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Chapter 1

Introduction

Neurons are electrically excitable cells that receive, process, and transmit infor-
mation through electrical and chemical signals. Neurons in the brain express intrinsic
dynamic behavior which is known to be stochastic in nature. Cerebellar granule cells
are the most abundant neurons in the human brain and are among the smallest
neurons in the brain.

In the cell membrane, many ions have a concentration gradient across the mem-
brane. Some ions have high concentration inside the membrane but low concentra-
tion outside the membrane, and vice versa. These concentration gradients provide
the potential energy to drive the formation of the membrane potential. This voltage
is established when the membrane has permeability to one or more ions.

Ion channels are pore-forming membrane proteins that allow ions to pass through
the channel pore. Due to random opening and closing (gating) of an ion channel
at an experimentally fixed membrane potential, Saarinen et al. [2] propose a sys-
tem of stochastic differential equations (SDEs) to model the intrinsic dynamic behav-
ior of cerebellar granule cells. This model includes six different types of voltage-
dependent conductances: the fast inactivating sodium channel (NaF ), the delayed
rectifier potassium channel (KDr ), the transient A-type potassium channel (KA), the
inward rectifier potassium channel (Kir ), the high-voltage-activated calcium channel
(CaHV A), and the large-conductance calcium and voltage-activated potassium chan-
nel (BKca) as well as simple calcium dynamics to describe the change in membrane
potential.

1
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In [1], Marja-Leena Linne and her team used Hodgkin-Huxley for model for ion
channel/current behavior and a simple model for calcium dynamics and describe
the granule neuron excitability. The starting parameter values of the model equa-
tion were selected based on data from in vitro experiments on cerebellar granule
neurons. The basic excitability properties of the granule neuron were used as the
main constraints of the model. In the experiment, the neuron was assumed as one-
compartmental sphere which containing six different voltage-dependent ion channel/
current types (NaF , KDr ,KA, Kir , CaHV A, BKca).

The change in membrane potential is described from [2] by the system of SDEs

dVm(t) =
1

Cm

(
Iapp −G1x

p1
1 (t)xq1

2 (t)(Vm(t)− E1)

−G2x
p2
3 (t)(Vm(t)− E2)−G3x

p3
4 (t)xq3

5 (t)(Vm(t)− E3)

−G4x
p4
6 (t)(Vm(t)− E4)−G5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

−G6x
p6
9 (t)(Vm(t)− E6)−

1

Rm

(Vm(t)− Em)
)
dt,

dx1(t) =
(
α1(Vm(t))(1− x1(t))− β1(Vm(t))x1(t)

)
dt+ σ1dW1(t),

dx2(t) =
(
α2(Vm(t))(1− x2(t))− β2(Vm(t))x2(t)

)
dt+ σ2dW2(t),

dx3(t) =
(
α3(Vm(t))(1− x3(t))− β3(Vm(t))x3(t)

)
dt+ σ3dW3(t),

dx4(t) =
(
α4(Vm(t))(1− x4(t))− β4(Vm(t))x4(t)

)
dt+ σ4dW4(t),

dx5(t) =
(
α5(Vm(t))(1− x5(t))− β5(Vm(t))x5(t)

)
dt+ σ5dW5(t),

dx6(t) =
(
α6(Vm(t))(1− x6(t))− β6(Vm(t))x6(t)

)
dt+ σ6dW6(t),

dx7(t) =
(
α7(Vm(t))(1− x7(t))− β7(Vm(t))x7(t)

)
dt+ σ7dW7(t),

dx8(t) =
(
α8(Vm(t))(1− x8(t))− β8(Vm(t))x8(t)

)
dt+ σ8dW8(t),

dx9(t) =
(
α9(Vm(t), x10(t))(1− x9(t))− β9(Vm(t), x10(t))x9(t)

)
dt+ σ9dW9(t),

dx10(t) =
(BG5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

π dcell2 dshell
− x10(t)− [Ca2+]rest

τCa

)
dt,



(1)

where Vm(t) is the process of membrane potential,
x1(t) is the activation process for NaF ion channel,
x2(t) is the inactivation process for NaF ion channel,
x3(t) is the activation process for KDr ion channel,
x4(t) is the activation process for KA ion channel,
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x5(t) is the inactivation process for KA ion channel,
x6(t) is the activation process for Kir ion channel,
x7(t) is the activation process for CaHV A ion channel,
x8(t) is the inactivation process for CaHV A ion channel,
x9(t) is the activation process for BKca ion channel,
x10(t) is the process for intercellular calcium (Ca2+ ions) concentration,
αi and βi are the coefficient functions for i = 1, 2, . . . , 9 given by

