Heat Exchanger Network Design/Retrofit with Partitioning Technique for Linearization of Specific Heat Capacity-Temperature Relation

Siwat Valeekiatkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2018

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

Thesis Title:	Heat Exchanger Network Design/Retrofit with Partitioning
	Technique for Linearization of Specific Heat Capacity-
	Temperature Relation
By:	Siwat Valeekiatkul
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Kitipat Siemanond

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Prof. Suwabun Chirachanchai)

Thesis Committee:

.....

(Asst. Prof. Kitipat Siemanond)

.....

(Prof. Boonyarach Kitiyanan)

(Dr. Ruktai Prurapark)

ABSTRACT

6073005063: Petroleum Technology

Siwat Valeekiatkul: Heat Exchanger Network Design/Retrofit with Partitioning Technique for Linearization of Specific Heat Capacity-Temperature Relation

Thesis Advisors: Asst. Prof. Kitipat Siemanond 140 pp.

Keywords: Heat exchanger network design / Temperature-dependent specific heat capacity / Mathematical programming / Stage-wise superstructure model / Retrofit

Heat Exchanger Network (HEN) design has been studied for 40 years starting from heuristic technique; pinch analysis and design method to mathematical programming. The stage-wise superstructure by mathematical programming from Yee and Grossmann (1990) was one of the famous models suitable for industrial HEN design under assumption of constant average specific heat capacity (Cp) which generally should be fitted by empirical form of cubic equation. Zhu and Asante (1999) and Ayotte-Sauvé et al. (2017) used piece-wise linearization called stream segment model, to approximate Cp. Their Cp approximation techniques used high number of piece-wises to calculate Cp accurately. This paper presents novel technique called partitioning technique; using less number of piece-wise to approximate temperaturedependent Cp more accurately along with stage-wise superstructure model. The concept is to linearize polynomial cubic equation of Cp as a function of temperature with different Cp approximation techniques from Zhu and Asante (1999) and Ayotte-Sauvé et al. (2017). Cp is approximated as a linear equation for each partition of temperature range. Our technique in weighted average Cp calculation at stage in stagewise superstructure model is novel, giving more accurate Cp approximation and HEN synthesis at validation step. Our model synthesizes HEN with less total annualized cost (TAC) and exchanger area calculation error between our model and Pro/II simulated HEN compared to other models; constant Cp model and cubic equation technique from Kim and Bagajewicz (2017) represented by four examples. First, crude preheat train example from Pro/II library is used to validate new concept. Normally, constant

specific heat capacity directly affects outlet temperature which increase error of area calculation. It shows that constant heat capacity flow rate can reach error of heat exchanger area 30 % but using the new model can reduce the error to less than 1 %. Next, two examples from Kim and Bagajewicz (2017) get better result when compared to previous solution of cubic equation technique. Forth example is to show new model in retrofit case. Therefore, new model has many advantages that it increases accuracy of HEN design and better solution can be obtained from variable of specific heat capacity.

บทคัดย่อ

นายศิวัช วลีเกียรติกุล : การออกแบบและการพัฒนาระบบแลกเปลี่ยนความร้อน (Heat Exchanger Network Design/Retrofit) อ.ที่ปรึกษา : ผศ. ดร. กิตติพัฒน์ สีมานนท์: ๑๔๐ หน้า

การออกแบบระบบแลกเปลี่ยนความร้อนมีการพัฒนาเป็นระยะเวลา 40 ปีโดยมีจุดเริ่มต้น จากเทคนิคการศึกษาสำนึกคือการวิเคราะห์และมีการพัฒนาต่อมาถึงการออกแบบวิธีการเขียน โปรแกรมทางคณิตศาสตร์ วิธีการทางคณิตศาสตร์แบบการแบ่งระบบโครงสร้างของ Yee and Grossmann (1990) เป็นระบบที่ใช้กันอย่างแพร่หลายและเหมาะสมสำหรับอุตสาหกรรมการ วิเคราะห์และออกแบบระบบแลกเปลี่ยนความร้อนภายใต้เงื่อนใขสมมุติฐานว่าค่าความจุความร้อน เป็นค่าคงที่แต่โดยความเป็นจริงควรใช้กับข้อมูลผลการทำลองที่ต้องใช้สมการกำลังสาม Zhu and Asante (1999) และ Ayotte-Sauvé *et al.* (2017) ริเริ่มการใช้หลักการแบ่งเป็นเส้นตรงที่เรียกว่า เซ็กเมนต์สตรีมโมเดลเพื่อประมาณค่าความจุความร้อน โดยค่าความจุความร้อนนั้นจำเป็นต้องใช้ จำนวนช่วงมากๆเพื่อความแม่นยำ บทความนี้จึงได้นำเสนอเทคนิคใหม่ที่เรียกว่าเทคนิคการแบ่งส่วน โดยมีการใช้จำนวนการแบ่งช่วงที่น้อยกว่าสำหรับการประมาณค่าความจุความร้อนที่แปรพันธ์ตาม อุณหภูมิ และมีค่าความแม่นยำที่มากกว่า สำหรับวิธีการทางคณิตศาสตร์แบบการแบ่งระบบ โครงสร้าง ค่าความจำความร้อนจะประมาณจากสมการเส้นตรงของแต่ละส่วนที่ถูกแบ่งตามอุณหภูมิ โดยโมเดลของบทความนี้จะใช้เทคนิคการประมาณค่าเฉลี่ยแบบถ่วงน้ำหนักในวิธีการทาง ้คณิตศาสตร์แบบการแบ่งระบบโครงสร้าง และถือว่าเป็นเทคนิคใหม่ที่มีความแม่นยำสูง โมเดลใหม่นี้ ได้ออกแบบระบบแลกเปลี่ยนความร้อนที่มีค่าเงินรวมต่อปีที่น้อยกว่า และการคำนวณเปอร์เซ็นความ ผิดพลาดของการออกแบบพื้นที่การแลกเปลี่ยนความร้อนของเครื่องแลกเปลี่ยนความร้อนที่น้อยกว่า โดยการเปรียบเทียบระหว่างโมเดลใหม่กับโปรแกรมจำลอง Pro/II การเปรียบเทียบนี้จะเปรียบเทียบ ระหว่างค่าความจำความร้อนที่เป็นค่าคงที่และค่าความจุความร้อนในรูปสมการกำลังสามจาก Kim and Bagajewicz (2017) สำหรับตัวอย่างแรกเป็นตัวอย่างจากโปรแกรมจำลอง Pro/II เพื่อ จุดประสงค์สำหรับการตรวจสอบความถูกต้องของตัวโมเดล โดยปกติแล้วค่าความจำความร้อนที่เป็น ้ค่าคงที่จะส่งผลโดยตรงต่อการคำนวณ อุณหภูมิขาออกของเครื่องแลกเปลี่ยนความร้อนเป็นผลให้ การคำนวณพื้นที่แลกเปลี่ยนความร้อนมีค่าที่ผิดพลาด ผลลัพธ์ได้แสดงให้เห็นว่าค่าความจำความร้อน ที่เป็นค่าคงที่มีเปอร์เซ็นความผิดพลาดของการคำนวณพื้นที่การแลกเปลี่ยนความร้องของเครื่อง

แลกเปลี่ยนความร้อนมากถึงร้อยละ 30 แต่สำหรับโมเดลใหม่สามารถลดความผิดพลาดจากการ คำนวณนี้ให้น้อยกว่าร้อยละ 1 ได้ และสำหรับตัวอย่างอีกสองตัวอย่างของ Kim and Bagajewicz (2017) ผลลัพธ์ก็แสดงให้เห็นว่าสามารถใช้โมเดลใหม่และได้คำตอบที่ดีกว่า เมื่อเปรียบเทียบระหว่าง คำตอบใหม่กับคำตอบเก่าแบบเทคนิคสมการกำลังสาม สำหรับตัวอย่างสุดท้ายมีไว้เพื่อแสดงให้เห็น ว่าโมเดลใหม่นี้สามารถใช้สำหรับการพัฒนาระบบการแลกเปลี่ยนความร้อนได้ ดังนั้นโมเดลใหม่จึงมี ข้อดีหลายประการทั้งการเพิ่มความแม่นยำของการออกแบบระบบแลกเปลี่ยนความ้อนและสามารถ หาวิธีแก้ปัญหาที่ดีกว่าจากการทำให้ค่าความจุความร้อนแปรพันธ์ตามอุณหภูมิ

GRAPHICAL ABSTRACT

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College.

I am very grateful for Chulalongkorn university's Rachadapisaek Sompote Fund (2017) for giving me this opportunity to do the research. Moreover, I sincerely thankful to Asst. Prof. Kitipat Siemanond and Mr. Natchanon Angsutorn for guidance as well as necessary information to complete this project. Thank you to my family, Mr. Kan Rungphanich and Mr. Supaluck Watanapanich who always give me encourage, clear idea and be the good consultant. All of them are the important parameter that help me pass though this thesis. Finally, I would like to thank every PPC's friend, senior and junior for the excellent memory in Master Degree life.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Graphical Abstract	vii
Acknowledgements	viii
Table of Contents	ix
List of Tables	xii
List of Figures	xiv
Nomenclature	xvi

CHAPTER

Ι	INTRODUC	TION	
II	LITERATU	RE REVIEW	2
III	METHODO	LOGY	5
	3.1 Stage-Wis	se Superstructure Model	5
	3.1.1	Overall Heat Balance for Each Stream	5
	3.1.2	Heat Balance at Each Stage	6
	3.1.3	Assignment of Superstructure Inlet Temperatures	6
	3.1.4	Feasibility of Temperatures	6
	3.1.5	Hot and Cold Utility Load	7
	3.1.6	Logical Constraints	7
	3.1.7	Calculation of Approach Temperatures	8
	3.1.8	Exchanger Minimum Approach Temperature	8
	3.1.9	Log-Mean Temperature Difference	8
	3.1.10	Area Calculation	9
	3.1.11	Objective Function	9
	3.1.12	Control Number of Splitting Streams	10

3.2 Partitioni	ng Technique of Temperature-Dependent Specific	;
Heat Capacit	у	12
3.2.1	Overall Energy Balance	12
3.2.2	Stage Energy Balance	12
	3.2.2.1 Process stream equations	13
	3.2.2.2 Utility streams equations	13
3.2.3	Activate Cp Equation	13
	3.2.3.1 Process stream equations	13
	3.2.3.2 Utility streams equations	14
3.2.4	Temperature Calculation	14
	3.2.4.1 Process stream equations	15
	3.2.4.2 Utility streams equations	15
3.2.5	Cp Calculation for each partition	16
	3.2.5.1 Process stream equations	16
	3.2.5.2 Utility streams equations	16
3.2.6	Average Cp Calculation for stage	16
	3.2.6.1 Process stream equations	16
	3.2.6.2 Utility streams equations	17
3.3 Retrofit		18
RESULTS A	AND DISCUSSION	20
4.1 Case Stu	dy 1	20
4.1.1	Constant Cp	21
4.1.2	1 Partition	30
4.1.3	2 Partitions	38
4.1.4	3 Partitions	47
4.1.5	5 Partitions	55
4.2 Case Stu	dy 2	63
4.3 Case Stu	dy 3	70
4.3.1	Alternative 1 (First Solution)	84
4.3.2	Alternative 2 (600 s.)	85
4.3.3	Alternative 3 (3600 s.)	86

IV

4.4 Case Study 4 (Retrofit case)	87
CONCLUSIONS AND RECOMMENDATIONS	96
REFERENCE	97
APPENDICES	100
Appendix A GAMS Code of Case Study 1 (HEN Synthesis)	100
Appendix B GAMS Code of Case Study 4 (Retrofit)	109
Appendix C GAMS Results of Study 1 (HEN Synthesis)	119
CURRICULUM VITAE	122

V

LIST OF TABLES

TABLE

4.1	Process streams data of case study 1.	20
4.2	Specific heat capacity of constant Cp.	21
4.3	Duty data comparison between GAMS and Pro/II of constant Cp.	25
4.4	Area data comparison between GAMS and Pro/II of constant Cp.	30
4.5	Specific heat capacity linearization of case study 1 by 1 partition.	30
4.6	Duty data comparison between GAMS and Pro/II of 1 partition.	37
4.7	Area data comparison between GAMS and Pro/II of 1 partition.	38
4.8	Specific heat capacity linearization of case study 1 by 2 partitions.	39
4.9	Duty data comparison between GAMS and Pro/II of 2 partitions	46
4.10	Area data comparison between GAMS and Pro/II of 2 partitions.	46
4.11	Specific heat capacity linearization of case study 1 by 3 partitions.	47
4.12	Duty data comparison between GAMS and Pro/II of 3 partitions.	55
4.13	Area data comparison between GAMS and Pro/II of 3 partitions.	55
4.14	Specific heat capacity linearization of cold stream by 5 partitions	56
4.15	Duty data comparison between GAMS and Pro/II of 5 partitions	60
4.16	Area data comparison between GAMS and Pro/II of 5 partitions	60
4.17	Economic cost data comparing between GAMS and Pro/II results of case study 1.	62
4.18	Utility data comparing between GAMS and Pro/II results of case study 1.	62
4.19	Overall area data of heat exchanger comparing between GAMS and Pro/II results of case study 1.	63
4.20	Cubic equation parameter of variable Cp for case study 2 $(Cp = a + bT + cT2)$.	63
4.21	Process streams data of case study 2.	64
4.22	Specific heat capacity linearization of case study 2.	64

TABLE

4.23	HEN results of case study 2.	70
4.24	Economic cost data of case study 2.	70
4.25	Cubic equation parameter of variable Cp for case study 3 $(Cp = a + 2bT + 3cT2).$	71
4.26	Process streams data of case study 3.	71
4.27	Specific heat capacity linearization of case study 3.	72
4.28	HEN results of case study 3.	82
4.29	Economic cost data of case study 3.	83
4.30	Comparison between partitioning technique and Kim and Bagajewicz (2017) technique of case study 2 and 3.	83
4.31	Process streams data of case study 4.	87
4.32	Energy loading and exchanger area parameter of base case.	88
4.33	HEN retrofit result data.	90
4.34	Retrofit results comparison between base case and retrofit case.	90
4.35	Duty data comparison between GAMS and Pro/II of case study 4.	91
4.36	Area data comparison between GAMS and Pro/II of case study 4.	91
4.37	Economic cost data comparing between GAMS and Pro/II results of case study 4.	95
4.38	Utility data comparing between GAMS and Pro/II results of case study 4.	95
4.39	Overall area data of heat exchanger comparing between GAMS and Pro/II results of case study 4.	95

LIST OF FIGURES

FIGURE

3.1	Stage-wise superstructure from Yee and Grossmann (1990).	5
3.2	Temperature-dependent Cp and linearization concept; (a) Constant and temperature-dependent Cp (b) partitioning technique concept of temperature-dependent Cp.	11
3.3	Example of partitioning technique for hot process stream.	17
4.1	Constant Cp graph of case study 1; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream.	24
4.2	Crude preheat train case from Pro/II library.	26
4.3	HEN from constant Cp GAMS model.	27
4.4	Validation of HEN from constant Cp GAMS model by Pro/II simulation.	28
4.5	HEN from constant Cp case study by Pro/II simulation.	29
4.6	Temperature-dependent Cp graph and 1 partition of case study 1; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream.	33
4.7	HEN from partitioning technique GAMS model of 1 partition.	34
4.8	Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 1 partition.	35
4.9	HEN from 1 partition case study by Pro/II simulation.	36
4.10	Temperature-dependent Cp graph and 2 partitions of case study 1 ; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream	42
4.11	HEN from partitioning technique GAMS model of 2 partitions.	43
4.12	Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 2 partitions.	44
4.13	HEN from 2 partitions case study by Pro/II simulation.	45
4.14	Temperature-dependent Cp graph and 3 partitioning of case study 1; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream.	50
		20

FIGURE

PAGE

4.15	HEN from partitioning technique GAMS model of 3 partitions	52
4.16	Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 3 partitions.	53
4.17	HEN from 3 partitions case study by Pro/II simulation.	54
4.18	Temperature-dependent Cp graph and 5 partition of cold stream.	56
4.19	HEN from partitioning technique GAMS model of 5 partitions	57
4.20	Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 5 partitions.	58
4.21	HEN from 5 partition case study by Pro/II simulation.	59
4.22	Correlation by increasing number of partitions from constant Cp to 5 partitions.	61
4.23	Temperature-dependent Cp graph and partitioning of case study 2; (a-c) represent for hot stream (H1-H3), respectively. (d-e) represent for cold stream (C1-C2), respectively.	67
4.24	Previous solution of case study 2 from Kim and Bagajewicz (2017).	68
4.25	GAMS results of temperature-dependent Cp for cast study 2.	69
4.26	Temperature-dependent Cp graph and partitioning of case study 3; (a-k) represent for hot stream (H1-H11), respectively. (m-l) represent for cold stream (C1-C2), respectively.	79
4.27	GAMS results of temperature-dependent Cp for case study 3.	80
4.28	Previous solution of case study 3 from Kim and Bagajewicz (2017).	82
4.29	GAMS results alternative 1 of temperature-dependent Cp.	84
4.30	GAMS results alternative 2 of temperature-dependent Cp.	85
4.31	GAMS results alternative 3 of temperature-dependent Cp.	86
4.32	HEN retrofit result by GAMS.	89
4.33	HEN retrofit result by Pro/II.	93
4.34	HEN retrofit case study by Pro/II simulation.	94

NOMENCLATURE

Indices

<i>i</i> Index for hot process	s stream
<i>j</i> Index for cold proce	ss stream
k Index for stages (1, .	, <i>NOK</i>)
<i>n</i> Number of partitions	s (1,, <i>NOP</i>)
<i>y</i> Index for number of	years

Sets

СР	Cold process stream
CU	Cold utility
HP	Hot process stream
HU	Hot utility
PT	Partition in the Cp profile (1,, NOP)
ST	Stage in the superstructure (1,, NOK)

Parameters

$AC_{n,j}$	Cold stream slope coefficient of Cp at partition n , kJ/(kg °C ²)
$AH_{n,i}$	Hot stream slope coefficient of Cp at partition <i>n</i> , $kJ/(kg \circ C^2)$
AreaCold _i	Existing area of cold utility, m ²
AreaHold _j	Existing area of hot utility, m ²
Areaold _{ijk}	Existing area of process exchanger, m ²
$B_{i,j}$	Area cost coefficient of process stream
B _{i,CU}	Area cost coefficient of cold utility
$B_{j,HU}$	Area cost coefficient of hot utility
$BC_{n,j}$	Cold stream y-intercept of Cp at partition n , kJ/(kg °C)
$BH_{n,i}$	Hot stream y-intercept of Cp at partition n , kJ/(kg °C)

C_{ij}	Area cost of process exchanger, \$/(y m ²)
$C_{i,CU}$	Area cost of cold utility, $(y m^2)$
$C_{j,HU}$	Area cost of hot utility, $(y m^2)$
CCU	Cold utility per unit cost, \$/(kW y)
CHU	Hot utility per unit cost, \$/(kW y)
CF _{ij}	Fixed cost of process exchanger, \$/y
CF _{i,CU}	Fixed cost of cold utility, \$/y
$CF_{j,HU}$	Fixed cost of hot utility, \$/y
CPC_{avg_j}	Overall average Cp of cold stream <i>j</i> , kJ/(kg °C)
CPH_{avg_i}	Overall average Cp of hot stream <i>i</i> , kJ/(kg °C)
FC _j	Flow rate of cold stream <i>j</i> , kg/s
FH _i	Flow rate of hot stream i , kg/s
$FixtempC_{n,j}$	Fix temperature of cold stream for partition <i>n</i> and $n+1$, °C
FixtempH _{n,i}	Fix temperature of hot stream for partition <i>n</i> and $n+1$, °C
qcuold	Base case cold utility consumption, kW
qhuold _j	Base case hot utility consumption, kW
thin _i	Temperature inlet of hot stream i , °C
thout _i	Temperature outlet of hot stream i , °C
tcin _j	Temperature inlet of cold stream <i>j</i> , °C
tcout _j	Temperature outlet of cold stream j , °C
zhuold _j	Existing exchanger of hot utility
zcuold _i	Existing exchanger of cold utility
zold _{ijk}	Existing exchanger of process stream

Variables

$ActiC_{n,j,k}$	Activated variable of cold stream for partition n , °C
$ActiCF_{n,j,1}$	Activated variable of hot utility for partition n , °C
$ActiH_{n,i,k}$	Activated variable of hot stream for partition n , °C
$ActiHL_{n,i,NOK+1}$	Activated variable of cold utility for partition n , °C

$CPC_{n,j,k}$	Cp calculation of cold stream for partition n , kJ/(kg °C)
$CPCF_{n,j,1}$	Cp calculation of hot utility for partition <i>n</i> , kJ/(kg °C)
$CPColdF_{j,1}$	Average Cp calculation of hot utility, kJ/(kg °C)
$CPCold_{j,k}$	Average Cp calculation of cold stream <i>j</i> at stage <i>k</i> , kJ/(kg °C)
$CPH_{n,i,k}$	Cp calculation of cold stream for partition n , kJ/(kg °C)
$CPHL_{n,i,NOK+1}$	Cp calculation of cold utility for partition n , kJ/(kg °C)
CPHot _{i,k}	Average Cp calculation of hot stream <i>i</i> at stage <i>k</i> , kJ/(kg °C)
$CPHotL_{i,NOK+1}$	Average Cp calculation of cold utility, kJ/(kg °C)
$TCcal_{n,j,k}$	Average mean temperature difference calculation of cold stream
	for partition <i>n</i> , °C
$TCcalF_{n,j,1}$	Average mean temperature difference calculation of hot utility for
	partition <i>n</i> , °C
THcal _{n,i,k}	Average mean temperature difference calculation of hot stream for
	partition <i>n</i> , °C
$TH calL_{n,i,NOK+1}$	Average mean temperature difference calculation of cold utility for
	partition <i>n</i> , °C
qhu _j	Heat exchange between cold stream <i>j</i> and hot utility, kW
qcu _i	Heat exchange between hot stream <i>i</i> and cold utility, kW
$q_{i,j,k}$	Heat exchange between hot stream i and cold stream j at stage k ,
	kW
<i>tc</i> _{<i>i</i>,1}	Temperature of cold stream j at first stage, °C

Temperature of cold stream *j* at stage k, °C

Temperature of hot stream j at stage k+1, °C

Temperature of hot stream *i* at last stage, °C

Temperature of hot stream *i* at stage k+1, °C

Temperature of hot stream *i* at stage k, °C

 $tc_{j,1}$

tc_{j,k}

th_{i.k}

 $th_{i,k+1}$

 $tc_{j,k+1}$

 $th_{i,NOK+1}$

xviii

CHAPTER I INTRODUCTION

Chemical plants are designed over the year by focusing on economic issue which require a development of the process. One of the methods is heat integration technique which improves energy efficiency. Heat integration techniques focus on heat exchanger network (HEN) and energy efficiency improvement by rearranging HEN which is called retrofit. The retrofit idea is modified from HEN synthesis (the method to design HEN). At the beginning, HEN synthesis is designed and relied on heuristic method, that had been studying for 40 years, called pinch analysis. However, pinch analysis has many limitations on the design steps which is heavily based on previous decision and it will lose the effective design scenario missing from non-simultaneous procedure.

Mathematical models are proposed for HEN synthesis and retrofitting instead of using pinch analysis. Many mathematical models are invented such as transportation model, transshipment model, superstructure model and stage-wise superstructure model, all of them have limitations on their own. They must be selected carefully and embedded in commercial optimization program. Therefore, stage-wise superstructure is selected because of low computational time and high effectiveness. General algebraic modeling system (GAMS) is selected for this study because its powerful solvers on MILP and MINLP.

In this study, stage-wise superstructure model by Yee T.F. and Grossmann I.E. (1990) is used for HEN synthesis which dividing process temperature into stages under assumption of constant specific heat capacity. Only objective function is non-linear. To make model more realistic, the model is developed under temperature-dependent specific heat capacity. Thus, the propose of this research is to design HEN by using mathematical programming model of stage-wise superstructure model through GAMS program using partitioning technique for linearization of specific heat capacity equations are now embedded and stage-wise superstructure for HEN synthesis will be modified for retrofitting.

CHAPTER II LITERATURE REVIEW

Heat Exchanger Network (HEN) design has been studied for about 40 years. It is classified into two main categories, Pinch Analysis methods and Mathematical Programming methods. The pinch analysis methods were first introduced by Linnhoff and Flower (1978a). They proposed temperature interval method (TI method) to minimize utility energy consumption based on thermodynamically orientated method. Linnhoff and Flower (1978b) also introduced Paths and Loops techniques to reduce the number of exchangers. In 1983, Linnhoff and Hindmarsh (1983) suggested the pinch design method based on heuristic rule starting from minimizing utility consumption, number of heat exchanger and area of heat exchanger. At the targeting step, minimum temperature difference (ΔT_{min}) is specified to determine minimum utility usage. Smith (2005) conclude pinch design method until improving to mathematical programming. Nowadays, mathematical programming is applied for HEN synthesis and retrofitting. There are many mathematical programming models for HEN design; transshipment model by Papoulias and Grossmann (1983), superstructure model by Floudas et al. (1986), hyperstructure model by Ciric and Floudas (1991) and stage-wise superstructure model by Yee and Grossmann (1990) which were studied and compared by Escobar and Trierweiler (2013). They showed that stage-wise superstructure model gave lower total annual cost (TAC) and computation time. Thus, stage-wise superstructure that invented by Yee and Grossmann (1990) was chosen to study and develop by many authors. They distribute their work into three main parts, first area & energy targeting (Yee et al. (1990a)), second HEN synthesis (Yee and Grossmann (1990)), and the last process & HEN optimization (Yee et al. (1990b)). The main concept of stage-wise superstructure is to set temperature as variable and minimize TAC by trade-off between number of heat exchanger, area of heat exchanger and utility consumption. It can be applied to heat integration of organic Rankine cycles from Hipólito-Valencia et al. (2013) for minimizing TAC by input excess heat from HEN to organic Ranking cycles. However, stage-wise superstructure has two main assumptions, isothermal mixing and constant heat capacity flow rate.

HEN retrofit is practical HEN design for the process with existing HEN to recovery utility consumption. Bagajewicz *et al.* (2013) studied HEN comparison between mathematical programming and pinch design method using crude preheat train example. The mathematical model called "Heat integration transportation model (HIT)" has gave more profitable model. Liu *et al.* (2016) shows retrofit of HEN from stage-wise superstructure by including many binary variables to locate existing heat exchanger and solve complex mixed integer non-linear programming (MINLP) model by their hybrid genetic algorithm.

