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Chapter |

Introduction

1.1 Lignans

Natural products, a driving force for the discovery of new chemical reactivity,
have been extracted to be a main source of medicines. Lignans, one of the largest
families, have interesting biological and pharmacological activities." In general, lignans
are presented in a wide variety of plant-based foods, including fruits, vegetables and
high concentration in seeds? which are derived from the shikimic acid biosynthetic
pathway. The structure of lignan contains two C6-C3 unit (phenylpropanoids) linked by
a bond between phenyl group (C6) or propyl residue of each unit. A survey on the
molecular structure of lignans obtained from different plant families could be classified
into eight groups based on their structural patterns, carbon skeletons and oxygen
which is incorporated into the skeletons. These are arylnaphthalene, aryltetralin,

dibenzocyclooctadiene, dibenzylbutane, dibenzylbutyrolactol, dibenzylbutyrolactone,

o

C6-C3 unit

e

Arylnaphthalene Aryltetralin Dibenzocyclooctadiene

O_Ar
Ar/I Ar/HV\\(O Ar/;i(\o H
Ar Ar OH Ar O Ar 0

Dibenzylbutane Dibenzylbutyrolactol  Dibenzylbutyrolactone Furofuran

Ar Ar Ar

0) @) )
2,5-diaryltetrahydrofuran 2-aryl-4-benzyltetrahydrofuran  3,4-dibenzyltetrahydrofuran
[ J
Y
furan

furofuran, and furan (Figure 1.1).

Figure 1.1 The C6-C3 unit and subtypes of classical lignans (Ar = aryl).



1.2 Furofuran lignans

Furofuran type lignans are widely distributed in edible plants, seeds, cereal
products, and Brassica vegetables. Furofuran lignans (2,6-diaryl-3,7-dioxabicyclo [3.3.0]
octane lignan) are a large group of lignans which are biosynthesized from oxidative
coupling of two phenylpropanoids (2 X C6-C3) to form two fused tetrahydrofuran rings
as a central core. There are three different main types of furofuran lignans found in
natural products (Figure 1.2), depending on configurations at 2,6-diaryl groups on the
face the bicyclic core. The majority of furofuran lignans have been exo-exo aryl
substitution, although many compounds with endo-exo aryl substitution and a few

compounds with endo-endo substitution have been reported.

@) 2 WAr .
A AN
Hlél ' [ IH = 0O > ~ o
A 0
ex0-exo chair-chair
0
O 2 Ar ATN Ar
H| [ ol IH = o 2
6
AN S0
exo-endo chair-boat
@) Ar Ar
2 0 / Ox
Hioe aH =
2 Ar
Ar 0
endo-endo boat-boat

Figure 1.2 Stereomer arrangement of 2,6-diaryl substitutent on furofuran core structure
relation to bridgehead hydrogen. Hydrogen atoms in the right hand structures are

omitted for clarity.

Sesame (Sesamum indicum) has been a traditional healthy food in Asian
countries for centuries. It is found in Asia, Africa, and South America that is grown for
the oil in its seed. Of furofuran lignans reported so far, sesamin (1) and sesamolin (2),

major lignans in sesame seed oil, have been most widely investigated. Sesamin (1) and



sesamolin (2) are closely related analogues differing only in one additional oxygen
atom in sesamolin (2) structure (Figure 1.3).

©)

2.0 Ar O
/D\w@ - J @)
O N =
O 2
L

sesamin (1) sesamolin (2)

Figure 1.3 Structures of sesamin (1) and sesamolin (2).

Although the structures of sesamin (1) and sesamolin (2) are closely related,
the cyclic acetal of 2 favors a pseudo-axial position for the aryloxy substituent. Hence,

the chair-boat conformation of 2 is preferred while the chair-chair conformation of 1
is dominant (Figure 1.4).*

O 2.0Ar or OAr
HIIHIIH
Ar's

@)

6

0\
O
Ar =
& O
Ar
Z 2
A O-Ar
chair-boat
1 2

chair-chair

Figure 1.4 Conformations of 1 and 2.

1.3 Bioactive lignans from sesame (Sesamum indicum)

Interestingly, sesamin (1) and sesamolin (2) revealed several bioactivities that

are beneficial to human health such as anticancer, antioxidative and antidiabetic
activities.

1.3.1 Anticancer activity

The anticancer activity of furofuran lignans from sesame has so far been

developed as drugs.”'® In 1992, Hirose and co-workers reported that the dietary



supplementation of 1 suppressed asgainst 7,12-dimethylbenz[alanthracene which
induced mammary carcinogenesis. The dietary supplementation of 1 significantly
reduced the cumulative number of palpable mammary cancers by 36% compared
with animals on a control diet in 12 weeks.® In 2001, 2 was reported by Miyahara and
co-workers to induce apoptosis in the human lymphoid leukemia Molt 4B cells’, while
Ryu and co-workers found that 2 inhibited the growth of human leukemia HL-60 cells
in cultures.® Both of 1 and 2 were tested for their ability to protect BV-2 microglia from
hypoxia-induced cell death. Their results indicated that the mechanism of sesame
antioxidants involved inhibition agaisnt mitogen-activated protein kinases pathways
and apoptosis through scavenging of reactive oxygen species in hypoxia-stressed BV-2
cells.” Moreover, 1 and 2 were also proved on Raji cells by Kim and colleagues. They
observed that only 2 improved the cytolysis activity of NK cells to enhance antitumor

activity on Raji cells."

1.3.2 Antioxidative activity

To develop antioxidant activity, Kang and co-workers determined the ability of
2 to act as an antioxidant in vivo in 1998. Rats were fed with a diet containing 2, and
its metabolism and effects on oxidative stress were studied. After 2 weeks, 2 was not
detected in urine while 2-thiobarbituric acid reactive substances was significantly lower
in the kidneys and liver. These results suggested that 2 and its metabolites may
contribute to the antioxidative properties.!’ However, 1 was not actually active against
oxidative stress in vitro experiments. It is suggested that 1 is a prodrug, in which its
methylenedioxyphenyl moiety was transformed into dihydrophenyl (catechol)
moieties found in structures of 3 and 4 (Scheme 1.1)." In the same way, Hou and co-
workers studied that 1 and 2 prevented hypoxia on BV-2 and PC12 cells. In all
experiments, 1 and 2 were carried out in the presence of sesame antioxidants which
treated with cells. Moreover, sesame antioxidants suppressed p38 mitogen-activated
protein kinases and reactive oxygen species generation using nitrite.’*'* Specially,
antioxidative activity was reported to involve prevention of cardiovascular disease®

and possession of neuroprotection'.
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Scheme 1.1 Antioxdative metabolites of sesamin (1).

1.3.3 Antidiabetic activity

Diabetes mellitus (DM) is a chronic disease, in which blood sugar level is raised
or so called hyperglycaemia. DM occurs either when insulin is not produced or cannot
effectively work in the body. Insulin is a hormone, which is produced by the pancreas
and regulates blood sugar level. There are two main types of diabetes: type 1 and
type 2 (Figure 1.5). Type 1 DM is body’s cells cannot take glucose from the blood
because of deficient insulin production. On the other hand, type 2 DM is resulted from

insufficient insulin.!*?

Cells do not
respond to insulin

Cells do not absorb glucose Cells do not absorb glucose

Figure 1.5 Types of diabetic mellitus (https://stemcellthailand.org/therapies/diabetes-
mellitus-type-1-2).

There are many types of enzymes which hydrolyze starch to glucose
(Figure 1.6). a-Glucosidase, such as maltase, sucrase and isomaltase, is a group of
enzymes that hydrolyze starch at a-glucosidic linkage to produce a-glucose.
o-Glucosidase inhibitors restrain a-glucosidase to decrease glucose level in blood
vessel (Figure 1.7). Nowadays, Acarbose® is common drug used to treat type 2 DM.
However, gastrointestinal adverse effects are common in patients treated with

acarbose, and it may decrease efficacy of diabetes therapy.”
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o 0 oH HO OH
HO 1 4 HO
O ° OH WO °
O’Ho a-glucosidase HO
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oligosaccharide
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H
O

.0
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a-glucose

Figure 1.6 a-Glucosidase hydrolyzed starch to produce a-glucose.

Complex Inhibitor
Carbohydrates
- /
a-glucosidase - 3

Disaccharide + enzyme Inhibitor + enzyme

v
@

| Blood Glucose | [ | Blood Glucose | ]
v v
Hydrolysis and Inhibition of hydrolysis
absorption of Glucose and absorption of Glucose

Figure 1.7 Inhibition of a-glucosidase by inhibitor restrains carbohydrate metabolism

resulting in decrease in blood glucose.?

A few works were reported about antidiabetic activity. In 2011 Dehkordi and
Roghani found that 2 prevented abnormal changes in diabetic rats and attenuated
oxidative stress in aortic tissue.?” In addition, Hong and collegues showed that 1 was
able to ameliorate insulin resistance in type 2 diabetes mice.” Apart from 1 and 2,
pinoresinol was also isolated from sesame seeds. Only pinoresinol (Figure 1.8) showed
inhibitory activity against rat intestinal maltase with an ICs, value of 34.3 uM.** Active
compounds for antidiabetic activity were observed by Worawalai and co-workers.”
Of products examined, the synthesized lignans having at least one free phenolic motif

showed enhanced inhibition over those bearing no free phenolic motif.



This observation supported the postulation that free phenolic motif plays a critical
role in exerting inhibitory effect against a-glucosidase and free radical.

OMe
OH

HO
OMe

Figure 1.8 Structure of pinoresinol.

As evidences, 1 and 2 induced inhibition against cancer while antioxidant and
antidiabetic activities were noted when they were metabolized. Further, Pefalvo® and
Liu*" demonstrated that enterolactone as a final product was the major metabolite of
1 both in vivo and in vitro. These observations imply that the presence of free phenolic

motifs would be associated with enhancing bioactivity (Figure 1.9).%

= 3 HO 4
catechol derivatives enterolactone
Figure 1.9 Proposed metabolic pathway of sesamin (1) to catechol derivatives (3 and

4) and enterolactone

1.4 Synthesis of furofuran lignans

Due to the interesting biolosgical activities of 1 and 2, including related lignans,
several attempts have been made to synthesize the desired products. To synthesize
furofuran lignan, total synthesis using small molecules as starting materials afforded
the desired furofuran lignans with limit of phenolic moieties and low overall yield
(Scheme 1.2A).2% To synthesize a wide variety of furofuran lignans, an alternative
synthesis approach using samin (5) as starting material was introduced. Samin (5) is
considered as a reactive lignan because it contains hemiacetal unit which can be

coupled with a wide variety of phenolic compounds to produce the desired furofuran



lignans. Samin (5) can be obtained from total synthesis using small molecules
(Scheme 1.2B):*® however, this method produced 5 in low overall yields, in 8 steps. To
address this problem, 5 can be obtained in high yield from sesamolin (2), a major
).25, 31

lignan found in sesame seed oil, by one-step hydrolysis (Scheme 1.2C

OMe
OMe

A) 7 steps O

NMe
O & ~  MeO Lo
3% overall yield
MeO

OMe

B)
o} o 0 C\ 8 steps Oy -OH
<OﬁH . @é‘QLOMe > DH
0 = O
5

0O
4% overall yield <O

(0]
@) z 2
O.
o 0 WOH
Hydrolysis
O
O
C1y e ;
o P 90% 0 5

Scheme 1.2 The methodology of furofuran lignans synthesis. A) Using small molecules

® o

I =

as starting materials. B) Using 5 as an intermediate. C) Using natural sesamolin (2) as

starting materials to synthesize 5.

In 2016, Worawalai and coworkers® synthesized series of furofuran lignans
containing a phenolic moiety using 5 as a starting material (Scheme 1.3). Under acidic
condition, 5 was dehydrated to afford oxocarbenium ion, which was attacked by
phenolic compounds (ArOH, Figure 1.10) as a nucleophile via SiAr mechanism, thus
yielding the desired lignans as a mixture of two epimers, o- and [-products
(Scheme 1.4). The regioselectivity of desired products were generated from C-2 of furan
moiety and phenolic at ortho-position to hydroxy or methoxy groups through the

carbon-carbon bond, as indicated by the arrows in Figure 1.10.



h WArOH ArOH
Hir- iH ArOH HlnH-lH H,,%{H
/Q‘ 0 Amberlyst-15, 4A MS N0

\ \ O
Q CHCN, 70°C,8-10h O
\ 5 37 ' a-product O B-product
O \\O \\O
Scheme 1.3 Synthesis of furofuran lignans.
OH
monooxygenated o
CH
3
OH H,CO e T
trioxygenated H3C0\©/OCH3 ]@\ /@\
P s o H,CO OCH,
OH
\
tetraoxygenated
H.CO OCH
’ QGu7y(

5)

Figure 1.10 Particular phenolic compounds (ArOH) used in Worawalai’s project. Arrow

indicates the linkage between phenolic and samin moiety.

0. &

wOH N O’)(&)H\ S R

Hi—{ H H 2 HO N AOH WArOH O _ ArOH
—_— Hivy=—{wi H 2

RN — Hio—{ H + Hod H

O NS0 “No SEAr Ny S

g 5 OL OL 0 o

0] 1o} LO LO

oxocarbenium ion a-product p-product

Scheme 1.4 Formation of furofuran lignans containing a phenolic moiety.

In 2008, Urata oxidized sesamin (1) using Pb(OAc),; to remove methylenedioxy
(-OCH,0-) moieties (Scheme 1.5), affording the products bearing one (3) and two
catechol moieties (4).°” In addition, the methylenedioxy moieties in sesamin (1) were
also oxidized by BBrs to yield 3 and 4, together with their epimers.”

o]

jo
o @ OH OH
8 1) Pb(OAC) , benzene, 70°C, 2h o @OH o @OH

o) 4

e o, .

%D o 2) 80% ACOH, 15 min <o > < Yo > <
we o we o
Sesamin (1) 4 (62%)

Scheme 1.5 Methylenedioxy cleavage of 1.



10

1.5 Aims and scope of the present study

Regarding metabolized furofuran lignans, the hydroxy moiety was reported to
enhance bioactivity and are crucial to antidiabetic activity.” This is the first study of
the relation between number of hydroxy units and antidiabetic activity. The
methylenedioxy cleavage could increase number of hydroxy units in good yield using

Pb(OAC)4

In this project, furofuran lignans having multiple phenolics are synthesized using
Worawalai’s method. The products obtained from the first step are further oxidized by
Pb(OAC), to eliminate methylenedioxy (-OCH,O-) moiety, thus affording the catechol
analogues (Scheme 1.6). Furthermore, the synthesized lignans will be evaluated for
their antidiabetic activity as well as the mechanism underlying the inhibitory effect.
This project is expected to obtain the potent antidiabetic agents and provide the

insight into the critical role of multiphenolic groups in exerting antidiabetic activity.