α1(Vm(t)) = 3 · 103e((Vm(t)−0.01)+39·10−3)·0.081·103 ,

β1(Vm(t)) = 3 · 103e((Vm(t)−0.01)+39·10−3)·−0.066·103 ,

α2(Vm(t)) = 0.24 · 103e((Vm(t)−0.01))+50·10−3)·−0.089·103 ,

β2(Vm(t)) = 0.24 · 103e((Vm(t)−0.01)+50·10−3)·0.089·103 ,

α3(Vm(t)) = 0.34 · 103e((Vm(t)−0.01)+38·10−3)·0.073·103 ,

β3(Vm(t)) = 0.34 · 103e((Vm(t)−0.01)+38·10−3)·−0.018·103 ,

α4(Vm(t)) = 2.2 · 103e((Vm(t)−0.01)+46.7·10−3)·0.04·103 ,

β4(Vm(t)) = 2.2 · 103e((Vm(t)−0.01)+46.7·10−3)·−0.01·103 ,

α5(Vm(t)) = 0.016 · 103e((Vm(t)−0.01)+78.8·10−3)·−0.075·103 ,

β5(Vm(t)) = 0.016 · 103e((Vm(t)−0.01)+78.8·10−3)·0.055·103 ,

α6(Vm(t)) = 0.133 · 103e((Vm(t)−0.01)+83.94·10−3)·−0.0411·103 ,

β6(Vm(t)) = 0.17 · 103e((Vm(t)−0.01)+83.94·10−3)·0.028·103 ,

α7(Vm(t)) = 0.049 · 103e((Vm(t)−0.01)+29.06·10−3)·0.063·103 ,

β7(Vm(t)) = 0.082 · 103e((Vm(t)−0.01)+18.66·10−3)·−0.039·103 ,

α8(Vm(t)) = 0.0013 · 103e((Vm(t)−0.01)+48·10−3)·−0.055·103 ,

β8(Vm(t)) = 0.0013 · 103e((Vm(t)−0.01)+48·10−3)·0.012102142·103 ,

α9(Vm(t), x10(t)) =
2.5 · 103

1 + 1.5 · 10−3 · e−0.085·103(Vm(t)−0.01)/x10(t)
,

β9(Vm(t), x10(t)) =
1.5 · 103

1 + x10(t)/(150 · 10−6 · e−0.077·103(Vm(t)−0.01))
,

Cm, G1, G2, G3, G4, G5, G6, p1, q1, p2, p3, q3, p4, p5, q5, p6, E1, E2 ,E3, E4, E5, E6, Em,
Rm, B, τCa , dcell, dshell and [Ca2+]rest are constant parameters in the model given
in figure 1.1, Iapp is an applied current, and σi for for i = 1, 2, . . . , 9 are the parameter



4

that bring the intensity of random fluctuations.
All of these processes occur at membrane called an ion channel. Each ion has its

own channel but some channels can allow more than two ions to pass. From now
on, we will call the processes xi for i = 1, 2, . . . , 9 the gating variables.

In this work, we choose electrical signal to study. In our brain, neurons express in-
trinsic dynamic behavior which is known to be stochastic in nature. A neuron cell has
membrane and many ions. When neurons send some information by using electrical
signal, they use ions to be a conductor. Electrical signal is an applied current (Iapp)
which is used to transmit information in neurons, and we use three values of Iapp
which are 11, 12 and 29 cA. The applied current with ions moves into the membrane
or moves out from the membrane to other cells so these cause the change in mem-
brane potential, Vm(t). We also add stochasticity into gating variables (xi(1− xi)) to
obtain another model and we will simulate the process Vm(t) by using the Euler-
Maruyama method and use the result to analyze the variability in spike timing and
use the result from the simulation of interspike intervals to see variability in the firing
caused by the parameter σi.



5

Figure 1.1: Constant parameters in the original model.



Chapter 2

Background Knowledge

In this chapter, we describe the background knowledge and the concept for our
project which are stochastic differential equations and the numerical method that
we will use in this work.

2.1 Stochastic differential equation
Definition 2.1.1. The Wiener process {Wt}t∈[0,T ] is a stochastic process characterised
by the following properties.

1. W0 = 0 with probability 1.

2. For 0 ≤ s ≤ t ≤ T , the random variable given by the increment Wt - Ws is
normally distributed with mean zero and variance t− s, or equivalently,
Wt - Ws ∼

√
t− s N(0, 1).