Many authors develop the stage-wise superstructure under temperature dependent specific heat capacity condition. Zhu and Asante (1999) present hybrid method of pinch design and mathematical programming for retrofitting. In their work, stream segment model is introduced together with segmented stream for heat capacity calculation. The design task consists of diagnostic stage, evaluation stage and cost optimization stage which can solve complex HEN with less computational time. Smith et al. (2010) improved HEN retrofit model from Zhu and Asante (1999) by including thermal properties of streams (e.g. heat capacity) as a function of temperature in terms of polynomial equation and stream splitting constraints which become effective design effect on lower TAC. Sreepathi and Rangaiah (2015) proposed nodal model similar to HEN retrofit model from Smith et al. (2010) with cubic equation of specific heat capacity. They introduced single (sum of operating cost and investment cost) and multi-objective (separate operating cost and investment cost) optimization to calculate solution in new flowchart algorithm and lower TAC can be obtained. Hasan et al. (2010) replaced isothermal mixing assumption with phase change process based on stage-wise superstructure. They decompose stream into multizone streams to express phase change zone and cubic equation is specified for enthalpy variable. LNG plant is used as an example and feasible solution can be generated. However, better solution can be obtained but it is next step challenge of their work. Li et al. (2012) simplified stage-wise superstructure with variable heat capacity by one linear equation for each stream combine with genetic algorithm and they showed that practical HEN can be designed. Kim et al. (2017) and Kim and Bagajewicz (2017) used their new model developed from Floudas et al. (1986) combine with cubic equation of specific heat capacity flow rate for HEN synthesis. Due to the complexity of their model, they

developed bound contraction procedure called RYSIA to get global solution. The global solutions are shown from their example with consume much computational time.

Removing of constant heat capacity flow rate become challenging topic that many methods solution are proposed by many authors. The simplest one is adding cubic equation of specific heat capacity in terms of temperature variable but it will become highly non-linear equation. Another technique is piece-wise linearization of enthalpy profile from Zhu and Asante (1999) and Ayotte-Sauvé *et al.* (2017) but their techniques give high accurate obtained from increasement number of segments. Therefore, stage-wise superstructure which has lower TAC and computational time than other mathematical programming models is preferred to remove this assumption by our new technique called partitioning technique. It is more simple technique than ordinary non-linear cubic equation added, higher accuracy than previous piece-wise linearization and it will be described here in this journal.

CHAPTER III METHODOLOGY

This work aims to design HEN with variable specific heat capacity by mathematical programming based on stage-wise superstructure from Yee and Grossmann (1990). The concept of stage-wise superstructure is to divide hot stream i and cold stream j into stage k which shows in Figure 3.1. The location of a heat exchanger match (ijk) is free based on objective function.

Figure 3.1 Stage-wise superstructure from Yee and Grossmann (1990).

3.1 Stage-Wise Superstructure Model

3.1.1 Overall Heat Balance for Each Stream

Overall heat balance for each stream is equal to overall heat transfer by heat exchanger at each stage including with heat from utility exchanger (Eqs. (3.1-3.2)). It calculates entire heat surplus for hot streams that can be transfer to cold streams and vice versa.

$$(TIN_i - TOUT_i) F_i = \sum_{k \in ST} \sum_{j \in CP} q_{ijk} + qcu_i, \qquad i \in HP$$
(3.1)

$$(TOUT_j - TIN_j) \quad F_j = \sum_{k \in ST} \sum_{i \in HP} q_{ijk} + qhu_j, \qquad j \in CP$$
(3.2)

3.1.2 Heat Balance at Each Stage

Heat balance at each stage is used for identifying temperature location at each stage. Eqs. (3.3) and Eqs. (3.4) calculate capacity of heat transfer at each stage. The temperature of adjacent stages is involved that outlet temperature of hot stream at first stage will be inlet temperature of second stage. In the same manner for cold stream, inlet temperature at stage k come from outlet temperature at stage k-1.

$$(t_{i,k} - t_{i,k+1}) F_i = \sum_{j \in CP} q_{ijk}, \qquad i \in HP, k \in ST$$

$$(t_{j,k} - t_{j,k+1}) F_i = \sum_{i \in HP} q_{ijk}, \qquad j \in CP, k \in ST$$

$$(3.3)$$

3.1.3 Assignment of Superstructure Inlet Temperatures

Inlet temperature of hot stream is assigned by Eqs. (3.5) and Eqs. (3.6) that inlet temperature at stage *I* and inlet temperature of cold stream is assigned to inlet temperature at stage NOK+1. Note, stages are divided into k=1 to k=NOK while temperature at each stage is located at k=1 to k=NOK+1.

$$TIN_i = t_{i,1}, \qquad \qquad i \in HP \tag{3.5}$$

$$TIN_j = t_{j,NOK+1}, \qquad j \in CP \tag{3.6}$$

3.1.4 Feasibility of Temperatures

The stage-wise superstructure defines that at left-hand side is the highest temperature of each stream and it is exchange energy along stream at each stage by exchanger. Outlet temperature of hot stream will be at right-hand side which is the lowest temperature. Thus, the temperature will define as stage k is hotter than stage k+1 and so on (Eqs. (3.7) and Eqs. (3.8)). Likewise, temperature outlet of hot stream must be the lowest in that line and temperature outlet of cold stream must be the highest temperature (Eqs. (3.9) and Eqs. (3.10)).

$t_{i,k} \ge t_{i,k+1},$	$i \in HP, k \in ST$	(3.7)
--------------------------	----------------------	-------

- $t_{j,k} \ge t_{j,k+1}, \qquad \qquad j \in CP, k \in ST \qquad (3.8)$
- $TOUT_i \le t_{i,NOK+1}, \qquad \qquad i \in HP \tag{3.9}$

$$TOUT_j \ge t_{j,1}, \qquad \qquad j \in CP \tag{3.10}$$

3.1.5 Hot and Cold Utility Load

As define stage separation, the temperature of stage 1 or NOK+1 can be relaxed because cold and hot utility loading will replace the deficit or surplus energy of that stream, respectively. The utility loading is calculated by difference temperature between final stage of each stream and target temperature multiply by heat capacity flow rate as shown in Eqs. (3.11) and Eqs. (3.12).

$$(t_{i,NOK+1} - TOUT_i)F_i = qcu_i, \qquad i \in HP \qquad (3.11)$$

$$(TOUT_j - t_{j,1})F_j = qhu_j, \qquad j \in CP \qquad (3.12)$$

3.1.6 Logical Constraints

To define heat exchanger matching, logical constraints equations are used and represent by Eqs. (3.13-3.15). The binary variable of z_{ijk} represent for existing exchanger matching of hot stream *i* and cold stream *j* at stage *k*. *zcu_i* represent for cold utility matching and *zhu_j* represent for hot utility matching. The logical constraints equation is described by; if heat is transferred between hot stream *i* to cold stream *j* at stage *k*, an integer value (integer value = 1) will demonstrate for *z* binary variable. The equation of inequality will become true because Ω is upper bound of heat loading and it always true only if *z* binary variable become one. In contrast, *z* binary variable can be integer value of one or zero if heat is not transfer between each stream but minimum of total annual cost will force *z* binary variable to zero.

$q_{ijk} - \Omega z_{ijk} \leq 0,$	$i \in HP, j \in CP, k \in ST$	(3.13)

 $qcu_i - \Omega zcu_i \le 0, \qquad i \in HP \qquad (3.14)$ $qhu_i - \Omega zhu_i \le 0, \qquad j \in CP \qquad (3.15)$

3.1.7 Calculation of Approach Temperatures

The area calculation is calculated by temperature inlet and outlet of hot and cold streams. For calculating area properly, approach temperature is determined as illustrated in Eqs. (3.16-3.19). The approach temperature equation will activate when z binary variable equal one which force value inside the bracket to zero. Temperature difference will less than or equal to temperature difference of hot stream and cold stream. The approach temperature is set at two pairs of exchanger matching.

$$dt_{ijk} \le t_{i,k} - t_{j,k} + \Gamma(1 - z_{ijk}), \qquad i \in HP, j \in CP, k \in ST$$

$$(3.16)$$

$$dt_{ijk+1} \le t_{i,k+1} - t_{j,k+1} + \Gamma(1 - z_{ijk}), \qquad i \in HP, j \in CP, k \in ST$$
(3.17)

$$dtcu_i \le t_{i,NOK+1} - TOUT_{CU} + \Gamma(1 - zcu_i), \qquad i \in HP$$
(3.18)

$$dthu_j \le TOUT_{HU} - t_{j,1} + \Gamma(1 - zhu_j), \qquad j \in CP \qquad (3.19)$$

3.1.8 Exchanger Minimum Approach Temperature

Normally, temperature approach is set as higher or equal to exchanger minimum approach temperature (EMAT) for reasonable area calculation by Eqs. (3.20). Frequently, it is set EMAT as 10 °C for counter current heat exchanger type and less for compact heat exchanger.

$$dt_{ijk} \ge EMAT,$$
 $i \in HP, j \in CP, k \in ST$ (3.20)

3.1.9 Log-Mean Temperature Difference

Log-mean temperature is an approximate temperature calculation between four points of exchanger temperature. Chen approximation is used (Eqs. (3.21-3.23)) instead of normal log-mean temperature difference because it can calculate when either dt_{ijk} or dt_{ijk+1} equals zero, the driving force will be approximated to zero. Note that Chen approximation is underestimate the driving force results to overestimate the area calculation.

$$LMTD_{ijk} = \left[(dt_{ijk}) (dt_{ijk+1}) \frac{dt_{ijk} + dt_{ijk+1}}{2} \right]^{1/3}, \quad i \in HP, j \in CP, k \in ST \quad (3.21)$$
$$LMTD_{i} = \left[(dtcu_{i}) (TOUT_{i} - TIN_{CU}) \frac{(dtcu_{i}) + (TOUT_{i} - TIN_{CU})}{2} \right]^{1/3}, \quad i \in HP \quad (3.22)$$

$$LMTD_{j} = \left[(dthu_{i})(TIN_{HU} - TOUT_{j}) \frac{(dthu_{i}) + (TIN_{HU} - TOUT_{j})}{2} \right]^{1/3},$$

$$j \in CP$$
(3.23)

3.1.10 Area Calculation

The area calculation is considered when heat exchanger exists. It is calculated by heat transfer divided by overall heat transfer coefficient and log-mean temperature difference as shown in Eqs. (3.24-3.26).

$$Area_{ijk} = \sum_{i \in HP} \sum_{j \in CP} \sum_{k \in ST} [q_{ijk} / (U_{ij} LMTD_{ijk})], \qquad i \in HP, j \in CP, k \in ST$$
(3.24)

$$Area_{i} = \left[\frac{qcu_{i}}{(U_{i,CU}LMTD_{i})}\right], \qquad i \in HP \qquad (3.25)$$

$$Area_{j} = \left[\frac{qhu_{j}}{(U_{j,HU}LMTD_{j})}\right], \qquad j \in CP \qquad (3.26)$$

3.1.11 Objective Function

The objective function of HEN synthesis is to minimize TAC which calculated by exchanger matching, area calculation and utility usage illustrate in Eqs. (3.27). The objective function is divided to cost of utility usage multiply by per unit of utility cost, fixed cost for exchanger matching and area cost. Specially for area cost, it is expedited by *B* exponent which affect the decreasing of TAC when it less than one. The reason behind this is; more area added in one shell is cheaper when compared for using two shell which same area of heat transfer.

$$Min TAC = \sum_{i \in HP} CCU qcu_i + \sum_{j \in CP} CHU qhu_j$$

+ $\sum_{i \in HP} \sum_{j \in CP} \sum_{k \in ST} CF_{ij} z_{ijk} + \sum_{j \in HP} CF_{i,CU} zcu_i + \sum_{j \in HP} CF_{j,HU} zhu_j$
+ $\sum_{i \in HP} \sum_{j \in CP} \sum_{k \in ST} C_{ij} Area_{ijk}^{B_{ij}}$
+ $\sum_{i \in HP} C_{i,CU} Area_i^{B_{i,CU}}$
+ $\sum_{j \in CP} C_{j,HU} Area_i^{B_{j,HU}}$ (3.27)

3.1.12 Control Number of Splitting Streams

stage-wise superstructure will split stream in k stage when heat capacity flow rate significantly high. It is usually happening for pre-heat train of crude oil distillation unit when one large heat capacity flow rate of cold stream exchange heat with small heat capacity flow rate of hot product streams. Nonetheless, some of splitting is not in reality that splitting and combine when stage has end. Thus, control number of splitting stream equation is required and important based on each situation.

$$\sum_{j} z_{ijk} \leq number \ of \ exchanger, \qquad i \in HP, k \in ST \qquad (3.28)$$
$$\sum_{i} z_{ijk} \leq number \ of \ exchanger, \qquad j \in CP, k \in ST \qquad (3.29)$$

Generally, specific heat capacity is an empirical correlation in form of cubic equation as a function of temperature calculated from fitting experimental data. Unfortunately, third order term of cubic equation makes stage-wise superstructure model more non-linear and difficult to be solved by MINLP solver. One linear equation of Cp is developed to simplify the complexity of third order but it usually increases error of the variable concurrently from unfitting Cp data. To generate accurate data, linearization of cubic equation with partitioning technique is proposed. For Example, the empirical correlation between Cp and temperature is $Cp = aT^3 + bT^2 + cT^2 + d$ where a, b, c and d are specific heat capacity constant. Figure 3.2,a shows the plot between Cp and temperature of crude oil from Pro/II library. The linearization of this cubic equation using partitioning technique divides the plot into three partitions which are represented by three linear approximating equations as shown Figure 3.2,b. Partition 1 is approximated by linear equation; $Cp_1 = A_1T + B_1$.

Partition 2 is approximated by linear equation; $Cp_2 = A_2T + B_2$. Partition 3 is approximated by linear equation; $Cp_3 = A_3T + B_3$.

Figure 3.2 Temperature-dependent Cp and linearization concept; (a) Constant and temperature-dependent Cp (b) partitioning technique concept of temperature-dependent Cp.

Three partition is selected and curative of graph is separated based on how much linear equation fit with this non-linear curve (recommended separate partition at boiling point temperature because jumping step is usually observed at this point). Note that specific heat capacity energy of reality data (area of non-linear graph) must be equal to new linear partition energy (area of linear graph). The concept of partitioning technique and equations that added into stage-wise superstructure will describe below.

3.2 Partitioning Technique of Temperature-Dependent Specific Heat Capacity

3.2.1 Overall Energy Balance

When Cp is variable, overall energy balance equation must be redefined as Eqs. (3.30) and (3.31). Temperature inlet and temperature outlet of stream is not changed but constant heat capacity flow rate is re-writing as average specific heat capacity and flow rate. Average specific heat capacity can be calculated carefully from area under curve of temperature-dependent Cp in the range between inlet and outlet temperature.

$$(thin_i - thout_i) \times FH_i \times CPH_{avg_i} = \sum_i \sum_k q_{i,j,k} + qcu_i, \ i \in HP$$
(3.30)

$$\left(tcout_{j} - tcin_{j}\right) \times FC_{j} \times CPC_{avg_{j}} = \sum_{j} \sum_{k} q_{i,j,k} + qhu_{j}, \ j \in CP$$

$$(3.31)$$

3.2.2 Stage Energy Balance

It actually is classified into many steps before obtaining average Cp (CPHot_{*i*,*k*} or CPCold_{*j*,*k*}) for each stage. Temperature is normally defined as variable for stage-wise superstructure but specific heat capacity is varied with temperature. They are in function of each other. However, concept of new technique is really simple that will describe one by one below but it must be noted that average Cp is calculated from all of these new equations. Hence, stage energy balance can be defined as Eqs. (3.32-3.35).

3.2.2.1 Process stream equations

$$(th_{i,k} - th_{i,k+1}) \times FH_i \times CPH_{i,k} = \sum_j q_{i,j,k}, \qquad i \in HP, k \in ST \qquad (3.32)$$

 $(tc_{j,k} - tc_{j,k+1}) \times FC_j \times CPC_{j,k} = \sum_i q_{i,j,k}, \qquad j \in CP, k \in ST \qquad (3.33)$

3.2.2.2 Utility streams equations

$$(th_{i,NOK+1} - thout_i) \times FH_i \times CPHL_{i,k} = qcu_i, \qquad i \in HP$$
(3.34)

$$(tcout_j - tc_{j,1}) \times FC_j \times CPCF_{j,k} = qhu_j, \qquad j \in CP$$
 (3.35)

All of these equations below are developed to calculate average Cp for each stage. They are categorized into 2 groups; process stream equation for process stream Cp calculation and utility streams equation for hot/cold utility streams Cp calculation. Process stream equation and utility stream equation are related that energy remain from HEN (process stream) are sufficient by utility. This energy must be estimated by group of utility stream equation. Hence, this journal will classify them into process stream Cp and utility stream Cp which actually similar concept.

3.2.3 Activate Cp Equation

As temperature is continuous variable, it can be located in range of inlet/outlet temperature of that stream but Cp is also in function of temperature. It should be note that temperature variable ($th_{i,k}$ and $tc_{j,k}$) presents in stage called stage temperature and partitioning technique. To define used partition, "Activated Cp Equation" is formulated to Eqs. (3.36-3.47). They represent the used partition by showing positive number when that partition is in used, else negative.

3.2.3.1 Process stream equations

$$ActiH_{1,i,k} = th_{i,k} - \max(th_{i,k+1}, FixtempH_{1,i}),$$

$$i \in HP, k \in ST$$
(3.36)

$$ActiH_{n,i,k} = \min(th_{i,k}, FixtempH_{n-1,i}) - \max(th_{i,k+1}, FixtempH_{n,i}),$$
$$i \in HP, k \in ST, n \in PT$$
(3.37)

 $ActiH_{NOP,i,k} = \min(th_{i,k}, FixtempH_{NOP-1,i}) - th_{i,k+1},$

$$i \in HP, k \in ST \tag{3.38}$$

$$ActiC_{1,j,k} = tc_{j,k} - \max(tc_{j,k+1}, FixtempC_{1,j}),$$

$$j \in CP, k \in ST$$
(3.39)

$$ActiC_{n,j,k} = \min(tc_{j,k}, FixtempC_{n-1,j}) - \max(tc_{j,k+1}, FixtempC_{n,j}),$$

$$j \in CP, k \in ST, n \in PT$$
(3.40)

$$ActiC_{NOP,j,k} = \min(tc_{j,k}, FixtempC_{NOP-1,j}) - tc_{j,k+1},$$

$$j \in CP, k \in ST$$
(3.41)

3.2.3.2 Utility streams equations

$$ActiHL_{1,i,NOK+1} = th_{i,NOK+1} - FixtempH_{1,i},$$

$$i \in HP$$
(3.42)

$$ActiHL_{n,i,NOK+1} = \min(th_{i,NOK+1}, FixtempH_{n-1,i}) - FixtempH_{n,i},$$

$$i \in HP, n \in PT$$
(3.43)

$$ActiHL_{NOP,i,NOK+1} = \min(th_{i,NOK+1}, FixtempH_{NOP-1,i}) - thout_i,$$

$$i \in HP$$
(3.44)

$$ActiCF_{1,j,1} = tcout_j - \max(tc_{j,1}, FixtempC_{1,j}),$$

$$i \in CP$$
(3.45)

 $ActiCF_{n,j,1} = FixtempC_{n-1,j} - \max(tc_{j,1}, FixtempC_{n,j}),$

$$j \in CP, n \in PT \tag{3.46}$$

$$ActiCF_{NOP,j,1} = FixtempC_{NOP-1,j} - tc_{j,1}, \quad j \in CP$$
(3.47)

3.2.4 Temperature Calculation

These equations calculate average mean temperature for each partition at stage *k*. They have three equations represent for first partition to final partition (*NOP*) (Eqs. (3.48-3.59)). New parameters (*FixTemp_n*) are specified logically to divide non-linear cubic equation into linear equation and they are used to calculate in all of these equations. It may be observed that temperature calculation may be negative value but activate variable (ActiH_{*i*,*k*} or ActiC_{*j*,*k*}) from activate equation (Eqs. (3.36-3.47)) will set the used value.

3.2.4.1 Process stream equations

$$THcal_{1,i,k} = \frac{th_{i,k} + \max(th_{i,k+1}, FixtempH_{1,i})}{2}, \quad i \in HP, k \in ST$$
(3.48)

$$THcal_{n,i,k} = \frac{\min(th_{i,k}, FixtempH_{n-1,i}) + \max(th_{i,k+1}, FixtempH_{n,i})}{2},$$
$$i \in HP, k \in ST, n \in PT$$
(3.49)

$$THcal_{NOP,i,k} = \frac{\min(th_{i,k}, FixtempH_{NOP-1,i}) + th_{i,k+1}}{2},$$
$$i \in HP, k \in ST$$
(3.50)

$$TCcal_{1,j,k} = \frac{tc_{j,k} + \max(tc_{j,k+1}, FixtempC_{1,j})}{2}, \quad j \in CP, k \in ST$$

$$(3.51)$$

$$TCcal_{n,j,k} = \frac{\min(tc_{j,k}, FixtempC_{n-1,j}) + \max(tc_{j,k+1}, FixtempC_{n,j})}{2},$$

$$j \in CP, k \in ST, n \in PT$$
(3.52)

$$TCcal_{NOP,j,k} = \frac{\min(tc_{j,k}, FixtempC_{NOP-1,j}) + tc_{j,k+1}}{2},$$

$$j \in CP, k \in ST$$
(3.53)

3.2.4.2 Utility streams equations

$$THcalL_{1,i,NOK+1} = \frac{th_{i,NOK+1} + FixtempH_{1,i}}{2}, \quad i \in HP$$
(3.54)

$$THcalL_{n,i,NOK+1} = \frac{\min(th_{i,NOK+1},FixtempH_{n-1,i}) + FixtempH_{n,i})}{2},$$

$$i \in HP, n \in PT \tag{3.55}$$

$$THcalL_{NOP,i,NOK+1} = \frac{\min(th_{i,NOK+1},FixtempH_{NOP-1,i}) + thout_i}{2},$$

$$i \in HP$$
(3.56)

$$TCcalF_{1,j,1} = \frac{tcout_j + \max(tc_{j,1}, FixtempC_{1,j})}{2}, \quad j \in CP$$
(3.57)

$$TCcalF_{n,j,1} = \frac{FixtempC_{n-1,j} + \max(tc_{j,1}, FixtempC_{n,j})}{2},$$

$$j \in CP, n \in PT \tag{3.58}$$

$$TCcalF_{NOP,j,1} = \frac{FixtempC_{NOP-1,j} + tc_{j,1}}{2}, \qquad j \in CP$$
(3.59)

3.2.5 Cp Calculation for each partition

Cp is normally calculated by average mean temperature calculated from previous section and they are set to calculate by linear relationship from each partition (Eqs. (3.60-3.63)).

3.2.5.1 Process stream equations

$$CPH_{n,i,k} = AH_{n,i} \times THcal_{n,i,k} + BH_{n,i}, \qquad i \in HP, k \in ST, n \in PT$$
(3.60)

$$CPC_{n,j,k} = AC_{n,j} \times TCcal_{n,j,k} + BC_{n,j}, \qquad j \in CP, k \in ST, n \in PT$$

$$(3.61)$$

3.2.5.2 Utility streams equations

$$CPHL_{n,i,NOK+1} = AH_{n,i} \times THcalL_{n,i,NOK+1} + BH_{n,i},$$

$$i \in HP \tag{3.62}$$

$$CPCF_{n,j,1} = AC_{n,j} \times TCcalF_{n,j,1} + BC_{n,j}, \quad j \in CP$$
(3.63)

3.2.6 Average Cp Calculation for stage

All of new equation above will be used in these equations (Eqs. (3.64-3.67)). Objective of these equations is to assign average Cp for using in each stage by concept of weighted average calculation. For more understanding, example of partitioning technique for Cp calculation is described below.

3.2.6.1 Process stream equations

$$CPHot_{i,k} = \sum_{n=1}^{NOP} \left[CPH_{n,i,k} \times \max(0, ActiH_{n,i,k}) \right] / \sum_{n=1}^{NOP} \left[\max(0, ActiH_{n,i,k}) \right]$$
$$i \in HP, k \in ST$$
(3.64)

$$CPCold_{j,k} = \sum_{n=1}^{NOP} \left[CPC_{n,j,k} \times \max(0, ActiC_{n,j,k}) \right] / \sum_{n=1}^{NOP} \left[\max(0, ActiC_{n,j,k}) \right]$$
$$j \in CP, k \in ST$$
(3.65)

3.2.6.2 Utility streams equations

$$CPHotL_{i,NOK+1} = \sum_{n=1}^{NOP} [CPHL_{n,i,NOK+1} \times \max(0, ActiHL_{n,i,NOK+1}] / \sum_{n=1}^{NOP} [\max(0, ActiHL_{n,i,NOK+1})] \\ i \in HP$$
(3.66)
$$CPColdF_{j,1} = \sum_{n=1}^{NOP} [CPCF_{n,j,1} \times \max(0, ActiCF_{n,j,1})] / \sum_{n=1}^{NOP} [\max(0, ActiCF_{n,j,1})]$$

$$j \in CP \tag{3.67}$$

Figure 3.3 Example of partitioning technique for hot process stream.

Figure 3.3 shows example of Cp calculation for hot process stream *i* in stage *k* by partitioning technique. Suppose that a hot process stream has supply temperature $(th_{i,k})$ and target temperature $(th_{i,k+1})$ varied in the temperature range from partition 1 to partition 2, as shown in Figure 3.3. First, ActiH_{*n*,*i*,*k*} of each process temperature $(th_{i,k+1})$ occupied partition becomes positive value and temperature difference of the partition is calculated. They show that enthalpy; ActiH_{1,*i*,*k*} (FixtempH₁ - th_{*i*,*k*+1}), and enthalpy; ActiH_{2,*i*,*k*</sup> (th_{*i*,*k*} - FixtempH₁), are positive except enthalpy; ActiH_{3,*i*,*k*} (FixtempH₂ - th_{*i*,*k*+1}), is negative value. Maximum operation force negative value to zero value (enthalpy of partition 3). Next, CPH_{*n*,*i*,*k*} are determined by average mean}}}}

temperature calculation between th_{*i*,*k*} and th_{*i*,*k*+1}. Finally, CPHot_{*i*,*k*} is calculated from CPH_{1,*i*,*k*} and CPH_{2,*i*,*k*} by weighted average calculation concept as shown in Figure 3.3. The advantages of our technique are linear equation fitting very well with data and using small number of partitions (only 3 partition is enough for this case study). Moreover, average Cp calculation from each stage have high accuracy and it is free to calculate without any fixed Cp data from user.

3.3 Retrofit

Objective of heat exchanger synthesis is to minimize TAC by trading between number of heat exchanger, area of heat exchanger and utility consumption but retrofit objective is to maximize net present value (NPV) by adding new heat exchanger or increasing area of heat exchanger to reduce energy consumption. Thus, only objective function is changed in stage-wise superstructure and new concept of temperature-dependent Cp can be used. The model will design HEN and new parameter of exiting heat exchanger, area of existing heat exchanger and based utility consumption must be specified. Maximum operation is used to indicate new heat exchanger and exiting heat exchanger. Only new exchanger will calculate fixed cost and adding area of heat exchanger is calculated for old heat exchanger. New objective function is saving energy consumption subtracted by capital cost as shown in Eqs. (3.68).

$$Max NPV = \sum_{y=1}^{n} \frac{\sum_{i} CCU(qcuold_{i}-qcu_{i}) + \sum_{j} CHU(qhuold_{j}-qhu_{j})_{y}}{(1+i)^{y}}$$

$$-\sum_{i} \sum_{j} \sum_{k} CF_{ij} \times max \left(0, \left(z_{ijk} - zold_{ijk}\right)\right)$$

$$-\sum_{i} CF_{i,CU} \times max(0, (zcu_{i} - zcuold_{i}))$$

$$-\sum_{j} CF_{j,HU} \times max(0, (zhu_{j} - zhuold_{j}))$$

$$-\sum_{i} \sum_{j} \sum_{k} C_{ij} max(0, (Area_{ijk} - Areaold_{ijk}))^{B_{ij}}$$

$$-\sum_{i} C_{i,CU} max(0, (Area_{i} - AreaCold_{i}))^{B_{i,CU}}$$

$$-\sum_{j} C_{j,HU} max(0, (Area_{j} - AreaHold_{j}))^{B_{j,HU}}$$
(3.68)
It must be noted that to avoid any inappropriate matching, the lower bound of existing exchanger heat transfer is specified. It is used to force retrofit model to design new HEN based on previous network.

