MULTI-PATHS QUEST GENERATION FOR STRUCTURAL ANALYSIS

Mr. Thongtham Chongmesuk

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2018

Copyright of Chulalongkorn University

ANTRSNLANANANENINABNANUTLARFALTASAR1N AT

UIEIHI599HN AIHF

ﬁmmﬁwuéﬁﬂumwfiwmmiﬁﬂHﬂMﬂuuﬁﬂQMEﬁmmﬂﬁmmwmamumﬁmﬁm
A11NTNIAINITNADNNILADT NAITIIAINIINADNNALADT
AMYAAINITNANANT QWNAINTDINMAINENAE
tnng@ine 2561

-

A1ANTVRI9AINIAINUINENAY

Thesis Title MULTI-PATHS QUEST GENERATION FOR STRUCTURAL

ANALYSIS
By Mr. Thongtham Chongmesuk
Field of Study Computer Engineering
Thesis Advisor Assistant Professor Vishnu Kotrajaras

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of

the Requirement for the Master of Engineering

Dean of the Faculty of Engineering

(Professor SUPOT TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman

(Associate Professor Setha Pan-ngum)

Thesis Advisor

(Assistant Professor Vishnu Kotrajaras)

Examiner

(Assistant Professor Sukree Sinthupinyo)

External Examiner

(Assistant Professor Jaratsri Rungrattanaubol)

59699 AINGT | NIFTAENAIEMNReNAMTUARTAaTaaun laTd. (MULTI-PATHS
QUEST GENERATION FOR STRUCTURAL ANALYSIS) A.ENEHUAN : WA mﬁwm

TARFa5a

sruuaiAadn lulEn Ll lasaaiamnalulaqiiuiuiidaandn Ae szuuldaunsoiieu
o da y - o oy . o -
winunianazuondesuuulawniia dadunuiinisnszinvediauenagdanansznuiiainlifisann
NNIRBUANBNLNFBLHaITaNNN 1Y tagnaenat luan ugi llannsnauld wanannil szuudaly

gnungnszulfdpnanaiieariasau lFvansia

Tudnentinusi lassainsaanldnisnssindudmanagniddeuliidulasa’wnca
‘ﬂl v o U 1 d’l v v o 1
ndanuzraunuidudwunalnediaslingunsuda Wenrevaragnaiesisaniniilaseiiumg
g TN AT U LAY UL TMAUATRINIFAYANNABLe T LTed e M LA T WA A0

z o > e S e A I «
aniusruuanueReulsanysniazaiegaunnaisdsinedoadasiulilifinaagnden syuu
dnanuaarianisanaasnsiaulunuianiszionfesuulawnie svuuazdiasisivngluuunas
{ ¥

gaen1snszniluld lBiNendnRnEun1aniauainnn Mauang b

al

oy N Y o o ° A %
AN Ma 01wz RN RN AN NN AUA LT ULRN 88N NAR N1z wI AR e N
wuulaundA sruudnaNAgAUNLEEN9N A9 N1 599N uaauTinvanadunFeuiiald Usx lamd
v = d‘ Y O o < v al % d‘ ¥ o
ananiazuanfasuuulauniiaieliiniioadiizaliansian scuunlfdiaueainsnussg
imnszasAuazannsoin i didulaseliinuandsdese o Wl enelsfinig szuusasanuiidnglu
o al [~3 £ dl = v = d"/ n’/’ 1 £ dl
inNAawieantaefiasanazuudymdouanssouy nsAneauiiludusallaandiuldinag

WAUNANTIOUZBITE UL hazil5Ufassuunasszuuataasni Ifanrsa Miumnudanndiael 1

AU AAINTTNANNUADT AVIHDTDTRB ..o

dnsdnmen 2561 ANUNDTD B.NUTAIAN oo,

5970176521 : MAJOR COMPUTER ENGINEERING
KEYWORD: Procedural content generation, quest generation, game state, commercial game,
dynamic game world
Thongtham Chongmesuk : MULTI-PATHS QUEST GENERATION FOR STRUCTURAL

ANALYSIS. Advisor: Asst. Prof. Vishnu Kotrajaras

Existing quest generation systems that used quest structures had an important
limitation. They were not compatible with dynamic environment games, where player actions may
have unforeseen repercussion from chain-reaction, such as locking the quest or preventing it from
being completed. In addition, quests generated by such systems were not guaranteed to have

multiple completion paths.

In this thesis, action-based-objective quests were replaced with game state-based-
objective quests, while retaining the previous grammar rule. Each quest’'s contents and objectives
were filled using Token system and Full Condition State system to ensure the connectivity within
the quest’s contents and to prevent players from locking the quest. The Quest Query system
simulated a dynamic environment game. It analysed every combination of player’s possible action

to discover how many paths the player could complete the quest.

The state-based objectives were compatible with dynamic environment simulation. The
query system discovered paths that used multiple steps of planning, including using the dynamic
environment to complete the quest. The proposed systems functioned as intended and could be
used as a framework for further studies. However, the simulation only used a small number of
objects because of performance issue. Further study is advised to focus on improving the

performance of the systems and applying the systems and its simulator to commercial products.

Field of Study: Computer Engineering Student's Signaturecccoceviiiiienns

Academic Year: 2018 Advisor's Signaturecccceveveeieeenne.

ACKNOWLEDGEMENTS

fawidn reveunseAuidaAansanse as. uny Tansada TaduanansdniBnundnenfinug

¥ v v
a o

Tt GLALHAUUEI AT TUUELWINIINITIRE SINTIADETILATIAABLAALNNIBIFANN]AUNTEINNUIETY
alyo =3 % = a o q” d’l ' o @ 1% | A e
Ha3al5k0es vudddullazliannsnddaliiaaninilsmaainanindasinaaaasanansd

wanwileainenanseisnuds damidnre1euAMANZNITNNIT A.AT.LATHEY UNUN NA.AS.

o a a a

o A on vy = a0 afy o &
aFads fainugua waz wA.ag.qne Augdnylny §lATuuamielunadauenuiddan ey saltan

]

filaurenaureunszAns a1 uaz 119a0 1e3diamidn JlAaeguardadinaiuayunisinm

al

k4 v v ¥ o o v a
geu §ilinlavazpeeliinnadlagiaeulnanaanun

1 =

2010UNITANIAITANAEIIAIN IRl INenaE §lAUseanssrarvdaiun@iauauiingng

ANNAINITINENAEN AR E HAud1Faqa0ls

£
=2 o

i Sy oy . o = = < -
°1I’ﬂ°1|’ﬂ‘1_lQMLWQ‘L‘LLLﬂzwu@Qi‘QNM@QLLZ\]ﬂLL‘M\W]ﬂ@ﬁu@'LILL']J@ W ANUEIAINTTNANERT f«gWﬁmmm

wwanenae fliaunsiuazdaamaeianauiilaloymimiadanaiia uazdawaalunisaiuenans

(2
o =3

' o :/J a a o Yy =
AN IANHURE @uﬂﬁ‘&’%dﬂﬂu’]@ﬂu@’]Lﬁ"ﬂllﬁﬂ']ilﬂ

anvinefifiaurnveseunm arlatng nls (BT KER) srusesnmiieussiunialali

|
A 1

I GuAneeuidullifeany luguzresdenaiunsaanzesn ii@eguaiunsnian s audanidn

= dy
HINA W

Thongtham Chongmesuk

Vi

TABLE OF CONTENTS

... ii
ABSTRACT (THAI ettt ii
.. iv
ABSTRACT (ENGLISH) 1.ttt iV
ACKNOWLEDGEMENTS ...ttt ettt ettt nee e v
TABLE OF CONTENTS ..ottt ekttt Vi
1 INETOAUCTION. e et 2
L O] o3 =Te1 11 OO 3
1.2 SCOPE OF WOTK oo 3
2. RElAtEA TREOTIES ...iiiiiiiiiee et 5
2.1 Computer Role-playing Games and QUESTc..vviviiii i, 5
2.2 QUEST ..o I T e 5
2.3 Procedural Content Generation (PCG)cuuvee i, 6
2.4 Structural analysis Of QUEST........coiiiiiiie e 16
2.5 Dynamic Game ENVIFONMENToiiiiiiiiiee e 17
3. REIAIEA WOTKS ... 20
3.1 Structural Analysis / Grammar APProachccvevviiieeeiiieee e 20
3.2 Static quest in Generated game WOloooviiiiiiiii i, 23
3.3 Dynamic and Nondeterministic QUESEScoovuviiiiiiii e, 24
3.4 Quest Monitoring and Adaptation ... 28

3.5 Quest Management and Evaluationcccooiiiiiiiii i, 30

Vi

3.6 GameEState QUEST... ..o 34

T Y =TigToTe o] o1 Y SRS PPPPPPRR 36
A1 OVEIVIEW .ttt ettt ettt ettt e ettt e e e 36
411 QUEST STTUCTUIE ..ot 36

4.1.2 Proposed Method OVEINVIEW:coiiiiiiiiiii, 40

4.2 Action Rule table ModifiCationoooiiiiiiii e 41
4.2.1 New Action Rule table = Component Tableccccccvviiiiiiiiiiiiiiii, 44

4.3 MethodOlOogY ...ccooeeeeeee e 48
4.3.1 Creating blueprint for different type of quest. ..., 48

4.3.2 QUEST GENETALION 1.ttt 48

4.3.3 TOKEN weeevereeenss e R A e b Sl e e e s e e e s e e e s s n e s semren e e s smrenee s 51

4.3.4 Obtaining RestriCtion Stateoveiiiiiiiiiiece e 55

4.3.5 Obtaining Full Condition Statecccoiiiiiiiiiieeee e 60

4.3.6 Checking for impossible QUESTccociiiiiiiiiii e 61

4.3.7 Path Finder / QUest ANalySING....uuiiiieee i 62

4.4.8 Avoiding iNFINITE 100D ..vveie ettt 67

5. RESUIT @NA ANGIYSIS 1.ttt 71
5.1 RESUIL e 71
5.2 COMPAIISON ...ttt ettt e e e e et e e e e e e e 74
5.2.1 Measurement and Evaluation Calculationccccooviiiiiiniiiiie 7

5.3 PatN @NalY SIS, .uuuiiiiiiiiiiiiiii 79

B, SUIMIMIAIY ottt e e e e et e e e e e e e et a e e e e e e e et a e e e e e e e e aaees 101

T FUTUIE WV OTK e e e e 104

viii

13504 (NMw1lne)
1599 (N1W1DINOY)
vualag
UUTEANN
Nnanans

Y
ARV

AL

dn1uNfnce

219158NUSnwN

AEfAny (nwine)

AR (N1¥1B9NAY)

Angninwus

(THESIS)
AMSES1LAIEVANENEBNE NS UARS AR U badd
Multi-Paths Quest Generation for Structural Analysis

WNYFIFTTU Ay

5970176521

AMINISUFERTUIUMAR (N2)
AAINTTUADURNADS

IINTTUAIANS PAIDINTAUING Y

45 GUINYTENBY 50 AUULNYITAY WYIFUNII
LWRNBLATEY ANL. 10160

097 995 0515
Thongtham.th.Chongmesuk@gmail.com
thongtham.c@student.chula.ac.th

HPLAT. 3wy 1ANSITE

nsasllomegrednludimeisnsiduduneu nsadna
NMIHAALERIWITR an Ui 1NNINT g lud s alvg

lanvesnumdunain

Procedural Content Generation, Quest Generation,

Game State, Commercial Game, Dynamic Game World

1. Introduction

Quest is one of the essential parts of Role-playing Games (RPG) genre. Quest
informs players about what has to be done for the quest/story to go forward. Quest
also records its state and recognizes when players had performed the required tasks.

Many computer RPG games’ quests are too restrictive on what players can do
to move the quest/story forward. They have very limited choices/paths to choose
from. Still, building quests with multiple paths take a lot of design and development
time. Thus, developers resort to do many single-path quests instead.

The lack of multi-path quests can affect replayability of games. Players
usually get bored when playing any same type of quest for the second time since
every action that must be done remains the same.

Developers also try giving only a goal state for a quest to allow players to
discover the way to achieve the goal by themselves. However, in many cases there
are usually only 1 specific action or a set of actions designed by developers that is
guaranteed to lead player to that specific goal state. Other sets of actions that can
finish the quest may or may not exist at all.

In order to deliver varied experience for each individual player, procedural
quest generation (PQG) was proposed. PQG was a subset of procedural content
generation (PCG), a system which created game contents automatically and non-
deterministically. The main purpose of PCG is to present players with contents that
change every time a game is played.

Still, current commercial PQG (in game such as Elder Scroll Skyrim [1], Fallout
4 [2]) generates quest by combining multiple pre-scripted single-path parts together
to create a new linear quest. This guarantees that the generated quests are always
consistent. But it limits the flexibility of player actions and quests content. The
system is able to generate unique quests, but it cannot guarantee freedom of action
of players on how to complete the quests.

This thesis introduces game state (or GameState) checking and action resolver
into the quest generation which uses structural analysis. This new system replaces a

part of quest generation that is responsible for generating a list of tasks/actions

(paths) a player character has to perform in order to reach a quest complete
condition.

The new system can determine exactly how many paths a player can
actually take to reach the same quest complete condition. The ability to measure
player freedom of action should allow the quest generation system to generate
quests with higher flexibility without compromising the integrity of the generated
quests. The whole system will be called as Multi-Path Quest Generator, or MPQ-
Generator.

Different players have different preferences and take different levels of
enjoyment from a certain type of action. With increase in freedom of action on how
to complete a quest, the quest has higher potential to entertain players due to
higher possibility that players can find actions that give them maximum enjoyment.
The new algorithm developed in this proposal aims to introduce a new tool and

knowledge which can be implemented into commercial games.

1.1. Objective

® This thesis aims to develop a quest generation system that considers dynamic

aspect of the game and generate quests around it.

® The quest generation system will use new quest structure that can work with
dynamic environment system while retaining the advantage of Grammar

Approach.

® The quest generation system can generate quests with specific number of

completion paths according to user configuration.

1.2 Scope of Work

® The MPQ-Generator will only focus on Non-Player-Character (NPC) to Non-
Player-Character interaction. not NPC-to-Environment interaction. An example
of NPC-to-Environment interaction is in stealth game where NPC will know
that a player has murdered a character when the body (which is now an

environment object) is found by it or another NPC.

® MPQ-Generator does not consider current active quest during quest path
finding. This means that information such as “by doing Path-A to complete
quest X, quest Y will also be completed alongside it” is not available in the
path’s information.

® The generated quests are tested in a simulator, not in actual commercial
games.

® Quality improvement will not be applied to the generated quests.

2. Related Theories

2.1 Computer Role-playing Games and Quest

Role-playing Games (RPGs) is a game genre that originated from pen and

¢

paper fantasy wargame. The term ‘role-play’ can be tracked back to historical re-
enactment or ‘“Theatre Game’ where each actor had to act and improvise based on
the character the actor was ‘role-playing’. In RPGs, players control character (one or
multiple) to explore the game world and interact with it. One of the main goals of
RPGs is to ‘interact’ with the game world and observe how the game world reacts to
players’ actions.

The term RPGs can also be used to a describe a game which has a
progressive development mechanic in player’s character ability and equipment; such
as unlocking an ability to fly or upgrading weapon to deal higher damage.

RPGs’ main element is narrative, exploration, strategic planning, and deep
character interaction, rather than combat or precision timing. However, other genres
may implement RPGs element to create sub-genre. For example, Action-RPGs such
as Dark Souls series emphasize real-time combat, and strategy-RPGs such as Final
Fantasy Tactics series and Crusader King series emphasize planning and actually play
closer to chess.

The narrative of RPGs’ story can be dynamic or static based on game story
design. However, most RPGs’ stories have a main storyline which the whole narrative
revolves around. This could be ‘saving your kingdom from Alien invasion’, ‘seeking

your missing parent’, or ‘revealing the mystery of a certain anomaly’.

2.2 Quest

Quests in computer games comes in many definitions depending on context,
focus, and type of game. Quests in RPGs and First-Person-Shooters are different.
Similarly, quests in Adventure games and Platforming games are different. In this
thesis, a quest is defined as “the array of soft rules that describes what the player
has to do in a particular storytelling situation” [3]. A quest has the following

properties.

® Storytelling: A quest must be based on motivation or narrative

background within the game world.
® Obstacle: Task(s) must be completed to finish a quest.

® Reward: Finishing a quest will give reward to the quest-receiver, be it

item or story advancement.

Story-wise, quests can be categorised into 2 groups, main-quest and side-
quest. A main-Quest revolves around the ‘main’ storyline of the game, while a side-
quest usually revolves around sub-plot or something completely non-related to the
story. Gameplay-wise, quests can be categorised into 9 groups [4]. Kill Quest, Loot
Quest, Gathering Quest, Boss Kill Quest, Escort Quest, Interaction Quest, Exploration

Quest, Delivery Quest, and Defend Quest.

2.3 Procedural Content Generation (PCG)

Procedural Content Generation (PCG) is a system which creates contents for
player consumption automatically as players play the game. The content can be
generated by selecting a static pre-determined object, or combining multiple objects
together to create a more unique content. The content can range from new items,
new enemies, new non-playable characters (NPC), new abilities, to new areas. An
example of PCG is map randomizer in Spelunky [5]. Shown in Figure. 1 are multiple
maps of Spelunky. A map will be generated when players finish a level and enter the
next level. Each player will encounter different maps even when he/she enters the

same level (Jungle in Figure.1).

Figure. 1: A collection of maps generated for Spelunky’s jungle area. Bottom right

map (4) is taken from the classic graphic version. Images taken from
(1: http://spelunky.wikia.com/wiki/The Jungle/HD [6])

(2: http://spelunky.wikiam.co/wiki/Black_Market [7])
(3:https://www.reddit.com/r/spelunky/comments/
521rgl/looking for highres_images of full levels/ [8])

(4: http://spelunky.wikia.com/wiki/Restless Dead level [9]).

PCG allows games to create a ‘unique’ experience for each individual
player using the random nature of PCG, thus it increases the replayability and values
of those games. PCG also reduces the burden of game developers by lowering the
amount of manual labour the developers have to do.

Procedural Quest Generation (PQG) is a subset of PCG and can be

generalised into 2 categories, space and plot automation. Figure. 2 shows 4 different

http://spelunky.wikia.com/wiki/Restless_Dead_level

styles of generation from these categories, taken from B.Kybartas and R. Bidarra’s “A
survey on story generation techniques for authoring computational narratives” [10].

Space includes game world objects and environments, such as items, NPCs,
geometry of the game world, weather, and such. Low space automation may result
in only variety in enemy placement or randomness in reward from treasure chests.
High space automation may generate a whole city with random NPCs for players to
explore and perform tasks to complete a quest.

Plot is the non-tangible part of content which dictates how the player and
the tangible part interact with each other. Using an assassination event in a storyline
as an example, low plot automation may randomize only the place the murder
happens. Medium automation may vary the way the assassination is committed, but
the assassination happens nonetheless. Hish automation may result in an event that
the victim actually survives and changes the story that happens afterwards.

The level of each type of automation, space and plot, can be used to
identify the type of content that could be generated from the PQG system. PQG can
be used in a wide range of genres and narrative styles. Table. 1 and Figure. 3 to
Figure 15 show a few examples of games which implement different levels of

automation, together with their screenshots.

(automatic) |

Automated
Space

Constrained

Space

Space
Simulation

Space Automation

Space
Modification

i uthoring
Space on II)
0 Manual Plot Plot Constrained Automated T (o 0matic)
(manual) Plot Structure Template Plot Plot
Plot Automation

Figure. 2: Graph taken from B.Kybartas and R. Bidarra, “A survey on story generation

techniques for authoring computational narratives” [10].

Table. 1: List of Games with different level of automation according to Figure. 2’s

graph.

