

_{โครงการ} การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ ฟลูออเรสเซนต์เซ็นเซอร์แบบกระดาษสำหรับตรวจวัดไอออนของทองและไซยาไนด์ Paper-based fluorescent sensor for detection of gold ion and cyanide ion

- **ชื่อนิสิต** นายสหรัฐ มุกดารัตน์สกุล **เลขประจำตัว** 5833094623
- **ภาควิชา** เคมี
- **ปีการศึกษา** 2561

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของโครงงานทางวิชาการที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของโครงงานทางวิชาการที่ส่งผ่านทางคณะที่สังกัด The abstract and full text of senior projects in Chulalongkorn University Intellectual Repository(CUIR) are the senior project authors' files submitted through the faculty. ฟลูออเรสเซนต์เซ็นเซอร์แบบกระดาษสำหรับตรวจวัดไอออนของทองและไซยาไนด์

Paper-based fluorescent sensor for detection of gold ion and cyanide ion

โดย

นายสหรัฐ มุกดารัตน์สกุล

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิทยาศาสตรบัณฑิต ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561 โครงการ ฟลูออเรสเซนต์เซ็นเซอร์แบบกระดาษสำหรับตรวจวัดไอออนของทองและไชยาไนด์ โดย นายสหรัฐ มุกดารัตน์สกุล

ได้รับอนุมัติให้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

คณะกรรมการสอบโครงการ

(ผู้ช่วยศาสตราจารย์ ดร.มนพิชา ศรีสะอาด)

อาจารย์ที่ปรึกษา

(รองศาสตราจารย์ ดร.ไพซูรย์ รัชตะสาคร)

สี่กุลสุ่ม ชื่นอรูโณทัย กรรมการ (ผู้ช่วยศาสตราจารย์ ดร.สกุลสุข อุ่นอรุโณทัย)

รายงานฉบับนี้ได้รับความเห็นชอบและอนุมัติโดยหัวหน้าภาควิชาเคมี

- หัวหน้าภาควิชาเคมี

(รองศาสตราจารย์ ดร.วุฒิชัย พาราสุข)

วันที่ 14 เดือนพฤษภาคม พ.ศ. 2562

ชื่อโครงการฟลูออเรสเซนต์เซ็นเซอร์แบบกระดาษสำหรับตรวจวัดไอออนของทองและไซยาไนด์ชื่อนิสิตในโครงการนายสหรัฐ มุกดารัตน์สกุล เลขประจำตัว 5833094623ชื่ออาจารย์ที่ปรึกษารองศาสตราจารย์ ดร.ไพฑูรย์ รัชตะสาครภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561

บทคัดย่อ

ในงานวิจัยนี้ได้มีการพัฒนาฟลูออเรสเซนต์เซ็นเซอร์แบบกระดาษสำหรับตรวจวัดไอออนทองคำและไซยาไนด์ โดยนำอนุพันธ์ของสไปโร่ไบฟลูออรีนและอนุพันธ์ของไพรีนมาขึ้นรูปบนกระดาษที่สร้างแบบไว้ด้วยการพิมพ์ ด้วยหมึกแวกซ์ ในการวิเคราะห์จะมีการถ่ายภาพของอุปกรณ์ฐานกระดาษที่เตรียมขึ้นแล้วนำภาพถ่ายไป ประมวลผลด้วยโปรแกรม ImageJ แล้วหาความสัมพันธ์ระหว่างการเปลี่ยนแปลงสัญญาณสีต่าง ๆ กับความ เข้มข้นของไอออน ผลการทดลองพบว่าอุปกรณ์ฐานกระดาษที่ได้มีความจำเพาะในการตรวจวัดที่สูง แต่มี ขีดจำกัดของการตรวจวัดที่ต่ำกว่าการใช้งานในรูปสารละลาย โดยความสามารถในการตรวจวัดไอออนทองคำ ในช่วง 10 ถึง 100 มิลลิโมลาร์ และสามารถใช้ตรวจวัดไซยาไนด์ไอออนได้ในช่วง 1 ถึง 10 มิลลิโมลาร์ และ เมื่อนำไปทดสอบกับแหล่งน้ำตัวอย่างพบว่าได้ค่าเปอร์เซ็นต์การคืนกลับของไอออนทั้งสองเป็นที่น่าพอใจ

คำสำคัญ: อุปกรณ์ฐานกระดาษ, ไอออนทอง, ไซยาไนด์ไอออน, ฟลูออเรสเซนส์, เซ็นเซอร์

Project Title	Paper-based fluorescent sensor for detection of gold ion and cyanide			
	ion			
Student Name	Mr. Saharath Mukdaratsakul	Student ID 5833094623		
Advisor Name	Associate Professor Paitoon Ra	ashatasakhon, Ph.D.		
Department of Chem	iistry, Faculty of Science, Chula	longkorn University, Academic Year 2018		

Abstract

This research involves a development of paper-based fluorescent sensors for the detection of gold and cyanide ions. The derivatives of spirobifluorene and pyrene are fabricated on patterned paper obtained from wax-printing. In the analysis of each ion, the photographs of paper-based sensors are processed by a computer program in order to access relationship between the color signal changes and analyte concentrations. The results show that the paper-based sensors exhibit good selectivities, but the sensitivities for detections are not better than the sensors in the solution phase. The paper-based sensors can be used for the detection of gold ion in the 10-100 mM range and cyanide ion in the 1-10 mM range. The use of these sensors on real sample also shows satisfactory recovery percentages.

Keywords: paper-based, gold ion, cyanide ion, fluorescence, sensor

กิตติกรรมประกาศ

การทำโครงการวิจัยครั้งนี้ผู้จัดทำขอขอบพระคุณอาจารย์ที่ปรึกษาโครงการ รอง ศาสตราจารย์ ดร.ไพฑูรย์ รัชตะสาคร ที่ให้การสนับสนุน ให้ความรู้ คำแนะนำ ตลอดจนความช่วยเหลือต่าง ๆ ทำให้โครงการสามารถเสร็จลุล่วงได้ตามเป้าหมาย

ขอขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร.มนพิชา ศรีสะอาด และผู้ช่วยศาสตราจารย์ ดร. สกุลสุข อุ่นอรุโณทัย ที่ให้เกียรติมาเป็นคณะกรรมการสอบในครั้งนี้ ตลอดจนให้คำแนะนำ อีกทั้งยังช่วย ตรวจสอบการแก้ไขรายงานฉบับนี้สมบูรณ์มากยิ่งขึ้น

ขอขอบพระคุณโครงการการเรียนการสอนเพื่อเสริมประสบการณ์ ภาควิชาเคมี จุฬาลงกรณ์ มหาวิทยาลัย ที่ให้ทุนสนับสนุนโครงการวิจัยในครั้งนี้

สุดท้ายนี้ขอขอบพระคุณ ดร.กรรณิการ์ วงษ์นาม และ ดร. คมเทพ ศิลป์จารุ และพี่ๆ ใน หน่วยปฏิบัติการที่คอยดูแล ให้ความช่วยเหลือ จนงานวิจัยครั้งนี้สำเร็จลุล่วงไปได้ด้วยดี สารบัญ

	หน้า
บทคัดย่อภาษาไทย	ค
บทคัดย่อภาษาอังกฤษ	ঀ
กิตติกรรมประกาศ	จ
สารบัญ	ฉ
สารบัญตาราง	ଖ
สารบัญรูปภาพ	ណ
บทที่ 1 บทนำ	1
1.1 ความเป็นมาและมูลเหตุจูงใจในการเสนอโครงการ	1
1.2 วัตถุประสงค์และขอบเขตการวิจัย	2
1.3 ทฤษฎีที่เกี่ยวข้อง	2
1.3.1 Paper-Based Sensors	2
1.3.2 fluorescent spectroscopy	6
1.3.3 imageJ	7
1.4 งานวิจัยที่เกี่ยวข้อง	7
1.5 ขั้นตอนและวิธีการดำเนินงานวิจัย	12
1.6 ประโยชน์ที่ได้รับจากงานวิจัย	12
บทที่ 2 การทดลอง	13
2.1 อุปกรณ์และสารเคมี	13
2.2 วิธีการทดลอง	14
2.2.1 การเตรียมสารละลาย	14
2.2.2 การเตรียมอุปกรณ์ฐานกระดาษ	15
2.2.3 ขั้นตอนการตรวจวัด	15
บทที่ 3 ผลการทดลอง	22
3.1 ผลการทดสอบกระดาษตรวจวัดไอออนทอง	22
3.1.1 ผลการทดสอบการหาความเข้มข้นที่เหมาะสมของสารละลาย	
Tetrasulfonamido -picolylspirobifluorene (TSPS) ที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ	22
3.1.2 ผลการทดสอบความจำเพาะในการตรวจวัด	23
3.1.3 ผลการศึกษาช่วงความเข้มข้นของไอออนทองในการดับค่าสัญญาณฟลูออเรสเซนต์	24
3.1.4 ผลการศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green	
และ blue กับความเข้มข้นไออนทองที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น	25

3.1.5 วิเคราะห์ผลของตัวตรวจวัดไอออนทองที่ถูกพัฒนาขึ้น โดยวิเคราะห์เทียบสาร	
ละลายที่ทราบความเข้มข้น	31
3.2 ผลการทดสอบกระดาษตรวจวัดไอออนไซยาไนด์	32
3.2.1 ผลการทดสอบการการหาความเข้มข้นที่เหมาะสมของสารละลายอนุพันธ์ไพรีนที่	
นำมาใช้เป็นเซ็นเซอร์	32
3.2.2 ผลการทดสอบความจำเพาะในการตรวจวัด	33
3.2.3 ผลการศึกษาช่วงความเข้มข้นไอออนไซยาไนด์ที่มีผลต่อค่าสัญญาณฟลูออเรสเซนต์	34
3.2.4 ผลการศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green	
และ blue กับความเข้มข้นของไซยาไนด์ที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น	35
3.2.5 วิเคราะห์ผลของตัวตรวจวัดไอออนไซยาไนด์ที่ถูกพัฒนาขึ้น โดยวิเคราะห์เทียบ	
สารละลายที่ทราบความเข้มข้น	39
บทที่ 4 สรุปผลการทดลอง	42
เอกสารอ้างอิง	43
ภาคผนวก	47
ประวัติผู้วิจัย	63

สารบัญตาราง

ตารางที่	ໍ່າ 3.1	ค่าสัญญาณ และความเข้มข้นของ Au ³⁺ ที่เติมลงไปในสารละลายตัวอย่างน้ำฝน	31
ตารางที่	i 3.2	ค่าเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด Au ³⁺ ในสารละลายตัวอย่าง	32
ตารางที่	i 3.3	ค่าสัญญาณ และความเข้มข้นของ CN⁻ ที่เติมลงไปในสารละลายตัวอย่างน้ำฝน	39
ตารางที่	ໍ່າ 3.4	ค่าสัญญาณ และความเข้มข้นของ CN⁻ ที่เติมลงไปในสารละลายตัวอย่างน้ำจาก	
		สระจุฬาลงกรณ์มหาวิทยาลัย	40
ตารางที่	ີ່ 3.5	ค่าเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด CN ⁻ ในสารละลายตัวอย่าง	41
ตาราง เ	ก-1	ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อหาความเข้มข้น	
		ที่เหมาะสมของสารละลาย Tetrasulfonamido-picolylspirobifluorene (TSPS)	
		ที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ	47
ตาราง เ	ก-2	ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อศึกษาช่วงความ	
		เข้มข้นของไอออนทองในการดับค่าสัญญาณฟลูออเรสเซนต์	49
ตาราง เ	ก-3	ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของไอออน	
		ทองความเข้มข้น 1 – 10 mM	51
ตาราง เ	ก-4	ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของไอออน	
		ทองความเข้มข้น 10 – 100 mM	53
ตาราง เ	ก-5	ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงความ	
		สัมพันธ์ระหว่างอัตราส่วน I _{blank} /I กับความเข้มข้นไอออนทองช่วง 10 – 100 mM	55
ตาราง เ	ก-6	ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาค่าสัญญาณ blue ในสารละลาย	
		ตัวอย่างที่ทราบความเข้มข้น	57
ตาราง เ	ก-7	ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อหาความเข้มข้น	
		ที่เหมาะสมของสารละลายอนุพันธ์ไพรีนที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ	58
ตาราง เ	ก-8	ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อศึกษาช่วงความ	
		เข้มข้นของไอออนไซยาไนด์ที่ทีผลต่อค่าสัญญาณฟลูออเรสเซนต์	59
ตาราง เ	ก-9	ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของไอออน	
		ไซยาไนด์ความเข้มข้น 1 – 10 mM	60
ตาราง เ	ก-10	ค่าสี RGB Grey จากการทำซ้ำ 7 ครั้ง ผลการศึกษาค่าสัญญาณ blue ในสารละลาย	
		ตัวอย่างน้ำฝนและน้ำจากสระน้ำจุฬาฯที่ทราบความเข้มข้น	62

สารบัญรูปภาพ

รูปที่	1.1 โครงสร้างของสไปโรฟลูออรีนที่ใช้เป็นเซ็นเซอร์สำหรับไอออนทองคำ	2
รูปที่	1.2 โครงสร้างของอนุพันธุ์ของไพรีนที่ใช้เป็นเซ็นเซอร์สำหรับไอออนไซยาไนด์	2
รูปที่	1.3 ตัวอย่างวิธีการสร้างลวดลายบนกระดาษด้วยเทคนิค photolithography [15]	3
รูปที่	1.4 ตัวอย่างลวดลายบนกระดาษด้วยเทคนิค analogue plotting [17]	4
รูปที่	1.5 ตัวอย่างลวดลายบนกระดาษด้วยเทคนิค inkjet printing [19]	4
รูปที่	1.6 ตัวอย่างลวดลายบนกระดาษด้วยเทคนิค plasma treatment [20]	5
รูปที่	1.7 ตัวอย่างวิธีการสร้างลวดลายบนกระดาษด้วยเทคนิค wax printing [22]	5
รูปที่	1.8 แผนภาพจาบลอนสกี้แบบปรับปรุง (modified Jablonski diagram) [23]	6
รูปที่	1.9 แถบเมนูโปรแกรม ImageJ	7
รูปที่	1.10 9,9'-Spirobifluorene [35]	7
รูปที่	1.11 โครงสร้างของสารประกอบ BDM และ BDBM	8
รูปที่	1.12 โครงสร้างการจับไซยาไนด์กับหมู่ dicyanovinyl ของสารประกอบ BDM และ BDBM	9
รูปที่	1.13 โครงสร้างของสารประกอบ TPEM และ TPEBM	9
รูปที่	1.14 โครงสร้างการจับไซยาไนด์กับหมู่ dicyanovinyl ของสารประกอบ TPEBM	10
รูปที่	1.15 ภาพถ่ายของ TPEBM บนกระดาษทดสอบหลังจากสัมผัสกับแอนไอออนต่าง ๆ	10
รูปที่	1.16 ภาพถ่ายของ TPEBM บนกระดาษทดสอบหลังจากสัมผัสกับแอนไอออนต่าง ๆ	
	ภายใต้ความยาวคลื่น 365 nm	11
รูปที่	3.1 การเรื่องแสงของ TSPS บนอุปกรณ์ฐานกระดาษที่ความเข้มข้นต่างกัน	22
รูปที่	3.2 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีกับความ	
	เข้มข้น TSPS	23
รูปที่	3.3 ความจำเพาะของสารละลาย TSPS กับแคทไอออน 19 ชนิด	24
รูปที่	3.4 ช่วงการดับค่าสัญญาณฟลูออเรสเซนต์ของ Au ³⁺ ที่ช่วงความเข้มข้น	
	$1.0 \times 10^2 - 1.0 \times 10^{-3} \text{ mM}$	25
รูปที่	3.5 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey กับความเข้มข้น Au ³⁺	25
รูปที่	3.6 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น Au ³⁺ 1.0 – 10 mM	26
รูปที่	3.7 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น Au ³⁺ 1.0 – 10 mM	26
รูปที่	3.8 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น Au ³⁺ 1.0 – 10 mM	27
รูปที่	3.9 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น Au ³⁺ 1.0 – 10 mM	27
รูปที่	3.10 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น Au ³⁺ 10 – 1.0 x 10 ² mM	28
รูปที่	3.11 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น Au ³⁺ 10 – 1.0 x 10 ² mM	28