CHAPTER IV RESULTS AND DISCUSSION

Four cases are optimized by general algebraic modeling system program (GAMS) version 24.2 using CPLEX as mixed integer linear programming (MILP) solver, CONOPT as non-linear programming (NLP) solver and DICOPT as mixed integer non-linear programming (MINLP) testing in desktop computer (Intel® CoreTM i7-4720HQ CPU at 2.6 GHz, 16 GB of RAM, 64-bit Windows 8). To validate new technique, Pro/II (version 9.1) library model is used to show its performance of HEN synthesis and HEN retrofit. Two examples from Kim and Bagajewicz (2017) using ordinary non-linear cubic equation technique are applied for comparison with our model using partitioning technique.

4.1 Case Study 1

This example aims to validate crude preheat train designed by new model with commercial software program (Pro/II simulation). It contains five hot product streams, one cold crude oil stream and stage model of five stages to design HEN. The constraints to design HEN for this case are; allowing three or less stream splitting per stage on cold stream and prohibiting stream splitting on every hot stream. EMAT is set at 10 °C. Cp of each stream in crude preheat train is from Pro/II simulation which is separated into constant Cp and variable Cp as shown in Figure 3.2. Diamond blue dot represents experimental data of Cp from Pro/II and red line represent linear line fitting experimental data of Cp. All process streams data including supply and target temperature are shown in Table 4.1.

Table 4.1 Process streams data of case study 1.

Streams	$T_{in}(^{\circ}C)$	$T_{out}(^{\circ}C)$	F (kg/s)	h (kW	$V/m^2 \circ C) Cost (\$/kW y)$	
H1	43.33	25	37.38	1	-	
H2	200.04	25	21.88	1	-	
H3	272.79	25	21.76	1	-	

H4	342.72	50	26.24	1	-
H5	370.72	50	87.06	1	-
C1	50	376.80	194.24	1	-
HU	500 (steam)	500 (condensate))-	1	60
CU	10	15	-	1	5

Annual investment $cost (\$/y) = 3,460 + 300 \times (Area; m^2)$ for all exchangers (Pan *et al.* (2013))

The validation steps are divided into Constant Cp, 1 partition divided, 2 partitions divided, 3 partitions divided and 5 partitions divided which show the performance of new model and percent accuracy when increasing number of partitions. For Cp linearization, Cp data as function of temperature is partitioned into five or fewer temperature intervals based on each case that will show further and linear equation with parameters; A_n and B_n , fitting Cp data at each temperature interval of each stream. GAMS result; heat duty of each heat exchanger and HEN are set into Pro/II simulation to validate partitioning technique.

4.1.1 Constant Cp

First case is constant Cp that represent for normal stage-wise superstructure. The Cp value is set as constant and shown in Table 4.2. Cp graph is shown in Figure 4.1 and it can be observed that Cp is constant along the supply and target temperature. The base case of crude preheat train by Pro/II software is shown in Figure 4.2.

Table 4.2 Specific heat capacity of constant Cp.

Streams	Cp _{constant} (kJ/kg °C)	
H1	2.0115729	
H2	2.1982975	
H3	2.2798556	
H4	2.4213852	
H5	2.4131606	
C1	2.7665094	

(b)

Figure 4.1 Constant Cp graph of case study 1; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream.

HEN of constant heat capacity assumption is shown in Figure 4.3 and Figure 4.4 for GAMS result and Pro/II results, respectively. The design from Pro/II simulation is shown in Figure 4.5. Grid diagram show the Cp of each stream is set to constant in GAMS results but Pro/II results show that Cp is varied along the stage. Results data of constant heat capacity is shown in Table 4.3 and Table 4.4. It can be observed that percent error of utility consumption in constant Cp case is not high because of heat balance theory (Cp data graph area is equal to Cp average graph area illustrate in Figure 3.2,a) but constant Cp affect temperature outlet of heat exchanger results to increasing percent error of heat exchanger area. For example, observing from E6 in Table 4.4 that hot temperature outlet from heat exchanger is obviously changed when fixed heat duty E6 because Cp that calculate in Pro/II (2.08 kJ/kg °C) is really different from constant Cp (2.28 kJ/kg °C) set by user. Thus, outlet temperature calculation will change from 69.04 °C in constant Cp to 77.52 °C in variable Cp and it can be compared to Pro/II result that increasing percent error of area calculation to 30.79 %. Therefore, this error is unacceptable in reality design that should be specified specific heat capacity as function of temperature.

Heat Exchanger	GAMS Duty (kW)	Pro/II Duty (kW)	Percent Error (%)
E1	8,469.98	8,469.98	-
E2	15,882.16	15,882.16	-
E3	59,939.83	59,939.83	-
E4	6,148.81	6,148.81	-
E5	1,176.17	1,176.17	-
E6	1,626.79	1,626.79	-
CU1	1,378.39	1,378.60	0.02
CU2	2,252.00	2,245.70	0.28
CU3	2,182.15	2,168.60	0.62
CU4	1,522.28	1,495.40	1.80
CU5	7,367.34	7,362.20	0.07
HU1	82,109.79	82,109.90	0.00

Table 4.3 Duty data comparison between GAMS and Pro/II of constant Cp.

Stream Nome Stream Description		C1 CRUDE FEED	H1 NAPHTHA	H2 KERDSENE	HG DIESEL	H4 GAS OIL	HS TOPPED CRUDE
Phose		Mood	Liquid	Liquid	Liquid	Liquid	Liquid
Tatal Stream							
Std. Liq. Rater Temperature Pressure Dry Liquid CP	KGISEC MJYSEC C BAR KJ/KG-C	194,241 0,221 232 222 1 979 2,585	37,376 0.057 43,333 1.379 2.044	21.878 0.027 200.034 1.827 2.521	21.750 0.025 272.781 1.875 2.742	26,239 0.029 342,708 1.930 2.928	87 070 0 050 370 692 1 910 2 940

Figure 4.2 Crude preheat train case from Pro/II library.

Figure 4.3 HEN from constant Cp GAMS model.

Figure 4.4 Validation of HEN from constant Cp GAMS model by Pro/II simulation.

Stream Name Stream Description		C1IN CRUDE FEED	H1IN NAPHTHA	H2IN KEROSENE	H3IN DIESEL	H4IN GAS OIL	H5IN TOPPED CRUDE
Phase		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid
Total Stream							
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/HR M3/HR C BAR KJ/KG-C	699266,768 794,933 50.000 1.979 1.895	134549.849 182.800 43.333 1.379 2.044	78758.853 95.452 200.027 1.827 2.521	78314.685 90.078 272.769 1.875 2.742	94452 107 104.468 342.683 1.930 2.928	313470.526 322.416 370.657 1.910 2.940
Stream Name Stream Description		C10UT	H1OUT	H2OUT	H3OUT	H4OUT	HSOUT
Phase		Mixed	Mixed	Mixed	Mixed	Mixed	Mixed
Total Stream							
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/HR M3/HR C BAR KJ/KG-C	699266.768 794.933 243.803 1.979 2.591	134549.849 182.800 25.000 1.379 1.985	78758.853 95.452 25.000 1.827 1.842	78314.685 90.078 25.000 1.875 1.787	94452,107 104,468 50,000 1,930 1,861	313470.526 322.416 50.000 1.910 1.808

Figure 4.5 HEN from constant Cp case study by Pro/II simulation.

Heat Exchanger	GAMS Area (m ²)	Pro/II Area (m ²)	Percent Error (%)
E1	406.08	497.86	18.44
E2	524.27	565.18	7.24
E3	1,974.39	2,044.39	3.42
E4	213.25	202.24	5.45
E5	100.94	88.30	14.32
E6	102.97	78.73	30.79
CU1	165.96	131.52	26.19
CU2	143.83	134.83	6.67
CU3	143.76	130.28	10.34
CU4	62.29	58.25	6.94
CU5	274.67	256.07	7.26
HU1	866.96	904.02	4.10

Table 4.4 Area data comparison between GAMS and Pro/II of constant Cp.

4.1.2 1 Partition

Next case is the new technique of this thesis (partitioning technique) that using 1 partition or one linear equation represent for Cp variable. The Cp linearization of case study 1 parameters is shown in Table 4.5. Cp graph shown in Figure 4.6 and it can be observed that stream H2 to H5 is fit well with Cp data but stream C1 is not enough for only one linear equation (1 partition). However, high range of supply and target temperature lead to high R² but it is actually not fit well with the data.

Table 4.5 Specific heat capacity linearization of case study 1 by 1 partition.

Straama	Partition	$Cp_n = A_n \times T_{me}$	$ean + B_n$	D ²	Cpaverage
Sueams	Number (<i>n</i>)	$\overline{\mathbf{A}_n}$	\mathbf{B}_n	ĸ	(kJ/kg °C)
H1	1	0	2.0115729	-	2.0115729
H2	1	0.0039128	1.7580281	0.98	2.1982975
H3	1	0.0038395	1.7081741	0.98	2.2798556
H4	1	0.0036817	1.6984336	0.99	2.4213852
Н5	1	0.0035960	1.6567033	0.99	2.4131606
C1	1	0.0047104	1.7613130	0.95	2.7665094

(b)

(d)

Figure 4.7 HEN from partitioning technique GAMS model of 1 partition.

Figure 4.8 Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 1 partition.

Stream Name Stream Description		C1IN CRUDE FEED	H1IN NAPHTHA	H2IN KEROSENE	H3IN DIESEL	H4IN GAS OIL	H5IN TOPPED CRUDE
Phase		Liqu	id Liqui	id Liquid	Liquid	Liquid	Liquid
Total Stream							
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/HR M3/HR C BAR KJ/KG-C	699266.7/ 794.9: 50.0(1.9: 1.8:	38 134550.54 33 182.80 00 43.33 79 1.37 95 2.04	5 78758.705 11 95.452 13 200.027 9 1.827 4 2.521	78317.935 90.081 272.769 1.875 2.742	94453.100 104.469 342.692 1.930 2.928	313465.784 322.410 370.666 1.910 2.940
Stream Name Stream Description		CIOUT	HIOUT	H2OUT	НЗОИТ	H4OUT	H5OUT
Phase		Mixed	Mixed	Mixed	Mixed	Mixed	Mixed
Total Stream							
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/HR M3/HR C BAR KJ/KG-C	699266.768 794.933 248.591 1.979 2.606	134550.545 182.801 25.000 1.379 1.985	78758.705 95.452 25.000 1.827 1.842	78317.935 90.081 25.000 1.875 1.787	94453.100 104.469 50.000 1.930 1.861	313465.784 322.410 50.000 1.910 1.808

Figure 4.9 HEN from 1 partition case study by Pro/II simulation.

New model (partitioning technique) is used to design HEN which shown GAMS and Pro/II results in Figure 4.7 and Figure 4.8, respectively. The design from Pro/II simulation is shown in Figure 4.9. The results show that specific heat capacity change from stage to stage and it increase accuracy of area calculation (Table 4.6). Compared on exchanger E6, 30.79 % error of heat exchanger area reduce to 6.21 % likewise to another exchanger because Cp calculation from our new model vary with temperature results to Cp that shows in Figure 4.7 (partitioning technique) and Figure 4.8 (Cp calculation from Pro/II) close to each other. Average error of area calculation from 1 partition is 5.02 % which reduced from constant Cp of 11.76 %. Thus, it shows that only 1 partition or take Cp as variable is highly impact on reduction of error calculation and it can be less for higher number of partitions. Moreover, effective scenario from Cp variable can be found in this case but it is traded-off by adding more equation which lead to complex model.

Heat Exchanger	GAMS Duty (kW)	Pro/II Duty (kW)	Percent Error (%)
E1	5,549.70	5,549.70	-
E2	25,084.40	25,084.40	-
E3	6,230.50	6,230.50	-
E4	6,850.78	6,850.78	-
E5	23,381.87	23,381.87	-
E6	2,773.14	2,773.14	-
E7	187.70	187.70	-
E8	1,908.55	1,908.55	-
E9	1,974.10	1,974.10	-
E10	2,964.02	2,964.02	-
E11	9,371.77	9,371.77	-
E12	1,478.11	1,478.11	-
E13	3,051.55	3,051.55	-
E14	5,174.18	5,174.18	-
CU1	1,378.39	1,378.30	0.01
CU2	2,193.12	2,174.40	0.86
CU3	2,908.90	2,893.20	0.54
CU4	1,239.18	1,212.80	2.18
CU5	4,372.78	4,283.70	2.08
HU1	79,631.82	79,373.30	0.33

Table 4.6 Duty data comparison between GAMS and Pro/II of 1 partition.

Heat Exchanger	GAMS Area (m ²)	Pro/II Area (m ²)	Percent Error (%)
E1	134.05	133.17	0.65
E2	526.01	523.56	0.47
E3	215.16	223.97	3.93
E4	237.52	247.80	4.15
E5	863.76	905.59	4.62
E6	95.24	101.54	6.21
E7	8.41	9.16	8.15
E8	118.75	134.35	11.61
E9	107.07	114.72	6.67
E10	185.93	200.75	7.38
E11	467.38	496.91	5.94
E12	98.97	101.84	2.82
E13	159.95	163.35	2.08
E14	352.42	362.60	2.81
CU1	165.96	131.49	26.21
CU2	134.06	132.63	1.08
CU3	152.30	150.40	1.27
CU4	50.47	49.54	1.88
CU5	174.75	171.56	1.86
HU1	889.50	883.16	0.72

Table 4.7 Area data comparison between GAMS and Pro/II of 1 partition.

4.1.3 2 Partitions

Cp data is divided and increased number of partitions to 2 for more accuracy that shown parameters and Cp graph in Table 4.8 and Figure 4.10, respectively. In general, the partition should divide based on jumping point such as boiling point temperature but this case separate stream H2 to H5 in the middle temperature of supply and target temperature due to linearity Cp data except stream C1. However, even increasing number of partitions to 2, it still be not fit with Cp data of crude oil (stream C1) and it is not appropriate to use only 2 partitions with dome curve Cp data as shows the example of this shape in Case Study 3.

Streams	Partition	$Cp_n = A_n \times T$	$T_{mean} + B_n$	$-\mathbf{R}^2$	Fix Temp 1	Cpaverage
Streams	Number (<i>n</i>	(A_n)	\mathbf{B}_n	п	(°C)	(kJ/kg °C)
H1	1	0	2.0115729	-	-	2.0115729
H2	1	0.0037324	1.7872397	0.92	109.87	2.1986417
	2	0.0039917	1.7520906	0.91		
Н3	1	0.0035715	1.7663352	0.98	145.15	2.2799229
	2	0.0039823	1.6938661	0.89		
H4	1	0.0033502	1.7869467	0.99	179.05	2.4233018
	2	0.0039403	1.6706077	0.99		
Н5	1	0.0032887	1.7442809	0.99	192.63	2.4155978
	2	0.0039309	1.6202846	0.99		
C1	1	0.0038748	1.9929526	0.96	112.12	2.7662411
	2	0.0041118	1.6917482	0.96		

Table 4.8 Specific heat capacity linearization of case study 1 by 2 partitions.

(a)

(b)

(c)

(e)

Figure 4.10 Temperature-dependent Cp graph and 2 partitions of case study 1; (a-e) represent for hot stream (H1-H5), respectively. (f) represent for cold stream.

Figure 4.11 HEN from partitioning technique GAMS model of 2 partitions.

Figure 4.12 Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 2 partitions.

		-	1		
-	-		-	0	-
H Q					

Stream Race Stream Description		CIN CRUDE FIED	H174 NAPHTRA	H2NI KEROSENE	HOTE DESEL	DAS DE	HSAN TORRED CRUDE
Phase		Dquid	Liquet.	Lopud	Lovet	Laut	Liquit
Total Stream							1-11
Stal Liq, Rate Temperature Pressure Dry Liquid CP	KOJHR MJHR C RAR KJKO-C	899266.768 194.933 59.600 1.979 1.895	124652.131 152.603 43.253 1.379 2.244	78759.572 96.483 200.033 1.627 2.521	78321 147 96 085 272 778 1 875 2.742	94460.279 104.478 342.705 1.930 2.825	313462,029 322,396 370,658 1 910 2 942
Stream Name Stream Description		C10UT	HIQUT	HOOST	HODUT	HADUT	esour
Phase		Mixed	Noved	Moost	Mixed	Deed	Used
Total Stream							-
Std. Lis, Rate Temporature Pressure Dry Loyal CP	KGHR Mghr C Bar Kjing-C	699266.758 794.933 243.119 1.979 2.509	134552 131 182 803 25.006 1.379 1.965	78759.572 95.453 25.000 1.827 1.842	78321 187 96.025 25.000 1.875 8.757	94488 279 104476 56,500 1,020 1,061	313452 429 322 396 56,000 1 910 1 800

Figure 4.13 HEN from 2 partitions case study by Pro/II simulation.

The results of partitioning technique and validated one by Pro/II are illustrated in Figure 4.11 and Figure 4.12, respectively. Duty data and area data comparison between GAMS and Pro/II are shown in Table 4.9 and Table 4.10, respectively. The design from Pro/II simulation is shown in Figure 4.13. The results follow the theory that error of area calculation reduce from increasing number of partitions because of higher accuracy for Cp calculation results to less error of area calculation. Average error of area calculation from 2 partitions is 3.40 %. Note that with linearization technique percent error of duty will not decrease but this new technique affects directly on area calculation error.

Heat Exchanger	GAMS Duty (kW)	Pro/II Duty (kW)	Percent Error (%)
E1	8,222.47	8,222.47	-
E2	15,632.81	15,632.81	-
E3	56,481.10	56,481.10	-
E4	6,296.93	6,296.93	-
E5	6,220.35	6,220.35	-
CU1	1,378.39	1,378.30	0.01
CU2	2,122.86	2,102.00	0.99
CU3	4,069.02	4,052.00	0.42
CU4	2,981.66	2,938.20	1.48
CU5	4,751.59	4,592.10	3.47
HU1	82,741.47	82,500.00	0.29

Table 4.9 Duty data comparison between GAMS and Pro/II of 2 partitions

Table 4.10 Area data comparison between GAMS and Pro/II of 2 partitions.

Heat Exchanger	GAMS Area (m ²)	Pro/II Area (m ²)	Percent Error (%)
E1	500.97	501.72	0.15
E2	587.13	590.68	0.60
E3	1,643.84	1,651.69	0.48
E4	213.30	213.06	0.12
E5	407.27	419.09	2.82
CU1	165.96	131.49	26.22
CU2	131.73	130.33	1.08
CU3	179.32	176.35	1.69
CU4	95.36	94.34	1.08
CU5	185.93	181.02	2.71
HU1	910.64	906.96	0.41

4.1.4 3 Partitions

Now, every stream is split into 3 partitions which make model more realistic due to less error in Cp data (Fitting well with stream C2). Cp data parameter are formulated illustrated in Table 4.11 and Figure 4.14.

Table 4.11 Specific heat capacity linearization of case study 1 by 3 partitions.

Strooma	Partition $Cp_n = A_n \times T_{mean} + B_n$		\mathbf{D}^2	Fix Temp 1Fix Temp 2Cp _{average}			
Sucallis	Number (n	$)A_n$	B _n	-K	(°C)	(°C)	(kJ/kg °C)
H1	1	0	2.0115729	-	-	-	2.0115729
H2	1	0.0039408	1.7499202	0.81	145.23	76.27	2.1975324
	2	0.0040235	1.7485183	0.86			
	3	0.0038983	1.7559456	0.82			
H3	1	0.0034835	1.7871469	0.93	195.21	95.08	2.2807703
	2	0.0039627	1.7013860	0.96			
	3	0.0037159	1.7077719	0.62			
H4	1	0.0032687	1.8110935	0.97	243.24	114.86	2.4234212
	2	0.0037746	1.6956386	0.99			
	3	0.0040287	1.6644258	0.95			
H5	1	0.0030150	1.8334726	0.99	262.47	122.78	2.4161113
	2	0.0035929	1.6721186	0.99			
	3	0.0040832	1.6098383	0.99			
C1	1	0.0033967	2.1322310	0.99	168.18	112.12	2.7666217
	2	0.0090825	1.2318505	0.98			
	3	0.0041118	1.6917482	0.96			

(b)

(d)

Figure 4.15 and Figure 4.16 show HEN results of partitioning technique and Pro/II results, respectively. The duty data and area data comparison are illustrated in Table 4.12 and Table 4.13, respectively. The design from Pro/II simulation is shown in Figure 4.17. Average error of area calculation from 3 partitions is 3.09 % which less than number of partition 1 and 2 cases. As mention earlier, the Cp data fit when using 3 partitions impact on less error of area calculation.

Figure 4.15 HEN from partitioning technique GAMS model of 3 partitions

Figure 4.16 Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 3 partitions.

Stream Name Stream Description		C1N CRUDE FE	HIN NAPHTHA	H2IN KEROSENE	H3IN DIESEL	H4N GAS OIL	H5IN TOPPED CRUDE
Phase		L.	iquid Liq	uid Liqu	id Liquid	Liquid	Liquid
Total Stream					1		
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/MR M3/HR C BAR KJ/KG-C	899268 794 50 1	768 134548 1 933 182 000 433 979 1 895 2	953 78754 77 795 95 44 333 200 01 379 1 85 944 2 55	11 78310 836 47 90.073 77 272.752 47 1.875 21 2.742	94443.740 104.459 342.663 1.930 2.928	313488 002 322 435 370 624 1 910 2 940
Stream Name Stream Description		CIQUT	нюцт	HZOUT	HOUT	HAOUT	HSOUT
Phase		Mixed	Moved	Mixed	Moved	Mixed	Mixed
Total Stream		1					
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KG/HR M3:HR C BAR KJ/KG-C	699266 768 794,933 244 285 1 979 2 593	134548,853 182,796 25,000 1,379 1,965	78754 771 95 447 25.000 1.827 1.842	78310 836 90.073 25.000 1.875 1.787	94443 740 104,459 50,000 1,930 1,961	313488.002 322.435 50.000 1 910 1.809

Figure 4.17 HEN from 3 partitions case study by Pro/II simulation.
Heat Exchanger	GAMS Duty (kW)	Pro/II Duty (kW)	Percent Error (%)
E1	10,086.30	10,086.30	-
E2	43,176.10	43,176.10	-
E3	5,561.60	5,561.60	-
E4	3,660.20	3,660.20	-
E5	6,325.80	6,325.80	-
E6	4,584.50	4,584.50	-
E7	20,124.00	20,124.00	-
CU1	1,378.39	1,378.40	0.00
CU2	2,089.76	2,074.50	0.74
CU3	2,149.99	2,131.50	0.87
CU4	4,868.91	4,831.00	0.78
CU5	4,167.33	4,001.80	4.14
HU1	82,100.93	81,846.20	0.31

Table 4.12 Duty data comparison between GAMS and Pro/II of 3 partitions.

Table 4.13 Area data comparison between GAMS and Pro/II of 3 partitions.

Heat Exchanger	GAMS Area (m ²)	Pro/II Area (m ²)	Percent Error (%)
E1	271.91	273.10	0.44
E2	1,175.95	1,181.75	0.49
E3	139.37	140.01	0.46
E4	248.75	254.51	2.26
E5	287.14	288.38	0.43
E6	255.83	259.38	1.37
E7	1,023.36	1,047.05	2.26
CU1	165.96	131.49	26.21
CU2	130.63	129.45	0.91
CU3	130.36	129.16	0.93
CU4	130.45	129.46	0.76
CU5	168.01	162.68	3.28
HU1	904.99	902.03	0.33

4.1.5 5 Partitions

Finally, only cold stream C2 is divided into 5 partitions to fit the Cp data (Table 4.14) because another hot stream (H2 – H5) is already enough fitting data on 3 partitions. Cp graph of stream C2 illustrate in Figure 4.18. The Cp is divided based on boiling point and percent difference of Cp data effect on higher R^2 .

Streams	Partition Number (<i>n</i>	$\frac{Cp_n = A_n \times T}{A_n}$	$\mathbf{B}_{mean} + \mathbf{B}_{n}$	$-R^2$	Fix Temp _n (°C)	Cp _{average} (kJ/kg °C)
C1	1	0.0039054	1.9686592	0.99	260.27	2.7656439
	2 3	0.0027264 0.0039302	2.2753068 2.0497463	0.95 0.94	207.30 151.52	
	4 5	0.0107456 0.0041118	1.0128977 1.6917482	0.97 0.96	112.52	

Table 4.14 Specific heat capacity linearization of cold stream by 5 partitions

Figure 4.18 Temperature-dependent Cp graph and 5 partition of cold stream.

HEN results from partitioning technique and Pro/II validation are shown in Figure 4.19 and Figure 4.20, respectively. Results data is concluded in Figure 4.20 and Table 4.16. The design from Pro/II simulation is shown in Figure 4.21. Average error of area calculation from 5 partition is 3.12 %.

Figure 4.19 HEN from partitioning technique GAMS model of 5 partitions

Figure 4.20 Validation of HEN from partitioning technique GAMS model by Pro/II simulation of 5 partitions.

Stream Name Stream Description		CRUDE FEED	H1IN NAPHTHA	H2IN KEROSENE	H3N DIESEL	HAIN BAS OIL	H5IN TOPPED CRUDE
Phase		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid
Total Stream							
Std. Lig. Rate Temperature Pressure Dry Liguid CP	KGHR M3HR C BAR KJKG-C	059206.768 794.933 50.000 1.979 1.895	134548.853 182.798 43.333 1.379 2.044	78754 771 95.447 200.017 1.827 2.521	76010 836 90.073 272 752 1.875 2.742	94443 740 104.459 342.653 1.930 2.928	313488.002 322.435 370.624 1.910 2.940
Stream Name Stream Description		CIOUT	HIOUT	H2OUT	HOUT	H4OUT	HISOUT
Phase		Mixed	Mixed	Mixed	Mixed	Mixed	Mored
Total Stream							
Std. Liq. Rate Temperature Pressure Dry Liquid CP	KGIHR M3/HR G BAR KJ/KG-C	699266 768 794.933 244.331 1.979 2.593	134548,853 162,796 25,000 1,379 1,905	78754 771 95,447 25,000 1,827 1,842	78310 836 90.073 25.000 1.975 1.787	94443,740 104,459 50,000 1,930 1,961	313488 002 322 435 50 000 1.910 1.909

Figure 4.21 HEN from 5 partition case study by Pro/II simulation.

