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Chapter 1
Introduction

Count time series arise naturally in many practical situations, for example, the
insurance claim counts and the number of stock transactions. Therefore, increases
in interest in the modelling have been observed. The most common distribution
considered in count time series data is the Poisson distribution. The model is refered
as the Poisson INAR(1) model which is a stationary integer-valued time series with lag-
one dependence. The Poisson INAR model has been applied in many applications
since it was introduced by McKenzie in 1985.

However, the property of the Poisson models having equal mean and variance
is rarely found in applications. Many real-world data examples exhibit overdispersion,
i.e., the variance is larger than the mean. Therefore, the integer-valued autoregressive
(INAR) process with Poisson marginals is not adequate for modelling overdispersed
counts. Consequently, several alternative distributions have been proposed for the
integer-valued time series models, for example, geometric distribution and negative
binomial distribution. Recently, in 2017, Batteto-Souza extended the Poisson INAR(1)
to the mixed Poisson INAR(1) model to accommodate overdispersion data. In their
study, they considered the inverse-gaussian Poisson INAR(1) model.

In this project, we will extend the study of the Mixed Poisson INAR(1) model
to construct a Mixed Poisson INMA(1) model and derive their probabilistic properties
such as mean, variance and covariance. Moreover, we present distribution plots of
such data in many different settings.
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Chapter 2
Preliminary

In this chapter, we present some basics of probability, an overview of count data and
definition and properties of binomial thinning operator.

2.1 Basic of probability theory
In this section, we present definitions of distribution, expectation, independence, co-
variance, variance, generating function, moment generating function and conditional
probability, and their properties.

Definition 1. Let (Ω, F, P ) be a probability space and X be a random variable. Then
the function FX : R → [0, 1] defined by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x)}) = P (X ≤ x) for x ∈ R,

is called “the distribution function of X”.

Definition 2. Let X be a random variable and g : R → R.
If X is a discrete random variable, the expectation of g(X), E(g(X)), is defined as

E(g(X)) =
∑

x∈ImX

g(x)P (X = x).

If X is a continuous random variable, the expectation of g(X), E(g(X)), is defined as

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx.

Theorem 1. Let a, b ∈ R andX be a random variable, the properties of expectation
are given as follows.

2



3

1.) E(a) = a,

2.) E(aX) = aE(X),

3.) E(aX + b) = aE(X) + b,

4.) E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi).

Definition 3. LetX and Y be any two random variables, A and B be any two subsets
of real number. Then, we say that X and Y are independent random variables if
and only if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

Definition 4. LetX and Y be random variables. The covariance ofX and Y , denoted
by Cov(X,Y ), is defined as

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) .

Remark 1. 1.) The covariance function has an alternative expression as
Cov(X,Y ) = E(XY )− E(X)E(Y ).

2.) If X,Y are independent, then Cov(X,Y ) = 0.

3.) Cov(X,X) = V ar(X).

Definition 5. Let X be a random variable. The variance of X , or V ar(X), is defined
as

V ar(X) = E(X − E(X))2.

Theorem 2. Let a, b ∈ R and X and Y be random variables, the properties of
variance are

1.) V ar(X + a) = V ar(X),

2.) V ar(aX) = a2V ar(X),

3.) V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ).
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Definition 6. Let X be a random variable. The generating function of X , GX(t), is
defined as

GX(t) = E(tX).

Definition 7. Let X be a random variable. The moment generating function of X or
MX(t), is defined as

MX(t) = E(etX).

Definition 8. If X and Y are discrete random variables, then the probability mass
function of X given Y = y is defined as

pX|Y (x|y) =
P (X = x, Y = y)

P (Y = y)
.

Definition 9. The conditional expectation of X given Y = y is defined by

E(X|Y = y) =
∑
x

xpX|Y (x|y)

Note that for any random varibles X and Y ,

E(X) = E(E(X|Y )).

If Y is a discrete random variable, then the above formula is equivalent to

E(X) =
∑
y

E(X|Y = y)P (Y = y).

Definition 10. For any random variables X and Y :

V ar(X) = E(V ar(X|Y )) + V ar(E(X|Y )).