รูปที่ 3.12 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น Au ³⁺ 10 −1.0 x 10 ² mM	29
รูปที่ 3.13 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น Au ³⁺ 10 −1.0 x 10 ² mM	29
รูปที่ 3.14 กราฟแสดงความสัมพันธ์ระหว่างอัตราส่วน I _{blank} /I กับความเข้มข้น Au ³⁺ 10 – 80 mM	30
รูปที่ 3.15 การเรืองแสงของอนุพันธ์ไพรีนบนอุปกรณ์ฐานกระดาษที่ความเข้มข้นต่างกัน	32
รูปที่ 3.16 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีกับความ	
เข้มข้นอนุพันธ์ไพรีน	33
รูปที่ 3.17 แสดงความจำเพาะของสารละลายอนุพันธ์ไพรีนกับแอนไอออน 11 ชนิด	34
รูปที่ 3.18 แสดงช่วงการเปลี่ยนสีค่าสัญญาณฟลูออเรสเซนต์ของ CN ⁻ ที่ช่วงความเข้มข้น	
$10 - 1.0 \times 10^{-2} \text{ mM}$	34
รูปที่ 3.19 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey กับความเข้มข้น CN ⁻	35
รูปที่ 3.20 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น CN⁻ 1 – 8 mM	35
รูปที่ 3.21 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น CN ⁻ 1 – 8 mM	36
รูปที่ 3.22 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น CN⁻ 1 – 8 mM	37
รูปที่ 3.23 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น CN ⁻ 1 – 8 mM	37

บทที่ 1 บทนำ

1.1 ความเป็นมาและมูลเหตุจูงใจในการเสนอโครงการ

การปนเปื้อนของสารเคมีในสิ่งแวดล้อมเป็นสิ่งที่ทั่วโลกให้ความสนใจเนื่องจากส่งผลกระทบต่อสุขภาพ ของมนุษย์และสิ่งมีชีวิตอื่น ๆ โดยเมื่อได้รับสารเคมีแปลกปลอมย่อมจะเกิดผลต่าง ๆ ตามมา เช่น โรคพิษตะกั่ว (lead poisoning) ซึ่งเกิดจากการได้รับสารตะกั่วเข้าสู่ร่างกาย ทำให้เกิดอาการปวดบิดอย่างรุนแรง ท้องผูก ถ่ายเป็นเลือด มีอาการซีด และอาจมีอาการปลายประสาทอักเสบ โดยสารตะกั่วมักจะปนเปื้อนอยู่ในอากาศ แหล่งน้ำ พืชและดินในบริเวณโรงงานอุตสาหกรรม¹ โรคมินะมะตะ (Minamata diseases) เป็นโรคที่เกิดจาก การได้รับพิษจากสารปรอท ส่งผลต่อระบบประสาทส่วนกลาง ทำให้เกิดการพิการได้ การปนเปื้อนของปรอท นั้นมักเกิดจากการทิ้งน้ำเสียที่มีสารปรอทลงสู่แหล่งน้ำ ทำให้สารนั้นถูกสะสมในปลาและสัตว์น้ำซึ่งเป็นแหล่ง อาหารของมนุษย์²⁻³ นอกจากนั้นการสัมผัสกับสารเคมีบางชนิดอาจทำให้ถึงแก่ความตายได้ เช่น ไชยาไนด์ที่มี ความเป็นพิษสูง สามารถถูกดูดซึมเข้าสู่ระบบทางเดินหายใจและทางเดินอาหาร โดยในระบบทางเดินหายใจ ไชยาไนด์สามารถจับกับโมเลกุลของเหล็กที่อยู่ในไมโอโกลบิน ทำให้เกิดการขัดขวางกระบวนการขนส่ง อิเล็กตรอน ส่งผลให้ร่างกายเกิดภาวะขาดออกซิเจน และไซยาไนด์ยังก่อให้เกิดความเสียหายทางผิวหนัง โดย ไชยาไนด์สามารถจับกับ active site ของ Cytochrome a₃ ซึ่งอาจทำให้เชลล์ตายโดยจะเข้าไปยับยั้งการ ทำงานของเซลล์⁴ ดังนั้นการตรวจสอบสารเคมีอันตรายเหล่านี้จึงมีความสำคัญมาก

ในปัจจุบันมีวิธีการตรวจหาไอออนที่เป็นพิษต่อมนุษย์อยู่หลากหลายวิธี เช่น atomic absorption spectroscopy (AAS) atomic emission spectroscopy (AES) และ inductive coupled plasma mass spectrometry (ICP-MS)⁵ ซึ่งวิธีการเหล่านี้จำเป็นต้องใช้เครื่องมือขนาดใหญ่ที่มีราคาสูง ใช้เวลาในการ ตรวจวัดค่อนข้างนาน และจำเป็นต้องมีบุคลากรผู้มีทักษะในการใช้เครื่องมือ ในขณะที่การวิเคราะห์ด้วย เทคนิค fluorescence spectroscopy นั้นสามารถลดข้อจำกัดต่าง ๆ ข้างต้นลงได้ โดยที่ผ่านมาได้มีตัวอย่าง งานวิจัยที่เกี่ยวข้องกับฟลูออเรสเซนต์เซ็นเซอร์บนกระดาษ⁶⁻⁸ ซึ่งจะมีการกำหนดขอบเขตของกระดาษที่เป็น ไฮโดรฟิลิกและไฮโดรโฟบิก⁹ จึงทำให้มีข้อได้เปรียบของการวิเคราะห์ด้วยเทคนิคฟลูออเรสเซนส์เพิ่มขึ้นอีก เพราะสามารถเตรียมอุปกรณ์ตรวจวัดได้ง่าย พกพาได้สะดวก มีราคาถูก และใช้ในการวิเคราะห์ด้วยสาร ตัวอย่างปริมาณน้อยได้

เมื่อเร็ว ๆ นี้ได้มีตัวอย่างงานวิจัยด้านฟลูออเรสเซนต์เซ็นเซอร์ที่ใช้อนุพันธ์สไปโรไบฟลูออรีนสำหรับ การวิเคราะห์ไอออนทองคำ¹⁰ และอนุพันธ์ของไพรีนสำหรับการวิเคราะห์ไซยาไนด์ไอออน¹¹ ในสภาวะ สารละลาย ซึ่งมีโครงสร้างของสารดังรูป [1.1, 1.2] ตามลำดับ โดยเซ็นเซอร์ทั้งสองชนิดนั้นแสดง selectivity และ sensitivity ในการตรวจวัดที่ดีแต่ยังคงต้องใช้ Fluorometer ในการติดตามการเปลี่ยนแปลงสัญญาณ ใน งานวิจัยนี้ผู้วิจัยจึงสนใจจะพัฒนาอุปกรณ์ตรวจวัดบนกระดาษเพื่อใช้ตรวจวัดไอออนทองและไซยาไนด์ โดยใช้ อนุพันธุ์สไปโรฟลูออรีนและไพรีนที่กล่าวมาข้างต้นเป็นสารให้สัญญาณเรืองแสง โดยคาดว่าจะได้อุปกรณ์ ตรวจวัดที่มีความสะดวกต่อการใช้งาน

รูปที่ 1.1 โครงสร้างของสไปโรฟลูออรีนที่ใช้เป็นเซ็นเซอร์สำหรับไอออนทองคำ

รูปที่ 1.2 โครงสร้างของอนุพันธุ์ของไพรีนที่ใช้เป็นเซ็นเซอร์สำหรับไอออนไซยาไนด์

1.2 วัตถุประสงค์และขอบเขตการวิจัย

- พัฒนาตัวตรวจวัดไอออนทองและไซยาไนด์บนกระดาษ โดยใช้อนุพันธ์สไปโรฟลูออรีน และไพรีนเป็นสารให้สัญญาณเรืองแสงตามลำดับ
- 2. ศึกษาปัจจัยที่ส่งผลต่อประสิทธิภาพของเซ็นเซอร์บนกระดาษที่ถูกพัฒนาขึ้น
- 3. ศึกษาการใช้งานเพื่อการตรวจวัดในตัวอย่างจริง

1.3 ทฤษฎีที่เกี่ยวข้อง

1.3.1 Paper-Based Sensors

จากการสืบค้นงานวิจัยเกี่ยวกับอุปกรณ์ตรวจวัดแบบกระดาษ ได้พบว่ามีวิธีการทำอุปกรณ์ตรวจวัด แบบกระดาษที่มีการดัดแปรสมบัติทั้งทางเคมีและกายภาพของกระดาษให้มีความเหมาะสมต่อการใช้งาน [13,14] โดยมีรายละเอียดคร่าวๆ ดังต่อไปนี้ เทคนิค photolithography เป็นวิธีกำหนดขอบเขตของส่วนที่ทำปฏิกิริยาบนกระดาษ โดยทำ ให้กระดาษเคลือบด้วย photoresist ที่เป็นพอลิเมอร์ แล้วนำแม่แบบที่เป็นลวดลายซึ่งเป็นบริเวณที่โปร่งแสงที่ ต้องวางทับลงไป โดยเมื่อได้รับแสง UV ส่วนที่ถูกแม่แบบทับหรือส่วนที่ไม่โดนแสงจะกลายเป็นส่วนที่ชอบน้ำ (hydrophilic) และส่วนที่ได้รับแสงจะกลายเป็นส่วนที่ไม่ชอบน้ำ (hydrophobic) ซึ่งจะถูกล้างออกได้ด้วย organic solvent โดยส่วนที่ละลายออกไปจะเป็นบริเวณที่ไม่โดนแสง บริเวณที่โดนแสงจะเกิดพอลิเมอไรเซชัน แล้วกลายเป็นขอบเขตที่ใช้ในการทำปฏิกิริยากับสาร [15]

ร**ูปที่ 1.3** ตัวอย่างวิธีการสร้างลวดลายบนกระดาษด้วยเทคนิค photolithography [15]

โดยวิธีนี้มีข้อจำกัดคือต้องใช้อุปกรณ์ที่มีราคาแพง มีกระบวนการทำหลายขั้นตอน และ photoresist อาจถูก ทำลายได้เมื่อเกิดการโค้งงอ [16]

2. เทคนิค analogue plotting เป็นวิธีที่ใช้ XY-Plotter ที่เป็นเครื่องมือปากกาวาดภาพด้วย หุ่นยนต์ในการกำหนดขอบเขตของสารละลายบนกระดาษ โดยจะกำหนดขอบเขตที่ใช้ในการทำปฏิกิริยา ซึ่ง จากรายงานวิจัยที่ผ่านมาได้มีการใช้สาร polydimethylsiloxane ที่เป็นสารละลายไฮโดรโฟบิกพอลิเมอร์ลง บนกระดาษโดยใช้ plotter ในการกำหนดขอบเขต โดยส่วนที่ไม่โดนวาดทับจะเป็นส่วนที่ชอบน้ำ กลายเป็น ขอบเขตที่ใช้ทำปฏิกิริยากับสาร ซึ่งมีข้อดีคือสามารถทำซ้ำได้ ใช้วัสดุที่มีราคาไม่แพง มีความยืดหยุ่นและจะไม่ ถูกทำลายเมื่อเกิดการโค้งงอ [17] โดยจะมีข้อจำกัดคือ มีขั้นตอนการทำที่ซับซ้อน และวัสดุมีราคาสูง [18]

รูปที่ 1.4 แสดงตัวอย่างลวดลายบนกระดาษด้วยเทคนิค analogue plotting [17]

 เทคนิค inkjet printing เป็นวิธีกำหนดขอบเขตของส่วนที่ทำปฏิกิริยาบนกระดาษ โดยเคลือบ ด้วยสารที่มีสมบัติไม่ชอบน้ำ (hydrophobic) ซึ่งจะถูกพิมพ์ลงบนกระดาษ โดยส่วนที่ไม่ชอบน้ำจะเป็นบริเวณ ที่กำหนดขอบเขต ส่วนที่ชอบน้ำ (hydrophilic) จะกลายเป็นขอบเขตที่ใช้ในการทำปฏิกิริยากับสาร [19]

ร**ูปที่ 1.5** ตัวอย่างลวดลายบนกระดาษด้วยเทคนิค inkjet printing [19]

 4. เทคนิค plasma treatment เป็นวิธีกำหนดขอบเขตของส่วนที่ทำปฏิกิริยาบนกระดาษ โดย เคลือบด้วยสารที่มีคุณสมบัติไม่ชอบน้ำ (hydrophobic) เช่น alkenyl ketene dimer โดยจะวางแม่แบบทับ ลงบนกระดาษ แล้วนำเข้าเครื่อง plasma cleaner โดยส่วนที่ไม่ถูกทับจะกลายเป็นส่วนที่ชอบน้ำ (hydrophilic) เพื่อกำหนดขอบเขตที่ใช้ในการทำปฏิกิริยากับสาร [20,21]

ร**ูปที่ 1.6** แสดงตัวอย่างลวดลายบนกระดาษด้วยเทคนิค plasma treatment [20]

5. เทคนิค wax printing เป็นวิธีที่กำหนดขอบเขตของส่วนที่ทำปฏิกิริยาบนกระดาษ โดยใช้ โปรแกรมคอมพิวเตอร์ ซึ่งจะพิมพ์ลวดลายโดยใช้แว็กซ์ ซึ่งจะถูกพิมพ์ลงบนกระดาษ โดยส่วนที่พิมพ์โดยแว็กซ์ จะเป็นส่วนที่ไม่ชอบน้ำ (hydrophobic) ส่วนบริเวณที่ไม่ถูกพิมพ์จะเป็นส่วนบริเวณที่ชอบน้ำ (hydrophilic) แล้วจะถูกนำไปให้ความร้อนเพื่อให้แว็กซ์ละลายและซึมลงไปในกระดาษกลายเป็นขอบเขตทำปฏิกิริยา มีข้อดี คือ วัสดุที่ใช้มีราคาถูก มีขั้นตอนการทำที่ง่ายและรวดเร็ว [18,22]

ร**ูปที่ 1.7** แสดงตัวอย่างวิธีการสร้างลวดลายบนกระดาษด้วยเทคนิค wax printing [22]

1.3.2 fluorescent spectroscopy

เป็นเทคนิคที่ใช้วิเคราะห์สมบัติของสาร ซึ่งสามารถอธิบายได้โดยใช้แผนภาพจาบลอนสกี้ (Jablonski diagram) เมื่อสารดูดกลืนพลังงานแสง ส่งผลให้โมเลกุลถูกกระตุ้นและมีการสั่นภายในโมเลกุลจากระดับชั้น พลังงานสถานะพื้น (ground state) ไปสู่ระดับชั้นพลังงานที่สูงขึ้น (excited state) โมเลกุลที่มีการเคลื่อนที่ ไปอยู่ในระดับของชั้นพลังงานที่สูงจะไม่เสถียร จึงมีการปลดปล่อยพลังงานและตกลงมาในชั้นระดับพลังงานที่ ต่ำกว่าผ่านกระบวนการผ่อนคลายโดยการสั่น (vibrational relaxation) การเกิดเปลี่ยนภายใน (internal conversion หรือ IC) และการเกิดเปลี่ยนภายนอก (external conversion) เมื่อโมเลกุลลดระดับชั้น พลังงานจากสถานะกระตุ้นชั้นที่หนึ่ง (S1) สู่สถานะพื้น จะมีการคายพลังงานแสงหรือโฟตอน (emission of photon) ทำให้เกิดเป็นสัญญาณฟลูออเรสเซนต์ [23]