3. For 0 ≤ s < t ≤ u < v ≤ T , the increments Wt - Ws and Wv - Wu are
independent.

4. It has continuous sample paths with probability 1.

Definition 2.1.2. A stochastic differential equation (SDE) has the form

dXt = a(Xt, t)dt+ b(Xt, t)dWt, 0 ≤ t ≤ T (2.1)
X0 = x,

6
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where Wt denotes a Wiener process, a and b are scalar functions of Xt, and x ∈ R.
The equation (2.1) is understood to be the differential form of the integral equation

Xt −X0 =

∫ t

0

f(Xs, s)ds+

∫ t

0

g(Xs, s)dWs (2.2)

where the first term on the right-hand side of the above equation is interpreted as
the ordinary Riemann integral, and the second term is the Ito integral.

2.2 The Euler-Maruyama method
The simplest numerical approximation for solving an SDE is the Euler-Maruyama

method. We need to discretize the time domain [0, T ] into N equidistance subin-
tervals. Let tn = n△ for all n = 0, 1, . . . , N where △ = T

N
. We denote xn to be the

numerical solution at time step tn using the Euler-Maruyama scheme

xn+1 = xn + f(xn)△+ g(xn)△Wn

where △Wn is normally distributed with mean 0 and variance △ and x0 = X0. We
simulate for each xn from the time domain [0, T ], so we get x0 at time 0 until xN at
time T . Then, we have one sample path. If we do the simulation agian, we will not
get the same sample path because we generate other random numbers.



Chapter 3

Methodology

In this chapter, we will use a numerical method to find the numerical solution of
the change in membrane potential Vm(t).

3.1 Our model
We simulate the original model (1) and our model. From a suggestion in [2],

Marja-Leena Linne and her team gave an advice which is adding some function of
gating variables to reduce noises that will be outside the interval [0,1]. Each value
in the range [0,1] tells the status of the ion channel whether it is open or closed.
When the channel is fully open, this value is set to 1, and when the channel is
completely closed, this value is set to 0. However, Marja-Leena Linne and her team
did not tell what is the appropriate functions of gating variables so we decide to add
the term xi(t)(1 − xi(t)) at the random term for each SDE in the original model to
be our proposed model. We expect that the term xi(t)(1− xi(t)) will reduce noises
near 0 and 1 and make our model appropriate to simulate the change in membrane
potential. Note that, in this work, we actually restrict all of the process xi(t) to live
in the interval [0, 1].

8
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Our model has the form

dVm(t) =
1

Cm

(
Iapp −G1x

p1
1 (t)xq1

2 (t)(Vm(t)− E1)

−G2x
p2
3 (t)(Vm(t)− E2)−G3x

p3
4 (t)xq3

5 (t)(Vm(t)− E3)

−G4x
p4
6 (t)(Vm(t)− E4)−G5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

−G6x
p6
9 (t)(Vm(t)− E6)−

1

Rm

(Vm(t)− Em)
)
dt,

dx1(t) =
(
α1(Vm(t))(1− x1(t))− β1(Vm(t))x1(t)

)
dt+ σ1x1(t)(1− x1(t))dW1(t),

dx2(t) =
(
α2(Vm(t))(1− x2(t))− β2(Vm(t))x2(t)

)
dt+ σ2x2(t)(1− x2(t))dW2(t),

dx3(t) =
(
α3(Vm(t))(1− x3(t))− β3(Vm(t))x3(t)

)
dt+ σ3x3(t)(1− x3(t))dW3(t),

dx4(t) =
(
α4(Vm(t))(1− x4(t))− β4(Vm(t)x4(t)

)
dt+ σ4x4(t)(1− x4(t))dW4(t),

dx5(t) =
(
α5(Vm(t))(1− x5(t))− β5(Vm(t)x5(t)

)
dt+ σ5x5(t)(1− x5(t))dW5(t),

dx6(t) =
(
α6(Vm(t))(1− x6(t))− β6(Vm(t))x6(t)

)
dt+ σ6x6(t)(1− x6(t))dW6(t),

dx7(t) =
(
α7(Vm(t))(1− x7(t))− β7(Vm(t))x7(t)

)
dt+ σ7x7(t)(1− x7(t))dW7(t),

dx8(t) =
(
α8(Vm(t))(1− x8(t))− β8(Vm(t))x8(t)

)
dt+ σ8x8(t)(1− x8(t))dW8(t),

dx9(t) =
(
α9(Vm(t), x10(t))(1− x9(t))− β9(Vm(t), x10(t))x9(t)

)
dt

+ σ9x9(t)(1− x9(t))dW9(t),

dx10(t) =
(BG5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

π dcell2 dshell
− x10(t)− [Ca2+]rest

τCa

)
dt,



(2)

where all processes, functions and all parameters in this model are as same as in
equation (1).