Heat Exchanger	GAMS Duty (kW)	Pro/II Duty (kW)	Percent Error (%)
E1	11,768.53	11,768.53	-
E2	39,008.56	39,008.56	-
E3	5,592.04	5,592.04	-
E4	9,758.41	9,758.41	-
E5	21,890.15	21,890.15	-
E6	5,527.18	5,527.18	-
CU1	1,378.39	1,378.40	0.00
CU2	2,823.50	2,808.20	0.54
CU3	2,537.65	2,519.20	0.73
CU4	1,319.68	1,281.80	2.96
CU5	6,568.67	6,403.20	2.58
HU1	82,012.35	81,808.80	0.25

Table 4.15 Duty data comparison between GAMS and Pro/II of 5 partitions

Table 4.16 Area data comparison between GAMS and Pro/II of 5 partitions

Heat Exchanger	GAMS Area (m ²)	Pro/II Area (m ²)	Percent Error (%)
E1	459.48	461.69	0.48
E2	922.19	926.95	0.51
E3	311.49	313.27	0.57
E4	342.93	342.50	0.13
E5	1,171.99	1,197.71	2.15
E6	191.47	192.96	0.77
CU1	165.96	131.49	26.21
CU2	152.47	150.75	1.14
CU3	141.93	140.52	1.00
CU4	52.94	51.74	2.33
CU5	236.33	231.84	1.94
HU1	903.92	901.74	0.24

The increasing number of partitions case study use to show that even increase number of partitions results to lower average error of area calculation but it affects the optimum solution searching technique. On mathematical programming, increasing number of non-linear equation impact on solver which normally require good initial point to find optimum solution. Thus, partition 5 case study is the lowest average error of area calculation (Figure 4.22) but it actually not change much in partition 2 case study (3.39 % in partition 2 and 3.08 % in partition 3). However, divided Cp data into 2 partitions

is not enough in reality work which cannot fit linear equation to nonlinearity Cp data for dome curve as shown in Case Study 3. Thus, three number of partitions divided is the most suitable and it is selected in further discussion and case study.

Figure 4.22 Correlation by increasing number of partitions from constant Cp to 5 partitions.

From accurate results by partitioning technique, economic results shown in Table 4.17 that error of TAC reduce from 0.51 % to 0.27 % (3 partitions) and the error effect on increasing TAC in reality design that increasing from 6,535,428.00 \$/y to 6,568,864.35 \$/y but partitioning technique has different TAC only 0.27 % that 6,554,118.00 \$/y in GAMS and 6,536,373.03 \$/y in Pro/II simulation. Capital cost error reduce from 2.15 % to 0.08 % but utility cost increase from 0.01 % to 0.33 %. The increasing error of utility occur in average energy calculation from linearization concept that linear line is absolutely not fit with non-linear line. Table 4.18 represent utility consumption error and Table 4.19 represent overall area of heat exchanger. Actually, the results of constant Cp may contain percent error of process area more than 6.16 % but it is reduced from their overestimate and underestimate calculation. For example, Table

4.4 shows the underestimate of exchanger area E1 ($401.08 - 497.86 = -96.78 \text{ m}^2$) and overestimate of exchanger area E6 ($102.97 - 78.73 = +24.24 \text{ m}^2$) that reduce error of overall area calculation when combining which impact to TAC error calculation (Table 4.19) With this reason, percent error will not obviously reduce when looking at overall area calculation (Table 4.19) and increasing error of utility calculation (Table 4.18) from partitioning technique. However, new model is always getting more accuracy results from area calculation and Cp calculation for each partition. All of this accurate data need in reality HEN design that could be found only in temperature-dependent specific heat capacity model.

Table 4.17 Economic cost data comparing between GAMS and Pro/II results of case study 1.

Cases	GAMS TAC (\$/y)	Pro/II TAC (\$/y)	TAC Error (%)	Capital Cost (%)	Utility ErrorCost (%)	Error
Constant Cp	6,535,428.00	6,568,864.35	0.51	2.15	0.01	
1 Partition	6,462,740.51	6,448,871.00	0.21	1.84	0.34	
2 Partitions	6,585,501.00	6,562,390.62	0.35	0.48	0.31	
3 Partitions	6,554,118.00	6,536,373.03	0.27	0.08	0.33	
5 Partitions	6,551,335.00	6,534,949.13	0.25	0.19	0.27	

Table 4.18 Utility data comparing between GAMS and Pro/II results of case study 1.

Casas	GAMS	Pro/II	CU	GAMS	Pro/II	HU
Cases	CU (kW)	CU (kW)	Error (%)	HU (kW)	HU (kW)	Error (%)
Constant C	014,702.15	14,650.50	0.35	82,109.79	82,109.90	0.00
1 Partition	12,092.37	11,942.40	1.26	79,631.82	79,373.30	0.33
2 Partitions	15,303.52	15,062.60	1.60	82,741.47	82,500.00	0.29
3 Partitions	14,654.39	14,417.20	1.65	82,100.93	81,846.20	0.31
5 Partitions	14,627.89	14,390.80	1.62	82,012.35	81,808.80	0.25

GAMSPro/IIProcessGAMSPro/IIUtilityCasesProcessProcessAreaUtilityUtilityAreaArea (m²)Area (m²)Error (%)Area (m²)Area (m²)Error (%)							
CasesProcessProcessAreaUtilityUtilityAreaArea (m²)Area (m²)Error (%)Area (m²)Area (m²)Error (%)		GAMS	Pro/II	Process	GAMS	Pro/II	Utility
Area (m^2) Area (m^2) Error $(\%)$ Area (m^2) Area (m^2) Error $(\%)$	Cases	Process	Process	Area	Utility	Utility	Area
		Area (m ²)	Area (m ²)	Error (%)	Area (m ²)	Area (m ²)	Error (%)
Constant Cp3,321.89 3,476.69 4.45 1,657.47 1,614.97 2.63	Constant C	p3,321.89	3,476.69	4.45	1,657.47	1,614.97	2.63
1 Partition 3,570.62 3,719.32 4.00 1,567.04 1,518.78 3.18	1 Partition	3,570.62	3,719.32	4.00	1,567.04	1,518.78	3.18
2 Partitions 3,352.51 3,376.24 0.70 1,668.94 1,620.48 2.99	2 Partitions	3,352.51	3,376.24	0.70	1,668.94	1,620.48	2.99
3 Partitions 3,402.30 3,444.17 1.22 1,630.40 1,584.28 2.91	3 Partitions	3,402.30	3,444.17	1.22	1,630.40	1,584.28	2.91
5 Partitions 3,399.56 3,435.07 1.03 1,653.55 1,608.09 2.83	5 Partitions	3,399.56	3,435.07	1.03	1,653.55	1,608.09	2.83

Table 4.19 Overall area data of heat exchanger comparing between GAMS and Pro/II

 results of case study 1.

4.2 Case Study 2

Case study 2 and case study 3 are referenced from Kim and Bagajewicz (2017) to compare between our new technique; partitioning technique and ordinary empirical form fitted data of Cp; cubic equation technique. Case study 2 contains three hot streams and two cold streams which shows specific heat capacity parameter and process stream data in Table 4.20 and Table 4.21, respectively. EMAT is set at 10 °C. The constraints to design HEN for this case are allowing two or less stream splitting per stage on hot and cold streams and three stages are set. Ten years project life time are used for capital cost calculation with no interest rate.

Table 4.20 Cubic equation parameter of variable Cp for case study 2 $(Cp = a + bT + cT^2)$.

Streams	а	b	с
H1	0.16135	0.01083	-2.49681×10^{-5}
H2	0.70678	0.00334	-5.05484×10^{-5}
H3	0.77039	0.00198	-2.46313×10^{-5}
C1	0.25693	0.01445	-5.13029×10^{-5}
C2	0.57327	0.00372	-5.25405×10^{-5}

Streams	T _{in} (°C)	T _{out} (°C)	F (kg/s)	h (kW/m ²)	°C) Cost (\$/kW y)
H1	159	77	210	0.40	-
H2	267	88	18	0.30	-
H3	343	90	50	0.25	-
C1	26	127	90	0.15	-
C2	118	265	180	0.50	-
HU	500	499	-	0.53	100
CU	20	40	-	0.53	10

Table 4.21 Process streams data of case study 2.

Annual investment cost $(\$/y) = 250,000 + 550 \times (Area; m^2)$ for all exchangers

Table 4.22 Specific heat capacity linearization of case study 2.

	Partition $\underline{Cp_n} = A_n \times T_{mean} + B_n$			_	Fix Temp 1 Fix Temp 2 Cp		
Streams	Number (<i>n</i>)	A _n	\mathbf{B}_n	\mathbb{R}^2	(°C)	(°C)	(kJ/kg °C)
H1	1	0.0035628	0.6885283	0.99	132.00	105.00	1.0775422
	2	0.0049127	0.5103291	0.99			
	3	0.0062879	0.3661944	0.99			
H2	1	0.0009389	0.9903885	0.99	208.00	148.00	1.1268238
	2	0.0015405	0.8653706	0.99			
	3	0.0021471	0.7755966	0.99			
H3	1	0.0004972	0.9920692	0.99	259.00	174.00	1.0704344
	2	0.0009135	0.8843245	0.99			
	3	0.0013297	0.8118248	0.99			
C1	1	0.0031121	0.8784133	0.98	94.00	60.00	1.0182179
	2	0.0065494	0.5558720	0.99			
	3	0.0100380	0.3465562	0.99			
C2	1	0.0011928	0.8760714	0.99	216.00	167.00	1.0834680
	2	0.0017077	0.7648537	0.99			
	3	0.0022226	0.6788659	0.99			

(b)

Linear parameters of specific heat capacity are shown in Table 4.22 and Figure 4.23 shows Cp graph of the streams. HEN result is shown in Figure 4.25 which can be observed that Cp change from stage to stage such as cold stream C2 that vary from 0.97 kJ/kg °C in stage K2 to 1.07 kJ/kg °C in stage K1. The results data are concluded in Table 4.23 and Table 4.24. Capital cost of new model is higher than previous but it affects utility consumption that greatly decrease. TAC of new model is 1,737,401.57 \$/y (from capital cost 551,379.60 \$/y and utility cost 1,186,021.97 \$/y) which is slightly low than previous solution Figure 4.25about 2.59 % (1,783,724.90 \$/y).

Figure 4.24 Previous solution of case study 2 from Kim and Bagajewicz (2017).

Figure 4.25 GAMS results of temperature-dependent Cp for cast study 2.

Heat Exchanger	Duty (kW)	Area (m ²)	
E1	2,342.29	480.14	
E2	10,274.25	1,366.74	
E3	5,070.25	1,408.21	
E4	7,967.26	2,069.15	
E5	1,288.34	292.63	
CU1	5,517.76	397.38	
CU2	3,266.74	210.26	
HU1	10,981.77	164.21	

Table 4.23 HEN results of case study 2.

Table 4.24 Economic cost data of case study 2.

Cases	TAC (\$/y)	Capital Cost (\$/y)	Utility Cost (\$/y)
Previous Solution	1,783,724.90	507,448.90	1,276,276.00
New Solution	1,737,401.57	551,379.60	1,186,021.97

4.3 Case Study 3

Last case study is study crude preheat train including 11 hot streams and 2 cold streams which shows process stream data in Table 4.26. Cubic equation in Table 4.25 represent Cp of process streams. Table 4.27 shows Cp linearization of this case study. Non-linear specific heat capacity graphs show in Figure 4.26 and it can be observed that every graph is dome curve especially decrease slope of C2 stream. It shows that our new model capability to design large problems and dome curve Cp graph. EMAT is set at 10 °C. No splitting allow and 4 splitting allow for hot streams and cold streams, respectively. To reduce to much complex of model, stage of calculation is set at 5 stages. Finally, project life time is specified at 10 years for capital cost economic calculation with no interest rate.

Streams	a	b	c
H1	1.27	0.011	-3.54×10^{-5}
H2	1.70	0.004	-6.29×10^{-6}
H3	1.28	0.008	-1.93×10^{-5}
H4	1.87	0.003	-4.54×10^{-6}
H5	1.94	0.003	-6.02×10^{-6}
H6	-0.20	0.013	-2.05×10^{-5}
H7	-1.41	0.015	-1.74×10^{-5}
H8	-0.31	0.006	-5.95×10^{-6}
H9	0.89	0.010	-2.01×10^{-5}
H10	1.89	0.004	-4.06×10^{-6}
H11	1.01	0.003	-4.03×10^{-6}
C1	0.89	0.014	-4.75×10^{-5}
C2	2.48	0.001	-2.38×10^{-6}

Table 4.25 Cubic equation parameter of variable Cp for case study 3 ($Cp = a + 2bT + 3cT^2$).

 Table 4.26 Process streams data of case study 3.

Streams	$T (^{\circ}C)$	\overline{T} (°C)	F(ka/s)	$h (kW/m^2)$	$^{\circ}C$) Cost ($^{\times}W$ v)
Sucalits	1 m (C)		<u>r (kg/s)</u>		$C \int COSt (\phi/KWY)$
HI	140.2	39.5	46.30	0.26	-
H2	248.8	110	12.70	0.72	-
H3	170.1	60	14.75	0.45	-
H4	277	121.9	9.83	0.57	-
H5	250.6	90	55.08	0.26	-
H6	210	163	46.03	0.33	-
H7	303.6	270.2	82.03	0.41	-
H8	360	290	23.42	0.47	-
H9	178.6	108.9	19.14	0.60	-
H10	359.6	280	7.66	0.47	-
H11	290	115	23.42	0.47	-
C1	30	130	96.41	0.26	-
C2	130	350	96.64	0.72	-
HU	500	499	-	0.53	100
CU	20	40	-	0.53	10

Annual investment cost $(\$/y) = 250,000 + 550 \times (Area)$ for all exchangers.

	Partition	$Cp_n = A_n \times T_n$	$mean + B_n$		Fix Temn 1	- Fix Temn '	2Cnavarage
Streams	Number (n)	An	\mathbf{B}_n	\mathbb{R}^2	(°C)	(°C)	(kJ/kg °C)
H1	1	-0.0042361	2.8801306	0.95	107.00	73.00	2.2989566
	2	0.0028840	2.1193876	0.90			
	3	0.0100945	1.5928813	0.99			
H2	1	-0.0008491	2.7360399	0.97	220.00	170.00	2.4974261
	2	0.0006407	2.4134432	0.87			
	3	0.0027164	2.0640023	0.99			
H3	1	-0.0017073	2.6272855	0.91	135.00	97.00	2.2956067
	2	0.0025672	2.0517684	0.95			
	3	0.0068518	1.6347533	0.99			
H4	1	-0.0008509	2.7284277	0.96	226.00	173.00	2.4974405
	2	0.0005656	2.4087709	0.90			
	3	0.0019940	2.1613910	0.99			
H5	1	-0.0021079	2.8456216	0.99	198.00	144.00	2.3990249
	2	-0.0001765	2.4635413	0.32			
	3	0.0017740	2.1826722	0.98			
H6	1	0.0010925	2.3205775	0.95	195.00	179.00	2.4984098
	2	0.0029990	1.9491175	0.99			
	3	0.0049670	1.5968455	0.99			
H7	1	-0.0011524	3.2372663	0.98	293.00	281.00	2.8953734
	2	0.0000372	2.8889310	0.04			
	3	0.0012322	2.5529276	0.98			
H8	1	-0.0004414	1.8570674	0.94	337.00	314.00	1.6972356
	2	0.0003797	1.5803566	0.92			
	3	0.0012186	1.3170632	0.99			
H9	1	-0.0001934	2.5777379	0.22	156.00	132.00	2.4942332
	2	0.0026336	2.1372452	0.98			
	3	0.0055132	1.7570131	0.99			
H10	1	-0.0004516	3.3553994	0.97	334.00	307.00	3.1962360
	2	0.0001926	3.1403379	0.83			
	3	0.0008503	2.9384179	0.99			
H11	1	-0.0003323	1.8355475	0.76	233.00	173.00	1.6981135
	2	0.0010915	1.5043480	0.97			
	3	0.0025181	1.2570753	0.99			
C1	1	-0.0043475	2.7120050	0.92	97.00	64.00	2.0984582
	2	0.0050575	1.7997200	0.94			
	3	0.0146050	1.1902475	0.99			
C2	1	-0.0024268	3.1622508	0.99	270.00	200.00	2.5198504
	2	-0.0013558	2.8713077	0.99			
	3	-0.0003562	2.6713877	0.88			

Table 4.27 Specific heat capacity linearization of case study 3.

(d)

77

(j)

(l)

Figure 4.26 Temperature-dependent Cp graph and partitioning of case study 3; (a-k) represent for hot stream (H1-H11), respectively. (m-l) represent for cold stream (C1-C2), respectively.

Figure 4.27 GAMS results of temperature-dependent Cp for case study 3.

13 heat exchangers, 1 hot utility and 4 cold utilities exchanger are installed in this case study which show HEN and data in Figure 4.27 and Table 4.26, respectively. TAC of new solution is 3,229,803.75 % from capital cost 878,538.55 % and utility cost 2,351,265.20 %. Compared to previous solution (Figure 4.28), install 2 more exchanger which increasing capital cost from 874,980.00 to 878,538.55 % but the results show that utility cost decrease from 2,576,605.00 to 2,351,265.20 %. It reduces TAC 6.42 % (3,451,585.00 to 3,229,803.75 %) which shows comparison data

between new solution and previous solution in Table 4.27. The reason, that our model has lower TAC in case study 2 and case study 3, is no lower limits specified by user in calculation step which different from previous solution that has constraint of lower limits of total area and total utility heat consumption. That mean our technique do not require any special constraint or limits. From this main reason, our model with no constraint has better solution from installed more heat exchanger to reduce utility consumption. Another advantage from our technique is no special require for solving strategy at this step. The three partitioning technique is solved under commercial solver become friendly interface model. In contrast to many author, such as Kim *et al.* (2017) used RYSIA for solve their problem and Li *et al.* (2012) used genetic algorithm, it make model more complex and their model of Cp variable cannot solve the problem by normal solver in GAMS which compare all reasons in Table 4.30.

Figure 4.28 Previous solution of case study 3 from Kim and Bagajewicz (2017).

Table 4.28 HEN results of case study 3.

Heat Exchanger	Duty (kW)	Area (m ²)	
E1	920.53	89.11	
E2	5,405.08	390.93	
E3	3,327.45	345.54	
E4	6,959.72	397.35	
E5	2,782.45	132.88	
E6	1,948.86	102.57	
E7	2,807.47	331.49	

E8	7,932.75	473.93
E9	1,205.28	85.03
E10	810.97	20.86
E11	2,249.38	276.66
E12	1,825.26	227.23
E13	14,112.11	2,666.66
CU1	10,718.68	1,339.82
CU2	1,342.01	43.37
CU3	777.13	26.20
CU4	7,109.30	474.59
HU1	21,517.94	367.39

 Table 4.29 Economic cost data of case study 3.

Cases	TAC (\$/y)	Capital Cost (\$/y)	Utility Cost (\$/y)
Previous Solution	3,451,585.00	874,980.00	2,576,605.00
New Solution	3,229,803.75	878,538.55	2,351,265.20

Table 4.30 Comparison between partitioning technique and Kim and Bagajewicz(2017) technique of case study 2 and 3.

Features	Partitioning Technique	Kim and Bagajewicz (2017)
Model	Stage-wise superstructure	Stages/Substages Superstructure (Based on stage-wise
		superstructure)
EMAT (°C)	10	10
Solver Technique	Dicopt solver	RYSIA solution strategy (Global optimize solver)
Upper bound	-	Fixed (MINLP model)
Lower bound	-	Fixed (Pinch analysis)
Number of splitting	Based on journal	Based on journal
Economic cost	Based on journal	Based on journal

Moreover, our model can solve alternative design by fix computational time. From author experience, good solution is obtained by less computational time than 1,800 s because good solution is generally obtained by good initial point. Just a few cases that good solution is solved in other range of computational time. However, all of these solutions are guaranteed that they are not global solution but it is nearly perfect one which user can interact and use it as good starting point. The alternative solutions of case study 3 are shown only 3 alternatives by fix computational time divided to; no fix, 600 s and 3,600 s. They show that even using computational time about 1 hour but the greatest solution still be on 2,400 s but the advantage of alternative solution is to give the option for real design.

4.3.1 Alternative 1 (First Solution)

Figure 4.29 GAMS results alternative 1 of temperature-dependent Cp.

The alternative 1 is set by default of Dicopt solver which solution (Figure 4.29) obtains in 1,111 s computational time. TAC is 3,344,959.49 Y combining from utility cost = 2,366,808.49 Y and capital cost = 978,151.00 Y.

4.3.2 Alternative 2 (600 s.)

Figure 4.30 GAMS results alternative 2 of temperature-dependent Cp.

Alternative 2 is set computational time as 600 s. HEN result illustrate in Figure 4.30 which install less exchanger than atoner solution (it requires only 10 exchangers).

Thus, TAC is 3,601,112.74 \$/Y. Utility cost and capital cost are 2,548,529.74 \$/Y and 1,052,583 \$/Y, respectively.

4.3.3 Alternative 3 (3600 s.)

Figure 4.31 GAMS results alternative 3 of temperature-dependent Cp.

Last alternative is set computational time as 3,600 s which require capital cost = 1,060,661.19 \$/Y and utility cost = 2,762,722.06 \$/Y. TAC is 3,823,383.25 \$/Y.

From these results (Best solution to alternative 1,2 and 3) of case study 3, TAC is one of the best criteria to adjudge HEN results but some alternative is more proper in some reality work based on user experience. Therefore, final decision should come from user and alternative design is one of the greatest choices solved by mathematical programming technique.

4.4 Case Study 4 (Retrofit case)

This example shows the potential of new model for HEN retrofit case. Base case of this is created from case study 1 (following HEN by Figure 4.15 and Figure 4.17 which conclude Table 4.12 in and Table 4.13) and it has been assumed that utility cost is increasing over the time. Hot and cold utility cost increase from 60 to 80 and 5 to 10, respectively (Table 4.31). EMAT is reduced to 1 °C. Splitting constrain is no allowing for hot stream and 3 splitting for cold stream. Capital cost parameters are not changed and objective function is to maximize NPV over 3 years. From retrofit equation, process heat exchanger area, utility consumption and area of utility heat exchanger are identified as base case (Table 4.32).

Streams	$T_{in}(^{\circ}C)$	T _{out} (°C)	F (kg/s)	h (kW/m ² °C	Cost (\$/kW y)
H1	43.33	25	37.38	1	-
H2	200.04	25	21.88	1	-
H3	272.79	25	21.76	1	-
H4	342.72	50	26.24	1	-
H5	370.72	50	87.06	1	-
C1	50	376.80	194.24	1	-
HU	500 (steam)	500 (condensate))-	1	80
CU	10	15	-	1	10

Table 4.31 Process streams data of case study 4.

Annual investment cost $(\$/y) = 3,460 + 300 \times (Area; m2)$ for all exchangers (Pan *et al.* (2013)).

Heat Exchanger	Energy Loading (kW)	Area of Heat Exchanger (m ²)
E1	-	271.9076
E2	-	1,175.9500
E3	-	139.3715
E4	-	248.7469
E5	-	287.1363
E6	-	255.8308
E7	-	1,023.3600
CU1	1,378.3890	165.9617
CU2	2,089.7620	130.6266
CU3	2,149.9900	130.3613
CU4	4,868.9130	130.4485
CU5	4,167.3340	168.0144
HU1	82,100.9300	904.9860

Table 4.32 Energy loading and exchanger area parameter of base case.

Figure 4.32 HEN retrofit result by GAMS.

After optimize by new model, new HEN is shown in Figure 4.32 and conclude in Table 4.33. The retrofit case by Pro/II simulation is shown in Figure 4.34. It shows that area of existing process heat exchanger is increased and one new heat exchanger is added. From this result, over all area of heat exchanger is increasing from 5,032.71 to 5,767.68 but hot utility and cold utility consumption is reduced from 82,100.93 to 76,684.85 and from 14,654.38 to 9,238.32, respectively (Table 4.34). NPV of this solution is 731,849.17 in 3 years.

 Table 4.33 HEN retrofit result data.

Heat Exchanger	Base Case	New Heat	Base Case	New Area
	Heat Duty (kW)	Duty (kW)	Area (m ²)	(m^2)
E1	10,086.28	11,785.83	271.91	431.30
E2	43,176.05	48,528.75	1,175.95	2,017.85
E3	5,561.56	7,369.80	139.37	235.10
E4	3,660.19	3,257.14	248.75	458.24
E5	6,325.78	3,640.20	287.14	440.75
E6	4,584.50	3,492.18	255.83	426.19
E7	20,124.00	17,566.47	1,023.36	1,624.10
New	-	3,294.07	-	169.15
CU1	1,378.39	1,378.39	165.96	134.15
CU2	2,089.76	1,481.27	130.63	113.27
CU3	2,149.99	1,434.07	130.36	113.27
CU4	4,868.91	3,572.42	130.45	107.40
CU5	4,167.33	1,372.17	168.01	65.69
HU1	82,100.93	76,684.85	904.99	863.03

 Table 4.34 Retrofit results comparison between base case and retrofit case.

Cases	Area of Host Exchanger (m^2)	Hot Utility	Cold Utility
	Heat Exchanger (III)Consumption (kw)	Consumption (kw)
Base Case	5,032.71	82,100.93	14,654.38
Retrofit Case	5,767.68	76,684.85	9,238.32
Difference	734.97	-5,416.08	-5,416.06

These results are validated by fixing heat load of each exchanger and HEN in Pro/II simulation which illustrated in Figure 4.33. The results show that outlet temperature different of each exchanger is not more than 1 °C and Cp calculation of each exchanger
is close to each other. However, small approach temperature drive in large area calculation. For example, outlet/inlet temperature of hot and cold streams for exchanger E4 are not majorly change (about 1 °C) but area calculation for GAMS and Pro/II are 458.24 m² and 481.99 m², respectively. The error of area calculation is 4.93 %. Thus, the error shows how important of Cp calculation (comparing between new model that still have major error in some point and constant Cp which, of course, have much error than new model). Duty data and area data comparison are shown in Table 4.35 and, respectively.

Heat Exchanger	Duty GAMS (kW)	Duty Pro/II (kW)	Percent Error (%)
E1	11,785.83	11,785.83	-
E2	48,528.75	48,528.75	-
E3	7,369.80	7,369.80	-
E4	3,257.14	3,257.14	-
E5	3,640.20	3,640.20	-
E6	3,492.18	3,492.18	-
E7	17,566.47	17,566.47	-
NEW	3,294.08	3,294.08	-
CU1	1,378.39	1,378.40	0.00
CU2	1,481.27	1,466.30	1.02
CU3	1,434.07	1,415.20	1.33
CU4	3,572.42	3,536.90	1.00
CU5	1,372.17	1,206.90	13.69
HU1	76,684.85	76,419.20	0.35

Table 4.35 Duty data comparison between GAMS and Pro/II of case study 4.

Table 4.36 Area data comparison between GAMS and Pro/II of case study 4.

Heat Exchanger	Area GAMS (m ²)	Area Pro/II (m ²)	Percent Error (%)
E1	431.30	434.43	0.72
E2	2,017.85	2,016.74	0.05
E3	235.10	235.19	0.04
E4	458.24	481.99	4.93
E5	440.75	448.01	1.62
E6	426.19	438.51	2.81
E7	1,624.10	1,702.44	4.60
NEW	169.15	170.21	0.62
CU1	134.15	131.49	2.02

CU2	113.27	107.43	5.43	
CU3	110.26	103.75	6.28	
CU4	107.40	106.55	0.80	
CU5	65.69	58.47	12.36	
HU1	863.03	860.16	0.33	

Figure 4.33 HEN retrofit result by Pro/II.

