraints are nonnegative. This guarantees that
the origin is in the feasible region and it is normally used as the starting point of the
simplex method.

Following the first chapter, some related algebraic definitions and the simplex
method are explained in Chapter 2. In Chapter 3, the initial concept of the thesis is
discussed along geometric concepts of the linear programming problem. There are
some definitions considered before the objective jump procedure, and some examples
are illustrated in this chapter such as examples of Klee and Minty problems and other
examples from the text books. Chapter 4 presents the computational results of testing

the simplex method with objective jump on several problems of various sizes. The
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results which include the average number of iterations and average running times are

compared with the simplex method using Dantzig’s pivot rule
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CHAPTER 2
PRELIMINARIES

In this chapter, the main study of solving a linear programming problem is
presented with some algebraic definitions, theoretical concepts and the simplex
method [1].

2.1 Algebraic definitions

Some algebraic definitions used in this paper are

1. Zero vector:

Zero vector O is the vector which all components equal to zero.
Here, it also is called the origin.
2. (Standard) Basis vector:

The vector e, is a (standard) basis vector if all components equal

to zero except the i" position is 1.
3. Inner product:
For any two vectors a,b € R", the inner product or dot product of
n
two vectors is defined as a-b=ab +a,b, +---+a b, = Zajbj. Moreover,
j=1
the inner product can be defined by a-b =|[a]||[b] cos(#), where |a],|b|| are
the Euclidean norm of vectors a and b, & is the angle between a and b.

If a-b=0 then a and b are orthogonal and & =90°. The inner product of
a and b can also be written in the matrix multiplication form as a'b.

4. ldentity matrix:

An nxn matrix |, is an identity matrix if the diagonal elements

are ones and other elements are all zeros.
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5. Matrix inversion:

Let A, B be thenxn square matrices. If B is the inverse of A,

then AB = I, = BA. The inverse matrix is denoted by A~*and is unique. If

A has the inverse, A is called nonsingular. Otherwise, A is called

singular.

2.2 Simplex method

The simplex method is a method for solving a linear programming problem.
This method is presented in 1947 by George B. Dantzig. A system of linear inequalities
defines a polytope as a feasible region of a linear programming problem. The simplex
method begins at a starting extreme point of the polytope and moves along the edges of
this polytope to the adjacent extreme point. So that at each new extreme point, the
objective function is improved until the optimal solution is reached, or else until the
algorithm determines that the optimal value is unbounded.

The simplex method is based on the iterative improvement that starting a basic
feasible solution at the origin without enumerating all extreme points. This method

starts the operation on the standard form of the following linear programming problem.

max z=c'X
stt. Ax =D
X >0,

where A is anmxn matrix with rank(A) =m and b is a vector of size m.

2.1.1 Basic feasible solution

Consider the standard form of a linear programming model, let A =[B, N]

where B isan mxm invertible matrix, called the basic matrix. The mx(n—m) matrix

Xg

N is called the nonbasic matrix. Let X ={ } be the solution of the system of linear

XN
equations AX=Db, where x, =0 and x, =B™Db, is called a basic solution. A basic

solution X with the component x, >0 is called a basic feasible solution.
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2.1.2 Objective value

-1

B™b
Suppose that a basic feasible solution is given by X = [ 0 } , then the

T

B™'b
objective value z is calculated by z=c'x = [CB c[,]{ 0 } =cgB'b.

2.1.3 Theoretical concepts

1. Existence of an optimal solution

Assume that the feasible region is not empty. Then a finite optimal
solution exists if and only if chj >0 for j=1,2,3,...,1, where d,,d,,...,d,

are the extreme directions of the feasible region. Otherwise, the optimal

solution value is unbounded.

2. Correspondence between basic feasible solutions and extreme points
The collection of extreme points are equivalent to the collection of
basic feasible solutions. In other words, a point is a basic feasible solution
if and only if it is an extreme point. Moreover, for every extreme point, there
is a corresponding basis. Conversely, for every basis, there is a

corresponding (unique) extreme point.

3. Existence of an optimal solution and optimal extreme point
If an optimal solution exists, then an optimal extreme point or

equivalently an optimal basic feasible solution exists.

2.1.4 Tableau form

A linear programming model can be rewritten in part of basic and nonbasic

variables; i.e.

max z
st z—ciXg; —CiXy =0 (2.1)
Bxg + Nx, =b (2.2)

Xg, Xy 20.
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By multiplying B™ to equation (2.2), we get

Xg +B*Nx, =B™b. (2.3)
Multiplying (2.3) byc_,

CiXg +CEB*NX, =ciB'b. (2.9)
Adding to equation (2.1),

z—clB'b+ciB*Nx, —cX, =0. (2.5)
Then, we get

Z+0x, +(ciB'N—cj)x, =cLB™b. (2.6)

Currently, x,, =0, and by the equations (2.3) and (2.6), we obtain x, =B™b and
z=ciB'b. From the equations (2.3) and (2.6), the tableau with the current basic
feasible solution represents in the following tableau.

XN Xg RHS

Z cgB™'N-c{ | 0 | ciB™b | row0

Xg BN I B'b

For the above tableau, the objective row is referred to row0. The value of the
objective function is z=clB™'b and the basic feasible solutions is B™b . If
ciB*N—c} >0, then the current basic feasible solution is optimal. Otherwise, the

current tableau is improved for some nonbasic variable x,,.

2.1.5 Nonbasic variable space

From the equation (2.3),
Xg =B b —B7'NXx,
=B7b-) B™ax|.

jed
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Let b=B"b and y, =B™a,. Thus, X, =b—>_ y,X; where a, is the j"" nonbasic

jed
column of the matrix A and J is the current set of the indices of the nonbasic

variables.

From the equation (2.6), we have the objective function value:

Z =ciB'b—c B NX, +Cy Xy

=12,- ) (2, -¢)X;,

jed

where z, =cIBb and z; —c; =cgy, —¢; for each nonbasic variable.

A linear programming model can be rewritten in terms of the nonbasic variables

using the foregoing transformation:

max z=2z,->(z;-C;)X
jed

st. >yx <b (2.7)
jed
X; 20, jeJ.

The feasible region of an LP model is defined in terms of n+m intersecting half-spaces
which composes of m inequality constraints in equation (2.7), and n nonnegativity

constraints.

2.1.6 Entering and leaving variables

From tableau of the simplex method, an entering variable is chosen from among
the columns containing ¢B*N—c], and matrix BN . When the column with
ctB™N —c], <0is chosen, then the simplex method will choose a leaving variable by

performing the minimum ratio test on the chosen column and the right-hand-side (RHS)

column. Choosing entering variables and leaving variables is summarized below:

1. Entering variable: x, enters, if z, —c, <0 such that |z, —c,|=max|z;—c;|.

jed
Yik > O} -

. . . b .| b
2. Leaving variable: x, leaves, if —— =m|n{—'
' Yik

1<i<m
rk
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2.1.7 Pivoting operation

By a pivoting operation, if x, enters the basis and x, leaves the basis, then

y,. IS considered to be the pivot. This is shown in the table below.

. Xj ST GREY )(Eﬁ e XBr XBm RHS
7 e Z;—Cj vt Z G e O ---0 --- 0 CgB_lb
XBl Yy Yue 1 ... 0 -+ 0 51
XBr yrj @ o .- 1 .-+ 0 Br
XBm ymj o Yl o --- 0 --- 1 Bm

Operating y,, can be as follows:

1. Dividerow r byy, .

2. Update the i" row for i =1,2,3...,m and i = r by adding the new r" row

multiplied by -y, .

3. Update row0 by adding to the new r'" row multiplied byc, —z, .

2.1.8 Simplex algorithm

Initial step:
Find and initial basic feasible solution. Form the following initial tableau:

Xy Xg RHS

Z | cilB*'N—c;, 0 ceBb

Xg BN I B'b
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Main steps
1. Let|z —c|= max|z, —cj‘. If z, —c, >0, then stop as the current solution
je

is optimal. Otherwise, check column of y,. If y, <0, then stop as the

original linear programming problem has unbounded optimal objective
value.

2. If y_ %0, determine the index I asa minimum ratio test:

b, _ . Jb
— =min{—|y, >0¢.
Yoo o B Vi

3. Update the tableau by pivoting aty, . Update the basic and nonbasic

variables where x, enters the basis and x, leaves the basis, then repeat the

main steps.
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CHAPTER 3
SIMPLEX METHOD WITH OBJECTIVE JUMP

In this thesis, we propose a method for finding an initial basic feasible solution
and designing a new direction of the path along the direction of the objective function
to avoid visiting all vertices to reduce the number of iterations and running time. In this
chapter, we discuss the main idea of the simplex method with objective jump and
explains the process for our method. Finally, we illustrate examples of the simplex
method with objective jump. For the remaining of the thesis, we will refer to the simplex
method with objective jump as SOJU.

3.1 Mainidea

The main idea of this thesis is to approach the new initial feasible basis for the
simplex method. Initially, this approach creates the artificial edge before starting the
simplex method. This edge is aligned with the direction of the objective function. (see
in Figure 3.1) and created from the intersecting of new hyperplanes and a hyperplane
of the constraint. After this step, this obtains the new point, called a jump point and a
sub-problem which has smaller feasible region than the original one. This process is
called “objective jump”. After that, the objective jump process pivots out from this
jump point to the new adjacent point of the origin feasible region. Then, the new point

will be the initial point of the simplex method.

ol Artificial edge
U1

ol /"\\ Optimal solution
// ,

%
N
,
A
b
%,

Y

/ ‘ \
1% 1 1 L
2 A [3

Vo

s

Figure 3.1: An artificial edge along with the direction of the objective function

through the feasible region.
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We solve a linear programming model that contains the origin in its feasible

solution set.

max z=CX +C,X,+...+C X,
st ax+a,X,+...+a,X, < b
< b,

Ay, X, + 8y X, + ...t By X

2n'n

X <b

mn-'n m

A, X +a X +...+a

X Xpy Xgyeeoy X, 20,

1\

where b,b,,b,...,b, >0.

Mg =

This is equivalent to

n
max z :chxj
i1

st. > ax <b fori=123..,m
j=1
x; 20 for j=123,..,n,

whereb, >0.
3.2 Direction of the objective function

According to the scope of the thesis, a direction or gradient of the objective

function is ¢>0. It can be divided into two cases:

Case Iz allc; >0. In this case, the vector ¢ makes acute angles with all basis vectorse; ;
i.e,c’e, >0.

Case I1: Some c; =0 (but not all zero). In this case, the vector cis orthogonal to
some basis vectore;; i.e.,c’e, =0.

In a linear programming model with n =3, two examples of these cases are
illustrated in Figure 3.2. In the first example, the direction of the objective function
2 1 0

C, =| 2 | makes an acute angle (<90°) with all basis vectorse, ={ 0|, e, =| 1 |and
2 0 0
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0
e,=|0(;ie, c'e=2>0,c'e,=2>0and c,'e, =2>0. In the second example, the
1

1

direction of the objective function ¢, =| 1 | makes the right angle (=90°) with the
0

0 0

1 T
basis vectore,| 0 |; i.e., ¢c,’e, =| 1| | 0 |=0and acute angle with e, ande, .
0| |1

1

X
4‘3

> X,

X1

Figure 3.2: The directions of the objective function point into the feasible region

and make acute or right angle with each axis.

33 Casel (Allc, >0)

3.3.1 The gradient of all ones

Initially, the simple idea of the thesis uses the gradient of all ones as the simple

gradient of the objective function which is denoted byc{c_zl} =1eR".
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Definition 1.1 (Orthogonal objective vectors)

Let C gy =1€R" be a column vector of all ones and n be the number of

variables. Define a set of n—1 column vectors v ={v,,v,,...,v,,...,v, ,} in R" where

the j™ element of a column vector v, is given by

1 if j<i+l
(vi)j= -1 if j=i+l ,forl<i<n-1,1<j<n. (3.1)
0 if j>i+l

The vector v, is called an orthogonal objective vector.

Properties
1) These vectors together with Cre,-ppare pairwise orthogonal; i.e.,

ViCe =0 Vi=123,...,n-1,andv] v, =0, Vi=r.

2) These vectors are also linearly independent.

1
In Figure 3.3, for n= 2, the orthogonal objective vector v, :{ J is

1
perpendicular with the gradient of the objective functionc = L} ie.,

1 1
171
v, C ={ J L} =0. For n=3, the orthogonal objective vectors v, = -1|,v,=| 1
0 -2
1
and the direction of the objective functionc=| 1| are pairwise orthogonal; i.e.,
1
17 171 171

v,v,=|-1|| 1 |=0,v/c=|-1| |1|=0,andv,c=| 1 | |1|=0.
0 -2 01| (1 2111



23

H

L1

Ol

R s
-1 h

0 ,’

1 & ;

[_1] 1l i

1
-2

a) b)
Figure 3.3: a) one orthogonal objective vectors for n=2 and b) two
orthogonal objective vectors forn=3.

LP model with the simple gradient of the objective function

Let c{c_zl} =1eR", consider the following LP model:
max z = C{T_i y
st. Ay<b (3.2)
y>0

where y e R" is a vector of variables.