3.2 Numerical method
In this project, we use MATLAB to find numerical solution by using Euler-Maruyama

to simulate the process Vm(t). We discretize the time domain [0, T ] into N equidis-
tance subintervals. Let tn = n△ for all n = 0, 1, . . . , N where △ = T

N
.
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3.2.1 Euler-Maruyama scheme for the original model
The Euler-Maruyama scheme for the original model has the form

Vn = Vn−1 +
1

Cm

(
Iapp −G1x1

p1
n−1x2

q1
n−1(Vn−1 − E1)

−G2x3
p2
n−1(Vn−1 − E2)−G3x4

p3
n−1x5

q3
n−1(Vn−1 − E3)

−G4x6
p4
n−1(Vn−1 − E4)−G5x7

p5
n−1x8

q5
n−1(Vn−1 − E5)

−G6x9
p6
n−1(Vn−1 − E6)−

1

Rm

(Vn−1 − Em)
)
△,

x1n = x1n−1 +
[
α1(Vn−1)(1− x1n−1)− β1(Vn−1)x1n−1

]
△+ σ△W1,

x2n = x2n−1 +
[
α2(Vn−1)(1− x2n−1)− β2(Vn−1)x2n−1

]
△+ σ△W2,

x3n = x3n−1 +
[
α3(Vn−1)(1− x3n−1)− β3(Vn−1)x3n−1

]
△+ σ△W3,

x4n = x4n−1 +
[
α4(Vn−1)(1− x4n−1)− β4(Vn−1)x4n−1

]
△+ σ△W4,

x5n = x5n−1 +
[
α5(Vn−1)(1− x5n−1)− β5(Vn−1)x5n−1

]
△+ σ△W5,

x6n = x6n−1 +
[
α6(Vn−1)(1− x6n−1)− β6(Vn−1)x6n−1

]
△+ σ△W6,

x7n = x7n−1 +
[
α7(Vn−1)(1− x7n−1)− β7(Vn−1)x7n−1

]
△+ σ△W7,

x8n = x8n−1 +
[
α8(Vn−1)(1− x8n−1)− β8(Vn−1)x8n−1

]
△+ σ△W8,

x9n = x9n−1 +
[
α9(Vn−1, x10n−1)(1− x9n−1)− β9(Vn−1, x10n−1)x9n−1

]
△+ σ△W9,

x10n = x10n−1 +
[BG5x7

p5
n−1x8

q5
n−1(Vn−1 − E5)

π dcell2 dshell
− x10n−1 − [Ca2+]rest

τCa

]
△,

where △Wi ∼ N (0,△) for all i = 1, 2, .., 9,
Vn is a numerical solution of Vm(tn),
x1n is a numerical solution of x1(tn),
x2n is a numerical solution of x2(tn),
x3n is a numerical solution of x3(tn),
x4n is a numerical solution of x4(tn),
x5n is a numerical solution of x5(tn),
x6n is a numerical solution of x6(tn),
x7n is a numerical solution of x7(tn),
x8n is a numerical solution of x8(tn),
x9n is a numerical solution of x9(tn),
x10n is a numerical solution of x10(tn),
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for all n = 1, 2, . . . , N .

3.2.2 Euler-Maruyama scheme for our new model
All values of parameters in our model are the same parameters in the original

model. For our model, we will add a tilde accent on Vn, Vn−1, xin and xin−1 for i =
1, 2, . . . , 10 to denote the numerical solutions for our model. The Euler-Maruyama
scheme for our model has the form

Ṽn = Ṽn−1 +
1

Cm

[
Iapp −G1x̃1

p1
n−1x̃2

q1
n−1(Ṽn−1 − E1)

−G2x̃3
p2
n−1(Ṽn−1 − E2)−G3x̃4

p3
n−1x̃5

q3
n−1(Ṽn−1 − E3)

−G4x̃6
p4
n−1(Ṽn−1 − E4)−G5x̃7

p5
n−1x̃8

q5
n−1(Ṽn−1 − E5)