Figure 4.34 HEN retrofit case study by Pro/II simulation.

Table 4.37 to Table 4.39 show percent error of NPV, capital cost, utility cost, cold utility consumption, hot utility consumption process area and utility area. As mention early, main error of each part is occurred from any small different in temperature point of exchanger but it really effects on area calculation and utility consumption.

Table 4.37 Economic cost data comparing between GAMS and Pro/II results of case study 4.

Cases	GAMS	Pro/II	NPV	Capital	Utility Cost
	NPV (\$)	NPV (\$)	Error (%)	Cost Error (%)	Saving Error (%)
Partitioning Technique	738,769.00	701,318.45	5.34	4.92	0.00

Table 4.38 Utility data comparing between GAMS and Pro/II results of case study 4.

Cases	GAMS	Pro/II	CU	GAMS	Pro/II	HU
	CU (kW)	CU (kW)	Error (%)	HU (kW)	HU (kW)	Error (%)
Partitioning Technique	⁹ ,238.31	9,003.70	2.61	76,684.85	76,419.20	0.35

Table 4.39 Overall area data of heat exchanger comparing between GAMS and Pro/II

 results of case study 4.

	GAMS	Pro/II	Process	GAMS	Pro/II	Utility
Cases	Process	Process	Area	Utility	Utility	Area
	Area (m ²)	Area (m ²)	Error (%)	Area (m ²)	Area (m ²)	Error (%)
Partitioning Technique	^g 5,802.68	5,927.51	2.11	1,393.79	1,367.84	1.90

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

Stage-wise superstructure with temperature-dependent Cp model had been developed in this journal by partitioning technique aiming to obtain high quality results instead of using ordinary polynomial cubic equation. Three partitions are selected to fit curvature of non-linear Cp data. Constant Cp affect directly to outlet temperature of exchanger results to area calculation error. Validation case study from Pro/II library shows that partitioning technique can reduce error of area calculation from about 30 % error to about 1 % impact on overall error (TAC) reduce from 0.51 to 0.27 %. To compared between empirical fitting of polynomial Cp equation and partitioning technique, case studies are used. Case study 2 shows that new solution has lower TAC than the previous solution about 2.59 %. From case study 3 that contains 11 hot streams and 2 cold streams, it has many HEN design scenarios and no lower limit constraints setting. This case study shows that our new model can solve another HEN design which reduce TAC from 3,451,585.00 (Previous solution) to 3,229,803.75 (New solution). It reduces about 6.42 % of TAC. Thus, this new model by partitioning technique has less complexity of third order equation, high accuracy and better solution. Moreover, retrofit case study can be applied for exiting HEN (case study 4).

REFERENCE

- Ayotte-Sauvé, E., Ashrafi, O., Bédard, S. and Rohani, N. (2017) Optimal retrofit of heat exchanger networks: A stepwise approach. <u>Computers & Chemical</u> <u>Engineering</u>, 106, 243-268.
- Bagajewicz, M., Valtinson, G. and Nguyen Thanh, D. (2013) Retrofit of Crude Units Preheating Trains: Mathematical Programming versus Pinch Technology. <u>Industrial & Engineering Chemistry Research</u>, 52(42), 14913-14926.
- Ciric, A. R. and Floudas, C. A. (1991) Heat exchanger network synthesis without decomposition. <u>Computers & Chemical Engineering</u>, 15(6), 385-396.
- Escobar, M. and Trierweiler, J. O. (2013) Optimal heat exchanger network synthesis: A case study comparison. <u>Applied Thermal Engineering</u>, 51(1), 801-826.
- Floudas, C. A., Ciric, A. R. and Grossmann, I. E. (1986) Automatic synthesis of optimum heat exchanger network configurations. <u>AIChE Journal</u>, 32(2), 276-290.
- Hasan, M. M. F., Jayaraman, G., Karimi, I. A. and Alfadala, H. E. (2010) Synthesis of heat exchanger networks with nonisothermal phase changes. <u>AIChE Journal</u>, 56(4), 930-945.
- Hipólito-Valencia, B. J., Rubio-Castro, E., Ponce-Ortega, J. M., Serna-González, M., Nápoles-Rivera, F. and El-Halwagi, M. M. (2013) Optimal integration of organic Rankine cycles with industrial processes. <u>Energy Conversion and Management</u>, 73, 285-302.
- Kim, S. Y. and Bagajewicz, M. (2017) Global Optimization of Heat Exchanger Networks. Part 2: Stages/Substages Superstructure with Variable Cp. <u>Industrial</u> <u>& Engineering Chemistry Research</u>, 56(20), 5958-5969.
- Kim, S. Y., Jongsuwat, P., Suriyapraphadilok, U. and Bagajewicz, M. (2017) Global Optimization of Heat Exchanger Networks. Part 1: Stages/Substages Superstructure. <u>Industrial & Engineering Chemistry Research</u>, 56(20), 5944-5957.
- Li, G., Luo, Y., Xia, Y. and Hua, B. (2012) Improvement on the Simultaneous Optimization Approach for Heat Exchanger Network Synthesis. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 51(18), 6455-6460.

- Linnhoff, B. and Flower, J. R. (1978a) Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. <u>AIChE Journal</u>, 24(4), 633-642.
- Linnhoff, B. and Flower, J. R. (1978b) Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality. <u>AIChE</u> <u>Journal</u>, 24(4), 642-654.
- Linnhoff, B. and Hindmarsh, E. (1983) The pinch design method for heat exchanger networks. <u>Chemical Engineering Science</u>, 38(5), 745-763.
- Liu, X.-W., Luo, X. and Kabelac, S. (2016) Optimal Retrofit Strategy of Heat Exchanger Networks Applied in Crude Oil Distillation Units. <u>Industrial &</u> Engineering Chemistry Research, 55(43), 11283-11290.
- Pan, M., Bulatov, I. and Smith, R. (2013) New MILP-based iterative approach for retrofitting heat exchanger networks with conventional network structure modifications. <u>Chemical Engineering Science</u>, 104, 498-524.
- Papoulias, S. A. and Grossmann, I. E. (1983) A structural optimization approach in process synthesis—II: Heat recovery networks. <u>Computers & Chemical</u> <u>Engineering</u>, 7(6), 707-721.
- Smith, R. (2005) <u>Chemical process design and integration</u>. Chichester ; Hoboken, NJ: Wiley.
- Smith, R., Jobson, M. and Chen, L. (2010) Recent development in the retrofit of heat exchanger networks. <u>Applied Thermal Engineering</u>, 30(16), 2281-2289.
- Sreepathi, B. K. and Rangaiah, G. P. (2015) Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multiobjective optimization. <u>Applied Thermal Engineering</u>, 75, 677-684.
- Yee, T. F. and Grossmann, I. E. (1990) Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. <u>Computers & Chemical</u> <u>Engineering</u>, 14(10), 1165-1184.
- Yee, T. F., Grossmann, I. E. and Kravanja, Z. (1990a) Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchangers. <u>Computers & Chemical Engineering</u>, 14(10), 1151-1164.

- Yee, T. F., Grossmann, I. E. and Kravanja, Z. (1990b) Simultaneous optimization models for heat integration—III. Process and heat exchanger network optimization. <u>Computers & Chemical Engineering</u>, 14(11), 1185-1200.
- Zhu, X. X. and Asante, N. D. K. (1999) Diagnosis and optimization approach for heat exchanger network retrofit. <u>AIChE Journal</u>, 45(7), 1488-1503.

APPENDICES

Appendix A GAMS Code of Case Study 1 (HEN Synthesis)