Artificial edge and orthogonal objective matrix

Our idea is to create the artificial edge that is aligned with the gradient of the

objective function c{ =1 in order to jump from the origin point along this edge.

¢;=1
To form such edge, the intersecting of n—1 linearly independent hyperplanes

are needed. The hyperplanes can be defined by the orthogonal objective vectors v, ,

1=1,2,3,...,n—1and the edge can be obtained from the system of linear equations
viy=0,i=123,..,n-1. The system of equations is written in a matrix form as

T,y =0 where the matrix

T 1 -1 0 0 0
T 11 =2 0 .. 0

T,=| vl |=]1 1 1 -3 .. 0 (3.3)
vii) i1 1 1 ~(n=1 )iy 170

The matrix T, is called the orthogonal objective matrix.
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Claim 1.1 The system of equations T,y =0 has the general solution of the form

yl:y2:"': yj =...= yn—lzyn ER.
Proof.

The system of equations T,y =0 can be expressed as

k-1 k-1
>y, —(k=1)y, =0, k=2,3,4,...,n and this is equivalent to » 'y, = (k —1) y, . Hence,
=i

j=t

the system of equations can be rewritten as:

Y1 = Y, (1)
YitYa = 2y, (2)
YitYo+Ys = 3y, -++(3)
Vi +Y, +Ys+Y, e+, :(”_Z)Yn_l - (p-2)
Yo+, +Ys Y, Y L+ Y, =(n-1) Yy, - (p-1)

Initially, the equation (1) hasy, =y, .
Substitute y, =y, to the equation (2); 2y, =2y, theny, =vy,.
Substitute y, =y, =y, to the equation (3); 3y, =3y, theny, =vy,.

Repeat the substitution in the similar manner. Therefore, the general solution of these
equationsis Y, =Y, =...=Y;=...=Y,, =Y, |
The artificial edge is represented by this general solution
Yi=Y,=-..=Y;=...= Y,y =Y, It will be used to define the jump point which is the
point along the line y, =Y, =...=Y; =...=Y,; =Y, such that it is feasible and at the
boundary of the feasible region.
Definition 2.1 (Jump point)
For the LP model (3.2), let Zaijyj <, be the constraints such thatb, > 0and

j=t

notall b, =0. A point y=[y; |eR" is said to be the jump point if
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Condition (1): The point y satisfies the condition

=Y, ==Y ==Y =Y, = >0 for some scalar u .

Condition (2): The pointy satisfies at least one equality constraint Zaqj y; +s, =b,
j=1

such that the slack variable s, = 0 and bq >0.

Condition (3): The point y is feasible for the LP model (3.2).

Preposition 2.2

For the LP model (3.2), let Zaijyj <b; be constraints such thatb, > 0 and not all

j=1
b.=0. If there exists some i such thatZaij >0 and b >0 , the jump point is

j=1

j=1

b
T =|y) |eR" where each component mln
y'=[yi]e P Vi =u= {Zau

Z a; >0 }
Otherwise, the jJump point does not exist.

Proof.

n
After adding slacks variable s, > 0 to constraints Zaij y; <b, such thatb, >0,
j=1

n
the constraints become Zaij y; +s =b.
j=1

Case 1

Suppose that for some r ,Za,j >0andb, >0.
j=1

r

Let ar m|n
gq=arg {Z a

=

b,
Za” >0} and y = [y ]eR”such thaty; = p =
Sag

=t

Clearly, the point y satisfies condition (1) in Definition 2.1.
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9 into the

Moreover, the point y satisfies condition (2) since substituting y; = 4 =5
2.

=L
constraint » a;y, +s, =b, will resultins, =0.
j=1
The point y also satisfies all constraints which can be explained as follows.

For the constraint i such that > a, >0,
j=1

jz::aijy,- =(§aijjﬂ=(jzn_;aijJ£;qj S(Zaij] nb‘ =b,.

j=1 j=1

For the constraint i suchthat>’a, <0, > a,y, = > a,u<0<h . Therefore, the
j=1 j=1

j=1
point y is feasible and satisfies condition (3) in Definition 2.1.
Hence, the point y is the jump point for the LP model (3.2).

Case 2

Suppose Zaij <0orb =0 foralli=12,3,...,m. Assume a jump point y
j=1

exist. Hence, from condition (1), ¥, =Y, =...=Y; =...=Y, =u forsome x>0.

n
Since vy is feasible for any constraint i, we must have Zaijyj <b,. Because
j=1

Zn:a“ y, = yzn:aij <0andb >0, this impliesZaijyj =b, = 0. Thus, condition (2) in
i=1 =1 j=1

definition 2.1 cannot be satisfied, which is a contradiction. Thus, a jump point does

not exist. u

3.3.2 General case |

In general case I, the gradient of the objective function is denoted by

g }:[cj]eR",cj >0.

;>0

In this case, we consider the LP model:
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T

max c{wo}x
st. Ax<b (3.4)
x>0,

where the vector of variablesx e R".

Transformation of orthogonal objective matrix

From the LP model (3.2), the artificial edge for the jump can be constructed
through the system of equations Ty =0 where T, is defined in (3.3). The similar
system for the model (3.4) can also be constructed. Notice that the model (3.4) can be

transformed into  (3.2) by setting the variable y;=C;X; . Thus,

C{ch>o}x - Zl:cjxj = le(Cij) = lelyj =1"y.
1= J= j=

Let a; :? . Hence, Zn:aijxj =Zn:?cjxj =Zn:% Y =Zn:a{j y;. Therefore, the model
j L [ =L ¥j -1
(3.4) is equivalent to
max 1"y
st. Ay<b (3.5)
y=20,

where the matrix A'=[a; |e R™".
Suppose the orthogonal objective matrix isT, :[tij]eR(“’l’X”. Consider the

system of equations T,y=0 for the LP model (3.5). For any constrainti,
Sty =28 (c% )= (t;c; ) x; =0. Therefore, if we setT=[c;t;], the system of
j=1 j=L

j=1

equations T,y =0 is equivalentto Tx=0; i.e.,

_ - 0

cc —¢ O 0 0 :1 0

¢ ¢ -2 0 .. 0 x2 0

¢ ¢ ¢ -3¢ .. 0 ° = 3.6
1 &G s x |7l o (3.6)

c ¢ G ¢, ... —(n-1c, | | _(')_

Note that the row vectors in the matrix T may no longer be pairwise orthogonal.
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Jump point
According to Preposition 2.2, the jump point of the LP model (3.5) is

b.
J _nd n . — >0
y’ =[y;]eR" where yf:mim{%aﬁ>

> a >0}:,u' provided that there are
=1

some i such thatZai’j >0 and b, > 0. This jump point can be translated to the jump
j=1

point of  the LP model (3.4) as XJ:[xf]eR” where

For example 1,

max X +X,
st. x+x,<1
== X S92
—X —X,<3

X, X, 2 0.

Notice thatc,,c, =1. Then, we consider each constraints such that a, +a,, >0 where

i=1,2,3.Sincea, +a, =1+1=2>0, so that the jump point is(xf,xg)z(%,%).
This jump point is illustrated in Figure 3.4.

X1 =X

(0.5,0.5)

0.4 0.6 0.8 1.0

Figure 3.4: An example of a Jump point (0.5, 0.5).
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For example 2,

max X, +X,

st. x—-2x,<4
—X =X <3
X, X, 20

Notice thatc,,c, =1. Since a,, +a,, =1-2=-1<0and a,, +a,, =-1-1=-2<0,

so that the jump point does not exist for this example. Furthermore, the region is also

unbounded. This is illustrated in Figure 3.5.

bl s L \ L L 7
[] F 4 6 8 10

Figure 3.5: An example where a jump point does not exist.

Sub-LP model
To incorporate the artificial edge Tx=0 into the model (3.4) where

T=[t; |eR™™" defined in (3.6), this intersection of hyperplanes is transformed into

n n
the intersection of half-spaces Zti'jxj <0 or Zti’jxj > 0. The intersection of these half-
=1 j=1

spaces together with the feasible region in the model (3.4) form a smaller problem,

which is called a sub-LP model. Note that there are 2" possible sub-LP models due to

n n
the possibilities of Zti’jxj <0 or Zti’jxj >0 for each artificial constraint. In this thesis,
j=1 j=1

we only select one sub-LP model of the form:



30

max z=Cg X

st.  Ax<b 3.7)
Tx<0
x>0
Figure 3.6 illustrates an example of the feasible region of the LP model and its

sub-LP model.

Figure 3.6: Feasible region of a) LP model and b) Sub-LP model with n=3.

Objective jump model
To apply the simplex tableau to the sub-LP model (3.7), it need to be converted

into a standard form. Assuming a jump point exists, let

noa. Y o1
ZJ > 0}. Rearrange the indices i =1,2,3,...,m of the
it G

150
g=ar IIIIII
g z

JlJ

constraints in AX <b sothatm =q. The problem (3.7) is turned into the objective jump

model below.

n
max z :chxj
j=1

Za”xj+s = for i=12,..,.m-1

Zamjxj+s =b, (3.8)
j=1

DX —(i-m)C_ X pa+5=0 for i=m+im+2,.,m+n-1

=

X, >0 for j=1,2,.,nandi=12,...m+n-1

jroi
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Basis of objective jump model

The main idea of SOJU is to start the simplex method from the jump point.
Hence we want to determine the initial basis that represent the point. This can be done
using the objective jump model (3.8) as follows. First, we choose a set of nonbasic
variables as {S,,,S,,.1sSm.2:-- - Sminot @Nd the remainders are the set of basic variables:
X, X5, X5+, X, 81, S5+ - Se } - THen, the current of basic (subscriptB) and nonbasic

(subscript N ) are separated as follows:

T T
max z:Oan+[c Om—l]XB

0 Q. I b
st ‘ml)xn}x { e }x :{ 1} (3.9)
{ In N Jnxn Onx(m—l) ° bz
Xy Xg 20,
a; ap Ao &, b1
a a e a X a \ b
where Q=| * % le—55 b =| 7,
Anar Gnaz vt Auana Gpag (m-1)xn 01
I ml am2 am3 = amn | _bm |
¢, ¢, O a— () 0
J — C]_ CZ _203 000 O [ b2 = O
oo o o -De), [0

The notation of nonbasic and basic are shown in Table 3.1.

Table 3.1: Nonbasic and basic notations.

Nonbasic Basic

Variable: X Xy Xg

Cost coefficient: c” cy =07 ce=[c" 0,,

0 m-=1)xn Q m-1)xn Im_
Coefficient matrix: A N:{ (m=1) } B:{ 3 b 1 }
nx(m-1)

nxn
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Table 3.2 represents the tableau of the current basis from the model (3.8). This tableau
will be used in SOJU.

Table 3.2: Current basis of the objective jump tableau.

S Sm 7 Swena X Xy X3 o X, S Sua RHS
Z 0 0 - O cc C C - C 0 -~ 0 0
0 0 - 0 &y 8, a3 - &, -0 b1
0 0 0 am—l,l am—l,z A3 An_1n 0 -1 bm—l
1 0 0 o 0 ml amz am3 amn O o O bm
010 -0 c —-¢, O 0 0o -0 0
0010 |[¢ ¢ -2 0 0 - 0 :
. . . . : .. . 0
000 1 |¢ ¢ ¢ - —(n=Ic, O 0 0

Inverse of the basic matrix in SOJU

The inverse of B can be determined by using Gauss-Jordan eliminations as:

[B | |] _ Q(m—l)xn Im—l Im—l O(m—l)xn
L ‘] nxn Onx(m—l) 0n><(m—1) I n i
- J nxn 0nx(m—l) 0nx(m—l) I n
_Q(m—l)xn I m-1 I m-1 O(m—l)xn |
i -1
- I n 0n><(m—1) Onx(m—l) ‘J
_Q I m-1 I m-1 O(m—l)xn
B -1
- I” Onx(m—l) Onx(m—l) J - [I I B—l]
0 I | J* '
|~ (m-1)xn m-1 m-1 _Q
- -1 Onx(m—l) ‘Jil
Therefore, the inverse of B~ = -
Im—l _Q‘J

Objective jump tableau

Objective jump tableau can be created by calculating the following simplex
tableau,

Xy Xg RHS
z | ctB'N-c} o, cIB b
XB BilN | n1 B*lb




After calculation, the objective jump tableau is

Xy, Xg RHS
z c'J? o, ¢’
-1 R
XB { J _1j| | J 1b2
_QJ " b1 - Q‘] _1b2

Recall that the jump point for (3.4) or (3.8) is given by x’ where
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J R :ﬁ, i=1,2,3,...,n. Accordingly,
C Z”: A&y G
=gy
(G @ N o @ |[ba] [@abn ] [X]
U Da 0% (s (3 ) by | | %
I, = (0 N O - (e || 0 [=[ @by |[=| X =X,
_(Jil)nl (‘Jil)nl (‘Jil)n:% (Jil)nn_ a _(Jil)nlbm_ _Xfi i
1 1
Therefore, (37),, =x' -—
Hence, this tableau can be expressed in details as follows:
Table 3.3: Objective jump tableau.
Sm Sm+1 ’ Sm+n—l X X Xy Sy Sy RHS
l n n n n
Z b—ch ; ur€s I e e 2a A s 00--00---0 DX
m =1 j=1 j=1 j=1
J
X, bﬁ (O (O 10--00---0 X}
XJ
X, b_2 (Jil)zz (‘Jil)zn 01.-00---0 XZJ
X.J
Xn b_n (Jil)nz (Jil)nn O 0 o 1 0 o 0 Xi
1<, : 4 \ 1 N
Sy _b_;aljxj _;%k(J )ia "'_kZ:am(J Do 00--01---0 bl_;aijxf
1 n n . n . n
S _Ejz:l:am—l,jxf _éam—l,k(‘] )kl _]Zﬂ:ama,k(‘J )kn 00---00---1 m-l_JZ:;am—l,j i




34

3.4 Case Il (Some ¢, =0 but not all zeroes)

3.4.1 The 0-1 gradient

The simple idea of Case Il uses the objective gradient consisting of 0 and 1,

denoted byc,, ., =[c; |eR" wherec; {0,1} .

