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Chapter 1

Introduction

Neurons are electrically excitable cells that receive, process, and transmit infor-
mation through electrical and chemical signals. Neurons in the brain express intrinsic
dynamic behavior which is known to be stochastic in nature. Cerebellar granule cells
are the most abundant neurons in the human brain and are among the smallest
neurons in the brain.

In the cell membrane, many ions have a concentration gradient across the mem-
brane. Some ions have high concentration inside the membrane but low concentra-
tion outside the membrane, and vice versa. These concentration gradients provide
the potential energy to drive the formation of the membrane potential. This voltage
is established when the membrane has permeability to one or more ions.

lon channels are pore-forming membrane proteins that allow ions to pass through
the channel pore. Due to random opening and closing (gating) of an ion channel
at an experimentally fixed membrane potential, Saarinen et al. [2] propose a sys-
tem of stochastic differential equations (SDEs) to model the intrinsic dynamic behav-
ior of cerebellar granule cells. This model includes six different types of voltage-
dependent conductances: the fast inactivating sodium channel (Nar), the delayed
rectifier potassium channel (Kp,), the transient A-type potassium channel (K 4), the
inward rectifier potassium channel (K; ), the high-voltage-activated calcium channel
(Cagy 4), and the large-conductance calcium and voltage-activated potassium chan-

nel (BK .,) as well as simple calcium dynamics to describe the change in membrane

potential.



In [1], Marja-Leena Linne and her team used Hodgkin-Huxley for model for ion
channel/current behavior and a simple model for calcium dynamics and describe
the granule neuron excitability. The starting parameter values of the model equa-
tion were selected based on data from in vitro experiments on cerebellar granule
neurons. The basic excitability properties of the granule neuron were used as the
main constraints of the model. In the experiment, the neuron was assumed as one-
compartmental sphere which containing six different voltage-dependent ion channel/
current types (Nag, Kp ,Ka, K;., Cagya, BK ).

The change in membrane potential is described from [2] by the system of SDEs

Wor(®) = - (T~ Gra? (D2 (OVin(t) ~ E) ‘
— G (1) (Vin(t) = E2) — Gawy* ()23 (1) (Viu () — Es)
— Gurg! (1) (Vin(t) = Ex) — Gy (0)xg () (Vi (t) — Es)
= Gl () (Vinlt) = Ee) = 2 (Vnlt) = E) ),
da1(t) = (a1(Vi () (1 = 21(8)) — Bi(Ven ()21 (1) ) dt + a1d W (1),
day(t) = (aa(Vin(1)) (1 = 22(t)) — Bo(Vin(t)) (1) ) dt + o0dWs(1),
dzs(t) = (s (Vin(8)) (1 — 25(8)) — BV (£))2a(8)) dt + 05 dWa(2), "
day(t) = (a(Vi(8)) (1 = 24(t)) — Ba(Vin(£))24(2) ) di 4+ 04dWi(2),
das(t) = (as(Vi(t)) (1 = 25(t)) — B5(Viu(t))w5(t) ) dt + a5dWs (1),
dag(t) = (as(Vin (1)) (1 = 26(t)) — Be(Vin(t))26(t) ) dt + o6dWis(1),
dr(t) = (a7 (Vin(0))(1 = 27(t)) = Br(Vin(8))27(t) ) dt + ordWr (2),
das(t) = (as(Vin(0)(1 = 25(t)) = Bs(Vin(t))2s(t)) dt + osdWi(t),
dag(t) = (ag(Vin(t), 10(t))(1 — 29(t)) — Bo(Vin(t), 210(t))we(t)) dt + a9dWy(t),
- (BSTGIEOIE) a0 o)

where V,,,(t) is the process of membrane potential,

x1(t) is the activation process for Nag ion channel,

(t)

xo(t) is the inactivation process for Nag ion channel,

x3(t) is the activation process for Kp, ion channel,
(t)

x4(t) is the activation process for K 4 ion channel,



x5(t) is the inactivation process for K 4 ion channel,

xg(t) is the activation process for K;r ion channel,

xg(t) is the inactivation process for C'agy 4 ion channel,

(t)
(t)
x7(t) is the activation process for Clagy 4 ion channel,
(t)
xg(t) is the activation process for BK,, ion channel,

z10(t) is the process for intercellular calcium (Ca®* ions) concentration,

a; and f3; are the coefficient functions for ¢ =1,2,...,9 given by

Y

ar(Viu(t)) = 3 - 1036((Vm(t)—0.01)+39-10_3>~04081~103

Bi(Vin(t)) = 3 - 1036((Vm(t)70.01)+39-10_3)-70.066-103

)