not				
Bert	hot streams temperature	/81+85/		
í.	cold streams temperature	/01/1		
	and a superior of the superior			
scalar				
nok	number of stage	15/ 1		
set	and the second second second	104+247		
at INV	state ceparation	APT-PUL		
Piterthi	first stars			
Last (k)	last stage t			
and they	and a sold of the			
=t(k)	- yesS(ord(k) lt card(k)) ;			
first(k)	- yesS(ord(k) eq 1) 7			
last(k)	= yesS(ord(k) eq card(k)) ;			
Paranete	T			
hh(1)	Heat transfer coefficient of 1	not stream		
he())	Neat transfer coefficient of (cold stream		
hhu	Neat transfer coefficient of I	not utility		
ncu da	Heat transfer coefficient of (cold utility	in and	
10(1/1)	Cuscall heat transfer coefficie	ant for bot util	ander	
tier (5)	Overall heat transfer coeffici	ient for cold ati	Litur	
bb (*81*)	- 11 hh('82') - 11 hi	('H3') = 1: h	h('84') - 1	t hh('85') = 11
he('c)'s	= 1;			and the set of the
hhu	=];			
hcu	+ 11			
11(1, j) -	- ((hh(1) * hc(j))/(hh(1) * hc	(j)));		
Uh(3) -	<pre>- ((hhu * hc(j))/(hhu * hc(j))</pre>	17		
Oc(i) -	<pre>((hh(i) * hcu)/(hh(i) + hcu)</pre>	11		
display	U, uh, uci			
	SICI			
naranete	-			
paramete	Temperature inlat hat inflite			
paramete TINhu TOUThu	Temperature inlet hot utility			
paranete TINhu TOUThu TINcu	Temperature inlet hot utility Temperature outlet hot utility Temperature inlet cold utility	y.		
paramete TINhu TOUThu TINcu TOUTcu	Temperature inlet hot utility Temperature nutlet hot utility Temperature inlet cold utility Temperature outlet cold utility	Y Y		
paramete TINhu TOUThu TINcu TOUTcu TINhu	Temperature inlet hot utility Temperature outlet hot utility Temperature inlet cold utility Temperature outlet cold utility 500;	Y Y E Y I		
paramete TINhu TOUThu TINcu TOUTcu TINhu TOUThu	Temperature inlet hot utility Temperature nutlet hot utility Temperature inlet cold utility Temperature outlet cold utility = 500; = 500;	y y y		
paramete TINhu TOUThu TINcu TOUTcu TINhu TOUThu TINcu	Temperature inlet hot utility Temperature nutlet hot utility Temperature inlet cold utility Temperature outlet cold utility = 500; = 500; = 107	y y y		
paramete TiNhu TOUThu TINcu TOUTcu TINhu TOUTcu TINcu TOUTcu TOUTcu	Temperature inlet hot utility Temperature putlet hot utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15;	y y y		
paramete TINhu TOUThu TINcu TOUTcu TINhu TOUThu TINcu TINcu TOUThu TOUTcu	Temperature inlet hot utility Temperature mulet hot utility Temperature nulet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15;	y Yyr		1
paramete TINhu TOUThu TINcu TOUTcu TINhu TOUThU TINcu TOUThU	Temperature inlet hot utility Temperature nutlet hot utility Temperature inlet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15;	y yy		
paramete TINhu TOUThu TINcu TINhu TOUThu TINhu TOUThu TINcu TOUTcu	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet cold utility - 500; - 500; - 107 - 15; //atal	y y y y y y y y y y		
paramete TINhu TOUThu TINcu TOUTcu TINhu TOUThu TINhu TOUThu TOUTcu Paramete	Temperature inlet hot utility Temperature nutlet hot utility Temperature inlet cold utility = 500; = 500; = 10; = 15; (Arta)	y y nEb)		
paramete TINAu TOUThu TINcu TINcu TINcu TOUThu TOUThu TINcu TOUThu TOUTcu T	Temperature inlet hot utility Temperature mulet hot utility Temperature outlet cold utility - 500; - 500; - 10; - 15; - 00; - 15; - 00; - 15; - 00; - 15; - 00; -	y ty: nEb hot streams		
paramete TINAu TOUThu TOUThu TINAu TOUThu TINAu TOUThu TINAu TOUTcu Paramete thin(i) thout(ii)	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet cold utility - 500; - 500; - 10; - 15; ///// - 15; ////////////////////////////////////	y ty: bot streams r hot streams		
paramete TiNhu TOUThu TINcu TINcu TINhu TOUThu TINhu TOUThu TINhu TOUThu TiNhu TOUThu Tincu Tincu Tincu Tincu Tincu Tincu Tincu Tincu Tincu Tincu Tincu Tinhu Touth	Temperature inlet hot utility Temperature nutlet hot utility Temperature nutlet cold utility = 500; = 500; = 107 = 15; Temperature inlet for Temperature inlet for Temperature outlet for Temperature outlet for Temperature outlet for	y ty: hot streams r hot streams ate for hot streams	104	
parameter TINhu TOUThu TINcu TUNcu TUNcu TINcu TINcu TUNcu TOUTcu 	Temperature inlet hot utility Temperature mutlet hot utility Temperature outlet cold utility = 500; = 500; = 10; = 15; Tamperature inlet for Temperature inlet for Temperature inlet for Temperature inlet for Temperature inlet for Temperature inlet for	y ty: hot streams to for streams ate for hot streams cold streams	142	
parameter TiNhu TOUThu TINhu TOUTeu TINhu TOUTeu TOUTeu TOUTeu Thin (1) Thout (1) Thein (1) thein (1) tein (j) tecis (j)	Temperature inlet hot utility Temperature nutlet hot utility Temperature nutlet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15; - 15; - 15; 	y tyr hot streams chot streams cold streams cold streams to for hot streams	100	
paramete TiNhu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTeu TINeu TOUTeu thin(i) thout(i) thout(i) thei(j) teout(j) fe(j) fugaeti)	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet cold utility Temperature outlet cold utility - 500; - 500; - 107 - 15; Tamperature inlet for Temperature outlet for Reat copactity flow re Temperature outlet for Temperature outlet for Temperature outlet for Heat capacity flow re	bot streams r hot streams c hot streams te for hot strea r cold streams te for cold streams te for cold streams	tu at yan	
parameter TINhu TOUThu TINcu TUNcu TUNhu TINcu TUNhu TINhu TUNhu TUNhu TUNhu TUNhu TUNhu TouThu TouThu TouThu TouThu TouThu TouThu TouThu TouThu TouThu Tunc	Temperature inlet hot utility Temperature mutlet hot utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15; - 15; 	y ty: hot streams to for streams to for hot streams to for hot streams to for cold streams to for cold streams flow rate of hot flow rate of hot	ins stream d stream	
paramete TiNhu TOUThu TOUTeu TINhu TOUTeu TOUTeu TOUTeu TOUTeu Thin(i) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Theutii) Collawg(i) Collawg(i)	Temperature inlet hot utility Temperature nutlet hot utility Temperature nutlet cold utility Temperature outlet cold utility = 500; = 500; = 10; = 15; Temperature inlet for Temperature outlet for Reat capacity flow ro Heat capacity flow ro Heat capacity flow ro Average Heat capacity Average Heat capacity	hot streams to for hot streams cold streams to for hot streams flow rate of hot flow rate of hot flow rate of col hot streams	na stream d stream	
parameter TiNhu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTen TOUTen TiNeu TOUTen Tineu Touthu Touthu	Temperature inlet hot utility Temperature nutlet hot utility Temperature nutlet cold utility Temperature outlet cold utility - 500; - 107 - 155 Tamperature inlet for Temperature outlet for Heat capacity flow for for for for Heat capacity flow for for for for for Heat capacity flow for	y ty: bot streams r hot streams ate for hot streams or cold streams flow rate of hot flow rate of hot flow rate of col hot stream cold streams	un stream d stream	
paramete TiNhu TOUThu TINhu TOUThu TINhu TOUThu TINhu TOUThu TINhu TOUThu TINhu TOUThu TiNhu TOUThu TiNhu Touthu Tinhu Touthu To	Temperature inlet hot utility Temperature multet hot utility Temperature outlet cold utility Temperature outlet cold utility 500; 500; 107 157 Temperature inlet for Temperature inlet for Temperature outlet for Heat capacity flow re Average Heat capacity Average Heat capacity Average Heat capacity	hot streams r hot streams c hot streams ate for hot streams r cold streams te for cold streams flow rate of do hot stream cold streams	stram d stream	
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TOUThu TINhu TOUTcu TOUThu Thou Thu thout ii) thout ii) thout ii) thout ii) thout ii) fc(j) Davg(i) fcavg(j) thavg(i) thou ('s)	Temperature inlet het utility Temperature mutlet het utility Temperature mutlet het utility Temperature outlet cold utility = 500; = 500; = 10; = 15; Temperature inlet for Heat capacity flow re Heat capacity flow re Temperature outlet for Temperature outlet for Heat capacity flow re Average Heat capacity Average Heat capacity Average Heat capacity Average Heat capacity Average Heat capacity Average Heat capacity	y ty: hot streams r hot streams ate for hot streams r cold streams r cold streams flow rate of hot flow rate of hot flow rate of col hot stream cold stream; thout ('Bi') =25;	nna stream d stream fh('HI')=	37.3761171666667000000000000000000
parameter TiNhu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTen TINhu TOUTen TiNeu TOUTen Tineu Touthu Tineu Touteu	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet cold utility Temperature outlet cold utility - 500; - 10; - 15; Temperature inlet for Temperature outlet for Heat copacity flow re Temperature outlet for Temperature outlet for Heat copacity flow re Average Heat capacity Average Heat capacity Temperature outlet for Temperature outlet for Heat capacity flow re Average Heat capacity Average Heat capacity	bot streams r hot streams ate for hot streams celd streams te for cold streams tow rate of hot flow rate of col hot stream cold streams thout ('H2') -25; thout ('H2') -25;	ta stream d stream fh('HI')= fh('HI')=	37.376117166666700000000000000 21.87809586611100000000000000;
paramete TiNhu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTeu TUNcu TOUTeu Charaete this(i) thout(i) thout(i) thout(i) thout(i) thout(i) thout(i) thout(i) thout(i) fc(j) fc(j) fcavg(i) fcavg(j) fcavg(j) fcavg(j) thic('sE thin('sE thin('sE	Temperature inlet hot utility Temperature multer hot utility Temperature outlet cold utility Temperature outlet cold utility 500; 500; 107 157 Temperature inlet for Temperature inlet for Temperature outlet for Heat capacity flow re Average Heat capacity Average Heat capacity The 41.3334916000000000000000000000000000000000000	bot streams r hot streams r hot streams te for hot streams r cold streams for cold streams flow rate of doi hot stream chid stream; thout('H2')-25; thout('H2')-25; thout('H2')-25;	ta stream d stream th('HI')= th('HJ')= th('HJ')=	37.3761171666667000000000000000 21.4780958651311000000000000 21.75706820277780000000000000
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TINhu TOUTcu TOUThu TiNeu TOUTcu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Touthu Tincu Tincu Tincu Touthu Tincu Ti	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet het utility Temperature outlet cold utility = 500; = 500; = 10; = 15; Temperature inlet for Heat capacity flow ro Heat capacity flow ro Heat capacity flow ro Heat capacity flow ro Heat capacity flow ro Average Heat capacity Average Heat capacity	hot streams r hot streams chot streams cold streams r cold streams flow rate of hot flow rate of hot flow rate of hot flow rate of do hot stream cold stream; thout ('Hi')=25; thout ('Hi')=25; thout ('Hi')=25; thout ('Hi')=25;	fing fit (*H1*)= fh(*H1*)= fh(*H2*)= fh(*H3*)= fh(*H3*)=	37.3761171666667000000000000000; 21.978095866131100000000000; 21.757668202777800000000000; 26.241106002777800000000000;
parameter TiNhu TOUThu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTen TOUTen TiNhu TOUTen TiNhu Touthu Touthu Theu Theu Theu Touthu Tout	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet het utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 10; - 15; ////////////////////////////////////	bot streams r hot streams cold streams to for hot streams cold streams flow rate of hot flow rate of col hot streams cold streams cold streams thout ('Hi') >25; thout ('Hi') >25; thout ('Hi') >25; thout ('Hi') >25; thout ('Hi') >25; thout ('Hi') >50;	ta struar d strean fh('HI')= fh('HI')= th('HI')= th('HI')=	37.376117166666700000000000000 21.87809586611100000000000000 21.75706820277780000000000000 62.2411000277780000000000000 87.06591405555560000000000000000000000000000000
paramete TiNhu TOUThu TINhu TOUTen TINhu TOUTen TINhu TOUTen TOUTeu ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Temperature inlet hot utility Temperature mutlet hot utility Temperature outlet cold utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 107 - 157 Temperature inlet for Temperature outlet for Reat capacity flow re Reat capacity Reat ca	y y ty: ty: hot streams the for hot streams the for hot streams to for cold streams to for cold stream flow rate of hot flow rate of hot flow rate of hot flow rate of for hot stream chid stream; thout ('H3') =25; thout ('H3') =50; thout ('H3') =50; thout ('H3') =50;	fn fh('HI')= fh('HI')= fh('HI')= fh('HI')= fh('HI')=	37.3761171666667000000000000000 21.378095866131100000000000000 21.7570682027778000000000000 26.2411060027778000000000000 87.06591405555560000000000000;
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TINhu TOUTcu TOUTcu Touthu TiNeu Touthu Tincu Touthu Tincu Touthu Thoutil) thein(1) thein(1) thein(1) thein(1) feavg(1) feavg(1) feavg(1) thin('BI thin('B	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet het utility Temperature outlet cold utility = 500; = 500; = 10; = 15; Temperature inlet for Temperature outlet for Heat capacity flow ro Heat capacity flow ro Heat capacity flow ro Heat capacity flow ro Average Heat capacity Average Heat capacity The 41.3334916000000000000; The 272.7906100000000000000; The 342.7258032000000000000; The 342.72580320000000000000; The 272.7906100000000000000000; The 272.790610000000000000000; The 272.7906100000000000000000000000000000000000	hot streams r hot streams r hot streams cold streams r cold streams flow rate of hot flow rate of hot flow rate of do hot stream cold stream; thout ('HI')=25; thout ('HI')=25; thout ('HI')=50; thout ('HI')=50;	fing fit (*H1*)= fh(*H1*)= fh(*H2*)= fh(*H3*)= fh(*H5*)=	37.37611716666670000000000000000; 21.9780958661311000000000000; 21.757058029777800000000000; 26.24110600277800000000000; 67.0659140555556000000000000;
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TINhu TOUTcu TOUTcu TINhu TOUTcu TOUTcu Theu Thin(1) thout(1) th	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet het utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 10; - 15; Temperature inlet for Temperature outlet for Reat capacity flow re Temperature inlet for Temperature inlet for	y bot streams r hot streams cold streams to for hot streams to for cold streams flow rate of hot flow rate of hot flow rate of col hot streams cold streams cold streams cold streams thout ('H2')-25; thout ('H3')-50; thout ('H5')-50;	ta struam th('HI')= th('HI')= th('HI')= th('HI')= th('HI')=	37.376117166666700000000000000 21.87809586611100000000000000 21.75706820277780000000000000 26.2411000277780000000000000 87.06591405555560000000000000000
paramete TINhu TOUThu TINcu TINcu TUNtu TINcu TINtu TUNtu TINtu TUNtu TUNtu TINtu TUNtu TINtu TOUTcu : : : : : : : : : : : : : : : : : : :	Temperature inlet hot utility Temperature nutlet hot utility Temperature outlet cold utility Temperature outlet cold utility - 500; - 107 - 157 Temperature inlet cold utility - 515 - 107 - 157 Temperature inlet for Temperature outlet for Reat capacity flow re Average Heat capacity Average Heat capacity - 200.04001700000000000000; - 272.79061000000000000000; - 272.7906100000000000000000; - 370.722012P00000000000000000; - 2.017572875871330000000; H2') = 2.017572875871330000000;	y ty: ty: hot streams to for hot streams ate for hot streams to for cold streams to for cold stream flow rate of hot flow rate of hot flow rate of hot flow rate of hot flow rate of for hot stream chid stream thout ('Hi') *25; thout ('Hi') *25; thout ('Hi') *50; thout ('Hi') *50;	ims strugge th('HI')= th('HI')= th('HI')= th('HI')= th('HI')=	37.3761171666667000000000000000 21.37695866131100000000000000 21.7570682027778000000000000 26.2411060027778000000000000 87.065914055555600000000000000
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TINhu TOUTcu TOUThu TiNeu TOUTcu thin(1) thout(2) thout	Temperature inlet het utility Temperature mutlet het utility Temperature nutlet cold utility Temperature outlet cold utility - 500; - 500; - 10; - 15; - 15; - 15; - 15; - 15; - 15; - 15; - 16; - 16;	y ty: hot streams r hot streams cold atreams to for hot stream cold atreams flow rate of hot flow rate of hot flow rate of hot flow rate of col hot stream cold atreams thout ('H1')=25; thout ('H1')=25; thout ('H1')=50; thout ('H5')=50;	fn (*81*)= fh (*81*)= fh (*82*)= fh (*82*)= fh (*84*)= fh (*85*)=	37.3761171666667000000000000000 21.3780958661311000000000000 21.575068029778000000000000 26.2411060027780000000000000 67.0659140555556000000000000000
parameter TiNhu TOUThu TOUThu TINhu TOUTcu TINhu TOUTcu TINhu TOUTcu TOUTcu TiNhu TOUTcu TOUTcu Thisu Thoutil) Thoutil) Thaug(1) Thau Thau Thau Thau Thau Thau Thau Thau	Temperature inlet het utility Temperature nutlet het utility Temperature nutlet het utility Temperature outlet cold utility - 500; - 500; - 10; - 15; - 15; - 15; - 15; - 15; - 16; - 15; - 16; - 16;	hot streams r hot streams chot streams cold streams to for hot streams flow rate of hot flow rate of hot flow rate of do hot streams cold streams; thout ('Hi')=25; thout ('Hi')=25; thout ('Hi')=25; thout ('Hi')=50;	th('HI')= th('HI')= th('HI')= th('HI')= th('H5')= th('H5')=	37.3761171666667000000000000000 21.47809586613110000000000000 21.75706820277780000000000000 22.7570682027780000000000000 67.065914055555600000000000000 87.06591405555560000000000000000000000000000000

```
Chavg(i) = fh(i) * CpHavg(i);
fcavg(j) = fc(j) * CpCavg(j);
Display fhavg,fcavg;
Scalar
                            Exchanger minimum approximation temperature
Heat recovery approximation temperature
Small Value;
 EMAT
 HRAT
 Small
                            - 10;
- 10;
= 10;
= 1e-7;
EMAT
HRAT
 Small.
 Parameter
                                                      Hot utility cost
Cold utility cost
Fixed charge for exchanger
Fixed charge for Hot UT
Fixed charge for Cold UT
 CHU
 COU
 CF
CFH
CFC
                                                      Area cost coefficient
Area cost coefficient for hot UT
Area cost coefficient for Cold UT
 le 
CH
CC
                                                      Exoponent for HX area cost
Exponent for hot UT area cost
Exponent for cold UT area cost
 ъ
 вн
 BC
 CHU
                                                                               60;
 ccu
                                                                              5;
3460;
 CE
CFH
CFC
                                                                                34607 34607
C H CC
                                                                                300:
                                                                                3001
                                                                                300±
 8
                                                                                1.2
 BH
                                                                                11
 BC
                                                                                14
 positive Variable
                                                    e
temperature approach for match (ij) at temperature location k
Temperature approach for the match of hot stream i and cold utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Temperature approach for the match of cold stream j and hot utility
Heat exchanged between hot stream i and cold stream j
Heat exchanged between hot utility and cold stream j
dT(1, j, k)
dTHU(j)
dTHU2(j)
dTCU(1)
dTCU2(1)
 n(1, 1, k)
qcu(1)
qhu(j)
 AreaHX(1, 1, k)
                                                      Area of each exchanger
Area of hot UT
AreaC(1)
                                                      Area of cold UT;
free variable
th(i,k)
                                                      temperature of hot stream i at hot end of stage k temperature of cold stream j at hot end of stage k objective function:
 tc(j,k)
 Binary variable
                                                     binary variable to denote existence of match 1j in stage k
binary variable to denote that cold utility exchanges heat with hot stream i
binary variable to denote that hot utility exchanges heat with cold stream jr
Inconstant Reap Capacity
z(1, ], k)
zcu(i)
 zhu(j)
parameter
parameter
OHEI(1) Cp Coefficient of Hot stream
GB1(i) Op Coefficient of Hot stream

GB2(i) Op Coefficient of Hot stream

GB3(i) Op Coefficient of Hot stream

OC1(j) Op Coefficient of cold stream

OC3(j) Op Coefficient of cold stream

GC1(j) Op Coefficient of cold stream

GC2(j) Op Coefficient of cold stream

GC3(j) Op Coefficient of cold stream

FixtempH1(i)

FixtempC1(j)
FixtempC1(j)
FixtempC2(j)
 TestR(i)
 TestC(j);
FixtempH1(*H1*) = 30;
FixtempH2(*H1*) = 30;
```

```
FixtempH2('H3') = 195,210000000000000000;
FixtempH2('H3') = 95.0800000000000000000;
FixtempCl()) = 168.180000000000000000;
OB1('H2') = 0.00394085499726679000; GB1('H2') = 1.74992048732344000000;
OB2('H2') = 0.00402348592188493000; GB2('H2') = 1.74851827105308800000;
OB3('H2') = 0.00389832645203208000; GB3('H2') = 1.75594557210110000000;
CH1('H1') = 0.00348347848525961006; GH1('H3') = 1.79714691436846000000;
OH2('H3') = 0.00396272018165033000; GH2('H3') = 1.70138615192476000000;
OH3('H3') = 0.00371599145434134000; GH1('H3') = 1.70777187532426000000;
CH2('H4') = 0.00377460391613860000; GH2('H4') = 1.69563864167670000000;
DE3('H4') = 0.00402866554468413000/ GE1('H4') = 1.66442582879783000000
OH1('H5') = 0.00301500014925505000; GH1('H5') = 1.43347265339345000000;
DH2('H5') = 0.00359288674396509000; GH2('H5') = 1.67211857503920000000;
OH3('H5') = 0.00408324170762641000; GH3('H5') = 1.60983832605874000000;
TestH(1) - ( (OB1(1) * (this(1)+FixtespH1(1))/2
                   / ( (thin(i) - FixtempH1(i)) + (FixtempH1(i) - FixtempH2(i)) + (FixtempH2(i) - thout(i))
                  - CpHavy(i) J
TestC(j) - { (OC1()) + (tcout()) + FixtempC1())/2 + GC1()) + (tcout() - FixtempC1()) + (CC2()) + (FixtempC2()) + FixtempC2()) + (FixtempC2()) + (FixtempC2()) + (FixtempC2()) + tcin())/2 + GC3() + (FixtempC2()) + tcin())
                  / ( (tcout(j) - FixtempCl(j)) + (FixtempCl(j) - FixtempC2(j)) + (FixtempC2(j) - tmin(j))
- CpCavg()) ;
Display TestH, TestC;
Variable
                            Heat capacity for cold utility
Heat capacity for hot utility
Activate variable for first partition
CpHL(1,k)
CpCF(j,k)
ActiH1(i,k)
                           Activate variable for first partition
Activate variable for second partition
Activate variable for third partition
Temperature difference calculation of first partition
Temperature difference calculation of second partition
Op of first partition
Cp of third partition
Cp of third partition
CD average
Act1H2(1,k)
Act1H3(1,k)
THealI(1,k)
THeal2(1,k)
THeal3(i,k)
CpH1(i,k)
CpH2(i,k)
CpH3(1,k)
                           Cp of third partition

Cp average

Activate variable for first partition

Activate variable for second partition

Activate variable for third partition

Temperature difference calculation of first partition

Temperature difference calculation of second partition

Temperature difference calculation of third partition
CpHavgg(1,k)
ActiCl(j,k)
ActiC2(j,k)
ActiC3(j,k)
TCcall(j,k)
 TCcal2(j,k)
TCcal3(j,k)
CpC1(j,k)
CpC2(j,k)
CpC3(j,k)
                            Cp of first partition
Cp of second partition
Cp of third partition
CpCavgg(j,k)
                            Cp average
```

```
Equation
Activate(1(1,k)
Activate(2(1,k)
Activate(3(1,k)
Temp/CalHI(1.k)
TempCalH2(1,k)
TempCalH3(1,k)
CPH11(1,k)
CPH22(1,k)
CDH33(1,k)
CEHAVGGG(1,k1)
                                                                       ActivateH1(1, k)Sst(k)
                                                                     ArtiH1(1, b)
ActivateH2(1,k)Sst(k)
ActivateH3(1,k)Sst(k)
                                                                      Actin2(1, k)
Actin0(1, k)
                                                       ...
                                                       **
TempCalH1(1,k)Sat(k)
TempCalH2(1,k)Sat(k)
                                                                      THeall(1.k)
Trical2(1.k)
TempCalH3(1,k)Sst(k)
                                                        ..
                                                                      THeald(i,k)
CFHII(L, k)Sat(k)
CFHI22(1, k)Sat(k)
CFHI33(1, k)Sat(k)
CFHAVCRG(1, k)Sat(k)
                                                                      CP81(1,3)
                                                       ....
                                                       1
                                                                     CPH2(1, k)
CPH3(1, k)
                                                                      CpHavgg[1,k]*( max(0,Act1H1[1,k)) + max(0,Act1H2(1,k)) + max(0,Act1H1[1,k)))
                                                       ---
                                                                      (CpH1(i,k) * max(0,ActiH1(i,k))) + (CpH2(i,k) * max(0,ActiH2(1,k)))
= (CpH3(1,k) * max(0,ActiH3(1,k))) )2
Equation
ActivateC2(j,k)
ActivateC3(j,k)
TempCalCl(j,k)
TempCalC2(j,k)
TempCalC3(j,k)
CPC11(j,k)
CEC22(j,k)
CEC33(j,k)
CPCAVGGG(1, R) /
                                                                                                 tr(j,k) = max(tr(j,ke),fixtompCi(j));

we= min(tr(j,k),FixtompCl(j)) = max(tr(j,k+1),FixtompC2(j));

we= min(tr(j,k),FixtompC2(j)) = tr(j,k+1);

we= (tr(j,k) = max(tr(j,k+1),FixtompCl(j)))/2;

we= (min(tr(j,k),FixtompCl(j)) + max(tr(j,k+1),FixtompC2(j)))
ActivateCI(j,k)Sat(k)
ActivateC2(j,k)Sat(k)
ActivateC3(j,k)Sat(k)
TempCalC1(j,k)Sat(k)
TempCalC2(j,k)Sat(k)
                                                                     Actici(1, k)
Actic2(1, k)
Actic3(1, k)
TCcal1(1, k)
TCcal2(1, k)
                                                       11
                                                       ...
                                                       ++
                                                                     /21
TGCal3(), R)
                                                       1111
                                                                                                 -0- (min(tc(j,k),FixtempC2(j)) + tc(j,k+t))/2;
TempCalCi(j, k)Sat(k)
CPC11(j,k)Sat(k)
CPC22(j,k)Sat(k)
CPC33(j,k)Sat(k)
CPC33(j,k)Sat(k)
CPC340665(j,k)Sat(k)
                                                                     variable
ActiHL1(1,k)
                                Activate variable for first partition
                                Activate variable for merch partition
Activate variable for merch partition
Activate variable for third partition
Temperature difference calculation of first partition
Temperature difference calculation of second partition
Temperature difference calculation of third partition
ActiHL2(1,k)
ActiHL3(1,k)
THealL1(1,k)
THealL2(1,k)
THealL3(1,k)
CpHL1(1,k)
CpHL2(1,k)
                                Cp of first partition
Cp of second partition
                                Cp of third partition
CoHL3(1.k)
                                Cp avarage
CpllavggL(1,k)
Equation
Equation
ActivateHLI(1, k)
ActivateHL2(1, k)
ActivateHL3(1, k)
TempCalHL1(1, k)
TempCalHL2(1,k)
TempCalHL3(1,k)
CPHLII(i,k)
CPHL22(1,k)
CPHL33(1, K)
CPHAVGGGL(i,k);
```

```
-e= th(1,k) = FixtempH1(1);
=e= min(th(1,k),FixtempH1(1)) = FixtempH2(1);
=e= min(th(1,k),FixtempH2(1)) = thout(1);
=e= (th(1,k),FixtempH1(1))/2;
=e= (min(th(1,k),FixtempH1(1)) + FixtempH2(1))/2;
=e= (min(th(1,k),FixtempH2(1)) + thout(1))/2;
=e= (min(th(1,k),FixtempH2(1)) + thout(1))/2;
ActivateHLI(1,k)Slant(K)
                                                                                                                                    ActiHL1(1,k)
ActivateHL2(1,k)Slant(k)
ActivateHL2(1,k)Slant(k)
ActivateHL3(1,k)Slast(k)
TempCalHL1(i,k)Slast(k)
TempCalHL2(1,k)Slast(k)
TempCalHL3(1,k)Slast(k)
                                                                                                                                   ActiHL2(1,k)
ActiHL3(1,k)
THC41L1(1,k)
                                                                                                           **
                                                                                                          ++
                                                                                                            • •
                                                                                                                                    THealt211, kk
                                                                                                                                    THealE3(L,k)
                                                                                                           ...
                                                                                                                                                                                       **
                                                                                                                                    CPHL1(1,k)
 CPHLII(1, k)Slast(k)
CPHL22(1,k)$last(k)
CPHL33(1,k)$last(k)
                                                                                                                                    CPHL2(1,k)
                                                                                                                                    CPHL3(1,k)
                                                                                                          ....
                                                                                                                                CpHaygg[1], k) * max (0, ActiHL1 [1, k)) * max(0, ActiHL2(1, k))
+ max(0, ActiHL2(1, k)) * mar(1 (CpHL2(1, k)) * max(0, ActiHL1(1, k)))
+ (CpHL2(1, k) * max(0, ActiHL2(1, k))) + (CpHL3(1, k) * max(0, ActiHL3(1, k))) );
 CPHAVGGGL(1, k) $14st(k)
                                                                                                           ÷÷
 variable
ActiCF2(j,k)
ActiCF2(j,k)
ActiCF3(j,K)
                                                       Activate variable for first partition
                                                        Activate variable for second partition.
Activate variable for second partition
                                                        Temperature difference calculation of first partition
Temperature difference calculation of second partition
Temperature difference calculation of second partition
TCcalF1(j,k)
TCcalF2(j,k)
 TCcalP3(j,k)
CpCF1(j,k)
CpCF2(j,k)
                                                        Cp of first partition 
Cp of second partition
 CDCF3 (1, k)
                                                        Cp-of second partition
                                                        Cp average
 CpCavggE(),k)
 Equation
 ActivateCE1(3, k)
ActivateCF2(), k)
ActivateCF3(), k)
 TempCalGF1(1, k)
  TempCalCF2(3, K)
 TempCalCF3(1, K)
 CPCF11 (), ki
 CPCF22(3.A)
CPCF33(3.K)
 CPCAVINGGF I J, ki's
                                                                                                                               ActiCFI(), k) === fixtempCl() = max(FixtempCl(), to(), k));

ActiCF2(), k) === fixtempCl() = max(FixtempCl(), to(), k));

ActiCF3(), k) === fixtempCl() = to(), k);

TCoalF2(), k) === (fixtempCl()) = to(), k);

TCoalF2(), k) === (fixtempCl()) = to(), k);

TCoalF3(), k) === (fixtempCl()) = to(), k);

TCoalF3(), k) === (fixtempC2()) = to(), k);

CPCF1(), k) === (fixtempC2()) = to(), k);

CPCF1(), k) === (fixtempC2()) = to(), k);

CPCF2(), k) === (fixtempC2()) = to(), k);

SpCaugdF1(), k) = (mix(0, ActiCF1)), k)) = max(0, ActiCF2(), k))

= max(0, ActiCF3(), k)) === (fixtempC2(), k) = max(0, ActiCF1(), k))) = (fixtempC2(), k) = max(0, ActiCF2(), k)) = fixtempC2(), k) = max(0, ActiCF2(), k) = fixtempC2(), k) = fixtempC2
 ActivateCF1(j,k)Stlest(k)
ActivateCF2(j,k)$first(k)
ActivateCF3(j,k)$first(k)
TempCalCF1(j,k)$first(k)
                                                                                                              2.4
                                                                                                               **
TempGalGF3(), k) & first (k)
TempGalGF3(), k) & first (k)
CPCF1(), k) & first (k)
CPCF2(), k) & first (k)
CPCF3(), k) & first (k)
CPCF3(), k) & first (k)
CPCAVGGF(), k) & first (k)
                                                                                                               46
                                                                                                               2.0
                                                                                                              40
                                                                                                             **
                                                                                                              .....
                                                                - Instation for Copedity
 Parameter
 ech(1)
                                                    Overall heat transfer at hot stream
                                                    Overall newt transfer at bod streams
Overall heat transfer at bod streams
Upper hound set to the smallest heat content of the two streams involved in the match
maximum temperature difference for each exchanges;
= fnavg(j) * (thout(i));
= fcavg(j) * (tcout(j) - tcin(j));
 ecc(j)
  Omega(i,j)
 Theta(1, 1)
 ech(1)
ecc(j)
Omega(i,j) - 1
Theta(i,j) -
Display Omega, Theta;
                                                    - min(ecc(j).ech(j));
- ( thin(i)-thout(i) ) - ( tcin(j)-tcout(j) );
 Equation
OverallBalanceGOD(j) Gverall heat balance for hot stream
OverallBalanceGOL(j) Gverall heat balance for cold stream;
OverallBalanceGOL(j) .. (thin(i)-thout(j)) * fhavg(i) -e- sum((j,st),q(i,j,st)) + qcu(i);
OverallBalanceGOLD(j) .. (tcust(j)-tcln(j)) * fravg(j) -e- sum((l,st),q(i,j,st)) * qhu(j);
 Equation
StageBalanceHOT(i,k) Heat balance at each stage for hot stream

StageBalanceCOLD(j,k) Heat balance at each stage for cold stream ;

StageBalanceHOT(i,k)$st(k) .. (th(i,k)-th(i,k+1)) * fh(i) * CpHavgg(i,k) == sum(j,g(i,j,k)) ;

StageBalanceCOLD(j,k)$st(k) .. (tc(j,k)-tc(j,k+1)) * fc(j) * CpCavgg(j,k) == sum(i,g(i,j,k)) ;
 Equation
Equation
Cold UT loading at not streams
BatUTload(j,k) Bot UT loading at cold streams;
ColdUTload(j,k)Slast(k) .. (th(i,k)-thout(i)) * th(i) * CpHavggL(i,k) === qcu(i);
HotUTload(j,k)Sfirst(k) .. (tcout(j)-tc(j,k)) * fc(j) * CpCavggF(j,k) === qhu(j);

 Equation
Equation
Feasibility1(i,k)
Feasibility2(j,k)
Feasibility3(l,k)
                                                                    Feasibility temperature at each stage for hot stream
Feasibility temperature at each stage for cold stream
Feasibility temperature at final stage for hot stream
```

```
Equation
 Logici(i,j,k)
                                                        Matching heat exchanger at each stage
Logic2(i)
Logic3(j)
                                                           Hot UT matching
Cold DT matching:
                                                                                        ...qu(i,j,k) = Omega(i,j)*zi(,j,k) =1= 0
...qu(i) = ech(i)*zcu(i) =1= 0
...qu(j) = ecc(j)*zhu(j) =-1= 0
 Logic1(i, j, k) Sat(k)
                                                                                                                                                                                                                                                      2
 Logic2(1)
                                                                                                                                                                                                                                                       1
 Logic3(j)
 Equation
                                                                                     Approach temperature for hot init and cold outlet Approach temperature for hot outlet and cold outlet Approach temperature for not UT Approach temperature for cold UT Approach temperature for cold UT (Approach temperature for cold (Appr
Approach1(1, j, k)
Approach2(i, j, k)
 Approach3(1,k)
  Approach4())
 Approach5(i,k)
 Approach (1)
                                                                                                                                                                                                                                                          + Theta(i,j)*(l=z(i,j,k));
+ Theta(i,j)*(l=z(i,j,k));
+ sum(l,Theta(i,j))*(l=zhu(j));
+ sum(l,Theta(i,j))*(l=zhu(j));
+ sum(j,Theta(i,j))*(l=zcu(l));
+ sum(j,Theta(i,j))*(l=zcu(l));
 Approach1(1, 1, k)Sst(k)
Approach2(i,j,k)$st(k)
Approach3(j,k)$first(k)
Approach4(j)
Approach5(i,k)$last(k)
 Approach E(i)
 Equation
EMATconstraint(1, j, k)
EMATconstraintHU(j)
                                                                                                                  minimim temperature approach for each exchanger
                                                                                                               minimum temperature approach for each exchanger
minimum temperature approach for each exchanger
minimum temperature approach for each exchanger
minimum temperature approach for each exchanger
in druct temperature approach for each exchanger
.. dT(1,j,k) =q= EMAT;
.. dTHU(j) =q= EMAT;
.. dTEU(j) =q= EMAT;
.. dTCU(j) =q= EMAT;
.. dTCU(j) =q= EMAT;
EMATconstraintHU2())
EMATconstraintCU(1)
 EMATconstraintCU2(1)
 EMATconstraint(1, ), k)
 EMATconstraintHU(j)
EMATconstraintHU2(j)
EMATconstraintCU(i)
 EMATconstraintCU2(i)
 Equation
Equation

AreaaEX(i,j,k) Area calculation for each exchanger

AreaaEX(i,j,k) Area calculation for each exchanger

AreaaEX(i,j,k) Area calculation for cold UT;

AreaaEX(i,j,k)$st(k) .. AreaEX(i,j,k) + (q(i,j,k)/(U(i,j))*((dt(i,j,k)+dt(i,j,k)+dt(i,j,k)+dt(i,j,k+1))/2)

= *(1/3)));

AreaaEX(i,k)$first(k) .. AreaEX(i,j,k) = (q(u,j)/(U(i,j))*((dt(u(j)+dtEC2(j))*(dt(u(j)+dtEC2(j))/2)**(1/3))));

AreaaE(i,k)$first(k) .. AreaE(i) == (q(u(j)/(U(i))*((dt(u(i)+dtEC2(j))*((dt(u(j)+dtEC2(i))/2)**(1/3))));

AreaaE(i,k)$first(k) .. AreaC(i) == (q(u(i)/(U(i))*((dt(u(i)+dtEC2(i))*((dt(u(i)+dtEC2(i))/2)**(1/3))));
         VARIAT ODIMALLINE Function-
 Equation
                         Objective functions
 OBJ
*sum((j),CH*(AreaH(j))**BH )
*sum((i),CC*(AreaC(i))**BC );
 MynliftAT OBJecdLive Pupe
 Equation
SplitlineH(i,k) Splitting line constrain for hot streams
SplitlineC(j,k) Splitting line constrain for cold streams ;
SplitlineC(j,k)Ssl(k) .. sum(j,z(i,j,k)) =1 = 1;
SplitlineC(j,k)Ssl(k) .. sum(j,z(i,j,k)) =1 = 3;
th.up(i,k) = thin(i);
th.lo(i,k) = thout(i);
te.up(j,k) = tcout(j);
 tc.lo(j,k) = tcin(j);
\frac{\text{Loop}(\{1,j\})}{\text{if}(thin(i) - tcin(j) < 0)}
                                              loop(k,
    dt.up(l,j,k) = TINhu-EMAT;
    display dt.up;
                                               12
                                                            else
                                            12 71
 11
 dTHU.up())
                                                             - max(0,TIRNu-tcin(j)-EMAT);
                                                           max(0,TlMbu-tcin(j)=EMAT);
= max(0,thin(i)=toutcu-EMAT);
= max(0,thin(i)=toutcu-EMAT);
 dTHU2.up())
dTCU.up(i)
dTCUZ.up(i)
dt.lo(1,j,k)
dt.lo(1,j,k+1)
                                                           - EMAT;
- EMAT;
dTHU.10())
dTHU2.10())
                                                           - EMATJ
                                                           - EMAT:
= EMAT:
 STOU. Lo(1)
dTCU2.lo(i)
                                                          - EMATI
```

"Deal lowd q.up(1,j,k)\$27(k)= min(ach(i),ecc(j)); qcu.up(i) = ect(i); qbu.up(j) = ecc(j); q.le(i,j,k)\$ST(k)= 0; qcu.le(l) = 0; qcu.io(1) = 0; qbu.io(j) = 0; - q_iup(i,j,i)/(0(i,j)*EMAT) i
- qhu_up(j)/(05(j))*EMAT);
- quu_up(j)/(05(j))*EMAT);
- quu_uup(i)/((0(i))*EMAT);
- 0; AroaHX.up(1.), kiSST(k) AreaH.up(]) AreaC.up(1) AreaHX, lo(1,), k) SST(k) AreaH. Lo(1) - 01 AreaC. lo(1) = 01 th.1(1,k) 1c.1(1,k) dt.1(1,j,k) - thin(i); = tcin(j); = max(EMAT,th,1(1,k)-to,1(1,k))7 EMAT;
EMAT;
EMAT; dTH0.1()) dTH02.1()) dTCU, I (i) dreuz.1(1) = EMAT: = ech(i)/3; gen. 1(1) 2.Is(')(1','Cl',k) = 0; hostary his processiant field thin(i) - EistempHi(i); FistempHi(i) - FistempH2(i); FistempH1(i) - thout(i); Act181.1(1,k) Act182.1(1,k) 4 5 ActiH3.1(1, k) THeal1.1(i,k) (thin(i) + Fixtempil1(i))/2; -(FistempH1(1) + FistempH2(1))/2; (FistempH2(1) + fistempH2(1))/2; (FistempH2(1) = thout(1))/2; THeal2.1(1.k) THeal3.1(1.k) OH1(1) * THCall.1(1,k) + GH1(1); DH2(1) * THCal2.1(1,k) = GH2(1); OH3(1) * THCal3.1(1,k) = GH3(1); CpH1.1(1,k) CpH2.1(1,k) CpH3.1(1,k) ÷ CpHavgg.1(1,k) -CpHavg(1); tcout(j) + FixtempCl(j); CpCavg(j); Actic1.1(j.8) CpCavgg.1(),k) 1 thin(1) - FixtempH1(1); FixtempH1(1) - FixtempH2(1); FixtempH2(1) = thout(1); ActiHL1.1(1,k)Slant(k) -ActiHL3.1(1, k) Slast(k) ActiHL3.1(1, k) Slast(k) (thin(i) = FistempH1(i))/2; (FistempH1(i) + FistempH2(i))/2; (FistempH2(i) + thout(i))/2; THCall. 1(1, K)Sinst(k) THCalL2.1(1,k)Slast(k) THCalL3.1(1,k)Slast(k) ٩, . OH1(i) * THEALL1.1(i,k) + GH1(i); OH2(i) * THEALL2.1(i,k) + GH2(i); OH3(i) * THEALL3.1(i,k) + GH3(i); CpHLI.1(1,k)Slast(k) CpHL7.1(1, k)Slast(k) CpHL3.1(1, k)Slast(k) (CpHL1.1(1,k) * max(0,ActiHL1.1(1,k)) + CpHL2.1(1,k)*max(0,ActiHL2.1(1,k)) /(max(0,ActiHL1.1(1,k)) = max(0,ActiHL2.1(1,k)) + max(0,ActiHL3.1(1,k)) CpHavegL.1(1,k)Slast(R) 1.0 PERCENT, JURNERS IN MICHAELING ActiCF1.1(),k)\$tirat(k) ActiCF2.1(),k)\$first(k) ActiCF3.1(),k)\$first(k) tcout(j) = FixtempCl(j); FixtempCl(j) = FixtempCl(j); FixtempCl(j) = tcin(j); -TCcalF1.1(),k)Sflrst(k) TCcalF2.1(),k)Sflrst(k) TCcalF2.1(),k)Sflrst(k) (tcour(j) + FixtempCl(j))/2; (FixtempCl(j) + FixtempCl(j))/2; (FixtempCl(j) + tcin(j))/2; 1.00