ร**ูปที่ 1.8** แผนภาพจาบลอนสกี้แบบปรับปรุง (modified Jablonski diagram) [23]

โดยในปัจจุบันได้มีโมเลกุลที่ใช้ตรวจวัดสารเป้าหมายที่อาศัยหลักการทางเคมีทำให้เกิดการเปลี่ยนแปลง สัญญาณของฟลูออเรสเซนต์ ที่เรียกว่า ฟลูออเรสเซนต์เซ็นเซอร์ (fluorescent sensor) ซึ่งประกอบด้วยส่วน หลัก 2 ส่วน ในโมเลกุล คือ ส่วนตรวจวัด (receptor) กับส่วนให้สัญญาณ (reporter) [24] โดยฟลูออเรสเซนต์ เซ็นเซอร์จะแบ่งออกได้เป็น 3 รูปแบบ ได้แก่ Turn-ON fluorescent sensors ซึ่งค่าสัญญาณฟลูออเรสเซนต์ จะเพิ่มขึ้น [25,26] Turn-OFF fluorescent sensors ค่าสัญญาณฟลูออเรสเซนต์ลดลง [27,28] และ ratiometric fluorescent sensors จะเกิดการเปลี่ยนแปลงความยาวคลื่นของสัญญาณฟลูออเรสเซนต์ [29,30]

1.3.3 ImageJ

ImageJ เป็นโปรแกรมที่ได้ถูกพัฒนาขึ้น Wayne Rasband และ The National Institute of Health (NIH) ประเทศสหรัฐอเมริกา โปรแกรมนี้ถูกเขียนมาเพื่ออำนวยความสะดวกในการวิเคราะห์ข้อมูลจากรูปภาพ ตัวอย่างเช่น การนับจำนวนเซลล์ที่ได้จากภาพถ่าย การหาพื้นที่ของวัตถุ และสามารถคำนวณพื้นที่และปริมาณ พิกเซล ตามการเลือกพื้นที่ของผู้ใช้ เป็นต้น โดยทำการวัดขนาดของอนุภาคที่ปรากฏในรูปภาพ โดยสามารถ เลือกขนาดภาพถ่าย 8,16 และ 32 บิต และสามารถเลือกสกุลไฟล์ภาพที่นำมาวิเคราะห์ได้ อาทิเช่น DICOM, JPEG, TIFF, GIF, BMP, FITS และ Raw [31]

🛓 ImageJ	_		×
File Edit Image Process Analyze Plugins Window Help			
$\Box \bigcirc \Box \oslash \checkmark \measuredangle \stackrel{**}{\longrightarrow} \land \land \land \stackrel{*}{} \square \bigcirc \bigcirc \stackrel{w}{\longrightarrow} \mathscr{B}$	8 1	'	>>
Text tool (double-click to configure)			

รูปที่ 1.9 แสดงแถบเมนูโปรแกรม ImageJ

1.4 งานวิจัยที่เกี่ยวข้อง

สไปโรไบฟลูออรีน (spirobifluorene) ถูกสังเคราะห์ครั้งแรกในปี 1930 โดย Gomberg และ Clarkson [32] มีชื่อทางเคมีว่า 9,9'-spirobifluorene เป็นสารที่มีโครงสร้างแข็งเกร็ง (rigid structure) และอสัณฐาน (amorphous) รวมทั้งมีค่าประสิทธิภาพควอนตัมที่สูง (high quantum efficiency) [32,33] ซึ่งอนุพันธ์ของ สไปโรไบฟลอูอรีนถูกนำมาประยุกต์ใช้เป็นออปโตอิเล็กทรอนิกส์อินทรีย์ (organic optoelectronics) [34] เช่น ฟิลด์เอฟเฟ็คท์ ทรานซิสเตอร์ (field-effect transistors or FET) เซลล์แสงอาทิตย์ (solar cells) เช่น เซลล์แสงอาทิตย์แบบสีย้อมไวแสง (dye sensitized solar cell, DSSC) ทรานซิสเตอร์เชิงแสง (phototransistors) โฟโต้ไดโอด (photo diode) อุปกรณ์เปล่งแสง (light-emitting devices) และฟลูออเรส เซนต์เซ็นเซอร์

ร**ูปที่ 1.10** 9,9'-Spirobifluorene [35]

จากงานวิจัยก่อนหน้า Komthep [10] ได้มีการสังเคราะห์เซ็นเซอร์ทางเคมี (chemical sensor) โดยมี หน่วยสไปโรไปฟลูออรีนเป็นส่วนให้สัญญาณแบบฟลูออเรสเซนต์ รวมทั้งมีหมู่แทนที่จำนวน 2 และ 4 หมู่ คือ ethynylphenyl ซึ่งเป็นส่วนเชื่อมต่อกับ sulfonamide ซึ่งเป็นส่วนตรวจวัด พบว่า tetrasulfonamidopicolylspirobifluorene (TSPS) ที่มีหมู่ในโตรเจนซึ่งคาดว่ามีความสามารถจับจำเพาะกับไอออนของทอง ซึ่ง จะให้ค่าสัญญาณฟลูออเรสเซนต์แบบ Turn-OFF ซึ่งมีความเข้มข้นต่ำที่สุดที่สามารถตรวจวัดได้ในหลักไมโคร โมลาร์

ในปี 2015 Su และคณะ ได้สังเคราะห์อนุพันธ์ 2,2'biindenyl-based BDM และ BDBM ที่มีหมู่ dicyanovinyl ได้สำเร็จ ซึ่งมีโครงสร้างดังรูป [1.11]

รูปที่ 1.11 โครงสร้างของสารประกอบ BDM และ BDBM

โดยมีสมบัติ solvatochromism และ aggregation-induced emission enhancement (AIEE) สาร ประกอบทั้งสองแสดงความเข้มข้นของ ICT ฟลูออเรสเซนต์ในตัวทำละลายที่ต่างกัน และมีประสิทธิภาพในการ คายพลังงานสูงในสถานะของแข็ง นอกจากนี้ยังสามารถใช้เป็นเซ็นเซอร์เรืองแสงสำหรับตรวจวัดปริมาณน้ำใน ระดับต่ำใน THF หรือไดออกเซน โดยมีค่าต่ำสุดที่ตรวจวัดได้ 113 ppm ของ BDM ใน THF จึงเหมาะที่จะเป็น เซ็นเซอร์ตรวจวัดน้ำที่มีประสิทธิภาพสูงสำหรับการใช้งานจริง ในขณะเดียวกันทั้ง BDM และ BDBM จะปล่อย แสงฟลูออเรสเซนต์สีส้มและสีเหลืองตามลำดับใน aggregated states นอกจากนี้หมู่ dicyanovinyl ใน สารประกอบทั้งสองสามารถทำหน้าที่เป็น colourimetric และ fluorescent sensor ที่มีการตอบสนอง จำเพาะที่รวดเร็วต่อไซยาไนด์ภายใต้ cetyltrimethylammonium bromide (CTAB) ดังรูป [1.12] โดย BDBM เป็นคึโมเซ็นเซอร์ที่มีความจำเพาะและว่องไว และมีขีดจำกัดการตรวจวัดที่ยอดเยี่ยม ซึ่งมีค่าเท่ากับ 0.29 µmol·L⁻¹ และมีเวลาตอบสนองสั้น ๆ เพียง 100 วินาที ในการเกิดสารประกอบกับไซยาไนด์ในน้ำ ซึ่ง แสดงให้เห็นถึงประสิทธิภาพในการประยุกต์ใช้ตรวจวัดไชยาไนด์ในน้ำดื่ม [36]

รูปที่ 1.12 แสดงโครงสร้างการจับไซยาไนด์กับหมู่ dicyanovinyl ของสารประกอบ BDM และ BDBM

ในปี 2014 Yu และคณะ ได้สังเคราะห์กลุ่มอนุพันธ์ของ tetraphenylethene TPEM (2-((4'-(1,2,2-triphenylvinyl)biphenyl-4-yl)methylene)malononitrile) และ PEBM (2,2'-(4',4''-(1,2-diphenylethene-1,2-diyl)bis(biphenyl-4',4-diyl))bis(methan-1-yl-1-ylidene)dimalononitrile) ที่มี หมู่ dicyanovinyl ได้สำเร็จ [37] ซึ่งมีโครงสร้างดังรูป [1.13]

รูปที่ 1.13 แสดงโครงสร้างของสารประกอบ TPEM และ TPEBM

โดยมีสมบัติ solvatochromism และ aggregation-induced emission enhancement (AIEE) โดยมีการ คายแสงขึ้นอยู่กับขั้วของตัวทำละลาย และมีเปลี่ยนสีจากสีน้ำเงินเป็นสีแดงโดยเปลี่ยนตัวทำละลายจากไม่มีขั้ว เป็นมีขั้ว ซึ่งสามารถใช้เป็นเซ็นเซอร์เรืองแสงสำหรับการตรวจสอบเชิงปริมาณและคุณภาพของปริมาณน้ำใน ระดับต่ำใน THF หรือไดออกเซน มีค่าต่ำสุดของปริมาณน้ำที่สามารถตรวจวัดได้โดย TPEM มีค่า 63 ppm และ TPEBM มีค่า109 ppm ใน THF นอกจากนี้หมู่ dicyanovinyl ในสารประกอบทั้งสองสามารถทำหน้าที่ เป็น colourimetric และ fluorescent sensor ที่มีการตอบสนองจำเพาะที่รวดเร็วต่อไซยาไนด์ภายใต้ cetyltrimethylammonium bromide (CTAB) ดังรูป [1.14]

รูปที่ 1.14 แสดงโครงสร้างการจับไซยาไนด์กับหมู่ dicyanovinyl ของสารประกอบ TPEBM

โดย TPEBM เป็นคีโมเซ็นเซอร์ที่มีความจำเพาะและว่องไว และมีค่าต่ำสุดในการตรวจวัดไซยาไนด์ 0.2 μM และมีเวลาตอบสนองรวดเร็ว เพียง 100 วินาที ในการเกิดสารประกอบกับไซยาไนด์ในน้ำ ซึ่งแสดงให้เห็นถึง ประสิทธิภาพในการประยุกต์ใช้ตรวจวัดไซยาไนด์ในน้ำดื่ม และในงานวิจัยยังได้มีการตรวจสอบไซยาไนด์โดยใช้ ตัวตรวจวัดกระดาษที่หยดสารละลาย TPEBM 1 mM ที่เตรียมด้วย THF พบว่าเมื่อหยดไซยาไนด์ลงไปจะมี การเปลี่ยนสีทันทีจากสีเหลืองเป็นสีน้ำเงิน-ขาว และเมื่อทดสอบ selectivity พบว่า F⁻, Cl⁻, Br⁻, I⁻, H₂PO₄⁻, AcO⁻, NO₃⁻ และ NO₂⁻ จะไม่มีการเปลี่ยนการเรืองแสง ดังรูป [1.15]

รูปที่ 1.15 ภาพถ่ายของ TPEBM บนกระดาษทดสอบหลังจากสัมผัสกับแอนไอออนต่าง ๆ ไม่เติมไซยาไนด์ (บน) เติมไซยาไนด์ (ล่าง) และเมื่อทดสอบหยดไซยาไนด์ที่ความเข้มข้นต่าง ๆ ลงไปพบว่ามีการเปลี่ยนสีเรืองแสงที่ระดับความเข้มข้น ต่ำสุดที่ 0.5-1 mM ดังรูป [1.16]

รูปที่ 1.16 ภาพถ่ายของ TPEBM บนกระดาษทดสอบ ไม่เติมไซยาไนด์ (บน) เติมไซยาไนด์ที่ความเข้มข้นต่าง ๆ (ล่าง) ภายใต้ความยาวคลื่น 365 nm

เมื่อไม่นานมานี้ได้มีรายงานการสังเคราะห์และใช้อนุพันธ์ของไพรีนที่มีหมู่ไดไซยาโนไวนิลเป็นหมู่แทนที่สำหรับ เป็นฟลูออเรสเซนต์เซนเซอร์ที่มีความจำเพาะกับไซยาไนด์ไอออน [11] โดยสารดังกล่าวสามารถเปลี่ยน สัญญาณการเรืองแสงจากความยาวคลื่นในช่วงแสงสีแดงไปเป็นการเรืองแสงในช่วงความยาวคลื่นสีฟ้า กลไก การตรวจวัดเกี่ยวข้องกับการเกิดปฏิกิริยาการเติมของไซยาไนด์ไอออนเข้าที่หมู่ไดไซยาโนไวนิล ซึ่งได้มีการ พิสูจน์โดยใช้เทคนิคนิวเคลียร์แมกเนติกเรโซแนนซ์ และพบว่าสารดังกล่าวมีความสามารถในการตรวจวัด ไซยาไนด์ไอออนโดยมีขอบเขตของการตรวจวัดที่ระดับต่ำกว่า 1 μM

รูปที่ 1.2 แสดงโครงสร้างของอนุพันธ์ของไพรีนที่ใช้เป็นเซนเซอร์สำหรับไซยาไนด์ไอออน

1.5 ขั้นตอนและวิธีการดำเนินงานวิจัย

- 1. ค้นคว้าเอกสารและข้อมูลที่เกี่ยวข้องกับงานวิจัย
- พัฒนาตัวตรวจวัดไอออนของทองและไซยาไนด์บนกระดาษ โดยใช้อนุพันธ์สไปโรฟลูออรีน และอนุพันธ์ของไพรีนเป็นสารให้สัญญาณเรืองแสง โดยมีขั้นตอนดังนี้
 - 2.1 จัดทำกระดาษตรวจวัดด้วยวิธี wax printing
 - 2.2 ขึ้นรูปตัวตรวจวัดด้วยวิธี solution drop-cast
- 3. ศึกษาปัจจัยที่ส่งผลต่อประสิทธิภาพของตัวตรวจวัดดังต่อไปนี้
 - 3.1 ความเข้มข้นของอนุพันธ์สไปโรฟลูออรีนและอนุพันธ์ของไพรีน
 - 3.2 ปริมาณตัวอย่างสารละลายทองและสารละลายไซยาไนด์
 - 3.3 ศึกษาข้อมูลที่ได้จากโปรแกรม ImageJ ที่สอดคล้องกับปริมาณทองและไซยาไนด์
- วิเคราะห์ผลของตัวตรวจวัดไอออนของทองและไซยาไนด์ที่ถูกพัฒนาขึ้น โดยวิเคราะห์
 เทียบสารละลายที่ทราบความเข้มข้น
- 5. สรุปผลและเขียนรายงานการวิจัย

1.6 ประโยชน์ที่ได้รับจากงานวิจัย

- ได้ตัวตรวจวัดไอออนของทองและไซยาไนด์บนกระดาษและสามารถใช้ตรวจวัดในตัวอย่างจริงได้

บทที่ 2

การทดลอง

2.1 อุปกรณ์และสารเคมี

2.1.1 อุปกรณ์

- 2.1.1.1 เครื่องให้ความร้อน (hot plate)
- 2.1.1.2 ไมโครปิเปต
- 2.1.1.3 ไมโครปิเปตทิป
- 2.1.1.4 ช้อนตักสาร
- 2.1.1.5 ขวดสีชาขนาด 2 mL
- 2.1.1.6 ขวดใสขนาดเล็ก mL
- 2.1.1.7 เครื่องชั่งดิจิตอล 4 ตำแหน่ง
- 2.1.1.8 กล้องถ่ายภาพดิจิทัล ยี่ห้อ Nikon D5100
- 2.1.1.9 กล่องควบคุมแสง
- 2.1.1.10 คอมพิวเตอร์ส่วนบุคคล