(Vi (1)) = 0.24- 109V 0-000145010°) -0 05910

)

Ba(Vin(t)) = 0.24 - 103¢((Vm (1)=0.01)£50-107).0.089-10°

Y

az(Viu(t)) =0.34 - 103 (Vin()-0.01)+38-10-2).0.073-10°

Y

B3(Vin(t)) = 0.34 - 1036((Vm(t)*0-01)+38'10_3)-70.018-103’

as(Vin(t)) = 2.2- 1036((Vm(t)—0.01)+46.7-10*3)-0.04-103

J

Ba(Vin(1)) = 2.2 - 107e(Vn =001 +16720°2) 001107

Y

a5(Vm(t)) — 0.016 - 1036((Vm(t)—0.01)+78.8-10_3)-—0.075-103

Y

/35<Vm(t)) — 0.016 - 1036((Vm(t)70.01)+78.8-10_3)-0.055-1037

OéG(V (t)) — 0.133 - 1036((Vm(t)—0.01)+83.94'10*3)-—0.0411~103

Y

56(Vm(t)) 29l 1036((Vm(t)—0.01)+83.94~10*3)-0.028~103

?

a7(V (t)) — 0.049 - 1036((Vm(t)—0.01)+29.06~10_3)-0.063-103

9

Br(Vin(1)) = 0.082 - 103¢((Vm(1)—0.0)+18.66107%)—0.039-10°
ag(Vin(t)) = 0.0013 - 1O3e<(Vm(t)—0-01)+48-10*3)~—0.055.1o37

58(Vm(t)) — 0.0013 - 1036((%(t)—0.01)+48.10*3)‘0.012102142‘103

- 2.5-10°
1 +15-10-3. 6—0.085~103(vm(t)—0.01)/9610(t)7

1.5- 10
Bo(Vn(8), 210(8)) = 377 210(t) /(150 - 10-6 - ¢~ 0077103 (Vin ())=0.01))”

Cm, Gy, GQ, G3, Gy, G5, GG, P1; 41, P2, P3, 43, P4, Ps, 45, Dé; Ey, By L3, By, b5, B, B,

Y

ag(Vin(t), 210(t))

Ry, B, Tca , deell, dshell and [Ca?],.s are constant parameters in the model given

in figure 1.1, I, is an applied current, and o; for for¢ = 1,2,...,9 are the parameter



that bring the intensity of random fluctuations.

All of these processes occur at membrane called an ion channel. Each ion has its
own channel but some channels can allow more than two ions to pass. From now
on, we will call the processes z; fori =1,2,...,9 the gating variables.

In this work, we choose electrical signal to study. In our brain, neurons express in-
trinsic dynamic behavior which is known to be stochastic in nature. A neuron cell has
membrane and many ions. When neurons send some information by using electrical
signal, they use ions to be a conductor. Electrical signal is an applied current (Z,,,)
which is used to transmit information in neurons, and we use three values of I,,,
which are 11, 12 and 29 cA. The applied current with ions moves into the membrane
or moves out from the membrane to other cells so these cause the change in mem-
brane potential, V,,(t). We also add stochasticity into gating variables (z;(1 — z;)) to
obtain another model and we will simulate the process V,,,(¢) by using the Euler-
Maruyama method and use the result to analyze the variability in spike timing and
use the result from the simulation of interspike intervals to see variability in the firing

caused by the parameter o;.



Constant

Ez = Eg = E;|

Es

Eq

B
[Ca**]rese
Tea

deell

dshell

qz
Pa

qs
Pa

|value
0.57 im?
0.03 F/m?

-0.025 V
+0.07 V
-0.075 V
+0.14 V
-0.085 V

5.2 -10™®mol/C
100 -10%mol/m?