0)

O, ..OH

’ v ' O~ ArOH o ArOH
Friedel-Craft reaction O Loy oxidition Hed—{oH
/Q\ © NG

o 0

v O/Q HO

0 5 W%

O HO

Scheme 1.6 Synthesis of new furofuran lignans containing catechol moiety



Chapter Il

Isolation and Preparation of the Starting Lignans

2.1 Isolation of starting lignans (1 and 2) and synthesis of samin (5)

Commercially available sesame seed oil was used as a source of sesamin (1)
and sesamolin (2). However, the oil comprises 1-2% of sesamin and sesamolin while
the major components are fatty acid. To facilitate the isolation of target lignans,
sesame seed oil was first saponified by KOH/MeOH to remove fatty acid (saponifiable
matter), yielding unsaponifiable matter as a mixture of sesamin (1) and sesamolin (2)
(Scheme 2.1). Finally, sesamin (1) and sesamolin (2) could be purified by silica gel
column chromatography. Samin (5, 90%) was obtained by acid-catalyzed hydrolysis of

sesamolin (2) (Scheme 2.2).%

Sesame oil
1) KOH,MeOH reflux
2) partition (EtOAc/HZO)

Unsaponifiable matters Saponifiable matter

(salt of fatty acid)

3) SiOZ, hexane to hexane/EtOAc (8:2)

1,2

Scheme 2.1 Separation of sesamin (1) and sesamolin (2).

o7
@f )
0.0 O ..OH
o7
H'-H"H Amberlyst-15 H"E—Z'H 4 0
CH CN/H O (9:1) | :}
o/; © o 4 /[) © HO

70°C,4-5 h o)
\\O 2 \\O 5 sesamol

Scheme 2.2 Preparation of samin (5).

Amberlyst-15, acidic resin, was used to protonate hydroxy group of sesamolin
(2). Subsequently, the carbon-oxygen bond broke to obtain oxocarbenium ion which

was attacked by a water molecule as a nucleophile to obtain samin (5). Although water
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could attack on each face of the planar carbocation, 5 is dominated by a-product due

to anomeric effect (Scheme 2.3).

0 0
0_,..0 ‘5) v )
. H " 5 Ho OL.OH  ho o
, N, A PR WOH
O@ O@ To "o "0
d 2 d ' + N O/Q °
(0] LO \\

o 5
0

oy
HO'

sesamol

Scheme 2.3 Formation of samin (5).

2.2 Experimental section

2.2.1 General experiment procedures

All experiments were carried out under a nitrogen atmosphere. The 'H spectra
were recorded on a 400 MHz Bruker AVANCE spectrometer and on a Varian Mercury”
400 NMR spectrometer (CDCl; as a solvent). Analytical thin layer chromatography (TLC)
was performed on pre-coated Merck silica gel 60 F,s4 plates (0.25 mm thick layer).

Column chromatography was performed on Merck silica gel 60 (70-230 mesh).

2.2.2 Chemical
Sesame seed oils was purchased from Sounpa-na (Samutsakorn, Thailand) in
2017. Saponification number of purchased oil is approximately 156.6 mgKOH/oil. All

reagents were obtained from Sigma-Aldrich and used without further purification.

2.2.3 Isolation of sesamin (1) and sesamolin (2)

Sesame seed oil (150 g) was added by KOH (25 ¢) in MeOH (150 mL) and heated
at 70°C for 5 h, yielding unsaponifiable matter as a mixture of sesamin (1) and
sesamolin (2). After cooling, the reaction mixture was evaporated to dryness and
extracted by ethyl acetate/H,0O (1:1, 3 times). The combined organic layers were dried
over anhydrous Na,SO4 and concentrated under reduced pressure. A portion of the
organic layer was subjected to silica gel column chromatography eluted with hexane

and the mixture of hexane and ethyl acetate. Fractions eluted with 85:15 hexane/ethyl
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acetate vyielded sesamin (1, 29762 g, 2%) whereas fractions eluted with

8:2 hexane/ethyl acetate afforded sesamolin (2, 1.5029 g, 1%).*

O sesamin (1)

Sesamin (1); white solid; *H NMR (400 MHz, CDCls) § 6.85 (s, 2H), 6.79 (d, J = 2.2 Hz,
4H), 5.95 (s, 4H), 4.71 (d, J = 3.7 Hz, 2H), 4.23 (dd, J = 8.6, 6.5 Hz, 2H), 3.87 (dd, J = 9.1,

2.8 Hz, 2H), 3.07-3.03 (m, 2H). The data were consistent with previous report.*

O
gt
0.0 O
HIIH'H
W' 0

esamolin (2)

e
— s

(@)
Sesamolin (2); white solid; [¢]2* = +198 (c 0.1, CHCly); 'H NMR (CDCls, 400 MHz) & 6.88
(s, 1H), 6.84-6.77 (m, 2H), 6.71 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 2.3 Hz, 1H), 6.50 (dd, J =
8.4, 2.4 Hz, 1H), 5.96 (s, 2H), 5.92 (s, 2H), 5.50 (s, 1H), 4.47-4.39 (m, 2H), 4.13 (dd, J = 9.2,
6.1 Hz, 1H), 3.96 (d, J = 9.2 Hz, 1H), 3.64 (dd, J = 9.0, 7.6 Hz, 1H), 3.31 (dd, J = 16.7, 8.7
Hz, 1H), 2.95 (dd, J = 15.4, 6.6 Hz, 1H). The data were consistent with previous report.*

2.2.4 Synthesis of samin

Sesamolin (2, 0.27 mmol) was hydrolyzed by Amberlyst-15 (1 mg/0.005 mmol
of 2) in 9:1 acetonitrile/H,0 (10 mL) at 70°C for 8 h. Samin (5, 60 mg, 90%) was obtained
as a brown oil after evaporation to dryness and purification by silica gel column

chromatography (1:1 hexane/ethyl acetate).
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O
(.

g samin (5)
Samin (5); Yield 90%; brown oil; 'H NMR (400 MHz, CDCls) & 6.86 (s, 1H), 6.80-6.75 (m,
2H), 5.95 (s, 2H), 5.39 (s, 1H), 4.37 (dd, J = 19.8, 8.2 Hz, 2H), 4.17 (dd, J = 9.3, 6.1 Hz,
1H), 3.91 (d, J = 8.8 Hz, 1H), 3.56 (dd, J = 9.1, 7.5 Hz, 1H), 3.08 (dd, J = 16.8, 9.1 Hz, 1H),
2.86 (dd, J = 16.0, 6.6 Hz, 1H). The data were consistent with previous repor’t.25



Chapter llI

Synthesis of Furofuran Lignans via Friedel-Crafts Reaction

3.1 General procedure for the Friedel-Crafts reaction of lignans

Following the previous’ method,” furofuran lignans containing free phenolic
groups were synthesized by replacing the hydroxy group of samin (5) with a variety of
phenolic moieties (ArOH, a-h) under acidic condition using Amberlyst-15 and purified
by Sephadex LH-20. Then Prep-TLC was used to separate relative configurations
(Table 3.1). Interestingly, molecular sieves aA were used to trap water molecules,

driving a forward direction to obtain desired products in high yields.

The coupling reaction between samin (5) and phenolic moieties proceeded
though Friedel-Crafts reaction. As expected, the a-and B-products were observed
under acidic condition. Oxocarbenium ion as an intermediate was generated by
protonation and cleavage of the carbon-oxygen bond of 5. Subsequently, phenolic

groups (a-h) as nucleophiles could attack at regioselective site as shown in

Scheme 3.1.
O__..OH O ArOH
Hive ciH ArOH HgH
\\Eoz Amberlyst-15, A MS N
o CH.CN, 70°C, 8-10hr.  Q
\\O 5 \\O
OH OMe OH OH OH
“ JV\ Me0\©/OH Me0\©/OMe ~ \:©\
Me AN ™~ OMe MeO OMe
OMe
a b c d e
OH OH o
N HO\©/OMe \‘/©:
MeO OMe _ HO OMe
OMe
f g h

Scheme 3.1 Synthesis of furofuran lignans having free phenolic group(s) (ArOH). Arrow
indicates the linkage between phenolic and samin moiety while drash arrow indicates

another possible regioselective site.



Table 3.1 Synthesis of furofuran lignans having multiphenolic groups (ArOH)

ArOH

R Hio—{iH Hioy—{ M
e Amberlyst-15, 4A MS YN0 N0
O\\ CH,CN,70°C,8-10h O 0
O 5 \\O a-6 \\O B_é
Isolated yield (%)
Entry ArOH
a-6 B-6
1 a a-6a (30%) B-6a (15%)
2 b a-6b (78%) -
3 c a-6¢ (27%) B-6¢ (31%)
4 d o-6d (68%) B-6d (17%)
5 e a-6e (47%) B-6f (51%)
6 f a-6f (30%) B-6g (40%)
7 g 0-6g (41%) B-6g (21%)
8° h o-6h (5%) B-6h (13%)
9° h’ a-6h’ (2%) B-6h (11%)

@The connectivity between furan moiety and 5-methoxyresorcinal (h) in product 6h is indicated by

an arrow (Scheme 3.1).

b The connectivity between furan moiety and 5-methoxyresorcinal (h) in product 6h” is indicated by a

dash arrow (Scheme 3.1).

¢ The desired product was decomposed after purification.

16

EOE WArOH ?{ArOH

Moreover, a-sesaminol (a-7) and B-sesaminol (B-7) were obtained from the

reaction of sesamolin (2) under acidic condition without water because water molecule

can work as a nucleophile and produce samin (5, Scheme 2.3). Sesamolin (2) was first

protonated at sesamol moiety. The leaving of protonated sesamol generated

oxocarbocnium ion through the E, mechanism. Consequently, leaving sesamol

reattacked oxocabenium ion via SeAr mechanism to obtain -7 and B-7 (Scheme 3.2).
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a-7 and B-7 were further purified by Sephadex LH-20 and Prep-TLC to give 80% and

13% vyield, respectively.

O O
“\OQO Amberlyst-15, 4A MS
o
YN CH CN 70°C, 8-10 hr.
O
“d

2
Scheme 3.2 Synthesis of a-sesaminol (a-7) and B-sesaminol (B-7).

(80%) o B-7 (13%)

Orientation of the substituents on phenolic ring was another key factor to
denominate the regioselective site and enhance reactivity. As for regioselectivity, it
could be generalized that the highest electron density on phenolic group was critical
to connect with furofuran lignan core structure. Moreover, the regioselective site was

insignificantly predominated by steric effect (Figure 3.1).

Meoﬁj/OH MeO\@/QMe 6hs /@‘\f/ 6h'
= AN = X 6 OMe
b C h

Figure 3.1 Electron density on phenolics ring indicated by arrows.

3.1.1 Structural characterization of synthesized lignans

In general, all synthesized lignans were characterized using 'H NMR and "*C
NMR data. In case of unclear connectivity between samin (5) and phenolic moieties
were found, 2D NMR such as COSY, HSQC and HMBC were applied to address the
problem. In addition, the structures of all new products were also proved by 2D NMR
together with HRMS. Herein, an example of unambiguous structural characterization of
a-6b is shown in Figure 3.2. The HMBC correlation from H-2 (3, = 5.00, d, J = 5.1 Hz,
1H) to C-17 (8¢ = 120.5), C-2" (8¢ = 147.3) and C-6 " (8¢ = 120.8) suggested that furofuran
moiety connected with ¢ through C2/C1"" bond formation near hydroxy moiety. In

addition, a methoxy unit at C-4~" could be significantly observed and the regioselective
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site can be affirmed from the correlation between -OMe (8, = 3.85, s, 1H) to C-4"
(8¢ = 152.1) and H-5" (8 = 6.45, d, J = 8.7 Hz, 1H) to C-4" (8. = 152.1). In addition,
other products having unclear connectivity between samin (5) and phenolic moieties

were also proved by HMBC correlations shown in Figure 3.3.

OMe

(bf\/\e

HO ,)

\\\
= ¢

o
fo\f 0
éo/‘ )(x-éc

Figure 3.2 HMBC correlations of a-6c

A)
(F o Y Conie
se e
<ZI> :_6g <O:© B(-jég
B)

Ho{ <)) OMe HO_ __Y.OMe

ol JY o J&ID

o
OH

O W O
<OI> a-6h’

HO OH HO <) _OH
NA) oS
Z—Z O‘A}e an
(@)

£
@]

vl
0 B-6h’

Figure 3.3 HMBC correlations of furofuran lignans containing dihydroxy moieties (6g,

6h and 6h”). A) The desired products. B) The desired products with less steric effect.

Among various approaches for assigning relative configuration, 'H-NMR

spectroscopy has attracted considerable attention to instantly confirm relative
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configuration.” Worawalai’s group demonstrated that a- and B-products could be
distinguished by spin-spin splitting pattern of H-4,,. Theoretically, H-4., and H-4,, are
enantiomeric protons and each would show doublet of doublet caused by geminal
and vicinal coupling. In the experiment, H-4., of a-products showed doublet of
doublet while H-4., revealed unexpected doublet pattern (Figure 3.4). The unexpected
splitting of H-4., in B-products could be explained by a 90° dihedral angle of H-4,,
and H-5, thus yielding Ji.qeqs = 0 Hz (Figure 3.5).

HO. OMe

H ' Doublet of doublet (dd)

OMe

T T T T T T T T T T T T T T T T T T T T T T T T T T T T
525 5.20 5.15 510 505 5.00 495 4.90 4.85 4.80 475 4.70 4.65 4f.6(% 4.?5 4.50 4.45 4.40 435 430 425 420 4.15 4.10 4.05 4.00 3.95 3.9
1 (ppm

Figure 3.4 'H NMR spectra of a-6h and B-6h.

H-4
ax H Ha O
HOA<L H <
O/ ax O
o) H-4 H 74\ \ 0
A 9
H-5 eq eq D - ArH H-S’O/ 4eq
chair-chair boat-chair
a-product B-product

Figure 3.5 Cyclic conformations of a- and B-products. The Newman projections

demonstrate dihedral angles of H-4 and H-5.

3.2 Experimental section

3.2.1 General experiment procedures

All experiments were carried out under a nitrogen atmosphere. The 'H and '*C
NMR spectra were recorded on a 400 MHz Bruker AVANCE spectrometer and on a
Varian Mercury” 400 NMR spectrometer (CDCl; as a solvent). Analytical thin layer
chromatography (TLC) was performed on pre-coated Merck silica gel 60 F,s4 plates (0.25
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mm thick layer). Column chromatography was performed on Merck silica gel 60 (70—
230 mesh) and Sephadex LH-20. Preparative thin-layer chromatography (Prep-TLC)

separations were carried out on 0.50 or 0.75 mm Merck silica gel 60 PF,s4 containing
gypsum.