Space Generation Story Generation
-Spelunky [5] -Dwarf Fortress [13]
-Neo Scavenger [11] -Rimworld [14]

-Renowned Explorers: International

Society [12]

Manual Authoring Plot Generation

-The Witcher 3: Wild Hunt [15] -Mount&Blade Warband [18]

-Nier: Automata [16] -Middle Earth: Shadow of Mordor [19]
-World Of Warcraft [17] -The Elder Scroll:Skyrim [1]

-Fallout 4 [2]

10

Screenshot of games in Space Generation Category

Figure. 3: A screenshot of Neo Scavenger, a turn-base simulation role-playing game.

Image. downloaded from http://bluebottlegames.com/games/neo-scavenger [20].

Figure. 4: A screenshot of Spelunky, a real-time action-platforming game. Image

downloaded from http://www.spelunkyworld.com/images/spelunky-ss01.jpg [21].

11

Figure. 5: A screenshot of Renowned Explorers: International Society, a turn-base
tactical role-playing game. Image downloaded from

http://renownedexplorers.com/#screenshot-ec-2 [22].

Screenshot of games in Manual Authoring Categor

Figure. 6: A screenshot of The Witcher 3: Wild Hunt, an open world role-playing game.
Image downloaded from

https://gamesdb.launchbox-app.com/games/images/15977 [23].

12

Figure. 7: A screenshot of Nier: Automata, an action-RPG. Image downloaded from

https://www.niergame.com/gb/ [24].

Figure. 8: A screenshot of World of Warcraft, a massively multiplayer online RPG
(MMORPG) by Activition-Blizzard.
Image downloaded from http://www.pcgamer.com/what-we-want-from-world-of-

warcraft-in-2017/ [25].

Screenshot of games in Story Generation Category

bronze lo

Len Ishasespir Speed: 1234 W
he Trampled Fields A: rope reed

Figure. 9: A screenshot of Dwarf Fortress’s text-based graphic, a semi-real-time

strategy simulation game. Image taken from

of

Figure. 10: A screenshot of a user modification of Dwarf Fortress’s graphic engine to
render an isometric 2.5D graphic. Image taken from

https://www.polygon.com2014775877073dwarf-fortress-3d-mod [27].

14

Figure. 11: A screenshot of Rimworld, a semi-real-time strategy simulation game.
Image downloaded from https://rimworldgame.com/images/screens/megacolony.jpg
[28].

Screenshot of games in Plot Generation Category

iure. 12: A screnshot of Mount&Blade Warband, a medieval simulation roLe—playing
game. Image downloaded from
https://www.heypoorplayer.com/2016/10/01/mount-blade-warband-gets-feature-
video/ [29].

15

Figure. 13: A screenshot of Middle Earth: Shadow of Mordor, an action-RPG. Image
downloaded from https://segmentnext.com/2014/09/30/understanding-nemesis-
system-in-middle-earth-shadow-of-mordor/ [30].

Screenshot of games in Plot Generation Category

Figure. 14: A screenshot of The Elder Scroll: Skyrim, a role-playing game. Image

L = —

downloaded from https://www.digitaltrends.com/game-reviews/the-elder-scrolls-v-

skyrim-review/ [31].

16

Figure. 15: A screenshot of Fallout 4, a shooting role-playing game. Image downloaded

from https://www.gamecrate.com/fallout-4-radpacks-horrors-commonwealth/13791f [32].

From Table. 1, Notable examples of PQG are “The Elder Scroll: Skyrim” and
“Fallout series”, which use ‘Radiant Al’ from Bethesda Softworks. Both The Elder
Scroll and Fallout have static game worlds where most objects are hand crafted and
placed. The Radiant Al system is a PQG system which generates quests for players. A
generated quest will have fixed task and narrative, but the object that the players
must interact to complete the quest will be randomly chosen from the objects in
the game world.

Further information of each game can be found on [1, 2, 5, 11-19].

2.4 Structural analysis of quest

Structural Analysis approach in quest generation is a way to construct quest
in similar approach to constructing a sentence using ‘common’ grammar. The
‘grammar’ and ‘vocabulary’ rules of structural analysis were created by classification,
analysis, and dissection of quests from multiple RPGs to get a common pattern

which all quests shared. Quests were generalised into ‘motivations’ (distinct

17

underlying drives that compel each quest/narrative to happen). For each
‘motivation’, a quest could be categorised into different ‘strategies’, the outlines on
how the quest (motivation) could be completed. Finally, each ‘strategy’ was linked
to specific set of ‘Sequence of Actions’ which described general tasks (actions) the
player or NPC needed to perform to complete the quest. The tasks (actions) were
usually in the Action rule (<ACTION>) form, which could be broken down into
specific Atomic Action (ACTION) depending on the Action Rule table. Figure. 16

shows an example of quest structure generated by structural analysis.

?\/Treator Repair 1 (Protection Quest 2) I | Rule
| 1. | <subquest> ::= <goto>
; 2. subgquest> ::= <goto> <QUEST> goto
?)get(potion) goto (Lempeck Hargrin) ’use{potwon}A . <subquest> <goto> Q > 8
) £9) 3. | <goto> n=¢

4. | <goto> ::= explore

5. | <goto> ::= <learn> goto

6. | <learn> n=¢

7. | <learn> = <goto> <subquest>> listen

'
(Rivervale) &) (|um

&

o1

exchange (jum
for pation)

SR 8. | <learn> 1= <goto> <get> read
O D &> > 9. | <learn> = <get> <subquest> give listen
?goto (comb loc) get (comb) goto exchange P
s 4 (NPC2) A | (comb for 10.) <get>u=e¢
I\) 11. | <get> ;1= <steal>
12. | <get> .= <goto> gather

13. | <get> ;1= <goto> <get> <goto>
<subquest> exchange

14. | <steal> ::= <goto> stealth take

15. | <steal> ::= <goto> <kill> take

16. | <spy> ::= <goto> spy <goto> report
17. | <capture> ::= <get> <goto> capture
18. | <kill> := <goto>> kill

[bandage

to NPC2)
&

says comb
at bixies)

€

(bandage
location)

Figure. 16: An example of quest (left) generated using Action Rule table (right), taken
from [33].

2.5 Dynamic Game Environment

The changing of game environment and conditions are not limited to player
actions. Some games allow interaction between objects, such as an NPC’s routine
action or the growing of plants, which can happen automatically without the need to
get the player’s involvement. For example, when an NPC health is low, he/she may

seek doctor to recover his/her lifepoints.

18

One way to produce such dynamic world is to use quests. Quests are not
exclusive to players. NPCs can also do their own quests. NPC’s quests make each
NPC behaviour more realistic. A game can create NPC-only quests such as ‘bear
hunting” for NPCs who perform hunter job in the game world. Instead of spawning
bear meat directly into the NPCs inventory, the NPCs have to actually complete the
bear hunting quest in order to obtain the meat. John Grey and Joanna Bryson’s
“Procedural quests: A focus for agent interaction in role-playing-games” [34]
proposed this type of dynamic interaction.

A good example of players sharing a quest pool with NPCs can be found in
the original build of S.T.ALL.KE.R, which is now known as S.T.A.L.K.E.R.: Shadow of
Chernobyl. In that original build, NPCs had the same set of available actions similar
to those of players, along with Al system that allowed them to perform those actions.
This system was sound when looking into the game story, the player was one of
many S.TALKER:s in the area, and anyone (player or NPCs) was able to be ‘THE
ONE’ who solved the mystery littering around the game world. This system allowed
players to encounter different ‘story’ depending on how each player and NPCs
chose to do their quests. However, the GSC Game World (developer of S.T.ALKE.R.)
scrapped the system because it was not fun for players. Testers found that they
were locked out of contents and quests because NPCs had already finished those
quests [35]. Most importantly, NPCs were able to finish the main story quest before
the players could and ended the game prematurely. This was one of the problems
when dynamic Questing NPCs system was used in a game which had limited set of
quests.

Dynamic world had become an essential selling point for many commercial
games, notably Elder Scrolls: Skyrim, Fallout 4, Kinedom Come: Deliverance, and
Mount&Blade series. In these games a player action could cause a chain reaction that
allowed many new ways to achieve the same goal. For example, if a player wanted
to put NPC A in jail as part of a quest, and the player knew that the police NPC
would put any ‘character’ in jail if he/she committed crimes, then the player could
give NPC A some illegal substance and alerted the police. Or the player could put a

criminal jumpsuit inside the NPC’s bag of clothes. NPCs must always wear clothes in

19

his possession, according to the rule. Thus, NPC A had to wear the criminal jumpsuit.
When a police NPC saw NPC A in the criminal jumpsuit, the police NPC would arrest
NPC A on sight according to the game rule. This was not realistic, but it was viable
due to the way game mechanics and rules interact with each other. Good dynamic
system would allow players to manipulate dynamic nature of the game world to

achieve their goals without the need for developer to explicitly script such events.

20

3. Related Works

New ways to generate quests for computer games are being researched and
developed. One such work is called “structural analysis” by Doran and Parberry [33].
Their quest analysis from 4 MMORPG games concluded a common structure of
quests which could be used in quest generation. Other works in quest generation
that used different approaches include Hierarchical Generation of Dynamic and
Nondeterministic Quests in Games [36], and Dynamic Quest Plot Generation using
Petri Net Planning [37]. In these works, dynamic quests and/or dynamic game

environment were important aspects in quest generation.

3.1 Structural Analysis / Grammar Approach

Based on “A Prototype Quest Generator Based on a Structural Analysis of
Quests from Four MMORPGs” [2011] by Doran and Parberry [33], Structural Analysis
approach in quest generation was a technique to construct quest using ‘common’
grammar. The ‘grammar’ and ‘vocabulary’ rule of structural analysis was created by
classification, analysing, and dissecting quests from multiple RPG games to get
common patterns shared by quests. Quests were categorised according to
‘motivation’, the distinct underlying drive (narrative) that compelled the quest.
Within each ‘motivation’, the quest could be categorised into different ‘strategy’, the
outline on how the quest (motivation) can be completed (satisfied). The motivations
were Knowledge, Comfort, Reputation, Serenity, Protection, Conquest, Wealth, Ability,

and Equipment (see Table. 2).

Table. 2: A Motivation table. Taken from [33], Page 4, Table 4

21

Motivation Strategy Sequence of Actions
Knowledge | Deliver item for study <get> <goto> give
Spy <spy>
Interview NPC <goto> listen <goto> report
Use an item in the field <get> <goto> use <goto> <give>
Comfort Obtain luxuries <get> <goto> <give>
Kill pests <goto> damage <goto> report
Reputation | Obtain rare items <get> <goto> <give>
Kill enemies <goto> <kill> <goto> report
Visit a dangerous place <goto> <goto> report
Serenity Revenge, Justice <goto> damage
Capture Criminal(1) <get> <goto> use <goto> <give>
Capture Criminal(2) <get> <goto> use capture <goto> <give>
Check on NPC(1) <goto> listen <goto> report
Check on NPC(2) <goto> take <goto> give
Recover lost/stolen item <get> <goto> <give>
Rescue captured NPC <goto> damage escort <goto> report
Protection Attack threatening entities | <goto> damage <goto> report
Treat or repair (1) <get> <goto> use
Treat or repair (2) <goto> repair
Create Diversion <get> <goto> use
Create Diversion <goto> damage
Assemble fortification <goto> repair
Guard Entity <goto> defend
Conquest Attack enemy <goto> damage
Steal stuff <goto> <steal> <goto> give
Wealth Gather raw materials <goto> <get>
Steal valuables for resale | <goto> <steal>
Make valuables for resale | repair
Ability Assemble tool for new repair use
skill <get> use
Obtain training materials | use
Use existing tools damage
Practice combat use
Practice skill <get> use
Research a skill(1) <get> experiment
Research a skill(2)
Equipment | Assemble repair
Deliver supplies <get> <goto> <give>
Steal supplies <steal>

Trade for supplies

<goto> exchange

22

Table 2 shows Strategies for each of the motivations and their respective
Sequence of Actions. ‘Sequence of Actions’ described tasks (actions) the players or
NPCs had to perform to complete the quest. The tasks (actions) were usually in the
Action Rule form, which could be broken down into specific Atomic Action
depending on the Action Rule table. (see Figure. 16 for Rule table).

Their work used these structures to create a prototype quest generation
system. The prototype quest generation used Prolog language because of its ability
to backtrack and try new solution (breaking down <Rule> and filling in quest details).

Doran and Parberry’s quest generation system did not address the coherence
between multiple generated quests. Buss,D.B. and his peers [38] tried to address this
by introducing the system they called Quality System, a progressive tier system. They
used structural analysis from [33] as a baseline and implemented the Quality System
to increase the cohesiveness and connectivity between generated quests. The
progressive tier system introduced 2 new metrics; NPC tier and NPC profession. NPC
profession determined the type of quests and contents (motivations, strategies, items,
enemies, and such) available from each NPC. While NPC tier determined the level of
quest that would be generated associated with each NPC. When the 2 metrics were
combined, it allowed the system to determine the appropriate quests available from
an NPC. For example, a farmer NPC who had ‘farmer profession” and ‘minor NPC’
could not use the motivation ‘Serenity” in Table 2 to generate a quest and could not
use ‘dragon’ enemy in his quest. A king NPC who had ‘ruler profession” and ‘epic
NPC” was able to use both motivation and enemy, but could not use strategy ‘check
on NPC’ under ‘Serenity’ motivation, which was below its ‘epic’ tier.

This quest structure / ‘grammar’ was further expanded in Machado, Santos
and Dias” work [39]. In their work, quests from a single-player game (The Witcher 3)
were analysed. They found differences in quests between The Witcher 3 and other
MMORPGs. The quest structures were adjusted and modified, new Action Rules and
Atomic Actions were introduced in order to cover a boarder range of quests. This
allowed for more expressive quests and more variety in the quests.

MPQ-Generator, the quest generator proposed by this thesis, used the same

quest structure in its quest generation. However, the Action Rule table and the

23

breakdown of Action Rule to Atomic Action were modified to function with dynamic

environment aspect supported by MPQ-Generator.

3.2 Static quest in Generated game world

Procedural generated narrative is not achieved only by generating a quest
suitable for a presented world, but also by generating a world to suit a presented
quest. Calvin Ashmore and Michael Nitsche [40] presented a procedural game world
with quest generator. In their work, a ‘quest’ was a set of ‘locks’ node and ‘keys’
node that must be accessed in certain order, similar to a puzzle maze with locked
doors. For example, a lock ‘river’ required a key ‘swimming skill’ in order to unlock
(pass through) and reach the next portion of the ‘quest’. When a quest was
generated with its associated game world, the game world was generated tile by tile.
Locks could be placed at the edge of these tiles.

Ashmore and Nitsche implemented a graph representing the relationship
between locks and keys to create a coherence game world and avoid unreachable
pair of lock and key (placing a key behind its corresponding lock). A node of the
graph represented game space. It informed the system how the game world was to
be generated.

The other attempt in this type of PGC was by Valls-Vargas and peers [41].
Their work focused on generating a map that could support multiple quests/stories
that unfolded non-linearly. The system used a collection of plot points (e.g. ‘The
player meets Henry’) as input to generate a map for the given narrative.

This thesis differed greatly from both works because MPQ-Generator’s quest

generation did not generate a map to match generated quests.

24

3.3 Dynamic and Nondeterministic Quests

Soares de Lima, Feijo, and Furtados” work [36] introduced new algorithm and
model for constructing quest in real-time, along with dynamic narrative and multiple
endings. A quest was decomposed into a ‘primitive-quest’ (main quest frame)
with/without multiple ‘sub-quests’ inside. The dynamic nature of this algorithm
came from the ability to switch ‘sub-quest’ in/out depending on the current game
state. If a ‘primitive-quest’ was about delivering an antidote to a patient, a ‘sub-
quest’ could be described as “goto hospital A> picking antidote > goto patient >
apply antidote”. However, if the antidote was destroyed during the “goto” point, a

)«

‘sub-quest’ “goto hospital B > picking antidote” could be injected into that point in
real-time, to prevent the quest from failing. Each ‘sub-quest’ had conditions that
must be met before it could be selectable from the quest pool. For example, the
‘picking antidote” sub-quest was only selectable if an antidote object existed in the
game world and it was reachable by the player.

In addition, instead of generating the whole quest with all possible
combinations of sub-quests, the algorithm generated the quest as the player carried
out ‘action’ after the main quest was generated and monitored which ‘sub-quest’
was best injected into the main quest. Every time a player performed an action, the
system analysed the current situation and conditions of the game and generated a
new part of the quest, if needed. This process lowered the time required for quest
generation significantly compared to generating all possible sub-quests at the start of
the generation.

A similar approach to generate quest solutions was developed by Imran
Khalig and Zachary Watso [42] in “The Omni Framework”. However, instead of
continuously updating the quest’s objectives and actions that must be taken, the
system generated quests’ objectives to match players’ preferred playstyle and
current game state. The framework oversaw the whole game world and kept records
of everything that had happened and is happening within the game, including meta
data such as completed quests or player’s actions. The framework separated the
recorded information into 3 categories which affected different parts of quest

generation, Player System, Non Player Character System, and World State System.

25

There were also 2 additional systems that governed the quest generation directly,
Basic Quest System and Destiny System.

Omni Framework was intended to be used from the start of the game to
gather as much data about players as possible. During the initial state where the
framework had little information regarding the players, the Basic Quest System would
generate simplistic quests. When more information became available, more complex
quests that matched specific playstyle became selectable during quest generation.
The framework recognised 2 major playstyles, aggressive and non-aggressive. Quests
would be generated differently for each playstyle. When a quest was generated, the
framework consulted the Player System, NPC System, and World State System to
determined which ‘solution templates’ were active and selectable. Then a random
amount of the solution templates would be selected. The ‘solution template’ also
contained both step-of-actions that must be taken and the quest rewards (effect).
The possible solutions or quests objectives were updated according to player actions
and the new game state.

While Basic Quest System generated isolated quests, the Destiny System
generated chain of quests that were inter-connect with one another. When a new
‘Destiny Node’ (Destiny quest) was generated, it recognised objects involved with
previous Destiny quests and tried to make the generating quest use those objects,
such as requiring the player to use a skill received when completing the previous
Destiny quest. The Destiny quests were also influenced by the 3 systems.

Omni Framework proposed new monitoring systems and quest structures for
dynamic quest. While there are multiple researches on generating quests that
matched the player’s playstyle, Omni Framework was unique in its ‘Destiny System’
and how it applied dynamic quest structure to that system.

MPQ-Generator used different approach in task monitoring for quests. Instead
of monitoring if certain actions had been performed by the player, MPQ-Generator
used a more flexible checking, that was a goal state condition check. A quest’s task
was considered completed only when specific conditions were met. MPQ-
Generator’s grammar-based approach meant that the generated quest cannot be

modified mid-quest.

26

Jens van de Water’s [43] framework was capable of generating quests
autonomously in a dynamic game world. Here the dynamic aspect of the game
world not only applied to how game objects interacted, but also applied to how
quests were able to affect other quests. Completing a quest could affect another
quest narrative and its contents. Doing 2 related quests in parallel could bring a
player to a unique content that could not be reached if one of the quests was
completed before starting the other. All these dynamic interactions and relationships
between the quests were managed by the framework. The framework contained all
existing quests and their current state. The framework was capable of evaluating
whether existing quests, and quests that are to be generated, can be initiated and
completed. The framework guaranteed that completing a quest would not result in a
certain quest or part of a quest being locked out from players or impossible to
complete.

MPQ-Generator did not focus on how existing quests affected newly
generated quests. Thus it allowed players to possibly fail a quest.