2.2 Count distribution
We now present some count distributions such as Bernoulli distribution, Binomial
distribution and Poisson distribution.

Definition 11. (Bernoulli) A random variable X is said to have a Bernoulli distribution
with parameter p, X ∼ Ber(p), if

P (X = 1) = p = 1− P (X = 0) for p ∈ [0, 1].
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The probability mass function f of this distribution over possible outcomes k can be
alternatively written as

P (k; p) = pk(1− p)1−k for k ∈ {0, 1}.

Theorem 3. Properties of Bernoulli distribution with parameter p ∈ [0, 1] are given
as follows.

1.) E(X) = p,

2.) V ar(X) = p(1− p),

3.) GX(t) = 1− p+ pt,

4.) MX(t) = 1− p+ pet.

Definition 12. (Binomial) A random variable X is said to have the binomial distribu-
tion with parameters n ∈ N and p ∈ [0, 1], X ∼ B(n, p), if

P (X = k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, 2, . . . , n,

where (
n

k

)
=

n!

k!(n− k)!
.

Remark 2. If X ∼ B(n, p), then P (X = k) is the probability of getting exactly k

successes in n trials.

Theorem 4. Let X be a binomial random variable with parameters n and p. Then
the following properties hold.

1.) E(X) = np,

2.) V ar(X) = np(1− p),

3.) GX(t) = (1− p+ pt)n,

4.) MX(t) = (1− p+ pet)
n.

Definition 13. (Poisson) A random variable X is said to have a Poisson distribution
with parameter λ ∈ [0,∞), X ∼ Poi(λ),

P (X = x) =
e−λλx

x!
for x = 0, 1, . . .
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Theorem 5. Let X be a poisson random variable with parameters λ. Then the
following properties hold.

1.) E(X) = λ,

2.) V ar(X) = λ,

3.) GX(t) = eλ(t−1),

4.) MX(t) = eλ(e
t−1).

Definition 14. (Inverse-gaussian) A random variable X is said to have an Inverse
Gaussian distribution with parameter ϕ > 0 and µ > 0, X ∼ IG(µ, ϕ), if its density
function is defined as

f(x;µ, ϕ) = [
ϕ

2πx3
]
1
2 exp

(
−ϕ(x− µ)2

2µ2x

)

for t < ϕ/2.

Theorem 6. Let X be an inverse-gaussian random variable with parameters ϕ > 0

and µ > 0. Then the following properties hold.

1.) E(X) = µ,

2.) V ar(X) =
µ3

ϕ
,

3.) MX(t) = exp{ϕ
µ
(1−

√
1− 2µ2ϕ−1t)}.

Theorem 7. Let X be an inverse-gaussian random variable with parameters ϕ > 0

and µ = 1. Then the following properties hold.

1.) E[X] = 1,

2.) V ar[X] =
1

ϕ
,

3.) MX(t) = exp{ϕ(1−√1− 2ϕ−1t)}.

Definition 15. (Compound random variable) Let N be a nonnegative integer-valued
random variable and let X1, X2, . . . be a sequence of independent and identically
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distributed(i.i.d) positive random variables that are independent of N . The random
variable

SN =
N∑
i=1

Xi (2.2.1)

is called a compound random variable.

Theorem 8. Properties of compound random variable SN defined in Definition 15
are given as follows.

1.) E(SN) = E(N)E(X),

2.) V ar(SN) = E(N)V ar(X) + V ar(N)E2(X),

3.) GSN
(t) = GN(GX(t)).

2.3 Binomial Thinning Operator
In this section, we introduce the definition of the binomial thinning operator which
is the main tool in constructing an integer valued time series. Moreover, we present
its properties with their proofs.

Definition 16. Let M be a non-negative integer-valued random variable and α ∈

[0, 1]. The operator α◦ on M is referred to as the binomial thinning of M and is
defined as

α ◦M =
M∑
i=1

Yi, (2.3.1)

where {Yi, i = 1, 2, . . .} is a sequence of i.i.d Berniulli random variables with mean α

and is independent of M .