3.2.2 Chemical
All reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA) and used

without further purification.

3.2.3 General procedure for the Friedel-Crafts reaction of lignans

A mixture of samin (5, 1 equiv) and acetonitrile (1.0 mL/0.1 mmol of 5) was
treated with phenolic compounds (a-h, 1.5-2 equiv), Amberlyst-15 (1 mg/0.005 mmol
of 5) and a 4 A molecular sieve at 70°C for 8-10 h. The reaction mixture was evaporated
to dryness, separated by Sephadex LH-20 using 1:1 dichloromethane/methanol as
eluent and purified by Prep-TLC to separate a- and B-products.

Following general procedure, reaction of 5 (64.5 mg, 0.26 mmol) and a (40 pL,
0.39 mmol) in acetonitrile (2 mL). After separation using Sephadex LH-20, Prep-TLC was
developed in dichloromethane/ethyl acetate (95:5) to yield a-6a (27 mg, 30%) and
B-6a (13 mg, 15%) both as a white powder.

HO

@ ©
O\\ o-6a

0
a-6a; ‘H NMR (CDCls, 400 MHz) & 7.89 (brs, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.83 — 6.78 (m,
3H), 6.71 (s, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.95 (s, 2H), 4.87 (d, J = 4.0 Hz, 1H), 4.78 (d, J
= 4.0 Hz, 1H), 4.34 (dd, J = 9.2, 7.6 Hz, 1H), 4.15 (dd, J = 9.2, 6.8 Hz, 1H), 3.92 - 3.85 (m,
2H), 3.22 - 3.18 (m, 1H), 3.17 - 3.11 (m, 1H), 2.29 (s, 3H); *C NMR (CDCl;, 100 MHz)
S 155.5, 148.2, 147.4, 139.8, 134.8, 126.8, 120.9, 120.9, 119.5, 117.9, 108.4, 106.7, 101.3,
86.7, 85.6, 72.5, 70.9, 53.6, 53.1, 21.2. The data were consistent with previous report.”
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HO

o
O\\O B-6a

B-6a; 'H NMR (CDCls, 400 MHz) § 7.85 (brs, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.86 — 6.80 (m,
3H), 6.71 (s, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.97 (s, 2H), 4.85 (d, J = 5.6 Hz, 1H), 4.55 (d, J
=8.0Hz, 1H),4.11 (d, J = 9.6 Hz, 1H), 3.90 (dd, J = 8.4, 7.6 Hz, 1H), 3.82 (dd, J = 9.6, 6.0
Hz, 1H,), 3.38 - 3.28 (m, 2H), 3.07 - 3.01 (m, 1H), 2.29 (s, 3H); °C NMR (CDCls, 100 MHz)
d 155.5,147.9, 146.9, 139.8, 132.0, 126.9, 121.2, 120.8, 118.8, 118.0, 108.4, 106.5, 101.2,
88.6, 82.0, 70.7, 70.2, 53.4, 49.9, 21.3. The data were consistent with previous report.?”

Following general procedure, reaction of 5 (235.8 mg, 0.94 mmol) and b (184
uL, 1.41 mmol) in acetonitrile (9 mL). After separation using Sephadex LH-20, Prep-TLC
was developed in hexane/ethyl acetate (8:2, 3 times) to yield a-6b (284.0 mg, 78%) as

a pale-yellow oil and mixture of B-products (215.6 mg) as yellow oil.

/Q““ O
O\\O o-6b

a-6b; 'H NMR (400 MHz, CDCls) & 6.95 (d, J = 8.7 Hz, 1H, H-6 "), 6.86 (s, 1H, H-6"), 6.80
(s, 1H, H-2), 6.78 (s, 1H, H-5), 6.45 (d, J = 8.7 Hz, 1H, H-5"), 5.94 (s, 2H, H-7), 5.00 (d, J
= 5.1 Hz, 1H, H-2), 4.69 (d, J = 5.6 Hz, 1H, H-6), 4.29 — 4.22 (m, 2H, H-4 and H-8), 3.98
(dd, J = 9.1, 4.6 Hz, 1H, H-8), 3.92 (d, J = 4.6 Hz, 1H, H-4), 3.89 (s, 3H, -OMe), 3.85 (s, 3H,
-OMe), 3.21 - 3.12 (m, 1H, H-1), 3.02 - 2.97 (m, 1H, H-5); >*C NMR (100 MHz, CDCl,)
§152.1, 148.1, 147.3, 147.2, 136.1, 135.4, 120.8, 120.5, 119.6, 108.3, 106.7, 103.5, 101.2,
85.7,83.1,72.7, 71.7, 61.0, 56.0, 54.5, 53.3.

Following general procedure, reaction of 5 (36.0 mg, 0.14 mmol) and ¢ (43 mg,

0.28 mmol) in acetonitrile (2 mL). After separation using Sephadex LH-20, Prep-TLC was
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developed in dichloromethane/ethyl acetate (95:5) to yield a-6c (15 mg, 27%) as a
yellow oil and B-6c (20 mg, 37%) as a yellow oil.

OH

MeQO
o “\\©/OMe
@E@%
O\\O a-6¢
a-6¢; 'H NMR (CDCls, 400 MHz) § 6.89 - 6.73 (m, 4H), 6.62 (d, J = 8.6 Hz, 1H), 5.94 (s,
2H), 5.05 (d, J = 4.0 Hz, 1H), 4.68 (d, J = 4.0 Hz, 1H), 4.31 (dd, J = 9.1, 7.3 Hz, 1H), 4.22
(dd, J = 9.1, 6.6 Hz, 1H), 4.01 (dd, J = 9.2, 4.7 Hz, 1H), 3.92 (d, J = 4.3 Hz, 4H), 3.89 (d, J
= 7.1 Hz, 4H), 3.10 - 3.02 (m, 1H), 3.01 - 2.93 (m, 1H); *C NMR (CDCls, 100 MHz) § 148.1,
147.4,144.6, 138.7, 135.4, 128.3, 119.6, 115.9, 108.3, 106.7, 105.9, 101.2, 85.6, 82.4, 73.1,
71.6, 60.6, 56.4, 54.8, 54.2. The data were consistent with previous report.””

OH
OMe

MeQO
&)

o
O\\O B-6¢

B-6c¢; 'H NMR (CDCls, 400 MHz) & 7.02 (d, J = 8.5 Hz, 1H), 6.89 — 6.73 (m, 3H), 6.65 (d, J
= 8.4 Hz, 1H), 5.95 (s, 2H), 4.95 (d, J = 5.9 Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.09 (d, J =
9.4 Hz, 1H), 3.97 — 3.84 (m, 7H), 3.86 — 3.74 (m, 2H), 3.51 — 3.40 (m, 1H), 3.24 (t, / = 8.6
Hz, 1H), 2.86 (dd, J = 15.4, 7.2 Hz, 1H); >C NMR (CDCls, 100 MHz) & 148.1, 147.3, 147.2,
138.2, 135.5, 129.9, 124.6, 119.7, 116.8, 108.3, 106.8, 105.8, 101.2, 87.7, 78.7, 70.6, 69.9,
60.3, 56.4, 54.9, 49.2. The data were consistent with previous report.?

Following general procedure, reaction of 5 (46.8 mg, 0.19 mmol) and d (58.0
mg, 0.37 mmol) in acetonitrile (2 mL). After separation using Sephadex LH-20, Prep-
TLC was developed in dichloromethane/ethyl acetate (95:5) to yield a-6d (49 mg,
68%) as a white powder and B-6d (15 mg, 17%) as a white powder.



23

HO

OMe
O R
Oy
O\\O o-6d

a-6d; ‘H NMR (CDCls, 400 MHz) & 7.71 (brs, 1H), 6.84 — 6.79 (m, 3H), 6.54 (s, 1H), 6.49
(s, 1H), 5.96 (s, 2H), 4.82 (d, J = 8.0 Hz, 1H), 4.78 (d, J = 8.0 Hz, 1H), 4.36 (dd, / = 8.8, 7.2
Hz, 1H), 4.16 (dd, J = 9.6, 6.4 Hz, 1H), 3.92 — 3.86 (m, 2H), 3.84 (s, 3H), 3.82 (s, 3H),
3.21 - 3.14 (m, 2H); *C NMR (CDCls, 100 MHz) 6 150.3, 150.1, 148.2, 147.4, 142.6, 134.8,
125.2, 1195, 111.2, 108.4, 106.7, 102.1, 101.3, 86.7, 85.6, 72.6, 70.8, 57.2, 56.1, 53.6,
53.2. The data were consistent with previous report.?

HO
@)

s
O\\O B-6d

B-6d; "H NMR (CDCls, 400 MHZ) & 8.05 (brs, 1H), 6.87 = 6.77 (m, 3H), 6.46 (s, 1H), 6.42 (s,
1H), 5.95 (s, 2H), 5.01 (d, J = 8.0 Hz, 1H), 4.44 (d, J = 6.8 Hz, 1H), 4.19 (d, J = 9.6 Hz, 1H),

OMe

OMe

3.98 (t, J = 8.8 Hz, 1H), 3.88 - 3.80 (m, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.49 (dd, J = 8.4,
9.2 Hz, 1H), 3.51 - 3.40 (m, 1H), 2.94 — 2.88 (m, 1H); >C NMR (CDCls, 100 MHz) & 150.1,
149.8, 148.2, 147.5, 142.7, 134.8, 125.2, 119.8, 110.5, 108.4, 106.7, 101.9, 101.2, 87.7,
84.6, 71.9, 70.1, 57.0, 56.0, 53.7, 50.8. The data were consistent with previous report.25

Following general procedure, reaction of 5 (56.5 mg, 0.22 mmol) and e (52.0
mg, 0.34 mmol) in acetonitrile (2 mL). After separation using Sephadex LH-20, Prep-
TLC was developed in hexane/ethyl acetate (8:2, 3 times) to yield a-6e (41 mg, 47%)

as a yellow oil and B-6e (44 mg, 51%) as a yellow oil.
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a-6e; "H NMR (CDCls, 400 MHz) § 8.96 (brs, 1HF), 6.82 — 6.77 (m, 3H), 6.06 (d, J = 2.4
Hz, 1H), 6.01 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.21 (d, J = 4.8 Hz, 1H), 4.81 (d, J = 4.0 Hz,
1H), 4.47 (dd, J = 9.2, 8.4 Hz, 1H), 4.13 (dd, J = 9.2, 2.8 Hz, 1H), 4.03 (dd, J = 9.2, 6.8 Hz,
1H), 3.79 - 3.78 (m, 1H), 3.76 (s, 6H), 3.19 ~ 3.17 (m, 1H), 3.02 - 2.99 (m, 1H); °C NMR
(CDCls, 100 MHz) 6 161.0, 158.0, 157.6, 148.2, 147.3, 134.9, 119.5, 108.3, 106.7, 105.0,
101.2, 94.6, 91.0, 84.2, 84.2, 72.7, 71.0, 55.5, 55.5, 54.8, 53.7. The data were consistent

with previous report.?”

HO
OMe

MeO
o
@)
\\O B-6e

B-6e; 'H NMR (CDCls, 400 MHz) § 9.15 (brs, 1H), 6.87 — 6.77 (m, 3H), 6.07 (d, J = 2.0 Hz,
1H), 6.00 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.17 (d, J = 8.0 Hz, 1H), 4.40 (d, J = 6.8 Hz, 1H),
4.17 (d, J = 10.0 Hz, 1H), 3.91 (dd, J = 8.0, 8.0 Hz, 1H), 3.81 (dd, J = 9.6, 6.4 Hz, 1H), 3.77
(s, 3H), 3.76 (s, 3H), 3.51 — 3.42 (m, 2H), 2.90 - 2.85 (m, 1H); °C NMR (CDCls, 100 MHz)
0 160.9, 158.1, 157.4, 148.2, 147.5, 134.9, 119.8, 108.3, 106.8, 101.7, 101.2, 94.3, 90.8,
87.5, 819, 71.4, 70.3, 55.7, 55.4, 53.7, 49.6. The data were consistent with previous

report.”?

Following general procedure, reaction of 5 (151.0 mg, 0.60 mmol) and f (167
mg, 0.91 mmol) in acetonitrile (6 mL). After separation using Sephadex LH-20, Prep-
TLC was developed in dichloromethane/ethyl acetate (95:5) to yield a-6f (75 mg, 30%)

as a colorless oil and B-6f (100 mg, 40%) as a colorless oil.
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a-6f; 'H NMR (CDCls, 400 MHz) & 8.58 (brs, 1H), 6.82 — 6.77 (m, 3H), 6.22 (s, 1H), 5.95 (s,
2H), 5.12 (d, J = 8.0 Hz, 1H), 4.83 (d, J = 8.0 Hz, 1H), 4.49 (dd, J = 8.4, 8.4 Hz, 1H), 4.13
(dd, J = 9.6, 2.8 Hz, 1H), 4.04 (dd, J = 9.2, 6.8 Hz, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.81 —
2.79 (m, 1H), 3.79 (s, 3H), 3.26 - 3.21 (m, 1H), 3.07 — 3.01 (m, 1H); °C NMR (CDCls, 100
MHz) & 153.9, 152.1, 150.9, 148.2, 147.3, 135.2, 134.7, 119.5, 109.1, 108.4, 106.8, 101.2,
97.0, 84.4, 84.2, 72.9, 70.8, 61.1, 60.9, 56.0, 54.7, 53.7. The data were consistent with
previous report.”

HO
OMe

OMe
MeO

O
O\\O B-6f

B-6f; "H NMR (CDCls, 400 MHz) & 8.87 (brs, 1H), 6.87 (s, 1H), 6.83 — 6.77 (m, 2H), 6.21 (s,
1H), 5.95 (s, 2H), 5.15 (d, J = 8.0 Hz, 1H), 4.40 (d, J = 4.0 Hz, 1H), 4.18 (d, J = 10.0 Hz,
1H), 3.94 - 3.92 (m, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 3.81 - 3.78 (m, 1H), 3.78 (s, 3H),
3.48 - 3.43 (m, 2H), 2.93 - 2.87 (m, 1H); °C NMR (CDCls, 100 MHz) § 153.8, 152.6, 150.2,
148.2, 147.5, 135.0, 134.8, 119.8, 108.3, 106.7, 105.7, 101.2, 96.8, 87.5, 82.0, 71.4, 70.3,
61.1, 60.9, 55.9, 53.8, 50.2. The data were consistent with previous report.?