One approach to multiple paths quest generation was introduced by Alex
Stocker and Chris Alvin [44]. In their work, a quest was constructed from the
combination of ‘verbs’ and ‘nouns’ components. The combination of a verb and a
noun was called an ‘action’. Each verb and noun are connected in hypergraph in
many-to-one fashion and this relationship were used to determine how each
action/node of the generated quest would be dependent on each other. The quest
generation process started by generating a base quest according to the hypergraph.
In this state the quest was linear and void of path/choice players could take to
complete the quest. Then the quest was traversed backward to create hyperedges.
Any actions/nodes that had more than one-to-one relationship could be grouped
together as one hyperedge, which represented that this part of the quest ‘could be
completed in any order.” An example can be seen in Figure 17 (top image). Here
‘Collect Rope’ and ‘Collect Marionberry’ can be grouped together since the nouns
‘rope’ and ‘marionberry’ have relationship to the verb ‘collect’. The next phase is
replacing the one-to-one link with parallel path that starts and ends similar to the

start and end point of the link, as seen in the bottom image of Figure 17.

27

Talk To Collect Return To
Elder Rope Trap Elder
: Ogre >
Collect
Marionberry
Kill
HelkTe Collect
Elder

: Return To
Trap Ogre

Rope

p Og% O~
Collect Operﬁde

Marionberry Ogre

O

Figure. 17: (Must turn all Figure number to auto-sequence) : [Top] Base quest after
collapsing some actions into hyperedge. [Bottom] After adding parallelism to the

base quest. [44]

In Figure 17, multiple paths of the quest come from generating parallel
actions that can bring the quest state to the same conclusion even with different
‘actions.” The parallel actions / paths here are constructed purely using the
relationship between keyword used in each state / node of the quest. This is
different from MPQ-Generator approach where the paths were not determined during
the quest generation, but instead obtained by running the generated quest through
to see how many ways the quest could be completed. In addition, MPQ-Generator
used Token system in order to assign in-game objects to each ‘action’ of the quest
instead of using hypergraph or relationship link between the objects and the

‘actions’.

28

Dynamic and nondeterministic quest generations mainly focused on a variety
of quests and how the quests affected the game world. Not much attention was put
on how players could complete the quest and how to monitor the state of the
quest in these dynamic worlds. MPQ-Generator aimed to map all possible sequences
of actions players could take to complete generated quests. This knowledge turned

players’ freedom of action and quests’ flexibility into tangible measurement.

3.4 Quest Monitoring and Adaptation

There were attempts to introduce higher degree of flexible solution to quests.
In table-top RPG, if players had ideas on how to resolve a quest, they were able to
dynamically ‘negotiate’ with the human gamemaster of that game section. Human
gamemaster allowed quests to be flexible and adaptive to the current situation of
the game.

For example, in a ‘recover stolen jewel’ quest where the quest giver asked
players to retrieve back a stolen accessory, players might tell the gamemaster that
instead of fighting the thief, they wanted to ‘haggle with the thief’ (exchanging the
jewel with equally value object), ‘hire another thief’ (to steal the jewel back), or
‘fabricate the jewel’ (to fool the quest giver) and so on.

On the other hand, computer RPG did not have a human gamemaster. Quests
could only play out as developers had designed. Sullivan’s Grail Framework [45]
attempted to implement a gamemaster’s flexibility and diversity into computer game
quests. The Grail Framework’s quest manager was adaptive to the current situation
within game worlds. It monitored game world state, completed quests, active quests,
and other attributes. Quests in Grail Framework used rule/condition base structure.
Instead of performing certain fixed tasks to advance a quest forward, there were
rule/condition that when met, would advance the quest forward or change the
result of the quest. Additional independent rule/condition with similar structure
could also be attached to the quest and make certain part of the quest valid or
invalid (e.e. a player could not detect a hidden door without learning about it

beforehand, unless the player had ‘thief” profession).

29

The Grail Framework was implemented in Mismanor [46], a social interaction
focus game. It was used for giving appropriate quests to players according to the
current plot point and game condition. Quests in Mismanor were used to advance
the plot of the game forward from one point to another until the story concluded.
Quest structure consisted of “Quest Name”, “Intent” (When a quest was considered
completed), “Pre-conditions” (when the quest was valid), “Starting States”
(conditions that determined which ‘scene’” would be played when the quest was
received), and “Completion States” (conditions that determined which ‘scene’
would be played when the quest was completed), and “tag” (associated character
and location) as shown in Figure. 18. Each quest also had ‘Scenes’ attached to it.
Each ‘Scene’ contained dialog and effects it had on the game world. A quest

selected a scene to play out according to its state.

Upon receiving a quest, the appropriate scene is chosen based on
the most complex state that has been matched. Each quest has a
default starting scene which has no state pre-requisites.

“« [46]

The Grail Framework used game state checking to determine a direction to
move a quest forward, similar to MPQ-Generator. Unlike MPQ-Generator, The Grail
Framework required human authoring and input when used. MPQ-Generator also
focused more on generating quests with multiple ways to complete a single

objective.

30

'Quest Name fBreak up the lovers

[Intent [Remove status(Violet, James, “dating”) 4

(Y trust (Colonel, Player) > 40 &
Pre-conditions hasKnowledge(Colonel, “Violet is dating James”)

9 Astatus(Violet, James, “dating”) 2
o Y 1. Default — Break them up L
Starting States 2. friend (Colonel, Player) > 60 — Woo Violet variant
9 A 3. friend (Colonel, Player) < 20 — Woo James variant)
;o \ﬁ ~status(Violet, James, “dating”) \

2. ~status(Violet, James, “dating”)

A status(Violet, Player, “dating”)
Completion 3. ~status(Violet, James, “dating”)
States A status(James, Player, “dating”)
status(Violet, James, “eloped”)
friend (Colonel, James) > 50

4.
5.
& /Q A trust(Colonel, James) > 40 /

| Tags Characters: Violet, James

J

Figure 18: Quest structure for the example quest to break up Violet and James [46].

3.5 Quest Management and Evaluation

Analysis of ReGEN as a Graph Rewriting System for Quest Generation [47]
(ReGEN) was another narrative generation system, developed by Ben Kybartas and
Clark Verbrugge. ReGEN used graph-rewriting approach in its generation system. It
focused on generating side-quests for role-playing games (RPGs). The game world
was a directed labelled multigraph where nodes represented objects within the
game and edges represented relationship between the nodes. Objects could be
anything within the game world, from NPC, item, to Location and so on. A quest was
a set of narrative events that could be represented by graph of ‘event node’. Here
the edge between events indicated which event must happen before another event.

When a quest was generated, the game world was examined for ‘potential
story’ using ‘initial rewritten rule’ (IRR). If there existed relationships that matched
the IRR, the initial quest structure and the quest that belonged to IRR were selected
as the ‘initial graph/quest’ and the objects that held the relationship were selected

31

as part of the quest. If NPC A hated NPC B, NPC A could be a quest giver in ‘murder
quest’ and the target is NPC B, for example. After the initial quest was generated, the
quest would be rewritten again using the ‘secondary rewritten rule’ (SRR). The SRR
examined the quest’s events (Narrative Condition), seeing events that could be
rewritten under appropriate conditions (Game World Conditions). Then it examined
the game world for those conditions to see if the rewriting would happen or not.
Figure. 19 shows an example of how SRR rewrites a single ‘Murder Event,” the node
within the oval highlight, into a set of 3 events with 2 branches, shown in the
rectangle highlight. The SRR used here is shown in Figure. 20. This rewriting also
happened in real time during gameplay, not only during the quest generation. Thus,
the quest was continuously rewritten to adapt to the changing in game world.
ReGEN’s quest was capable of changing its content to accommodate the
changing in game world as the quest played out. MPQ-Generator used a different
approach. MPQ-Generator analysed all possible ways that a quest could be
completed/failed from quest generation phase, including the changing in game world

condition from players’ actions.

Request for Murder

Node Type: Info

Target: Morgan le Fey

/4\

/ Mu;'der N

Node Type: Murder

Request for Murder

Node Type: Info

Target: Morgan le Fey

F 4

AN

y

Murder

Node Type: Murder

Target: King Arthur

v

&Target: King Arthur

Ambu sh'by Lover

*_/‘

Return

Node Type: Go To

Node Type: Murder

Target: Queen Guinevere

Spare

Node Type: Sympathy

Target: King Arthur

Target: Morgan le Fey

Figure. 19: Example of a generated quest. (left) The quest in IRR state. (right) The

Return

Node Type: Go To

Target: Morgan le Fey

quest after SRR is applied and the quest rewritten. Taken from [47].

Left Hand Side Right Hand Side
Spare
Node Type: Sympathy
Victim . Lover Murder Target: Victim
Loves: N/A 2
< Alive: True Node Type: Murder
Type: NPC Target: Victim Murder Ambush by Lover

Node Type: Murder Node Type: Murder
Target: Victim Target: Lover

Figure. 20: Example of SRR; if all conditions of the left-hand side are true, then the

quest will be rewritten as the right hand side. Taken from [47].

33

ReGEN also introduced a metric model for evaluating multiple qualities of a
quest, such as length, uniqueness, and narrative richness. This metric allowed ReGEN
to compare a quest that was generated by its system to a quest from other sources.
It should be noted that these metrics only used tangible attribute of a quest to
evaluate its quality such as number of events, gold rewards, number of branching
paths, and weight of player choices. There was no objective value from human users
that affected the evaluation.

This metric was modified and implemented into this thesis as a measurement
tool. This gave a solid baseline to compare the quality of quests generated from this
thesis with quests from other methodologies.

Lee and Cho’s [37] used Petri Net model and its token structure to construct
quest plots. Each state in a quest was considered as a ‘GameState’, a player action
was regarded as a ‘transition’, and an ‘arc’ represented the relationship between
action and the action preconditions. A quest was defined as a sequence of events
that formed the narrative of the quest. A quest was generated by chaining multiple
‘events’ together. Each event contained pre-condition(s) that must be met by the
previous event’s post-condition if they were to be connected, as shown in the left of
Figure. 21. By using Petri Net, passive element (such as conditions) and active
element (such as actions) could be identified within an event and the current state
of the event could be determined. Petri Net was a strong tool for modelling parallel
and independent actions and conditions. Used in quest monitoring, events and
conditions transition within quests and game world could be managed with certainty
such that an event would only trigger when proper conditions were met (tokens
were available).

Petri Net focused on quest monitoring during play, while MPQ-Generator

focusd on quest monitoring during quest generation.

34

Action 1

(Quest Goal Selection
| Attack Observi cee () () Prev.
ENEmy -DseIvIlg __/ A\ Result

-~ ACE&Z Actjon 3 O
<o
\)

l Obszerving

Event
— ~ /
e Selecting an main event S Goal
8 ' Mam\gcnon
{(Event 1) ,«J\
. / \
Observing ()
Location it
Actign4
E— Making a evenf sequence
TN
(Event 1) (Event 2) (Event 3))
Y X !
i > Ubgerv >
Go l.o C h.\en_mg . Event Result
Location Location Talk NPC
PN element | Name Description
Representing precondition
O Place for an action or storage of
the result of an action
Causal relationship be-
l/ Arc tween an action and its
preconditions
Transition R:prc\cntmg a player’s ac-
— tion
. Representing the process of
Token actions in an event

Figure. 21: A conceptual quest generation process (left). A petri net event

representation (top-right). A table of standard petri net element (bottom-right).

3.6 GameState Quest

The quest generation system CONAN by Vincent Breault, Sebastien Ouellet,
and Jim Davies [48] used GameState approach to its quest structure similar to MPQ-
Generator. In CONAN, each non-player-character (NPC) had a preference state they
wanted to be. If they were not in such state, they would attempt to generate
quest(s) that changed the current GameState (initial state) to the state they preferred
(goal state). The CONAN system generated a quest, along with sequence of actions
players must do, so that the goal state was reached. The CONAN system’s simulation
system was turn-based where NPC and player would take turn performing actions. In
each cycle, NPC would generate quests using CONAN quest generation system, then
players would perform an action to affect the game world. The result of player’s

action was then used as initial state for generating quests in the next cycle.

35

While CONAN mentioned that their quests used GameState approach to
check whether a quest was completed, there was no mention of the number of
approaches a player could take to reach such state. MPQ-Generator focused on
generating a quest along with the total number of approaches that could be taken to
complete it. MPQ-Generator also considered NPC reaction against the changing in

game environment and other NPCs.

36

4. Methodology

4.1 Overview

Multi-Path Quest Generator (MPQ-Generator) proposed by this thesis used
Structural Analysis approach from [33] as its base framework in its quest generation
and quest structure along with additional rules from [39]. These works were
summarised in section 3.1. The structure of game world and relationship between
objects within the game world were based on ReGEN [47]. ReGEN’s evaluation
metrics was also used to evaluate quests that were generated by MPQ-Generator.

MPQ-Generator introduced GameState checking as a mean to monitor and
manipulate quests during generation. The monitoring system allowed MPQ-Generator
to determine how many ways players could tackle a quest in the current game
environment. If completing the quest was not possible or the quest was too
restrictive, a new quest could be generated until a completed quest was created.

The ability to measure player freedom allowed the quest generation system

to generate quests with higher flexibility without compromising their integrity.

4.1.1 Quest Structure
QuestFrame

As shown in Figure. 22, a QuestFrame is the main Framework of a quest. It
contains a strategy object and all other objects and functions needed for generating
a complete quest. Various information regarding quest generation is also stored.

The quest generation system reads quest information from QuestFrame
when constructing a quest.
Strategy

Strategy can be described as an ‘arc’ of the quest. Each strategy contains a
set of <Component>. The size of each strategy after breaking down all
<component>, which is its number of components, is limited in order to prevent

overlong quests. This strategy structure is similar to Parberry’s strategy.

37

QuestFrame

| Component A1-1 |

Strategy //

GameState: Start

Current Game

State GameState: Goal

Restriction State

| Component A1-2 |

Full Condition
State

| Component A1-3 |

Other Utility
Variables

[Figure. 22] A portray of hierarchy and connection between elements. The arrow
represents how the quest state advances forward between each point in the quest.
The right <Component Al> shows how a single <Component> can be broken down

into multiple Components.

<Component>

<Component> is the smallest part of the pre-determined quest structure
before the quest detail is constructed. <Component> can be broken down into
either other <Component>s or finite Components that cannot be broken down.
Compared to Doran and Parberry’s work [33], a <Component> is equivalent to their
<Rule>.

For example, <steal> can be broken down into [<goto> stealth take] or
[<goto> <kill> take]. Here, ‘stealth’ and ‘take’ are the finite Components that cannot
be broken down further. The process of breaking down <Component> is explained in

section 4.2.

38

Component

A Component represents a change in game world through a player’s action.
This change must take place for the quest to move forward and eventually finish.
Each Component contains “Start State” and “Goal State”. Start State is the condition
that the game world must have before the Component is selectable as a part of a
quest. Goal State is the condition of the game world that must be satisfied for that
part of the quest to be considered complete. After a goal state of a Component is
satisfied, the game can advance to the next part of the quest.

Compared to Doran and Parberry’s work [33] in term of hierarchy, a

Component from this thesis is equivalent to their Atomic Action.

GameState

A GameState is an object that stores information that makes up the state of
the game world. Each GameState is a collection of multiple ‘GameCondition’
information such as a player’s health, location of each NPCs, and player reputation.
GameState used in a Component can be categorised into 2 types, Start State and
Goal State. Figure. 23 shows 3 components, each with different Start States and Goal

States.
® Start State is the requirement condition that the game world must satisfy in
order to add that Component into a quest.

® (Goal State is the GameState that, when met, that section of the quest is

considered completed and the quest can advance to the next component.

GameCondition
GameCondition is an individual variable. The collection of all GameConditions

in the current game world will be called “GameState”.

39

(& B\ /& R /A I
Goto 'Forest' Kill 'John' Take 'Berry'
Start State Start State Start State
- Exist Location 'Forest' - Exist Character 'John' - NPC 1A HAS Item
- 'John' IS ALIVE 'Berry'
Goal State Goal State Goal State
- Player Position IS - 'John' NOT ALIVE - NPC 1A NOT HAS
'Forest' Item 'Berry'
< y € y € 4

[Figure. 23] Three components, each having different Start State and Goal State.

Restriction State

Restriction State is a GameState that is created from analysing the list of
Components used for generating quest details. It is used to prevent a conflict where
a player action causes a quest to be impossible to do or causes a contradiction with
the quest narrative.

For example, if a quest requires a player to deliver an item to NPC Jill, the
player should not kill NPC Jill before delivering the item. Restriction State tells Prolog
to not use ‘kill” action to NPC Jill before the item is delivered.

However, the Restriction State is not used to limit player’s freedom. Players
can still perform actions that break the quest. Restriction State is implemented only

to guarantee that Prolog will not generate conflicting action path.

Full Condition State
Full Condition State is the combination of Restriction State and Component’s
Goal State. This is the GameState that will be used by Prolog for querying player’s

path of action.

40

4.1.2 Proposed Method Overview:

Quest Analyser

Quest Generator (Java) (Prolog)

.—) Initiate new quest

L

~>| select quest
template

Y

Breakdown all
<component>

no

[Figure. 24] A diagram showing the process of generating a quest from start to finish.

The highlighted areas are contributions from this thesis.

As shown in Figure. 24, there are 2 main Components in quest generation
process. Each Component manages different aspects of quest generation. The first
Component is the quest generator. The process of generating quests and storing all
necessary data are managed by this component.

A quest generation started by selecting a motivation and strategy (template)
of the quest, then breaking down all <Components> and filling in the quest detail
using objects within the game world. The processes after this step were original to

MPQ-Generator. In Figure. 24, they are indicated by rectangle highlights.

41

If the number of Components in the quest was at acceptable range and no
conflicting statement existed, the quest would be analysed by the second
component.

The second Component is the quest analyser. It is a Prolog query system.
Prolog was called only when the quest generator submitted its query. This Prolog
query system was used when the system needed to identify if a generated quest
could be completed by a player. If so, it also found out the number of paths for
completing the quest.

When all possible paths were sent back, they were analysed to identify
duplicate paths. If there were enough paths (as defined by the user), the quest was

then approved and shown to the user.

4.2 Action Rule table Modification

Originally, Action Rule table was used to determine how Action Rule
(<ACTION>) could be broken down into Atomic Action (Machado, Santos and Dias
[2017] [39], which extended from Doran and Parberry [2011] [33]). Table 3 shows lists
of sequence of actions from Dias’ work. The initial sequence of actions from every

strategy in this thesis refers to this table.

Table. 3: List of Motivation, strategy, and their corresponding sequence of actions.

42

Motivation Strategy Sequence of Actions
Knowledge Deliver item for study <get> <give>
Spy <goto> spy <report>
Interview NPC <goto> listen <report>
Use item on field <get> <goto> use <give>
Comfort Obtain luxuries <get> <give>
Kill Pests <goto> <defeat> <report>
Reputation Obtain rare items <get> <give>
Kill enemies <goto> <defeat> <report>
Visit dangerous place <goto> <report>
Serenity Revenge, Justice <goto> <defeat> <report>
Capture Criminal <goto> <capture> <report>
Check on NPC (1) <goto> listen <report>
Check on NPC (2) <goto> take <give>
Recover lost/ stolen item <get> <give>
Rescue NPC <goto> <rescue> <report>
Protection Attack threatening entities | <goto> <defeat> <report>
Capture Criminal <goto> <capture> <report>
Treat or Repair (1) <get> <goto> use <report>
Treat or Repair (2) <goto> repair <report>
Create Diversion (1) <get> <goto> use <report>
Create Diversion (2) <goto> damage <report>
Assemble fortification <goto> repair <report>
Guard Entity <goto> defend <report>
Recruit <goto> listen <report>
Conquest Attack enemy <goto> <defeat> <report>
Steal stuff <goto> <steal> <give>
Recruit <goto> listen <report>
Wealth Gather raw materials <goto> <get> <give>

Steal valuables for resale

<goto> <steal> <give>

43

Make valuables for resale | <goto> repair <give>
Ability Assemble tool for new skill | <goto> repair use

Obtain training materials <get> use

Use existing tools <goto> use

Practice Combat <goto> damage

Practice skill <goto> use

Research a skill (1) <get> use

Research a skill (2) <get> experiment
Equipment Assemble <goto> repair <give>

Deliver supplies <get> <give>

Steal supplies <steal> <give>

Trade for supplies <get> <goto> exchange

In previous works, Prolog was used to breakdown all possible paths /
sequences of Atomic Action from the initial <rule>. Then a path would be chosen
and delivered as a quest. The Atomic Actions within this path were considered as
‘actions’ that must be taken in sequence in order to advance and finally complete
the quest. See Table 4 on how <Rule> is broken down into Atomic Action in Dias’
work [39]. The rules were chosen based on the current game world. If 2 or more
rules were valid, one was chosen randomly. The broken down of <Component> in
this thesis also used table 4 as a reference.