{Cje

We rearrange indices j so that the gradient of objective function contains the

1
components one 1€R” and zero 0eR' such thatc ={O}GR“ where n= p+I

{eefo.n}

and p,|1 >1.

Orthogonal objective vectors

A set of orthogonal objective vectors of the vector c{ is denoted by

Cje{O,l}}

V:{vl,vz,vs,...v vV ,V_ ..,V

n
Vo1 Voo Vi, Vo) Wherev; e R".

p+21°°°1 ¥V p+l-1

1) Forl1<i< p-1,the j™ component of the orthogonal objective vector Vv, is given

by
1 1< j<i+l
(vi)j: —i pj=i+l
0 C>i+1

2) For i=p,the j" component of the orthogonal objective vector vV, is given by
0 ;1<j<
),y
T J>p
3) For p+1<i<p+I-1,letr=i—p.The j" component of the orthogonal objective

vector v, is given by

0 1< j<porp+r+l< j<p+r+l
(vi)jz 1 p<j<p+r+l
-r Vj=p+r+l

Properties

1) These vectors together with ¢, _y 15, = [(ﬂ are pairwise orthogonal; i.e.,



p
eForl<i<p-1, cf Vi =1Tv;+0"v; =>1(v;), +0

{cjefony} =

=i-i+0=0

._.
N

-
I
iy
s

p
> jJrozzl-ozo
j=1 j=1

ecC WV :1Tvp+0Tvp:i1(vp)

{cjefroy " p

p
Forp+1<i<p+l-1, c{TC Vi =1"v;+0"v; =>1.0+0=0

* jelLo)) =i
p p+l
e Fori<i<p-1, viv, =Z(vi)j(vp)j + > (Vi),-(Vp)j
j=1 j=p+1
p p+l
=>(v),-0+ >, 0:1=0
j=1 j=p+1
e Forl<i<p-landp+1<k<p+Il-1,
p p+l
ViV, :Z;(Vi)j (Vk)j + _Zl(Vi)j (Vk)j
1= J=p+
p p+l
:Z(V‘)J 0+ Z 0(v,);=0
=t j=p+l
eForp+1<i<p+l-1
p p+l
VoV, =Z;(Vp)j (Vi)j + _Zl(vp)j (Vk),-
J= J=p+
p p+l p+l
= ZO(Vi),- + Z 1(v;), =0+ Z 1(vy),
j=1 i=p+1 i=p+1
p+k p+k+l o
- Z (Vi)j (Vi) t _ Z (Vi)j =1-1+0=0
j=p+1 j=p+i+2
1]
0
For example, the gradient of the objective functionis c=| 1 |. After
0
1

rearranging the indices of the components of the gradient of the o[)je_ctive function,



orthogonal objective vectors of ¢ =

V, =

O O O

-1

arev, =

O O R Kk k.

v,v, =0, viv, =0, vjv,=0,andv]v, =0.

LP model with 0-1 gradient of the objective function

Let c

{o;<l0.

the following LP model is considered.

maxz=[1" 0 |y
st. Ay<b

y>0

where y e R" is a vector of variables.

Artificial edge and orthogonal objective matrix

The orthogonal objective matrix is

- o7 ¢
Vi

Va

<
wH

_Vp+l—1_

1

[ =

I = I = I = N o S S

0

-1 0 O
1 -2 0
1 1 -3
1 1 1
0O 0 O
0O 0 O
0O 0 O
0O 0 O
0O 0 O

0
0
0

—(p-1)
0

0
0
0

0

o

S = =D

1

, and

R B, O O O

T T T T T T
such that c'v, =0, ¢'v,=0,c'v,=0,c'v, =0, v,;v,=0, v,v, =0,

(@)

O O O Rk O

—(1-1) |
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1
=[c,]eR"wherec; €{0,1}. After rearranging Coon) = [ } eR",

(3.10)

The system of equations representing the artificial edge is written in a matrix

formas T,y =0.
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Claim1.2. The system of equations T)y =0 has the general solution of the form

y1:y2 :y3"':ypandyp+1:yp+2 :yp+3:"‘:yp+l =0.
Proof.

The system of equations T,y =0 can be rewritten as:

VA = Y, (1)

Yy, Y, = 2y, ~(2)

Yy, +Y, +Y, = 3y, - (3)

Yo +Y, AYs Aty = (p-1)y, (p-1)
yp+1+yp+2+yp+3+"'+yp+l—1+yp+| = 0 (p)
yp+1 = yp+2 (p+1)
yp+l+yp+2 = 2yp+3 (p+2)
yp+1+yp+2+yp+3 =, 3yp+4 (p+3)
Yo TYpi2 tYpia+ Y puq & (I_l)yp+| - (p+l-1)

It follows from Claim 1.1 that the first p—1 equations give the solution
Yi=Y,=Y;...=Y,. Similarly, the last |-1 equations give the solutions
Yoru =Yoo = Yoz == Ypu -

However, the equation( p) forces Your = Ypi2 = Ypiz =---= Ypu =0. Therefore,
the general solution is given by Y, =Y, =Y;...=Y, and

yp+l:yp+2:yp+3:"‘:yp+l:O' u

Definition 2.2 (Jump point)
For the LP model (3.9), a point y = [yj] e R" is the jump point if

Condition (1): The point y satisfies the conditiony, =Y, =Y;...=Yy, =u> 0 for

some scalar zand Y,.; =Y., =Yp3=---=Ypu =0.

n
Condition (2): The pointy satisfies at least one equality constraint Zaqj Yy, +s, =b,
j=1

such that the slack variable s, = 0 and bq >0,
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Condition (3): The point y is feasible for the LP model (3.9).

Preposition 2.3

For the LP model (3.9), let Zaijyj <, be constraints such thatb, >0 and not

=L

p
all b, =0 . If there exists some i such thatZaij >0and b >0, the jump point is
j=1

u ;1<j<p
0 ;p+l<j<p+l

y' = [yf ] e R" where the component yf :{ and

b.
. —1 50
=Mmin{ &
H i ;aij

p
Zaij >0+ . Otherwise, the jump point does not exist.
j=1

Proof.
n
After adding slacks variable s, > 0 to constraints Zaij y; <b; such thatb, >0,
j=1

n

the constraints become Zaij y; +s =b.
j=1

Case 1

p
Suppose that there exists some r such that>"a. >0and b, >0.
j=1

b

r p

Let g=argmin Zp:a'>o Zarj>0 and y:[yj]eR”suchthat
r T P
=t =

b, )
=4 ;1<)<p
Y =1 2%
0 s p+1l<j<p+l

Clearly, the point y satisfies condition (1) in Definition 2.2.

Moreover, the point y satisfies condition (2) since substituting

1<) < . . . .
y; = H J _p into the constraint Zaqjyj +s, =b, will result ins, =0.
0;p+1<j<p+l =i

The point y also satisfies all constraints which can be explained as follows.
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p
For the constraint i such that» a; >0,

j=1

Y

j=p+1

p
For the constraint i such that» a; <0,
j=1
n p+ p
day, = (Zau jy+( > 4, ] = (zauj'“ <0<h . Therefore, the point y is
=1 ] j=1

j=p+1

feasible and satisfies condition (3) in Definition 2.2.

Hence, the point y is the jump point for the LP model (3.9).

Case 2
p
Suppose Zaij <0or b =0 for alli=1,2,3,...,m. Assume a jump point y

j=1
exists. Hence from condition (1), Y;=Y,=Y;...=Y, = u for some >0 and

Your = Ypi2 = Ypis =---=Y,, =0. Since y is feasible, for any constraint i, we have

p+l

D a,y; <b . Because Zn:aijyj (Zauj,wr( > a, ] =(Zp:aijj,uso andb >0, this
j=1 j=1 j=1

=p+l

implies Zaijyj =Db, =0. Condition (2) from definition 2.2 cannot be satisfied, which is
j=1

a contradiction. So, a jump point does not exist. ]
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3.4.2 General case Il

In this case, the gradient of the objective function is denoted by

C, ., =| ¢; ] €R" where ¢; 0. We consider the LP model after separating g 10

{e;20)

the vector of ¢, ., =[c;]€R”,c; >0 and the zero vector O e R'wheren = p+1 and

Cj 20}

p,l>1:
max [C{ch>0} OT]X
st. Ax<b (3.11)

where the vector of variablesx e R".

Transformation of orthogonal objective matrix
In the LP model (3.9), the artificial edge for the jump can be constructed through

the system of equations T,y =0 where T, is defined in (3.10). We want to construct
the similar system for the model (3.11). Notice that we can transform the model (3.11)

X ;1<j<p

X; sp+l<j<p+l’

into (3.9) by setting the variable y; = {

p+l

Thus, zpll(c X;)+ > 0x —Zlyj + Z Oy, =[1" 0" ]y.
j=1

j=p+1 j=p+1
— ;1<j<p -
Let &' =+ C; . Hence, the constraint i can be transformed as

a; ;p+l<j<p+l

Zn:aiixj :ia” CiX; + %au X; Zn:aﬁyj <D
i1 ERY i=p+1 i1
Therefore, the model (3.11) is equivalent to
ax [17 0]y
st. Ay<b (3.12)
y>0

where the matrix A'=[a; [e R™".
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Suppose the orthogonal objective matrix is T, =[t; ] € RO defined in (3.10).

Consider the system of equations T,y =0. For any equation i,

n p p+l p p+l p p+l
QLY =24y + Y =2 (c5;)+ Py (%)= Z(tijcj ), + 2.5% =0.
j=l = j=p+l j=1 j=p+l j=l j=p+l

: , tic, if 1<j<p
Therefore, if we set T =[t;] wheret] = tif pel<j<pel

1

, the system of

equations T,y =0 is equivalentto Tx=0; i.e.,

_ Ix7 o
¢ ¢, 0 0 0 00 O© -0 . 0
¢ ¢ -2 O 0 00 0 O 0 XZ 0
¢ ¢ ¢ -3c 0 00 0 0 0 :
. . . . X4 0
‘ : : : : : 3.13
c, C G c, —(p-Dc, 0 O 0 0 ( )
X,u | |0
00 0 O 0 IR 1 1 M
00 0 0 0 1 “INO= 0 0 P
Xp+1 0
00 0 O 0 LI 0 0
Xp+2 0
00 0 © 0 10ty -3 0
: : : AN . : Xpia 0
o0 0 0 - 0 11 1 1 - —(-] '
B __Xp+l_ _0_

Note that the row vectors in the matrix T may no longer be pairwise orthogonal.