Act1H1.up(1,k) Act1H1.lo(1,k) Act1H2.lo(1,k) Act1H2.lo(1,k) Act1H2.lo(1,k) Act1H3.up(1,k) Act1H3.lo(1,k)	<pre>- thin(i) = FixtampH(i); - thout(i) = thin(i); - fixtampH(i) = FixtampH(i); - thout(i) = FixtampH(i); - thin(i); - FixtampH(i) = thin(i); - thout(i) = thin(i);</pre>
THeail.up(i,k) THeail.lo(1,k) THeail.lo(1,k) THeail.lo(1,k) THeail.lo(1,k) THeail.lo(1,k)	<pre>- thin(i); - (think(1))+FistTempHI(1))/2; - (fTitTempHI(1))/2; - (think(1)+FistTempH2(1))/2; - (fistTempH2(1)+fistTempH2(1))/2; - thout(1);</pre>
CpHI, up (3, %) CpHI, 10 (1, %) CpHI, up (1, %) CpHI, up (1, %) CpHI, up (1, %) CpHI, 10 (1, %)	<pre>- OH1(1) * THEall.up(1,k) + GH1(1); - OH1(1) * THEall.lp(1,k) + GH1(1); - OH2(1) * THEall.up(1,k) + GH2(1); - OH2(1) * THEall.up(1,k) + GH2(1); - OH3(1) * THEall.up(1,k) + GH2(1); - OH3(1) * THEall.up(1,k) + GH3(1);</pre>
CpHayog.up(1,k)	= (CpH1.up(i,k) * ActIH1.up(i,k) + CpH2.up(i,k) * ActIH2.up(i,k) + CpH2.up(i,k) * ActIH2.up(i,k) + ActIH2.u
CDRWANG TOTT'NY	- 01
ActiCl.up(),k) ActiCl.lo(),K) ActiCl.up(),K) ActiCl.up(),K) ActiCl.up(),K) ActiCl.up(),K) ActiCl.up(),K)	<pre>- tcout()) = FixtempCl()); + tclo()) = tcout()); = BixtempCl() = BixtempCl(); - tch()) = tcout(); = FixtempC2()) = tclo(); = tcln() = tcout();</pre>
TCcall.up(3,k) TCcall.lc(j,k) TCcall.up(3,k) TCcall.up(3,k) TCcall.up(3,k) TCcall.up(3,k)	<pre>- tcout(j): - (tcln(j)+FixTempCl(j))/2r - Tfcout(j)+FixTempCl(j))/2r - (tcln(j)+FixTempCl(j))/2r - (tcout(j)+FixTempCl(j))/2r - tcln(j);</pre>
CpC1.is(j,k) CpC1.is(j,k) CpC2.is(j,k) CpC2.is(j,k) CpC3.is(j,k) CpC3.is(j,k)	<pre>- OC1(j) * Tocall.up(j,k) + GC1(j); - OC1(j) * Tocall.lp(j,k) + GC1(j); - OC2(j) * Tocall.up(j,k) + GC2(j); - OC2(j) * Tocall.up(j,k) + GC2(j); - OC3(j) * Tocall.up(j,k) + GC2(j); - OC3(j) * Tocall.up(j,k) + GC3(j);</pre>
CpCasyg, up (), K)	- (cpc1.up(j,k) + Actic1.up(j,k) + Cpc2.up(j,k) + Actic2.up(j,k) + Cpc3.up(j,k) + Actic3.up(j,k) + /(Actic2.up(j,k) + Actic1.up(j,k) + Actic3.up(j,k) + small) /
CpCaved.ic(3, 8)	- 02
ActiHL1.up(1,k) ActiHL1.lo(1,k) ActiHL2.up(1,k) ActiHL2.up(1,k) ActiHL2.lo(1,k) ActiHL3.up(1,k)	<pre>thin(i) - FixTempH1(i); thout(i) - FixTempH1(i); FixTempH1(i) - FixTempH2(i); thout(i) - FixTempH2(i); FixTempH2(i) - thout(i); 0;</pre>
THEALL1.up(1.k) THEALL1.lo(1.k) THEALL2.up(1.k) THEALL2.lo(1.k) THEALL2.lo(1.k) THEALL3.up(1.k)	<pre>(tbin(1)+FixTempHI(1))/2; (tbout(1)+FixTempHI(1))/2; (PixTempHI(1))+FixTempH2(1))/2; (tbout(1)+FixTempH2(1))/2; (tbout(1)+FixTempH2(1))/2; tbout(1);</pre>
CpHL1.up(i,k) CpHL2.up(i,k) CpHL2.up(i,k) CpHL3.lo(i,k) CpHL3.lo(i,k) CpHL3.up(i,k) CpHL3.lo(i,k)	<pre>081(i) * TilcalL1.up(i,R) * GHI(i); 0H1(i) * TilcalL1.up(i,R) + GHI(i); 0H2(i) * TilcalL2.up(i,R) + GH2(i); 0H2(i) * TilcalL2.up(i,R) + GH2(i); 0H3(i) * TilcalL3.up(i,R) + GH3(i); 0H3(i) * TilcalL3.up(i,R) + GH3(i);</pre>
Cpllavggb.up(i,k)\$last(k)	= (CpHL1.op(1,k)*AcviHL1.up(1,k)(CpHL2.op(1,k)*ActiHL2.op(1,k)(CpHL7.up(1,k)*ActiHL3.
CpRavoqt, io(1, k)Siant(k) option sysnut = on; option declmals = 8; option demlim = 5; option MINLP = DICOPT; option Thread = 0; option reslim = 60; model Synhest (all/;	(ActiHLT.up(1,k) (ActiHLZ.up(1,k) (ActiHL3.up(1,k))) - 01
Synheat.optfile=1;	
<pre>Somecho > dicopt.opt ar.cg d man.cyclas.condcom</pre>	

Parameter	
AreacalHX(1, 1, h)	Area calculation for each heat mechanger
AreacalHU())	Area calculation for hot utility
AreacalCU(1)	Area calculation for cold utility
TotalArea	Tutal Arwa calculation
ColdUTcost	Gold gillity cost
Batercost	hot at 111 ty cont
TotalUT	Total utility cost
Fixedcoatex	Fixed charge for exchanger
FixedcostHotUT	Fixed charge for bot utility
FlxedcostColdUT	Fixed charge for sold atility
AreallXcost	Area cost for each exchange!
AreallUcost	Area cost for hot utility
AreaCUcost	Area cost for cold atility
Capitelcost	Capital cost
TAC	Total Annual Cost;
AreacalHX(1, 1, k)Sst(k)	<pre>- g.1(1, j, k)/(U(1, j)*(dt.1(1, j, k)*dt.1(1, j, k+1)*(dt.1(1, j, k)+dt.1(1, j, k+1))/2)**(1/3)) ;</pre>
AreacalHU())	- ghu, 1(1)/((Th(1))*((dthu,1(j))*(TINbu-tcout(j))*((dthu,1(j))*(TINbu-tcout(j)))/2)**(1/3))
AreacalCU(1)	<pre>= qcu.1(i)/((Ec(1))*((dtcu.1(i))*(thout(i)-TINcu)*((dtcu.1(i))+(thout(i)-TINcu))/2)**(1/3))</pre>
TotalArea	= sum((i, j, k), AreacalHX(i, j, k)) + sum(j, AreacalHU(j)) + sum(i, AreacalCU(i));
ColdUTcost	= sum(i, (ccu*qcu,1(i)));
HotUTcost	= sum(j, (chu*qhu, 1(j)));
TotalUT	- ColdUTcost + HotUTcost;
FixedcostHX	= sums((i, j, st), CF*z.1(i, j, st));
FixednostHotUT	- sum(1, (CFH*(zeu,1(1)));
FixedcostColdUT	— sum(), GEC+2hu, 1()));
AreaBXcost	$= C^* \operatorname{star}(\{1, 1\}, k), \operatorname{Areacality}(\{1, 1, k\})^{*+} \mathbb{B})$
AreaHUcost	< CH*sum(), Armace180())**88);
AreaCOcont	- CC*aus(1)Areaca(CV(1)**BC);
Capitalcost	- FixedcostRX + FixedcostHoIDT + FixedcostColdDT + AreaNXcost + AreaNUcost + AreaCUcost ;
TAC	- Capitalcost + TotalUT ;
AND THE CLASS	
display AreadainX, Aread	alMU, ArescalCU, TotalAres
, Coldurcost, Boturcost, To	of alur, fixed cost a, fixed cost not ur, fixed cost to iddr.
AccanAccart, AreanDoost,	rescuese, capital cost, TWC 1-

Appendix B GAMS Code of Case Study 4 (Retrofit)

```
set
                                                                                /H1+H5/
                 hot streams temperature
                  cold streams temperature number of year
 j
                                                                                /CI/
/1*3/ :
scalar
nok
                  number of stage
                                                                               151 $
 set
k temperature at each stages
at(k) stage separation
First(k) first stage
                                                                               /E1*K6/
Last(k) last stage :
at(k) = yesS(ord(k) it card(k)) :
first(k) = yes(ord(k) + c cond(k))
fast(k) = yes(ord(k) + c cond(k))
Parameter
hh(i)
                  Heat transfer coefficient of hot stream
hh(i) Heat transfer coefficient of hot stream
hc(j) Heat transfer coefficient of cold stream
hhu Heat transfer coefficient of hot utility
hcu Heat transfer coefficient of cold utility
U(i,j) Overall heat transfer coefficient for each exchanger
Uh(j) Overall heat transfer coefficient for cold utility
Uc(i) Overall heat transfer coefficient for cold utility
th('H1') = 1; hht('H2') = 1; hht('H3') = 1; hht('H3')
hc('H1') = 1; hht('H2') = 1; hht('H3') = 1; hht('H3')
hc('H1') = 1; hht('H2') = 1; hht('H3') = 1;
hc('H1') = 1; hht('H1') + hc(j)) ];
Uh(j) = ( (hh(i) + hc(j))/(hh(i) + hc(j)) ];
Uh(j) = ( (hhu + hc(j))/(hha + hc(j)) );
Uh(j) = ( (hhu) + hcu)/(hh(i) + hcu) );
display U,uh,uc;
                                                                                                                                         hh(*115*) = 1:
                                                                                                        th("Ha") = 1;
 display U, uh, uc;
parameter
TINhu Temperature inlet hat utility
artist het utility
               Temperature outlet hot utility
Temperature inlet cold utility
 TINCU
 TOUTCU
                 Temperature outlet cold utility:
 TINhu
                                 500;
 TOUThu
                                 5007
 TINCO
                  -
                                 10:
 TOUTCU
                                  15;
                                                                Wata Hill
 parameter
  hin(i)
                                 Temperature inlet for hot streams
                                 Temperature outlet for hot streams
Heat capacity flow rate for hot streams
Temperature inlet for cold streams
 thout (1)
 fh(i)
 tcin(j)
                                Temperature outlet for cold streams
Temperature outlet for cold streams
Heat capacity flow rate of hot stream
Average Heat capacity flow rate of cold stream
Average Heat capacity hot rate of cold stream
Average Heat capacity hot stream
 tcout(j)
 fc(j)
 fhavg(i)
 fcavg(j)
CpHavg(i)
CpCavg())
                                 Average Heat capacity cold stream;
CpHayg('H5') = 2,41611128177393000000;
sein('Cl')= 50; teout('Cl')= 376.80000000000000000000000; fe('Cl')= 194.2407689166670000000000000;
CpCavg('Cl') = 2.76662173432649000000;
fhavg(i)= fh(i) * CpHavg(i);
fcavg(j)= fc(j) * CpCavg(j);
Display fhavg,fcavg;
 Scalar
                 Exchanger minimum approximation temperature
Heat recovery approximation temperature
Small Value
 EMAT
 HRAT
 Spal1
MundherVear
                               Number of Year for Installation Conv;
              + 11
- 14
 EMAT
                 - 1;
= 1e-7;
= 1;
 HRAT
   mail.
NumberYear
```

	Char Data
aranotar	
CHU	Rot stility cost
SCU	Cold stillty cost
定	Fixed charge for exchanger
FH	Fixed charge for Hot UT
FC.	Fixed charge for Cold UT
	Area cost coefficient
H.	Area cost coefficient for hot UT
C	Area cost coefficient for Cold UT
	Exoponent for HX area cost
H	Exponent for hot UT area cost
12	Exponent for cold UT area costs
2HU	- 80;
CU	- 10;
F	3460;
FH	= 3460z
FC	- 3460;
	- 300/
H	- 3007
17	- 3001
2	- 17
в	- 17
6.	- 17
s-	
ositive Variabl	e
T(1, j, k)	temperature approach for match (i)) at temperature location k
THU(j)	Temperature approach for the match of hot stream i and cold utility
THU2(j)	Temperature approach for the match of hot stream i and cold utility
PCU (1)	Temperature approach for the match of cold stream j and hot utility
CU2(1)	Temperature approach for the match of cold stream j and hot utility
(i,j,k)	Heat exchanged between hot process stream i and cold process streams j in stage k
cu(1)	heat exchanged between hot stream 1 and cold utility
hu(j)	Heat exchanged between hot utility and cold stream 1
reaHX(i,j,k)	Area of each exchanger
reaH(j)	Area of hot UT
reaC(i)	Area of cold UT
ree variable	
h(1,k)	temperature of hot stream i at hot end of stage k
C(3. k)	temperature of cold stream j at hot end of stage k
	sbjective function;
inary variable	
(1, j, k)	binary variable to denote existence of match 1j in stage k
cu(1)	binary variable to denote that cold utility exchanges heat with hot stream i
hu(j)	binary variable to denote that hot utility exchanges heat with cold stream jr
Recentic Vallar	
Constant.	
ar ano ter	
mar (y) :	
car(11) = 1	
Bar('2') = 21	
Mar(131) = 31	
arameter	and the second se
D1dHX(1,], k)	Existing Area of 13
oldH(J)	Existing Area of HUT
#1dC(1)	Existing Area of COT
neid(1)	
(uold())	
ald(1, 3, k)	
\$1\$ Dloug	
wold());	
cuoId('H1') = 1	<pre>; qcusld('H1') = 1.378389E+3; AnIdC('H1') = 1.659617E+2;</pre>
cuold('H2') = 1	<pre>r qcuold('H1') = 1,370389E+3; AoldC('H1') = 1,659617E+2;</pre>
cuold('E3') = 1	<pre>r qcuold('H3') = 2.149990E+3; AoldC('H3') = 1.303613E+2;</pre>
cuold('H4') = 1	<pre>gcumld('H4') = 4.868953E(3) AoldC('H4') = 1.304485E(2)</pre>
cuold('H5') = 1	<pre>gcuold('H5') = 4,167334E+3; AoldC('H5') = 1,680144E+2;</pre>
huold('CI') = 1	<pre>r gbuold('Cl') = 8,210093E+47 AoldH('Cl') = 9,049860E+2;</pre>
old("H4", "CT",	<pre>K1'} = 1; AoldHX('Hd', 'Cl', 'K1') = 2,719076E*2;</pre>
old('#5', 'CI'	E1') = 1: AoldBX('85', '01', 'E1') = 1,175950E+3;
alditant, tent	$K^{2}(1) = 1$; $h_{0}(dHX)^{2}H^{2}(1)^{2}, f(1)^{2}, H^{2}(1) = 1, 393715E+2$;
ald(*84*.*****	$K(2^{+}) = 1_{2}$ Add $dEX (^{+}E4^{+}, ^{+}C1^{+}, ^{+}C2^{+}) = 2, d014 E3E_{2} 2_{2}$
1d('82' 'CT'	K5'5 = 1: AoldiX ('82', '01', '85') = 2.8713638424
oldithit, told,	$K5^{+}$ = 1: $A_{0}(diX(101), 4011, 4851) = 2,55000000022;$
ald ("HL", "ATT")	$k_{0}^{(1)} = 1$; $k_{0}^{(1)} d k_{0}^{(1)} d k_{0}^{(1)} d k_{0}^{(1)} = 1, a_{0}^{(1)} d k_{0}^{(1)} d k_{0}^{(1)}$
water and a ten a	The second

--- Invensions Heap Expanies parameter DAT(1) Cp Coefficient of Hot stream OH2(1) Cp Coefficient of Hot stream OH3(1) Cp Coefficient of Hot stream OH3(1) Cp Coefficient of Hot stream GH2(1) Cp Coefficient of Hot stream GH2(1) Cp Coefficient of Hot stream OC1(3) Cp Coefficient of Hot stream OC2(1) Cp Coefficient of cold stream OC3(1) Cp Coefficient of cold stream OC3(1) Cp Coefficient of cold stream CC2(1) Cp Coefficient of cold stream CC2(1) Cp Coefficient of cold stream CC2(1) Cp Coefficient of cold stream GC3(j) Cp Coefficient of cold stream Fixtempil(i) FixtempH2(1) FixtempC1(j) FixtempC2(i) TestH(i) TestC(j); TestC4[]; FixtempH1(*H1') = 30; sixtempH2(*H1') = 30; FixtempH2(*H2') = 145.230000000000000000000; FixtempH1(*H2') = 76.230000000000000000000; FixtempH1(*H2') = 195.2100000000000000000; FixtempH1(*H3') = 95.0800000000000000000000; FixtempH1('H4') = 243.2400000000000 OHI('H4') = 0.00326912001518793000; GHI('H4') = 1.8109354116951000000; OHI('H4') = 0.00326912001518793000; GHI('H4') = 1.654563864167670000000; OH2('H4') = 0.0040286655466413000; GH2('H4') = 1.654259287978200000; OH1('H5') = 0.003500814925505000; GH1('H5') = 1.6334726533945000000; OH2('H5') = 0.00459288674396509000; GH2('H5') = 1.63211835583995000000; OH2('H5') = 0.00459288674396509000; GH2('H5') = 1.622118355832605874000000; OH3('H5') = 0.00408324170762643000; GH3('H5') = 1.66983832605874000000; DC1('CL') = 0.00739671360203902000# OC1('CL') = 2.13223102523803000000# OC2('CL') = 0.00908253570312521D00# OC2('CL') = 1.73185053302393000000# OC3('CL') = 0.00411179201266024000# GC3('CL') = 1.69174820755582000000# (OH1(i) * (thin(i)+FixtempH1(i))/2 * GH1(i)) * (thin(i) - FixtempH1(i)) * (OH2(i) * (FixtempH1(i) * FixtempH2(i))/2 * GH2(i)) * (FixtempH1(i) - FixtempH2(i)) = (OH3(i) * (FixtempH2(i) + thout(i))/2 * GH3(i)) * (FixtempH2(i) - thout(i)) TestH(1) = 1 (OH1(1) * (thin(1)+FixtempH1(1))/2 / ((thin(i) - FixtempH1(i)) + (FixtempH1(i) - FixtempH2(i)) + (FixtempH2(i) - thout(i)) - CpHavq(i) : TestC(j) = ((CC1(j) * (tcout())*PixtempC1(j))/Z * GC1(j)) * (tcout(j) - FixtempC1(j)) * (OC2(j) * (FixtempC1(j)+ FixtempC2(j))/Z * GC2(j)) * (FixtempC1(j) - FixtempC2(j)) * (OC3(j) * (FixtempC2(j)* tcin(j))/Z * GC3(j)) * (FixtempC2(j) - tcin(j)) / ((tcout(j) - FixtempC1(j)) = (FixtempC1(j) - FixtempC2(j)) + (FixtempC2(j) - tcin(j)) - CpCaVu()) t Display TestH, TestC; Variable CpHL(i,k) CpCF(j,k) ActiH1(i,k) Heat capacity for cold utility Reat capacity for hot utility Activate variable for first partition Activate variable for size partition Activate variable for second partition Activate variable for third partition Temperature difference calculation of first partition Temperature difference calculation of accord partition Temperature difference calculation of third partition Act1H2(1,k) Act1H3(1,k) THeall(1,k) THca12(1, k) THCa13(1,k) CpH1(1,k) CpH2(1,k) Cp of first partition Cp of second partition Cp of third partition Cp average CpH3(i,k) CpHavgg(1,k)

Activate variable for first partition Activate variable for second partition Activate variable for third partition Temperature difference calculation of first partition Temperature difference calculation of second partition Actic1(j,k) ActiC2(j,k) ActiC3(j,k) TCcall(j,k) TCcal2(j,k) Temperature difference calculation of third partition Op of first partition TCcal3(j,k) CpC1(j,k) CpC2(j,k) CpC3(j,k) Cp of second partition Cp of third partition CpCavgg(j,k) Cp Avecage 12 Equation ActivateH1(i,k) ActivateH2(i,k) ActivateH3(i,k) TempCalH1(1, K) TempCalH2(1, k) TempCalH3(i,k) CPH11(1,k) CPH22(1,k) CPN3341.kb CPHAVGGG(1, k) / -e= th(i,k) = sax(th(i,k=1),FixtespH1(i)) : -e= min(th(i,k),FixtespH1(i)) = max(th(i,k=1),FixtespH2(i)) : e= min(th(i,k),FixtespH2(i)) = th(i,k=1) : -e= (th(i,k) = max(th(i,k=1),FixtespH1(i)))/2 : -e= (min(th(i,k),FixtespH1(i)) + max(th(i,k=1),FixtespH2(i))) ActivateH1(1,k)Sst(k) ActiHi(i,k) ActiH2(i,k) ActiH3(i,k) ActivateR2(1,k)Sat(k) ActivateR3(1,k)Sat(k) TempCalHI(1,k)Sat(k) TempCalHZ(1,k)Sat(k) :: THeall(i,k) Tfical2(1,k) /2; THcal3(1,k) CPH1(1,k) CPH2(1,k) CPH2(1,k) TempCalHJ(i,k)Sit(k) -0- (min(th(i,k),FixtompH2(i)) + th(i,k+1))/2f -e= OH1() * THcal1(1,k) + GH1(1); -e= OH2(1) * THcal2(1,k) + GH1(1); -e= OH2(1) * THcal2(1,k) + GH2(1); -e= OH3(1) * THcal3(1,k) + GH3(1); CPH11(1,k)Sat(k) CPH(22(1,k)Sat(k) CFH(33(1,k)Sat(k) .. CPB3(1,k) =======(CpB3(1) * TBG1(1,k) + GB3(1)) CpHavg(1,k) * max(0,ActH3(1,k)) = max(0,ActH3(1,k)) = max(0,ActH3(1,k)) ===((CpB1(1,k) * max(0,ActH3(1,k))) = (CpB2(1,k) * max(0,ActH2(1,k))) + (CpB3(1,k) * max(0,ActH3(1,k)))); CPHAVGGG (1, k) Sat (k) IT COMP. Equation ActivateCl(j,k) ActivateC2(j,k) ActivateC3(j,k) TempCalCl(j,k) TempCalC2(j,k) TempCalC313, k) CPC11(1,k) CFC22(J, k) CPC3313,kJ CPCAVGGGC1,k17 ActivateCl(j,k)Set(k) Actici(j,k) e= tc(j,k) = max(tc(j,R+1),FixtempCl(j)); 40 -e= min(tc(j,k), FixtempCl(j)) = max(tc(j,k+1), FixtempC2(j)); -e= min(tc(j,k), FixtempCl(j)) = max(tc(j,k+1), FixtempC2(j)); -e= min(tc(j,k), fixtempCl(j)) = tc(j,k+1); -e= (tc(j,k) + max(tc(j,k+1), FixtempCl(j)))/2; ActivateC2(),k)Sat(k) ActivateC3(),k)Sat(k) TempCalC1(),k)Sat(k) ActiC2(j,k) ActiC3(j,k) TCcall(j,k) ** TempCalC2(], k)Sst(k) TCca12(j,k) -e- (min(tc(j,k),FixteopCl(j)) = max(tc(j,k=1),FixteopC2(j))) ... /2/ TGcal3(1,k) -se= (min(tc(j,k),FixtempC2(j)) + tc(j,k+1))/2; TempCalC3(j,k) \$nt(k) ... CPC11(j,k)Sst(k) CPC22(j,k)Sst(k) CPC33(j,k)Sst(k) CPC33(j,k)Sst(k) CPC33(j,k)Sst(k) CPC1(),k) CPC2(),k) CPC3(),k) TGcal(),k) === GCl() * TGcal(),k) + GCl();k+1)/2/ CPC2(),k) === GCl() * TGcal2(),k) + GCl(); CPC2(),k) === GC2() * TGcal2(),k) + GC2(); CPC3(),k) === GC2() * TGcal3(),k) + GC3(); CPCavg(),k) * max(0,ActIC1(),k) = max(0,ActIC2(),k) + max(0,ActIC3(),k)) ==-((GPC1(),k) * max(0,ActIC1(),k)) = (GPC2(1,k) * max(0,ActIC2(),k)) + (GPC3(),k) * max(0,ActIC3(),k))); ., 11 ... in the sold whitting indewaltane variable ActiHL2(1, k) ActiHL2(1, k) ActiHL3(1, k) Activate variable for first partition Activate variable for averal partition Activate variable for averal partition Activate variable for third partition Temperature difference calculation of first partition Temperature difference calculation of second partition Temperature difference calculation of third partition THealL1 (1, k) THealL2(1, k) THealL3(1, k) Cp of first partition Cp of second partition Cp of third partition CoHL1(1,k) CpHL2(1,k) CpHL3(1,k) CpHavogL(1,k) Cp available

Equation ActivateHLI(i,k) ActivateHLI(i,k) ActivateHLI(i,k) TempCallLI(1,k) TempCalHL2(1, k) TempCalHL3(1,k) CPRLI1(L.R) CPUL22(1,k) CPHL33(1,k) CPHL33(1, k) UPRAV030L(1, k); ActivateHL1(1, k); ActivateHL2(1, k); Last(k) ActivateHL2(1, k); Last(k) TempCalHL1(1, k); Last(k) TempCalHL3(1, k); Last(k) TempCalHL3(1, k); Last(k) TempCalHL3(1, k); Last(k)
$$\begin{split} & \text{ActiHL1(1),k} & = \text{m-th}(i,k) = \text{FixtempH1(i);} \\ & \text{ActiHL2(1,R)} & = \text{min(th(i,k), FixtempH1(i))} = \text{FixtempH2(1);} \\ & \text{ActiHL2(1,k)} & = \text{min(th(i,k), FixtempH1(i))} = \text{FixtempH2(1);} \\ & \text{Theull1(i,k)} & = \text{min(th(i,k), FixtempH1(i))} = \text{Thout(1);} \\ & \text{Theull1(i,k)} & = \text{min(th(i,k), FixtempH1(i))} = \text{TixtempH2(1)}/2; \\ & \text{Theull2(i,k)} & = \text{min(th(i,k), FixtempH1(i))} = \text{TixtempH2(i)}/2; \\ & \text{Theull2(i,k)} & = \text{min(th(i,k), FixtempH2(i))} = \text{TixtempH2(i)}/2; \\ & \text{CPHL1(i,k)} & = \text{min(th(i,k), FixtempH2(i))} = \text{TixtempH2(i)}/2; \\ & \text{CPHL1(i,k)} & = \text{min(th(i)} \in \text{THeull2(i,k)} = \text{GH1(i);} \\ & \text{CPHL2(i,k)} & = \text{min(th(i)} = \text{Theull2(i,k)} = \text{GH1(i);} \\ & \text{CPHL2(i,k)} & = \text{min(th(i)} = \text{Theull2(i,k)} = \text{min(th(i,k))} \\ & = \text{min(th(i,k))} = \text{min(th(i,k))} = \text{min(th(i,k))} \\ & = \text{min(th(i,k))} = \text{min(th(i,k))} \\ & = \text{min(th(i,k))} \\ & = \text{min(th(i,k))} \\ & = \text{min(th(i,k))} = \text{min(th(i,k))} \\ & = \text{min(th(i,$$
.... :: ... 6.4 CPHL11 (1, k) 3]ast (k) ... CFHL22(1.k)Slast(k) CFHL33(1,k)Slast(k) 40 CPHAVGOGL(1, k) Slant(k) variable ActiCF1(j,k) Activate variable for first partition ActiCF2(j,k) ActiCF3(j,k) Activate variable for second partition Activate variable for second partition Temperature difference calculation of first partition Temperature difference calculation of second partition Temperature difference calculation of second partition TCcalF1(j,k) TCcalF2(j,k) TCcalF3(j,k) Cp of first partition Cp of second partition Cp of second partition CpCF1(1, k) CpCF2(),k) CpCF3(1,k) CpCavggF(),k) Equation Cp average ActivateCF1(j,k) ActivateCF2(j,k) ActivateCF3[1,k] TempCalCF1(), k) TempCalCF2(j,k) TempCalCF3(j,k) CPCF11(), k) CFCF22(3,k) CFCF33(j,k) CPCAVGGGF(1,k): ActiCF1(),k) ActiCF2(),k) ActiCF3(),k) ActivateCF1(j, %)Sfleat(k) ActiGP1(j,k) === tdoit(j) = max(FixtempCl(j),tc(j,k)); ActiGP1(j,k) === FixtempCl(j) = max(FixtempCl(j),tc(j,k)); ActiGP1(j,k) === FixtempCl(j) = max(FixtempCl(j),tc(j,k)))/2; TCcalF2(j,k) === (tcout(j) = max(FixtempCl(j),tc(j,k)))/2; TCcalF2(j,k) === (FixtempCl(j) = max(FixtempCl(j),tc(j,k)))/2; TCcalF2(j,k) === (FixtempCl(j) = max(FixtempCl(j),tc(j,k)))/2; CCGF1(j,k) === (FixtempCl(j) = max(FixtempCl(j),tc(j,k)))/2; CCGF1(j,k) === (Cl(j) = TCcalF2(j,k) = GCl(j); CCFCF2(j,k) === OCl(j) = GCL(j) = -0- tdoit(j) - max(FixtempCl(j),Ld(j,k)); ActivateCF2(),k)\$first(k) ActivateCF3(),k)\$first(k) ** TempCalCF1(j,k)Sfirst(k) ++ TempCalCF2(j,k)\$first(k) TempCalCF3(j,k)\$first(k) 16 CPCF11(),k)Sfirst(k) CPCF22(),k)Sfirst(k) ** CPCF33(3,k)Sfirst(k) CPCAVGOGF(j,k)Sfirst(k) ... ++ Incident Dist Shi Parameter Everall heat transfer at bot streams Overall beat transfer at cold streams Upper bound set to the smallest heat content of the two streams levelyed in the match ech(1) ecc(j) Conega(1, j) Theta(1, j) bpper bound set to the smallest must content of the mustimum temperature dl/forence for each exchanger; = fhavg(i) * (thin(i) = thout(i)); = feavg(j) * (trout(j) = tein(j); = min(ecc(j),ecl(l)); = (thin(i)-thout(i)) = (tein(j)-tcout(j));; ech(1) nec(1) Omega(1, 1) Theta(1, j) = Display Geoga, Thetaz Equation OverallBalanceHOT(i) Overall best balance for hot stream OverallBalanceHOT(i) Overall heat balance for cold stream; OverallBalanceHOT(i) .. (thin(i)-thou(i)) ' fhavg(i) -e= sum((i,st),g(i,j,st)) + gcu(i); OverallBalanceHOLD(j) .. (tcout(j)-tcin(j)) ' fravg(j) -e= sum((i,st),g(i,j,st)) + ghu(j); Equation Equation ColdUTload(i,k) Cold UT loading at hot streams ExcUTload(j,k) Bot UT loading at cold streams; CaldUTload(i,k)Slast(k) .. (th(i,k)-theut(i)) * fh(i) * CpHavggL(i,k) =e= qcu(i); BotUTload(j,k)Sfirst(k) .. (tcout(j)-tc(j,k)) * fc(j) * CpCavggF(j,k) =e= qhu(j); Equation
 Equation
 AssignmentBot(1,k)
 Assignment of superstructure inlet temperatures for hot streams, AssignmentCold(j,k)
 Assignment of superstructure inlet temperature for cols streams, AssignmentBot(1,k)Sfirst(k) ... thin(1) === th(1,k);