Theorem 9. Let Z be an non-negative integer-valued random variable. The follow-
ing properties hold.

1.) E(α ◦ Z) = αE(Z),

2.) V ar(α ◦ Z) = α2V ar(Z) + α(1− α)E(Z),

3.) Mα◦Z(t) = GZ(1− α + αet),
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4.) E(Z(α ◦ Z)) = αE(Z2),

5.) E((α1 ◦ Z)(α2 ◦ Z)) = α1α2E(Z2),

6.) Cov(α ◦ Z,Z) = αV ar(Z),

7.) Cov(α1 ◦ Z, α2 ◦ Z) = α1α2V ar(Z).

Proof. 1.)

E(α ◦ Z) = E

(
Z∑
i=1

Yi

)

= E

(
E

(
Z∑
i=1

Yi

∣∣∣Z))

= E

(
Z∑
i=1

E(Yi

∣∣Z))

= E

(
Z∑
i=1

α

)
(2.3.2)

= αE(Z),

where we use the fact that Yi ∼ Ber(α) (for i ≥ 1) to obtain (2.3.2).

2.) By the definition of conditional variance, we can show that

V ar(α ◦ Z) = V ar (E(α ◦ Z|Z)) + E (V ar(α ◦ Z|Z))

= V ar

(
E

(
Z∑
i=1

Yi

∣∣∣Z))+ E

(
V ar

(
Z∑
i=1

Yi

∣∣∣Z))

= V ar

(
Z∑
i=1

E(Yi

∣∣∣Z))+ E

(
Z∑
i=1

V ar(Yi

∣∣∣Z))

= V ar

(
Z∑
i=1

α

)
+ E

(
Z∑
i=1

α(1− α)

)
(2.3.3)

= α2V ar(Z) + α(1− α)E(Z),

where we use the fact that Yi ∼ Ber(α) (for i ≥ 1) to obtain (2.3.3).
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3.)

Mα◦Z(t) = E
(
e(α◦Z)t

)
= E

(
et

∑Z
i=1 Yi

)
= E

(
E
(
et

∑Z
i=1 Yi

∣∣∣Z))
= E

(
Z∏
i=1

E
(
etYi
))

= E

(
Z∏
i=1

(
1− α + αet

)) (2.3.4)

= E
(
(1− α + αet)Z

)
= GZ(1− α + αet),

where we use the fact that Yi ∼ Ber(α) to obtain (2.3.4).

4.)

E(Z(α ◦ Z)) = E

(
Z

Z∑
i=1

Yi

)

= E

(
E

(
Z

Z∑
i=1

Yi

∣∣∣Z))

= E

(
Z

Z∑
i=1

E(Yi)

)

= E

(
Z

Z∑
i=1

α

)
(2.3.5)

= αE
(
Z2
)
,

where we use the fact that Yi ∼ Ber(α) to obtain (2.3.5).
5.) Define α1 ◦Z =

Z∑
i=1

Yi and α2 ◦Z =
Z∑

j=1

Wj , Yi ∼ Ber(α1) and Wj ∼ Ber(α2)
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then

E((α1 ◦ Z)(α2 ◦ Z)) = E

((
Z∑
i=1

Yi

)(
Z∑

j=1

Wj

))

= E

(
E

((
Z∑
i=1

Yi

)(
Z∑

j=1

Wj

)∣∣∣Z))

= E

(
Z∑
i=1

Z∑
j=1

E(YiWj|Z)

)

= E

(
Z∑
i=1

Z∑
j=1

E(Yi)E(Wj)

)

= E

(
Z∑
i=1

Z∑
j=1

α1α2

)
(2.3.6)

= α1α2E

(
Z∑
i=1

Z∑
j=1

1

)

= α1α2E
(
Z2
)
,

where we use the fact that Yi ∼ Ber(α) to obtain (2.3.6).
6.) By the definition of covariance function and 1.), we can show that

Cov(α ◦ Z,Z) = E(Z(α ◦ Z))− E(Z)E(α ◦ Z)

= αE(Z2)− αE(Z)E(Z)

= α(E(Z2)− E2(Z))

= αV ar(Z).