Jump point
According to Preposition 2.3, the jump point of the LP model (3.12) is

y’ =[yj1eR" where

b b
mindz >0 Ya >0l=y if 1<j<
0 if p+1<j<p+l,

p
provided that there are some r such thatZa;j >0 and b, >0. This jump point can
j=1

be translated to the jump point of the LP model (3.11) as x’ :[xf]e R" where
— if 1<j<p

0 if p+1<j<p+l.
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Sub-LP model

To incorporate the artificial edge Tx=0 into the model (3.11) where
T=[t; |eR™" is defined in (3.13), we need to transform this intersection of

hyperplanes into the intersection of half-spaces Zt” ;<0 or Zt”xj>0 The
j=1

intersection of these half-spaces together with the feasible region in the model (3.11)
form the sub-LP model. Note that there are 2" possible sub-LP models due to the

possibilities of Zt” ;<0 or Zt”xJ >0 for each artificial constraint. In this thesis, we

only select one sub-LP model of the form:

max z= c{c Loy X
st  Ax<b (3.14)
Tx<0
x>0

Objective jump model
To apply the simplex tableau to the sub-LP model (3.14), we need to convert

this problem into a standard form. Assuming a jump point exists, let

P a. .
ZJ>0}. Rearrange the indices i=1,2,3,..,m of the
ERY

. —bi >0
=argmin< =,
q gi I 2o

= G

constraint in AX<b so thatm=q. The problem (3.14) is turned into the objective

jump model below.
p+l

max z:zp:cjxj + z C;X,

j=p+1

Za”xj+s =h for i=12,...m-1

Zam,X,JrS =h, (3.15)
j=1

DX —(i-m)C X p,+5=0 for i=m+im+2..m+p-1

j=1

[JHI

DX+

i=pu1

Z X;—(i—m)X_p, +5 =0 fori=m+p+Lm+p+2,..m+p+l-1

X;,8 20 for j=1,2,..,nand i=12,...,m+n-1
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Basis of the objective jump model

The main idea of SOJU is to start the simplex method from the jump point.
Hence we want to determine the initial basis that represent the point. This can be done
using the objective jump model (3.15) as follows. First, we choose a set of nonbasic

variables as {s_,s_.,,s

m+1? ¥m+27°

s.....}and the remainders are the set of basic variables:

X %50 X504 X141 S50+ .4 Sy} Then, the current of basic (subscriptB ) and nonbasic

(subscript N ) are separated as follows:

T T
max z:Oan+[c Omfl]xB

0 Q | b
s.t. ‘m‘l)x"}x J{ ey, ™t }x ={ 1} (3.16)
|: In N ‘Jnxn Onx(m—l) ° b2
Xy Xg 20,
a; &, a1,n—1 a, bl
a a .. a, . n b
where Q _ : 21 22. . 2 1 a2: ’ bl _ :2 ’
na1 Qnap o Anana Gpag (m—1)xn bm—l
_aml a‘m2 a‘m3 amp am,p+1 am,p+2 am,p+3 am,p+| ] _bm_
¢ ¢, 0 - 0 0 0 0 -« 0 0
c ¢, -—2¢ 0 0 0 0o - 0 0
3o c, C G —-(p-1) O 0 b - 0
0 0 0 0 1 1 1 1 %o
0 0 0 0 1 -1 0 0 0
0 0 0 0 1 1 -2 0 0
0 0 0 - 0 1 1 1 - (-1 0 |
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Table 3.4 represents the tableau of the current basis from the model (3.16). This
tableau will be used in SOJU.

Table 3.4: Current basis of the objective jump tableau.

S S S SH S § pi2 SH § X X, X3 Xp X, p+2 Xp\3 X S1 Sm—l RHS
7 0000000 0lc ¢ ¢ ¢, ¢ o Cpa v G, 0 -0 0
0000000 0 | ay a & oA, ap Ay, A, a4, 1 0 | b
000 0000 -0 Anan Ay Ay ™ 1p m-1,p+l aml,p\Z a, 1p3 7 a, 1,p+l 0 -1 bm,1
1000000 -0 QA A Ay ot @mpiz Bmpis 7 @mpu 0 ... 0 b,
010 0000 -0 ¢ -, O 0 0 0 g ..o o
6001 00000 c ¢ -2 0 0 0 0 0 o ... 0 0
0001000 -0 c C G —-(p-1) O 0 0 0 o0 ... 0 0
000 0100 -0 0 o0 0 0 1 1 1 0 ...0 0
0000010 -0 0 0 0 0 1 -1 0 0 o0 ... 0 0
000 0001:-0 Ozl 0 0 1 1 -2 0 0 -0 0
000 0000 - 1 o 0 o0 0 11 1 o« —(-Do0 0 | o0

Objective jump tableau

Objective jump tableau can be created by calculating the following simplex

tableau,

X Xg RHS
2 | GBN-cu | g, cIB b
XB BilN I Y[} B*lb
0 J*
where the inverse of B™ =| "™ B
Im—l _QJ
After calculation, the objective jump tableau is
X Xg RHS
Tq-1 B
‘ ¢ 07,4 '3,
J* .
Xg —QJ'l Im_l J bz-l
bl - Q‘] b2
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Note that J°*b, =[ (37),b, | =[x’ =%’ .Therefore, (37, = x’ bi where

Hence, this tableau can be expressed in more details as follows:

Table 3.5: Objective jump tableau.

c
0 ifi=p+Lp+2,p+3,..,p+l

Sm Sm+l Sm+p+l—l Xy X Xpag KXo S0 S RHS
Lsex 3@t Ve (3Y). 00 00 0.0 Ve X
z b_zcixi ch(J )i ZCJ @M, ZCJXJ
m j=1 j=1 j=1 j=1
ﬁ Jt Jt 1.---0 0---0 O0-.---0 J
X, b (I ( )1p X]
XJ
_ > J
X, b_p (J 1)p2 @) 1)pp 0---1 0---0 0---0 x)
m
Xp+1 0 (‘Jil)p+1,2 (‘Jil)erl,p 0--0 1---0 0---0 0
Xo 0 Oz O Doy 0.0 0---1 0---0 0
1 4 J < -1 < -1 P J
S _b_zauxj _Za’lk(‘] R, _zalk(‘] ) 0--00--0 1--0 bl_bmzaljxj
m j=1 k=1 k=1 =
Zp: 3
13 " ) n ) b,,-b Ya , .x
Sis —b—Zam_ijf _zamfl,k(‘] N _Zamil‘k(\] y, 0.0 00 0---1 1 117
m j=1 j=1 j=1

3.5 Simplex method with objective jump (SOJU)

The simplex method with objective jump were divided into two stages. The first

stage of SOJU would find an initial basic feasible solution using the objective jump

procedure. The second stage of SOJU would determine the optimal solution starting

from the initial basic feasible solution from the first stage using the traditional simplex

method.
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3.5.1 Algorithm

1% stage

6. Generate the objective jump tableau as shown in Table 3.3 for LP model (3.4) or
Table 3.5 for LP model (3.11).

7. Choose a set of entering variabless,..,,S..,,S S respectively.

m+1? “m+21 “m+3?° ' m+n-1?

8. Choose a set of leaving variables corresponding to the entering variables by the
minimum ratio test.
9. Operate pivoting.

10. Eliminate the set of rows and columns of these variables s_.,S S

m+1? “m+27° ' “m+n-1

respectively.

2" stage
After the 1% stage, we can apply Dantzig’s pivot rule of the standard simplex

method to find the optimal solution of a linear programming problem.

3.6 Examples
Klee and Minty example [9] is given by
max > 10™x;
j=1
i-1 N ]
st 2).107'x,+x <100"" for i=1,23,..,n

=t

X; >0.

Example 1. Consider the Klee and Minty problem with 3 variables.

max z =100x, +10x, + X,

st X <1
20x, + X, <100
200x, + 20x, + X, <10000

X X,y X3 20
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1% stage

S.a.

1) Calculate b, and Z — . Choose the i"" constraint which has a positive smallest
i1 C.
=1 Y

rati03L and find the jump point.

a,
b,
ith 2 aij I
S0 b i a,
constraint JZ:‘ c, ' e
1 0.01 1 100
) 03 | 100 | 33333
3 5 |10000| 2000

All ratios are positive and the first constraint has a smallest ratio. So, the jump point is
100 100 100

D%, %) =| —,=—,— |=(1 10, 100).
04, %) [100 0 1) ( )

2) Add artificial constraints and generate the sub-LP problem in the standard form.

max z=100x, +10x, + X,
s.t.  20x +x,+s, =100
200x, +20x, + X, +s, =10000
X +s, =1
100x, —10x, +s, =0
100x, +10x, —2X%,+s. =0
X1 Xy, X5,8,,S,,55, 8,8 =0

3) Create the objective jump tableau by calculating J*,-QJ*, ¢'J3*, ¢'J"b, and
b,—QJ™,.
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1 0 0 1 0 0
Since J={100 -10 0|, J*=[10 -01 O |. Moreover,
100 10 -2 100 -0.5 -05
100 1 1
20 1 0 | 100
Q= ,c=[10 |,x" =10 |, b, = ,andb,={0].
200 20 1 10000
100 0
1 0 0
4 -20 -1 O -30 01 O
Sothat —QJ™” = 10 -01 0 |= ,
-200 -20 -1 -500 25 05
100 -0.5 -0.5
1 0 0
¢'J*=[100 10 1)/ 10 -01 0 |[=[300 -15 -05],
100 -0.5 -05
1
¢'J'b,=[300 -1.5 -0.5]|0|=300, and
0

1
. 100 -30 01 O 70
b,-QJ™b, = + 0|= :
10000| |-500 2.5 0.5 0 9500

The objective jump tableau is shown as follows.

S3 Sy S5 X X% X 8 S, RHS
Z | 300 -15 -05{0 O O O O 300
X, 1 0 0|1 0 0 0 O 1
X,/ 10 -01 O ]O0 1 O O O] 10
X; | 100 -05 -05{0 O 1 O O | 100
s -3 01 0|0 O O 1 0] 70
S,|-500 25 050 O O O 1 |9500

4) Enter nonbasic variabless,,s, to basis as well as leave corresponding variables

which are determined by the minimum ratio test, respectively. Finally, remove the
artificial constraints from the tableau. The simplex method will starting with the

following tableau.




Z |10 -10 1|0 O 0 ]0 ]| 0| 9100
X | 1 0O 0|1 0 oO0f|0|O 1
X,1-20 1 0,0 1 0|00 80
X; 1200 20 1|0 O 1|00 | 8200
s, 1-300 10 0| 0 O O |1 |0 | 700
Ss | 500 50 2|0 O 0|0/ 115500
2" stage
1) Apply Dantzig’s rule of the simplex method
S3 S S, X X X RHS
Z 100 -10 1|0 O 0 |9100
X1 0 0|1 0 O 1
X, 120 1 0|0 1 0| 80
X; 1200 20 1 | 0O O 1 |8200

Iteration 1: Exchange the nonbasic variable s, with the basic variable x, .

S X S, X S X RHS
Z |-100 10 -1 O O 0 |9900
X | 1 0O 0 1 0 O 1
S$1-20 1 0 0O 1 0] 80
X3 1-200 20 1 0 O 1 |9800

Iterations 2: Exchange the nonbasic variable s, with the basic variable x; .

Xl X2 s2 53 Sl X3 R H S
Z (100 10 1 O O O |10000
;11 0 0 1 0 O 1
s12 1 0 0 1 0| 100
X; 1200 20 1 0 O 1 |10000

The optimal solution (x,, x,, %;) is(1, 100, 10000) and the optimal value is
10,000.This SOJU take 2 iterations.



Example 2. Consider the LP problem with redundant constraints [8].

max zZ=3X+X,+X+X,

st X
X
X
X

X
2%,

1% stage

3 a
1) Calculate b, and Z — . Choose the i"" constraint which has a positive smallest

i-1 C.
=1

+
+

- 2X,

X, +
X

+

ratiosb—‘a and find the jump point.

ij

=1 Cj

X, <
+ X, <

X; + X, <
<

X X, <
2%, + 2%, <
3%, + 6x, <
Xy Xyy Xg0 Xy 2

A NN DD DD DD

o N
~

i"constraint | 1 2 3 5 6 7
bi 2 2 2 2 4 24
D, P VENIBE 3 13 |1
j=1
bi
iai- 0.67 | 0.67 | 0.67 0.671133|1.6

This objective jump is obtained by SOJU as follows:

50
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S, S Sy So X, X, X5 X, S, S5 S, S S¢S, RHS
Z | 133 0 0 033, 0 0 O O O 0O 0O 0 0 0 ]|267
X | 033 05 017 0 i1 0 o o0 o o o 0 0 O0]o0e67
X, | 033 -05 0.17 0 0 1 0o 0 o0 O O O 0 O0]O067
X3 1033 0 -0.33 0 o o 1 o0 O O O O 0 oO0|O067
X, | 0.33 0 0 033 0 0 O 1 0 0 0O O 0 0 ]O067
S, -1 0 033 03830 0 O O 1 0O O O o0 O 0
S -1 05 017 030 O O O O 1 0 0 o0 O 0
S |-033 -05 -0.17 0 o o o o0 o o 1 0o 0 O0|133
S5 -1 05 017 0330 O O O O O O 1 o0 O 0
S -1 15 08 067 0 O O O O O O O 1 O 2
S -5 1 0 2 o 0 o0 o0 o o0 o o0 o0 1 14

Exchange the nonbasic variable s, with the basic variable s; . Eliminate rows and

columns of s;.

S, S S, Se X X X X S S S, S5 S RHS
Z |133 0 0 0330 0 0O O O O O 0 O0|267
X | 133 -1 0 0331 o0 O O O O O o0 O |O067
X, 1-067 1 033 033| 0 1 0 0 O O O 0 O |Oo067
X; 1 033 0 -0.33 0 0 O 1 0 0 0O 0 0 0 |o067
X, 1033 0 0 033, 0 0 0 1 0 O O O 0 ]o067
S, -1 0 033 03|0 0 0 O 1 0 0 0 O 0
S5 -2 1 033 0670 O O O O 1 0 0 O 0
S, [-133 1 0 0330 0 O O O O 1 0 0133
Sg -4 3 138 1670 O O O O O O 1 O 2
S -3 -2 038 138, 0 0 O O O O O o0 1 14
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3) Exchange the nonbasic variable s, with the basic variables, . Eliminate rows and

columns of s, .