1.+1073%s
6-10"%m
1-107"m

400 S/m?
120 5/m?
10 §/m?
28 5/m?
4.6 5/m*
30 S/m*

o R e e W e W

' ‘ Description

membrane resistance
membrane capacity

equilibrium membrane potential
equilibrium potential for Na*

equilibrium potential for K*

equilibrium potential for Ca®*
equilibrium potential for BK,
constant for Ca®* transfer into the cell

[Ca®*] at rest

time constant for the decay of intracellular free calcium

diameter of the granule cell

diameter of the shell defining the volume
In which calcium ions are processed

maximal conductance for Nag

maximal conductance for K,

maximal conductance for K

maximal conductance for K;,.
maximal conductance for Cayy
maximal conductance for BK,
exponential for Nag activation
exponential for Nay inactivation
exponential for Kp, activation
exponential for K, activation
exponential for K4 inactivation
exponential forK;.activation
exponential for Cay, 4 activation
exponential for Cayy 4 inactivation

exponential for BK;, activation

Figure 1.1: Constant parameters in the original model.



Chapter 2

Background Knowledge

In this chapter, we describe the background knowledge and the concept for our
project which are stochastic differential equations and the numerical method that

we will use in this work.

2.1 Stochastic differential equation

Definition 2.1.1. The Wiener process {Wi }iejo,1 s a stochastic process characterised

by the following properties.
1. Wy = 0 with probability 1.

2. For 0 < s <t < T, the random variable given by the increment W, - W is

normally distributed with mean zero and variance t — s, or equivalently,

W, - W, ~ VE—s N(0,1).

3 For0 <s<t<u<wv<T, the increments W, - Wy and W, - W,, are

independent.
4. It has continuous sample paths with probability 1.

Definition 2.1.2. A stochastic differential equation (SDE) has the form

dX; = a(Xg, t)dt + b( Xy, t)dW;,, 0<t<T (2.1)
XO =X,



where W, denotes a Wiener process, a and b are scalar functions of X;, and = € R.

The equation (2.1) is understood to be the differential form of the integral equation

t t
X, - X, = / F(Xa5)ds + / o(X., 5)dIV, (2.2)
0 0

where the first term on the right-hand side of the above equation is interpreted as

the ordinary Riemann integral, and the second term is the Ito integral.

2.2  The Euler-Maruyama method

The simplest numerical approximation for solving an SDE is the Euler-Maruyama
method. We need to discretize the time domain [0,7] into N equidistance subin-
tervals. Lett,, = nA foralln =0,1,..., N where A = % We denote z,, to be the

numerical solution at time step ¢, using the Euler-Maruyama scheme
Tpt+1 = Ty + f(l}JA + g($ﬂ)AWn

where AW, is normally distributed with mean 0 and variance A and zy = Xy. We
simulate for each z,, from the time domain [0, 7], so we get z; at time 0 until zy at
time T'. Then, we have one sample path. If we do the simulation agian, we will not

get the same sample path because we generate other random numbers.



Chapter 3

Methodology

In this chapter, we will use a numerical method to find the numerical solution of

the change in membrane potential V,, ().

3.1 Our model

We simulate the original model (1) and our model. From a suggestion in [2],
Marja-Leena Linne and her team gave an advice which is adding some function of
gating variables to reduce noises that will be outside the interval [0,1]. Each value
in the range [0,1] tells the status of the ion channel whether it is open or closed.
When the channel is fully open, this value is set to 1, and when the channel is
completely closed, this value is set to 0. However, Marja-Leena Linne and her team
did not tell what is the appropriate functions of gating variables so we decide to add
the term x;(t)(1 — x;(t)) at the random term for each SDE in the original model to
be our proposed model. We expect that the term x;(¢)(1 — z;(t)) will reduce noises
near 0 and 1 and make our model appropriate to simulate the change in membrane
potential. Note that, in this work, we actually restrict all of the process x;(t) to live

in the interval [0, 1].