Following general procedure, reaction of 5 (108.9 mg, 0.46 mmol) and g (91.5,
0.65 mmol) in acetonitrile (5 mL). After separation using Sephadex LH-20, Prep-TLC was
developed in dichloromethane/ethyl acetate (9:1) to yield a-6g (70.1 mg, 41%) as a
brown oil and B-6g (36.4 mg, 21%) as a brown oil.
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o OH
OMe
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O\\O a-6¢
a-6g; 'H NMR (400 MHz, CDCl5) & 6.84 (s, 1H, H-6), 6.78 — 6.68 (m, 2H, H-2" and H-5),
6.67 (d, J = 8.4 Hz, 1H, H-6"), 6.43 (d, J = 8.5 Hz, 1H, H-5"), 5.94 (s, 2H, H-7'), 4.97 (d,
J = 5.4 Hz, 1H, H-2), 4.71 (d, J = 4.9 Hz, 1H, H-6), 4.25 (dt, J = 12.6, 8.4 Hz, 2H, H-4 and
H-8), 3.94 (dd, J = 9.0, 3.8 Hz, 1H, H-8), 3.90 — 3.84 (m, 1H, H-4), 3.85 (s, 3H, -OMe), 3.19
- 3.17 (m, 1H, H-1), 3.07 - 3.01 (m, 1H, H-5); *C NMR (100 MHz, CDCl,) & 148.1, 147.2,
147.1,142.5,135.1,133.6, 119.6, 119.5, 116.6, 108.3, 106.7, 103.0, 101.2, 85.6, 84.4, 72.0,
56.3, 54.1, 53.0.

OH
OMe

HO

Oyt
O\\O p-65

B-6g; 'H NMR (400 MHz, CDCls) & 6.86 (s, 1H, H-6), 6.82 - 6.72 (m, 3H, H-2", H-5" and
H-6"), 6.45 (d, J = 8.3 Hz, 1H, H-5"), 5.93 (s, 2H, H-7'), 5.00 (d, J = 5.8 Hz, 1H, H-2), 4.39
(d, J = 7.0 Hz, 1H, H-6), 4.12 (dd, J = 8.3, 5.4 Hz, 1H, H-4), 3.90 - 3.81 (m, 1H, H-8), 3.85
(s, 3H, -OMe), 3.81 (s, 1H, H-4), 3.48 - 3.44 (m, 1H, H-1), 3.38 - 3.33 (m, 1H, H-8), 2.87
(dd, J = 15.3, 6.9 Hz, 1H, H-5); >C NMR (100 MHz, CDCl,) & 148.0, 147.3, 146.6, 142.0,
135.1, 133.1, 119.7, 118.9, 116.9, 108.2, 106.7, 103.1, 101.1, 87.6, 81.3, 71.2, 70.0, 56.2,
54.2, 49.5; HRMS m/z 395.1110 [M+Na]* (calcd for CyoH,oNaO-, 395.1107).

Following general procedure, reaction of 5 (128.1 mg, 0.51 mmol) and h (107.6
mg, 0.77 mmol) in acetonitrile (5 mL). After separation using Sephadex LH-20,
Prep-TLC was used in 9:1 dichloromethane/ethyl acetate to yield a-6h (9.2mg, 5%) as
a brown oil, B-6h (24.3 mg, 13%) as a brown oil and mixture of a-6h” and B-6h" that
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was separated using Prep-TLC (hexane/dichloromethane/ethyl acetate, 40:45:15) to
obtain a-6h"(3.6 mg, 2%) as a yellow oil and B-6h" (21 mg, 11%) as a yellow oil.

HO
OMe
@) .
HO
o J
O\\O o-6h

a-6h; 'H NMR (400 MHz, CDCl3) 8 "H NMR (400 MHz, CDCls) § 6.98 (brs, 2H), 6.82 (s, 1H,
H-6"), 6.77 (s, 2H, H-2" and H-4), 5.95 (d, J = 3.1 Hz, 2H, H-7), 5.23 (d, J = 7.7 Hz, 1H,
H-2), 4.83 (d, J = 3.9 Hz, 1H, H-6), 4.52 — 4.46 (m, 1H, H-4), 4.20 (dd, J = 9.4, 2.7 Hz, 1H,
H-8), 4.03 (dd, J = 9.3, 6.7 Hz, 1H, H-8), 3.83 - 3.77 (m, 1H, H-4), 3.72 (s, 3H, -OMe),
3.25 - 3.17 (m, 1H, H-5), 3.10 = 3.02 (m, 1H, H-1); >C NMR (100 MHz, CDCl5) § 160.7,
156.0, 148.2, 147.3, 134.9, 119.5, 108.4, 106.8, 104.1, 101.2, 94.8, 84.4, 83.7, 72.9, 70.7,
55.4, 54.6, 53.7.

HO

Oy
O\\O B-6h

B-6h; 'H NMR (400 MHz, CDCLl;) § 6.88 — 6.78 (m, 3H, H-2', H-5" and H-6"), 5.95 (s, 4H,
H-7",H-3" and H-5"), 5.20 (d, J = 5.8 Hz, 1H, H-2), 4.42 (d, J = 7.1 Hz, 1H, H-6), 4.18 (d,
J=9.7 Hz, 1H, H-4), 3.96 (t, J = 8.3 Hz, 1H, H-8), 3.82 (dd, J = 9.7, 6.3 Hz, 1H, H-4), 3.73

OMe

HO

(s, 3H, -OMe), 3.54 - 3.50 (m, 1H, H-1), 3.48 — 3.46 (m, 1H, H-8), 2.92 — 2.86 (m, 1H, H-
5); *C NMR (100 MHz, CDCl5) & 160.7, 156.0, 148.2, 147.5, 134.8, 119.9, 108.3, 106.8,
101.2, 101.0, 94.5, 87.6, 81.7, 71.5, 70.3, 55.4, 53.6, 49.6; HRMS m/z 395.1111 [M+Na]"
(caled for CyoHyNaO, 395.1107).
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a-6h"; 'H NMR (400 MHz, CDCl;) & 8.94 (s, 1H, -OH), 6.82 (s, 1H, H-6"), 6.77 (s, 2H, H-2'
and H-5"), 5.97 (s, 2H, H-3” and H-5”), 5.95 (s, 2H, H-7'), 5.20 (d, J = 7.6 Hz, 1H, H-2),
4.81(d, J = 3.8 Hz, 1H, H-6), 4.47 (t, J = 8.5 Hz, 1H, H-4), 4.13 (dd, J = 9.3, 2.8 Hz, 1H, H-
8), 4.05 — 4.01 (m, 1H, H-8), 3.79 (d, J = 7.5 Hz, 1H, H-4), 3.75 (s, 3H, -OMe), 3.19 - 3.17
(m, 1H, H-5), 3.02 - 3.00 (m, 1H, H-1); *C NMR (100 MHz, CDCl;) § 158.2, 157.6, 156.9,
148.2, 147.3, 134.8, 119.5, 108.4, 106.7, 105.0, 101.2, 97.1, 91.1, 84.2, 84.1, 72.8, 71.0,
55.6, 54.7, 53.7; HRMS m/z 395.1108 [M+Na]* (calcd for CyoH,oNaO-, 395.1107).

HO
O
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O :
\\O B-6h

B-6h"; 'H NMR (400 MHz, CDCl3) & 9.14 (s, 1H, -OH), 6.87 (s, 1H, H-6'), 6.82 — 6.77 (m,
2H, H-2" and H-5'), 5.98 (s, 1H, H-3"), 5.96 (s, 1H, H-5"), 5.95 (s, 2H, H-7"), 5.16 (d, J =

OH

5.6 Hz, 1H, H-2), 4.40 (d, J = 7.1 Hz, 1H, H-6), 4.17 (d, J = 9.8 Hz, 1H, H-4), 3.91 (t, J =
7.8 Hz, 1H, H-8), 3.80 (dd, J = 9.5, 6.4 Hz, 1H, H-4), 3.75 (s, 3H, -OMe), 3.46 — 3.44 (m,
2H, H-1 and H-8), 2.88 - 2.85 (m, 1H, H-5); *C NMR (100 MHz, CDCl;) & 158.1, 157.6,
156.9, 148.2, 147.5, 134.9, 119.8, 108.3, 106.8, 101.8, 101.2, 96.9, 91.0, 87.5, 81.9, 71.4,
70.2, 55.7, 53.6, 49.5; HRMS m/z 395.1104 [M+Na]" (calcd for CyyH,NaO, 395.1107).
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a-7; 'H NMR (CDCls, 400 MHz) & 7.76 (brs, 1H, -OH), 6.83 — 6.78 (m, 3H), 6.51 (s, 1H),
6.45 (s, 1H), 5.96 (s, 2H), 5.89 (s, 2H), 4.77 (d, J = 4.0 Hz, 2H), 4.35 (dd, J = 8.8, 7.6 Hz,
1H), 4.14 (dd, J = 9.2, 6.0 Hz, 1H), 3.89 - 3.83 (m, 2H), 3.18 - 3.11 (m, 2H); °C NMR
(CDCl;, 100 MHz) & 150.9, 148.3, 148.2, 147.4, 141.1, 134.7, 125.2, 119.5, 115.2, 108.4,
106.7, 106.3, 101.3, 99.6, 86.7, 85.5, 72.6, 70.7, 53.5, 53.1. The data were consistent

with previous report.?

HO

ot
O
L B-7

O

B-7; "H NMR (CDCls, 400 MHz) & 8.17 (brs, 1H, -OH), 6.87 — 6.77 (m, 3H), 6.42 (s, 1H),
6.40 (s, 1H), 5.96 (s, 2H), 5.90 (s, 2H), 4.97 (d, J = 5.9 Hz, 1H), 4.41 (d, J = 7.0 Hz, 1H),
4.17 (d, J = 10.0 Hz, 1H), 4.00 (dd, J = 9.2, 8.8 Hz, 1H), 3.84 (dd, J = 9.6, 6.4 Hz, 1H), 3.49
(dd, J = 9.2, 8.4 Hz, 1H), 3.39 — 3.35 (m, 1H), 2.89 (m, 1H); >*C NMR (CDCls, 100 MHz) &
150.8, 148.2, 147.9, 147.5, 141.2, 134.7, 119.8, 112.1, 108.3, 106.7, 105.8, 101.3, 101.2,
99.4,87.7,84.5, 71.9, 70.1, 53.6, 50.7. The data were consistent with previous report.25



Chapter IV

Synthesis of Furofuran Lignans via Methylenedioxy Cleavage

This chapter describes removal of methylenedioxy unit by oxidative cleavage

using Urata protocol.*

4.1 General procedure for oxidative cleavage of methylenedioxy

To test the viability of Urata protocol,’ sesamin (1) was used as a model
substrate. 1 was initially oxidized by Pb(OAc), to produce the acetoxylated
methylenedioxy units, which was later hydrolyzed to afford catechol moiety. In
hydrolysis step, Amberlyst-15 was used in place of acetic acid to improve product
yield, and the Amberlyst residue could be easily removed by filtration. Thus, the
products 3 (15%) and 4 (71%) were obtained in a better yield compared with previous’
method®” (Scheme 4.1).

% OH

-
©/ 1) Pb(OAC) (3 equiv.), toluene, 90°C, 2 h 0o \©/ @
¢ > < 2) Amberlyst-15, CH LONH O (8:2), 70°C, 3 h (O > < + H
D OD © HO/@

3 (15%) 4. (71%)

Pb(OAC) OAc OAc
(0] O Amberlyst-15, CH CN/HZO

Acetoxylatlon o 3
o Acid hydrolysis
O
AcO -
ol oyl

Acetoxylated sesamin derivatives

Scheme 4.1 Synthesis of 3 and 4.

With the success of removing methylenedioxy by Pb(OAc), in hand, this
condition was applied to other furofuran lignans containing a hydroxy moiety (6c-6f).
Unexpectedly, the phenolic moiety containing free hydroxy was more vulnerable to
be oxidized than methylenedioxy, thus yielding para-quinone residue (Scheme 4.2).%
Although para-quinone moiety, unexpected product, was obtained on furofuran lignan
(8¢, 8d and 8f), synthesis of catechol moiety was successful to increase the number
of hydroxy unit. These observations were noted in all lignans having free hydroxy group

in the structure, except for 6e whose structure containing one free hydroxy group
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located at meta-position to the remaining two methoxy groups. It has been recognized
that 1,3-benzenediol or resorcinol unit cannot be oxidized under such mild condition

but can be converted to trace amount of quinone under strong oxidizing power.’’

R o}
R 2 Re [ R
1 R 1 R 1 R
O« 3 O, 3 O s 3
1) Pb(OAc)4(3 equiv.), toluene, 90°C, 2 h
O 4 HO, + 0.
¢ R 2) Amberlyst-15, CH CN/H O (8:2), 70°C, 3 h o ¢ o
b 0] 3 2 " No Y o
HO
-6 o-8 o-9
B-6 B-8
6c:R =R =OMe,R =OH,R =R =H 8c (o 25%): R1 = R3 = OMe 9c (20%): R1 = R3 = OMe
1 3 T2 -
6d:R =R =H,R =R =OMe, R = OH 8d (a: 68%, B: trace): R = H, R = OMe
1 4 T2 s "5 1 3
6e: R1 = R3 = OMe, RZ = R4 =H, Rs =OH 8f? (a-8c: 81%, B-8f: 70%): R1 = R3 = OMe

6f:R =R =R =OMe,R =H,R =OH
1 2 3 4 5

¢ o-8f was obtained as the same product a-8c

Scheme 4.2 Synthesis of lignans containing para-quinone (8 and 9).

However, a-7 underwent oxidation but yielded unexpected product a-10
(72%), which was obtained as a brown oil (Scheme 4.3). The structure of a-10 was
fully proved by 2D NMR and HRMS. The HRESIMS (m/z 439.1001 [M+Na]", calcd for
439.1005) of a-10 showed that it had the molecular formula of Cy;H,Oy The NMR
spectra of a-10 showed the presence of acetal moiety at 6. 103.1 and d, 5.27 and one
additional oxygenated benzene at . 132.9, indicating one additional oxygen atom
linked between furan moiety and phenolic residue at C-2. However, the presence of
8, 5.86 (s, 2H, H-7") revealed that only one methylenedioxy unit was removed.
Furthermore, HMBC correlations of a-10 showed that catechol moiety was located at

C-3" and C-4" while C-2"" was connected to acetoxy moiety (Figure 4.1).
o7

0
0 7
O 1) Pb(OAC) (3 equiv.), toluene, 90°C, 2 h w0 o
0 > < AcO
)

o)
HO 2) Amberlyst-15, CH CN/H O (8:2), 70°C, 3 h HO. g—:(
0 0 HOD ©

a-7 a-10 (72%

Scheme 4.3 Synthesis of a-10.
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0

H
© O

HO
Figure 4.1 HMBC correlations of a-10
Although removal of methylenedioxy unit was successfully carried out, the free
hydroxy group was more susceptible to oxidation by Pb(OAc)s; thus yielding para-
quinone moiety. This observation was not detected in case of free hydroxy and

methoxy groups being meta-position.