7.) By the definition of covariance function, 1.) and 5.), we can show that

Cov(α1 ◦ Z, α2 ◦ Z) = E((α1 ◦ Z)(α2 ◦ Z))− E(α1 ◦ Z)E(α2 ◦ Z)

= α1α2E(Z2)− α1α2E(Z)E(Z)

= α1α2(E(Z2)− E2(Z))

= α1α2V ar(Z).



Chapter 3
Main work

In this chapter, we construct a new moving average time series model based on the
Poisson-Inverse Gaussion model. The organization of this chapter is as follows. We
first discuss the definition and properties of the Poisson-Inverse Gaussion distribution,
in Section 3.1. The construction of the new model, Poisson-Inverse Gaussian, is given
is Section 3.2. Finally, numerical simulation of distribution of such data are given in
Section 3.3.

3.1 Poisson Inverse Gaussian
Definition 17. (Mixed Poisson distribution) A random variable Y follows a mixed
Poisson distribution if Y |Z = z ∼ Poisson (λz), for λ > 0, where Z is some non-
negative random variable.

Consequently, the probability mass function of Y for y ≥ 0, can be derived

P (Y = y) =

∫ ∞

0

P (Y = y|Z = z)gϕ(z)dz

=

∫ ∞

0

e−λz(λz)y

y!
dGϕ(z),

where Gϕ(· ) is the distribution function of Z . The parameter ϕ denotes the param-
eter vector associated to the distribution of Z . We denote Y ∼ MP (λ, ϕ).

Theorem 10. Properties of mixed Poisson distribution with parameter ϕ and λ > 0

defined in Definition 17 are given as follows.

11
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1.) E(Y ) = λE(Z),

2.) V ar(Y ) = λE(Z) + λ2V ar(Z),

3.) MY (t) = MZ(λ(e
t − 1)).

for t belonging some interval containing the value zero.

Proof. 1.)

E(Y ) = E(E(Y |Z))

= E(λZ)

= λE(Z).

2.)

V ar(Y ) = V ar(E(Y |Z)) + E(V ar(Y |Z))

= V ar(λZ) + E(λZ)

= λE(Z) + λ2V ar(Z)

3.)

MY (t) = E(eY t)

= E(E(eY t|Z))

= E(eλZ(et−1))

= MZ(λ(e
t − 1)).

Theorem 11. Let Y ∼ MP (λ, ϕ). Then, α ◦ Y ∼ MP (αλ, ϕ) for α ∈ [0, 1).

Proof. Consider α ◦ Y |Z . By the Theorem 9(3), we can show that

Mα◦Y |Z(t) = E((1− α + αet)
Y |Z) (3.1.1)

= eλz(1−α+αet−1)

= eλz(αe
t−α)

= eλzα(e
t−1),
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Then α ◦ Y |Z ∼ Poisson(λzα).

Mα◦Y (t) = E(et(α◦Y ))

= E(E(et(α◦Y )|Z))

= E(eλzα(e
t−1)) (3.1.2)

= MZ(λα(e
t − 1)),

where we use the fact that α ◦ Y |Z ∼ Poisson(λzα) in (3.1.2).

Definition 18. (Poisson-inverse Gaussian) A random variable X is said to have a
Poisson-inverse Gaussian distribution of X|Z = z ∼ Poisson(λz) and Z ∼ IG(µ, ϕ).
We denote X ∼ PIG(µ, ϕ).

Remark 3. A random variableX is said to have a Poisson-Inverse Gaussian distribution
with parameter λ > 0, ϕ > 0 and µ > 0, X ∼ PIG(µ, ϕ), if its density function,
f(x;λ, µ, ϕ) is defined as

f(x;λ, µ, ϕ) =

∫ ∞

0

e−λz(λz)x

x!
[

ϕ

2πz3
]
1
2 exp

(
−ϕ(z − µ)2

2µ2z

)
dz

for t < ϕ/2.

Theorem 12. LetX be a Poisson-Inverse Gaussian distribution with parameter λ > 0,
µ = 1 and ϕ > 0. Then the following properties hold.