However, the addition of GameState within Components and quest paths
analysing made this property of Atomic Action obsolete. Now the new Atomic Action
(Component) indicated which conditions in game world must be met for the quest to

advance instead of which action players had to perform.

Table. 4: <Rule> breakdown, taken from [39].

| Rules EXxplanation

0. [<QUEST> ::= <Knowledge> | This is the root of a quest, which expands into one of the 9
<Comfort> | <Reputation> | motivations. Which will eventually be expanded into one of
<Serenity> | <Protection> | the

44

<Conquest> | <Wealth> | <Ability> |
<Equipment>

strategies, specific to said motivation.

3| <subquest>:=¢ Go someplace.
" | <subquest> ::= <QUEST> <goto> Go perform a quest and return.
2- <goto>:i=¢ You are already there.
5. | <goto> ::=goto Go to a known location.
9 <goto> ::= wait Wait at a location for someone or something.
8 | <goto>:=explore Just wander around and look.
9. | <goto>::= follow Follow somebody or something.
10. <goto> ::= stealth Sneak by.
<goto> ::= <learn> <goto> Find out where to go to and go there.
<goto> ::= <prepare> < goto> Prepare yourself before going somewhere.
ﬁ ZISSFﬂi 12 igoto> <subquest> listen You already know it
13. | <learn> = <get>read Go someplace, perform a subquest, get info from NPC.
%g :Iearn; §§f<<gett> Sgive> Ilstte>n . Go someplace, get something, and read what is written in it.
‘ earn> .= <goto> <subquet> examine | g something, give to NPC in return for info.
Go someplace, perform a subquest, examine something.
16. | <prepare> ::= <goto> <subquest> Go someplace and perform a subquest.
%g :ggg =2 Ssteal> You already have it.
19. | <get> ‘= <goto> gather Steal it from somebody.
%({ :geg = :ggttgi aokt%> exchiae Go someplace and pick something up that's lying around there.
72, <g§t> . <get> <§ubqueg§> g Go to someone and take something.
Get something, go to someone and exchange.
Get something and do a subquest.
g5 | SSteat> 2 :88{82 Stealth take Go someplace, sneak up on somebody and take something.
' h Go someplace, kill somebody and take something.
%g :ggg%ﬂ{g; = :88%8; gg%q%%%“ég%mre Go someplace, use something to capture somebody.
27. | <capture> = <goto> capture Go someplace, damage to capture somebody.
Go someplace and capture somebody.
%g Zgg;{ggg o :88%8; Eialrlnage Go someplace and damage somebody.
' v Go someplace and kill someone.
30. | <report>:=e There is nothing to report
< > ;1= <goto> :
3L report> ::= <goto> report Go someplace and report to somebody.
32. | <give>:=e¢ There is nothing to give
. | <give> ::= <goto> h .
33 give goto>report Go to somebody and give something.
%g- Srescue> 1= Lrgeefeap free Free somebody from imprisonment.
36. | <rescue> ‘= escort Defeat somebody, and free somebody from imprisonment.
37. | <rescue> ::= <defeat> escort

Escort somebody to someplace.
Defeat somebody, and escort a different somebody to
someplace.

4.2.1 New Action Rule table = Component Table

This thesis used Component Table, which was identical to Table 4 regarding

how each <Component> could be broken down, despite the difference in content

45

between <Component> and <Rule>. The new Component Table defined how
<Component> could be broken down into Component, similar to how the original
table generated Atomic Action from <Action Rules>. The Component Table had
identical number of ‘rule’ to the Action Rule table from Santos and Dias’ work. The
Action Rule table was modified by analysing change(s) in game world that took place
when the Atomic Action was carried out by a player.

Shown in Figure. 25 is an example on how Action Rule was analysed. When
Atomic Action [Goto ‘Forest’] was chosen by a player, the player location changed
from his current location to ‘Forest’. Each Atomic Action had ‘input GameState” and
‘output GameState.” ‘Input GameState’ were conditions before the action happened.

‘Output GameState” were conditions after the action took place.

Input GameState) (Output GameState A
(player's states) (player's states)

-Position IS 'Capital' -Position IS 'Forest'

-Health IS WELL -Health IS WELL

-Level = 10 -Level = 10

-Sanity IS STABLE . . -Sanity IS STABLE

-Inventory HAS Item 'Berry' ‘ Goto 'Forest -Inventory HAS Item 'Berry'

-Inventory HAS Item 'Pen’ -Inventory HAS Item 'Pen'

-Inventory HAS Item 'S-key' -Inventory HAS Item 'S-key'

& 4 _ Y,

[Figure. 25] When an atomic action, Goto, is executed, the player location condition

is changed. Only the player information is shown in this figure.

The Start State and Goal State of a Component were created by removing all
common conditions amongst Atomic Action’s input and output GameStates. This was

how an Atomic Action was converted into its Component counterpart.

In Figure. 25, the [Goto ‘Forest’] has the following start state and goal state.

® Start state: “Position NOT [‘Forest’]” & “Exist Location [‘Forest’]”

46

® (Goal state: “Position IS [‘Forest’]”

All Atomic Actions within Action Rule table were converted into Component
and <Component> using this analysis.

Table 5 shows each Component and its complete start state and goal state.
Start state described conditions that must be met for the Component to be valid
during <Component> break down (see Table 2). Goal state described broadly
conditions that must be met to ‘complete’ the Component. Table 5 is a
modification of Atomic Actions Table from [39]. Bold words in the same row refer to
the same entity.

Some of the Action Rule shared the same Goal Condition due to our
simplification. Action Rule such as “Gather” and “Take” had the same converted
Goal Condition because what mattered was that the player possessed the item. How
the condition was met was irrelevant.

Some action-condition pairs were simplified to avoid excessive Prolog queries,
such as [Explore X], or [Listen X]. Instead of requiring the player to perform the
actions on a target, he/she simply needed to be at the target’s place. Any specific
Action Rule only achievable with very specific player action was simplified this way.
[Stealth X] could not be generalised into a single abstract state because each game
implemented stealth system different from each other. Metal Gear Solid 3 used
“Camouflage level” that interacted with only terrain texture, while Dishonored used
shadow system which was totally different.

Likewise, instead of having dedicated dialoged action and even more
‘exchange information’ action, all “information (X)” within Table 5 were simplified
and assumed to be instantly transferred or presented. This was done to improve the
performance of the system. Table 6 shows how the Action Rule from the Action Rule

Table were translated into GameState that must be satisfied.

Table. 5: This table outlines Components and their start state and goal state.

| Component Start State Goal State

1. 1€ None. None.

2. | Capture X Somebody is there. They are your prisoner.

47

3. | Damage X Somebody or something is there. | It is more damaged.
4. | Defend X Somebody or something is there. | Attempts to damage it
have failed.
5. | Escort X Somebody is there. They will now accompany
you.
6. | Examine X, | Somebody (Y) or something (Y) is | You have information (X)
Y there. about it.
7. | Exchange Somebody (Z) is there, they You have (Y) and they
XY, z have something (X) and you have (X).
have something (Y).
8. | Experiment | Something (Y) is there. Perhaps you have learned
X, Y information (X) what it
(Y) is for.
9. | Explore X There exist. Wander around there at
random.
10. | Follow X Somebody or something is there. | You will now accompany
them.
11. | Free X Somebody is there and is They are no longer
prisoner. prisoner.
12. | Gather X Something is there. You have it.
13. | Give X, Y Somebody (Y) is there, you They have it (X).
have something (X).
14. | Goto X You know where to ¢o and how | You are there.
to get there.
15. | Kill X Somebody is there. They are dead.
16. | Listen X, Y | Somebody (Y) is there. You have some of their
information (X).
17. | Read X, Y Something (V) is there. You have information (X)
from it.
18. | Repair X Something is there. It is fixed, built or
resolved.
19. | Report X, Y | Somebody (V) is there. They (Y) have information
(X) that you have.
20. | Spy X, Y Somebody (Y) or something (Y) is | You have information (X)
there. from it (Y).
21. | Stealth X Somebody is there. Sneak up on them.
22. | Take X, Y Somebody (Y) is there, they have | You have it (X) and they
something (X). don’t.
23. | Use X Somebody or something is there. | It has affected characters
or environment.
24 | wait None. Wait for something to

happen.

48

Table. 6: This table outlines how Action Rules were converted into Goal Conditions.

Action Rule Goal Condition

Damage X] (X is Alive) + (X is damaged)

Kill X] (X'is NOT _Alive)

Defend X], [Escort X], [Follow X] (Player Samelocation as X) + (X is Alive)

Explore X], [Report X,Y], [Goto X], | (Player SameLocation as X)
Listen X,Y], [Spy X], [Stealth X]

Free X] (X is free)

Capture X] (X is captured)

gather X], [Read X)Y], [Repair X], | (Player HAS item X)
Take X,Y], [Experiment X], [Use X]

[
(
(
(
(
[
[
(
[
[
[
[

Give X,Y] (Y HAS item X)
Exchange X|Y, Z] (Z HAS item X) + (player HAS item Y)
Wait], [Examine] (NOTHING)

4.3 Methodology

This section discusses how each part of the proposed system was

developed to achieve the objective of each step within Figure. 24.

4.3.1 Creating blueprint for different type of quest.

Each type of [QuestFrame] had pre-determined set of strategy and
<Component>. [QuestFrame] here could be compared to the combination of
“Motivation” and “Strategy”. Each [QuestFrame] was manually assembled and
heavily based on Machado, Santos and Dias’ [2017] work as shown in Table 3.
Collection of <Component> within “strategy” in [QuestFrame] used the equivalent

collection of Action Rules from Dias’ work.

4.3.2 Quest Generation

The system was developed in Java language along with Prolog. The Java part
of the program was used for generating the framework of quests. When the outline
of a quest was completed, the detail of all paths and actions a player must perform
in order to complete the quest would be generated by Prolog. Prolog ability to

search for all possible paths and its back-tracking capability were the reasons it was

49

used to check all possible paths of the quest, including the feasibility of the quest.
The user interacted with the program only through IDE (Eclipse was used).

A quest generation started by initiating a [QuestFrame] object which
contained all the generating quest elements. A user can determine the type of
quests by modifying the [QuestFrame] setup and specifying the quest type. Then a
strategy object was initiated within the [QuestFrame]. The strategy was constructed
according to the quest type and settings.

Within each strategy, a list of <Component>s was created according to the
selected strategy setting. The <Component>s were then broken down until no more
<Component> was left. The resulting Components were stored within the
corresponding strategy. The detail of Components was generated using a proposed
Token system, shown in section 4.3.2. Figure. 26’s shows an example on how
<Component>s could be broken down.

Figure. 26’s rectangle highlight shows that Component “[7] listen” was broken
down from a <learn> that was generated when <goto> was broken down. The 3 oval
highlights shows where and when the Tokens of this quest were generated. See
section 4.3.3 for more detail on Token.

Figure. 27 shows [QuestFrame] storing the initial set of <Components> and
the broken-down Components separately.

After the list of Components was created, the quest outline could be
considered completed. At this point the quest size would be checked by counting
the size of Components. If the quest was too short or too long, it would be
discarded. A new quest would then be generated to replace it until the quest passed

the required size.

50

‘ Reputation: Kill enemies

. | L

CUT part of
the quest

£xamineg

i NULL d + | listen
13; : —-- 257 27

A
-4 Q
=~
(o]
v

‘---K-
)

L NULL
24— :
Follow | [Defeat | [Listen | . .
(HJ) Siren) HJ)
16 26 28 30

[Figure. 26] How initial <Component>s get broken down into Components.

The next step before filling in quest detail was to select a quest giver object.
A quest giver could either be an NPC or an object that was designated ‘quest giver’
characteristic. A generic object, such as a potion bottle, could not be a quest giver.
More valuable objects, such as a map or a scroll, could be a quest giver. When a
quest giver was selected, the player position would be changed to the location of
the quest giver. This was to simulate the situation where the player just received the
generating quest from the quest giver. Quest givers did not have to be a part of any

quest.

51

QuestFrame

Template A

Current Game
State

Restriction
State

Full Condition
State

Other Utility
Variables

[Figure. 27] Status of a quest after <Component>s are broken down. The resulted

Components are kept separated and do not replace the initial <Component>s.

Each quest giver also possessed a “quest level” property. When a quest
giver was selected, its quest level would be read. The system would not pick up
objects with higher quest level than the quest giver. This was to avoid situations such
as a thief (level 2) giving an objective to kill a king (level 3). However, this rule was
not absolute. If there was no available mini-Token with the right criteria during mini-
Token assignment, an object with higher quest level could be selected provided that

the Component allowed the object to be randomly selected from the game world.

4.3.3 Token
Our Token system retrieved objects from the game world and assigned them
in the generated quest. The system made the objective of each Component more

consistent and related to one another. A new Token was created when a specific

52

<Component> was broken down into a specific Component or <Component>. A
Token contained 3 mini-Tokens. Each mini-Token represented different data related
to the in-game object that the Token represented. The in-game object was selected
randomly from all objects that had lower or equal quest level to the quest giver.
Then a Component (starting from the first Component where the quest began, up to
the final Component that ended the quest) was assigned a mini-Token. Components

might accept only certain types of mini-Token. The 3 mini-Tokens were:

1. [Information (level 1)] (or info)
2. [Location (level 2)] (or loc)

3. [ltself/Core (level 3)] (or the object name)

Each mini-Token could be assigned to a Component only once. Some
Components accepted only certain level mini-Token and/or mini-Token from certain
types of in-game objects. If a mini-Token was assigned to a Component, any lower
level mini-Tokens became unavailable and could not be assigned to another
Component. Some Components required two or more mini-Tokens to be assigned.

In Figure. 28, the quest “The Lord of Undvik” from the game “The Witcher 3”
is represented using <Component>s prefix traversal quest tree according to the
breakdown rule. The non-null leaf nodes are the Components of the quest. The
banners just above the <Component>s are the generated Tokens. These Tokens
were generated at every starting node of the quest and then at every <subquest>
node. However, if all children nodes of the Token node were NULL, no Token would
be generated. For Token assignment, each Component tried to use the closest
existing Token in the tree (only Tokens with lower node number than the
Components’ were available). As seen in Figure 26, the Component number 8, 12,
and 16 (yellow highlight) used mini-tokens from the <Component> number 1. For
Component number 26, it used [Siren] mini-token instead of [Giant] because the
[Siren]’s <Component> was 22, which was closer to 26 than the [Giant]’s

<Component>, which is 17.

53

A “Listen [28]” Component (see Figure. 26) only accepted core mini-Token
and the Token’s object must be a character. The token [Siren] and [Giant] were not
used because those ‘objects’ were ‘monster’ and not ‘character’, making them
illegal, even though they were closer than the token HJ. It was possible that the
“Listen” Component did not have available Token to assign. The system fixed this
problem by randomly selecting a related object, reusing the used mini-Token that
matched the requirement, or discarding the whole quest and generated a new quest,
depending on the specification of the Component. In Figure. 26 “Listen [28]”
Component allows a used Token to be used again, thus HJ gets assigned as its mini-
Token.

Some Components such as “Examine” (see Figure. 26, black highlight) was
not assigned mini-Token because it did not need an associated object.

When an Information mini-Token was assigned to a Component, that
Component’s objective would be about the action of seeking knowledge regarding
the mini-Token’s object. Likewise, Location mini-Token represented the location
related to the object. Core mini-Token represented the object itself. Components
with core mini-Token mainly demanded players to perform some task directly on the
object.

Some combination of mini-Tokens and Components might result in the same
goal condition. Components were assigned mini-Token in order according to its node
number. The node number was assigned according to prefix traversal of the quest
tree.

Figure 28 shows how the quest ‘The Lord of Undvik’ from the Witcher 3
(game) could be represented using the token system. The result closely resembled

the official quest content and objective.

"<quauodulod> (eniul ayl

9oe)das 10U Op pue A)a1eiedas 1day aie sjusuodwoD) PaNSat BY| "“UMOP-UN0I] aJe mAEmcoQEouv Joye 3sonb e jo snieis [gZ "2undid]

z8 oL by €9 65 g 1S l Z () 8
(uein = BIA) | exd BURID (19Bueys) [{90]jueis)| [(oju]juels (oyuy saBuens) c_um:._amzm:wu e (rH) ?E_ :...: (901 rH) |(o3ul rH)
wopuey) M| | 2214 ' 0job uajsi| 03j05) Mmojjo4 ojon mojjod4 usjsi] || Jeajap || mojo} 0109 | u3si
8l v P s " m o ; ; :
TINN| 1NN frmmeemey, ' : m : : m m ! m ' ” :
Ll fflL’ EA : o | : : : 6gl : : m : m
! ' ! L9 . : : : ' ! ! i :
Fm_m.i 20831} | <0)0B> _‘z TINN _M‘.@ 4 ._._Dz _ _ _
0 " Lo “ m gg| | o _ m : m : :
T._.:M : ! gkenbg iiganbangs e SR ' m : :
_ ” L g " | |
<010B>, ; i1 |<om0B> frmeees SESEEEEEE :

““““““““““““““ i

T 14 ”
:m«m___ um&w_u “ n_._Dzi

[TEYTT=) E—— - :
A_.:mu_ ASomv ATM iv :muﬂ

i ma_c.:m:o ___x_ “:czma:_awm |

2]

55

The next step after breaking down all the <Component>s was to fill in detail,
narrative, and specific condition of the quest for it to be playable. Since Action Rule
table no longer represented direct tasks that the player must perform, if the system
was to determine possible actions a player needed to perform to complete his quest,
Prolog must be queried to get that information. Prolog then exhaustively discovered
all possible paths the player could carry out to complete the quest.

However, the current quest outline still lacks necessary information required
for a thorough query. Such information was contained in Full Condition State, which
was constructed using Restriction State. Restriction State was used to prevent Prolog

from creating conflicting sequence of actions.

4.3.4 Obtaining Restriction State

When finding the actions that satisfy the current task requirement, Prolog
only sees the ‘current’ task’s goal state. This may result in Prolog selecting an action
that makes later tasks’ goal states unreachable. When this happens, Prolog has to
backtrack, resulting in a longer quest path finding process. In order to avoid this
situation, all information regarding all tasks within a quest must be provided. This is
where a Restriction State comes in.

To obtain a Restriction State for a quest, all Components within the quest
had their StartState and GoalState broken down into a list of GameStates from all
Components. Then the system started to read the list from back to front, while
assembling the necessary GameState of which conditions must be met if the last
GameState was to be achievable from the first GameState. The 3 level Components,
[[1]“Get Berry” >>> [2]“Goto ‘City’ ” >>> [3]“Give Berry”], are used as an example.
See Figure. 29.

To construct a Restriction State, first, the 3™ level component, [Give Berry],
was analysed. It required the player to [deliver 1 unit of Berry to NPC 2B]. The
Component was pre-determined on how it affects the Input GameState. Thus the
‘Effect to input GameState’ of [Give Berry] Component in this example was “NPC 2B
inventory has 1 additional unit of Berry” and “player has 1 fewer unit of Berry”. This

can be seen in Figure. 30 within ‘Effect to Input GameState’.