In general, methylenedioxy moiety could be removed by oxidation using
Pb(OAC),. The structures were characterized comfortably by 'H NMR spectra, which
displayed no methylenedioxy singlet signal at & 5.90 ppm.

4.2 Methylenedioxy cleavage of Silylated lignans

Due to the susceptibility of free hydroxy group toward oxidation using Pb(OAC),,
protection of hydroxy group is required to avoid quinone formation. It is essential to
use a protecting group that remains stable throughout methylenedioxy cleavage. In a
preliminary experiment (synthesis of 6e-1 and 6f-1), benzoylation reaction using bezoyl
chloride (BzCl) as a reagent was initially performed. Methylenedioxy cleavage
proceeded smoothly until the desired catechol unit was obtained (6e-2 and 6f-2).
However, deprotection of benzoyl group under basic condition (K,COs) failed to afford
the desired product because there was no 'H NMR signals of furofuran lignan core
structure around 4.00-5.30 ppm. Subsequently, silylation reaction using tert-
butyldimethylsilyl chloride (TBDMSCL) as a reagent was also performed to protect
hydroxy unit. However, deprotection of silyl group under acidic condition using
Amberlyst-15 failed to afford the desired products because there was no 'H NMR
signals of furofuran lignan core structure around 4.00-5.30 ppm. In the last step,

deprotection using tetra-n-butylammonium fluoride (TBAF) was successful to remove
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both methylenedioxy and silyl unit in one step, providing the desired product (11f). It
should be noted that acetoxylated methylenedioxy unit formed after acetoxylation

was simultaneously removed together with silyl group using TBAF (Scheme 4.4).

3
Basic hydrolysis
desired product

Benzoylation 1) Acetoxylation
R R
4 2)Acid hydrolysis HO, or

R ——
O
(@\\" Dw' 1) Benzoylation
]
HO 2) Basic hydrolysis
B-6 -6 p-6

6e:R =R =OMe,R =R =H,R =OH  6e-1(91%):R =R =OMe,R =R =H,R =0Bz  6e-2(73%):R =R =OMe,R =R =H,R = OBz
103 2 4 5 103 2 4 5 103 2 4 5

6f:R =R =R =OMe,R =H,R =OH 6f-1(96%):R =R =R =OMe,R =H,R =0Bz 6f-2(53%):R =R =R =OMe,R =H,R = 0Bz

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

R
R Rz R1 2 1) Acetoxylation R1 g R
! R3 o R3 2) Acid hydrolysis o_ ., 3
SN Silylation W " R
R
8 R Ra (O R5 4 1) Acetoxylation HO . R5 ‘
5 o e —~ w o
OD © 2) TBAF HOD
a-6

6e:R =R =OMe.R =R =H,R = OH 6e-1(67%): R =R =0OMe, R =R =H,R = OTBDMS 11f (18%): R =R =R =OMe,R =H,R = OH
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Scheme 4.4 Synthesis of new furofuran lignan via protection and deprotection

reaction.

Noticeably, the silylation reaction of dihydroxy units (6g and 6h) provided
partially silylated products. Then 6g and 6h were applied in step of methylenedioxy
cleavage. The desired products were not obtained. An attempt to prove undesired

products were not identified.

In this experiment, only a-11f was displayed as the representative of three

hydroxy units.

With the success of silylation prior to methylenedioxy cleavage, this approach
was applied to 7 (Scheme 4.5). Although all methylenedioxy moieties were fully
removed, the silyl group was also replaced by acetate unit (-Ac). According to Wang,*®
the silyl group was likely to be substituted via a six-membered cyclic transition state
to obtain the product having acetoxy group (Scheme 4.6). Pb(OAc), acted as an
effective Lewis acid-Lewis base bifunctional catalyst to remove the silyl group from

silylated furofuran lignans (7-1). Substitution of silyl group by acetate moiety was

expected to proceed before oxidative cleavage of methylenedioxy; however, acetate
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group could not be removed under TBAF condition. An attempt to remove acetate
group using stronger basic condition was performed but several unexpected products

were observed.
OoH
O\\ o\\

o o OH
o o O
TBDMSCL 1) Pb(OAc)ﬂ (3 equiv.), toluene, 90°C, 2 h
HO
(O HO CHCL 1t 12h (O Og/ 2)TBAF (3 equiv), THF, 1t, 3 h Wl N AO
o o 22 o o HO ©

0-7-1 (70%) 0-12 (36%)
B-7 B-7-1 (66%) B-12 (45%)

Scheme 4.5 Synthesis of 12.

Ar O
DG = R G I e g
o}

9 Ny

)&,/74

Scheme 4.6 Proposed formation of acetoxy group in 12.

4.3 Experimental section
4.3.1 General experiment procedures

General experiments performed in this Chapter were similar to those described

in Chapter 3

4.3.2 General procedure for the methylenedioxy cleavage of lignans

A mixture of sesamin (1, 0.16 mmol) and lead (IV) tetraacetate (213 mg, 0.48
mmol) in toluene (2 mL) was treated at 90°C for 2 h under atmospheric N,. After
cooling, the reaction mixture was diluted with toluene and filtered through a celite
pad. The filtrate was evaporated to dryness and extracted by ethyl acetate/H,0O (1:1,
3 times). The organic layers were dried over anhydrous Na,SO, and concentrated under
reduced pressure. The resulting residue was treated with acidic resin Amberlyst-15 (1
mg/0.005 mmol of 1) in 8:2 acetonitrile/H,O (2 mL) at 70°C for 3 h. The reaction mixture
was evaporated to dryness and purified by silica gel column chromatography (1:1
hexane/ethyl acetate to 3:7 hexane/ethyl acetate) to give 3 (8 mg, 15%) as a brown

oil and 4 (37 mg, 71%) as a dark brown oil.
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OH

OH
O ‘\\\\

I

O 3

3; 'H NMR (400 MHz, CD50D) & 7.23 — 7.12 (m, 6H), 7.08 (dd, J = 8.1, 1.7 Hz, 1H), 6.31
(s, 2H), 5.25 (brs, 2H), 5.07 (d, J = 4.7 Hz, 1H), 5.03 (d, J = 4.6 Hz, 1H), 4.59 (dd, J = 6.4,
2.6 Hz, 1H), 4.23 — 4.18 (m, 2H), 3.72 - 3.70 (m, 1H), 3.46 (t, J/ = 11.0 Hz, 2H). The data

were consistent with previous report.*

4, 'H NMR (CD;0D, 400 MHz) & 6.82 - 6.68 (m, 6H), 4.63 (d, J = 4.3, 2H), 4.21 (dd, J =
9.0, 7.1 Hz, 2H), 3.80 (dd, J = 9.0, 3.5 Hz, 2H), 3.10 — 3.05 (m, 2H). The data were

consistent with previous report.*

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of a-6¢ (127.3 mg, 0.33 mmol) and lead (IV) tetraacetate (438.2 mg, 0.99 mmol)
was carried out in toluene (3 mL). After extraction and evaporation, the resulting
residue was heated in 8:2 acetonitrile/H,O (3 mL) at 70°C for 3 h and purified by silica
gel column chromatography (1:1 hexane/ethyl acetate) to yield a-8c (32.5 mg, 25%)

as an orange oil, a-9¢ (26.8 mg, 20%) as a yellow oil.

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of a-6f (46 mg, 0.11 mmol) and lead (IV) tetraacetate (147 mg, 0.33 mmol) in
toluene (1.1 mL) was carried out. After extraction and evaporation, the resulting residue

was heated in 8:2 acetonitrile/H,O (2 mL) at 70°C for 3 h and purified by silica gel
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column chromatography (1:1 hexane/ethyl acetate) to yield a-8c (35.4 mg, 81%) as a

O
MeO
OMe
gog RS
O
O

o-8c

yellow oil.

HO
o

a-8c ; 'H NMR (CDCls, 400 MHz) & 6.81 —6.73 (m, 3H, H-2', H-5', and H-6), 5.82 (s, 1H,

H-3"), 5.15 (d, J = 5.6 Hz, 1H, H-2), 4.61 (d, J = 6.4 Hz, 1H, H-6), 4.26 = 4.17 (m, 2H, H-4
and H-8), 4.01 (s, 3H, H-8"), 3.89 = 3.83 (m, 2H, H-4 and H-8), 3.79 (s, 3H, H-7"), 3.25 -
3.20 (m, 1H, H-1), 3.15 = 3.09 (m, 1H, H-5); *C NMR (CDCls, 100 MHz) & 187.0, 178.6,
157.4, 155.4, 144.1, 143.9, 133.6, 130.3, 118.8, 115.5, 113.6, 107.6, 85.5, 78.3, 72.8, 72.7,

61.9, 56.6, 55.5, 52.0; HRESIMS m/z 411.1067 [M+Na]" (calcd for CyoHyNaOg, 411.1056).

O
MeQO
OMe
O RN
) -
oy
o-9c

a-9¢; 'H NMR (400 MHz, CDCl,) & 6.84 (d, J = 0.8 Hz, 1H, H-6), 6.79 - 6.75 (m, 2H, H-2’
and H-5), 5.93 (s, 2H, H-7"), 5.82 (s, 1H, H-5"), 5.13 (d, J = 5.5 Hz, 1H, H-2), 4.62 (d, J =
6.6 Hz, 1H, H-6), 4.21 (m, 2H, H-4 and H-8), 4.00 (s, 3H, -OMe), 3.87 - 3.82 (m, 2H, H-4
and H-8), 3.78 (s, 3H, -OMe), 3.24 - 3.19 (m, 1H, H-1), 3.10 - 3.05 (m, 1H, H-5); °C NMR
(100 MHz, CDCls) & 186.8, 178.6, 157.3, 155.3, 148.1, 147.3, 135.3, 130.6, 119.6, 108.3,
107.6, 107.5, 106.6, 101.2, 85.5, 78.2, 72.9, 72.6, 61.8, 56.6, 55.9, 52.1; HRMS m/z
423.1057 [M+Na]* (calcd for C,H,oNaOg, 423.1056).

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of a-6d (169 mg, 0.44 mmol) and lead (IV) tetraacetate (582 mg, 1.31 mmol)

in toluene (5 mL) was achieved. After extraction and evaporation, the resulting residue



37

was heated in acetonitrile/H,0 (8:2, 5 mL) at 70°C for 3 h and purified by silica gel
column chromatography (1:1 hexane/ethyl acetate) to yield a-8d (107 mg, 68%) as a

O
OMe
EO% o
o
(@]

o-8d

yellow oil.

HO
o

a-8d; 'H NMR (CD;0D, 400 MHz) 8 6.79 (d, J = 2.0 Hz, 1H, H-2), 6.73 (d, J = 8.1 Hz,
1H, H-5"), 6.67 (dd, J = 8.1, 2.0 Hz, 1H, H-6"), 6.63 (s, 1H, H-6"), 6.02 (s, 1H, H-3"), 4.77
(d, J = 2.8 Hz, 1H, H-2), 4.56 (d, J = 5.4 Hz, 1H, H-6), 4.29 (dd, J = 9.3, 6.7 Hz, 1H, H-8),
4.14 (dd, J = 9.1, 5.8 Hz, 1H, H-4), 4.05 (dd, J = 9.3, 4.0 Hz, 1H, H-8), 3.89 (dd, J = 9.1,
3.2 Hz, 1H, H-4), 3.82 (s, 3H, H-7 "), 2.98 = 2.95 (m, 2H, H-1 and H-5); **C NMR (CD50D,
100 MHz) & 189.0, 183.5, 160.5, 150.6, 146.5, 146.1, 133.6, 128.6, 118.9, 116.3, 114.5,
108.7, 86.7, 82.6, 74.2, 72.6, 57.0, 55.2, 54.3; HRESIMS m/z 381.0949 [M+Na]* (calcd for
CioH15NaOy, 381.0950).

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of B-6d (50 mg, 0.13 mmol) and lead (IV) tetraacetate (173 mg, 0.39 mmol) in
toluene (1.3 mL) was performed. After extraction and evaporation, the resulting residue
was heated in acetonitrile/H,O (8:2, 2 mL) at 70°C for 3 h and purified by silica gel
column chromatography (1:1 hexane/ethyl acetate) to yield B-8d (30 mg, 64%) as a

yellow oil.
O
OMe
O
HO 0
0"
p-8d

B-8d; 'H NMR (CD;0D, 400 MHz) & 6.83 - 6.78 (m, 2H, H-6" and H-6"), 6.75 (d, J = 8.1
Hz, 1H, H-5), 6.70 (d, J = 8.2 Hz, 1H, H-2), 6.05 (s, 1H, H-3""), 4.72 (d, J = 6.6 Hz, 1H, H-
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2),4.27 (d, J = 7.3 Hz, 1H, H-6), 4.05 (d, J = 9.3 Hz, 1H, H-4), 3.90 (d, J = 8.8 Hz, 1H, H-
8), 3.85(d, J = 5.7 Hz, 3H), 3.84 - 3.79 (m, 1H, H-4), 3.50 (dd, J = 15.6, 8.5 Hz, 1H, H-1),
3.28(d, J = 8.5 Hz, 1H, H-8), 2.93 (m, 1H, H-5); °C NMR (101 MHz, CD50D) & 188.2, 183.0,
160.6, 148.0, 146.5, 146.3, 133.5, 131.1, 119.0, 116.2, 114.5, 108.4, 89.0, 78.6, 71.5, 70.3,
57.0, 55.8, 50.3.

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of B-6f (66 mg, 0.16 mmol) and lead (IV) tetraacetate (210 mg, 0.47 mmol) in
toluene (2 mL) was performed. After extraction and evaporation, the resulting residue
was heated in 8:2 acetonitrile/H,O (2 mL) at 70°C for 3 h and purified by silica gel
column chromatography (1:1 hexane/ethyl acetate) to yield B-8f (40 mg, 70%) as a

yellow oil.
O
MeO
OMe
@)
HO 3
HOD S
B-8f

B-8f; 'H NMR (CDCls, 400 MHz) 8 6.79 — 6.73 (m, 3H), 5.83 (s, 1H), 4.90 (d, J = 6.6 Hz,
1H), 4.40 (d, J = 7.4 Hz, 1H), 4.03 - 4.01 (m, 2H), 3.99 (s, 3H), 3.80 (s, 3H), 3.70 (dd, J =
9.4, 6.0 Hz, 1H), 3.53 (dd, J = 8.3, 8.3 Hz, 1H), 3.40 — 3.31 (m, 1H), 2.87 — 2.81 (m, 1H);
B3C NMR (CDCls, 100 MHz) 6 187.2, 178.4, 157.6, 155.7, 144.1, 144.1, 133.1, 128.7, 119.0,
115.5, 113.7, 107.4, 86.7, 77.9, 70.8, 70.0, 62.2, 56.7, 54.3, 49.9; HRESIMS m/z 411.1067
[M+Na]" (caled for CyoH,oNaOg, 411.1056).