2.1.2 สารเคมี

- 2.1.2.1 อนุพันธ์ของสไปโรไบฟลูออรีนที่ใช้สำหรับการตรวจวัดไอออนทองคำ (tetrasulfonamido-picolylspirobifluorene)
- 2.1.2.2 อนุพันธ์ของไพรีนที่ใช้สำหรับการตรวจวัดไซยาไนด์ไอออน
- 2.1.2.3 dichloromethane
- 2.1.2.4 acetonitrile
- 2.1.2.5 น้ำ Milli-Q (Milli-Q water)
- 2.1.2.6 lithium nitrate (LiNO₃)
- 2.1.2.7 sodium nitrate (NaNO₃)
- 2.1.2.8 potassium nitrate (KNO₃)
- 2.1.2.9 silver nitrate (AgNO₃)
- 2.1.2.10 dichloroaurate (AuCl₂)
- 2.1.2.11 calcium nitrate (Ca(NO₃)₂)

- 2.1.2.12 magnesium nitrate (Mg(NO₃)₂)
- 2.1.2.13 barium nitrate (Ba(NO₃)₂)
- 2.1.2.14 cobalt (II) nitrate $(Co(NO_3)_2)$
- 2.1.2.15 cadmium (II) nitrate $(Cd(NO_3)_2)$
- 2.1.2.16 zinc nitrate (Zn(NO₃)₂)
- 2.1.2.17 lead (II) nitrate (Pb(NO₃)₂)
- 2.1.2.18 copper (II) nitrate $(Cu(NO_3)_2)$
- 2.1.2.19 Mercury (II) acetate (Hg(OAc)₂)
- 2.1.2.20 iron (II) nitrate (Fe(NO₃)₂)
- 2.1.2.23 chromium (iii) nitrate (Cr(NO₃)₃)
- 2.1.2.24 nickel (II) nitrate $(Ni(NO_3)_2)$
- 2.1.2.25 sodium acetate (Na(OAc))
- 2.1.2.26 sodium sulfate (Na₂SO₄)
- 2.1.2.27 sodium sulphite (Na₂SO₃)
- 2.1.2.28 sodium fluoride (NaF)
- 2.1.2.29 sodium iodide (Nal)
- 2.1.2.30 sodium chloride (NaCl)
- 2.1.2.31 sodium bromide (NaBr)
- 2.1.2.32 sodium cyanide (NaCN)
- 2.1.2.33 sodium thiocyanate (KSCN)
- 2.1.2.34 sodium nitrate (NH₄NO₃)
- 2.1.2.35 sodium phosphate monobasic (NaH₂PO₄)

2.2 วิธีการทดลอง

2.2.1 การเตรียมสารละลาย

2.2.1.1 การเตรียมสารละลาย tetrasulfonamido-picolylspirobifluorene (TSPS) ความเข้มข้น 10 mM ปริมาตร 15 mL และที่ความเข้มข้น 1.0, 1.0 x 10⁻¹, 1.0 x 10⁻², 1.0 x 10⁻³ mM ปริมาตร 30 mL

นำ TSPS 218.0 mg ละลายด้วย dichloromethane 15 ml จากนั้นนำมาเจือจางด้วย acetonitrile ให้มีความเข้มข้น 1.0, 1.0 x 10⁻¹, 1.0 x 10⁻², 1.0 x 10⁻³ mM ปริมาตร 30 mL

2.2.1.2 การเตรียมสารละลายของอนุพันธ์ไพรีน ความเข้มข้น 1 mM ปริมาตร 15 mL และที่ความเข้มข้น 1.0 x 10⁻¹, 1.0 x 10⁻², 1.0 x 10⁻³ mM ปริมาตร 30 mL

นำอนุพันธ์ของไพรีน 5.7 mg ละลายด้วย acetonitrile ปริมาตร 15 mL จากนั้นนำมาเจือ จางด้วย acetonitrile ให้มีความเข้มข้น 1.0×10^{-1} , 1.0×10^{-2} , 1.0×10^{-3} mM ปริมาตร 30 mL

2.2.1.3 การเตรียมสารละลายของแคทไอออนโละหะต่าง ๆ ความเข้มข้น 0.5 mM และ

สารละลายของแอนไอออน 1 mM

เตรียมสารละลายแคทไอออนของโลหะได้แก่ Li⁺, Na⁺, K⁺, Ag⁺, Ba²⁺, Ca²⁺, Mg²⁺, Co²⁺, Cd²⁺, Zn²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Fe²⁺, Fe³⁺, Al³⁺ และ Cr³⁺ และแอนไอออนได้แก่ OAc⁻, SO₄²⁻, SO₃²⁻, F⁻, F, Cl⁻, Br⁻, CN⁻, SCN⁻, NO₃⁻ และ H₂PO₄⁻ ให้มีความเข้มข้น 10 mM ปริมาตร 15 ml จากนั้นนำไปเจือ จางด้วยน้ำ Milli-Q ให้มีความเข้มข้น 0.5 mM และ 1 mM ปริมาตร 1 ml ตามลำดับ

2.2.2 การเตรียมอุปกรณ์ฐานกระดาษ

ในขั้นตอนการทำอุปกรณ์ฐานกระดาษ ทำได้โดยใช้โปรแกรม Microsoft word สร้าง ลวดลายที่ต้องการ โดยการกำหนดขอบเขตที่ใช้ทำปฏิกิริยา จากนั้นทำการพิมพ์ (เครื่องพิมพ์รุ่น Xerox Color Qube 8870) โดยใช้แว็กซ์แทนน้ำหมึกลงบนกระดาษ A4 ที่ได้จัดเตรียมไว้ เมื่อนำมาใช้งานทำได้โดยให้ความ ร้อนผ่านเครื่องให้ความร้อน 100 องศาเซลเซียส 3 วินาที

2.2.3 ขั้นตอนการตรวจวัด

2.2.3.1 การตรวจวัดไอออนของทอง

ในการตรวจวัดจะใช้กล้องยี่ห้อ Nikon รุ่น D5100 เลนส์ macro ยี่ห้อ sigma DC 18-250 mm 1:3.5-6.3 โดยปรับโหมดของกล้องดังนี้

โหมด	AP
Shot	5 sec
f/no	f/6.3
ISO	100
White balnce	auto

2.2.3.1.1 การหาความเข้มข้นที่เหมาะสมของสารละลาย Tetrasulfonamidopicolylspirobifluorene (TSPS) ที่นำมาใช้เป็นเซ็นเซอร์

ปีเปตสารละลาย TSPS ความเข้มข้น 10, 1.0, 1.0 × 10⁻¹, 1.0 × 10⁻², 1.0 × 10⁻³, 1.0 × 10⁻⁴ และ 1.0 × 10⁻⁵ mM ลงในวงกลมกระดาษตรวจวัดที่จัดทำขึ้น วงกลมละ 5 µL รอเป็นเวลา 5 นาที

และนำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น โดยสังเกตวงกลมที่มีความเข้มข้นของสารละลายต่ำสุดที่ยัง สามารถมองเห็นสัญญาณฟลูออเรสเซนต์ได้ด้วยตาเปล่า และทดลองซ้ำอีก 2 ครั้ง

2.2.3.1.2 ศึกษาความจำเพาะในการตรวจวัด

ปิเปตสารละลาย TSPS ตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.1.1 ลงไปในวงกลมกระดาษ ตรวจวัดที่จัดทำขึ้น หลุมละ 5 μl รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีแคทไอออนโลหะต่าง ๆ ลง ในหลุมกระดาษตรวจวัดที่จัดทำขึ้น ได้แก่ Li⁺, Na⁺, K⁺, Ag⁺, Ba²⁺, Au²⁺, Ca²⁺, Mg²⁺, Co²⁺, Cd²⁺, Zn²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Fe²⁺, Fe³⁺, Al³⁺ และ Cr³⁺ วงกลมละ 5 μL รอเป็นเวลา 2 ชั่วโมง และนำไปตรวจวัด ในกล่องควบคุมแสงที่จัดทำขึ้น สังเกตการณ์ดับค่าสัญญาณฟลูออเรสเซนต์ ทดลองซ้ำอีก 2 ครั้ง

2.2.3.1.3 ศึกษาช่วงความเข้มข้นของไอออนทองในการดับค่าสัญญาณฟลูออเรส

เซนต์

ปิเปตสารละลาย TSPS ตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.1.1 ลงไปในวงกลมกระดาษ ตรวจวัดที่จัดทำขึ้น วงกลมละ 5 µL รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีไอออนของทองความ เข้มข้น 1.0 x 10², 10, 1.0, 1.0 x 10⁻¹, 1.0 x 10⁻² และ 1.0 x 10⁻³ mM วงกลมละ 5 µl รอเป็นเวลา 2 ชั่วโมง และนำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น และตรวจสอบการดับของค่าสัญญาณฟลูออเรสเซนต์ด้วย โปรแกรม imageJ

2.2.3.1.4 ศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green และ blue กับความเข้มข้นของทองที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น

ปิเปตสารละลาย TSPS ตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.1.1 ลงไปในวงกลมกระดาษ ตรวจวัดที่จัดทำขึ้น วงกลมละ 5 µl รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีไอออนของทองที่มีช่วง ความเข้มข้นที่เหมาะสมในการนำมาทำเป็นกราฟเส้นตรงจากขั้นตอน 2.2.3.1.3 รอเป็นเวลา 2 ชั่วโมง และ นำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น และตรวจสอบการดับของค่าสัญญาณฟลูออเรสเซนต์ด้วย โปรแกรม ImageJ

2.2.3.1.5 วิเคราะห์ผลของตัวตรวจวัดไอออนของทองที่ถูกพัฒนาขึ้น โดย วิเคราะห์เทียบสารละลายที่ทราบความเข้มข้น

ปิเปตละลายทองที่ทราบความเข้มข้นลงไปในน้ำตัวอย่างที่เก็บมา และนำไปตรวจสอบหา ปริมาณไอออนของทอง โดยนำไปทดสอบบนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น และผลที่ได้ไปเทียบกับกราฟ มาตรฐานความเข้มข้นที่ได้จากขั้นตอน 2.2.3.1.4

2.2.3.2 การตรวจวัดไอออนของไซยาไนด์

ในการตรวจวัดจะใช้กล้องยี่ห้อ Nikon รุ่น D5100 เลนส์ macro ยี่ห้อ sigma DC 18-250 mm 1:3.5-6.3 โดยปรับโหมดของกล้องดังนี้

โหมด	AP
Shot	5 sec
f/no	f/6.3
ISO	100
White balnce	auto
ค่าชดเชยแสง	-2.33 e\

2.2.3.2.1 การหาความเข้มข้นที่เหมาะสมของสารละลายอนุพันธ์ไพรีนที่นำมาใช้

เป็นเซ็นเซอร์

ปิเปตสารละลายอนุพันธ์ไพรีนความเข้มข้น 1.0, 1.0 × 10⁻¹, 1.0 × 10⁻², 1.0 × 10⁻³ mM ลงในวงกลมกระดาษตรวจวัดที่จัดทำขึ้น วงกลมละ 2 µL รอเป็นเวลา 5 นาที และนำไปตรวจวัดในกล่อง ควบคุมแสงที่จัดทำขึ้น โดยสังเกตหลุมที่มีความเข้มข้นของสารละลายต่ำสุดที่ยังสามารถมองเห็นสัญญาณ ฟลูออเรสเซนต์ได้ด้วยตาเปล่า และทดลองซ้ำอีก 2 ครั้ง

2.2.3.2.2 ศึกษาความจำเพาะในการตรวจวัด

ปิเปตสารละลายอนุพันธ์ไพรีนตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.2.1 ลงไปในวงกลม กระดาษตรวจวัดที่จัดทำขึ้น วงกลมละ 2 μL รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีแอนไอออนชนิด ต่าง ๆ ลงในหลุมกระดาษตรวจวัดที่จัดทำขึ้น ได้แก่ OAc⁻, SO₄²⁻, SO₃²⁻, F⁻, I⁻, Cl⁻, Br⁻, CN⁻, SCN⁻, NO₃⁻, H₂PO₄⁻ วงกลมละ 2 μL รอเป็นเวลา 2 ชั่วโมง และนำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น สังเกตการณ์ ดับค่าสัญญาณฟลูออเรสเซนต์ ทดลองซ้ำอีก 2 ครั้ง

2.2.3.2.3 ศึกษาช่วงความเข้มข้นของไอออนไซยาไนด์ที่มีผลต่อค่าสัญญาณ

ฟลูออเรสเซนต์

ปิเปตสารละลายอนุพันธ์ไพรีนตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.2.3 ลงไปในวงกลม กระดาษตรวจวัดที่จัดทำขึ้น วงกลมละ 2 µL รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีไอออนไซยาไนด์ ความเข้มข้น 10, 1.0, 1.0 x 10⁻¹, 1.0 x 10⁻² และ 1.0 x 10⁻³ mM วงกลมละ 2 µL รอเป็นเวลา 2 ชั่วโมง และนำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น และตรวจสอบค่าสัญญาณฟลูออเรสเซนต์ด้วยโปรแกรม ณ ImageJ

2.2.3.2.4 ศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green และ blue กับความเข้มข้นของไซยาไนด์ที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น

ปิเปตสารละลายอนุพันธ์ไพรีนตามความเข้มข้นที่ได้จากขั้นตอน 2.2.3.2.1 ลงไปในวงกลม กระดาษตรวจวัดที่จัดทำขึ้น วงกลมละ 2 µL รอเป็นเวลา 5 นาที จากนั้นปิเปตสารละลายที่มีไอออนไซยาไนด์ ที่มีช่วงความเข้มข้นที่เหมาะสมในการนำมาทำเป็นกราฟเส้นตรงจากขั้นตอน 2.2.3.3 รอเป็นเวลา 2 ชั่วโมง และนำไปตรวจวัดในกล่องควบคุมแสงที่จัดทำขึ้น และตรวจสอบการดับของค่าสัญญาณฟลูออเรสเซนต์ด้วย โปรแกรม ImageJ

2.2.3.2.5 วิเคราะห์ผลของตัวตรวจวัดไอออนของไซยาไนด์ที่ถูกพัฒนาขึ้น โดย วิเคราะห์เทียบสารละลายที่ทราบความเข้มข้น

ปิเปตสารละลายไซยาไนด์ที่ทราบความเข้มข้นลงไปในน้ำตัวอย่างที่เก็บมา และนำไป ตรวจสอบหาปริมาณไอออนของไซยาไนด์ โดยนำไปทดสอบบนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น และผลที่ ได้ไปเทียบกับกราฟมาตรฐานความเข้มข้นที่ได้จากขั้นตอน 2.2.3.2.4

2.2.3.3 ขั้นตอนการวิเคราะห์โดยใช้โปรแกรม imageJ

1.เปิดโปรแกรม imageJ จากนั้นเลือกรูปถ่าย โดยเลือกคำสั่ง File แล้วคลิก open

- d Imagel \times File Edit Image Process Analyze Plugins Window Help 8 8 ✓ 8-bit >> Туре Polygon sele 16-bit Adjust 32-bit Show Info ... Ctrl+I 8-bit Color Ctrl+Shift+P Properties... RGB Color Color RGB Stack Stacks Hyperstacks HSB Stack Lab Stack Crop Ctrl+Shift+X Duplicate... Ctrl+Shift+D Rename... Scale ... Ctrl+E Transform ۲ Þ Zoom Overlay Þ ۲ Lookup Tables
- 2. จากนั้นทำการคลิกที่ image ----> type ----> 8-bit