1.) E(X) = λ,

2.) V ar(X) = λ(1 + λϕ−1),

3.) MX(t) = exp{ϕ(1−√1− 2ϕ−1λ(et − 1))}, for t < log(1 + ϕ/(2λ)).

Proof. 1.) By Theorem 7(1) and Theorem 10(1), we can show that

E(X) = λE(Z)

= λ.
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2.) By Theorem 7(2), Theorem 10(1) and theorem 29(2), we can show that

V ar(X) = λE(Z) + λ2V ar(Z)

= λ+ λ2ϕ−1

= λ(1 + λϕ−1).

3.) By Theorem 7(3) and Theorem 10(3), we can show that

MX(t) = MZ(λ(e
t − 1))

= exp{ϕ(1−
√

1− 2ϕ−1λ(et − 1))}.

3.2 (Poisson-inverse Gaussian INMA(q))
In order to present our class of Poisson-Inverse Gaussian INMA(q) processes and dis-
cuss its properties. We begin this section by giving the definition of the Integer-Valued
moving average model.

Definition 19. The Integer-Valued moving average model of order q, denoted by
INMA(q), is defined as

Xn = α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q + ϵn

for n ≥ 1, with {ϵn}∞n=1 be a sequence of i.i.d random variables independent of ϵj ,
for j ≤ n, for all n.

Definition 20. Poisson-Inverse Gaussian INMA(q) The sequence {Xn}∞n=1 is said to
be a Poisson-inverse Gaussian INMA(q) process, defined in Definition 19 if {ϵi}∞i=1 is a
sequence of i.i.d PIG(µ, ϕ).

Theorem 13. The mgf of Xn is defined as

MXn(t) = exp
(
(q + 1)ϕ−

q∑
i=1

ϕ
√

1− 2ϕ−1λαi(et − 1)−
√

1− 2ϕ−1λ(et − 1)

)
.

and {Xn, n ∈ N} is a stationary process.
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Proof. Since {ϵn}∞n=0 is a sequence independent random variable, from theorem 9(3),

MXn(t) =M∑q
i=1 αi◦ϵn−i+ϵn(t)

=E(e(
∑q

i=1 αi◦ϵn−i+ϵn)t)

=E(et
∑q

i=1 αi◦ϵn−i)E(eϵnt)

=

q∏
i=1

E(et(αi◦ϵn−i))E(eϵnt)

=

q∏
i=1

Mαi◦ϵn−i
(t)Mϵnt(t)

=

q∏
i=1

MZ(λαi(e
t − 1))×Mϵn(t) (3.2.1)

where we use the fact that theorem 10(3) and theorem 11 in 3.2.1. Substitute MZ(t)

and Mϵ(t) from Theorem 7(3) and Theorem 12(3) respectively, then the mgf of Xn is

MXn(t) =

(
q∏

i=1

exp{ϕ(1−
√

1− 2ϕ−1λαi(et − 1))}

)
× exp{ϕ(1−

√
1− 2ϕ−1λ(et − 1))}

= exp
(
(q + 1)ϕ−

q∑
i=1

ϕ
√
1− 2ϕ−1λαi(et − 1)−

√
1− 2ϕ−1λ(et − 1)

)
.

Since the moment generating function does not depend on n, so {Xn, n ∈ N} is a
stationary process.

Theorem 14. Let a sequence {Xn}∞n=0 be a PIGINMA(q) defined in Definition 20, if
Z ∼ IG(1, ϕ). The mean, variance and covariance of (Xn) are as follows.

1.) E(Xn) = λ

(
q∑

i=1

αi + 1

)
,

2.) V ar(Xn) =

q∑
i=1

[α2
iλ(1 + ϕ−1λ) + αi(1− αi)λ] + λ(1 + ϕ−1λ),

3.) Cov(Xn, Xn−k) =


λ(1 + ϕ−1λ)

(
αk +

q−k∑
i=1

αiαk+i

)
for k < q,

αqλ(1 + ϕ−1λ) for k = q

0 for k > q.
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4.) Corr(Xn, Xn−k) =



λ(1+ϕ−1λ)(αk+
∑q−k

i=1 αiαk+i)∑q
i=1[α

2
i λ(1+ϕ−1λ)+αi(1−αi)λ]+λ(1+ϕ−1λ)

for k < q

αqλ(1+ϕ−1λ)∑q
i=1[α

2
i λ(1+ϕ−1λ)+αi(1−αi)λ]+λ(1+ϕ−1λ)

for k = q

0 for k > q.