 AssignmentCold(j,k)Slast(k) ... tcin(j) === tc(),k);
 ...
 ...

```
Equation
Equation
 Logic2(1),j,k) Matching beat exchanges at each stage
Logic2(1) Not OT matching
Logic3(j) Cold OT matching;
                                                ...qti,j,k) = Omega(i,j)*z(i,j,k) =0= 0
...qcu(i) = ech(i)*zcu(i) =1= 0
...qhu(j) = ecc(j)*zhu(j) =1= 0
 Logicl(i, j, k) Sat(k)
 Logic2(1)
                                                                                                                                            1 1
Logic3(j)
 Equation
                                                 Approach temperature for hot inlet and cold outlet
Approach temperature for hot outlet and cold inlet
Approach temperature for hot UT
Approach temperature for hot UT
Approach1(1,),k)
Approach2(1,),k)
Approach3(j,k)
 Approach4(3)
+ Thuta(i,j)*(l=z(i,j,k));
+ Theta(i,j)*(l=z(i,j,k));
+ sum(i,Theta(i,j)*(l=zhu(j));
+ sum(i,Theta(i,j))*(l=zhu(j));
+ (sum(j,Theta(i,j))*(l=zcu(i));
+ (sum(j,Theta(i,j))*(l=zcu(i));
 Equation
                                                               minihum temperature approach for each exchanger
EMATCONStraint(1,j,k)
EMATCONStraintRU(j)
 EMATconstraintHU2(5)
 EMATCONSTRAINTCU(1)
 EMATconstraintCU2(1)
                                                               minimum temperature approach for each exchanger a
                                                               .. dT (i, j, k) =q= EMAT;

.. dT (i, j, k) =q= EMAT;

.. dTHU(j) =q= EMAT;

.. dTCU(j) =q= EMAT;

.. dTCU(i) =q= EMAT;

.. dTCU2(i) =q= EMAT;
EMATconstraint(i,j,k)
EMATconstraintHU(j)
 EMATconstraint802(3)
EMATconstraintCU(1)
EMATconstraintCU2(1)
 Equation
ame (q(1,j,k)/(U(1,j)*((dt(1,j,k)*dt(1,j,k+1)*(dt(1,j,k)*dt(1,j,k+1))/2)
 **(1/3)));
ame (qbu(j)/(Uh(j)*((dtbu(j)*d7852(j)*(dtbu(j)*d7852(j))/2)**(1/3)));
ame (qcu(1)/(Uh(j)*((dtbu(j)*d7852(j)*(dtbu(j)*d7C02(1))/2)**(1/3))));

Aroaah(j,k)$flrst(k) .. Areah(j)
AreaaC(i,k)Slast(k) .. AreaC(i)
Equation

OBJ Objective function:

OBJ Objective function:

OBJ ... s =u= sum(y,(ichu * (sum(),qhuold())=qhu()))) + (ccu * (sum(i,qcuold(i)=qcu(i))))/(i)**Year(y))))

= (C*sum((i,j,k), (max(),(AreaR(j)=AoldR(j))))**BR())

= (C*sum((i),(max(),(AreaR(j)=AoldC(i))))**BR())

= (C*sum(i),(max(),(AreaR(j)=AoldC(i))))**BC())

= (CF*sum(i),(k),max(0,(r(i,j),k))=rold(i,j,k))))

= (CF*sum(i,max(),(cu(i))=roud(i)))))

= (CF*sum(i,max(),(cu(i))=roud(i)))));
 Equation
 Equation
Equation

SplitlineH(i,k) Splitting line constrain for hot streams

SplitlineH(i,k) Splitting line constrain for cold streams;

SplitlineH(i,k)Set(k) ... sum(j,z(i,j,k)) =1= 1;

SplitlineC(j,k)Set(k) ... sum(i,z(i,j,k)) =1= 3;
th.up(1,k) = thin(1);
th.io(1,k) = thout(1);
tc.up(),k) = tcout(j);
 tc.10(j,k) > tcin(j)/
loop((i,j)),
if(thin(i) - tcin(j) < 0,
                          loop(k,
    dt.up(i,),k) = TINhu-EMAT;
    display dt.up;
                         32
                                  else
                      51 52
17
```

dTH9.up(j) dTH92.up(j) dTH92.up(j) dTH92.up(j) dTH92.up(j) dt.l0(i,j,k) dt.l0(i,j,k) dtH9.l0(j) dTH92.up(j) - max(0,TIMg=tcin())-EMAT); - max(0,TINnu=tcin())-EMAT); - max(0,tbin()-toutcu=EMAT); = max(0,thin(i)-toutou-EMAT);
- EMAT; - EMATI - EMATA dfHU2.10[]) - EMATJ - EMATS - EMATS stol.10(1) dTCUZ. Lo(5) // (1, 1, 1) \$37(E) = min(ech(1), ecc())); q.10(1,1,K)\$\$T(K)= 0; qcu.10(1) = 0; = 01 ghu.in()) - q.up(i,j,k)/(U(i,j)*EMAT) ; - qnu.up(j)/((Un(j))*EMAT); - qcu.up(1)/((Uc(1))*EMAT); AreaHX.up(1,j,k)\$ST(k) AreaG.up(j) AreaG.up(i) AreaHX, Io(i, j, k) 357(k) AreaH, Io(j) AreaG. Io(i) - 0j - 0j = 01 th.1(1,k) - thin(i)7 tt.1(1,k)
tt.1(1,k)
dt.1(1,j,k)
dTHU.1(1)
dTHU2.1(j)
dTHU2.1(j) = tcin(j); - max(EMAT,th,1(1,k)-tc.1(j,k)); = EMAT; - EMATI - EMATI dTCU2.1(1) - ENATY z.fx('H1','01',k) = 0r thin(i) - FixtempH1(i); FixtempH1(i) - FixtempH2(i); FixtempH1(i) - thout(i); (thin(i) - FixtempH1(i))/2; (FixtempH2(i) - FixtempH2(i))/2; (FixtempH2(i) - thout(i))/2; (FixtempH2(i) - thout(i))/2; CpMavg(i); ActiH1.1(1.k) ActiM2.1(1.k) - 6 -Act)H3.1(1,k) THCall.1(1,k) THCal2.1(1,k) . . -THEW13.1(1,R) Cpllavng.1(1, k) ÷ tcout(j) = FixtempCl(j); FixtempCl(j) = FixtempCl(j); FixtempCl(j) = tcin(j); (tcout(j) = FixtempCl(j))/2; (FixtempCl(j) + FixtempCl(j))/2; (FixtempCl(j) = tcin(j))/2; CpCavg(j); ActiC1.1(j,k) ActiC2.1(j,k) ActiC3.1(j,k) TCCall.1(j,k) . . . -TCcall,1(j,k) TCcall,1(j,k) CpCavgg,1(j,k) -..... . . 12Usy ActiHL1.1(i,k)Slast(k) ActiHL2.1(i,k)Slast(k) ActiHL3.1(i,k)Slast(k) thin(1) - FixtempH1(1); FixtempH1(1) - FixtempH2(1); FixtempH2(1) - theut(1); "BOXCOME GODING "? BOT OFFICE ActiCP1.1(),k)Sflest(k) ActiCF2.1(),k)Sflest(k) ActiCF2.1(),k)Sflest(k) tcout(j) = FistespCl(j); FistespCl(j) = FistespCl(j); FistespCl(j) = tcin(j); 1.0 thin(i) = Fixtempd1(i); thout(i) = thin(i); Fixtempd1(i) = Fixtempd2(i); thout(i) = thin(i); Fixtempd2(i) = thout(i); Acti01.up(1,k) Acti01.lo(1,k) 1.0 ÷ ActiHZ, up(1, k) . ActiH2.10(1,k) ActiH3.up(1,k) . ActiH3.lo(1,k) THCall.up(1,k) THCall.lo(1,k) thout(i) = thin(i); thin(i); (thout(1)*FimTempH1(i))/2: -THC#12.up(1,k) THC#12.lc(1,k) (FixTempH1(1))+fin(1))/2; (thout(1)+FixTempH2(1))/2; -THeal3.up(i,k) Theal3.loti,K) -(FisTempH2711+thin(1))/2s (FisterpR21); Ensatisfield (); OH1(1); OH1(1) * Thealloup(1,k) + GH1(1); OH1(1) * Thealloup(1,k) + GH1(1); OH2(1) * Thealloup(1,k) + GH2(1); OH2(1) * Thealloup(1,k) + GH2(1); CpH1.lp(1,k) CpH1.lp(1,k) CpH2.up(1,k) -

Op#2.10(1,k)

....

Cp013.up(1,k)	Sec. 12	G83(1) * THeal3.up(1,k) + G83(1);
CpH3.10(1,k)	Sec. 1	CH3(1) * THes13.lo(1,k) + GH3(1)/
CpHavda, up (1, k)		(CpH].up(1,k) * ActiBL.up(1,k) + CpB2.up(1,k) * ActiB2.up(1,k)
		CpH3.up(1,k) * Actill3.up(1,k))/ (Actill.up(1,k) + Actill3.up(1,k) + Actill3.up(1,k));
CnHayou, lo(1,k)	Sec. 12	0/
		~
Actici.up(j,k)		tcout(j) - FixtempCl(j);
ActaCi.lo(), kk		trin(3) - trout(3);
Actic2.up(1, K)	-	FixtompC1(j) - FixtompC2(j);
Actic2, loll, kt	-	tain()) = taout());
ActaC3.up(j,k)		FistempC2()) - thin()):
ActiC3.10(], k)		tern(j) = tcout(j);
TCcall.up(),k)		taout()):
TCcall.10().N)		(tcln(j)+F1x7espC1(j))/2)
TCC412.40(1,K)	-	(tcout())+FixTempCl())/2:
TCC#12.101].k)	100	(trin())+FixTemp4243))/2:
TCcall.up().N)	-	(tcont(j)+F1xTemp72(j)+/2/
TCca13.10(j/k)	-	toin());
$\operatorname{CpCl}(\mathfrak{g},\mathfrak{g})$	-	OC1(3) * TGEw11.up(3,k) + GG1(3)/
cpc1, lo(j, k)		OC1(3) * TCcall.10(3.k) + GC1(3);
CpC2.up(1, k)		0C2(j) * TCcal2.up(),k) + GC2())/
CDC5 * In (3. K)	100	OC2(1) * DCeal2.10(1,k) + CC2(1):
cpc3.up(],k)		OC3()) * DCcal3.up(), k) * GC3());
cbc1.10(1*s)		003(1) * 100413/30(1)(0) + 903(1))
CpCavgg.up(j,k)	7	<pre>(CpC1.up(j,k) * ActiC3.up(j,k) = OpC2.up(j,k) * ActiC3.up(j,k) + OpC3.up(j,k) * ActiC3.up(j,k) // (ActiC3.up(j,k) * ActiC3.up(j,k) //</pre>
CpCavag.lo(j,k)	÷	07
Manual and a first of the local		
Latitutt americate	-	A DIVISION OF THE OWNER OWNE
Art 1911 Jodi M	-	through a statement of the
her until and her		Playment of a construction of the
April 10, 10, 10, 10, 10		Therefore (if - Fistempherin)
Art fut a small ki	-	Fightman 10 (1) - Fight (1)
Acting to kt	-	ne -
Thealth weith ki	-	(b) o(1) + Fightmand (1) (1) 72.
Pleased in the first	-	(child (c) to be starting to (c) (c) (c)
PEcarto mori ki	-	TPL UP and DI (1, PL) PRIME 22/11/24
Thealt2. Loll. ki	-	Theat (1) Provide (1) (1)
THERALLS, and i. k)	-	(Front (1)+F5 strength (1))/23
THEALTS LOUIN		thouse (s) is a support settion
Cryll11, urs(1, k)	~	ONLYAL * THEATED. pp(1, k) * GRI(1);
CnHL1, 10(1, k)	-	OWI (1) * THCALLI, ID (1, k) + GHI (1) r
CoHL2, up (S, k)	-	082(1) * THCALL2.0D(1.8) + G82(1))
CrohL2, 10(1,8)	-	082(1) * THealL2, Le(1, k) * G82(1);
Coll3.up11.ky		OND(i) * Theall3.op(i,k) + GU3(i)r
CpHL3. Lo(I, N)		OH3(1) * THEALT3.10(1,k) + CH3(1);
CpHavagL.up(1,k)Slast(k)	~	(CpHL1.up(1,k)*ActiHL1.up(1,k)*CpHL2.up(1,k)*ActiHL2.up(1,k)*CpHL3.up(1,k)
continuent fully interface the		*Act10L3.up(1,k))/(Act10L1.up(1,k)+Act(0L2.up(1,k)+Act10L3.up(1,k));
shanyours to (1'k) Start (k)		14
NOW THE STATES		
ActidEl.up(j,k)		tcout()) - Fixtemp01());
ActaCP1.10(1,k)	-	tcout()) - tcout());
ActiCF2.up(].k)	~	FixtempCl()) - FixtempC2());
ActicE2.10(1,k)		FixteopCl(j) = tcout(j);
ActiCFI.up(j.k)	-	Figtesp(2(j) = toin(j))
Act1083.1013, k)		FixtempC2(j) = tcout(j);
TCcalfl.up(j,k)		trout ());
TCcalF1.10(j,k)	-	(tcput(j)+FixtempCl(j))/2;
TOcalF2.up(),k)		(FistempCI(j)+tcout(j))/2/
TCc4182.3u(3,8)		(FistempC1()) *FistempC2()))/2;
TCcalF3.up(],k)	-	(FixtempC2())+tcout())/2;
TCCALFI. lo(j, k)		(FixtempC2(j)+tcin(j))/21
CPCF1.up(], 8)	~	OC1(j) * TCealF1.up(j,k) + GC1(j)r
CpCF1,10(), kx	-	OCI(1) * TCcalF1.10(1, k) + GC1(1));
CpCF2.up(j,k)		OGZ(j) + TGCalF2sup(j,k) + GC2(j))
CpCF2.lm(j.k)		OC2(j) * TCcalF2.1o(j,k) * OC2(j)/
CpCF3.4p(1,8)	-	OC3(1) * TGCalF3, up(1,k) + GC3(1);
CpCF3.10(1,4)		003()) * TGcalF3.ln(j,k) + GC3());
CpCavguF.op(), h)	-	<pre>(CpCF3.up(j,k)*ActLCF1.up(j,k)+CpCF2.up(j,k)*ActLCF2.up(j,k)</pre>
		<pre>#CDCF3.up(j,k)*ActICF3.up(j,k))/ (ActICF3.up(j,k)*ActICF3.up(j,k)*ActICF3.up(j,k));</pre>
ALCO N LOCK AN		

```
\begin{array}{l} q.1 \left( {}^{+} B3 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} B2 {}^{+} \right) &= 5.5615648 \pm 3j \\ q.1 \left( {}^{+} B1 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} S2 {}^{+} \right) &= 6.3257818 \pm 3j \\ q.1 \left( {}^{+} B3 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} S5 {}^{+} \right) &= 6.3257818 \pm 3j \\ q.1 \left( {}^{+} B3 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} S5 {}^{+} \right) &= 6.3257818 \pm 3j \\ q.1 \left( {}^{+} B3 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} S5 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C2 {}^{+}, {}^{+} R2 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R2 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R2 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R5 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R5 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R5 {}^{+} \right) &= 14 \\ z.1 \left( {}^{+} B4 {}^{+}, {}^{+} C1 {}^{+}, {}^{+} R5 {}^{+} \right) &= 14 \\ qcu.1 \left( {}^{+} H4 {}^{+} \right) &= 1.3793388 \pm 3j \\ qcu.1 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.1 \left( {}^{+} H3 {}^{+} \right) &= 1.378389 \pm 43j \\ qcu.1 \left( {}^{+} H3 {}^{+} \right) &= 1.378389 \pm 43j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 2.149990 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\ qcu.4 \left( {}^{+} H3 {}^{+} \right) &= 4.06931 E \pm 3j \\
  qcu.qp('H4') = 4.06931E43r
qcu.qp('H5') = 4.167334E43r
qhu.l('Cl') = 8.210093E44r
qhu.qp('Cl') = 8.210093E44r
  option sysout - ond
option decisials - B;
option demilis - 100;
option MINLP - DICOPT;
   option Inreads = 0;
option reslim = 600;
model Synheat /all/;
    Synheat.optfile=1;
    Somecho > dlcupt.opt
    Soffecho
        solve Synheat max s using MINLP :
   Display CpRavgg.1.CpCavgg.1.CpRavggh.1.CpCavggF.1.z.1.zco.1.zhu.).q.L.qcu.1.qhu.1.th.1.tc.1.s.1.dtcm.1.dtcm2.1z
   Parameter
AreacalHX(1,),k)
                                                                                                               Area calculation for each heat exchanger
                                                                                                                Area calculation for hot utility
Area calculation for cold utility
Total Area calculation
    AreadalHU())
    AreacalCU(1)
    TotalArea
                                                                                                              Cold utility cost
Hot utility cost
    ColdUTcost
    HotUTcost
    ColdUTSave
    RotUTSave
    TotalSave
    FixEXNew
AreaHXNew
    ModifyCost
   Check
ColdOld
    Hotold
    oldur
    Save
  pay
UTcost;
                                                                                                          = q.l(i,j,k)/(0(i,j)*(dt.1(i,j,k)*dt.1(i,j,k*l)*(dt.1(i,j,k)+dt.1(i,j,k*l)/2)**(1/3));
= qtu.1(j)/((0t(j))*((dtu.1(j))*(TINu+tout(j))*((dthu.1(j))*(TINu+tout(j)))/2)**(1/3));
= qu.1(i)/((0t(i))*((dtu.1(i))*(thout(i)-TINu)*((dtu.1(i))*(thout(i)-TINu))/2)**(1/3));
= qu.1(i)/((0t(i))*((dtu.1(i))*(thout(i)-TINu)*((dtu.1(i))*(thout(i)-TINu))/2)**(1/3));
= qu.1(i,j,k),Ateacalik(i,j,k))* qun(j,Ateacali(0(j))* sum(i,AreacalCO(i));
= sum(i,(cua*qu.1(i)));
= sum(j,(chu*qhu.1(j)));
= cui+qu.1(i)));
   AreacalHK(1, ), k) Sat(k)
    AreacalHU(j)
    AreadalCII(1)
    TotalArna
    ColdUTcost
    Bot OTCONT.
    UTC
                                                                                                         ccut sum (1, gcsold(1))
    Coldold
                                                                                                                                                                                                                          1
    Rotold
    01407
    Save
    ColdUTSave
    BetU7Save
    Total Saus
     2 LXHXNev
   AreaHXNew
    ModifyCost
   PAY
```

display AreacuiHX, AreacuiHU, AreacuiCU, TotalArea, ColdUTcost, HotUTcost, UTCOST, ColdOld .
FotCld, CldUT, Save, ColdUTSave, HotUTSave, TotalSave, FixEXNew, AreaEXNew, ModifyCost, Check, PAy ;

Appendix C GAMS Results of Study 1 (HEN Synthesis)

```
---- 898 VARIABLE CpHavgg.L Cp average
                                                                   K6
          K1
                  K2 K3 K4 K5
H1
                                                                2,01157288
H1 2.01157208
H2 2.29451883 2.29451883
H3 2.59556474 2.56433643 2.46010213 2.49727899 2.19431058 2.28077031

        H4
        2.69749589
        2.33889301
        2.47357330
        2.42342119

        H5
        2.65616410
        2.57102891
        2.57102891
        2.13267235
        2.41611128

---- 898 VARIABLE CpCavgg.L Cp average
                                             R5 86
          1035
                      K2 K3
C1 2,79325470 2.47064722 0.40767537 2.08076827 2.76662173
---- 358 VARIABLE CpHavgdL.L Cp average
          K6
H1 2.01157298
H2 1+94893342
H3 1.89743080
R4 2+04800222
---- 898 VARIABLE CpCavggF.L Cp average
       Kl
C1 3.18685800
---- 903 VARIABLE z.L binary variable to denote existence of match ij in sta
                   ge k
                      K2
             K1
                                     K5
H2.C1
                              1.00000000
H3.C1 1.00000000 1.00000000
H4.C1 1.00000000 1.0000000
H5.C1 1.00000000 1.00000000
---- 903 VARIABLE zcu.L binary variable to denote that cold utility exchange
                          s heat with hot stream i
HI 1.00000000, HZ 1.00000000, H3 1.00000000, H4 1.00000000
H5 1.00000000
```

---- 903 VARIABLE zhu.L binary variable to denote that hot utility exchanges heat with cold stream j C1 1.00000000 ---- 903 VARIABLE q.L Heat exchanged between hot process stream i and cold p rocess streams j in stage k K1 K2 K5 H2.C1 6.325781843 H3.C1 5.561564E+3 4.584498E+3 H4.C1 1.008628E+4 3.660193E+3 2.012400E+4 H5.C1 4.317605E+4 ---- 903 VARIABLE gcu.L heat exchanged between hot stream i and cold utility H2 2.089762E+3, H3 2.149990E+3, H4 4.868913E+3 H1 1.378389E+3, H5 4.167334E+3 ---- 903 VARIABLE ghu.L Heat exchanged between hot utility and cold stream j C1 8.210093E+4 ---- 903 VARIABLE th.L. temperature of hot stream i at hot end of stage k K1 K2 K3 K4 K5 K6 HI 43.33334918 43.33334918 43.33334918 43.33334918 43.33334918 43.33334918 H2 2.000400E+2 2.000400E+2 2.000400E+2 2.000400E+2 2.000400E+2 74.01062438 H3 2.727900E+2 2.727900E+2 1.731069E+2 1.731069E+2 1.731069E+2 77.07990532 H4 3.427258E+2 2.002346E+2 1.405982E+2 1.405982E+2 1.405982E+2 1.405982E+2 H5 3.707220E+2 1.840239E+2 1.840239E+2 1.840239E+2 1.840239E+2 75.64571905 ---- 903 VARIABLE tc.L temperature of cold stream j at hot end of stage k K1 K2 K3 K4 K5 K6 C1 2.441690E+2 1.460012E+2 1.267852E+2 1.267852E+2 1.267852E+2 50.00000000 ---- 903 VARIABLE s.L = 6.554118E+6 objective function ---- 903 VARIABLE dTHU.L Temperature approach for the match of hot stream and cold utility C1 2.558310E+2

```
---- 903 VARIABLE dTHU2.L Temperature approach for the match of hot stream i
                           and cold utility
C1 1.232000E+2
---- 903 VARIABLE dTCU.L Temperature approach for the match of cold stream j
                          and hot utility
H1 16.33334918,
              H2 59,01062438, H3 62.07990532, H4 1,255982E+2
H5 60.64571905
---- 903 VARIABLE dTCU2.L Temperature approach for the match of cold stream
                           j and hot utility
H1 15.00000000, H2 15.00000000, H3 15.00000000, H4 40.00000000
H5 40.00000000
---- 903 PARAMETER Computertionaltime = 30.01400000
       937 PARAMETER AreacalHX Area calculation for each heat exchanger
****
                      K2. K5
            E1
H2.C1
1.393715E+2 2.558308E+2
H4.C1 2.719076E+2 2.487469E+2
H5.C1 1.175950E+3
                          1.023360E+3
---- 937 PARAMETER AreacalHU Area calculation for hot utility
C1 9.049860E+2
---- 937 PARAMETER AreacalCU Area calculation for cold utility
H1 1.659617E+2, H2 1.306266E+2, H3 1.303613E+2, H4 1.304485E+2
H5 1.680144E+2
937 PARAMETER TotalArea = 5.032702E+3 Total Area calculatio
                                                     n
          PARAMETER ColdUTcost = 7.327194E+4 Cold utility cost
          PARAMETER HotUTcost
                                    = 4.926056E+6 Hot utility cost

    4.999327E+6 Total utility cost
    2.422000E+4 Fixed charge for exch

          PARAMETER TotalUT
          PARAMETER FixedcostHX
                                                     ander
          PARAMETER FixedcostHotUT
                                    = 1.730000E+4 Fixed charge for hot
                                                     utility
                                     - 3.460000E+3 Fixed charge for cold
          PARAMETER FixedcostColdUT
                                                     utility
          PARAMETER AreaHXcost
                                     = 1.020691E+6 Area cost for each ex
                                                     changer
                                    = 2.714958E+5 Area cost for hot uti
          PARAMETER AreaHUcost
                                                     lity
                                     = 2.176237E+5 Area cost for cold ut
          PARAMETER AreaCUcost
                                                     ility
                                    - 1.554791E+6 Capital cost
          PARAMETER Capitalcost
                                      = 6.554118E+6 Total Annual Cost
          PARAMETER TAC
```

CURRICULUM VITAE

Name: Mr. Siwat Valeekiatkul

Date of Birth: October 27, 1994

Nationality: Thai

University Education:

2013–2017 Bachelor Degree of Petrochemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand **Work Experience:**

2016	Position:	Trainee
	Company name:	Siam Mitsui PTA Co., Ltd.
2016	Position:	Trainee
	Company name:	Thaioil Public Co., Ltd.