S S S5 Sy X X X X, S, S, S S5 S, RHS
Z |-133 0 O 3383|0 0 O O O O O 0 O0]267
X133 0 -1 -03}(1 0 0 O O O O O O ]oO0.67
X, 1133 0 -1 -033| 0 1 0o 0 o0 O O O 0 |Oo067
X; |-167 0 2 0670 O 1 0 O O O O O |O067
X,1033 0 0 033|]0 0 O 1 0 0 0 0 0 |O067
S, -3 0 2 1 o o o o0 1 0 0 o0 O 0
5,113 0 1 03|0 0 O O O 1 0o 0 0133
Sg 0 1 -1 0 o o o o0 o o 1 o0 O 0
S 4 0 -5 -1 o 0 o0 o o o o 1 o0 2
S; -5 0 O 2 o 0 0 o0 o o0 o0 o0 1 14

4) Exchange the nonbasic

columns of s, .

variable s, with the basic variables,. Eliminate rows and

S S5 S3 S, X X X X S5 S5 S RHS
Z |033 0 1 0|0 O O O O 0 0267
X (033 0 033 03{/1 0O O O O O O |O067
X, 1033 0 -033 03| 0 1 0 0 0O O O |o067
X103 0 067 -1(0 0 1 0 O O O |O067
X, |-067 0O 067 03|0 O O 1 0O O 0 o067
5,103 0O 03 0|0 0 O O 1 o0 0133
Se 1 -3 1 o|jo0o O O O 0 1 o 2
S 1 0 -4 210 0 O O O 0 1 14

After the first stage of SOJU, this tableau is the optimal tableau for the

simplex method. Finally, the optimal solution is(x,, X,, X;, X, ) :(

optimal value is 2.67.

2222

3333

j and the



53

Example 3. Consider the following problem.

max Z=6X, +5x,
st —4AX 42X, +X, <4
2%, + X, <20
X —X,—X <10
X, X,y X320

1% stage

1) The gradient of the objective function is(c,,c,,c;) =(6,0,5). Therefore, the value

p=2and I=1. Since the 2" constraint has %+%:E+E:E>O and a
c,C ¢ 5 5

positive minimum ratio is equal toZO(%j:E. So, the jump point is

175 175\ (25 _ 75
Y X, %)= =x—, 0, =x— |=| —, 0, — |.
0% %) (GXZ 5X2j [4 10)

2) Add artificial constraints and generate the sub-LP problem in the standard form as
follow:

max z=6X, +5X,

St. —4X +2X,+ %X, +5,=4
X, — X, =% +5,=10
2X%, +X,4+8,=20
6x, -5%X,+5s,=0

X, +s. =0
Xy X5y X315, S5, 5,8,,S5 =0

3) Create the objective jump tableau by calculatingJ*,—QJ*, ¢'J*,c"J"b,, and
b,—QJ"b,.

> 1
201 16 16 4 2 1
Since, J=|6 0 -5|thenJ*=| 0 0 1| Moreover, Q{l ) J,
01 0 3 1
- —= 0
L8 8
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25 ] .
6 4 4 20
c=[0|,x = b, = ,andb,=| 0 |.
10
5 75 0 |
110 ]
e ]
— — 0 7 3
4 o 1 16 16 - = =22
1 - - 8 8
Sothat—QJ* = 0 0 1|= :
-1 1 1 3 1 1 3 1
- =0 16 16
L 8 8
c'J*=[6 0 5|0 0 1 :[% —% O},
= & 5
. 8 8 &\
20
cTJle:{E 5 O} 0 [=75,
4
0
. T3 o0 . 3B |48
and b,—QJb,=| |+ 8 8 ol=| “ |4 2|2 2
o |1 3 |, o)|s] s
16 16 4 4
The objective jump tableau is shown as follows.
$2 ) Ss X X X3 S S, RHS
z 154 -1/4 0|0 O O O O] 75
X |5/16 1/16 0|1 O O O 0 |254
X1 0 0 110 1 0 0 O 0
X138 -1/8 0|0 0 1 0 0152
S (78 38 210 0O 0 1 O 0
s, |1/16 -3/16 1|0 O O 0 1 0
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Enter nonbasic variabless,,s, to basis as well as leave corresponding variables

which are determined by minimum ratio test, respectively. Finally, remove the

artificial constraints from the tableau.

S35 8 S5 X X X S 5 RHS
1133|0430 0 0 23 0 75
/6 |0 | 1/3 |1 0 0 -1/6 0| 25/4
0 0 1 0O 1 0 0 O 0
23 10| -23|0 0 1 13 0 0
73 11|-16/3|0 0 0 83 0 0
1/2 | 0 0 0O 0 0 12 1 0
S3 S X% X X S5 S RHS
z |13/3|0 (0 43 0 2/3 0 75
|16 0|1 -1/3 0 -1/6 0 | 25/4
S5 0 10 1 0 0 O 0
123100 -2/3 1 13 0] 15/2
S 112|100 O 0 12 1 0

The simplex method will starting with the following tableau.

S0 %% %, 5, 5 RHS
z |13)3 0 43 0 2/3 0| 75
x| 1/6 1 -1/3 0 -1/6 0| 25/4
|23 0 -23 1 13 O 0
|12 0 0 0 12 1 | 1572
Finally, the optimal solution is(x,,X,,X; ) = (?O% and the optimal value is

75.
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CHAPTER 4
EXPERIMENTS AND RESULTS

In this chapter, a number of test problems were randomly generated to test the
performance of SOJU comparing with that of the traditional simplex method with
Dantzig’s rule, which we will refer to as SIMP in this chapter. All tests were performed
on Intel(R) Core(TM) i7-5500U CPU @2.40GHz and 8.00GB RAM with Windows 10
Pro laptop, using Python 3.5.2 by Jupyter Notebook [3]. Time is measured in seconds.

All problems are generated in the form of LP model (3.4) with the following
parameters: (1) the number of variables, (2) the number of constraints, (3) the range of
values for the objective coefficients, (4) the range for constraint coefficients, and (5)
the initial point that will be used to calculate a valid value of RHS. These parameters
are explained as follows:

e The parametersm and n represent the number of constraints and variables,
respectively, wheren>m.

e The range of a random objective coefficients for each positive entry is given by

(0,10, i.e. ¢, €(0,10] for j=1,2,3,...,n.

e The range of a random entry of the coefficient matrix is given by [-10, 10], i.e.

a; €[-10,10] fori=1,2,3,...,m, j=12,3,...,n,.

e A values for RHS entry is calculated from Ax where the value of the variable

a random variable x,, 1=12,3,...,m is randomly selected from [0, 10]. If

(AX), >0 (AX), >0, seth, =(Ax),. If (Ax), <0, then letb, =—(Ax), . This

computing guarantees nonnegative RHS entries.

For each row, a sum of the quotient of coefficient entry divided by the cost
coefficient is also computed to make sure that at least one constraint i must satisfy the
condition Zn:% >0. If they are all negative, the coefficients in the last constraint will

=1 Y

be multiplied by —1.



57

4.1 Test problems

Test |
Test problems were generated to create a set of linear programming problems
with three different sizes: small sizes for problems with 10, 20, 30, 40 and 50

constraints; medium sizes for problems with 100, 200, 300 and 400 constraints; and
large sizes for the problems with 500 and 1000 constraints. For each problem size, the
number of variables was varied as 2, 3, 4, 5, 10, 50, 100, 200, 300, 400, 500, 1000
variables as long as it does not exceed the number of constraints. Moreover, 10 problem
instances were generated for each size configuration.

Test 11

This test was carried out due to the speculation that SOJU would perform well
when the number of variables is much smaller than the number of constraints. Test
problems were generated to create a set of linear programming problems with small
variables: 2, 3, 4, 5, 10 and 15 variables. For each variables, the large number of

constraints was varied as 1000, 2000, 3000, ..., 15000 constraints. Moreover, 5

problem instances were generated for each size configuration.

4.2 Results and analysis

The computational experiments of this simplex method with objective jump
were divided into two stages represented by SOJU1 and SOJU2. The first stage, SOJU1,
would find an initial basic feasible solution using the objective jump procedure. The
second stage, SOJU2, would determine the optimal solution starting from the initial

basic feasible solution from the first stage using traditional simplex method.

Total stages, denoted by TSOJU, was compared to SIMP algorithm in which
the optimal solution were found by the simplex method with the Dantzig’s pivoting
rule. For comparison, the experiments reported average number of iterations and
running time of SOJU1, SOJU2 and TSOJU versus SIMP.

Tables 4.1-4.4 provide each case of the average number of iterations and
running times in Test I. To compare the algorithm, we present plots of average number
of iterations in Figures 4.1-4.15 and average running time reported in Figures 4.16-
4.30.
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Table 4.1: The average number of iterations and average running time by SIMP

and SOJU with small problem sizes.

Prgik;I:m Average no. of iterations Average running time (sec.)
SOJU | SOJU SOJU SOJU
Total Total %
m | n 1st 2nd SOIU SIMP 1t 2nd SOIU SIMP Diff.
stage stage stage stage

2 1 0.5 15 3.0 0.0006 | 0.0002 0.0008 | 0.0005 | 59.8
3 2 1.3 3.3 45 0.0004 | 0.0005 0.0009 | 0.0005 | 80.2
10 | 4 3 2.1 5.1 5.5 0.0005 | 0.0004 0.0009 | 0.0009 | 0.1
5 4 25 6.5 5.7 0.0012 | 0.0003 0.0015 | 0.0016 | -8.0
10 9 6.6 15.6 10.1 0.0023 | 0.0020 0.0043 | 0.0024 | 79.4
2 1 1.3 2.3 2.7 0.0002 | 0.0006 0.0008 | 0.0014 |-42.8
3 2 14 3.4 4.2 0.0005 | 0.0006 0.0011 | 0.0017 |-35.2
20 4 3 4.0 7.0 6.8 0.0008 | 0.0019 0.0027 | 0.0026 | 3.9
5 4 5.0 9.0 9.1 0.0010 | 0.0026 0.0036 | 0.0049 |[-26.5
10 9 9.6 18.6 124 0.0026 | 0.0060 0.0086 | 0.0070 | 23.0
20 11 20.6 39.6 26.0 0.0085 | 0.0145 0.0230 | 0.0166 | 38.7
2 1 1.0 2.0 3.2 0.0006 | 0.0009 0.0015 | 0.0025 |[-39.9
3 2 25 45 5.1 0.0010 | 0.0015 0.0025 | 0.0039 |-35.8
4 3 3.6 6.6 6.7 0.0012 | 0.0029 0.0041 | 0.0051 |-19.5
30 | 5 4 5.8 9.8 7.9 0.0017 | 0.0061 0.0078 | 0.0062 | 25.9
10 9 13.5 22.5 14.7 0.0044 | 0.0166 0.0210 | 0.0137 | 53.4
20 19 28.5 47.6 29.2 0.0131 | 0.0378 0.0509 | 0.0287 | 77.4
30 29 39.8 68.8 43 0.0277 | 0.0528 0.0805 | 0.0661 | 29.8
2 1 0.7 1.7 3.0 0.0007 | 0.0008 0.0015 | 0.0039 |-61.5
3 2 3.7 5.7 4.6 0.0014 | 0.0046 0.0060 | 0.0061 | -1.6
4 3 4.4 7.4 7.1 0.0019 | 0.0060 0.0079 | 0.0124 |-36.3
40 5 4 6.2 10.2 9.3 0.0026 | 0.0091 0.0117 | 0.0122 | -4.0
10 9 145 23.5 17.1 0.0065 | 0.0214 0.0279 | 0.0252 | 10.8
20 19 28.6 47.6 34.4 0.0186 | 0.0603 0.0789 | 0.0561 |40.7
30 29 46.1 75.1 57.8 0.0407 | 0.1098 0.1505 | 0.1272 | 18.3
40 39 64.0 103.0 74.0 0.0720 | 0.1538 0.2258 | 0.2017 |12.0
2 1 1.6 2.6 3.0 0.0012 | 0.0034 | 0.0046 | 0.0057 |-19.2
3 2 2.7 4.7 5.4 0.0019 | 0.0048 | 0.0067 | 0.0118 |-43.2
4 3 4.3 7.3 8.0 0.0027 | 0.0078 | 0.0105 | 0.0161 |-34.7
5 4 6.7 10.7 10.0 0.0041 | 0.0146 | 0.0187 | 0.0181 | 34
50 | 10 9 17.6 26.6 18.8 0.0092 | 0.0441 | 0.0533 | 0.0397 | 34.3
20 19 32.9 51.9 41.9 0.0255 | 0.0985 | 0.1240 | 0.1130 | 9.7
30 29 54.9 83.9 60.5 0.0543 | 0.1742 | 0.2286 | 0.1902 | 20.2
40 39 78.5 117.5 81.5 0.0920 | 0.2124 | 0.3044 | 0.2994 | 1.7
50 49 88.4 137.4 99.4 0.1362 | 0.1651 | 0.3013 | 0.3270 | -7.9
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Table 4.2: The average number of iterations and average running time by SIMP

and SOJU with medium problem sizes.