Following the general procedure for the methylenedioxy cleavage of 1,
reaction of a-7 (119 mg, 0.25 mmol) and lead (IV) tetraacetate (337mg, 0.76 mmol) in
toluene (3 mL) was achieved. After extraction and evaporation, the resulting residue
was heated in acetonitrile/H,O (8:2, 3 mL) at 70°C for 3 h and purified by silica gel
column chromatography (1:1 hexane/ethyl acetate) to yield a-10 (76 mg, 72%) as a

brown oil.
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o)
HO | >Lo
HOD o
o-10

a-10; 'H NMR (CD50D, 400 MHz) & 6.80 (s, 1H, H-2"), 6.74 (d, J = 8.0 Hz, 1H, H-5"), 6.67
(d, J = 8.1, 1H, H-6), 6.53 (s, 1H, H-3"), 6.47 (s, 1H, H-6 "), 5.86 (s, 2H, H-7"), 5.27 (s, 1H,
H-2), 4.33 - 4.27 (m, 2H, H-4 and H-6), 4.11 (dd, J = 9.0, 6.1 Hz, 1H, H-8), 3.84 (brd, J =
9.4 Hz, 1H, H-8), 3.50 (dd, J = 9.2, 7.1 Hz, 1H, H-4), 2.98 (dd, J = 8.4, 8.4 Hz, 1H, H-1),
2.86 (dd, J = 7.1, 7.1 Hz, 1H, H-5), 2.24 (s, 3H, H-9"); **C NMR (CD;0D, 100 MHz) & 171.5,
146.9, 146.4, 146.1, 144.4, 141.5, 133.6, 132.9, 119.0, 116.2, 114.4, 104.7, 103.1, 102.6,
99.4, 88.6, 72.3, 70.1, 55.0, 53.6, 20.6; HRESIMS m/z 439.1001 [M+Na]* (calcd for
C1H0NaOs, 439.1005).

4.3.3 Methylenedioxy cleavage of protected lignans

To a solution of B-6e (54.5 mg, 0.14 mmol), triethylamine (49 L, 0.42 mmol)
in dichloromethane (2 mL) was added benzoyl chloride (49 pL, 0.42 mmol) and
4-dimethylaminopyridine (catalytic amount). The mixture was stired at room
temperature for 3 h. The reaction mixture was washed with water and extracted with
dichloromethane (2 mL, 3 times). The organic layer was washed with saturated
aqueous NaCl, followed by dried over Na,SO,. After filtration and removal of the
solvent under reduced pressure, the crude product was purified by silica gel column

(8:2 hexane/ethyl acetate) to obtain B-6e-1 (63 mg, 91%) as a pale yellow oil.

A mixture of B-6e-1 (63 mg, 0.13 mmol) and lead tetraacetate (170 mg, 0.39
mmol) in toluene (1.5 mL) was stirred at 90°C for 2 h. After being cooled to room
temperature, the reaction mixture was diluted with toluene and filtered through a
celite pad. The filtrate was evaporated until dryness, washed with water and extracted
with ethyl acetate (2 mL, 3 times). The organic layer was dried with anhydrous Na,SO,,
and concentrated under reduced pressure to give a mixture of crude reaction. This
mixture was then treated with amberlyst-15 (1mg/0.005 mmol of starting material) in

a mixture of acetronitrile/H,0O (8:2, 2 mL). After stirring at 70°C for 3 h, the resulting
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mixture was evaporated to dryness and purified by sephadex LH-20 column (1:1
dichloromethane/methanol) to give B-6e-2 (44 mg, 73%) as a yellow oil.

BzO
@)

OMe

HO MeO
o)
HO B-6e-2

B-6e-2; 'H NMR (CDCl;, 400 MHZ) & 8.22 (d, J = 7.2 Hz, 1H), 7.62 (m, 1H), 7.53 - 7.47 (m,
2H), 6.68 — 6.65 (m, 2H), 6.47 (d, J = 7.7 Hz, 1H), 6.42 — 6.37 (m, 1H), 6.33 - 6.28 (m,
1H), 5.02 (d, J = 6.0 Hz, 1H), 4.18 — 4.11 (m, 2H), 3.94 — 3.91 (m, 1H), 3.80 (s, 3H), 3.79
(s, 3H), 3.74 — 3.70 (m, 1H), 3.46 - 3.36 (m, 3H), 2.67 (brs, 1H).

To a solution of B-6f (47 mg, 0.11 mmol), triethylamine (47 pL, 0.33 mmol) in
dichloromethane (1.5 mL) was added benzoyl chloride (40 pL, 0.33 mmol) and
4-dimethylaminopyridine (catalytic amount). The mixture was stired at room
temperature for 3 h. The reaction mixture was washed with water and extracted with
dichloromethane (2 mL, 3 times). The organic layer was washed with saturated
aqueous NaCl, followed by dried over Na,SOq. After filtration and removal of the
solvent under reduced pressure, the crude product was purified by silica gel column
(8:2 hexane/ethyl acetate) to obtain B-6f-1 (58 mg, 96%) as a pale yellow oil.

BzO
O

OMe

OMe
0 MeO

¢ D 0
O B-6f-1

B-6f-1; "H NMR (CDCl;, 400 MHz) & 8.23 (d, J = 7.4 Hz, 2H), 7.70 - 7.64 (m, 1H), 7.55 —
7.52 (m, 2H), 6.71 - 6.69 (m, 2H), 6.55 (d, J = 7.7 Hz, 1H), 6.48 (s, 1H), 5.91 (s, 2H), 5.03
(d, J = 6.3 Hz, 1H), 4.18 (d, J = 7.4 Hz, 1H), 4.11 (d, J = 7.1 Hz, 1H), 3.93 (s, 3H), 3.87 (s,
3H), 3.85 (s, 3H), 3.75 - 3.71 (m, 1H), 3.51 (brs, 2H), 3.32 - 3.30 (m, 1H), 2.68 — 2.66 (m,
1H).
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A mixture of B-6f-1 (58 mg, 0.11 mmol) and lead tetraacetate (148 mg, 0.33
mmol) in toluene (1.5 mL) was stirred at 90°C for 2 h. After being cooled to room
temperature, the reaction mixture was diluted with toluene and filtered through a
celite pad. The filtrate was evaporated until dryness, washed with water and extracted
with ethyl acetate (2 mL, 3 times). The organic layer was dried with anhydrous Na,SOy,
and concentrated under reduced pressure to give a mixture of crude reaction. This
mixture was then treated with amberlyst-15 (1mg/0.005 mmol of starting material) in
a mixture of acetronitrile/H,O (8:2, 2 mL). After stirring at 70°C for 3 h, the resulting
mixture was evaporated to dryness and purified by silica gel column (1:1 hexane/ethyl
acetate) to give B-6f-2 (30 mg, 53%) as a yellow oil.

BzO
@)

OMe

OMe
HO MeO

0rs
HO B-6f-2

B-6f-2; 'H NMR (CDCls, 400 MHz) & 8.22 (d, J = 6.9 Hz, 2H), 7.67 — 7.66 (m, 1H), 7.52 (t,
J =17.6 Hz, 2H), 6.68 (dd, J = 5.0, 3.1 Hz, 2H), 6.48 (s, 1H), 6.46 - 6.44 (m, 1H), 5.02 (d, J
= 6.4 Hz, 1H), 4.20 (d, J = 7.7 Hz, 1H), 3.99 - 3.97 (m, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.85
(s, 3H), 3.74 (t, J = 8.5 Hz, 1H), 3.52 - 3.46 (m, 2H), 3.36 - 3.34 (m, 1H), 2.70 — 2.67 (m,
1H).

A mixture of synthesized lignan (1 equiv), tert-butyldimethylsilyl chloride
(5 equiv) and imidazole (5 equiv) in dichloromethane (1.0 mL/0.1 mmol of synthesized
lignans) at room temperature for 12 h. The reaction mixture was washed with water
and extracted with dichloromethane (5 mL, 3 times). The organic layer was washed
with saturated aqueous NaCl, followed by dried over Na,SO,. After filtration and
removal of the solvent under reduced pressure, the crude product was purified by
silica gel column chromatography (9:1 hexane/ethyl acetate) to obtain silylated

product.

Following the general procedure, reaction of a-6e (38 mg, 0.10 mmol), tert-

butyldimethylsilyl chloride (74 mg, 0.50 mmol) and imidazole (33 mg, 0.50 mmol) in
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dichloromethane (1.5 mL). After purification, the silylated product (a-6e-1, 33 mg, 67%)

was obtained as a pale-yellow oil.

TBDMSO
OMe
O LN
0 MeO
STy 2
O a-6e-1

a-6e-1; 'H NMR (CDCls, 400 MHz) & 6.88 (s, 1H), 6.83 (dd, J = 7.9, 1.7 Hz, 1H), 6.78 (d, J
= 7.7 Hz, 1H), 6.13 (d, J = 2.3 Hz, 1H), 6.02 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.31 (d, J =
6.5 Hz, 1H), 4.73 (d, J = 5.5 Hz, 1H), 4.31 (dd, J = 8.6, 6.9 Hz, 1H), 4.10 (dd, J = 9.0, 6.9
Hz, 1H), 3.84 — 3.79 (m, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.43 — 3.40 (m, 1H), 3.10 - 3.09
(m, 1H), 1.02 (s, 9H), 0.26 (s, 6H).

Following the general procedure, reaction of a-6f (144 mg, 0.35 mmol), tert-
butyldimethylsilyl chloride (104 mg, 0.69 mmol) in dichloromethane (4 mL). After
purification, the silylated product (a-6f-1, 92.4, 51%) was obtained as a pale-yellow

oil.

TBDMSO
OMe
(@)

; OMe
0 MeO
fagysie
0 a-6f-1

a-6f-1; 'H NMR (CDCls, 400 MHz) 8 6.86 — 6.77 (m, 3H), 6.16 (s, 1H), 5.95 (s, 2H), 5.18 (d,
J =7.0Hz, 1H), 4.78 (d, J = 4.8 Hz, 1H), 4.35 (dd, J = 8.0, 8.0 Hz, 1H), 4.10 - 4.06 (m,
1H), 3.90 (s, 3H), 3.87 - 3.84 (m, 2H), 3.80 (s, 6H), 3.38 — 3.35 (m, 1H), 3.18 - 3.14 (m,
1H), 1.02 (s, 9H), 0.25 (s, 6H).

Following the general procedure, reaction of a-6g (40.5 mg, 0.11 mmol), tert-
butyldimethylsilyl chloride (82.0 mg, 0.54 mmol) and imidazole (37.0 mg, 0.54 mmol)
in dichloromethane (2 mL). After purification, the silylated product (a-6g-1, 52.9 mg,

56%) was obtained as a pale-yellow oil.
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TBDMSO
OMe
O AN
O v
o
O o-6¢-1

OL-6g-1; 'H NMR (400 MHz, CDC(3) & 6.86 (s, 1H), 6.81 (t, J = 9.4 Hz, 3H), 6.42 (d, J =
8.6 Hz, 1H), 5.94 (s, 2H), 5.00 (d, J = 5.1 Hz, 1H), 4.69 (d, J = 5.7 Hz, 1H), 4.26 (dd, J =
10.9, 4.6 Hz, 2H), 3.98 (dd, J = 9.2, 4.7 Hz, 1H), 3.90 (dd, J = 9.1, 4.1 Hz, 1H), 3.79 (d, J
= 5.5 Hz, 3H), 3.21 - 3.13 (m, 1H), 3.01 (dd, J = 9.8, 4.1 Hz, 1H), 1.02 (s, 9H), 0.21 (d, J
= 5.0 Hz, 6H).

Following the general procedure, reaction of a-6h (21.8 mg, 0.06 mmol), tert-
butyldimethylsilyl chloride (52.9 mg, 0.29 mmol) and imidazole (19.9 mg, 0.29 mmol)
in dichloromethane (1 mL). After purification, the silylated product (a-6h-1, 17.4, 61%)

was obtained as a pale-yellow oil.

TBDMSO

OMe
O RN
0 HO
b
Q a-6h-1

a-6h-1; 'H NMR (400 MHz, CDCl3) & 6.81 (s, 1H), 6.77 (s, 2H), 6.11 (d, J = 2.2 Hz, 1H),
597 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.16 (d, J = 8.2 Hz, 1H), 4.85 (d, J = 3.4 Hz, 1H), 4.56
- 4.50 (m, 1H), 4.11 (dd, J = 9.4, 2.3 Hz, 1H), 3.94 - 3.89 (m, 1H), 3.77 (d, J = 7.6 Hz, 1H),
3.73 (s, 3H), 3.26 (m, 1H), 3.04 (m, 1H), 1.01 (s, 9H), 0.27 (d, J = 8.6 Hz, 6H).

Following the general procedure, reaction of a-7 (192 mg, 0.52 mmol), tert-
butyldimethylsilyl chloride (390 mg, 2.60 mmol) and imidazole (176 mg, 2.60 mmol)
in dichloromethane (3 mL) to obtain silylated product (a-7-1, 176 mg, 70%) as a

colorless oil.
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a-7-1; 'H NMR (CDCls, 400 MHz) 6 6.84 — 6.78 (m, 4H), 6.38 (s, 1H), 5.94 (s, 2H), 5.89 (d,
J=2.6Hz, 2H), 5.06 (d, J = 3.6 Hz, 1H), 4.69 (d, J = 3.9 Hz, 1H), 4.29 — 4.23 (m, 2H), 3.93
(dd, J = 9.2, 3.8 Hz, 1H), 3.87 (dd, J = 9.2, 3.4 Hz, 1H), 3.02 - 2.97 (m, 2H), 1.01 (s, 9H),
0.24 (s, 3H), 0.24 (s, 3H).

Following the general procedure, reaction of B-7 (96 mg, 0.26 mmol), tert-
butyldimethylsilyl chloride (195 mg, 1.30 mmol) and imidazole (88 mg, 1.30 mmol) in
dichloromethane (3 mL). After extraction and evaporation, the resulting residue was
purified by silica gel column chromatography (8:2 hexane/ethyl acetate) to obtain

silylated product (B-7-1, 83 mg, 66%) as a colorless oil.