Our model has the form

Wolt) = G (Tyn = G (0 (O Vil1) ~ )
— Goa (1) (Vin(t) — Ba) — Gzl (8)2L (t) (Vin (1) — E3)
— Gaag! (1) (Vin(t) — Ea) — G527 (8)2 (t) (Viu(t) — E5)
= Gl (O)(Vilt) — Ee) = 5~ (Vnlt) = Ei) ).
da1(t) = (1 (Vin(t))(1 = 21(t)) = Bi(Vin ()21 (1)) dt + o (#) (1 — a1 () dWA (1),
ds(t) = (aa(Vin(0)(1 = @(t)) = Bo(Vin(8))2a(t) ) dt + oaa(t)(1 — w2(t))dWa(t),
das(t) = (as(Vin (1) (1 = @3(t)) = B3(Vin(8))23(t) ) dt + o325(t)(1 — w3(t))dWa(t),
dxy(t) = (a4(Vm(t))(1 —xy(t)) — B4(Vm(t)x4(t))dt + o424 (1) (1 — 24 (t))dWy(t),
dz5(t) = (a5(Vin(£))(1 — 25(2)) — Bs(Vin(t)x5(t))dt + o525 () (1 — 25(2))dWs (1),
dag(t) = (a6 (Vin(t))(1 = w6(t)) = Bs(Vin(8))2s(t) ) dt + 66 (t)(1 — w6 (t))dWo(t)
dr7(t) = (a7 (Vi () (1 = 27(t)) = Br(Vin(8))27(1) ) dt + o7 (8)(1 — 2(t))dWr(t),
dzg(t) = (ag(Vm(t))(l —xg(t)) — Bg(Vm(t))wg(t))dt + ogxs(t)(1 — zs(t))dWs(t)
dwg(t) = (ag(Vin(t), 210(t)) (1 = 29(t)) = Bo(Vin(t), 210(t)) 2o (t)) dt
+ g9x9(t)(1 — z9(t))dWy(t),
sy - (T i,

/

where all processes, functions and all parameters in this model are as same as in

equation (1).

3.2 Numerical method

In this project, we use MATLAB to find numerical solution by using Euler-Maruyama

to simulate the process V,,,(t). We discretize the time domain [0, 7] into NV equidis-

tance subintervals. Let ¢, = nA foralln =0,1,..., N where A = %



3.2.1 Euler-Maruyama scheme for the original model

The Euler-Maruyama scheme for the original model has the form

1

Vo= Voo o (Lupp = Gralhl o202 (Voy — )

Cm

— G4.T6Z;L471(Vn,1 — E4) — G5$7ﬁil

— GGfoﬂl(Vn_l — EG) —

a1 (Vama)( ) = Bu(
12, = 12,1 + [aa(Vo1)(1 — 22, 1) (
23, = 23,1 + [as(Vuo) (1 — 23,21) — B3(V,,
24, = 21 + [aa(Voo1) (1 — ad,1) — Ba(V,
25, = 5,1 + [as(Vao1)(1 — 25,-1) = B5(Vy,
26, = 26,1 + [a6(Voo1)(1 — 26,1) — Bs(Va
27y =2Tn 1+ [a7(Va1)(1 = 27,1) (

[as(Vo1)( ) — Bs(

[as(V;

n— 1,.1'1()” 1)(1_:591171)

2831 (Va1 — E5)

B G577 280 (Vi1 — Es)

10, = 210,,_ [
v TLn-1 4 T deell® dshell

where AW, ~ N(0,A) foralli=1,2,..,9,
V., is a numerical solution of V,,(t,.),
x1,, is a numerical solution of x(¢,,),
x2,, is a numerical solution of xy(t,,),
x3,, is a numerical solution of x5(t,,),

x4, is a numerical solution of x4(t,,),

(t,)
(t,)
(tn)
(t,)
x5, is a numerical solution of z5(t,,),
x6,, is a numerical solution of z4(t,,),
27, is a numerical solution of z4(t,),
x8,, is a numerical solution of zg(t,,),
x9,, is a numerical solution of zy(t,,),

x10,, is a numerical solution of z10(t,),

10

ﬁQ( n— 173:1011 1)1'9” 1]A+0AW97
- x10n~1 - [CCL ]rest
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forallm =1,2,..., N.