Proof. 1.) From the Definition 19 and Theorem 9(1), we can show that

E(Xn)

=E(α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q + ϵn)

=E(α1 ◦ ϵn−1) + E(α2 ◦ ϵn−2) + · · ·+ E(αq ◦ ϵn−q) + E(ϵn)

=

q∑
i=1

αiE(ϵn−i) + E(ϵn)

=

q∑
i=1

αiλ+ λ

=λ

(
q∑

i=1

αi + 1

)
.

2.) From the Definition 19 and Theorem 9(2), we can show that

V ar(Xn)

=V ar(α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q + ϵn)

=

q∑
i=1

V ar(αi ◦ ϵn−i) + V ar(ϵn)

=

q∑
i=1

[α2
iV ar(ϵn−i) + αi(1− αi)E(ϵn−i)] + µ(1 + ϕ−1µ)

=

q∑
i=1

[α2
iµ(1 + ϕ−1µ) + αi(1− αi)µ] + µ(1 + ϕ−1µ).

3.) To find Cor(Xn, Xn−k), we consider four different cases which are k = 1,

k < q, k = q, and k > q.
For k = 1, since {ϵi} are independent, theorem 9(5),(6) and theorem 12, we have
Cov(Xn, Xn−k) = Cov(Xn, Xn−1)

=Cov(α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q + ϵn, α1 ◦ ϵn−2 + α2 ◦ ϵn−3 + · · ·+ αq ◦ ϵn−q−1 + ϵn−1)

=Cov(α1 ◦ ϵn−1, ϵn−1) + Cov(α2 ◦ ϵn−2, α1 ◦ ϵn−2) + · · ·+ Cov(αq ◦ ϵn−q, αq−1 ◦ ϵn−q)

=α1V ar(ϵn−1) + α1α2V ar(ϵn−2) + · · ·+ αq−1αqV ar(ϵn−q)

=λ(1 + ϕ−1λ)(α1 + α1α2 + · · ·+ αq−1αq).
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For k < q

Since {ϵi} are independent, Theorem 9(5-6) and Theorem 12, we have
Cov(Xn, Xn−k)

=Cov(α1 ◦ ϵn−1 + · · ·+ αq ◦ ϵn−q + ϵn, α1 ◦ ϵn−k−1 + · · ·+ αq ◦ ϵn−k−q + ϵn−k)

=Cov(αk ◦ ϵn−k, ϵn−k) + Cov(αk+1 ◦ ϵn−k−1, α1 ◦ ϵn−k−1) + · · ·+ Cov(αq−k ◦ ϵn−q, αq ◦ ϵn−q)

=αkV ar(ϵn−k) + α1αk+1V ar(ϵn−k−1) + · · ·+ αq−kαqV ar(ϵn−q)

=λ(1 + ϕ−1λ)(αk + α1αk+1 + α2αk+2 + · · ·+ αq−kαq).

For k = q

Since {ϵi} are independent, Theorem 9(5) and Theorem 12, we have
Cov(Xn, Xn−q)

=Cov(α1 ◦ ϵn−1 + · · ·+ αq ◦ ϵn−q + ϵn, α1 ◦ ϵn−q−1 + · · ·+ αq ◦ ϵn−q−q + ϵn−q)

=Cov(αq ◦ ϵn−q, ϵn−q)

=αqV ar(ϵn−q)

=λαq(1 + ϕ−1λ).

Consider k > q

Since {ϵi} are independent, Theorem 9(5) and Theorem 12, we have
Cov(Xn, Xn−k)

=Cov(α1 ◦ ϵn−1 + · · ·+ αq ◦ ϵn−q + ϵn, α1 ◦ ϵn−k−1 + · · ·+ αq ◦ ϵn−k−q + ϵn−k)

=0.