−G6x̃9
p6
n−1(Ṽn−1 − E6)−

1

Rm

(Ṽn−1 − Em)
]
△,

x̃1n = x̃1n−1 +
[
α1(Ṽn−1)(1− x̃1n−1)− β1(Ṽn−1)x̃1n−1

]
△

+ σ1(x̃1n−1)(1− x̃1n−1)△W1,

x̃2n = x̃2n−1 +
[
α2(Ṽn−1)(1− x̃2n−1)− β2(Ṽn−1)x̃2n−1

]
△

+ σ2(x̃2n−1)(1− x̃2n−1)△W2,

x̃3n = x̃3n−1 +
[
α3(Ṽn−1)(1− x̃3n−1)− β3Ṽn−1)x̃3n−1

]
△

+ σ3(x̃3n−1)(1− x̃3n−1)△W3,

x̃4n = x̃4n−1 +
[
α4(Ṽn−1)(1− x̃4n−1)− β4(Ṽn−1)x̃4n−1

]
△

+ σ4(x̃4n−1)(1− x̃4n−1)△W4,

x̃5n = x̃5n−1 +
[
α5(Ṽn−1)(1− x̃5n−1)− β5(Ṽn−1)x̃5n−1

]
△

+ σ5(x̃5n−1)(1− x̃5n−1)△W5,

x̃6n = x̃6n−1 +
[
α6(Ṽn−1)(1− x̃6n−1)− β6(Ṽn−1)x̃6n−1

]
△

+ σ6(x̃6n−1)(1− x̃6n−1)△W6,

x̃7n = x̃7n−1 +
[
α7(Ṽn−1)(1− x̃7n−1)− β7(Ṽn−1)x̃7n−1

]
△

+ σ7(x̃7n−1)(1− x̃7n−1)△W7,

x̃8n = x̃8n−1 +
[
α8(Ṽn−1)(1− x̃8n−1)− β8(Ṽn−1)x̃8n−1

]
△

+ σ8(x̃8n−1)(1− x̃8n−1)△W8,
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x̃9n = x̃9n−1 +
[
α9(Ṽn−1, x̃10n−1)(1− x̃9n−1)− β9(Ṽn−1, x̃10n−1)x̃9n−1

]
△

+ σ9(x̃9n−1)(1− x̃9n−1)△W9,

x̃10n = x̃10n−1 +
[BG5x̃7

p5
n−1x̃8

q5
n−1(Ṽn−1 − E5)

πdcell2dshell
− x̃10n−1 − [Ca2+]rest

τCa

]
△,

where △Wi ∼ N (0,△) for all i = 1, 2, .., 9,
Ṽn is a numerical solution of Vm(tn),
x̃1n is a numerical solution of x1(tn),
x̃2n is a numerical solution of x2(tn),
x̃3n is a numerical solution of x3(tn),
x̃4n is a numerical solution of x4(tn),
x̃5n is a numerical solution of x5(tn),
x̃6n is a numerical solution of x6(tn),
x̃7n is a numerical solution of x7(tn),
x̃8n is a numerical solution of x8(tn),
x̃9n is a numerical solution of x9(tn),
x̃10n is a numerical solution of x10(tn),
for all n = 1, 2, . . . , N .

3.3 The three aspects
In this work we simulate both models to analyze three aspects. They are the

effect of Iapp to the spike timing, the variability in spike timing, and interspike intervals.
All of these aspects correlate with parameter σ which are very important because
we add the term xi(t)(1− xi(t)) at the random term for each SDE.

In this work, we study cerebellar granule cell which has threshold 11.5 cA. This
threshold is used to divide the level of regularity or irregularity of firing. The initial
conditions to simulate the process Vm(t) for the original model are △ = 10−3 s,
x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = x6(0) = x7(0) = x8(0) = x9(0) =

0.5, x10(0) = 100× 10−6 and Vm(0) = −0.07 V. We use △ = 10−3 because if we use
△ = 10−5 like in [2], we will not get any reasonable results.
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3.3.1 The effect of Iapp to the spike timing
For this aspect, we will simulate to see the effect of Iapp to the spike timing. For

the original model, we will use three values of Iapp : 11, 12, 29 cA with parameter
σi = σ = 0.5 for i = 1, 2, . . . , 9. For our model, we will use three values of Iapp :

11, 12, 29 cA with parameter σi = σ = 0.5×1000 for i = 1, 2, . . . , 9. For both models,
we will simulate for T = 0.4 seconds.