OH
OH
@)
HO et
W' O S|\
HO //\
B-7-1

B-7-1; "H NMR (CDCls, 400 MHz) & 7.05 (s, 1H), 6.88 (s, 1H), 6.84 — 6.76 (m, 2H), 6.37 (s,
1H), 5.94 (s, 2H), 5.91 (s, 2H), 4.88 (d, J = 6.2 Hz, 1H), 4.34 (d, J = 7.4 Hz, 1H), 4.08 (d,
J =9.4 Hz, 1H), 3.82 - 3.76 (m, 2H), 3.45 - 3.40 (m, 1H), 3.30 - 3.25 (m, 1H), 2.87 — 2.80
(m, 1H), 1.00 (s, 9H), 0.27 (s, 3H), 0.22 (s, 3H).

A solution of silylated product (1 equiv) and lead (IV) tetraacetate (3 equiv) in
toluene (1.0 mL/0.1 mmol of protected lignan) was stirred at 90°C for 2 h under
atmospheric N,. After cooling, the reaction mixture was diluted with toluene and
filtered through a celite pad. The filtrate was evaporated to dryness and extracted by
ethyl acetate/H,0 (1:1, 3 times). The organic layers were dried over anhydrous Na,SO,4

and concentrated under reduced pressure. The resulting residue was treated with
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tetra-n-butylammonium fluoride (3-5 equiv of silylated lignans) in tetrahydrofuran (0.1
mmol of silylated lignans) at room temperature. After being quenched with water, the
resulting mixture was extracted with ethyl acetate (5 mL, 3 times). The extracts were
washed with saturated aqueous NaCl, followed by dried over anhydrous Na,SO,. After
filtration and removal of the solvent under reduced pressure, the crude product was

purified by Sephadex LH-20 column using methanol to afford desired product.

Following the general procedure, silylated product a-6f-1 (79.9 mg, 0.15 mmol)
and lead (IV) tetraacetate (200.1 mg, 0.45 mmol) were added in toluene (2 mL). After
extraction and evaporation, the resulting residue was treated with tetra-n-
butylammonium fluoride (131 L) in tetrahydrofuran (2 mL) at room temperature for
3 h. After purified by Sephadex LH-20 column, siliga gel column chromatography was
performed to yield a-11f (12.4 mg, 70%) as a brown oil and starting lignan (a-6f, 11.3

mg, 18%).
HO
OMe
(@) .
OMe
HO MeO
o
HO
a-11f

a-11f; 'H NMR (400 MHz, CDCls) & 8.60 (s, 1H, -OH), 6.87 — 6.81 (m, 2H, H-5" and H-6"),
6.73 (s, 1H, H-2)), 6.22 (s, 1H, H-3"), 5.60 (brs, 1H, -OH), 5.46 (brs, 1H, -OH), 5.11 (d, J =
7.4 Hz, 1H, H-2), 4.82 (d, J = 3.3 Hz, 1H, H-6), 4.49 (t, J = 8.5 Hz, 1H, H-4), 4.12 (d, J =
7.5 Hz, 1H, H-8), 4.03 - 4.01 (m, 1H, H-8), 3.90 (s, 3H, -OMe), 3.81 (s, 3H, -OMe),
3.80 - 3.77 (m, 1H, H-4), 3.78 (s, 3H, -OMe), 3.24 — 3.21 (m, 1H, H-5), 3.14 - 3.00 (m, 1H,
H-1); *C NMR (100 MHz, CDCls) & 153.9, 152.1, 143.9, 143.3, 135.4, 133.8, 125.2, 118.9,
115.5, 113.5, 109.2, 97.0, 84.4, 83.9, 73.0, 70.7, 61.1, 61.0, 56.0, 54.7, 53.4.

Following the general procedure, silylated product a-7-1 (134.7 mg, 0.28) and
lead (IV) tetraacetate (616.2 mg, 1.39 mmol) were added in toluene (3 mL). After

extraction and evaporation, the resulting residue was treated with



a6

tetra-n-butylammonium fluoride (291 pL) in tetrahydrofuran (3 mL) at room

temperature for 3 h to yield a-12 (29.7 mg, 36%) as a dark brown oil.

OH
OH
O “‘\©/
HO ; i
w 0O

AcO

g

HO
a-12

a-12; 'H NMR (400 MHz, CD;0D) & 6.85 (s, 1H, H-6"), 6.80 (s, 1H, H-6'), 6.75 (d, J = 8.1
Hz, 1H, H-5), 6.68 (d, J = 7.6 Hz, 1H, H-2), 6.52 (s, 1H, H-3"), 4.75 (d, J = 4.3 Hz, 1H,
H-2), 4.61 (d, J = 4.3 Hz, 1H, H-6), 4.20 (dd, J = 16.1, 9.4 Hz, 2H, H-4 and H-8), 3.81 (dd,
J = 8.8, 3.2 Hz, 2H, H-4 and H-8), 3.05 (s, 2H, H-1 and H-5), 2.27 (s, 3H, H-8"); *C NMR
(100 MHz, CD5OD) & 171.59, 146.42, 146.22, 146.07, 144.49, 141.90, 133.77, 125.36,
118.90, 116.28, 114.48, 113.75, 111.03, 87.07, 82.89, 73.08, 72.79, 55.36, 55.03, 54.77,
20.83; HRMS m/z 411.1058 [M+Na]" (calcd for C,oH,0NaOg, 411.1056)

Following the general procedure, silylated product B-7-1 (85 mg, 0.18 mmol)
lead (IV) tetraacetate (389 mg, 0.88 mmol) was added in toluene (2 mL). After
extraction and evaporation, the resulting residue was treated with tetra-n-
butylammonium fluoride (300 pL, 0.88 mmol) in tetrahydrofuran (2 mL) at room

temperature for 3 h to yield B-12 (31 mg, 45%) as a yellow oil.

B-12; 'H NMR (CD;0D, 400 MHz) § 7.02 (s, 1H, H-6 "), 6.80 (s, 1H, H-2'), 6.74 (d, J = 8.3
Hz, 1H, H-5)), 6.69 (d, J = 7.9 Hz, 1H, H-6"), 6.50 (s, 1H, H-3"), 4.75 (d, J = 5.3 Hz, 1 H,
H-2), 4.30 (d, J = 7.3 Hz, 1H, H-6), 4.03 (d, J = 9.3 Hz, 1H, H-4), 3.78-3.74 (m, 2H, H-4 and
H-8), 3.25-3.23 (m, 2H, H-1 and H-8), 2.88 (m, 1H, H-5), 2.28 (s, 3H, H-8"); °C NMR
(CD;0OD, 100 MHz) & 171.6, 146.4, 146.1, 145.8, 144.1, 140.9, 133.7, 122.6, 119.0, 116.3,



a7

114.5, 114.4, 110.7, 89.1, 79.2, 71.4, 70.3, 55.6, 50.2, 20.8; HRESIMS m/z 411.1053
[M+Na]" (caled for CyoH,oNaOg, 411.1056).



Chapter V
Antidiabetic Activity Evaluation

5.1 Antidiabetic activity evaluation of synthesized lignans

All synthesized lignans including starting lignans (1-2, 5) were evaluated for
a-glucosidase inhibition from two different sources; (1) rat intestine (maltase & sucrase)
and (2) baker’s yeast. Starting lignans (1-2, 5) showed no inhibition (ICs, more than
50,000 uM for rat intestine and more than 50,000 uM for baker’s yeast) while
synthesized lignans (a-6 and B-6) containing a phenolic moiety revealed low inhibition
(ICs5q 685.4-14,670 uM) and moderate inhibition (IC5, 25.4-400.0 uM), respectively, for
synthesized lignans containing dihydroxy moieties (Table 5.1). It is likely that o-
glucosidase inhibitory potency increases according to the number of free phenolic
hydroxy group. Therefore, removal of methylenedioxy moiety to afford
ortho-dihydroxy analogues would would express improved antidiabetic activity as well

as antioxidant property.

Table 5.1 a-Glucosidase inhibitory effect of synthesized compounds (1-2, 5 and 6)

ICsq (UM)
Entry Compounds
Maltase Sucrase Baker’s yeast

1 1 >50,000 >50,000 >10,000

2 2 >50,000 >50,000 >10,000

3 5 >50,000 >50,000 >10,000
a4 o-6a 8,239.6+14.8 14,670.2+£18.2 1,146.2+6.4
5 B-6a 7,010.0+8.4 8,520.7+10.0 1,028.4+7.4
6 a-6b 2,483.2+6.5 4,800.5+10.0 937.0+5.6
7 a-6¢ 2,149.7+8.9 3,831.2+5.6 700.4+4.0
8 B-6c 1,516.319.1 3,133.2+11.4 698.1+£3.8
9 o-6d 5,587.0+12.2 8,210.2+16.0 729.3+5.2
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Table 5.1 (Cont.) a-Glucosidase inhibitory effect of synthesized compounds (6-7)

ICsq (UM)
Entry Compounds
Maltase Sucrase Baker’s yeast
10 B-6d 2,440.2+10.4 3,300.2+9.6 715.7£3.7
11 o-6e 4,668.3+9.8 18,890.4+17.2 964.0+4.4
12 p-6e 2,987.1+£7.3 11,100.3+16.3 883.7+6.9
13 a-6f 3,358.9+9.9 3,590.8+14.8 691.6+2.4
14 p-6f 1,308.3+9.1 3,841.2+11.0 685.4+2.1
15 o-6g 150.7+0.9 180.1+1.1 32.2+1.5
16 B-6g 110.0+1.1 170.5+1.7 254+1.4
17 a-6h 380.3+3.5 340.4+1.9 56.4+1.0
18 B-6h 260.0+1.6 230.6+2.4 42.9+1.7
19 a-6h’ 350.0+5.5 400.0+5.0 53.0+2.4
20 B-6h" 210.0+2.5 200.0+3.4 40.3+1.1
21 o-7 3,439.9+10.1 6,903.2+13.6 210.3£1.2
22 B-7 1,140+8.7 4,012.3+12.7 205.8+1.1

After methylenedioxy cleavage, all synthesized lignans (3-4, 8-12) were
evaluated against o-glucosidase inhibition (Table 5.2). To clearly demonstrate the
effect of number of free hydroxy on a-glucosidase inhibition, the ICs, values of

synthesized lignans in Chapters Il and IV are compared in Figure 5.1.



Table 5.2 a-Glucosidase inhibitory effect of synthesized compounds (3-4, 8-12)
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ICso (UM)
Entry Compounds
Maltase Sucrase Baker’s yeast
1 3 170.2+1.9 190.8+3.7 21614
2 q 42.6+1.1 29.2+1.2 10.0£1.0
3 a-8d 97.0+1.2 46.6+1.3 15.9+1.0
4 p-8d 47.0+1.1 33.0+0.2 14.6+0.7
5 a-8f 96.5+1.4 110.2+1.0 23.4+1.2
6 B-8f 63.3+1.6 61.1+1.8 19.8+1.9
7 a-9c >50,000 >50,000 >10,000
8 a-10 200+7.5 165.7+5.3 30.5+3.3
9 a-11f 173.6£3.7 136.4+3.2 17.8+1.8
10 a-12 38.8+1.0 18.7+0.3 7.7+0.6
11 B-12 25.7+1.0 12.9+0.4 5.3+0.6
12 Acarbose® 1.4+0.2 3.2+0.4 147.2+0.5
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Figure 5.1 a-slucosidase inhibition of the synthesized lignans containing free hydroxy
groups (3-4, 6-7, 11-12).

Generally, a-glucosidase inhibitory potency largely depended on the number
of hydroxy groups (n) in the lignan structure. The maximum inhibitions against
a-glucosidase were observed where n was 4 (4 and 12, IC5y 12.9-42.6 uM for rat
intestine and 1Csy 5.3-10.0 uM for baker’s yeast). The inhibitory effect dropped
significantly when n was 2 and 3 (3, 6g, 6h, 6h” and 11, ICs, 110-400 uM for rat intestine
and IC5, 17.8-56.4 uM for baker’s yeast). The low potency or no inhibition was observed
where n was 1 (6a-6f, IC5, 1,140-14,670 uM for rat intestine and 1C5, 685.4-1,146.0 uM

for baker’s yeast).

To get more insight into structure-activity relationship, key functional groups
and chemical moieties affecting a-glucosidase inhibition were analyzed and discussed
in Figure 5.2 and Figure 5.3. Although the structure-activity relationship (SAR) of
synthesized compounds against three different o-glucosidases showed similar
tendency, herein the discussion on SAR of synthesized compounds against sucrase is

exemplified.
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Figure 5.2 Sucrase inhibition of the synthesized lignans containing dihydroxy moiety.
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The presence of dihydroxy moieties could generally classified into two different
types; ortho-dihydroxy and meta-dihydroxy moieties. Lignans containing ortho-
dihydroxy moiety (3 and 6g ICs, 170.0-190.0 uM) apparently exerted stronger inhibition
than meta-dihydroxy moiety (6h-6h", ICs, 200.0-400.0 uM). Accordingly, a catechol
analogue led to improve inhibition against a-glucosidase, possibly through chelating
between catechol moiety and enzymes.” The H-bonding interactions of hydroxy of
catechol group and carbonyl group of amino acid were predicted to be the
predominant interactions. Moreover, nitrogen of amino acid residues might form the
hydrogen bonds with the hydroxyl group. Herein, catechol analogues displayed the
highest potency in this experiment (ICsg 12.9-136.0 uM). Interestingly, a relationship
between conformation was further observed. The results indicated that B-product was

likely to be more potent than its epimer, a-product.
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Figure 5.3 Sucrase inhibition of the synthesized lignans (3-4, 8 and 12)

The ICso values of furofuran lignans containing catechol moiety against sucrase
are displayed in Figure 5.3. Unexpectedly, furofuran lignans containing para-quinone
moieties (8) were observed significantly high potency (ICs, 33.0-110.0 pM), however,
only para-quinone moiety on (a-9¢) showed no inhibition (ICso more than 10,000 uM).
Hence, a hydroxy unit is indispensable group of the inhibition. Moreover, 8 which
contains two hydroxy groups presented higher potency than three hydroxy groups of
a-11f (IC55 136.0 uM). This observation suggested para-quinone enhanced inhibition
against a-glucosidase. Besides, 8f (ICsq 61.0-110.0 pM) slightly decreased inhibition
compared with 8d (ICs, 33.0-46.6 uM) owing to different number of a methoxy moiety.

In addition, the presence of acetoxy unit of 12 remarkably represented
enhancing inhibition comparing with 4 (1-2 times). Therefore, the acetoxy unit plays an

important role to improve the activity.