56

' N 4 ™ e ~
[1] Take 'Berry' [2] Goto 'City' [3] Give 'Berry!
Start State Start State Start State
- Exist Item 'Berry' - Exist Location 'City' - NPC 2B IS ALIVE
- NPC 2B NOT HAS
Item 'Berry'
P> >
Goal State Goal State Goal State
- Player Inventory HAS - Player Position IS - NPC 2B HAS Item
Item 'Berry' 'City’' 'Berry'
< / C J o /

[Figure. 29] Three components, each having different Start State and Goal State.

However, the ‘effect’” was not yet usable. The ‘effect’ had to be generalised
and then negated, forming a ‘Resolved Conditions’. The Resolved Condition would
then be used to create Restriction State. Effect such as “NPC 2B Inventory Item
‘Berry’ INCREASE 1” were generalised into “NPC 2B Inventory HAS Item ‘Berry’ ” and
finally negated into “NPC 2B Inventory NOT HAS Item ‘Berry’ 7, as shown in Figure.
30 ’s Resolved Conditions. The generalisation was done in order to create
consistency and allow the system to focus on the essential GameConditions. The
negation was done in order to prevent the condition from being completed before
the Component for creating that condition was actually reached.

The ‘Restriction State’ was the result of [current GameState] + [generalised &
negation of ‘effect’].

Each Component had its associated Resolved Conditions template created
beforehand and referred to when creating its Restriction State. Objects (Token) within

the Component would fill in the detail of the Resolved Conditions template.

Then the system created Restriction State from the Resolved Conditions and
the Start State of the ‘component’. This was done by combining GameConditions
from both states. Duplicates were ignored. Then a level “[X]” indicator was attached
to each GameCondition depending on the current level of Component (X = 3 in this

example).

57

Figure. 30 (bottom left) shows the Restriction State after analysing the 3rd
Component [Give Berry]. The [3] in front of each GameCondition identifies the

Component level that the GameConditions were created from.

Start State Effect to Input GameState Resolved Conditions

-NPC 2B IS ALIVE ’ -Player Inventory Item 'Berry' -Player Inventory HAS Item 'Berry'
—3» Give Berry =—»{ 1) v ' L3 Resolve =Y ik v

-NPC 2B Inventory NOT REDUCE 1 -NPC 2B Inventory NOT HAS Item
HAS Item 'Berry’ -NPC 2B Inventory Item 'Berry’ 'Berry'
INCREASE 1

3rd Restriction State Jf’

' ! Creating Restriction
-[3] Player Inventory HAS Item 'Berry — . «
_[3] NPC 28 Inventory NOT HAS Item 'Berry' State for this Component ‘
-[3] NPC 2B IS ALIVE

Figure. 30: 3rd (3rd level Components) Restriction State after [Give] Component is

analysed.

From Figure 30, it can be seen that Resolved Conditions and Start State both
has a GameCondition “-NPC 2B Inventory NOT HAS Item ‘berry’”. But in the 3™
Restriction State, there is only one “-[3] NPC 2B Inventory NOT HAS Item ‘berry.””
This is because GameCondition within Start State has higher priority and will override
any conflicting/similar GameCondition from Resolved Conditions. It may not be
obvious in this example because “-NPC 2B Inventory NOT HAS Item ‘berry’” exists in
both places, but what happens here is that the GameCondition from Start State
overrides the GameCondition from Resolved Conditions. See Table 7 for a rule table
that shows how each type of GameConditions are subjected to the override rule.
Bold word highlights keywords used for checking whether 2 GameConditions belong
in the same category and therefore can override one another. Then if the object
(shown in italic in Table 7) also matches, the GameCondition in Start State overrides

the corresponding GameCondition in Resolved Conditions.

58

Table. 7: Rule table on how GameCondition overrides another GameCondition.

BASE OVERRIDE RESULT NOTE
Boolean Variable
HAS Item ‘X’ | NOT HAS Item ‘X" | NOT HAS ‘X’ *Any GameCondition
NOT HAS “X” | HAS ‘X’ HAS ‘X’ with HAS, IS keyword
IS ALIVE IS NOT ALIVE IS NOT ALIVE belong in this
IS IN FACTION | IS NOT IN FACTION | IS NOT IN FACTION | category.
EXIST ‘X’ NOT EXIST ‘X’ NOT EXIST ‘X’
Relationship
BE FRIEND BE NEUTRAL BE NEUTRAL
BE ENEMY BE ENEMY
Location
AT 7Y AT 7 AT 7 |

From Figure. 29, the next Component ([Goto ‘City’]) was then analysed and
its own Restriction State at level 2 (2nd Component [Goto]) was constructed. At this
point, the Restriction State did not only receive GameConditions from Start State &
Resolved Conditions, but also from the Restriction State of the previous Component,

which contain:

® “[3] Player Inventory HAS Item 'berry’ ”
® “[3] NPC 2B Inventory NOT HAS Item 'berry" ”

® “[3]NPC 2B ISALIVE”

These GameConditions were passed to the 2nd level Restriction State as
shown in Figure. 31. However, Component [Goto] was special. It did not contribute to
the Restriction State. This was because NOT exempting [Goto] would result in
multiple locations that player could not reside to initiate the quest. Restricting
locations might create conflicts in a quest that required a player to go back and forth
to the same location multiple times.

That was why the 2nd Restriction State only included “-[2] EXIST Location
‘City’”, and not “-[2] Player Location IS ‘City’”

59

Start State ﬁ Resolved Conditions 2nd Restriction State
-Player Location IS 'City' -[2] EXIST Location 'City'
-EXIST Location 'City’ Goto City—»| -[3] Player Inventory HAS Item 'Berry’
~. ! -[3] NPC 2B Inventory NOT HAS Item 'Berry’
B 3|-[3]1 NPC 2B IS ALIVE
\ 4
A
Creating T
Restriction State
Start State v Resolved Conditions 3rd Restriction State
. -Player Inventory HAS Item 'Berry’ -[3] Player Inventory HAS Item 'Berry'
-NPC 2B IS ALIVE Give -NPC 2B Inventory NOT HAS Item -[3] NPC 2B Inventory NOT HAS Item 'Berry’
-NPC 2B Inventory NOT Berry 'Berry' -[3] NPC 2B IS ALIVE
HAS Item 'Berry’ l . i
e - i _________ 4 7y
Creating

Restriction State
[Figure 31] 2nd (2nd level Components) Restriction State after [Goto] Component is

analysed.

Finally, the last Component (or the 1% in term of quest structure) was
analysed. [Gather] would give GameCondition “Player Inventory NOT HAS Berry” to
the passed Restriction State. However, there was already GameCondition “Player
Inventory HAS Berry” in the list. In this case, the newest GameCondition (“Player
Inventory NOT HAS Berry”) would be added, not overwritten, since the conditions
were from different Component level ([3] and [1]), as shown in Figure. 32.

When the process finished operating on all Components, the final Restriction

State would be used to create Full Condition State.

60

Start State ﬂ Resolved Conditions 1st Restriction State
Gath -Player Inventory HAS Item 'Berry' -[1] EXIST in [Game World] 1 'Berry'
-EXIST in [Game World] ather g, | -[1] Player Inventory NOT HAS Item 'Berry'
1 'Berry' Berry -[2] EXIST Location 'City'
N -[3] Player Inventory HAS Item 'Berry'
S~ -[3] NPC 2B Inventory NOT HAS Item 'Berry'
> -[3] NPC 2B IS ALIVE
Creating T 0
Restriction State
Start State v Resolved Conditions 2nd Restriction State
-Player Location IS 'City' -[2] EXIST Location 'City’'
-EXIST Location 'City" Goto City =—3»| -[3] Player Inventory HAS Item 'Berry'
~ o -[3] NPC 2B Inventory NOT HAS Item 'Berry’
B . 3 [[31 NPC 2B IS ALIVE
Y
Creating T 2
Restriction State
Start State ﬁ Resolved Conditions 3rd Restriction State
. -Player Inventory HAS Item 'Berry’ -[3] Player Inventory HAS Item 'Berry’
-NPC 2B IS ALIVE Give —3-NPC 2B Inventory NOT HAS Item -[3] NPC 2B Inventory NOT HAS Item 'Berry'
-NPC 2B Inventory NOT Berry 'Berry' -[3] NPC 2B IS ALIVE
HAS Item 'Berry' L Rl
e e i _________ ‘ A
Creating

Restriction State
[Figure. 32] 1st (Ist level Components) Restriction State after all Components were

analysed.

4.3.5 Obtaining Full Condition State

After the Restriction States were created, the system was able to determine
which condition was prohibited during the ‘path’ generation. This was implemented
by merging the list of Restriction States with the Goal State of the Components. The
[X] tag in front of a GameCondition in the Restriction State determined which
Components it was to merge with.

If the current Component level was higher than or equal to the [X] of
Restriction State’s GameConditions, all those GameConditions were omitted.
Continuing from the example in Figure. 32, the 1% Component [Pick]’s
GameCondition “Player Inventory HAS Item ‘berry’” were fused with “[2] EXIST
Location ‘City’”, “[3] NPC 2B Inventory NOT HAS Item ‘berry’”, and “[3] NPC 2B IS
ALIVE.” This resulted in Full Condition State of [Pick].

The 2" Component [Goto] and 3™ Component [Give] were fused with [2nd
Level] Restriction State and [3rd level] respectively as shown in Figure. 33. Each

combined state was called a “Full Condition State”.

61

Restriction State Goal State Full Condition State
[1 Level] Restriction State [Pick]'s Goal State [Pick]'s Full Condition State
-[1] EXIST in [Game World] 1 'Berry' -Player Inventory HAS Item 'Berry'
-[1] Player Inventory NOT HAS Item + -Player Inventory HAS Ttem | -EXIST Location 'City"
'‘Berry’ ‘berry' === |-NPC 2B Inventory NOT HAS Item 'Berry’
-[2] EXIST Location 'City" -NPC 2B IS ALIVE
-[3] Player Inventory HAS Item 'Berry'
-[3]1 NPC 2B Inventory NOT HAS Item 'Berry’
-[3]1 NPC 2B IS ALIVE
v
[2 Level] Restriction State Goto]'s Goal State [Goto]'s Full Condition State
-[2] EXIST Location 'City' -Player Position AT 'City"
-[3] Player Inventory HAS Item 'Berry' + -Player Position AT 'City' == |-Player Inventory HAS Item 'Berry'
-[3]1 NPC 2B Inventory NOT HAS Item 'Berry’ === |-NPC 2B Inventory NOT HAS Item 'Berry'
-[3] NPC 2B IS ALIVE -NPC 2B IS ALIVE
[3 Level] Restriction State [Give]'s Goal State [Give]'s Full Condition State
-[3] Player Inventory HAS Item 'Berry' e |-NPC 2B Inventory HAS Item 'Berry’
-[3] NPC 2B Inventory NOT HAS Item + -NPC 2B Inventory HAS Item —
'Berry’ ‘Berry'
-[3] NPC 2B IS ALIVE

[Figure. 33] The process of fusing Restriction States with original components.

This meant that after the 2nd Component goal state was reached, it was no
longer necessary whether ‘City” exists or not. And if there was to be 4th Component,
the condition that NPC 2B had to be alive would not be applied to the Starting
GameState of the 4th Component. The Full Condition State was used in placed of
Goal State for its corresponding Component. This was to guarantee that when the
Component was completed, the GameState would not lead to any dead end

situation.

4.3.6 Checking for impossible quest

This step used the Full Condition State to check whether the quest was
possible or was ‘appropriate to narrative’ or not. This step checked for situations
such as “NPC 2B is tasked to die at level 2 Component, but also need to be alive at
level 3 Component.” and discarded the quest if such situations were found.

This was done by reading all GameConditions within the Full Condition State

and checking for certain conflicts. Such conflicts were identified as follows:

62

1. There are “IS ALIVE” and “IS NOT ALIVE” GameConditions of identical entity
in Component of any level.
2. There are [EXIST ‘X’] and [NOT EXIST ‘X’] GameConditions in the

Components of the same level.

If any of these rules were true, the quest would be discarded, and a new
quest would be generated in its place.

Full Condition State was then used to prevent the Prolog system from
choosing conflicting action between each GameState. When Prolog started to
generate path from the root GameState (start State of the first Component) to the
goal state of the last Component (quest end), it checked if the GameState Conditions
generated by these paths conflicted with the provided Full Condition State.

By doing this, the system was able to prevent conflicting and inconsistent
sequence of actions. The result path from each GameState to its next GameState
retained the consistency of the original Action Rule Table, while allowing the new
path generation system to perform without any hindrance from backtracking.

In the next step, the Quest Analyser (written in Prolog) would be queried to
get all possible paths of action that the player could perform. The following

information would be passed to the Quest Analyser:

® Current GameState: All current game conditions that are stored within the

system.
® Full Condition State: The condition that must be true.

® (If exist) Previous Path: List of action the player did previously.

4.3.7 Path Finder / Quest Analysing

The Quest Analyser discovered and recorded paths to complete the quest.
Figure. 34 shows a diagram illustrating the overview of this process. After the quest
was generated, the first Component and its Full Condition State were sent to the

Quest Analyser (Prolog) along with current GameState. The system did not send the

63

whole quest because querying the quest Component-by-Component made

management and debugsing easier.

Quest Generator (Java) Quest Analyser (Prolog)
o
1
1
1
1 |
1 . Receive Game
Submit query
- > data Send out all qut;bg: ::II
recorded Paths Condition State
no
p [Path y
found
inal goal @ P a— o gt'lja':i:r:s:ltlar:":nt
quest reach f task
Repeat Record the
SimulatorLoop (¢ —ay
yes for a new [Path] new [Fghl

[Figure. 34] A Diagram illustrating how all paths to finish the input quest are
discovered and recorded. The highlighted area is the part where Prolog ‘simulates’ a

player’s action and game world’s dynamic reaction to the action.

From starting point, the predicate received all the mentioned data and try to
discover all possible paths from the start of the Component to its goal state (Full
Condition State). Figure. 35 shows a part of Prolog code queried by Java as the first
predicate. In line 48-53, all of the previous information regarding the previous query
attempt were retracted. Then in line 54, each individual Goal Conditions within [GA]
was categorized into either character oriented goal [GC] or location oriented goal [GL].
This was because GC and GL are of different string-list length and predicate could

only take input of specific length. Line 55 would forward the queried to another

64

predicate called “startQuestPath”. This predicate checked whether the Goal
Conditions were already completed (and thus needed no further action) or not. If

not, the query was then forwarded to “questPathMainLoop” shown in Figure. 36.

45% GA here = all Goal condition that isn't seperated yet.
46 startQuestPath(GA,AC,AR,LA,P,PF)

47 i -

48 retractall(pathExist(ANYTHING)),

49 retractall(conditionExist (ANYTHING)),
5@ retractall(counter(ANYTHING)),

51 retractall(pathExist_ac(ANYTHING)),
52 assert(counter(@)),

53 \+pathExist(ANYTHING),

54 seperateGoalType(AC,GA,GC,GL),!,

55 startQuestPath(GC,GL,AC,AR,LA,P,PF).

[Figure. 35] The starting query that is invoked first from Java side

88%Main loop to check if after 1 action and follow by resolve, the quest

89%goal is reached yet or not.

S@questPathMainLoop(GC,GL,AC,AR,LA,P,LC,PF)

91:-

92 (questPathMainLoop_Done(GC,GL,AC,AR,LA,P,LC,PF) -> writeToFile(GC,GL,AC,AR,LA,P,LC,PF)
93 H questPathMainLoop_Continue(GC,GL,AC,AR,LA,P,LC,PF)

94

[Figure. 36] The main query loop

The predicate “questPathMainLoop”, was the main predicate that all other
loops and predicates came back to execute when they finished their queries. This
questPathMainLoop was responsible for the tasks “Current goal is reached” shown in
Figure. 34. The predicate “questPathMainLoop Done” checked if all Goal Conditions
were met. If true, the path would be written down using the “writeToFile” predicate.

Otherwise, the query continued.

Table. 8: This table shows all possible actions.

65

ACTION

DESCRIPTION

Goto

Move the player character.

Direct Attack

Attack a character.

Hire to_Attack

Hire an NPC to attack another NPC.

Pickup_Ground

Pick up a specified item at the location.

poisoned Poison the target NPC.

Pickup_Body Pick up an item from dead body.

Give Move a specified item from player to NPC.
Capture Give captured status to a specified NPC.

Free Remove captured status from a specified NPC.

Damage item

Give damaged status to a specified item.

Fix

Remove damaged status from a specified item.

/Bribe_add_crime

Give criminal status to a specified target.

Bribe_remove crime

Remove criminal status from a specified target.

Table. 9: This table shows a list of reactions NPC performs when conditions are met.

REACTION

DESCRIPTION

Friend cure poison

have ‘heal’ ability.

NPC with antidote or heal ability will remove poisoned

status from a friend at the same location. The NPC must

soldier capture criminal

at the same place.

Soldier applies captured status to NPC with crime status

soldier kill NPC criminal

who resist

resist capture and gets killed.

If the NPC with crime has higher level than 15, it will

Doctor cure poisoned

place.

Doctor removes poisoned status from NPC at same

Doctor cure damaged

place.

Doctor removes damaged status from NPC at same

Soldier bring captured

NPC with criminal and captured status at the same place

66

criminal to jail with a soldier NPC is moved to jail along with that
soldier NPC.

Jailbreak Captured status is removed from NPC (in jail) with a
lockpick.

drink antidote If NPC has antidote and is poisoned, poisoned status is
removed.

character die from If NPC has poisoned status, it dies (Checked last, after all

poisoned reaction fail).

Once the questPathMainLoop forwarded the query to the “Select Action”
(see Figure. 34), an action predicate was selected. Table 8 shows all possible actions
a player could performed. When an action was chosen, its [‘action name’ + ‘subject
of the action’] would be added to a list called [Path] and [effect]. A [Path] was
defined as a list of ‘action’ that led to the current GameState. When the final goal of
the quest was reached, the current [Path] would be recorded and sent back to the
Quest Generator (See Figure. 24). An [effect] was defined as a pending list of effects
yet to be applied to the current GameState.

To apply an action’s effect to the current GameState, another loop of query
must be used. First the [effect] of the actions would be separated into [next_effect |
RemainingEffects]. ‘next _effect’” was the effect that would be applied to the current
GameState, ‘RemainingEffects’ was a list containing all other effects waiting to be
applied. When the effect was applied, the GameState changed. The change invoked
‘reacting’ predicates (Figure. 37) that served as ‘dynamic reaction’ simulation to the
effect. All reactions are listed in Table 9. They were a set of predicates that only
triggered when certain conditions were met. In Figure. 37, when the ‘reacting’
predicate was called, it would call “getCharlist” predicate to generate a list of all
characters to be used in the actual loop (“reacting Pair”). This must be done to
prevent Prolog from assigning the same object into the variables when there were
more than 1 variable. One of the "reacting Pair” predicate is shown in Figure. 38. It

checked for conditions when an NPC had ‘poisoned’ status. If true, the predicate

67

then checked if there was any character that was the NPC’s friend and was capable
of healing the poisoned status.

Everytime a ‘reacting’ predicate evaluated to true, it would call itself again
and queried to the next ‘reacting Pair’ predicate using the new condition (created
from the previous reaction that took place). When no more ‘reacting’ predicate was
triggered, the system checked if the goal state of the current task (Component) was
reached. If not, a next action was selected, and the loop continued. Otherwise, the
system recorded the current [path] (list of taken actions) and GameState. Then it
checked for another possible path. If no more path exists, the system sent recorded

paths and GameStates to the Quest Generator.

918 reacting(AC,AR,LA,P,LC,ACRS,ARRS,LARS,PRS,LCRS) :-

919% getCharPalrINI(AC,Pair_list),

920 getCharList(AC,Single_list),

921 reacting_Pair(single_list,AC,AR,LA,P,LC,ACRS,ARRS,LARS,PRS,LCRS).

[Figure. 37] The reaction loop.