3.3.2 The variability in spike timing
For this aspect, we will simulate to see the variability in spike timing which ef-

fected by the parameter σ. For the original model, we will use three values of
σ = 0.1, 0.3, 0.5 with Iapp = 12 cA. For our model, we will use three values of
σ = 0.1 × 1000, 0.3 × 1000, 0.5 × 1000 with Iapp = 12 cA. We will simulate for
10 sample paths to see the variability. For each sample path, we will simulate for
T = 0.4 seconds. The reason that we multiply the old parameter σ by 1000 is that
in our model, we add the term xi(t)(1− xi(t))’s to the stochastic part ; hence, the
noises will be much smaller than usual. By our experiments, 1000 seems to be a
good number to use for intensifying the degree of randomness for our model.

3.3.3 Interspike intervals
For this aspect, we will simulate to see the distribution of interspike intervals

by using the distance between spikes that surpass the threshold 11.5 cA. For the
original model, we will use three values of Iapp : 11, 12, 29 cA and three values of
σ = 0.1, 0.3, 0.5. For our model, we will use three values of Iapp : 11, 12, 29 cA and
three values of σ = 0.1× 1000, 0.3× 1000, 0.5× 1000 with Iapp = 12 cA so that we
have 9 cases in total. For each sample path, we will simulate for T = 15 seconds.
Then, we plot histogram of interspike intervals for each case. After that, we use
the coefficeint of variation (CV) to analyze the result. The CV of interspike intervals
is used to quantify the regularity/irregularity of action potential firing. The CV is a
standard measure of dispersion and is defined as the ratio of the standard deviation
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to mean, i.e.

CV =
Standard deviation

Mean
.



Chapter 4

Results

This chapter presents the results from simulations in section 3. They are the effect
of Iapp to the spike timing, the variability in spike timing, and interspike intervals.

4.1 The effect of Iapp to the spike timing
We use three values of Iapp : 11, 12 and 29 cA with the parameter σ = 0.5 for the

original model and σ = 0.5× 1000 for our model. In each trace, firing is simulated
for 0.4 seconds with a time step of 10−3 seconds.

Figure 4.1 and 4.2 show the behavior of stochastic granule cell model in response
to three different deporarizing current pulses. In the upper panel, the depolarizing
current is below the firing threshold (Iapp = 11 cA). In the middle panel, the depolar-
izing current is just above the firing threshold (Iapp = 12 cA). In the lower panel, the
depolarizing current is considerably larger than the firing threshold (Iapp = 29 cA).

4.2 The variability in spike timing
We use three values of the parameter σ = 0.1, 0.3 and 0.5 for the original model,

and σ = 0.1× 1000, 0.3× 1000 and 0.5× 1000 for our model with Iapp = 12 cA. We
will simulate for 10 sample paths to see the variability in spike timing. In each trace,
firing is simulated for 0.4 seconds with a time step of 10−3 seconds.

Figure 4.3 and 4.4 show the variability in spike timing for the original model and

15
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Figure 4.1: The effect of Iapp to the spike timing for the original model.

our model, respectively. The upper panels correspond to σ = 0.1, the middle panels
correspond to σ = 0.3, and the lower panels correspond to σ = 0.5. From figure
4.3, the value of the parameter σ affects spike timing. The higher the parameter σ is,
the more variability spike timing will be. From figure 4.4, the value of the parameter
σ affects spike timing. The higher the parameter σ is, the more variability in spike
timing will be.

4.3 Interspike intervals
We will use three values of Iapp = 11, 12 and 29 cA. We use three values of

σ = 0.1, 0.3 and 0.5 for the original model and σ = 0.1 × 1000, 0.3 × 1000 and
0.5 × 1000 for our model. For each sample path, we will simulate for 15 seconds.
We consider the time length between the peaks that surpass the threshold.
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Figure 4.2: The effect of Iapp to the spike timing for our model.

Figure 4.5 shows 9 histograms of interspike intervals. The top, middle, bottom
panels correspond to the cases for Iapp = 11, 12 and 29 cA, respectively. The left,
middle, right panels correspond to the cases for σ = 0.1, 0.3 and 0.5, respectively.

For each case, the mean, standard deviation and the coefficient of variation of
the interspike intevals are calculated and presented in figure 4.6. Seconds are used
as the unit for the mean and the standard deviation, and the coefficient of variation
is dimensionless.

Thr result from the original model is that if Iapp = 11 cA, the increase in the value
of parameter σ increases the irregularity of firing measured by the value of CV. If
Iapp = 12 cA, the increase in the value of the parameter σ increases the irregularity
of firing measured by the value of CV. If Iapp = 29 cA, the increase in the value of
parameter σ increases the regularity of firing measured by the value of CV.