For another type, baker’s yeast a-glucosidase, the inhibition effects were similar
to rat intestine a-glucosidase. First, the inhibition depends on the number of hydroxy
units and bearing catechol analogue revealed crucial role. Moreover, para-quinone
moiety worked synergistically (8, ICso 14.6-23.4 uM). Furthermore, B-products displayed

higher inhibition than its epimers, a-products. Finally, acetoxy unit demonstrated
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enhancing baker’s yeast a-glucosidase according to 12 that revealed the highest
inhibition (ICsy 5.3-7.7 uM). Especially, B-12 (ICsy 5.3 uM) was the most potent inhibitor
that was 28 times more active than the standard drug acarbose (ICs, 147.2 pM).

5.2 Experimental section
5.2.1 General experiment procedures

o-Glucosidase inhibition was measured on a BioRed microplate reader model

3550 UV.

5.2.2 Chemical

Sucrose, maltose, baker’s yeast a-glucosidase, rat intestinal acetone powder,
and p-nitrophenyl-a-D-glucopyranoside were obtained from Sigma-Aldrich (St.Louis,
MO, USA). Glucose assay kit was obtained from Human Gesellschaft flr Biochemica

und Diagnostica mbH (Germany). Acarbose® was obtained from Bayer (Germany).

5.2.3 Antidiabetic activity evaluation of synthesized lignans

5.23.1 Rat intestinal a-Glucosidase inhibition assay

The antidiabetic activity was evaluated using rat intestinal a-glucosidase
inhibition assay because oligosaccharides and disaccharides such as sucrose and
maltose in nature are digested by rat intestinal a-glucosidase to yield glucose. The
determination the amount of the resulting glucose can be conducted using
colorimetric technique. Briefly, hydrogen peroxide (H,0,) produced after oxidation of
glucose by slucose oxidase oxidizes phenol to p-quinone, which is immediately
coupled to 4-aminophenazone, in the presence of peroxidase, to form purple solution
of quinoneimine (Scheme 5.1).* Thus, the inhibitory effect of the synthesized
compounds against rat a-glucosidase was quantified by measuring the absorbance of

quinoneimine formed (503 nm). Acarbose® was used as the standard control.
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Scheme 5.1 Colorimetric technique for the determination of glucose.

o-Glucosidase (rat intestinal maltase and sucrase) inhibitory activity was
determined according to our previous report.* The synthesized lignans (1 mg/mL in
DMSO, 10 pL) were added to 0.1 M phosphate buffer (pH 6.9, 30 pL), the substrate
solution (maltose: 10 mM, 20 yL; sucrose: 100 mM, 20 pL) in 0.1 M phosphate, glucose
assay kit (80 pL) and crude enzyme solution (20 pL). Then, the reaction mixture was
incubated at 37°C for 10 min (maltose) and 40 min (sucrose). The absorbance of
quinoneimine was measured at 503 nm. The assay was performed in triplicate, and
Acarbose® was used as a positive control. The inhibition percentage was calculated
according to [(Ag — A))/Aq] x 100, whereas A is the absorbance without the sample (A)
and with the sample (A;). The ICs, value was estimated from a plot of percentage

inhibition and sample concentration.

5.2.3.2 Baker’s yeast a-glucosidase inhibitory activity

To approve a-glucosidase inhibitory activity, baker’s yeast a-glucosidase
inhibition assay was performed using colorimetric technique to determine the amount
of the resulting glucose. Briefly, yeast oa-glucosidase hydrolyzed the substrate p-
nitrophenyl-a-D-glucopyranoside, colorless solution, to produce p-nitrophenol and
glucose.
p-Nitrophenol was observed as yellow solution (Scheme 5.2). Thus, the inhibitory
effect of the synthesized compounds against yeast a-glucosidase was quantified by
measuring the absorbance of p-nitrophenol formed (405 nm). Acarbose® was used as

the standard control.
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Scheme 5.2 Hydrolysis by yeast a-glucosidase.

The baker’s yeast a-glucosidase inhibitory activity was determined according
to Wacharasindhu’s method.*! The synthesized lignans (1 mg/mL in DMSO, 10 pL) were
added to a-glucosidase solution (0.1 U/mL, 40 pL) in 0.1 M phosphate buffer (pH 6.9,
50 uL). Then, the reaction mixture was incubated at 37°C for 10 min. The substrate
solution (1 mM p-nitrophenyl-a-D-glucopyranoside, 50 ulL) in 0.1 M phosphate was
added to the reaction mixture and incubated at 37°C for further 20 min. The reaction
mixture was terminated by adding 1 M Na,CO; (100 pL). The absorbance of
p-nitrophenol was measured at 405 nm. The assay was performed in triplicate, and
Acarbose® was used as a positive control. The inhibition percentage was calculated
according to [(Ag — A)/As] x 100, whereas A is the absorbance without the sample (A)
and with the sample (A;). The ICs, value was estimated from a plot of percentage

inhibition and sample concentration.



Chapter VI

Kinetic study and a possible mechanism

6.1 Kinetic Study

To provide some insights into the mechanism of inhibition, efforts were made
to analyze kinetic study by constructing Lineweaver-Burk plot.* The kinetic
parameters were determined by varying the concentration of the substrates of rat
intestinal (maltose and sucrose) and yeast (pNPG) a-glucosidase in the absence and

presence of glucose.

Of synthesized lignans, B-12, a-12, 4 and a-8d represented the most potent
inhibitor of each group (Figure S116-118).
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Figure 6.1 Lineweaver-Burk and secondary plots for inhibitory activity of B-12 against

A) maltase, B) sucrase and C) baker’s yeast.

Although B-12 was the most potent against all a-glucosidases, its results
revealed different types of inhibition. In Figure 6.1A, the intersection on the X-axis was
observed allowing the identification of a non-competitive against maltase. Meanwhile
the intersection on the second quadrant was obtained in Figure 6.1B and Figure 6.1C.

The inhibitory type against sucrase and baker’s yeast of allowing mixed inhibitory type
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against maltase, sucrase and baker’s yeast, respectively. The results indicated that

B-12 could work in different types depended on enzymes.

Kinetic experiments were conducted to validate the simulation results and to
obtain data regarding the functions underlying the binding of inhibitors (I) to
a-glucosidase (E, enzyme) and substrates (S). In this experiment, the behavior of
inhibitors could be indicated through two different pathways; forming enzyme-inhibitor
(El) complex and interrupting enzyme-substrate (ES) complex by forming
enzyme-substrate-inhibitor (ESI) complex. The value of the dissociation constant for
the El complex (K) of maltase-B-12 was 28.4 pM, presumably K = K due to
non-competitive inhibition (Figure 6.2A). Meanwhile, mixed inhibition revealed K; of
sucrase-B-12 was 11.6 uM and K;" of sucrase-sucrose-B-12 (ESI) complex was 18.5 uM
(Figure 6.2B). The smaller value of K indicated that sucrase was predominantly inhibited
by pathway of the EI complex over the ESI complex. Similarly, baker’s yeast
o-glucosidase was also predominantly inhibited by pathway of EI complex

(Figure 6.20Q).
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Figure 6.2 Putative mechanism pathway of B-12 for A) non-competitive inhibition
against maltase. B) mixed inhibition against sucrase. C) mixed inhibition against

baker’s yeast a-glucosidase.

The inhibiton types, K; and K" of furofuran lignans (B-12, a-12, 4 and a-8d)

against rat intestinal and baker’s yeast a-glucosidases are summarized in Table 6.1.

Table 6.1 Inhibition types and kinetic parameters of B-12, a-12, 4 and B-8d on

a-glucosidases

Compounds

B-12 a-12 4 0.-8d

Inhibition types | Non-competitive | Non-competitive Mixed Mixed
Maltase Ki (LM) 28.4+0.95 31.6+£1.10 19.9+0.82 67.8+1.68
K (uM) - - 40.1+1.48 93.7+1.12

Inhibition types Mixed Non-competitive Mixed Mixed
Sucrase Ki (uM) 11.6+0.80 18.6+0.66 15.1+0.75 34.2+0.95
K" (M) 18.5+1.03 - 39.9+1.06 62.7+1.04

Inhibition types Mixed Mixed Mixed Mixed
Baker’s yeast Ki (MM) 6.9+0.76 10.1£1.27 9.1+0.57 15.6+0.50
K (uM) 10.4+0.51 19.6+1.31 16.5+0.60 59.7£1.25

Although some inhibitors presented the different types of inhibition, all
inhibitors bound to enzyme at the binding site. While, the inhibitory type of Acarbose®

was reported to be a competitive which bound to enzyme at the active site.*?
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For biological activity results, the hydroxy moiety on phenolic group, specially,
catechol analogues played an important role to enhance antidiabetic activity.
Furthermore, stereochemistry at C-2 and acetoxy unit revealed slightly effecting to
inhibition against a-glucosidases. Another inhibitor, para-quinone, might work together
with catechol moiety to improve the activity. Although all furofuran lignans containing
phenolic moieties were able to inhibit a-glucosidases, the mechanism of each inhibitor

could be different pathway.

6.2 Experimental section
6.2.2 General experiment procedures

o-Glucosidase inhibition was measured on a BioRed microplate reader model

3550 UV.

6.2.3 Chemical

Sucrose, maltose, baker’s yeast a-glucosidase, rat intestinal acetone powder,
and p-nitrophenyl-a-D-glucopyranoside were obtained from Sigma-Aldrich (St.Louis,
MO, USA). Glucose assay kit was obtained from Human Gesellschaft flr Biochemica

und Diagnostica mbH (Germany). Acarbose® was obtained from Bayer (Germany).

6.2.4 Antidiabetic activity evaluation of synthesized lignans

Antidiabetic activity evaluation were performed using the methodology

described in section 3.3.4

6.2.5 Kinetic study

The kinetic parameters, maximum reaction rate (V,,,,) and Michaelis constant
(K.), were calculated by Lineweaver-Burk linearization by varying the concentration of
the substrate (maltose, sucrose and pNPG) in the absence and presence of glucose.
The value of the dissociation constant for the enzyme-inhibitor complex (K;) and the
dissociation constant for the enzyme-substrate-inhibitor complex (K;) for glucose were

calculated from the secondary plots.

The Lineweaver-Burk equation in double reciprocal form can be written as:

1 K, 1 1

= +
VO Vmax [S] Vmax
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Secondary plots can be constructed from

Vmax VmaxKi
, 1 (1]
Y —intercept = +

Vinax  0Ki'Vinax

o-Glucosidase (rat intestinal maltase and sucrase) inhibitory activity was
determined according to our previous report™. The synthesized lignans (1 mg/mL in
DMSO, 10 pL) were added to 0.1 M phosphate buffer (pH 6.9, 30 pL) with increasing
concentrations of the substrate solution (maltose: 0.5-8 mM, 20 pL; sucrose: 5-80 mM,
20 pL) in 0.1 M phosphate, glucose assay kit (80 pL) and crude enzyme solution
(20 pL). Then, the reaction mixture was incubated at 37°C for 10 min (maltose) and 40
min (sucrose). o-Glucosidase activity was measured at 503 nm. The assay was

performed in triplicate, and Acarbose® was used as a positive control.

The baker’s yeast a-glucosidase inhibitory activity was determined according
to Wacharasindhu’s method?!. Briefly, the synthesized lignans (1 mg/mL in DMSO, 10
uL) were added to a-glucosidase solution (0.1 U/mL, 40 pL) in 0.1 M phosphate buffer
(pH 6.9, 50 yL). Then, the reaction mixture was incubated at 37°C for 10 min. The
increasing concentrations of the substrate solution (0.2-1 mM p-nitrophenyl-a-D-
glucopyranoside, 50 pL) in 0.1 M phosphate was added to the reaction mixture and
incubated at 37°C for 20 min. Terminating the reaction mixture by adding 1 M Na,CO,
(100 pL). a-Glucosidase activity was measured at 405 nm. The assay was performed in

triplicate, and Acarbose® was used as a positive control
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Conclusion

This research represents the first synthesis, a series of furofuran lignans
containing multiplephenolics (6-12). The starting materials named sesamin (1) and
sesamolin (2) were obtained from sesame seed oil though saponification followed by
chromatographic separation. Sesamolin (2) was subsequently converted to more
reactive lignan named samin (5), which is a versatile building block in synthesis of
desired lignans. A series furofuran lignans having different substituents at C-2 of
furofuran core structure (6-7) were synthesized through Friedel-Crafts reaction by
coupling of 5 and phenolic compounds under acidic condition. The desired products
were afforded in form of a- and B-products due to the planar of oxocarbenium ion.
This methodology offers an alternative route for synthesis furofuran lignans containing
mutiphenolic moieties in good yields compared with the previous synthesis. Moreover,
this work also introduced the method that could instantly distinguish the a- and
B-products. using 'H NMR data. After a series 6 and 7 were evaluated for antidiabetic
activity using a-glucosidases, it is likely that a-glucosidase inhibitory potency increases

according to the number of free phenolic hydroxy.

A key inhibition was observed in furofuran lignans having ortho-dihydroxy unit
or catechol moiety, which was generated by removal of methylenedioxy unit through
oxidative reaction using lead (IV) tetraacetate. Unexpectedly, some furofuran lignans
containing free hydroxy produced para-quinone moiety under oxidative condition.
Therefore, protection of free hydroxy group by silylation reaction using
tert-butyldimethylsilyl chloride was introduced to maintain hydroxy moiety and
afforded the desired catechol moiety. All synthesized lignans were subsequently
evaluated for a-glucosidases inhibition. In this experiment, furofuran lignan containing
tetraphenolics (4 and 12) showed the most potent inhibition against a-glucosidases
(ICsp 5.3-42.6 UM). The observation suggested critical scientific clues that having more
phenolic groups especially catechol unit required for the more potent inhibition
against a-glucosidase. Meanwhile, acetoxy group could slightly improve activity.

Moreover, B-products generally showed more potent inhibition than the a-anomers.
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Although the presence of para-quinone unit alone in furofuran lignan structure
revealed no inhibition, the presence para-quinone and hydroxy moieties together
could significantly enhance inhibition. Hence, para-quinone moiety worked

synergiscally in new a-glucosidase inhibitors.

Our findings also provided an insight into the mechanism of a-glucosidase
inhibition by particularly active compounds using kinetic studies. The observation
suggested that they inhibited the enzymes by non-competitive and mixed inhibition.
It could be implied that the all structures of active compounds fit well into the binding
site of enzyme while Acarbose® interacted enzyme at the active site. As the results,
the synthesized furofuran lignans could represent a new class of promising compounds

that have the potential for diabetes therapy applied together with Acarbose®.
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Figure S104. HSQC experiment of a-11f (CDCLs)
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