 3. วัดค่า grey scale โดยคลิกรูปวงกลม และกำหนดวงกลมให้มีขนาด area เท่ากับ 912 ใน การตรวจวัดไอออนทอง และขนาด 1124 ในการตรวจวัดไอออนไซยาไนด์

4. กดปุ่ม "M" จะได้ค่า mean ออกมาซึ่งเป็นค่าของ grey scale

d F	Results			_	×
File	Edit	Font Re	sults		
	Area	Mean	Min	Max	<u> </u>
1	1124	124.854	108	143	
					- 1
					- 1
					- 1
					- 1
					- 1
•					 <u> </u>

5. ปิดหน้าต่างรูปที่เปิดขึ้นมาจากนั้นเปิดใหม่อีกครั้ง จากนั้นทำการคลิก image →→ color →→ Channels Tool

6. เปลี่ยน Channels เป็น Color จากนั้นกด Ok

4	Channels	\times
	Composite 🔻	
	Composite	
	Grayscale	
	Channel 3	
	Moro	
	more »	

 7. คลิกรูปวงกลม โดยคลิกรูปวงกลมและกำหนดวงกลมให้มีขนาด กำหนดวงกลมให้มีขนาด area เท่ากับ 912 ในการตรวจวัดไอออนทอง และขนาด 1124 ในการตรวจวัดไอออน ไซยาไนด์ วัดค่า Red กดปุ่ม M จะได้ค่า mean ของ red scale

วัดค่า Green กดปุ่ม M จะได้ค่า mean ของ green scale

วัดค่า Blue กดปุ่ม M จะได้ค่า mean ของ blue scale

บทที่ 3

ผลการทดลอง

3.1 ผลการทดสอบกระดาษตรวจวัดไอออนทอง

3.1.1 ผลการทดสอบการหาความเข้มข้นที่เหมาะสมของสารละลาย tetrasulfonamido - picolylspirobifluorene (TSPS) ที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ

ในการทดสอบหาความเข้มข้นที่เหมาะสมของสารละลาย TSPS ที่นำมาใช้เป็นเซ็นเซอร์ สำหรับตรวจวัดไอออนทอง โดยในการทดสอบได้มีการเลือกใช้ความเข้มข้นของ TSPS ที่ความเข้มข้น 10, 1.0, 1.0×10^{-1} , 1.0×10^{-2} , 1.0×10^{-3} , 1.0×10^{-4} และ 1.0×10^{-5} mM จากการทดสอบเมื่อนำไปส่องในกล่อง ควบคุมแสงที่จัดทำขึ้น พบว่าจะเริ่มเห็นการเรืองแสงชัดเจนและสามารถสังเกตได้ด้วยตาเปล่าที่ความเข้มข้น 1.0×10^{-2} mM เป็นต้นไป (รูปที่ 3.1)

รูปที่ 3.1 การเรืองแสงของ TSPS ที่ความเข้มข้นต่างกันบนอุปกรณ์ฐานกระดาษ

เมื่อนำภาพที่ได้ไปเข้าโปรแกรม ImageJ เพื่อศึกษาปริมาณค่าสี RGB และค่าเฉลี่ย สีรวม พบว่าค่าสัญญาณที่ได้มีการเปลี่ยนแปลงเมื่อความเข้มข้นของสาระลาย Tetrasulfonamidopicolylspirobifluorene (TSPS) มีค่าเพิ่มมากขึ้น เมื่อเทียบกับ Blank (รูปที่ 3.2)

รูปที่ 3.2 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีกับความเข้มข้น TSPS

จากรูปที่ 3.2 เมื่อเปรียบเทียบค่าสัญญาณค่าสี RGB และค่าเฉลี่ยสีรวม พบว่าค่าสัญญาณจะ เริ่มมีค่าแตกต่างจาก blank ที่ความเข้มข้นของ TSPS 1.0 x 10⁻² mM เป็นต้นไป ซึ่งสอดคล้องกับผลจากรูป ที่ 3.1 ซึ่งเป็นค่าความเข้มข้นเริ่มต้นที่เห็นการเรืองแสงชัดเจน ดังนั้นในการทดลองจึงเลือกความเข้มข้นของ TSPS ที่ 1.0 x 10⁻² mM นำมาใช้ในการพัฒนากระดาษตรวจวัดไอออนทอง

3.1.2 ผลการทดสอบความจำเพาะในการตรวจวัด

จากการทดลองเพื่อศึกษาความจำเพาะระหว่างสารละลาย TSPS กับ Au³⁺ ด้วยการตรวจวัด แคทไอออนทั้งสิ้น 19 ชนิด ได้แก่ Li⁺, Na⁺, K⁺, Ag⁺, Ba²⁺, Au³⁺, Ca²⁺, Mg²⁺, Co²⁺, Cd²⁺, Zn²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Fe²⁺, Fe³⁺, Al³⁺ และ Cr³⁺ ที่ความเข้มข้น 0.5 mM พบว่า เมื่อสังเกตการเปลี่ยนแปลงสีด้วยตา เปล่าการตรวจวัด Au³⁺ มีการเปลี่ยนแปลงชัดเจนที่สุด โดยมีการดับของค่าสัญญาณฟลูออเรสเซนต์ (รูปที่ 3.3) จึงสามารถสรุปได้ว่าสารละลาย TSPS ที่นำมาใช้เป็นเซ็นเซอร์มีความสามารถจำเพาะกับ Au³⁺

รูปที่ 3.3 ความจำเพาะของสารละลาย TSPS กับแคทไอออน 19 ชนิด

3.1.3 ผลการศึกษาช่วงความเข้มข้นของไอออนทองในการดับค่าสัญญาณฟลูออเรสเซนต์

จากการทดลองเพื่อหาช่วงความเข้มข้นของไอออนทองในการดับค่าสัญญาณฟลูออเรสเซนต์ โดยทำการทดลองในช่วงความเข้มข้น 1.0 x 10² – 1.0 x 10⁻³ mM (รูปที่ 3.4) และนำไปวัดค่าสัญญาณด้วย โปรแกรม ImageJ เพื่อศึกษาปริมาณค่าสี RGB และค่า grey พบว่าค่าสัญญาณที่ได้เริ่มที่จะมีความแตกต่าง เมื่อเทียบกับ blank ที่ความเข้มข้นของ Au³⁺ เท่ากับ 1 mM เป็นต้นไป (รูปที่ 3.5)

รูปที่ 3.4 แสดงช่วงการดับค่าสัญญาณฟลูออเรสเซนต์ของ Au³⁺ ที่ช่วงความเข้มข้น

 $1.0 \times 10^2 - 1.0 \times 10^{-3}$ mM

รูปที่ 3.5 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey กับความเข้มข้น Au³⁺

3.1.4 ผลการศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green และ blue กับความเข้มข้นของทองที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น

จากการทดลองในหัวข้อ 3.1.3 พบว่าค่าสัญญาณที่ได้เริ่มที่จะมีความแตกต่างเมื่อเทียบกับ blank ที่ความเข้มข้นของ Au³⁺ เท่ากับ 1 mM เป็นต้นไป จึงทดสอบหาช่วงความเป็นเส้นตรงโดยการสร้าง กราฟมาตรฐานของ Au³⁺ ที่ความเข้มข้น 1.0 – 10 mM และ 10 –1.0 × 10² mM

รูปที่ 3.6 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น Au³⁺ 1.0 – 10 mM

รูปที่ 3.7 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น Au³⁺ 1.0 – 10 mM

รูปที่ 3.8 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น Au³⁺ 1.0 – 10 mM

รูปที่ 3.9 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น Au³⁺ 1.0 – 10 mM

รูปที่ 3.10 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น Au^{3+} 10 – $1.0 \times 10^2 {
m mM}$

รูปที่ 3.11 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น Au³⁺ 10 – 1.0 x 10² mM

รูปที่ 3.12 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น Au³⁺ 10 – 1.0 x 10² mM

รูปที่ 3.13 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น Au^{3+} 10 – $1.0 \times 10^2 {
m ~mM}$

เมื่อพิจารณาช่วงความเป็นเส้นตรงกราฟมาตรฐานของ Au³⁺ ที่ความเข้มข้น 1 – 10 mM และ 10 – 1.0 × 10² mM พบว่ากราฟจะเริ่มมีความเป็นเส้นตรงมากขึ้นในช่วงความเข้มข้น Au³⁺ เท่ากับ 10 – 1.0 × 10² mM โดยกราฟจะมีความเป็นเส้นตรงมากที่สุดในค่าสี Blue โดยเมื่อทำการพล็อตกราฟให้แกน y เป็นอัตราส่วน I_{blank}/I เมื่อ I คือค่าสัญญาณ ในช่วงความเข้มข้น 10 – 80 mM พบว่ากราฟที่ได้จะมีค่าความ เป็นเส้นตรงเพิ่มมากขึ้น (รูปที่ 3.14)

จากรูปที่ 3.14 กราฟแสดงความสัมพันธ์ระหว่างอัตราส่วน I_{blank}/I กับความเข้มข้น Au³⁺ 10 – 80 mM มีสมการเส้นตรงเป็น y = 0.0348x + 0.7345 และค่า R² = 0.9887 ในช่วงความเข้มข้น 10 – 80 mM ดังนั้นการตรวจวัดจึงมีความเป็นเส้นตรงในช่วงความเข้มข้น 10 – 80 mM

> เมื่อ y = อัตราส่วน I_{blank}/I X = ความเข้มข้นของ Au³⁺ (mM)

จากกราฟมาตรฐานแสดงความสัมพันธ์ระหว่างอัตราส่วน I_{blank}/I กับความเข้มข้น Au³⁺ 10 – 80 mM สามารถหาขีดจำกัดของการตรวจวัด (LOD) และขีดจำกัดการตรวจวัดเชิงปริมาณ (LOQ) ได้ดังนี้

สูตร LOD =
$$\frac{3 \times SD}{Slope}$$
 ------ (1)

แทนค่าความชั้นที่ได้จากกราฟและค่าเบี่ยงเบนมาตรฐานลงไปในสมการที่ (1) จะได้

$$\text{LOD} = \frac{3 \times 0.000554}{0.0348} = 0.048$$

ดังนั้นความเข้มข้นต่ำสุดของ Au³⁺ ที่วัดได้ คือ 0.048 mM

ត្តូទារ LOQ =
$$\frac{10 \times SD}{Slope}$$
 ------ (2)

แทนค่าความชั้นที่ได้จากกราฟและค่าเบี่ยงเบนมาตรฐานลงไปในสมการที่ (2) จะได้

$$LOQ = \frac{10 \times 0.000554}{0.0348} = 0.16$$

ดังนั้นความเข้มข้นต่ำสุดของ Au³⁺ ที่วัดได้และรายงานผลเป็นที่ยอมรับได้ คือ 0.16 mM

3.1.5 วิเคราะห์ผลของตัวตรวจวัดไอออนทองที่ถูกพัฒนาขึ้น โดยวิเคราะห์เทียบ สารละลายที่ทราบความเข้มข้น

จากการทดลองวิเคราะห์ผลของตัวตรวจวัดไอออนทองได้มีการนำสารละลายตัวอย่างน้ำฝนที่ ทำการเติม Au³⁺ความเข้มข้น 20.0 และ 50.0 mM ลงไป เมื่อนำไปวิเคราะห์ในกราฟมาตรฐานที่จัดทำขึ้น (รูป ที่ 3.14) พบว่าได้ผลดังต่อไปนี้

ตารางที่ 3.1 ค่าสัญญาณ และความเข้มข้นของ Au³⁺ที่เติมลงไปในสารละลายตัวอย่างน้ำฝน

ความเข้มข้น Au ³⁺ ที่เติมลงไป (mM)	20.0	50.0	
ค่าสัญญาณเฉลี่ย	1.46	2.41	
ค่าเบี่ยงเบนมาตรฐาน	0.0442	0.155	
ค่าเบี่ยงเบนมาตรฐานสัมพัทธ์	3 03	6.13	
(%RSD)	5.05	0.45	
ค่าความเข้มข้นที่วิเคราะห์ได้	20.8	18.1	
(mM)	20.0	40.1	

จากนั้นนำค่าความเข้มข้นที่ได้จากตารางที่ 3.1 มาคำนวณหาเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด Au³⁺ ในสารละลายตัวอย่าง ได้ดังนี้ เปอร์เซ็นต์การกลับคืน = (ค่าจากตัวอย่างที่เติมสารมาตรฐาน)–(ค่าจากตัวอย่างที่ไม่เติม)×100 (ค่าความเข้มข้นของสารมาตรฐานที่เติม)

จากสูตรข้างต้นได้เปอร์เซ็นต์การกลับคืน (%recovery) ดังต่อไปนี้

ตารางที่ 3.2 ค่าเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด Au³⁺ ในสารละลายตัวอย่าง

ความเข้มข้น Au ³⁺ ที่เติม (mM)	20.0	50.0
เปอร์เซ็นต์การกลับคืน	104	96.2

จากตารางที่ 3.2 จะเห็นได้ว่า Au³⁺ ที่เติมลงไปในสารละลายตัวอย่างน้ำฝนที่ความเข้มข้น 20.0 และ 50.0 mM จะให้ค่าเปอร์เซ็นต์การกลับคืนเท่ากับ 104 และ 96.2

3.2 ผลการทดสอบกระดาษตรวจวัดไอออนไซยาไนด์

3.2.1 ผลการทดสอบการการหาความเข้มข้นที่เหมาะสมของสารละลายอนุพันธ์ไพรีนที่ นำมาใช้เป็นเซ็นเซอร์

ในการทดสอบหาความเข้มข้นที่เหมาะสมของสารละลายอนุพันธ์ไพรีนที่นำมาใช้เป็นเซ็นเซอร์ สำหรับตรวจววัดไอออนไซยาไนด์ โดยในการทดสอบได้มีการเลือกใช้ความเข้มข้นของเซ็นเซอร์ดังกล่าวที่ความ เข้มข้น 1.0, 1.0 × 10⁻¹, 1.0 × 10⁻² และ 1.0 × 10⁻³ mM จากการทดสอบเมื่อนำไปส่องในกล่องควบคุมแสงที่ จัดทำขึ้น พบว่าจะเริ่มเห็นการเรืองแสงชัดเจนและสามารถสังเกตุได้ด้วยตาเปล่าที่ความเข้มข้น 1.0 × 10⁻¹ mM เป็นต้นไป (รูปที่ 3.15)

รูปที่ 3.15 การเรืองแสงของอนุพันธ์ไพรีนบนอุปกรณ์ฐานกระดาษที่ความเข้มข้นต่างกัน

เมื่อนำภาพที่ได้ไปเข้าโปรแกรม ImageJ เพื่อศึกษาปริมาณค่าสี RGB Grey และค่าเฉลี่ยสี รวม พบว่าค่าสัญญาณที่ได้มีการเปลี่ยนแปลงเมื่อความเข้มข้นของสาระลายอนุพันธ์ไพรีนมีค่าเพิ่มมากขึ้น เมื่อ เทียบกับ blank (รูปที่ 3.16)

รูปที่ 3.16 กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีกับความเข้มข้นอนุพันธ์ ไพรีน

จากรูปที่ 3.16 เมื่อเปรียบเทียบค่าสัญญาณค่าสี RGB และค่าเฉลี่ยสีรวม พบว่าค่าสัญญาณจะเริ่มมีค่าแตกต่าง จาก blank ที่ความเข้มข้นของอนุพันธ์ไพรีน 1 x 10⁻² mM เป็นต้นไป ซึ่งเป็นค่าความเข้มข้นที่มองเห็นการ เรืองแสงไม่แตกต่างเมื่อเทียบกับ blank ดังนั้นในการทดลองจึงเลือกความเข้มข้นของอนุพันธ์ไพรีนที่ 1 x 10⁻¹ mM นำมาใช้ในการทดสอบกระดาษตรวจวัดไอออนไซยาไนด์