Figure 4.7 shows 9 histograms of interspike intervals. The top, middle, bottom
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Figure 4.3: The variability in spike timing for the original model.

panels correspond to the cases for Iapp = 11, 12 and 29 cA, respectively. The left,
middle, right panels correspond to the cases for σ = 0.1, 0.3 and 0.5, respectively.

For each case, the mean, standard deviation and the coefficient of variation of
the interspike intevals are calculated and presented in figure 4.8. Seconds are used
as the unit for the mean and the standard deviation, and the coefficient of variation
is dimensionless.

The result from our model is that if Iapp = 11 cA, the increase in the value
of parameter σ increases the irregularity of firing measured by the value of CV. If
Iapp = 12 cA, the increase in the value of parameter σ increases the irregularity of
firing measured by the value of CV. If Iapp = 29 cA, the increase in the value of
parameter σ increases the regularity of firing measured by the value of CV.
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Figure 4.4: The variability in spike timing for our model.
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Figure 4.5: Histogram of interspike intervals for the original model.
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Figure 4.6: Quantitative analysis of the interspike intervals of original model.
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Figure 4.7: Histogram of interspike intervals for our model.
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Figure 4.8: Quantitative analysis of the interspike intervals of our model.



Chapter 5

Conclusion

As for the original model, if we increase the value of Iapp, the firing will occur more
frequently. The value of parameter σ affects spike timing. The higher the parameter
σ is, the more variability spike timing will be. We use coefficeint of variation (CV) to
analyze the result. The CV of interspike intervals is often to quantify the regularity
or irregularity of action potential firing. The increase in the value of parameter σ
increases the regularity of firing measured by the value of CV. However, our result
does not coincide with the result in [2]. In [2], the result is that if Iapp = 11 cA,
the increase in the value of parameter σ increases the regularity of firing measured
by the value of CV. If Iapp = 12, 29 cA, the increase in the value of parameter σ
increases the irregularity of firing measured by the value of CV but our result is that
if Iapp = 11 cA, the increase in the value of parameter σ increases the regularity of
firing measured by the value of CV. If Iapp = 12, 29 cA, the increase in the value of
parameter σ increases the irregularity of firing measured by the value of CV but our
result is that if Iapp = 11 cA, the increase in the value of parameter σ increases the
irregularity of firing measured by the value of CV. If Iapp = 12 cA, the increase in the
value of parameter σ increases the irregularity of firing measured by the value of CV.
If Iapp = 29 cA, the increase in the value of parameter σ increases the regularity of
firing measured by the value of CV. There are four possible reasons for this problem.

The first reason is that there are no initial conditions provided in [2]. In this work,
we choose the initial condition for all processes xi(t)’s to be 0.5 for i = 1, 2, . . . , 9.
The initial condition for x10(t) is chosen to be 100×10−6.The initial condition for the

24
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process Vm(t) is chosen to be −0.07 which can be found in [1]. The second reason is
that in [2], there is one additional ion process, which is the inactive BKCa ion process,
appearing in the equation for the process Vm. However, there is no equation for the
inactive BKCa ion process in the model. Thus, in this work, we exclude the inactive
BKCa ion process from the model. The third reason is that, from (1), the unit for the
terms BG5x

p5
7 (t)x

q5
8 (t)(Vm(t)−E5)

πdcell2dshell
and x10(t)−[Ca2+]rest

τCa
are different. There may be some

additional parameters to add in the equation for the x10 process. The fourth reason
is that we use a time step of 10−3 instead of 10−5 from the original model. Here,
from the first and second reasons above, if the inactive BKCa ion process does not
appear in the model and there is no additional parameter to add in the equation for
x10 process, we cannot get any reasonable result by using the time step of 10−5.

As for our model, if we increase the value of Iapp, the firing will occur more
frequently. However, the value of Iapp = 11 cA does not coincide with the result in
[2]. The value of parameter σ affects spike timing. The higher the parameter σ is,
the more variability spike timing will be. The increase in the value of the parameter
σ increases the regularity of firing measured by the value of CV. Our result is that if
Iapp = 11 cA, the increase in the value of the parameter σ increases the irregularity
of firing measured by the value of CV. If Iapp = 12 cA, the increase in the value
of parameter σ increases the irregularity of firing measured by the value of CV. If
Iapp = 29 cA, the increase in the value of the parameter σ increases the regularity of
firing measured by the value of CV.