Problem

. Average no. of iterations Average running time (sec.)
size
SOJU | SOJU SOJU SOJU
Total Total %
m| n 18 2nd SIMP 1 2nd SIMP )
SOJuU SOJU Diff.
stage | stage stage stage
2 1 1.3 2.3 3.5 ]0.0043 | 0.0092 0.0135 0.0251 | -46.17
3 2 3.2 5.2 5.8 ]0.0067 | 0.0172 0.0239 0.0520 | -53.98
4 3 55 8.5 7.7 (0.0097 | 0.0311 0.0408 0.0518 | -21.19
5 4 7.4 114 12.2 {0.0127 | 0.1616 0.1744 0.3058 | -42.99
100 10 9 21.6 30.6 26.3 10.0295 | 0.1614 0.1909 0.1817 5.05

20 19 44.3 63.3 47.2 10.0771 | 0.3632 0.4403 0.3676 19.77
30 29 65.3 94.3 66.9 [0.1445| 0.5108 0.6553 0.5399 21.36
40 39 92.6 131.6 | 98,5 |0.2097 | 0.7206 0.9303 0.8269 12.49
50 49 136.6 | 185.6 | 143.7 [0.3196 | 1.0986 1.4182 1.3046 8.71
100 | 99 350.4 | 4325 | 350.2 |0.9831 | 3.4265 4.4096 4.6653 -5.48
1 1 2.0 3.2 |0.0133 | 0.0240 0.0373 0.0868 | -56.97
2 2.3 4.3 5.1 ]0.0238 | 0.0480 0.0718 0.1481 | -51.54
4 3 55 8.5 7.7 10.0376 | 0.0311 0.0687 0.0518 32.61
4
9

7.4 114 12.2 |0.0461 | 0.1616 0.2077 0.3058 | -32.07
10 24.8 33.8 30.2 |0.1026 | 0.6168 0.7194 0.7629 -5.71
200 20 19 52.7 71.7 64.7 10.2577 | 1.3103 1.5680 1.7392 -9.84
30 29 89.4 | 1184 | 100.9 [0.4181 | 2.2768 2.6949 2.6925 0.09
40 39 132.7 | 171.7 | 131.3 |0.6072 | 3.3757 3.9829 3.6750 8.38
50 49 142.0 | 191.0 | 1515 |0.8098 | 3.8147 4.6245 4.4547 3.81
100 | 99 394.2 | 493.2 | 453.1 |2.2339 | 18.2148 | 20.4487 | 24.8362 | -17.67
200 | 199 |1605.9 | 1804.9 | 1622.0 | 7.9871 | 217.8548 | 225.8419 | 254.5809 | -11.29
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Table 4.3: The average number of iterations and average running time by SIMP

and SOJU with medium problem sizes.

Prgit;I:m Average no. of iterations Average running time (sec.)
SOJU | SOJU SOJU SOJU
Total Total %
mi| n 1 2nd SOIU SIMP 1 2nd SOJU SIMP Diff.
stage | stage stage stage
2 1 1.0 2.0 31 0.0307 | 0.0518 0.0825 0.1885 | -56.24
3 2 3.1 5.1 5.6 0.0527 | 0.1437 0.1964 0.3404 | -42.29
4 3 5.6 8.6 7.6 0.0806 | 0.2592 0.3399 0.4471 | -23.99
5 4 7.2 112 | 11.1 | 0.0998 | 0.3417 0.4415 0.6459 | -31.65
10 9 22.0 | 31.0 | 31.9 | 0.2316 | 1.1453 1.3769 1.8083 | -23.86

20 19 57.0 76.0 70.7 0.5312 | 3.2218 3.7530 4,1833 -10.29
30 29 114.7 | 143.7 | 122.3 | 0.8319 6.6137 7.4455 7.4521 -0.09
40 39 141.8 | 180.8 | 144.9 | 1.2412 7.5880 8.8292 9.0594 -2.54
50 49 184.6 | 233.6 | 212.8 | 1.5623 9.9544 11.5166 14.3144 | -19.55
100 | 99 430.3 | 529.3 | 437.8 | 3.9801 | 29.6278 | 33.6079 32.2917 4.08
200 | 199 |1549.7|1748.7 |1603.0 | 12.7937 | 321.4763 | 334.2699 | 385.8594 | -13.37
300 | 299 |2715.9|3014.9|2815.5| 26.4250 | 292.6399 | 319.0649 | 364.7053 | -12.51
2 1 0.9 1.9 3.4 0.0537 | 0.0851 0.1389 0.3874 -64.16
3 2 2.7 4.7 59 0.0949 | 0.2357 0.3306 0.6568 -49.67
4 3 6.2 9.2 8.1 0.1392 | 0.5408 0.6800 0.8617 -21.09
4
9

300

5 9.1 13.1 | 121 | 0.1762 | 0.7903 0.9665 1.2657 | -23.63
10 244 | 334 | 254 | 04223 | 2.3234 2.7457 2.6512 3.57
20 19 594 | 784 | 68.3 | 0.9143 | 6.0508 6.9651 7.3323 -5.01
400| 30 29 | 107.3 | 136.3 | 111.2 | 1.4159 | 10.9527 | 12.3686 12.3417 0.22
40 39 | 1595 | 198.5 | 163.7 | 1.9726 | 15.6701 | 17.6427 18.6046 | -5.17
50 | 49 | 200.6 | 249.6 | 217.5 | 2.5378 | 20.5882 | 23.1260 25.4054 | -8.97
100 | 99 | 464.1 | 4955 | 14.7 | 6.1652 | 45.3392 | 51.5044 62.3063 | -17.34
200 | 199 |1605.9|1804.9| 1622 | 18.3344 | 217.8548 | 236.1892 | 254.5809 | -7.22
300 | 299 |3222.5|3521.5|3425.2 | 36.2887 | 553.6082 | 589.8969 | 691.8511 | -14.74
400 | 399 |4749.0|5148.0|4855.5| 63.3971 | 977.0197 | 1040.4168 | 1177.6710 | -11.65

From Tables 4.1-4.3, the second stage of SOJU almost always yields smaller
number of iterations and running time than SIMP. This implies that the new initial basis
provided by SOJU gives better performance than traditional basis used in SIMP.
Unfortunately, there is a price to pay to obtain the SOJU initial basis which occurs
during the first stage of SOJU. To be fair, the total number of iterations and running
time from both stages of SOJU should be used to compare with SIMP. From the tables,
if the total number of iterations of SOJU is less than SIMP, the running time will also
be smaller. These cases often occur when n is much smaller thanm . However, if the
total number of iterations of SOJU is larger than SIMP, SOJU may still be faster in

some cases, which often occurs when m>300 andn>40.
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Table 4.4: The average number of iterations and running time by SIMP and
SOJU with large problem sizes.

Problem
size Average no. of iterations Average running time (sec.)
SOJU| SOJU SOJU SOJU
m|n | 1% 2nd Total SIMP 18 2nd Total SIMP %
SOJuU SOJuU Diff.
stage | stage stage stage
2 1 1.3 2.3 3.3 0.0831 0.2103 0.2934 0.5749 |-49.0
3 2 3.6 5.6 5.9 0.1538 0.5035 0.6574 0.9996 |-34.2
4 3 5.4 8.4 8.2 0.2133 0.7619 0.9752 1.3906 |-29.9
5 4 7.9 11.9 12.3 | 0.2747 1.1025 1.3771 2.0675 |[-33.4
10| 9 258 | 3438 30.3 | 0.6382 3.9505 4.5886 5.0520 |[-9.2
20 | 19 65 84.0 67.4 | 14126 10.3405 11.7531 11.2153 | 4.8
500 30 | 29 | 110.6 | 139.6 | 120.8 | 2.1356 17.3395 19.4751 19.2092 | 14
40 | 39 | 163.4 | 202.4 | 170.6 | 2.9036 25.2479 28.1515 29.8839 |-5.8
50 | 49 | 207.7 | 256.7 | 238.4 | 3.8553 31.8784 35.7337 42,6190 [-16.2
100 | 99 | 486.3 | 585.3 | 491.6 | 8.9480 86.2108 95.1588 93.3028 | 2.0
200 | 199 | 1549.7 | 1748.7 | 1603.0 | 24.6166 | 321.4763 | 346.0929 | 385.8594 |-10.3
300 | 299 | 3467.1| 3766.1 | 3552.2 | 47.6427 | 904.2718 | 951.9145 | 1079.2690 |-11.8
400 | 399 | 5041.2 | 5440.2 | 5478.2 | 79.8347 | 1522.8154 | 1602.6501 | 1880.8721 |-5.8
500 | 499 | 6824.0 | 7323.0 | 7083.0 | 123.9207 | 2347.2343 | 2471.1549 | 2851.0051 |-13.3
2 1 1.0 1.0 3.2 0.3173 0.6383 1.1086 2.6267 |-58.7
2 2.4 2.4 5.6 0.5668 1.4337 2.2217 41371 |-61.2
4 3 53 53 9.2 0.8152 3.2922 4.3969 6.6869 [-69.4
5 4 8.7 8.7 12.1 | 1.0744 5.2069 6.6381 9.0701 |-68.0
10| 9 29.1 29.1 29.4 | 2.3949 18.0354 18.9534 19.9798 |-62.9
20 | 19 | 594 59.4 67.7 | 5.0440 | 36.1956 38.0356 46.5377 |-60.5
30 | 29 | 1115 | 1115 | 1251 | 7.7980 | 67.9288 70.7025 87.9675 |-66.1
1000 40 | 39 | 171.8 | 171.8 | 180.9 | 10.7085 | 106.0429 | 109.7645 | 124.6988 |-66.0
50 | 49 | 222.6 | 222.6 | 248.7 | 13.7127 | 148.3861 | 153.0553 | 189.5792 |-70.6
100 | 99 | 616.4 | 616.4 | 608.7 | 30.4475 | 4345165 | 471.2869 | 443.5627 |-65.0
200 | 199 |1391.0 | 1391.0 | 1323.6 | 72.9461 | 1100.3228 | 1184.8193 | 1107.4488 |-65.6
300 | 299 | 2813.9 | 2813.9 | 2741.0 | 128.0439 | 2606.6703 | 2750.3465 | 2685.5203 | 1.8
400 | 399 | 5577.6 | 5577.6 | 5478.2 | 195.8104 | 5584.9723 | 5799.3454 | 6119.5753 |-5.5
500 | 499 | 9502.0 | 9502.0 | 9419.5 | 281.8883 | 10338.3137 |10640.0304 | 11968.5490 |-11.3
1000| 999 [29038.0|29038.0{30756.8|1002.4307|46174.9741 |46211.8328 |55297.7483 |-15.6
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For Test Il, the results are shown in Figures 4.31-4.36 which present plots of

average number of iterations and average running time report in Tables 4.5-4.7.

Table 4.5: The average number of iterations and running time by SIMP and

SOJU with small number of variables and large number of constraints.

Prts)it;I:m Average no. of iterations Average running time (sec.)
SOJU| SOJU SOJU SOJU
Total Total %
n m 1t 2nd SOIU SIMP 1t 2nd SOJU SIMP Diff.
stage | stage stage stage
1000 1 2.2 3.2 3.4 0.3127 0.5709 0.8836 1.0183 |-13.2
2000 1 2.0 3.0 3.2 1.2970 1.9410 3.2380 3.9053 |-17.1
3000 1 2.6 3.6 3.0 2.9807 5.6843 8.6651 8.2034 5.6
4000 1 2.0 3.0 2.8 5.2758 7.9578 13.2336 | 13.3881 | -1.2
5000 1 1.6 2.6 2.8 8.8431 9.7991 18.6422 | 21.1736 |-12.0
6000 1 2.0 3.0 2.8 | 12,5082 | 17.8418 | 30.3500 | 30.5334 | -0.6
7000 1 14 2.4 3.2 | 17.4497 | 17.5091 | 34.9588 | 394.0257 |-91.1
2 | 8000 1 1.2 2.2 2.6 | 22,7509 | 19.3734 | 42.1243 | 52.6989 |-20.1
9000 1 14 2.4 34 | 28.6950 | 28.9376 | 57.6326 | 85.2961 |-32.4
10000 1 16 2.6 3.0 | 35,5583 | 41.0473 | 76.6057 | 92.9273 |-17.6
11000 1 14 2.4 3.8 | 444834 | 43.1784 | 87.6618 | 143.7342 | -39.0
12000 1 2.0 3.0 2.6 | 56.3240 | 74.9676 | 131.2917 | 121.4375 | 8.1
13000 1 1.8 2.8 2.8 | 66.1342 | 78.3266 | 144.4608 | 150.8353 | -4.2
14000 1 2.2 3.2 3.0 | 79.0778 | 114.6711 | 193.7488 | 186.1854 | 4.1
15000 1 2.4 3.4 3.8 | 88.5608 | 144.9023 | 233.4631 | 261.5471 | -10.7
1000 2 4.0 6.0 5.6 0.5673 0.9560 1.5233 1.6123 -5.5
2000 2 2.6 4.6 5.0 2.3278 2.5482 4.8760 5.8632 |-16.8
3000 2 3.6 5.6 5.0 5.2303 8.0000 13.2303 | 13.2712 | -0.3
4000 2 2.8 4.8 6.2 9.4271 11.0120 | 20.4390 | 29.9503 |-31.8
5000 2 4.4 6.4 6.4 | 145702 | 27.1917 | 41.7619 | 47.2784 |-11.7
6000 2 3.4 5.4 6.2 | 20.8962 | 30.2846 | 51.1808 | 67.0965 |-23.7
7000 2 3.6 5.6 5.4 | 28.8421 | 43.9705 | 72.8127 | 80.2835 | -9.3
3 | 8000 2 4.0 6.0 6.4 | 38.3835 | 63.6617 | 102.0452 | 118.1041 |-13.6
9000 2 4.0 6.0 5.6 | 49.3019 | 80.8846 | 130.1866 | 131.2194 | -0.8
10000 2 4.0 6.0 5.6 | 59.6988 | 99.5071 | 159.2060 | 164.0864 | -3.0
11000 2 4.4 6.4 6.6 | 75.6571 | 131.9914 | 207.6484 | 233.5866 |-11.1
12000 2 4.0 6.0 5.2 | 90.2816 | 147.3178 | 237.5994 | 220.2686 | 7.9
13000 2 4.4 6.4 5.8 | 106.0539 | 189.0512 | 295.1051 | 287.9528 | 2.5
14000 2 2.8 4.8 6.0 | 118.4918 | 149.7953 | 268.2871 | 349.7494 |-23.3
15000 2 3.2 5.2 6.0 | 133.6533 | 197.7966 | 331.4500 | 392.6448 | -15.6
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Table 4.6: The average number of iterations and running time by SIMP and

SOJU with small number of variables and large number of constraints.