3.2.2 ผลการทดสอบความจำเพาะในการตรวจวัด

จากการทดลองเพื่อศึกษาความจำเพาะระหว่างสารละลายอนุพันธ์ไพรีนกับไซยาไนด์ ด้วย การตรวจวัดแอนไอออนทั้งสิ้น 11 ชนิด ได้แก่ OAc⁻, SO₄²⁻, SO₃²⁻, F⁻, I⁻, Cl⁻, Br⁻, CN⁻, SCN⁻, NO₃⁻ และ H₂PO₄⁻ ที่ความเข้มข้น 10 mM พบว่า เมื่อสังเกตการณ์เปลี่ยนแปลงสีด้วยตาเปล่าการตรวจวัด CN⁻ มีการ เปลี่ยนแปลงชัดเจนที่สุด โดยจะมีการเปลี่ยนแปลงสีจากสีแดงเป็นสีฟ้า ซึ่งมีการเรืองแสงของสัญญาณ ฟลูออเรสเซนต์ (รูปที่ 3.17) จึงสามารถสรุปได้ว่าสารละลายอนุพันธ์ไพรีนที่นำมาใช้เป็นเซ็นเซอร์มี ความสามารถจำเพาะกับ CN⁻

รูปที่ 3.17 ความจำเพาะของสารละลายอนุพันธ์ไพรีนกับแอนไอออน 11 ชนิด

3.2.3 ผลการศึกษาช่วงความเข้มข้นของไอออนไซยาไนด์ที่มีผลต่อค่าสัญญาณ ฟลูออเรสเซนต์

จากการทดลองเพื่อหาช่วงความเข้มข้นของไอออนไซยาไนด์ที่มีผลต่อค่าสัญญาณ ฟลูออเรสเซนต์ โดยทำการทดลองในช่วงความเข้มข้น 1.0 x 10² – 1.0 x 10⁻¹ mM (รูปที่ 3.18) และนำไปวัด ค่าสัญญาณด้วยโปรแกรม ImageJ เพื่อศึกษาปริมาณค่าสี RGB และค่า grey พบว่าค่าสัญญาณที่ได้เริ่มที่จะมี ความแตกต่างเมื่อเทียบกับ blank ชัดเจนที่ความเข้มข้นของ CN⁻ 10 mM เป็นต้นไป (รูปที่ 3.19)

รูปที่ 3.18 ช่วงการเปลี่ยนสีค่าสัญญาณฟลูออเรสเซนต์ของ CN^- ที่ช่วงความเข้มข้น 1.0 × 10² – 1.0 × 10⁻¹ mM

ร**ูปที่ 3.19** กราฟแสดงความสัมพันธ์ระหว่างค่าสี RGB Grey กับความเข้มข้น CN⁻

3.2.4 ผลการศึกษาช่วงความเป็นเส้นตรงของความสัมพันธ์ระหว่างค่า grey, red, green และ blue กับความเข้มข้นของไซยาไนด์ที่อยู่บนตัวตรวจวัดแบบกระดาษที่จัดทำขึ้น

จากการทดลองในหัวข้อ 3.2.3 พบว่าค่าสัญญาณที่ได้เริ่มที่จะมีความแตกต่างเมื่อเทียบกับ blank ชัดเจนที่ความเข้มข้นของ CN⁻ 10 mM เป็นต้นไป จึงทดสอบหาช่วงความเป็นเส้นตรงโดยการสร้าง กราฟมาตรฐานของ CN⁻ ในช่วงความเข้มข้น 1 – 10 mM

รูปที่ 3.20 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Grey กับความเข้มข้น CN⁻ 1 – 8 mM

รูปที่ 3.21 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Red กับความเข้มข้น CN⁻ 1 – 8 mM

ร**ูปที่ 3.22** กราฟแสดงความสัมพันธ์ระหว่างค่าสี Green กับความเข้มข้น CN⁻ 1 – 8 mM

รูปที่ 3.23 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น CN⁻ 1 – 8 mM

เมื่อพิจารณาช่วงความเป็นเส้นตรงกราฟมาตรฐานของ CN⁻ที่ความเข้มข้น 1 – 10 mM พบว่ากราฟจะเริ่มมีความเป็นเส้นตรงมากขึ้นในช่วงความเข้มข้น CN⁻เท่ากับ 1 – 8 mM โดยกราฟจะมีความ เป็นเส้นตรงมากที่สุดในค่าสี Blue จากรูปที่ 3.23 กราฟแสดงความสัมพันธ์ระหว่างค่าสี Blue กับความเข้มข้น CN⁻ 1 – 8 mM มีสมการเส้นตรงเป็น y = 12.179x + 17.15 และค่า R² = 0.9904 ในช่วงความเข้มข้น 1 – 8 mM ดังนั้นการตรวจวัดจึงมีความเป็นเส้นตรงในช่วงความเข้มข้น 1 – 8 mM

> เมื่อ y = ค่าสัญญาณ X = ความเข้มข้นของ CN⁻ (mM)

จากกราฟมาตรฐานแสดงความสัมพันธ์ระหว่างค่าสัญญาณ Blue กับความเข้มข้น CN⁻ 1 – 8 mM สามารถ หาขีดจำกัดของการตรวจวัด (LOD) และขีดจำกัดการตรวจวัดเชิงปริมาณ (LOQ) ได้ดังนี้

สูตร LOD = $\frac{3 \times SD}{Slope}$ (1)

แทนค่าความชั้นที่ได้จากกราฟและค่าเบี่ยงเบนมาตรฐานลงไปในสมการที่ (1) จะได้

$$LOD = \frac{3 \times 1.88}{12.179} = 0.463$$

้ดังนั้นความเข้มข้นต่ำสุดของ CN⁻ ที่วัดได้ คือ 0.463 mM

ត្តូទារ LOQ =
$$\frac{10 \times \text{SD}}{\text{Slope}}$$
 ------ (2)

แทนค่าความชั้นที่ได้จากกราฟและค่าเบี่ยงเบนมาตรฐานลงไปในสมการที่ (2) จะได้

$$LOD = \frac{10 \times 1.88}{12.179} = 1.54$$

้ดังนั้นความเข้มข้นต่ำสุดของ CN⁻ ที่วัดได้และรายงานผลเป็นที่ยอมรับได้ คือ 1.54 mM

3.2.5 วิเคราะห์ผลของตัวตรวจวัดไอออนของไซยาไนด์ที่ถูกพัฒนาขึ้น โดยวิเคราะห์เทียบ สารละลายที่ทราบความเข้มข้น

จากการทดลองวิเคราะห์ผลของตัวตรวจวัดไอออนของไซยาไนด์ได้มีการนำสารละลาย ตัวอย่างน้ำฝนและน้ำจากสระจุฬาลงกรณ์มหาวิทยาลัยที่ทำการเติม CN⁻ ความเข้มข้น 2.0, 4.0 และ 6.0 mM ลงไป เมื่อนำไปวิเคราะห์ในกราฟมาตรฐานที่จัดทำขึ้น (รูปที่ 3.23) พบว่าได้ผลดังต่อไปนี้

ตารางที่ 3.3 ค่าสัญญาณ และความเข้มข้นของ CN⁻ ที่เติมลงไปในสารละลายตัวอย่างน้ำฝน

ความเข้มข้น CN ⁻ ที่ เติมลงไป (mM)	2.0	4.0	6.0
ค่าสัญญาณเฉลี่ย	40	66	92
ค่าเบี่ยงเบนมาตรฐาน	2.8	3.7	2.6
ค่าเบี่ยงเบนมาตรฐาน สัมพัทธ์ (%RSD)	7.0	5.6	2.8
ค่าความเข้มข้นที่ วิเคราะห์ได้ (mM)	1.9	4.0	6.1

ตารางที่ 3.4 ค่าสัญญาณ และความเข้มข้นของ CN⁻ ที่เติมลงไปในสารละลายตัวอย่างน้ำจากสระจุฬาลงกรณ์ มหาวิทยาลัย

ความเข้มข้น CN⁻ ที่ เติมลงไป (mM)	2.0	4.0	6.0
ค่าสัญญาณเฉลี่ย	40	66	92
ค่าเบี่ยงเบนมาตรฐาน	1.8	5.2	4.3
ค่าเบี่ยงเบนมาตรฐาน สัมพัทธ์ (%RSD)	4.5	7.9	4.7
ค่าความเข้มข้นที่ วิเคราะห์ได้ (mM)	1.9	4.0	6.1

จากนั้นนำค่าความเข้มข้นที่ได้จากตารางที่ 3.3 และ 3.4 มาคำนวณหาเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด CN⁻ ในสารละลายตัวอย่าง ได้ดังนี้

> เปอร์เซ็นต์การกลับคืน = (ค่าจากตัวอย่างที่เติมสารมาตรฐาน)—(ค่าจากตัวอย่างที่ไม่เติม)×100 (ค่าความเข้มข้นของสารมาตรฐานที่เติม)

จากสูตรข้างต้นได้เปอร์เซ็นต์การกลับคืน (%recovery) ดังต่อไปนี้

ความเข้มข้น CN⁻ ที่เติม (mM)	2.0	4.0	6.0
เปอร์เซ็นต์การกลับคืน (น้ำฝน)	95	100	102
เปอร์เซ็นต์การกลับคืน (น้ำสระจุฬาฯ)	95	100	102

ตารางที่ 3.5 ค่าเปอร์เซ็นต์การกลับคืน (%recovery) ของการตรวจวัด CN⁻ ในสารละลายตัวอย่าง

จากตารางที่ 3.5 จะเห็นได้ว่า CN⁻ ที่เติมลงไปในสารละลายตัวอย่างน้ำฝนและน้ำจากสระ จุฬาฯ ที่ความเข้มข้น 2.0, 4.0 และ 6.0 mM จะให้ค่าเปอร์เซ็นต์การกลับคืนเท่ากับ 95, 100 และ 102

บทที่ 4 สรุปผลการทดลอง

จากการพัฒนาอุปกรณ์ตรวจวัดแบบกระดาษสำหรับการตรวจวัดไอออนของทองและไซยาไนด์ โดยการนำสารละลาย Tetrasulfonamido-picolylspirobifluorene (TSPS) และอนุพันธ์ของไพรีนมาใช้เป็น เซ็นเซอร์ตามลำดับ พบว่าสามารถนำมาใช้ได้จริง โดยเมื่อตรวจสอบช่วงความความเข้มข้นที่สามารถใช้ได้ของ ้วิธีตรวจวัดได้กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของไอออนทองในช่วงความเข้มข้น 10 – 80 mM และกราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของไอออนไซยาไนด์ในช่วงความเข้มข้น 1 – 8 mM ได้ สมการเส้นตรง เป็น y = 0.0348x + 0.7345 มีค่า R² = 0.9887 และ y = 12.179x + 17.15 มีค่า R² = 0.9904 ตามลำดับ แต่อย่างไรก็ตามอุปกรณ์ตรวจวัดที่ได้มีความละเอียดของการตรวจวัดที่ต่ำกว่าการใช้ งานในรูปสารละลาย โดยอุปกรณ์ตรวจวัดแบบกระดาษสำหรับการตรวจวัดไอออนของทองมีขีดจำกัดการ ตรวจวัดเท่ากับ 0.048 mM และขีดจำกัดการตรวจวัดเชิงปริมาณเท่ากับ 0.16 mM และในอุปกรณ์ตรวจวัด แบบกระดาษสำหรับการตรวจวัดไอออนของไซยาไนด์มีขีดจำกัดการตรวจวัดเท่ากับ 0.463 mM และขีดจำกัด การตรวจวัดเชิงปริมาณเท่ากับ 1.54 mM นอกจากนี้ในการทดลองเพื่อหาปริมาณ Au³⁺ และ CN⁻ในแหล่งน้ำ ้ตัวอย่าง เมื่อหาค่าเปอร์เซ็นต์การคืนกลับ พบว่ามีค่าเปอร์เซ็นต์การคืนกลับที่สูงและอยู่ในเกณฑ์ที่ยอมรับได้ และผู้วิจัยสามารถปรับปรุงและพัฒนาอุปกรณ์ตรวจวัดแบบกระดาษให้มีประสิทธิภาพมากขึ้นโดยปรับการตั้ง ้ค่าของโหมดถ่ายภาพให้มีความเหมาะสมมากยิ่งขึ้น ปรับสภาวะของกล่องควบคุมแสงให้มีการกันแสงจาก ภายนอกมากยิ่งขึ้น และอาจมีการนำสารลดแรงตึงผิวมาช่วยเพื่อให้อนุพันธ์ที่นำมาใช้สามารถจับไอออนทอง และไซยาไนด์ได้มากยิ่งขึ้น

เอกสารอ้างอิง

- 1) Boeckx, R.L., Lead poisoning in children. Anal. Chem. 1986, 58, 274A 288A.
- Rice, G.E.; Hammitt, J.K.; Evans, J.S., A Probabilistic characterization of the health benefits of reducing methyl mercury lntake in the united states. *Environ. Sci. Technol.* 2010, 44, 5216 - 5224.
- Hachiya, N. The history and the present of Minamata diseases –entering the second Half a Century. JMAJ. 2006, 49, 112-118.
- Razi, S. S.; Ali, R.; Srivastava, P.; Misra, A., A selective quinoline-derived fluorescent chemodosimeter to detect cyanide in aqueous medium. *Tetrahedron Lett.* 2014, 55, 1052-1056.
- 5) Carter, K. P.; Young, A. M.; Palmer, A. E., Fluorescent sensors for measuring metal ions in living systems. *Chem Rev.* **2014**, *114*, 4564-601.
- 6) Ponram, M.; Balijapalli, U.; Sambath, B.; Iyer, S. K.; B, V.; Cingaram, R.; Natesan Sundaramurthy, K., Development of paper-based chemosensor for the detection of mercury ions using mono- and tetra-sulfur bearing phenanthridines. *New J. Chem.* 2018, *42*, 8530-8536.
- Yang, B.; Wu, W., Fabrication of a novel natural cellulose-based paper chemodosimeter via grafting-to of rhodamine b moieties for detection of Hg2+. *React Funct Polym.* 2013, 73 (11), 1553-1558.
- Aragay, G.; Montón, H.; Pons, J.; Font-Bardía, M.; Merkoçi, A., Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an n-alkylaminopyrazole ligand as a receptor. *J. Mater. Chem.* 2012, *22*, 5978-5983.
- Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Laiwattanapaisal, W., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. *Talanta*. 2011, *85*, 2587-93.
- 10) Silpcharu, k., Fluorescent sensors from spirofluorene for metal ions, Ph.D. Dissertation, Department of Chemistry, Chulalongkorn University, Bangkok, 2018.
- 11) Vongnam, K.; Sukwattanasinitt, M.; Rashatasakhon, P. manuscript in preparation.