961%Friend cure Friend poisoned

962 reacting_Pair([A|T],AC,AR,LA,P,LC,ACRS,ARRS,LARS,PRS,LCRS)

963 : -

964

965 existCharListStatusFromList(AC,A,poisoned), %is poisoned?

966

967 existRelationship(AR,friend,A,B),

968 existCharListSkillFromList(AC,B,heal), %can char2 cure poisoned?
969

970 getCharIsAliveFromList(AC,A,true), %The character must be alive
971 getCharIsAliveFromList(AC,B,true), %The character must be alive
972

973

974 delete(AC, [A,listStatus,poisoned,z,zz,zzz],ACRE),

975

976 append(P, [friend_heal_poisoned],P2),

977 append(P2,[A],P3),

978 append(P3,[B],PRE),

979

980 ACRS = ACRE,
981 ARRS = AR,
982 LARS = LA,

283 PRS = PRE,
984 LCRS = LC.

[Figure. 38] An example of reaction predicate, where A = charl, and B = char2.

4.4.8 Avoiding infinite loop

68

In order to avoid any situation where the system would run infinite number
of possible paths and loop forever, some constraints were implemented.

First, the size of each [path] (also called “depth”) was limited. When the limit
was reached, the system would consider that path a dead end and backtracked to
find another path. This path size could be configured by users. The depth
configuration used in this thesis was 3, meaning a player character was forced to
perform at most 3 actions. This number was chosen because of performance issue.
With this setting, each quest took around 30 min to 4 hours to generate. At depth 4,
the time required became more than 6 hours at the minimum. At depth 5, the
system regularly crashed due to ‘out of memory’ error. However, even at depth
equal to 3, some quest strategies were still not feasible. For example, no quest was
ever created from the strategy “Trade for supplies” because the quest generation
was only able to find paths with depth more than 3.

Second, pattern identifier was used to discard repeated [path] and other
undesirable [path]. A path found by Prolog was subjected to the following criteria

before it would be viable:

1. The player character must be alive.

2. Its action, target of action, and its reaction record must not be a subset of
any existing path.

3. A player’s sequence of actions must not be a subset of any existing path’s
player’s sequence of actions. This excluded the target of each action.

4. The front half of the path must not be a subset of any existing path.

5. The back half of the path must not be a subset of any existing path.

Without the criteria, a simple “Goto” Component might have up to 45000
paths (mostly identical, with different ordering of actions). If only the first and the
second criteria were applied, the Component still had more than 4000 paths (each
one still very similar to others).

The 5 criteria included paths from all previous Components in its review. The

initial setting only checked one Component at a time. However, this resulted in over

69

100 paths for a Component. These paths were unique, but the generation time was
too large to generate a quest within a day. Thus, the setting was changed to include
paths from previous Components to lower the path numbers.

After all 5 criteria were applied and previous Components’ paths were
included, the “Goto” Component path number came down to around 6-20 paths.

However, applying all 5 criteria denied some valid paths to be recorded,
mainly short paths that could complete the specific Component within 1 or 2 actions.
Due to how Prolog used depth-first-search, it was highly likely that the first [path]
found was a 3-actions path. From our experiments, even though 1 or 2 actions within
the [path] were not needed (not doing the action would still result in the goal state),
they would still be recorded. When a [path] that only used 1 or 2 necessary action
was later found, it would not be recorded because there already existed a 3-action
[path] which included those actions as its sub-path.

Figure. 39 shows a path example from a quest generated from “Kill enemies”
strategy. The top part of the figure shows the Full State Conditions of each
Component within the quest. The bottom part shows the actions performed by the
player and reactions of the actions. The left side describes the action or reaction
taken, and the right side describes the subject, object, and/or actor.

After receiving the information, the Quest Generator then stored all the
information for the next predicate. Here the quest would advance and the next
Component and its “Full Condition State” would be selected. Quest Generator
would then select the 1*" path from the previous Component, with its GameState, to
send to Quest Analyser along with the new Component and its “Full Condition
State”. This process repeated with the second path from the previous Component,
and carried on until all paths were used. Then the generator repeated the process
with the next Component, until no more Component remained.

After all Components were exhausted and all possible paths were discovered
and recorded, the quest was then documented into a text file. This document
included the quest’s Components, Full Condition States, GameState at the end of
each Components’ queries, paths, objects’ appearance rate, number of quests

discarded during generation, and number of quests discarded during query. The

information was then used for analysing the quest and MPQ-Generator characteristic

as a whole.

Component’s Full Condition State
follow: [[player,sameLocation,merchantl,z,zz,zzz],[blacksmith1,isAlive,true,z,zz,zzz],[soldierl,isAlive,true,z,zz,2zz]]

follow: [[player,sameLocation,soldierl,z,zz,zzz],[blacksmith1,isAlive,true,z,zz,zzz],[soldierl,isAlive,true,z,zz,zzz]]

kill: [[soldierl,isAlive,false,z,zz,zzz],[blacksmith1,isAlive,true,z,zz,zzz]]

goto: [[player,samelocation,lumberjackl,z,zz,zzz],[lumberjackl,isAlive,true,z,zz,zzz], [blacksmith1,isAlive, true,z,zz,zzz]]
report: [[player,samelocation,blacksmith1,z,zz,zzz],[blacksmith1,isAlive,true,z,zz,zzz]]

Path ID: alb2cldlel

start_new_component:no_action_need

start_ new_component:no_action_need

start_new_component:

ac_hire_to_attack: player, mob_npc_1, doctorl
char_die: doctorl,
soldier_capture_criminal: mob_npc_1, soldierl
criminal_escort_to_jail_also_lose_crime: mob_npc_1, soldierl
ac_hire_to_attack: player, thiefl, soldierl
move_from_to: jail, city, thiefl
char_die: soldierl
ac_move_from_to: jail, city, player
move_from_to: jail, city, player
start new_component:
ac_move_from_to: city, forest, player
move_from_to: city, forest, player
start new_component:
ac_move_from_to: forest, city, player
move_from_to: forest, city, player

Figure. 39: An example of a recorded [path] from a quest generated using “kill

enemies” strategy.

71

5. Result and Analysis

5.1 Result

We analysed results from generated quests with the following strategies; [Kill
enemies], [Steal Stuff], [Obtain luxuries]. A quest was set to have between 4 to 8
lengths of Component with maximum of 3 sequence of actions to complete each
Component. Thirty quests were generated for each strategy. The highest possible
number of paths is 136 paths from the strategy [Obtain Luxuries]. No range of
acceptable number of paths was selected because we wanted to see the full range
of possible number of paths for each strategy. No additional weight was given to any
type of Components. All <Components> could be broken down into any of the
possible set of <Components> and Components as stated within Table 4, with equal
probability. No optimization was made to the generation procedure to enhance any
specific property of the quest.

Analysing the [Kill enemies] strategy. This strategy could be completed in 30.3
different paths on average, with median at 28. See Figure. 40 for the distribution rate.
On the other hand, strategies that focused on non-combat (killing) aspect showed
lower number of possible paths on average. The strategy [Steal stuff] averaged only
at 14.3 with the median of 8. This was likely caused by the limited possible
interaction between items and characters. Items could only be gathered, looted from
dead body, or traded for, while a dead character could result from multiple ways of
chain-reaction between NPCs and players. However, if the items were in NPCs’
possession, the number of paths was much higher than average, but not equal to the
average number of paths from ‘kill’ Component. The number of paths was higher
because NPCs could be killed in many ways to get the items. Table 10 shows that
for quests in [Steal stuff] strategy, the action ‘Pickup body’ appears more than 4
times compare to quests in [Obtain luxuries] strategy. For the action ‘Pickup body’
to be valid, the target NPC must be killed. The amount of ‘Direct Attack’ and
‘Hire_to_attack’ in strategy [Steal Stuff] are much higher compared to that in [Obtain
luxuries], indicating attempts to kill NPCs. The reason the number of paths was lower

than the number of paths from ‘kill’ Component was likely due to ‘Pickup_body’

72

action exceeding the permitted number of actions per Component. Had the
permitted number been higher, the number of paths would likely be equal or higher
to that of a normal ‘kill’ Component. For [Obtain luxuries], such disparity was not
shown. This was because the item was not usually in NPC’s possession, hence the
multiple ways to kill an NPC were not included in the paths.

Figure. 40 to Figure. 42 shows the disparity between all strategies and their
generated quests’ number of paths. The selected strategies include [Kill enemies],
[Obtain luxuries], and [Steal stuff].

Recorded paths could also be listed and analysed by users. For example, our
experiment generated an interesting [Kill enemies] path with a player bribing the city
guard to arrest the city doctor and lock him in jail. Then the player successfully
poisoned the target because no doctor was available. Another interesting path
showed a player attacking a NPC without killing him to get captured and escorted to
jail. The soldier also captured a thief (quest target who just escaped out of jail) while
escorting the player to jail. Then the player killed the target and stole a lockpick
from the target and used it to escape from jail and report the quest result.

These paths are interesting because they showed how MPQ-Generator is
capable of discovering complex actions planning. In the path where a player
attacked an NPC to get captured, the ‘attack’ did not directly result in the death of
Thief, or player being able to ‘attack’ Thief. The changed in conditions that result in
player being able to directly attack Thief came from a ‘chain reaction’ of the

dynamic environment and how NPCs react to each other.

Table. 10: This table shows how many numbers of each action appeared in paths for

each strategy.

Strategy
Actions Kill Enemies Obtain luxuries Steal Stuff
Direct Attack 586 167 587
Hire to_Attack 2158 442 961
Pickup_body 69 111 as57

73

Kill enemies

O N MmN = O

Aduanbauq

OFT-TET
0ET-TZT
0¢T-11T
OTT-T0T
00T-T6
06-T8
08-1Z
0£-T9
09-85
£5-G§
¥S-¢s
15-6F
8-9t
St-EF
r-0r
6E-LE
9E-¥E
€E-TE
0€-8¢
£2-5¢
ve-te
Te-61
81-91
ST-€1
¢1-0T
6-L

9-t

€0

Number of paths

Figure. 40: Quests statistic for Kill enemies strategy, from 30 generated quests.

Obtain luxuries

9
8
7
6
5
4
3 |
2 I
1
: ol
Figure. 41: Quests statistic for Obtain luxuries strategy, from 30 generated quests.

Aduanbau4

OFT-TET
OET-TCT
0CT-T1T
OTT-TOT
00T-T6
06-T8
08-1£
0£-19
09-8S
£8-5§
$S-7S
15-6%
819
St-Ev
-0r
6e-LE
9E-+E
£E-TE
0£-8T
L-5C
pe-ee
TC-6T
87-91
ST-€1
¢T-0T
6-L

9-+

€0

Number of Paths

74

Steal stuff

=

Frequency
OFRPNWARULONWLO

M O

G MNINWASEM~NO MU OONWNm 4 N0 OO0 C O o0 0o o O

L L A A AN NN MMM ST N NN O N0 A NS
e e e T T e o e S S Ty S S A S A B Ry A Tt i s S i B
O M WOU BN O A T ~NOMWO N LWOW - —~ ~ v 0 0 a0

— A A NN ST N ONOdAdAHH
O = ™M

= v v

Number of Paths

Figure. 42: Quests statistic for Steal stuff strategy, from 30 generated quests.

5.2 Comparison

This thesis used a modified ReGEN’s metric system as an evaluation tool.
Quest generated using the proposed algorithm were compared with quests from
other sources. Figure. 43 shows how ReGEN metrics are used to evaluate quests from
Skyrim, Radiant system and Witcher series. The comparison in Figure. 43 uses average
values from all quests in each game. In this work, we calculated our quest
characteristics using ReGEN’s formulas, making our quest comparable to ReGEN’s
analysis. The comparison was made to determine how our quests’ characteristics
were different from other systems. It was not a statement that our work was better
than others in a specific field. Some metrics were marked “Not Applicable” because
the work in this thesis was not designed for such metrics and had no available
information to calculate the metrics.

Table 11 shows a modified ReGEN’s metric table used to compare MPQ-
Generator’s quests characteristics against quests from other systems. The MPQ-
Generator’s values came from the analysis of 90 generated quests from the previous
section. No modifications or specific designs were made to the generation system to

optimise performance for any metrics.

75

It must be noted that the system with the highest value was not the ‘best’
system in every situation. It depended on what were required from the quest. For
example, a designer may want a system with high ‘Cost’ to create quest with higher
impact to game world upon completion, while another designer may want a system

that has zero ‘Cost’ so that quests could be generated with consistent quality.

| Metric ReGEN SQUEGE | Radiant Quests | Skyrim Main Quests | Witcher Main Quests |
Narrative Content | 5.32 4+ 0.90 | 5.08 + 3.25 2.33 +0.85 5.12 4+ 2.37 15.41 +9.52
Longest Path | 4.75 +0.54 | 4.13 &= 1.64 2,17 +£0.80 5.12 £ 2.57 12.09 £+ 6.41
Shortest Path | 4.43 £ 0.59 | 3.04 £0.79 2.17T £ 0.80 0.12 +£2.37 11.18 = 6.58
Average Path | 459+ 0.52 | 3.78 £ 1.29 217 +£0.80 5.12 £2.37 11.61 £ 6.46
Most Branches | 0.57 + 0.50 | 1.63 +1.07 0.17 +0.37 0 1.26 +1.09
Fewest Branches | 0.57 £ 0.50 | 1.17 = 0.37 0.17 £ 0.37 0 1.26 £1.09
Average Branches | 0.57 £0.50 | 1.48 £0.88 0.17 £0.37 0 1.26 £1.09
Highest Cost | 0.84 £ 0.55 | 1.42 £ (0.91 0 0.20 £ (.46 0.21 £0.40
Lowest Cost | 0.43+£0.50 | 1.29 =0.93 0 0.29 £+ 0.46 0.12 £0.32
Average Cost | 0.63+0.42 | 1.38 +£0.89 0 0.29 + 0.46 0.17 +0.34
Most Encounters | 0.25 4+ 0.43 0 0.42 +0.57 0 1.44 +1.90
Fewest Encounters | 0.0 0.0 0 0.42 £0.57 0 1.24 +1.88
Average Encounters | 0.12 £ 0.22 0 0.42 £0.57 0 1.33 £ 1.89
Highest Uniqueness | 0.95+ 0.09 | 0.68 = 0.14 0.95+0.12 0.72 £0.20 0.59 +0.25
Lowest Uniqueness | 0.94 4+ 0.09 | 0.58 +0.10 0.95+0.12 0.72 +0.20 0.53 +0.24
Average Uniqueness | 0.94 4+ 0.09 | 0.62 + 0.09 0.95 +0.12 0.72 +0.20 0.56 +0.24
Narrative Richness | 0.03 +0.12 0 0 0 0.03 +0.16

[Figure. 43] ReGEN’s metrics applied to quests from multiple games and systems [47].

V/N VN /N V/N V/N 89°0 9210YD JO 1YSI9M
€00 0 0 0 €00 V/N SSaUYDIY dAlJRLIEN
95°0 2.0 S6°0 290 160 060 sssuanbiun asesaAy
cC'1 0 A X0 0 A0 V/N $I19}UNOdU3 S5eIBAY
LT0 62°0 0 8¢'T €9°0 V/N 350D 5eI9AY

92’1 0 LT0 8Y'T LS0 0 sayduelg d5eIAY
1911 AN AN 8L'¢ 65D $8'p UYied S5eI1any

T0'ST A% €eT 80'G ¢S S8y JUS3UO) dAljelieN

(L002) (1102) (1102) (L002) | (¥102) (6102)

SISOND UIBW JBYDHA | SISBND UIRN WLAYS | S3sanD juelipey | 393NDS | NID3Y | 103eldU3D-Dd | DHIB

¢ "2INSI4 WO} Ue) dJe $3SaND Ule YDA O}

NIDSY WO} SHNSDI Y] "SWDISAS ISYI0 W0l sysanb 0} pasedulod uload 103elausn-OdN Wolj s3sanb moy smoys a1gey iyl (1T "9)qel

7

5.2.1 Measurement and Evaluation Calculation

Narrative Content

One unit of Narrative Content was equal to 1 Component. This represented
the number of events that happened while doing a quest. In a quest with branching
path, Narrative Content counted all nodes regardless of whether a player was able to
experience all of them in 1 playthrough. The Narrative Content of MPQ-Generator’s
quests were determined by the quest size configuration. The sample shown in this
thesis used 4-8 Components size quest setting and the actual average size was 4.85
units (from 4 types of quests in the experiment). This was close to ReGEN, SQUEGE,
and Skyrim Main Quest’s Narrative Content. The Witcher had a much larger Narrative
Content value. To improve MPQ-Generator’s Narrative Content, users can configure

the quest’s size to be bigger than 4-8 Components used as sample sets in this thesis.

Path

Path was defined as Narrative Content of each branch of the story. If a quest
did not have branching, its Path would be equal to its Narrative Content. There was
no branching in the quest generated from MPQ-generator, therefore players would
experience all of the Narrative Content according to this definition.

Not to be confused with Path defined in this thesis as ‘set of action players

can take to complete a quest.’

Branch

Branch was defined as the number of times a player was able to choose
quests’ objectives. Therefore, it was not the same as achieving the quest’s objective
via different quest paths. In this definition, MPQ-Generator’s Branch metric was zero

because there was no quest where players needed to choose the quests’ objectives.

Cost
When a non-renewable object was permanently removed from game world,

it counted as 1 Cost (removing objects generated along with the generated quest did

78

not count). Cost was defined as the consequence of finishing a quest that reduced
the flexibility of generating a new quest. In MPQ-Generator, objects might change
properties such as turning from being ‘alive’ to ‘dead’ and vice versa. However, no
action would result in permanent deletion of an object. Therefore, this metric was

not applicable.

Encounter

Similar to Cost but used for renewable objects such as items or monsters that
spawned periodically at certain locations, or NPC generated for the quest. MPQ-
Generator did not simulate spawned monster/item/NPC encounter or combat.
Therefore, MPQ-Generator could not be compared with other systems using this

metric.

Uniqueness

Uniqueness was defined as a measurement of the variations of the quest
tasks. It was calculated by dividing the number of unique Components with the total
number of Components (Narrative Content). For example, if a quest contained 2
[Goto ‘x’] Components and 1 [Kill ‘Z’] Component, they were counted as 2 units of
unique Components and 3 units of Narrative Contents. The Uniqueness value of such
quest would then be 2/3 (0.66). MPQ-Generator quest’s average Uniqueness (from 3
types of quests in the experiment) was 0.90 which was higher than SQUEGE’s (0.62),
Skyrim’s Main Quest’s (0.72), or even The Witcher’s Main Quests (0.56). Quests
generated from MPQ-Generator contained more diverse activities and goals than

these quests.

Narrative Richness

This metric measured the amount of unintentional consequences of a
narrative/quest that led to another narrative/quest. By unintentional, it meant ‘not
as part of Component/quest goal state or reward.” The more quests generatable
from that consequences, the higher the Narrative Richness became. However, MPQ-

Generator did not generate consecutive quests from the final state of any quest.

79

Therefore, the Narrative Richness of quests generated from MPQ-Generator was not
measurable.
Weight of Choice

Weight of Choice measured the effect of player’s choices by comparing how
different all final states of the game were at the end of the quest. The lower the
number, the more different the final states were from others. The measurement was
calculated from the average differences of each generated quest’s GameState at the
end of each paths. The difference (intersect) of each path was divided by the union
of each path. There seemed to be a correlation between weight of choice and the
number of paths. This metric showed the gravity of player’s choice of actions and
how the end state of the game could be different depending on the chosen
sequence of actions. The lower the Weight of Choice, the more different each final
GameStates were from each other. Each quest strategies had the following Weight of
Choice: [Obtain luxuries = 0.74], [Steal item = 0.72], and [Kill enemies = 0.60].