Problem
size Average no. of iterations Average running time (sec.)
SOJU | SOJU SOJU SOJU
n m 1t 2nd Total SIMP 18 2nd Total SIMP %
SOJU SOJU Diff.
stage | stage stage stage
1000 3 6.2 | 92 | 9.0 0.8368 1.4966 2.3335 2.5617 | -8.9
2000 3 66 | 96 | 80 3.2380 6.3507 9.5887 9.1129 52
3000 3 50 | 80 | 104 | 7.4146 11.1363 18.5509 26.7125 |-30.6
4000 3 6.0 | 9.0 | 9.0 13.1959 | 23.9269 | 37.1228 41.3230 |-10.2
5000 3 52 | 82 | 9.8 | 20.3515 | 32.8178 | 53.1693 69.3708 |-23.4
6000 3 50 | 80 | 84 | 29.4183 | 46.3045 75.7228 85.9936 |-11.9
7000 3 78 | 10.8 | 9.6 | 41.1318 | 96.8856 | 138.0174 | 138.2478 | -0.2
4 | 8000 3 6.8 | 9.8 | 86 | 53.3547 | 111.6801 | 165.0349 | 157.4819 | 4.8
9000 3 50 | 80 6.4 | 67.0141 | 107.0023 | 174.0163 | 150.2575 | 15.8
10000 3 70 | 10.0 | 7.6 | 824976 | 183.6653 | 266.1629 | 217.0185 | 22.6
11000 3 54 | 84 | 82 | 106.1110 | 173.0695 | 279.1805 | 287.0784 | -2.8
12000 3 6.8 | 9.8 | 10.8 | 126.4462 | 260.8316 | 387.2778 | 440.3629 |-12.1
13000 3 6.4 | 9.4 | 84 | 152.1075 | 288.1232 | 440.2307 | 409.7139 | 7.4
14000 3 50 | 80 | 8.0 | 180.0171 | 280.5067 | 460.5238 | 457.7387 | 0.6
15000 3 7.0 | 10.0 | 8.4 | 204.3029 | 447.5344 | 651.8373 | 538.8584 | 21.0
1000 4 82 | 122 | 11.2 1.0895 1.9675 4.8115 3.1978 | -4.4
2000 4 84 | 124 | 10.0 | 4.3197 8.1373 19.4318 11.3658 | 9.6
3000 4 6.4 | 10.4 | 10.0 | 9.9386 14.2884 | 40.3892 25.7296 | -5.8
4000 4 10.0 | 14.0 | 12.8 | 18.4244 | 40.0878 | 87.9724 58.5290 | 0.0
5000 4 10.0 | 14.0 | 11.8 | 28.6239 | 63.1243 | 138.5021 | 83.5535 | 9.8
6000 4 94 | 134 | 104 | 41.2515 | 86.4931 | 196.2464 | 106.0221 | 20.5
7000 4 88 | 128 | 12.6 | 57.0492 | 110.3759 | 258.6079 | 175.1819 | -4.4
5 | 8000 4 84 | 124 | 11.8 | 74.7882 | 139.7157 | 336.2271 | 214.0058 | 0.2
9000 4 9.6 | 13.6 | 12.4 | 94.2494 | 2055763 | 452.1835 | 285.7649 | 4.9
10000 4 9.0 | 13.0 | 12.8 | 116.5282 | 237.8949 | 541.9302 | 361.5506 | -2.0
11000 4 10.0 | 14.0 | 13.6 | 144.6622 | 316.3620 | 687.7191 | 470.7470 | -2.1
12000 4 8.8 | 12.8 | 11.8 | 172.2180 | 344.2547 | 792.8823 | 484.8409 | 6.5
13000 4 7.2 | 11.2 | 104 | 203.6305 | 337.0466 | 860.3991 | 505.9683 | 6.9
14000 4 88 | 128 | 9.6 | 239.6545 | 491.7583 | 1105.1184 | 544.9246 | 34.2
15000 4 9.6 | 13.6 | 12.6 | 271.0079 | 621.8891 | 1343.1265 | 803.1660 | 11.2
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Table 4.7: The average number of iterations and running time by SIMP and

SOJU with small number of variables and large number of constraints.

Problem
size Average no. of iterations Average running time (sec.)
SOJU | SOJU SOJU SOJU
n m 1t 2nd Total SIMP 1 2nd Total SIMP (T/O
SOJU SOJuU Diff.
stage | stage stage stage

1000 9 28.4 | 37.4 | 28.2 2.4824 6.8525 9.3349 7.9794 |17.0
2000 9 246 | 33.6 | 29.0| 9.6035 23.7059 | 33.3094 | 32.2646 | 3.2
3000 9 23.0 | 32.0 | 30.6 | 23.3050 | 51.0358 | 74.3408 | 77.0919 | -3.6
4000 9 26.0 | 35.0 | 28.2 | 43.0517 | 103.0584 | 146.1101 | 127.1255 | 14.9
5000 9 22.0 | 31.0 | 25.4 | 68.6751 | 138.7661 | 207.4412 | 177.6019 | 16.8
6000 9 22.8 | 31.8 | 29.6 | 100.2209 | 206.3161 | 306.5370 | 299.9554 | 2.2
7000 9 21.0 | 30.0 | 27.4 | 139.2391 | 262.9681 | 402.2071 | 377.1423 | 6.6
10 | 8000 9 25.4 | 34.4 | 32.8 | 184.2237 | 417.1254 | 601.3490 | 586.8790 | 2.5
9000 9 20.0 | 29.0 | 27.8 | 233.0995 | 429.6708 | 662.7703 | 629.8877 | 5.2
10000 9 22.0 | 31.0 | 29.8 | 287.5293 | 569.4184 | 856.9477 | 829.0433 | 3.4
11000 9 22.0 | 31.0 | 28.6 | 353.7068 | 683.7364 | 1037.4432| 983.3912 | 5.5
12000 9 22.2 | 31.2 | 26.6 | 420.6811 | 836.0746 | 1256.7557 | 1080.1659 | 16.3
13000 9 24.6 | 33.6 | 26.8 | 502.4979 | 1106.9756 | 1609.4735| 1295.1735 | 24.3
14000 9 26.2 | 35.2 | 32.0 | 581.7821 | 1439.6674 | 2021.4494 | 1813.1138| 11.5
15000 9 22.0 | 31.0 | 24.6 | 675.4173 | 1387.2463 | 2062.6636 | 1564.2370 | 31.9
1000 14 | 384 | 524 | 476 | 3.7358 9.3589 13.0947 13.3696 | -2.1
2000 14 | 44.8 | 58.8 | 50.8 | 14.7246 | 43.1557 | 57.8803 | 56.4810 | 2.5
3000 14 | 424 | 56.4 | 47.8 | 36.2643 | 92.7929 | 129.0572 | 120.5445 | 7.1
4000 14 | 42,6 | 56.6 | 49.6 | 68.4397 | 168.3889 | 236.8286 | 223.0386 | 6.2
5000 14 | 35.0 | 49.0 | 49.4 | 108.6200 | 220.9233 | 329.5433 | 348.3895 | -5.4
6000 14 | 46.2 | 60.2 | 53.8 | 157.7627 | 413.4616 | 571.2243 | 545.8562 | 4.6
7000 14 | 416 | 55.6 | 52.4 | 218.2647 | 509.5913 | 727.8560 | 721.5752 | 0.9
15 | 8000 14 | 46.8 | 60.8 | 48.4 | 288.8969 | 761.6478 | 1050.5447 | 873.4027 | 20.3
9000 14 | 454 | 59.4 | 54.4 | 363.4264 | 944.0076 | 1307.4340| 1230.0626 | 6.3
10000 | 14 | 43.6 | 57.6 | 52.0 | 448.6884 | 1111.3986 | 1560.0870 | 1458.9940| 6.9
11000 | 14 | 41.2 | 55.2 | 54.4 | 554.9419 | 1279.0549 | 1833.9968 | 1869.0985 | -1.9
12000 | 14 | 41.8 | 55.8 | 45.6 | 662.0624 | 1559.6373 | 2221.6997 | 1856.8739 | 19.6
13000 | 14 | 42.6 | 56.6 | 51.6 | 781.8030 | 1896.5801 | 2678.3831 | 2487.2534 | 7.7
14000 | 14 | 48.8 | 62.8 | 61.6 | 922.2734 | 2617.4280 | 3539.7014 | 3267.6504 | 8.3
15000 | 14 | 38.2 | 52.2 | 43.8 | 1070.0026 | 2369.3886 | 3439.3912 | 3009.9744 | 14.3
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Tables 4.5 — 4.7 contains the results from Test Il, which used average values
from 5 problem samples instead of 10 problem samples as being used in Test I. Hence,
the problems with the same size mxn in Test | may give different average results
comparing with results from Test Il. Therefore, we should compare results from within
the same test configuration only.

Table 4.5 shows that when the number of variables is 2 or 3 and the number of
constraints ranges from 1000 to 15000, SOJU gave smaller number of iterations in most
cases and, therefore, had better running time than SIMP in most cases. However, when
the number of variables are 4 to 15 and the number of constraints ranges from 1000 to
15000, SOJU started to use more iterations than SIMP. Nonetheless, the running time

difference percentages in those cases still ranges between -31% and 32%.

4.2.1 Average number of iterations (Test I)

For two variable problem, average number of iterations solved by SOJU method
was fewer than SIMP method in all sizes of constraints (see Figure 4.1). Furthermore,
the 1% stage of SOJU method was solved using 1 iteration and the 2" stage of SOJU
was solved using about 1 iteration. In total, SOJU method had better performance than
SIMP method for this case.
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Figure 4.1: The average number of iterations by SIMP and SOJU with 2

variables in Test I.
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For three variable problem, the average number of iterations solved by SOJU
method was less than SIMP except for 40 constraints. (See Figure 4.2.) However, the
average number of iterations in SOJU method was similar to SIMP method for 40
constraints.

Figures 4.3 and 4.4, which are the results from problems with 3 and 4 variables,
respectively, show comparable results where SOJU and SIMP take about the same
number of iterations in all cases.

Figures 4.5 — 4.9, which are the results from problems with 10 - 50 variables,
show that the second stage SOJU takes fewer number of iterations than SIMP.

However, the number of iterations in the first stage SOJU grows with the number of

variables (i.e. n—1 iterations for a problem with n variables). In total, SOJU still takes

more number of iterations than SIMP.
Figures 4.10 — 4.15, which are the results from problems with 100 - 1000
variables, show that the second stage SOJU takes about the same number of iterations

as SIMP. Hence, SOJU still takes more number of iterations in total.
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4.2.2 Average running time ( Test 1)

&1

For problems with 2 — 5 variables, SOJU performed better than SIMP in most
cases in terms of running time. (See Figures 4.16 — 4.19.)
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For problems with 10 — 1000 variables, SOJU and SIMP had comparable

performance in most cases in terms of running time. (See Figures 4.20 — 4.30.)
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4.2.3 Average number of iterations and running time (Test I1)

When SOJU was tested on problems with small number of variables and much
larger number of constraints, the results were not much different from SIMP in terms
of number of iterations and running time. (See Figures 4.31 — 4.36.)
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Figure 4.31: The average number of iterations running time by SIMP and SOJU
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Figure 4.34: The average number of iterations and running time by SIMP and

SOJU with 5 variables in Test I1.
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Figure 4.35: The average number of iterations and running time by SIMP and

SOJU with 10 variables in Test I1.
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Figure 4.36: The average number of iterations and running time by SIMP and

SOJU with 15 variables in Test I1.
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CHAPTER 4
CONCLUSION AND SUGGESTION

The simplex method with objective jump was proposed to improve the initial
basic feasible solution for solving the linear programming problem. SOJU algorithm
was divided into 2 stages. The first stage was the process to find a new initial basic
feasible solution called objective jump. At this stage, the process always takes all n—1

iterations to pivot out from the jump point and is operated on the only one sub-LP

problem from all possible 2" sub-problems. Another stage was the regular simplex
algorithm to find the optimal solution by starting with the initial basic feasible solution

obtained in the first stage.