3.2.2 Euler-Maruyama scheme for our new model

All values of parameters in our model are the same parameters in the original
model. For our model, we will add a tilde accenton V,,, V,,_1, zi,, and xi,,_; fori =
1,2,...,10 to denote the numerical solutions for our model. The Euler-Maruyama

scheme for our model has the form

~ ~ 1
Vn = Vn—l + — C app Gl.f].p 1.23'2 (Vn—l — E1>

— Go#3P2 | (Voy — Ey) — G3ad? (758 (Vi — E3)
— GuibP" (Vo — Ey) — G527 #8% (Vg — E5)

e e S
— GoZL, (Ve = Be) — = (Va1 = Bn)| &,

il, =7l + [ar(Vao) (1 = #1,m1) = Bi(Vae1)Z1aoa | A
+ 01 (F1,1)(1 — 31, 1) AW,

72, = 72,1 + [aa(Vao))(1 = 72,21) = Bo(Vie1) 32021 A
+ 09(T2,1)(1 — 22,_1) AW,

73, = 23,1 + [as(Vaer ) (1 = 83,—1) = B3Vio1)2301] O
+ 03(23,1)(1 — 23,_1) AWs,

j4n :x4n 1+ [064 n— 1)(1_‘%471—1) 64( n— 1)x4n I}A

n— l)(l_-%5n—l) 55( n— l)x5n 1}A
+J5(ZE5” 1 (]_—5135” 1)AW5,

T5n = Tp_1 + |as

(v,
)
Vi
)
\%
)
V7
+ 04 (F4n_1) (1 = T4y AW,
\%
)
76, = 76,1 + [as(Vae1) (1 — #6,-1) — Bs(Vie1)76,-1]
+ 06(86,_1) (1 — £6,_1) AW,
i = 3701 + [ar (Vo) (1 = 370m1) — Br(Voet ) @701 ] A
+ 07(8T0_1)(1 — &7, 1) AW,
78, = 78,1 + [as(Vao1)(1 — #8,-1) — Bs(Ve1) 7801 A
)

+O'8(£C8n 1 (1—$8n 1)AW8,
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79, = 791 + [a9(Viuo1, #10,1) (1 = £9,,-1) — Bo(Ve1, 810,-1)79,-1] A

+ 0'9((%9”,1)(1 — .i’gn,l)AWQ,

BG5£7Zi1i’8g5,1<Vn—l - E5> B 21051 — [Ca’2+]7“€3t
mdcell?dshell TCa

#10, = #10,_, + [ ]A,

where AW, ~ N(0,A) foralli=1,2,..,9,
f/n is a numerical solution of V,,,(¢,,),
Z1,, is a numerical solution of x(¢,,),
22, is a numerical solution of xy(t,,),
23, is a numerical solution of x35(t,,),

Z4,, is a numerical solution of x4(t,,),

(t,)
(t,)
(t,)
(t,)
5, is a numerical solution of z5(t,,),
76,, is a numerical solution of z4(t,,),
7, is a numerical solution of z+(t,,),
78, is a numerical solution of zg(t,,),
79,, is a numerical solution of zq(t,,),

710,, is a numerical solution of z14(t,,),

foralln=1,2,..., V.

3.3 The three aspects

In this work we simulate both models to analyze three aspects. They are the
effect of 1,,, to the spike timing, the variability in spike timing, and interspike intervals.
All of these aspects correlate with parameter o which are very important because
we add the term z;(¢)(1 — =;(t)) at the random term for each SDE.

In this work, we study cerebellar granule cell which has threshold 11.5 cA. This
threshold is used to divide the level of regularity or irregularity of firing. The initial
conditions to simulate the process V,,(t) for the original model are A = 1073 s,
1(0) = x2(0) = x3(0) = x4(0) = x5(0) = 26(0) = z7(0) = x5(0) = x9(0) =
0.5, 210(0) = 100 x 107¢ and V},,(0) = —0.07 V. We use A = 1073 because if we use

A =107 like in [2], we will not get any reasonable results.
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3.3.1 The effect of [,,, to the spike timing

For this aspect, we will simulate to see the effect of I,,, to the spike timing. For
the original model, we will use three values of I,,, : 11,12,29cA with parameter
o, =0 =05fori=1,2,...,9. For our model, we will use three values of I, :
11,12,29 cA with parameter o; = ¢ = 0.5 x 1000 forz = 1,2,...,9. For both models,

we will simulate for T' = 0.4 seconds.