It could be seen that quest’s strategy with higher number of paths had lower
Weight of Choice. The other systems’ Weight of Choice were not available because,
as mentioned in [47], complete game world information was not available. Therefore,
it was not possible to compare MPQ-Generator’s Weight of Choice with other

systems.

5.3 Path analysis

We turned generated quests’ paths into trees for analysis. Each node
represented actions performed by a player in each path, excluding the
‘start new_component’ node which indicated a start of new Component. At the
start of each tree, paths would be represented by ‘start new component’ equal to
the number of paths in that quest. If two or more paths pointed to the same nodes,
it meant that at that level of action and Component, both parts performed that
same action. There was also special node that represented “player performing either
action A, or action B in any order” that was created every time two or more paths

shared a group of action. Such as:

80

Path 1: [ac_direct_attack, Thiefl] + [ac_direct_attack, Merchant1]
Path 2: [ac_direct_attack, Merchant1] + [ac_direct attack, Thief1]
Path 3: [ac_direct_attack, Merchant1] + [ac_direct_attack, Thief1]

Here the special node that the three paths pointed to would be labelled as
shown below, where the number after ‘count’ indicated how many of that

combination of action happened.

[direct_attack/Thiefl-direct_attack/Merchantl count = 1
direct_attack/Merchantl1-direct_attack/thiefl count = 2]

= N

Start new Component, Component level 1

Direct Attack Hire to attack

Start new Component, Component level 2

s em=2 - Direct Attack thief1 count = 3

ac_take_compselockpickthuefl 2-1 covat = 3
T

Take item lockpick from thief1 count =3

Start new Component, Component level 3

n0_action_need 3 cout =

No action needed count = 3

Start new Component, Component level 4

Move from jail to city count = 3

N

-;»mv_ﬁm»!o)d"@
Figure. 44: A tree representing paths of a quest from ‘Obtain luxuries’ template.

81

82

Figure. 44 shows a simple quest tree generated from ‘Obtain luxuries’
template. Nodes with the same action and subject of action were grouped as a
single node. The quest’s Components consisted of [follow: thiefl], [take: lockpick],
[wait], and [report: doctorl]. This quest could be completed with 3 different paths.

The nodes inside the topmost highlighted oval represented the starting of
each path. They all were “start new_component 1” nodes. Then in the highlighted
rectangle just below, each “start new _component 1”7 node pointed to different
nodes. These nodes in the highligshted rectangle represented 3 different actions that
could lead the player to quest completion. They were [Move to / jail], [Direct attack
/ mob_NPC 1], and [Hire to_attack /mob NPC 1 /king]. All of these actions and
subsequent reaction got the player to jail, the same place as thiefl.

The next part of the tree pointed to nodes “start new component 2”. These
nodes are highlighted in oval in the figure. These component nodes told us that the
previous component’s objectives were successful, and the next component could
be started.

The quest had 4 level of Components. The 4 sets of “start new_component”
are shown within oval shape highlights.

Al “start new component 2” nodes pointed to the same node. This
showed that these paths shared the same action which led to quest completion. All
3 paths shared the action “Direct _attack / Thiefl” node. This meant that if the quest
was to progress ahead, the only option was to perform ‘Direct attack’ on the NPC
Thiefl. After the “Direct attack / Thiefl” node, all subsequent nodes and their
arrows converged into a single node, expanded into 3 “start_ new component” then
converged again.

Thus, for this quest, all the ‘variety’ in how to complete this quest only
stemmed from the first Component. Only in the first Component that player had ‘3’
choices to choose on how to complete the Component’s objective. In the
subsequent Components, there was only 1 node that led to the next node and no

divergence existed.

"S2INS1) JI9Y10 Ul UMOYS 1B Seale paysnysiy ay3 ‘@ye)duwial saiuiaua)y, wodj 3sanb e jo syjed Suppussaidal 9911 v Gy "2.nSi4

€8

PP 2IN314 WO 9941 Y3 Jo Hed YY) 9y 9p "24NnsiH

77 1 adu qouyamdes 5w yed ¢

T ARy e ged

= NMOI 77 | SLY AN O amy o 77 Auopelyoy woy "roum e yed 7

/

€ =1UN0D Ljueyolaw YOENe O} |81y} 8liH

T =wmod |7 ey anpepe o any oe

1-7 Sunyenpppoene o sy e ed §

1T pangpandes”oe yed o

2 =1UnooD Ljueyolaw YoeNe 0} |jely} aliH

/

¢ =wmon g7 | adu”qous o AoE o Ay o8

0T YRS} QImoeE oF amy o yed ¢

T=WN0d (7 [WAsuY S e oy Dy 0

2 =JUnoo LJuBydIsW YOB}NE. O] LJoulw aiiH € =1unod | odu qow 3Oejje 0 Liaulw allH | = JUNOD LUNWSYORIQ YOENE. O} |Joulw aiiH

7 mouodmos mou s ed g T wonodmos man s yed ¢

7 wouoduos maums yed 17

7 wouodues man bms yed g

7 meuoduas e sms yed ¢

7 wouodwos maums qed §

v8 .

b

b 24N814 WOJ) 9341 9Y3 JO ped \ppiw Y] /1 "2Indi4

Z=1unod Ayo 0} el wou 8AoN

7 =mwmoa [-7 Anyrelor woy aaow” e

Q=WM0d Z-7 IR ISUUSIENE 0] ANy o8

9 = 1UNOD LJUBYOIBW XOBJE O] |LJ8ulw aliH

</

L=Tmod -7 ey or

g =JUN0O LJauIW 98.4

77

§ =1mod g [emuandes o

8 =1Unoo |Jsulw ainmde)

7 wauodwos”mau"ums yed 1] ¢ wauodwoa”mau"ums yed pp

7 weuoduod”mau ums yed g

7 wau uu_caula,g@

07 Bunypeunupaee o1 any oe yed |

7 wauodwos mau ums yed g

G8

PP 2IN3I4 WOy 9941 9y Jo wed 1ysu sy 8f "2Indi4

P e R S —WM0d T [IUBYAIY 10390 R o Ay o8 o7 gy ~adu™qom o o sy "oe ed £

| = 1UN0D LjuByDIaW OBNY 1081IQ G =1UNOO | JUBYDIBW XOB)IE O] 1J0J00p SliH

|-z Supy| odu"qowyyoene o any e ped g Z=wmos |-z | adu qomamdes oe 17 1satoyAusyor woy aaow oe yed g

7 =Tmoa |-

2 =1unod | odu qow ainde)

9 =mwmoa g7 AnouoaSunpyo) won esow a8

9 =1unod Ajo 0] uoabunp WO} SAON

98 .

b 2INS14 WoJ) 9313 9y} Jo Yed Jsuiw ainided sy} JISpuUn WONOg-3)PPIW Y] 6 "24NsI4

+ weuodwos mau e yed v mewodwos meu s yed g1 b weuodwos mau wms yed 71 b weuodwos"mau"wes yed £ b weuodwos weu"wms ed of

¥ [9A8] JUBUOdWO) JuBUOdWOD MaU LEIS

L =WMod (- Pasu uonde o

9 =1UNOO PBdU UONOE ON

puTm s yped 71 ¢ mauodwos mau"ums yed 11

£ Eu_ugsoula_lﬁ@ ¢ suodwos”mou"ms ged g

€ wouodwod mou ums yed ¢ wauodwos mau” ums yed g1

€ [9A8] JUBUOdWO) JuBUOdWOD MBU LEIS

9 =1UNOD LJUBYDISW YOBYE 0} LJaulw aliH

[

9 =UN0D 77 [IUBYIR [JSURLOENE 01y o8

.8 .

"SUOI}De Pa1L)RI-UOoU ‘Wopue) A)SUIlUSS UleIUoD syied swos Jey} SUIMOYS pi 24nd14 WoJ) 9943 9y} JOo Jed wopoqg ay] :0G "2Indi4

TF [HoRoppAposIeE on amy o yed 1]

| =1UN0D LJOJO0p YOBNE 0} LISIP|oS 8lIH

I+ Suypanpepoene o amy o8 yed [

T UPmyplospome on 0w yied £ Tt E3NPLOS/TINAP]

| = JUN02 LJaly} YOENE O} LISIP|OS SulH

= JUNOD JAPLIERE 10A8P S8-SUDy [IAPIOSHIENE 0 2y o8 = Wunoa

7

DA/ AP OF 205 Tiaaap ey

T=wmod [Suny] du”qowpomme o amy v

[Buny soene 0} LJeip|os aiiH 1-[L4e1y) ¥oeny 108.1q] uepuo Aue uloQ

— _ e
Ot 15pos/T adu” qowpamne o aay o6 yed 11

O+ ey >du”qowppm of amy e qed £1 o+ ISR/ adu qowpT o aay ow qRd 71

| =1Unoo LaIy) YoeNY 108110

ot uayamides”aw yed 1

OF LANYEIE 10aap 3 gied o1

| =1unod a1y} ainyde)

7 [9A8] Juauodwo) ‘usuodwo) Mau el :S8pOoU SA0QE 8y} JO ||V

T weuoduon™mau s qd (1

 wouoduod wou s ywd g1 ¥ weuodiuos”mau s yed 7]

f

+ weuodwos mou 1w yed ¢

+ weuodwoa”mau pms ged o

88

" 2JN314 WOy 9343 Y3 Jo ped 1ysi WoNog 9y TG 24Nl

+ wauodwos mau ums|

€ =Wnod (¢ EAN0) woy Ao

"19anp o8 yped of

G =1unoo el o1 Ao wod) 8A0N

+ weuodwoo mou" s ed § b weuodwos weu s yed ¢ ¢ eonedinoowoy oac

b weuodwoa mauwms yed o

b weuodwos mau"es yied |

b weuodwoo weu s yied ¢

¥ |9A8] JusuOdWOo) JuUBUOdWOD MBU LIBIS :SBPOU MOo[eg 8yl JO ||V

G =1unod Ayo 0] el wod} 8AoN

€ =1mod (¢ AR Eo) Woy saow ow

€ [9A8] Jusuodwo) ‘usuodwo) Mau LelS :S8pou BA0Qe 8ul 1O ||V

£ weuodwooTweu"wmrs yed ¢

€ weuodwos e umrs yed ¢

¢ weuodwoo weu s yed 7

¢ wauodwos mau"ums yed

€ weuodwoa mau s yed |

¢ weuodwos mau s yied g

68

90

Figure 45 shows a tree of a quest generated using “Kill enemies” strategy.
The quest had 19 paths of completion and consisted of the following Components:
[stealth: PLAYER], [kill: Merchant1], [explore: Theifl], and [report: Soldierl].

From Figure 45, at the 1st Component level, all nodes (paths) pointed to
‘no_action need’ node which indicated that the Components’ conditions were
already satisfied when the query system reached those Components. This was
because stealth was not simulated and the condition was considered satisfied as
soon as the player was at the same place as the target, which the player was. Then
in the 2nd Component, in the middle of the tree, 6 of the paths pointed to ‘capture
minerl” then ‘free minerl’ then ‘hire to attack/minerl/merchantl’ (player hired
Minerl to kill Merchant1), as shown in Figure 47. Figure 46 and Figure 48 show that
most of those paths contain the ‘hire to attack’ with the target being Merchant1.

While Figure 46 and Figure 47 used the same action to complete the 2nd
level Component (hire_to attack) and looked like these actions would result in the
same GameState. In fact, they differed. The ‘capture-miner’ (Figure 47) had its 3rd
level Component with ‘no action need,” as shown in Figure 49, while the
Component in Figure 46 had its 3rd level Component followed by either ‘goto Jail’
or ‘goto City” action. This shows how performing action not related to the dead of
Merchantl setup different GameStates where the conditions allowed player to
perform different actions to complete the next Component’s objectives.

The final Component’s (4th level Component) objective was to report to
‘Soldierl” who was normally stationed at ‘City’, but due to ‘illegal’ activity he
should now be stationed at Jail after Soldierl escorted criminal there. The quest
should have ended with “no_action _need” for the paths that started with capturing
Minerl. However, some unnecessary actions were performed to complete the quest
for those paths. For example, going to City then going back to Jail, or hiring Soldierl
to kill the king, which was followed by Soldierl being captured and sent back to Jail.
Some examples were shown in Figure 50.

We analysed and concluded that this quest should only consist of 7 to 10
paths at most, with the main difference stemming from either capturing miner to get

to jail beforehand or skipping the capturing and hire someone to kill merchantl. Half

91

of the 19 paths were ‘noised’ path that were not removed during the path filtering
using the previously mentioned 5 criteria. Since performing unnecessary actions at
the dth level Components changed the GameState and Path’s action structures, the
changed were major enough for the noised paths to get pass the filtering and be
recorded.

However, the 5 criteria already reduced the number of paths from 45000
paths to around 6-20 paths (at one Component). Subsequent attempts to reduce
noised paths resulted in multiple of the genuinely unique paths being removed and
reduced the path number to only around 1-3 paths. Any future attempt at
configuring the path criteria should be done with multiple set of criteria that would

be used exclusively depending on the type of quests being queried.

‘uonoe yoeo

JO S109[gNS 3y} SUISN INOYIM PSIDNIISUOD Sem 3J) SIYy | 93e1duua) ,Salwaua)y, Woiy 3sanb e jo syjed Suipussaidai 9943 v :€G "24ndiH

L]Mﬂllll-ﬂﬂnll.huﬂl.l.. . e e e e i v = Tl i "y g - P e = =

ﬁ — e
il Ay — e

e T B o] sl b i st i i D A D AT A A s D Al Al i D ol o o T G e SN SIS SN e < S e S

'S2UN314 JOYJO Ul UMOYS 248 Seale paiysysly Syl '9pou yoes AJjuspl 03 uoijde ydes Jo

10900 3y} PasN 1.yl J21l) YIM PaIdNIISU0d sem 9943 Siyl 93e)dwua) | Saiuwaua)iy, Wodj 3sanb e jo syyed supuasaidal 9943 v 12G 24Nl

c6

"1G 24N3I4 WO 9341 9y} JO dnous 1S0W-1a) oY pG "24Nsi

|-¢ 1sa10/Au9/01 woxy 0w 3e yaed o

1-€ Sunypypwsyaeqpioene o1 anyoe yed

L =Wnod =g [y odu"qowpjoene 01y oe

/ =1Unod jaiy}oene o} | odu qow

alIH

1-€ 1 2du”qow/awLd”ppeTaquq e yied ¢

1€

1™ adu” qowpwiin "2a0wai~aquq ot yied 9

€ [9A8] JUBUOdWOD YUBUOdWOD MaU LEIS

:S9POU BA0Qge 8y} 1O ||V

¢ wauodwod” mau ums yped 9

€ wauodwoa"mau ums yied ¢

€ wauodwiod”mauums yed ¢

€ wauodwod” mau~ues yed ¢ ¢ wauodwod” mau ums yed 7

¢ wauodwod” mau ums yed |

€6

"1G 2IN3I4 WOl 9341 9Y3 JO dnoIs Ya)-2\ppIw 9y GG "24NsiH

—
— T N

/1 =1Unod LjoIy) yoene 0} | odu qow aliH

1€ sowopaan o yied 4 €1 =wnod - | odu"qowmey e |-¢ BunyLao00ppoene o amy "o yed ¢

€] =1unoo | odu qow dal4

O [PRUSYITIGY (10130 pAIENE oF anmy o ed 46 TT=Wmod (¢ | odu” gowamydea o

22 =1unod | odu gow ainde)

1€ prospyoene 1anp~oe yred

€ |9A8] JuBUOdWO) JuUBUOdWOD MBU LBIS :SBPOU 8A0gE 8] 1O ||V

|

¢ weuodwos mau wms yed 5o ¢ wauodumos mau s qred £< Juodwos~mau wms yred g ¢ Wwonadwos mou wms wd 7o ¢ weuoduos wou ms yed 1S

£ wauodmod)

148)

"1G 2IN314 WoJiy 9941 3Y1 Jo dnois a\ppiw 3Y] :9G "24nslH

/

01 =WN0d Z-f [YIWSYITQAWHI PP aquq o8

[
0l =1UN0O LUNISYOBI] O} BWLIO PPE 8qug

= |

€1 =wmod z-¢ | adu”qouwamidesow D E—

A A XX

€] =nod | odu qow ainde)d

KA L [T)

Ig =wmoa [-¢ |~ adu”qowpmides or

|2 =1unod | odu gow ainide)

Ll =1Unod LJeiy) ¥OENE O} LI0J0p allH

I1=1UN0d (=g [JAy/[J0I00p{OBNE 01 aumy 98

0l =1UN0D |81y} YONE O} LUNWSHOE(] SlIH

T 7
01 =WMOD (g LJAIy)/ NS IEGIENE 01 amy o8

g6

"1G 2IN314 WO 9241 Y3 JO dnoJs 1Ydu-2\ppPIW 3y /G "2Indi4

.‘5 w

£1 m RO T-¢ | o

€1 =1Unoo LJsIp|os aimde)

87 m MO [-¢ Ay odu” qowpoene o) any e

§Z = 1UN0D LIy} yoene 0} | odu” qow aliH

2 =1Unoo |JBIP|osS MoEeNY 108110 [

£ mmmoagg [ao10pRmides 2w 0t 1sovoppiTE 12a1p % e g6, ZmMNOd (- LAPIOSAIINE 10anp 7

€] =1Unoo LJojoop aimde)

]

¢ [8A8] JUBUOdWO) YUBUOdWOD MBU LEIS :SBPOU 8A0GE 8] 10 ||V

¢ meuoduos mou ms yed 96

€ weuodwos maujms ed g £ euodwos meu s yed g6

€ wauodwos wou s yed 19

£ meuodwon meu s yed g9 auodwosmou s ed 79

"1G 24n3I14 WoJj 9343 3y} JO dnois 3S0W-1ys 3y :8G 2ndi4

6miunodz-f | aduTqowpuId arow T aquq e

6 =1Unod | odu gow WoJ} swO sA0Wal aqlg

8l =1UN0D oIy} 3OBNE O} |IBIp|oS il

6 =WN0D O-f [Ioumuy] >du” qow/YOENE o) By a8 fmuN0d g [yoRlaqUING| >duqowyom o) amy 9e
—_— Y 4 § E T
6 =1UNn0oD |Jaulw Yoene 0 | odu qow aJlH 6 =1Unoo yoelldquini yoene 01 | odu” qow aJiH

i///f/u/!

€ [9A9] Wwauodwo) ‘usuodwo) mau el :S8pouU dA0QE 8y} JO ||V

ou”yrms ped £ £ wouodwios s ums yed 17 € wouodwos mou s ywd o7 ¢ monoduios mou s yed 61 ¢ mouoduras mou sms pud g1 £ wauoduos mou s yed (1

16 .

98

Another example can be seen in Figure 52 and Figure 53. It was also a quest
from ‘Kill enemies’ strategy. The tree in the figures had 101 paths of completion with
only 4 Components, [wait], [stealth: Mob npc 1], [kill: Theifl], and [report: Soldier3].
The first two Components only pointed to a single node, “no_action need.” This
meant that the path variety effectively came from finding a way to complete only
the remaining 2 Components.

Looking closer at Figure 52, in the 3rd level Component, most of the paths
could be grouped into 6 groups that pointed to the same nodes as other paths in
their own group, except for the right-most group. The paths in the right-most group
(right beyond the box number 57 in Figure. 52) were different from paths in other
groups because of their actions in the 4th level Components, or the lack thereof.
The paths of the right-most group resulted in a GameState that completed the 3rd
and 4th level Components’ objectives simultaneously. As shown in Figure 54, Figure
55, Figure 56, Figure 57, and Figure 58, it was almost certain that most of the actions
that all the groups shared was “hire_to attack” with the target being Thiefl, the
target of the [kill] Component. However, these look-alike paths were not grouped
together into a single node because the NPC that were hired were different.

Would it be better if we considered all the ‘hire to attack’ nodes as
duplicates? A tree could then be further simplified for analysis.