- 12) Xiao, H.; Zhang, Y.; Li, S.; Zhang, W.; Han, Z.; Tan, J.; Zhang, S.; Du, J., Spiro configured fluorescent probe: Mynthesis and applications in the determinations of Hg²⁺ and proton, and two-photon fluorescence imaging. *Sens. Actuator B-Chem.* 2016, 236, 233-240.
- 13) Li, X.; Ballerini, D.R.; Shen, W., A perspective on paper-based microfluidics: current status and future trends. *Biomicrofluidics*. **2012**, *6*, 011301.
- 14) He, Y.; Wu, Y.; Fu, J.-Z.; Wu, W.-B., Fabrication of paper-based microfluidic analysis devices: a review. *RSC Adv.* **2015**, *5*, 78109-78127.
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. *Angew. Chem. Int. Ed.* 2007, 46, 1318–1320.
- 16) Li, X.; Tian, J.; Garnier, G.; Shen, W., Fabrication of paper-based microfluidic sensors by printing *Colloids Surf. B.* **2010**, *76*, 564-70.
- Bruzewicz, D.A.; Reches, M.; Whitesides, G.M., Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. *Anal. Chem.* 2008, *80*, 3387–3392.
- Lu, Y.; Lin, B.C.; Qin, J.H. Patterned paper as a low-cost, flexible substrate for rapid prototyping of pdms microdevices via "liquid molding". *Anal. Chem.* 2011, *83*, 1830–1835.
- 19) Khan, M.S.; Fon, D.; Li, X.; Tian, J.F.; Forsythe, J.; Garnier, G.; Shen, W., Biosurface engineering through ink jet printing. *Colloids Surf. B.* **2010**, *75*, 441–447.
- 20) Li, X.; Tian, J.F.; Shen, W. Progress in patterned paper sizing for fabrication of paperbased microfluidic sensors. *Cellulose*. **2010**, *17*, 649–659.
- 21) Li, X.; Tian, J.F.; Nguyen, T.; Shen, W. Paper-based microfluidic devices by plasma treatment. *Anal. Chem.* **2008**, *80*, 9131–9134.
- 22) Carrilho, E.; Martinez, A.W.; Whitesides, G.M., Understanding wax printing: a simple micropatterning process for paper-based microfluidics. *Anal. Chem.* **2009**, *81*, 7091–7095.
- 23) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: from molecular design to applications *Chem. Soc. Rev.* **2013**, *42*, 5323 5351.
- 24) Sahoo, S.K.; Sharma, D.; Bera, R.K.; Crisponi G.; Callan, J.F. Iron (III) selective solecular and supra molecular fluorescent probes. *Chem. Soc. Rev.* **2012**, *41*, 7195 7227.

- 25) Lee, H.; Lee, H.; Reibenspies, J.H.; Hancock, R.D. Mechanism of "Turn-on" fluorescent sensors for mercury(II) in solution and Its Implications for ligand design. *Inorg. Chem.* **2012**, *51*, 10904 10915.
- 26) Roy, A.; Roy, S. Spontaneous formation of vesicles by self-assembly of nicotinyl amino Acid amphiphiles: application as "Turn-On" fluorescent sensors for the selective detection of trace-level Hg(II) in water. *Ind. Eng. Chem. Res.* **2016**, *55*, 10104 10113.
- 27) Borase, P.N.; Thale, P.B.; Shankarling, G.S. Dihydroquinazolinone based "Turn-off" fluorescence sensor for detection of Cu²⁺ ions. *Dyes Pigm*. **2016**, *134*, 276 284.
- 28) Zhao, B.; Liu, T.; Fang, Y.; Wang, L.; Song, B.; Deng, Q. Two 'Turn-off' schiff base fluorescence sensors based on phenanthro[9,10-d]imidazole-coumarin derivatives for Fe3+ in aqueous solution. *Tetrahedron Lett.* **2016**, *57*, 4417 4423.
- 29) Jiao, Y.; Liu, X.; Zhou, L.; Heb, H.; Zhou, P.; Duan, C. A schiff-base dual emission ratiometric fluorescent chemosensor for Hg²⁺Ions and Its application in cellular lmaging. *Sens. Actuator B-Chem.* **2017**, *247*, 950 956.
- Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. J. Org. Chem. 2005, 70, 10524 - 10531.
- 31) ComDigest. ImageJ. <u>http://comdigest.blogspot.com/2015/10/imagej.html</u> (accessed December 10, 2018)
- 32) Clarkson, R.G.; Gomberg, D.M., Spirans with four aromatic radicals on the spiro carbon atom. *J. Am. Chem. Soc.* **1930**, *52*, 2881-2891.
- 33) Yu, C.; Hsu, Y., Synthesis, characterization, optical and electrochemical properties of spirobifluorene based polymers containing electron deficient moieties. *Polymers*, **2016**, *84*, 65 - 71.
- 34) Saragi, T.P.I.; Spehr, T.; Siebert, A. ;Fuhrmann-Lieker, T.; Salbeck, J. Spiro compounds for organic optoelectronics. *Chem. Rev.* **2007**, *107*, 1011 1065.
- 35) Clews, P.K.; Douthwaite, R.E.; Kariuki, B.M.; Moore, T.; Taboada, M., Layered compounds Incorporating 9,9'-spirobifluorene: hydrogen-Bonded and metalorganic networks derived from 9,9'-spirobifluorene2,2',7,7'-tetracarboxylic acid. *Cryst. Growth Des.* **2006**, *6*, 1991 - 1994.

- 36) Chen, W.; Zhang, Z.; Li, X.; Ågren, H.; Su, J., Highly sensitive detection of lowlevel water content in organic solvents and cyanide in aqueous media using novel solvatochromic AIEE fluorophores. *RSC Adv.* **2015**, *5*, 12191-12201.
- 37) Zhang, Y.; Li, D.; Li, Y.; Yu, J., Solvatochromic ale luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. *Chem. Sci.* **2014**, *5*, 2710-2716.

ภาคผนวก

[TSPS] (mM)	variable	grey	red	green	blue	all
	1	210.636	158.36	221.863	253.448	211.0768
	2	208.791	152.561	220.409	253.424	208.7963
10	3	209.486	152.395	222.864	253.228	209.4933
	Average	209.6377	154.4387	221.712	253.3667	209.7888
	SD	0.931804	3.396988	1.234446	0.120687	1.168615
	1	217.921	171.084	228.945	253.723	217.9183
	2	220.968	174.958	234.032	253.934	220.973
1	3	222.781	175.878	238.799	253.582	222.76
	Average	220.5567	173.9733	233.9253	253.7463	220.5504
	SD	2.455972	2.544167	4.927866	0.177156	2.448381
	1	219.387	172.596	231.816	253.718	219.3793
	2	222.432	177.127	236.407	253.754	222.43
10 ⁻¹	3	222.981	177.086	238.708	253.511	223.0715
	Average	221.6	175.603	235.6437	253.661	221.6269
	SD	1.936	2.604	3.509	0.131	1.973
	1	199.333	134.898	209.652	253.555	199.3595
	2	199.508	133.058	211.925	253.651	199.5355
10 ⁻²	3	199.681	131.963	213.514	253.607	199.6913
	Average	199.5073	133.3063	211.697	253.6043	199.5288
	SD	0.174001	1.483175	1.941069	0.048056	0.165978
	1	181.929	124.469	167.41	253.736	181.886
10 ⁻³	2	181.509	122.989	167.979	253.568	181.5113
	3	181.303	121.27	168.871	253.766	181.3025

ตาราง ก-1 ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อหาความเข้มข้นที่เหมาะสมของ สารละลาย Tetrasulfonamido-picolylspirobifluorene (TSPS) ที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ

[TSPS] (mM)	variable	grey	red	green	blue	all
	1	180.25	118.587	168.409	253.775	180.2553
	2	179.126	119.019	164.7	253.763	179.152
10 ⁻⁴	3	177.387	118.378	160.443	253.362	177.3925
	Average	178.921	118.6613	164.5173	253.6333	178.9333
	SD	1.442467	0.326901	3.98614	0.235058	1.443857
	1	179.093	116.096	167.493	253.641	179.0808
	2	178.649	119.101	163.019	253.848	178.6543
10 ⁻⁵	3	177.759	117.251	162.502	253.64	177.788
	Average	178.5003	117.4827	164.338	253.7097	178.5077
	SD	0.679312	1.515836	2.744511	0.119801	0.658723
	1	173.498	114.024	152.725	253.861	173.527
	2	173.94	113.484	154.716	253.569	173.9273
Blank	3	170.93	111.927	148.306	252.566	170.9323
	Average	172.7893	113.145	151.9157	253.332	172.7955
	SD	1.625325	1.088826	3.280745	0.679252	1.625984

[Au(III)] (mM)	variable	grey	red	green	blue	all
	1	30.856	30.856	5.684	55.933	123.329
	2	30.902	28.61	5.543	58.788	123.843
100	3	27.285	24.191	5.216	52.34	109.032
	Average	29.681	27.88567	5.481	55.687	118.7347
	SD	2.075124	3.391025	0.240081	3.231031	8.406685
	1	106.601	55.688	51.404	212.656	426.349
	2	101.886	52.374	42.8	209.899	406.959
10	3	93.529	42.611	42.565	195.375	374.08
	Average	100.672	50.22433	45.58967	205.9767	402.4627
	SD	6.620018	6.798366	5.036731	9.284221	26.423
	1	152.672	93.341	111.11	253.34	610.463
	2	148.739	85.787	110.372	252.967	597.865
1	3	146.338	82.425	103.363	253.203	585.329
	Average	149.2497	87.18433	108.2817	253.17	597.8857
	SD	3.198	5.591	4.276	0.189	12.567
	1	174.953	113.69	158.896	253.205	700.744
	2	174.334	110.232	159.206	253.291	697.063
10 ⁻¹	3	170.698	106.208	151.865	253.354	682.125
	Average	173.3283	110.0433	156.6557	253.2833	693.3107
	SD	2.298865	3.744566	4.151733	0.074795	9.860365
	1	196.591	120.859	217.658	253.711	788.819
	2	193.617	115.211	214.684	253.837	777.349
10 ⁻²	3	191.852	111.22	211.85	253.053	767.975
	Average	194.02	115.7633	214.7307	253.5337	778.0477
	SD	2.395065	4.843179	2.904281	0.42101	10.43955

ตาราง ก-2 ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อศึกษาช่วงความเข้มข้นของ ไอออนทองในการดับค่าสัญญาณฟลูออเรสเซนต์

[Au(III)] (mM)	variable	grey	red	green	blue	all
	1	190.354	110.532	206.58	253.88	761.346
	2	189.502	108.894	205.35	253.852	757.598
10 ⁻³	3	190.277	107.678	209.547	253.721	761.223
	Average	190.0443	109.0347	207.159	253.8177	760.0557
	SD	0.47125	1.43219	2.157576	0.084878	2.12929
	1	191.411	111.713	208.964	253.991	766.079
	2	188.877	108.958	203.251	253.793	754.879
blank	3	192.538	110.825	213.05	253.932	770.345
	Average	190.942	110.4987	208.4217	253.9053	763.7677
	SD	1.87502	1.406192	4.92196	0.101658	7.987865

ตาราง ก-3 ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของทองความเข้มข้น 1 – 10 mM

[Au(III)] (mM)	variable	grey	red	green	blue
	1	63.656	42.422	19.561	129.093
	2	67.409	44.889	19.974	136.554
10	3	71.307	47.596	20.231	146.124
	Average	67.45733	44.969	19.922	137.257
	SD	3.825729	2.587928	0.338013	8.537236
	1	72.122	46.106	24.639	145.683
	2	74.069	48.53	21.676	152.793
9	3	76.348	49.844	20.506	158.731
	Average	74.17967	48.16	22.27367	152.4023
	SD	2.115172	1.896269	2.130335	6.532767
	1	68.433	45.893	20.065	139.354
	2	73.47	48.28	20.331	151.637
8	3	79.406	52.228	20.585	164.48
	Average	73.76967	48.80033	20.327	151.8237
	SD	5.493	3.199	0.260	12.564
	1	68.085	44.433	19.467	138.124
	2	72.067	48.115	20.776	147.476
7	3	78.22	51.306	21.004	161.893
	Average	72.79067	47.95133	20.41567	149.1643
	SD	5.106107	3.439422	0.829441	11.97411
	1	67.53	45.33	20.357	136.515
	2	73.324	47.039	22.413	148.12
6	3	79.435	52.444	21.541	163.713
	Average	73.42967	48.271	21.437	149.4493
	SD	5.953203	3.713572	1.031938	13.64764

[Au(III)] (mM)	variable	grey	red	green	blue
()	1	66.867	44.474	20.952	135.735
5	2	74.956	48.45	22.539	150.37
	3	79.231	51.307	22.991	163.25
	Average	73.68467	48.077	22.16067	149.785
	SD	6.279279	3.431737	1.070856	13.76683
	1	69.506	46.369	23.569	139.359
	2	75.333	48.963	23.411	153.488
4	3	81.765	53.513	23.578	167.091
	Average	75.53467	49.615	23.51933	153.3127
	SD	6.131988	3.616353	0.093927	13.86683
	1	72.754	46.767	24.706	146.709
	2	72.735	46.878	23.356	147.693
3	3	79.713	51.376	25.754	161.85
	Average	75.06733	48.34033	24.60533	152.084
	SD	4.023277	2.62955	1.202165	8.471902
	1	69.68	46.054	25.357	137.9
	2	75.493	48.193	26.528	151.789
2	3	78.82	51.035	26.03	158.867
	Average	74.66433	48.42733	25.97167	149.5187
	SD	4.626004	2.498755	0.587675	10.66628
	1	68.665	44.924	27.057	133.765
	2	73.874	46.443	29.402	144.402
1	3	80.539	50.607	32.611	157.339
	Average	74.35933	47.32467	29.69	145.1687
	SD	5.951859	2.942299	2.788178	11.80569
	1	121.444	55.304	68.15	240.922
	2	132.15	62.296	79.598	254.531
blank	3	136.38	68.881	85.407	254.85
	Average	129.9913	62.16033	77.71833	250.101
	SD	7.698435	6.789517	8.78071	7.950847

ตาราง ก-4 ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของทองความเข้มข้น

10 – 100 mM

[Au(III)] (mM)	variable	grey	red	green	blue
	1	39.609	25.965	6.908	48.156
	2	37.117	24.957	7.941	49.316
100	3	37.382	22.552	8.788	53.691
	Average	38.036	24.49133	7.879	50.38767
	SD	1.368687	1.753504	0.941532	2.918974
	1	40.628	28.271	10.627	63.581
	2	40.026	26.055	11.724	66.39
90	3	36.379	23.513	10.711	68.093
	Average	39.011	25.94633	11.02067	66.02133
	SD	2.299167	2.380861	0.610551	2.27848
	1	43.171	27.837	12.812	64.393
	2	44.513	24.954	13.673	67.308
80	3	38.759	23.927	12.737	76.963
	Average	42.14767	25.57267	13.074	69.55467
	SD	3.010	2.027	0.520	6.579
	1	43.393	28.764	14.116	80.511
	2	44.617	25.193	14.765	80.083
70	3	42.118	22.323	13.607	79.958
	Average	43.376	25.42667	14.16267	80.184
	SD	1.249587	3.226851	0.580409	0.290005
	1	45.127	29.539	16.86	95.208
	2	52.927	25.134	16.887	94.514
60	3	49.507	23.214	14.763	98.043
	Average	49.187	25.96233	16.17	95.92167
	SD	3.909834	3.24284	1.218573	1.869612