3.3.2 The variability in spike timing

For this aspect, we will simulate to see the variability in spike timing which ef-
fected by the parameter o. For the original model, we will use three values of
o = 0.1,0.3,0.5 with I, = 12¢cA. For our model, we will use three values of
o = 0.1 X 1000, 0.3 x 1000,0.5 x 1000 with I,,, = 12cA. We will simulate for
10 sample paths to see the variability. For each sample path, we will simulate for
T = 0.4 seconds. The reason that we multiply the old parameter ¢ by 1000 is that
in our model, we add the term z;(¢)(1 — x;(¢))’s to the stochastic part ; hence, the
noises will be much smaller than usual. By our experiments, 1000 seems to be a

good number to use for intensifying the degree of randomness for our model.

3.3.3 Interspike intervals

For this aspect, we will simulate to see the distribution of interspike intervals
by using the distance between spikes that surpass the threshold 11.5¢cA. For the
original model, we will use three values of I,,, : 11,12,29 cA and three values of
o =10.1,0.3,0.5. For our model, we will use three values of I, : 11,12,29 cA and
three values of o = 0.1 X 1000, 0.3 x 1000, 0.5 X 1000 with I,,, = 12cA so that we
have 9 cases in total. For each sample path, we will simulate for T = 15 seconds.
Then, we plot histogram of interspike intervals for each case. After that, we use
the coefficeint of variation (CV) to analyze the result. The CV of interspike intervals
is used to quantify the regularity/irregularity of action potential firing. The CV is a

standard measure of dispersion and is defined as the ratio of the standard deviation



to mean, i.e.

B Standard deviation

CcV =
Mean




Chapter 4

Results

This chapter presents the results from simulations in section 3. They are the effect

of I,,, to the spike timing, the variability in spike timing, and interspike intervals.

4.1 The effect of [,,, to the spike timing

We use three values of I,,, : 11, 12 and 29 cA with the parameter o = 0.5 for the
original model and ¢ = 0.5 x 1000 for our model. In each trace, firing is simulated
for 0.4 seconds with a time step of 10~2 seconds.

Figure 4.1 and 4.2 show the behavior of stochastic granule cell model in response
to three different deporarizing current pulses. In the upper panel, the depolarizing
current is below the firing threshold (Z,,, = 11 cA). In the middle panel, the depolar-
izing current is just above the firing threshold (1,,, = 12 cA). In the lower panel, the

depolarizing current is considerably larger than the firing threshold (1,,, = 29 cA).

4.2 The variability in spike timing

We use three values of the parameter 0 = 0.1, 0.3 and 0.5 for the original model,
and o = 0.1 x 1000, 0.3 x 1000 and 0.5 x 1000 for our model with I,,, = 12cA. We
will simulate for 10 sample paths to see the variability in spike timing. In each trace,
firing is simulated for 0.4 seconds with a time step of 102 seconds.

Figure 4.3 and 4.4 show the variability in spike timing for the original model and

15
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Figure 4.1: The effect of 1,,, to the spike timing for the original model.

our model, respectively. The upper panels correspond to o = 0.1, the middle panels
correspond to o = 0.3, and the lower panels correspond to ¢ = 0.5. From figure
4.3, the value of the parameter ¢ affects spike timing. The higher the parameter o s,
the more variability spike timing will be. From figure 4.4, the value of the parameter
o affects spike timing. The higher the parameter ¢ is, the more variability in spike

timing will be.

4.3 Interspike intervals

We will use three values of I,,, = 11, 12 and 29cA. We use three values of
o = 0.1,0.3 and 0.5 for the original model and ¢ = 0.1 x 1000,0.3 x 1000 and
0.5 x 1000 for our model. For each sample path, we will simulate for 15 seconds.

We consider the time length between the peaks that surpass the threshold.
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Figure 4.2: The effect of 1,,, to the spike timing for our model.

Figure 4.5 shows 9 histograms of interspike intervals. The top, middle, bottom
panels correspond to the cases for I,,, = 11, 12 and 29 cA, respectively. The left,
middle, right panels correspond to the cases for o = 0.1,0.3 and 0.5, respectively.

For each case, the mean, standard deviation and the coefficient of variation of
the interspike intevals are calculated and presented in figure 4.6. Seconds are used
as the unit for the mean and the standard deviation, and the coefficient of variation
is dimensionless.

Thr result from the original model is that if 1,,, = 11 cA, the increase in the value
of parameter o increases the irregularity of firing measured by the value of CV. If
I, = 12cA, the increase in the value of the parameter o increases the irregularity
of firing measured by the value of CV. If I,,, = 29cA, the increase in the value of
parameter o increases the regularity of firing measured by the value of CV.