The algorithm was tested in the randomly generated linear programming
problems with two test configurations and the results were shown in terms of the
average number of iterations and running time. In most cases, the second stage of SOJU
took smaller number of iterations and running time than SIMP, which means the SOJU
new initial basis outperformed the traditional basis used in SIMP. However, the first

stage SOJU is needed to be considered to fairly compare SOJU and SIMP.

The results show that SOJU performed better than SIMP on problems with 2 to
5 variables and the number of constraints is no more than 1000. Interestingly, SOJU
also was faster than SIMP for most cases when 300<m<1000 and 40<n<m
although the number of iterations was larger than SIMP. In other cases, SOJU either

had the comparable or worse performance than SIMP.

For the future work, simplex method with objective jump should improve the
process in the first stage which is to identify the jump point and corresponding basis by
reducing the process to create the objective jump tableau. LU factorization may be used
to find the inverse of large matrix. Additionally, the pivot operation after the jump point

in the second stage should be improved by selecting other appropriated sub-problems

formulation from all possible 2" sub-problems. Moreover, another direction can be

used instead of the gradient of the objective function. Furthermore, the work could be
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extended to the negative gradient of the objective function. Finally, the process of the
second stage can be improved by traversing through a better region after the jump point

using different pivot rules such as steepest edge and devex.
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APPENDICES

Al: Python source code for SOJU algorithm and numerical experiments

import numpy as np

import sympy as sp

import random

from numpy.linalg import inwv
import fractions

from copy import copy, deepcopy
import itertools

import time

sp.init printing()

Random LP model
def random LP(ex,m,n):
m = m
n=n
c = np.random.rand (n) *10
A = np.random.rand(m,n)*20-10
AA =A.dot(1/c)
if all(AA[i]<=0 for i in range(m)):
print ("u")
AA[-1]=-1*AA[-1]
A[-1]=-1*A[-1]
x = np.random.rand(n)*10
# Ax=b guarantee that there is a feasible solution
b = A.dot (%)
for i in range(m):
if b[i] < O:
b[i] = -1*b[i]
return c.tolist(),b.tolist (),A.tolist ()

Test Example

np.random.seed (0)

mList = [1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,120
00,13000,14000,15000]

nList = [2,3,4,5,10,15]
exList = [1,2,3,4,5]
lpex = []

1 =0

for j in nlList:
for i in mlList

for k in exList
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lpex.append(random LP(k,1i,J))
print(k,1i,3,"lpex", 1)
1=1+1

SOJU Algorithm

def chooseBinedConstr (n,m,c,b,A, report =False) :

t00 = time.time ()
ratio = []
indratio = []

for i in range (m):
S=sum(A[i][j]1/c[j] for j in range(n))
if S > 0:
R = b[i]/S
ratio.append (R)

indratio.append (i)

g = min(enumerate (ratio), key = lambda ratio:ratio[1l]) [0O]
if report:
print ("indratio=",indratio)
print ("ratio=",ratio)
print ("g=",q)
##createObjConstr(n,m,c) :
objConstr = []
qg = indratiol[q]
objConstr.append (Algqgl[:1)

#0(n"2)
##objConstr.append (A[0][:])
objConstr.extend([[] for i in range(n-1)])

for i in range (n-1):
objConstr[i+l] .extend ([0 for i in range(n)])
for i in range(l,n):

for j in range (i+1l):

if § < i:
objConstr[i] [§] = 1*c[j]
else:
objConstr[i] [J]=-1* (i) *c[]]

if report:

print ("qg=",qq)
print ("objConstr=",np.matrix (objConstr))

##Generate B"-1IN
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#J,J _inv
J = objConstr

J inv = inv(np.matrix(J)) .tolist ()

#0

Q = []
Q.extend (A)
Q.remove (Q[gq])

#QJ inv
QJ inv = (-l*np.matrix(Q)*J inv).tolist()

#B_invN
B invN = []
B = J inv+QJ inv

B invN.extend (B)

if report:

print ("J=",J)

print ("J_inv=",J inv)
print ("Q Q)
print("QJ inv=",QJ inv)
print ("B _invN=",B invN)

##Generate B"-1b_0=>RHS
#J invb2
J invb2 = []
for i in range (n):
J _invb2.append(J _inv[i] [0]*b[gq])

#b 1

b 1 =1]

b 1.extend(b)

b l.remove (b _1[qq])

#b1QJ=b 1-0J invb2

bloJ=[]

for i in range(m-1):
b 2 =Db 1[i]+b[gg]*QJ inv[i][0]
blQJ.append (b 2)

#RHS

RHS=J invb2+blQJ

if report:



print ("b_1=",b 1)

print ("J_invb2=",J invb2)
print ("b1lQJd=",b1QJ)

print ("RHS=",RHS)

##create cJ _inv=>reducedcost
##create cB_invb=>o0bj
cJ _inv=[]

for j in range(n):

reducedcost = sum(c[i]*J inv[i] []J] for i in range(n

cJ_inv.append (reducedcost)

##create obj
obj = sum(c[j]*J invb2[j] for j in range(n))

if report:
print ("reducedcost=",cJ _inv)

print ("obj=", obj)
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## Transform inputs
cJ inv.extend ([0 for i in range (m+n-1)])

ind = 0

for i in range (m+n-1):
B invN[i].extend ([0 for j in range (m+n-1)])
B invN[i] [n+ind] = 1
ind = ind+l

if report:

print ("objump=",np.matrix(B_invN))

## Implement objective jump tableau

# Generate the initial tableau and the basic var.

curTableau = [cJ inv[:]]
curTableau[0] .append(obj)
for i in range (m+tn-1):
temp = B invN[i][:]
temp.append (RHS[1i])
curTableau.append (temp)
indB = [n+i for i in range (m+n-1) ]
indN = [i1i for i in range(n)]
indRHS = n+m+n-1

if report:

index



109

print (indN ," " ,indB)

print (np.matrix (curTableau))

##Stagel
#Code loop
#iteration = 0
k=0
for 1 in range(n-1):
# Minimum ratio test
validValue = []
validIndex = []
for i in range (m+n-1-1):
if curTableau[i+1] [k+1] > O:
validIndex.append (i)
validValue.append (curTableau[i+1] [-1]/curTableau[i+1]
[k+1])
else:
validIndex.append (float ("inf"))
validValue.append(float ("inf"))

if report:
print ("validValue=",validValue)

print ("validIndex=",validIndex)

r = min (enumerate (validvalue),key = lambda x: x[1]) [0]
if report:
print ("indB=", indB)

print ("r=",r,"indB[r]=",indB[r])

## Pivot between r and k
pivot = curTableau[r+1] [k+1]
if report:

print ("pivot",pivot)

#rowr=rowrj/pivot
curTableau[r+1l] = [curTableaul[r+1][j]/pivot for j in range (n+

m+n-1) ]

for i in range (m+n-1):
if i < r+1 or i > r+l:
curTableau[i] = [curTableaul[i][]j] - curTableau[i] [k+1

]*curTableaul[r+1l] [j] for j in range (n+m+n-1) ]

#delete row,column,index
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curTableau.remove (curTableau[r+1])
for i in range(m+tn-1-1):

del curTableau[i] [k+1]
indB.remove (indB[r])
indN.remove (indN[k+1])

if report:

print (indN, indB)

print (np.matrix (curTableau))
return (curTableau)

def SimplexJump (m,n,c,b,A,dir="max', report = False) :

t0 = time.time ()
startTableau = deepcopy(chooseBinedConstr (n,m,c,b,A))
print ("%$s" $ (time.time() - t0))
if report:

print ("startTableau",np.matrix (startTableau))

iteration = 0
while True:
row0 = [startTableau[0][j] for j in range (n+m) ]
k = min (enumerate (rowQ),key = lambda x: x[1])[0] #k is the in
dex of indN, the original index, list of indN, is indN[k]

# If the rowO[k] is negative, then the optimal solution is re

ached.
if startTableaul0] [k] >= 0:
#print ("The current tableau gives the optimal solution.")
#print ("Iteration ", iteration)
#print (iteration)
#print (startTableau[0] [-1])
return
# Minimum ratio test
validValue = []
validIndex = []
for i in range(l,m+1):
if startTableaul[i] [k] > O:
validIndex.append(i-1)
validvValue.append (startTableau[i] [-1]/startTableau[i]
(k1)

else:
validIndex.append (float ("inf"))
validValue.append(float ("inf"))
# Check for unboundedness.
if [validvValue[i] for i in range(m)] == [float("inf") for i i

n range(m)]:
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print ("This problem has the unbounded feasible region.")
return
if report:
print (validIndex)
print (validvalue)
# Pivot between r and k
r = min (enumerate(validvalue),hkey = lambda x: x[1]) [0]
if report:
print (r, k)
pivot = startTableaul[r+1] [k]
if report:
print (pivot)
startTableau[r+l] = [startTableaulr+1][j]/pivot for j in rang
e (n+m+1) ]
startTableau[0] = [startTableau[0][]j] - startTableau[0] [k]*st
artTableaul[r+1][j] for j in range(n+m+1l)]
for i in range(m):
if 1 < r or i>r
startTableau[i+l] = [startTableaul[i+1][j] - startTabl
eau[i+l] [k] *startTableau[r+1][j] for j in range (n+m+1l) ]
if report:
print (np.matrix (startTableau))

iteration = iteration +1

A2: Python source code for SIMP algorithm and numerical experiments

def Simplex(m,n,c,b,A, dir="'max', report = True) :

#print ("---------—- Simplex Method ---------- \n")
m=m

n=n

c =cl:]

from copy import copy, deepcopy

A = deepcopy (A)

b =Db[:]

## Transform inputs

c.extend ([0 for i in range(m)])

ind = 0

for i in range(m):
A[i].extend ([0 for j in range(m)])
A[i] [n+ind] =1
ind = ind+1

if report:

print (np.matrix(A))
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## Implement Simplex tableau
# Generate the initial tableau and the basic var. index

curTableau = [c[:]]

curTableau[0] .append(0)

for i in range(m):
temp = A[i][:]
temp.append (b[i])

curTableau.append (temp)

indB =
indN =
indRHS

[n+i for i in range (m) ]
[i for i in range(n)]
= len(curTableau[0])-1

if report:
print (indN ,"™ " ,indB)

print (np.matrix (curTableau))

## Code loop

iteration = 0

while True:
row0 = [curTableau[0][j] for j in indN]

k

= max (enumerate (row0) ,key = lambda x: x[1]) [0] #k is the in

dex of indN, the original index, 1ist of indN, is indN[k]
# If the rowO[k] is negative, then the optimal solution is re

ached.
if curTableaul[0] [indN[k]] <= 0:
#print ("The current tableau gives the optimal solution.”
)
#print ("The optimal objective value is ", -curTableau[O0]
[indRHS])
#print ("Iteration ", iteration)
print (iteration)
#print (-curTableau[0] [indRHS])
return
# Minimum ratio test
validvalue = []
validIndex = []
for i in range(l,m+1):
if curTableau([i] [indN[k]] > O:
validIndex.append (i-1)
validvValue.append (curTableau[i] [indRHS]/curTableau[i]
[indN[k]])

else:
validIndex.append(float ("inf"))
validValue.append (float ("inf"))
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# Check for unboundedness.
if [validvalue[i] for i in range(m)] == [float("inf") for i i
n range(m)]:
print ("This problem has the unbounded feasible region.")
return
if report:
print (validIndex)
print (validvalue)

# Pivot between r and k
from fractions import Fraction
from decimal import Decimal
r = min (enumerate (validvalue),key = lambda x: x[1]) [0]
if report:
print (indB)
print (r,indB[r])
pivot = curTableau[r+1] [indN[k]]
if report:
print (pivot)
curTableau[0] = [curTableau[0][j] - curTableaul[0] [indN[k]]*cu
rTableau[r+1] [j]/pivot for J in range(len(curTableaul[i]))]
for i in range(m):
if i < r:
curTableau[i+l] = [curTableau[i+1][j] - curTableaul[i+
1] [indN[k]]*curTableau[r+1][j]/pivot for j in range (len (curTableau[i]
)) ]
elif i > r:
curTableau[i+l] = [curTableaul[i+1][]j] - curTableaul[i+
1] [indN[k]]*curTableau[r+1][j]/pivot for j in range (len (curTableau[i]
)) 1]

curTableau[r+1l] = [curTableaul[r+1][j]/pivot for j in range (le

n(curTableaul[r+1]))]

if report:

print (indN , indB)

print (indN[k] , indB[r])
indB[r], indN[k] = indN[k], indB[r]

if report:
print (indN, indB)
print (np.matrix (curTableau))

iteration = iteration +1
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