Let us compare this with the path merging that only took player’s actions
into consideration. Figure 53 shows the tree from the same quest, but this time
subject of each action was ignored. It can be seen that there was only 3 distinctive
path groups, the one that started with ‘hire_to attack’ node, the one that started
with ‘capture’ node, and the ‘capture or hire_to attack in any order’ node, with a
little “direct_attack’ and other nodes between them.

Analysing Figure 53, it is possible to conclude that this Component has only 3
truly distinctive actions to advance the quest to the next Component. However,
Figure 52 shows that once we took the subjects of actions into consideration, there
were 5-6 unique combination of actions that could lead to the next Component. To
determine which were better, we must look at how each of these set of actions

affected player’s actions in Component level 4.

99

lre to attac] lre_to attac re to attad "Hire_to_: attal:k lre to attack
Target Thiefl Target = Thiefl Target Thlefl Target = Thiefl Target Thlef].
cker Soldl cker dnctn acker Mol: cker I:Iacksmlt acker snldle

; " Reaction: "
sent Soldier3 to Jall

Goto Attack -\ " “Hire_t _to_: attack lee bn attack
Destination = Jail arget merchant Nn Action Needed stlnahon CIW arget ANY NPC near soldier3 arget = ANY NPC near soldier3

Atta:ker Mob 1 Attacker Merchantl

" Reaction: " s Rear:tlon

sent player to Jail 3 Soldier3 escort
play crlmlnal to]all ‘\
Goto Goto Attack
Destination = Jail Destination = City Target Klng

Goto " Reaction: |
Destination = Jiy ‘grsent player to Jail .-

——

/\
\/

\
/

Hire_to_attack
1 ﬁi\
(oo) (e > @N9 @w @1

Al:l:ack

Q,@

Figure. 59: A simplified version of the oval highlighted area from both Figure 52 (top)

and Figure 53 (bottom).

In order to explain the difference, we made a simplified version of the trees
within the oval highlighted area from Figure 52 and Figure 53. The tree is illustrated
in Figure 59. It must be noted that Figure 59 shows a simplified tree and does not
represent the tree as 1-to-1 conversion and does not represent the actual number of
paths that pass each node. This was deliberate because the purpose of this Figure is
to show the difference between considering each action with/without its subject.

Figure 59 shows only 1 action as the source action from Component level 3,
the ‘Hire_to_attack’ action. The top area has 5 ‘Hire_to_attack’ nodes because those
nodes had different attacker has different attacker, but the same target (thiefl, the

target of Component 3). The bottom area only has 1 ‘Hire to attack’ node. At first

100

glance both top and bottom areas might not have much different set of actions, but
that was not the case.

For the top area, each ‘Hire to attack’ node had different set of next
possible actions. The ‘Hire to attack’ that hired soldierl as attackers could only be
followed by ‘Goto’ or ‘Hire to attack’ node. The ‘Hire to attack’ node that hired
Solider3 could be followed by ‘Goto’ or ‘Attack.” It can be seen that hiring different
NPCs would result in different situations where the player needed different actions
to complete the quest.

If we considered only player’s actions, but not the subject of the actions, it
meant we must select only 1 ‘Hire to attack’ node as the first node, amongst the
nodes in the top area. If we selected the one with soldier3 as attacker, the other
‘Hire to attack’ would be discarded because they would be regarded as duplicates
when they were discovered during the query. This would result in lower number of
unique paths. Instead of 4 possible actions (‘Goto’, ‘Direct Attack’, ‘Hire to Attack’
and ‘No_Action Needed’) to complete the quest, we would only have 2 actions
(Goto & Attack). This was why it was important to consider the subject of actions

when determining which paths were duplicates.

101

6. Summary

In this thesis, we replaced the action-based part of structural rules quest
generation with state-based Component to make our quest compatible with dynamic
environment games. However, the quest generation procedure was kept the same as
in grammar structure quest generation procedure. This new structure was supported
by The Token system and Full Condition State system which assigned related and
coherent objective to each node / section of a quest. The Quest Query system was
able to act as a dynamic environment simulation for the generated quest. The Quest
Query system was also capable of verifying if the generated quest could be
completed, and capable of discovering a complex and/or interesting path. Generated
paths could also be analysed by users.

The state-base system not only making the quest compatible with dynamic
environment, it also improved the flexibility of the generated quest and provided
developers with greater control and more detailed information of the generation.
Players were no longer forced to perform specific action to trigger the quest’s
completion flag in order to proceed with the quest. By maintaining the quest’s frame
and structure generation procedure from the Grammar structure, the Grammar
structure’s advantages were preserved, allowing the quest to be generated with great
variety in quest types and maintaining coherence between each step of the quest.

The Token system allowed an object to be assigned into a quest with
continuity and consistent manner. Objects did not have to be directly next to each
other and could be assigned according to the type of Components they were
assigned to. Quest contents were converted into objectives using Full Condition
State system to make them compatible with the new state-based structure.

We found interesting sequences of actions which completed a quest in some
unexpected manners, such as hiring an NPC to commit a crime inside the palace so
that a soldier, who the player must talk with to complete the quest, captured the
NPC and escorted the NPC to the prison. This allowed the player to talk to the
soldier without having to access the palace. This proved that the system was

capable of using the dynamic nature of the simulation to complete the quest.

102

The MPQ-Generator framework could be adapted for any dynamic
environment game as long as the game did not rely on player-environment
interaction (such as dynamic physics that allow the player to kill another NPC by
causing accidents). MPQ-Generator’s simulator could be used to generate quest or
used as benchmark to test how the dynamic environment of that game could be
used to complete a designed quest. For benchmarking, the user only had to
manually create sets of objectives (Full Condition States) for that quest and query
that quest in the simulation (that had been modified to match the tested game).
However, some adjustment to input/output to the Quest Query system must also be
done.

The quest structure generation and Full Condition State could be modified to
generate quests compatible with the game MPQ-Generator was implemented for.
The grammar should be modified to only generate valid quest content. This could
be achieved by reducing the weight of invalid <Component>s or Components that
were not supported to zero. Then the Token system should be modified accordingly
so that the output objectives from mini-token and Component pair matched the
game structure and intended narrative. The Restriction State system must also be
updated to match the new Component’s effects. Likewise, the simulator’s actions
and reactions could be added/removed/modified to match the rule of the game.
Additional adjustments or mechanics such as NPC’s life cycle could be applied to
the simulator to simulate the game as close as possible.

The actions and reactions used in the simulation were only from a small set
of possible actions and reactions. The generation still had a performance issue.
Changing to a configuration with 4 sequence of actions, the number of paths only
increased by around 10%, but the time required to query a Component increased
from 1 minute to 15 minutes on average. This accumulated into the total time from
around 1 hour to 12 hours to generate a quest. We speculated that more complex
and interesting path could be found if higher number of actions is used. Further
study is needed to improve the performance so that more objects, actions and

reactions can be added too.

103

The generated paths still contained unnecessary actions that were not
needed to complete the quest and some identical set of actions with slightly
different parameters and sequences still appeared in some cases. Better filtering

criteria are needed to lower these elements.

104

7. Future Work

Further study should focus on the improvement of the performance of the
query system. As more complex worlds with higher number of objects and actions
are introduced, the number of possible paths that must be queried increases
exponentially. If the system is to be implemented into a commercial game and used
in real-time situation, at least the generation time should be less than the time it
took for a player to complete the quest and receive the next quest.

One possible approach in improving the performance is to apply Dynamic
Programming on GameState. When a new GameState is queried, all results of that
query (from all combinations of sequence of actions) will be recorded into a
database. Then during the next query, if the input GameState matches the recorded
GameState, no actual exhaustive search will be carried out. The system will then
look at all recorded GameStates, select those that satisfy the input GoalState, and
return the recorded [pathl.

This means that any gameState that has been queried will no longer need to
be calculated ever again. Thus, the longer the system runs, the better the
performance will be. In order to implement this a proper database system is needed
to maintain all the recorded GameStates and all of their results and combinations of
actions.

Another possible further study is to try to implement a more generalised
system and structure for the MPQ-Generator. The current structure is a simplified
abstract representation of real player actions. If the system is to be implemented
into a game, a flexible input/output of configuration and other necessary variables
between the MPQ-Generator and the game system are required. This includes
Streamlining the action, object, reaction, <Component>, etc. to be modular which

can be turned-on/off according to the game’s environment.

105

AWIAINTAUNNIINY 1A D
CHuLALONGKORN UNIVERSITY

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

106

REFERENCES

The Elder Scrolls: Skyrim site. Available: https://elderscrolls.bethesda.net/

en/skyrim?, [Accessed: 15 May 2018]
Fallout 4 site. Available: https://fallout4.com/, [Accessed: 15 May 2018]

S. Tosca, "The Quest Problem in Computer Games " in Proceedings of the
Proceedings of Technologies for Interactive Digital Storytelling and
Entertainment conference (TIDSE), Darmstadt, 2003.

F. K. C. Santos and G. L. Ramalho, "A Parametric Analysis and Classification of
Quests in MMORPGSs," in Proceedings of the SBC - Proceedings of SBGames
2012, Brasilia — DF — Brazil, 2012.

Spelunky site. Available: http://www.spelunkyworld.com/, [Accessed: 15 May

2018]

Spelunky jungle area map 1 [Online]. Available: http://spelunky.wikia.com/wiki/

The Jungle/HD, [Accessed: 10 March 2018]

Spelunky jungle area map 2 [Online]. Available: http://spelunky.wikia.com/wiki/

Black Market, [Accessed: 10 March 2018]

Spelunky jungle area map 3 [Online]. Available: https://www.reddit.com/

r/spelunky/comments/521ral/looking for highres images of full levels/),

[Accessed: 10 March 2018]

Spelunky jungle area map 4 [Online]. Available: http://spelunky.wikia.com/wiki/

Restless Dead level, [Accessed: 10 March 2018]

B. Kybartas and R. Bidarra, "A Survey on Story Generation Techniques for
Authoring Computational Narratives," in Proceedings of the IEEE Transactions on
Computational Intelligence and Al in Games, 2017.

Neo-Scavenger Site. Available: http://bluebottlegames.com/games/neo-scavenger

[Accessed: 15 May 2018]

Renowned Explorers site. Available: http:/renownedexplorers.com/, [Accessed: 15

May 2018]

https://fallout4.com/
http://www.spelunkyworld.com/
http://bluebottlegames.com/games/neo-scavenger
http://renownedexplorers.com/

[13]

[14]
(18]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

107

Dwarf Fortress site. Available: http://www.bay12games.com/dwarves/, [Accessed:

15 May 2018]

Rimworld site. Available: https://rimworldgame.com/, [Accessed: 15 May 2018]

The Witcher 3 Site. Available: http://thewitcher.com/en/witcher3, [Accessed: 15

May 2018]

Nier:Automata site. Available: https://www.niergame.com/gb/, [Accessed: 15 May

2018]

World of Warcraft site. Available: https://worldofwarcraft.com/en-us/, [Accessed:

15 May 2018]

Mount & Blade site. Available: https://www.taleworlds.com/, [Accessed: 15 May

2018]

Middle Earth: Shadow of Mordor site. Available: https://www.warnerbros.com/

videogame/middle-earth-shadow-mordor [Accessed: 15 May 2018]

Neo Scavenger world map [Online]. Available: http://bluebottlegames.com/

games/neo-scavenger, [Accessed: 15 May 2018]

Spelunky mine area [Online]. Available: http://www.spelunkyworld.com/

images/spelunky-ss01.jpg [Accessed: 15 May 2018]

A example campaign map of Renowned Explorers: International Society [Online].

Available: http://renownedexplorers.com/#screenshot-ec-2 [Accessed: 15 May
2018]
A gameplay screenshot of The Witcher 3: Wild Hunt [Online]. Available:

https://gamesdb.launchbox-app.com/games/images/15977, [Accessed: 15 May

2018]
A gameplay screenshot of Nier:Automata [Online]. Available: https:/

www.niergame.com/gb/ [Accessed: 15 May 2018]

A gameplay screenshot of World of Warcraft [Online]. Available: http://

www.pcgamer.com/what-we-want-from-world-of-warcraft-in-2017/ [Accessed: 15

May 2018]

A gameplay screenshot of Dwarf Foriress [Online]. Available: http://

http://www.bay12games.com/dwarves/
https://rimworldgame.com/
http://thewitcher.com/en/witcher3
https://www.niergame.com/gb/
https://worldofwarcraft.com/en-us/
https://www.taleworlds.com/
https://www.warnerbros.com/videogame/middle-earth-shadow-mordor
https://www.warnerbros.com/videogame/middle-earth-shadow-mordor
http://renownedexplorers.com/#screenshot-ec-2
https://gamesdb.launchbox-app.com/games/images/15977

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

108

www.bay12games.com/dwarves/screens/adv1.html, [Accessed: 15 May 2018]

A gameplay screenshot of moded Dwarf Fortress [Online]. Available:

https://www. polygon.com2014775877073dwarf-fortress-3d-mod [Accessed: 15

May 2018]
A gameplay screenshot of RimWorld [Online]. Available: https:/

rimworldgame.com/images/screens/megacolony.jpg, [Accessed: 15 May 2018]

A gameplay screenshot of Mount & Blade: Warband [Online]. Available: https://

www.heypoorplayer.com/2016/10/01/mount-blade-warband-gets-feature-video/

[Accessed: 15 May 2018]
A gameplay screenshot of Middle-earth: Shadow of Mordor [Online]. Available:

https://segmentnext.com/2014/09/30/understanding-nemesis-system-in-middle-

earth-shadow-of-mordor/, [Accessed: 15 May 2018]

A gameplay screenshot of The Elder Scrolls: Skyrim [Online]. Available: https://

www.digitaltrends.com/game-reviews/the-elder-scrolls-v-skyrim-review/,

[Accessed: 15 May 2018]
A gameplay screenshot of Fallout 4 [Online]. Available: https:/

www.gamecrate.com/fallout-4-radpacks-horrors-commonwealth/13791 [Accessed:

15 May 2018]

J. Doran and I. Parberry, "A prototype quest generator based on a structural
analysis of quests from four MMORPGs," in Proceedings of the Second
International Workshop on Procedural Content Generation in Games, Bordeaux
France, 2011.

J. Grey and J. J. Bryson, "Procedural quests: A focus for agent interaction in role-
playing-games," presented at the Proceedings of the AISB 2011 Symposium: Al &
Games, 2011. Available: http://opus.bath.ac.uk/27232/

GVMERS. (2017). The Rise and Fall of S.T.A.L.K.E.R. | Documentary [Online].

Available: https://www.youtube.com/watch?v=rYNjcM7wCy8), [Accessed: 12

March 2018]

E. S. d. Lima, B. Feij, and A. L. Furtado, "Hierarchical generation of dynamic and

https://www.heypoorplayer.com/2016/10/01/mount-blade-warband-gets-feature-video/
https://www.heypoorplayer.com/2016/10/01/mount-blade-warband-gets-feature-video/
http://opus.bath.ac.uk/27232/
https://www.youtube.com/watch?v=rYNjcM7wCy8

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

109

nondeterministic quests in games," in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology, Funchal, Portugal, 2014.

Y.-S. Lee and S.-B. Cho, "Dynamic quest plot generation using Petri net planning,"
in Proceedings of the Proceedings of the Workshop at SIGGRAPH Asia,
Singapore, Singapore, 2012.

D. B. Buss, M. V. Eland, R. Lystlund, and P. Burelli, "The Quality System - An
Attempt to Increase Cohesiveness Between Quest Givers and Quest Types," in 8th
International Conference on Interactive Digital Storytelling Copenhagen, Denmark,
2015, pp. 381-384: Springer International Publishing, cham.

A. Machado, P. Santos, and J. Dias, "On the Structure of Role Playing Game
Quests," Revista de Ciéncias da Computacéo, p. 18, 2017.

C. Ashmore and M. Nitsche, "The Quest in a Generated World," presented at the
Proceedings of DIGRA 2007 Conference, 2007.

J. Valls-Vargas, S. Ontafén, and J. Zhu, "Towards story-based content generation:
From plot-points to maps," in Proceedings of the 2013 IEEE Conference on
Computational Inteligence in Games (CIG), Niagara Falls, ON, 2013. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6633654 &isnumber=6633607

|. Khalig and Z. Watson, "The Omni Framework: A Destiny-Driven Solution to
Dynamic Quest Generation in Games," in 2018 IEEE Games, Entertainment, Media
Conference (GEM), Galway, 2018, pp. 306-311.

J. v. d. Water, "A Framework for Formalizing Dynamic Quests," Master Thesis,
Department of Computer Science, Utrecht University, 2011.

A. Stocker and C. Alvin, "Non-Linear Quest Generation," in Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society Conference

(FLAIRS-31), 2018. Available: https://www.aaai.org/ocs/index.php/ FLAIRS/

FLAIRS18/paper/viewPaper/17606

A. M. Sullivan, "The Grail Framework: Making stories playable on three levels in

CRPGS," Ph.D., Computer Science, University of California, Santa Cruz, 2012.

[46]

[47]

(48]

110

A. Sullivan, A. Grow, M. Mateas, and N. Wardrip-Fruin, "The design of Mismanor:
creating a playable quest-based story game," in Proceedings of the International
Conference on the Foundations of Digital Games, Raleigh, North Carolina, 2012,
pp. 180-187: ACM.

B. Kybartas and C. Verbrugge, "Analysis of ReGEN as a Graph-Rewriting System
for Quest Generation," in Proceedings of the IEEE Transactions on Computational
Intelligence and Al in Games, 2014.

V. Breault, S. Ouellet, and J. Davies, "Let CONAN tell you a story: Procedural quest
generation," 2018. arXiv:1808.06217

AWIAINTAUNNIINY 1A D
CHuLALONGKORN UNIVERSITY

111

NAME

DATE OF BIRTH

PLACE OF BIRTH

INSTITUTIONS ATTENDED

HOME ADDRESS

PUBLICATION

112

VITA

Thongtham Chongmesuk
17 July 1993
Bangkok

Bachelor of Engineering in Computer Engineering, Chulalongkorn
University 2016

45 FagNTgINEN 50 DUWNTINTN LL‘I.IN‘LINM%’] L‘ﬂﬁ]ﬂ'ﬁﬁlﬂ?‘fﬂw NYNA.
10160

T. Chongmesuk, V. Kotrajaras, “Multi-Paths Generation for Structural
Rule Quests,” in Proceeding of the 16th International Joint
Conference on Computer Science and Software Engineering

(JCSSE2019), Pattaya, Thailand, 2019, pp. 97-102.

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1. Introduction
	1.1. Objective
	1.2 Scope of Work

	2. Related Theories
	2.1 Computer Role-playing Games and Quest
	2.2 Quest
	2.3 Procedural Content Generation (PCG)
	2.4 Structural analysis of quest
	2.5 Dynamic Game Environment

	3. Related Works
	3.1 Structural Analysis / Grammar Approach
	3.2 Static quest in Generated game world
	3.3 Dynamic and Nondeterministic Quests
	3.4 Quest Monitoring and Adaptation
	3.5 Quest Management and Evaluation
	3.6 GameState Quest

	4. Methodology
	4.1 Overview
	4.1.1 Quest Structure
	4.1.2 Proposed Method Overview:

	4.2 Action Rule table Modification
	4.2.1 New Action Rule table = Component Table

	4.3 Methodology
	4.3.1 Creating blueprint for different type of quest.
	4.3.2 Quest Generation
	4.3.3 Token
	4.3.4 Obtaining Restriction State
	4.3.5 Obtaining Full Condition State
	4.3.6 Checking for impossible quest
	4.3.7 Path Finder / Quest Analysing
	4.4.8 Avoiding infinite loop

	5. Result and Analysis
	5.1 Result
	5.2 Comparison
	5.2.1 Measurement and Evaluation Calculation
	5.3 Path analysis

	6. Summary
	7. Future Work
	REFERENCES
	VITA