Figure 4.7 shows 9 histograms of interspike intervals. The top, middle, bottom
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Figure 4.3: The variability in spike timing for the original model.

panels correspond to the cases for I,,, = 11, 12 and 29 cA, respectively. The left,

middle, right panels correspond to the cases for o = 0.1,0.3 and 0.5, respectively.

For each case, the mean, standard deviation and the coefficient of variation of

the interspike intevals are calculated and presented in figure 4.8. Seconds are used

as the unit for the mean and the standard deviation, and the coefficient of variation

is dimensionless.

The result from our model is that if I, =

11 cA, the increase in the value

of parameter ¢ increases the irregularity of firing measured by the value of CV. If

I, = 12cA, the increase in the value of parameter o increases the irregularity of

firing measured by the value of CV. If I,,, = 29cA, the increase in the value of

parameter o increases the regularity of firing measured by the value of CV.
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Figure 4.4: The variability in spike timing for our model.
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Figure 4.6: Quantitative analysis of the interspike intervals of original model.
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Chapter 5

Conclusion

As for the original model, if we increase the value of 1,,,, the firing will occur more
frequently. The value of parameter o affects spike timing. The higher the parameter
o is, the more variability spike timing will be. We use coefficeint of variation (CV) to
analyze the result. The CV of interspike intervals is often to quantify the regularity
or irregularity of action potential firing. The increase in the value of parameter o
increases the regularity of firing measured by the value of CV. However, our result
does not coincide with the result in [2]. In [2], the result is that if I, = 11cA,
the increase in the value of parameter o increases the regularity of firing measured
by the value of CV. If I ,, = 12,29cA, the increase in the value of parameter o
increases the irregularity of firing measured by the value of CV but our result is that
if Iopp = 11cA, the increase in the value of parameter ¢ increases the regularity of
firing measured by the value of CV. If I,,, = 12,29cA, the increase in the value of
parameter o increases the irregularity of firing measured by the value of CV but our
result is that if I,,, = 11 cA, the increase in the value of parameter o increases the
irregularity of firing measured by the value of CV. If I,,, = 12 cA, the increase in the
value of parameter o increases the irregularity of firing measured by the value of CV.
If 1,,, = 29 cA, the increase in the value of parameter ¢ increases the regularity of
firing measured by the value of CV. There are four possible reasons for this problem.

The first reason is that there are no initial conditions provided in [2]. In this work,
we choose the initial condition for all processes x;(t)’s to be 0.5 fori =1,2,...,9.

The initial condition for z14(t) is chosen to be 100 x 107¢.The initial condition for the

24
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process V,,(t) is chosen to be —0.07 which can be found in [1]. The second reason is
that in [2], there is one additional ion process, which is the inactive BK¢, ion process,
appearing in the equation for the process V,,,. However, there is no equation for the
inactive BK¢, ion process in the model. Thus, in this work, we exclude the inactive

BK ¢, ion process from the model. The third reason is that, from (1), the unit for the

BGsa® (0 () (Vi ()=E5) - 4 @10(t)=[Ca®"]

terms nwdcell?dshell TCa

rest are different. There may be some
additional parameters to add in the equation for the ¢ process. The fourth reason
is that we use a time step of 1073 instead of 107° from the original model. Here,
from the first and second reasons above, if the inactive BK¢, ion process does not
appear in the model and there is no additional parameter to add in the equation for
T19 process, we cannot get any reasonable result by using the time step of 1077,

As for our model, if we increase the value of I,,,, the firing will occur more
frequently. However, the value of 1,,, = 11 cA does not coincide with the result in
[2]. The value of parameter o affects spike timing. The higher the parameter o is,
the more variability spike timing will be. The increase in the value of the parameter
o increases the regularity of firing measured by the value of CV. Our result is that if
Ipp = 11cA, the increase in the value of the parameter o increases the irregularity
of firing measured by the value of CV. If I,,, = 12cA, the increase in the value
of parameter o increases the irregularity of firing measured by the value of CV. If
Lopp = 29 cA, the increase in the value of the parameter o increases the regularity of
firing measured by the value of CV.