The reason for every problem arisen in our model is that the parameters that are
used may be not suitable for our model. Thus, we may need to do another scientific
experiment in order to find suitable parameters for our model.
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Background and Rationale and Scope

Neurons are electrically excitable cells that receive, process, and transmit infor-
mation through electrical and chemical signals. Neurons in the brain express intrinsic
dynamic behavior which is known to be stochastic in nature. Cerebellar granule cells
are the most abundant neurons in the human brain and are among the smallest
neurons in the brain.

In the cell membrane, many ions have a concentration gradient across the mem-
brane. Some ions have high concentration inside the membrane but low concentra-
tion outside the membrane, and vice versa. These concentration gradients provide
the potential energy to drive the formation of the membrane potential. This voltage
is established when the membrane has permeability to one or more ions.

Ion channels are pore-forming membrane proteins that allow ions to pass through
the channel pore. Due to random opening and closing (gating) of an ion channel
at an experimentally fixed membrane potential, Saarinen et al. [2] propose a sys-
tem of stochastic differential equations (SDEs) to model the intrinsic dynamic behav-
ior of cerebellar granule cells. This model includes six different types of voltage-
dependent conductances: the fast inactivating sodium channel (NaF ), the delayed
rectifier potassium channel (KDr ), the transient A-type potassium channel (KA), the
inward rectifier potassium channel (Kir ), the high-voltage-activated calcium chan-
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nel (CaHV A), and the large-conductance calcium and voltage-activated potassium
channel (BKca).The change in membrane potential is described by

dVm(t) =
1

Cm

(
Iapp −G1x

p1
1 (t)xq1

2 (t)(Vm(t)− E1)

−G2x
p2
3 (t)(Vm(t)− E2)−G3x

p3
4 (t)xq3

5 (t)(Vm(t)− E3)

−G4x
p4
6 (t)(Vm(t)− E4)−G5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

−G6x
p6
9 (t)(Vm(t)− E6)−

1

Rm

(Vm(t)− Em)
)
dt,

dx1(t) =
(
α1(Vm(t))(1− x1(t))− β1(Vm(t))x1(t)

)
dt+ σ1dW1(t),

dx2(t) =
(
α2(Vm(t))(1− x2(t))− β2(Vm(t))x2(t)

)
dt+ σ2dW2(t),

dx3(t) =
(
α3(Vm(t))(1− x3(t))− β3(Vm(t))x3(t)

)
dt+ σ3dW3(t),

dx4(t) =
(
α4(Vm(t))(1− x4(t))− β4(Vm(t))x4(t)

)
dt+ σ4dW4(t),

dx5(t) =
(
α5(Vm(t))(1− x5(t))− β5(Vm(t))x5(t)

)
dt+ σ5dW5(t),

dx6(t) =
(
α6(Vm(t))(1− x6(t))− β6(Vm(t))x6(t)

)
dt+ σ6dW6(t),

dx7(t) =
(
α7(Vm(t))(1− x7(t))− β7(Vm(t))x7(t)

)
dt+ σ7dW7(t),

dx8(t) =
(
α8(Vm(t))(1− x8(t))− β8(Vm(t))x8(t)

)
dt+ σ8dW8(t),

dx9(t) =
(
α9(Vm(t), x10(t))(1− x9(t))− β9(Vm(t), x10(t))x9(t)

)
dt+ σ9dW9(t),

dx10(t) =
(BG5x

p5
7 (t)xq5

8 (t)(Vm(t)− E5)

π dcell2 dshell
− x10(t)− [Ca2+]rest

τCa

)
dt,



(1)

From a suggestion in [2], we also add stochasticity into gating variables to obtain
another model. In this work, we will simulate the process Vm(t) by using the Euler-
Maruyama method and use the result to analyze the variability in spike timing and
interspike intervals.
Objectives

1. To generalize the original model (1).

2. To study how to use a numerical method to simulate the process of membrane
potential using the original model and the generalized model.

3. To analyze the variability in spike timing and interspike intervals.

Project Activities
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1. Study the articles [1] and [2].

2. Search for related information.

3. Study the SDE model from [1]

4. Simulate the models by using the Euler-Maruyama method.

5. Use the result to analyze the variability in spike timing and interspike intervals.

6. Investigate the result from the simulation.

7. Make a conclusion and write the report.

Activities Table

Benefits

1. Be able to simulate the sophisticated system of SDEs.

2. Know how to implement the Euler-Maruyama method

Equipment
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1. A4 paper

2. A Laptop

3. Microsoft Word, MathType, MATLAB and Mathematica

4. Journals and related books
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