[Au(III)]	variable	grey	red	green	blue
(mivi)		54.040	00.007	45.004	07.474
	1	54.819	29.806	15.981	97.171
	2	58.634	27.13	17.865	106.962
50	3	53.136	25.442	14.792	108.523
	Average	55.52967	27.45933	16.21267	104.2187
	SD	2.817053	2.200561	1.549543	6.153161
	1	60.368	31.791	16.761	113.667
	2	67.583	30.453	18.691	121.706
40	3	58.944	28.319	16.167	117.596
	Average	62.29833333	30.18766667	17.20633333	117.6563333
	SD	4.631708144	1.751141723	1.319615601	4.01983959
	1	72.718	38.718	21.709	145.73
	2	76.693	36.959	19.247	146.424
30	3	71.15	31.141	18.668	130.93
	Average	73.52033333	35.606	19.87466667	141.028
	SD	2.857274284	3.965562886	1.614742807	8.75200617
	1	91.07	44.91	35.566	181.989
	2	87.938	45.212	32.421	186.264
20	3	86.016	37.069	29.538	165.01
	Average	88.34133333	42.397	32.50833333	177.7543333
	SD	2.551026721	4.616653442	3.014948811	11.24199406
	1	120.26	62.89	54.516	231.02
	2	114.372	58.352	52.432	224.894
10	3	106.231	54.178	53.126	222.014
	Average	113.621	58.47333333	53.358	225.976
	SD	7.044587355	4.357267186	1.061193668	4.599462142
	1	200.856	109.552	193.704	253.495
	2	197.939	112.03	197.331	253.605
blank	3	188.971	116.135	208.302	253.326
	Average	195.922	112.5723333	199.779	253.4753333
	SD	6.193910154	3.324840798	7.600653196	0.140535879

[Au(II)]	variable	grey	red	green	blue
(mM)					
	1	4.94640107	4.335541434	28.91994789	5.263629316
	2	5.278497723	4.510651654	25.15791462	5.139819396
100	3	5.241078594	4.991678491	22.73315885	4.721002278
100	Average	5.155325796	4.61262386	25.60367379	5.041483663
	SD	0.181898883	0.339746534	3.117389222	0.284365017
	1	4.822339273	3.981901359	18.79919074	3.986652197
	2	4.894868336	4.32056547	17.040174	3.817974595
90	3	5.385579593	4.787663562	18.65175987	3.722487382
	Average	5.034262401	4.363376797	18.16370821	3.842371391
	SD	0.306403236	0.404583476	0.975797517	0.133761598
	1	4.538278011	4.04398223	15.59311583	3.936380248
	2	4.401455754	4.51119393	14.61120456	3.765902023
80	3	5.054877577	4.704824396	15.68493366	3.293470022
	Average	4.664870447	4.420000185	15.29641802	3.665250764
	SD	0.344614645	0.339728298	0.595185463	0.333063652
	1	4.515060033	3.913653641	14.15266364	3.148331698
	2	4.391196181	4.468397306	13.53057907	3.165157815
70	3	4.651740349	5.042885514	14.6820754	3.170105972
	Average	4.519332187	4.47497882	14.12177271	3.161198495
	SD	0.130324611	0.564644705	0.576369358	0.01141433
	1	4.341569349	3.810973064	11.84928826	2.662332297
	2	3.701740133	4.478886502	11.83034287	2.681881344
60	3	3.957460561	4.849329428	13.53241211	2.585348606
	Average	4.000256681	4.379729664	12.40401441	2.643187415
	SD	0.322054324	0.526231929	0.977266984	0.051034667

ตาราง ก-5 ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงความสัมพันธ์ระหว่าง อัตราส่วน I_{blank}/I กับความเข้มข้นทองช่วง 10 – 100 mM

[Au(III)]	variable	grey	red	green	blue
	1	3 573979825	3 776834642	12 50103248	2 60854919
	2	3 34144012	4 149367244	11 18270361	2 369769949
50	3	3 687180066	4 424665252	13 50588156	2.335683066
50	Average	3 534200004	1 116055713	12 30653021	2.333003000
	sn	0.176260263	0.325120213	1 165108611	0.148670388
	1	3 245461171	3 541012656	11 01027680	2 22008173
	2	2 202022472	2.606502562	10,69951210	2.22990175
10	2	2.898983472	3.090392303	10.08851319	2.082685598
40	3	3.983206945	3.975152136	12.35720913	2.15547581
	Average	3.375883863	3.737585785	11.65499974	2.156047713
	SD	0.553753279	0.219953643	0.865169549	0.073649732
	1	2.69427102	2.9074935	9.202588788	1.739349024
	2	2.554626889	3.045870649	10.37974749	1.731105101
30	3	2.753647224	3.61492352	10.70168202	1.935960691
	Average	2.667515044	3.189429223	10.09467277	1.802138272
	SD	0.10217233	0.374928135	0.789158305	0.115966894
	1	2.151334139	2.506620649	5.617134342	1.392805792
	2	2.22795606	2.489877319	6.162024614	1.360839096
20	3	2.277739025	3.036832214	6.763457242	1.536121043
	Average	2.219009741	2.677776727	6.180872066	1.429921977
	SD	0.063675555	0.311063847	0.573393815	0.093349604
	1	1.629153501	1.789987809	3.664593881	1.09720082
	2	1.713024167	1.929194086	3.810249466	1.127088021
10	3	1.844301569	2.077823717	3.760475097	1.141708781
	Average	1.728826412	1.932335204	3.745106148	1.121999207
	SD	0.108441026	0.14394366	0.074034052	0.022686156
	1	0.975435138	1.02756986	1.031362285	0.999922418
	2	0.989809992	1.004840965	1.012405552	0.999488706
blank	3	1.036783422	0.969323058	0.959083446	1.000589491
	Average	1.000676184	1.000577961	1.000950428	1.000000205
	SD	0.032085177	0.029356471	0.037476293	0.0005545

ตาราง ก-6 ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาค่าสัญญาณ blue ในสารละลายตัวอย่างที่ ทราบความเข้มข้น

ความเข้มข้นของ Au(III) ที่เติมลง ไป (mM)	20	50	blank	20 (I _{248.454} /I)	50 (1 _{248.454} /1)
1	175.732	109.212	247.497	1.413823322	2.274969784
2	165.431	96.257	251.25	1.501858781	2.58115254
3	171.339	104.208	246.615	1.450072663	2.384212345
Average	170.834	103.2256667	248.454	1.455251589	2.413444889
SD	5.169034629	6.533126383	2.461238103	0.044245638	0.155170475

เมื่อ I คือค่าสัญญาณ

อนุพันธ์						
ไพรีน	variable	grey	red	green	blue	all
(mM)						
	1	97.009	188.943	98.798	3.562	388.312
	2	106.64	200.999	108.319	10.502	426.46
1	3	97.802	190.452	96.948	6.109	391.311
	Average	100.4836667	193.4646667	101.355	6.724333333	402.0276667
	SD	5.346264334	6.568401962	6.101524154	3.510680323	21.21208817
	1	64.053	110.911	60.69	20.657	256.311
	2	70.406	118.144	68.849	24.786	282.185
10 ⁻¹	3	57.313	95.712	51.867	24.669	229.561
	Average	63.924	108.2556667	60.46866667	23.37066667	256.019
	SD	6.547453169	11.44931231	8.49316327	2.350832264	26.31321516
	1	55.027	37.705	49.405	78.126	220.263
	2	63.663	45.412	57.924	86.558	253.557
10 ⁻²	3	54.872	36.485	49.115	79.181	219.653
	Average	57.854	39.86733333	52.148	81.28833333	231.1576667
	SD	5.031	4.840	5.004	4.594	19.401
	1	27.529	8.961	12.972	60.282	109.744
	2	30.663	11.558	14.845	65.365	122.431
10 ⁻³	3	27.953	10.073	14.039	60.08	112.145
	Average	28.715	10.19733333	13.952	61.909	114.7733333
	SD	1.700285858	1.302956766	0.939525944	2.994687463	6.739517366
	1	23.66	8.798	9.455	53.01	94.923
	2	26.754	9.714	11.06	59.202	106.73
blank	3	22.905	9.011	9.598	50.534	92.048
	Average	24.43966667	9.174333333	10.03766667	54.24866667	97.90033333
	SD	2.039512278	0.479345735	0.888249027	4.464781891	7.780659762

ตาราง ก-7 ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อหาความเข้มข้นที่เหมาะสมของ สารละลายอนุพันธ์ไพรีนที่นำมาใช้เป็นเซ็นเซอร์บนกระดาษ

[CN ⁻]	variable	grey	red	green	blue
(mM)		5 /		5	
	1	113.829	38.44	120.631	182.368
	2	121.881	47.956	129.892	187.623
100	3	109.955	39.191	114.835	175.794
	Average	115.2216667	41.86233333	121.786	181.9283333
	SD	6.083749611	5.290612472	7.594658057	5.926743653
	1	114.771	93.235	123.447	127.544
	2	103.643	76.085	110.083	123.27
10	3	99.938	87.072	104.358	107.609
	Average	106.1173333	85.464	112.6293333	119.4743333
	SD	7.71985857	8.687339811	9.795934888	10.4955405
	1	79.655	138.83	78.896	21.269
	2	75.978	129.015	76.085	22.805
1	3	70.755	123.2	69.07	20.009
	Average	75.46266667	130.3483333	74.68366667	21.361
	SD	4.472	7.900	5.061	1.400
	1	74.323	132.965	72.095	18.402
	2	79.24	135.828	79.353	22.532
0.1	3	71.206	124.668	69.533	19.559
	Average	74.923	131.1536667	73.66033333	20.16433333
	SD	4.050467751	5.796300228	5.093702125	2.130503775
	1	72.877	128.496	70.278	19.808
	2	79.585	139.682	79.891	19.006
blank+น้ำ	3	68.829	122.88	67.236	16.347
	Average	73.76366667	130.3526667	72.46833333	18.387
	SD	5.432542437	8.553491061	6.605711645	1.811629377

ตาราง ก-8 ค่าสี RGB Grey ค่าเฉลี่ยรวมความเข้มสีจากการทำซ้ำ 3 ครั้ง เพื่อศึกษาช่วงความเข้มข้นของ ไอออนไซยาไนด์ที่ทีผลต่อค่าสัญญาณฟลูออเรสเซนต์

[CN ⁻] (mM)	variable	grey	red	green	blue
blank	1	80.087	144.792	82.823	12.597
	2	81.862	145.893	84.979	14.807
	3	68.839	124.557	70.306	14.574
	Average	76.92933333	138.414	79.36933333	13.99266667
	SD	7.062420005	12.01313394	7.922757874	1.214284289

ตาราง ก-9 ค่าสี RGB Grey จากการทำซ้ำ 3 ครั้ง ผลการศึกษาช่วงความเป็นเส้นตรงของไซยาไนด์ความ เข้มข้น 1.0 – 10 mM

[CN ⁻]	variable		rad	6 1000	blue	
(mM)	Valiable	grey	rea	green	Dide	
	1	101.657	78.099	110.878	115.931	
	2	107.278	77.103	117.441	127.202	
10	3	86.984	56.371	90.835	114.371	
	Average	98.63966667	70.52433333	106.3846667	119.168	
	SD	10.47806444	12.26725875	13.86045967	7.001233249	
	1	105.909	84.286	114.863	118.52	
	2	104.52	81.147	112.833	119.477	
9	3	94.37	69.049	98.309	115.826	
	Average	101.5996667	78.16066667	108.6683333	117.941	
	SD	6.299475401	8.045506966	9.028680155	1.893114101	
	1	110.98	102.587	118.67	111.719	
8	2	100.183	82.125	106.351	112.125	
	3	93.034	75.407	94.964	108.86	
	Average	101.399	86.70633333	106.6616667	110.9013333	
	SD	9.034584717	14.15731476	11.85605307	1.779463496	

[CN ⁻]	variable	grey	red	green	blue	
(mM)						
	1	101.111	95.472	106.503	101.239	
	2	100.769	91.899	105.484	105.151	
7	3	89.977	81.41	90.577	97.884	
	Average	97.28567	89.59367	100.8547	101.4247	
	SD	6.3318	7.308959	8.915291	3.637056	
	1	96.643	96.055	101.465	92.413	
	2	97.116	94.879	99.84	96.238	
6	3	85.756	82.894	84.962	89.363	
	Average	93.17167	91.276	95.42233	92.67133	
	SD	6.426509	7.282801	9.095278	3.444773	
	1	95.607	103.593	101.262	81.631	
	2	97.026	106.649	100.883	83.594	
5	3	86.181	93.902	85.343	79.302	
	Average	92.938	101.3813	95.82933	81.509	
	SD	5.894589	6.655081	9.083408	2.148599	
	1	83.931	102.673	86.88	61.265	
	2	96.794	111.989	102.933	75.512	
4	3	81.166	90.613	82.399	71.616	
	Average	87.297	101.7583	90.73733	69.46433	
	SD	8.340028	10.71731	10.79678	7.363186	
	1	81.251	107.177	81.05	53.859	
	2	88.988	122.492	90.186	54.476	
3	3	79.679	110.511	78.012	50.511	
	Average	83.306	113.3933	83.08267	52.94867	
	SD	4.983135	8.054079	6.336432	2.133503	
	1	74.115	117.282	70.175	35.072	
	2	80.422	128.065	78.591	35.09	
2	3	80.381	118.4	79.387	43.023	
	Average	78.306	121.249	76.051	37.72833333	
	SD	3.62957036	5.929238821	5.104305633	4.58532467	
[CN ⁻]	variable	5 501/	rad	aroon.	blue	
--------------------	----------	---------------	-------------	-------------	-------------	--
(mM)	Valiable	grey	lea	green	blue	
1	1	68.429	117.503	63.512	24.711	
	2	72.007	117.004	65.424	32.256	
	3	68.761	113.687	62.692	30.019	
	Average	70.218	117.2535	64.468	28.99533333	
	SD	2.530028063	0.352846284	1.351988166	3.875264679	
blank+น้ำ	1	63.916	112.433	58.274	22.199	
	2	74.355	128.951	69.123	24.914	
	3	69.208	123	64.658	20.036	
	Average	69.15966667	121.4613333	64.01833333	22.383	
	SD	5.219667837	8.36580554	5.452713117	2.444199869	
blank	1	69.693	123.729	64.654	20.556	
	2	75.973	133.473	72.689	21.764	
	3	70.32	126.023	66.853	18.07	
	Average	71.99533333	127.7416667	68.06533333	20.13	
	SD	3.458996434	5.094285557	4.152423429	1.883485068	

ตาราง ก-10 ค่าสี RGB Grey จากการทำซ้ำ 7 ครั้ง ผลการศึกษาค่าสัญญาณ blue ในสารละลายตัวอย่าง น้ำฝนและน้ำจากสระน้ำจุฬาฯที่ทราบความเข้มข้น

แหล่ง น้ำ	[Au(III)] (mM)	1	2	3	4	5	6	7	Average	SD
น้ำฝน	2	93.353	93.476	91.196	91.406	92.251	93.575	86.241	91.64257143	2.576297657
	4	63.552	66.084	66.02	63.308	69.968	60.413	70.672	65.71671429	3.684934315
	6	44.347	40.111	41.139	36.642	36.804	37.677	41.266	39.71228571	2.831850379
น้ำ สระ	2	98.345	95.773	87.68	94.074	87.543	88.479	91.139	91.86185714	4.288132011
	4	69.05	69.151	69.544	73.358	59.223	64.013	60.602	66.42014286	5.223505573
	6	42.173	38.331	37.943	39.126	40.518	40.554	42.473	40.15971429	1.780216439

ประวัติผู้วิจัย

นายสหรัฐ มุกดารัตน์สกุล เกิดเมื่อวันที่ 22 เดือนพฤษภาคม พ.ศ. 2539 ที่จังหวัดระนอง สำเร็จการศึกษาชั้น มัธยมศึกษาตอนปลายจากโรงเรียนสตรีระนอง จังหวัดระนอง เมื่อปีการศึกษา 2558 เข้าศึกษาต่อในหลักสูตร วิทยาศาสตรบัณฑิต ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการศึกษา 2558 ที่อยู่ที่ สามารถติดต่อได้ บ้านเลขที่ 43/1 ถนนเรืองราษฎร์ตำบลเขานิเวศน์ อำเภอเมือง จังหวัด ระนอง รหัสไปรษณีย์ 85000 อีเมล saharath.po@gmail.com