The reason for every problem arisen in our model is that the parameters that are
used may be not suitable for our model. Thus, we may need to do another scientific

experiment in order to find suitable parameters for our model.
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Background and Rationale and Scope

Neurons are electrically excitable cells that receive, process, and transmit infor-
mation through electrical and chemical signals. Neurons in the brain express intrinsic
dynamic behavior which is known to be stochastic in nature. Cerebellar granule cells
are the most abundant neurons in the human brain and are among the smallest
neurons in the brain.

In the cell membrane, many ions have a concentration gradient across the mem-
brane. Some ions have high concentration inside the membrane but low concentra-
tion outside the membrane, and vice versa. These concentration gradients provide
the potential energy to drive the formation of the membrane potential. This voltage
is established when the membrane has permeability to one or more ions.

lon channels are pore-forming membrane proteins that allow ions to pass through
the channel pore. Due to random opening and closing (gating) of an ion channel
at an experimentally fixed membrane potential, Saarinen et al. [2] propose a sys-
tem of stochastic differential equations (SDEs) to model the intrinsic dynamic behav-
ior of cerebellar granule cells. This model includes six different types of voltage-
dependent conductances: the fast inactivating sodium channel (Nag), the delayed
rectifier potassium channel (Kp,), the transient A-type potassium channel (K 4), the

inward rectifier potassium channel (K;,), the high-voltage-activated calcium chan-
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nel (Cagy 4), and the large-conductance calcium and voltage-activated potassium

channel (BK .,).The change in membrane potential is described by

Wilt) = = (T = Gz (0 (O (Vi) — ) |
= Garl? (O(Vlt) — Ba) — Gaa (02 (O(Vinlt) — By
Gl (6)(Vinlt) = Eo) = Gl (2l (O(Vin(8) — )
= Gty (0)(Vin(t) — Ee) = 5~ (Vnlt) = En) ),
(1) = (0 (Vi ) (1 = 1(8)) = Bu (Vi ()2 (1))t + s d Wi ),
daa(t) = (aa(Vin(£))(1 = 2a(t)) = BaVi () a(0)) it + rad V),
das(t) = (s (Vi ))(1 = 3(8)) = Ba(Vi () a(0)) t + rad Vi),
daa(t) = @V 01 = 24(8) = BalVi)0)) e+ 1dWi(),
das(t) = (a5 (Vin(£))(1 = 5(8)) = 5o (Vi () (0)) it + sV ),
da(t) = (a0 (Vi £))(1 — u(t)) ~ 5oV (1)) (0)) e + Vi),
dan(t) = (s (Vi ))(1 = o(t)) — 5n (Vi) (1)) it + rsd Vi),
das(t) = (as(Vi(t)) (1 — 2s(t)) — Bs(Vin(t))s(t) ) dt + osdWs(t),
drg(t) = (g (Vin(t), 10(t)) (1 — z9(t)) — Bo(Vin(t), m10(t))zo(t))dt 4+ aodWo(2),
sy (POt =),

From a suggestion in [2], we also add stochasticity into gating variables to obtain

another model. In this work, we will simulate the process V,,,(t) by using the Euler-

Maruyama method and use the result to analyze the variability in spike timing and

interspike intervals.

Objectives

1. To generalize the original model (1).

2. To study how to use a numerical method to simulate the process of membrane

potential using the original model and the generalized model.

3. To analyze the variability in spike timing and interspike intervals.

Project Activities
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1. Study the articles [1] and [2].
2. Search for related information.
3. Study the SDE model from [1]
4. Simulate the models by using the Euler-Maruyama method.
5. Use the result to analyze the variability in spike timing and interspike intervals.
6. Investigate the result from the simulation.
7. Make a conclusion and write the report.

Activities Table

August 2561 - Apri 2562
Nov |Dec Jan | Feb

Project Activities

1. Study the articles [1] and
[21-

2. Search for related
information.

3. Study SDE model from [1]

4 _ Simulate the models by
using the EM method.

5. Use the result to analyze
the variability in spike timing
and interspike intervals.

6. Investigate the result from
the simulation.

7. Make a conclusion and
write the report.

Benefits
1. Be able to simulate the sophisticated system of SDEs.
2. Know how to implement the Euler-Maruyama method

Equipment



1. Ad paper
2. A Laptop
3. Microsoft Word, MathType, MATLAB and Mathematica

4. Journals and related books
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