Hence

Cov(Xn, Xn−k) =


λ(1 + ϕ−1λ)

(
αk +

q−k∑
i=1

αiαk+i

)
for k < q,

αqλ(1 + ϕ−1λ) for k = q

0 for k > q.

4.) From 2.) and 3.), the autocorrelation function of X is
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Corr(Xn, Xn−k) =
Cov(Xn, Xn−k)√

V ar(Xn)V ar(Xn−k)

=
Cov(Xn, Xn−k)

V ar(Xn)

=



λ(1+ϕ−1λ)(αk+
∑q−k

i=1 αiαk+i)∑q
i=1[α

2
i λ(1+ϕ−1λ)+αi(1−αi)λ]+λ(1+ϕ−1λ)

for k < q

αqλ(1+ϕ−1λ)∑q
i=1[α

2
i λ(1+ϕ−1λ)+αi(1−αi)λ]+λ(1+ϕ−1λ)

for k = q

0 for k > q.

3.3 Data Simulation
In this section, we study numerical simulation of data distribution of the Poisson-
Inverse Gaussion INMA(q) model in different settings.

3.3.1 Data Generation Algorithm
For our simulation experiment, we use the following algorithm to generate data.
Following Poisson-Inverse Gaussian INMA(q) model:

Xn = α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q + ϵn

1. Set parameters λ, µ, ϕ, α, n, q in INMA(q) model where ϵn ∼ PIG(λµ, ϕ) with
parameter αi ∈ [0, 1] where αi = αj for all i, j = 1, 2, . . . , q, µ = 1 and λ, ϕ, n, q

are a positive integer.

2. Generate a positive finite integer matrix

Eps =


ϵ11 ϵ12 . . . ϵ1n

ϵ21 ϵ22 . . . ϵ2n
... ... . . . ...
ϵt1 ϵt2 . . . ϵtn


where ϵi, i = 0, 1, · · · , n is generated from the Poisson-inverse Gaussian distri-
bution with parameter λ, ϕ.
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3. Generate a positive finite integer matrix

Thin =


T11 T12 . . . T1n

T21 T22 . . . T2n

... ... . . . ...
Tt1 Tt2 . . . Ttn


where Ti,j, i = 1, 2, . . . , t and j = 1, 2, . . . , n is generated from Binomial distri-
bution with parameter α.

4. Generate a positive finite integer matrix

X =


X11 X12 . . . X1n

X21 X22 . . . X2n

... ... . . . ...
Xt1 Xt2 . . . Xtn



where Xi,j =

i+q−1∑
l=i

Tl,j + ϵi+q,j, i = 1, 2, . . . , t and j = 1, 2, . . . , n.

3.3.2 Numerical Simulation of PIGINMA(1) model
In this section, we study numerical simulation of the PIGINMA(1) model:

Xn = α1 ◦ ϵn−1 + ϵn.

In our study, we consider 3 different settings,

1. Fix ϕ = 0.5, α = 0.5, n = 1, 2, . . . , 100 and µ = 1, consider λ ∈ {1, 1.4, 1.8, 2.4, 8, 16, 32}.

2. Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1

a) λ = 1, consider α ∈ {0.1, 0.4, 0.7, 0.9}.
b) λ = 32, consider α ∈ {0.1, 0.4, 0.7, 0.9}.

3. We generate 100 series of PIGINMA(1). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1.
a) Consider λ = 1

b) Consider λ = 32
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4. We generate 100 series of PIGINMA(1). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1,
consider X10 when λ ∈ {1, 4, 32}.

1. Comparison the Data of PIGINMA(1) model with different λ
For PIGINMA(1) model we set the parameters ϕ = 0.5, α = 0.5, n = 100 and t = 1.

Figure 3.1: Scatter plot of data generated from PIGINMA(1) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {1, 1.4, 1.8, 2}
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Figure 3.2: Scatter plot of data generated from PIGINMA(1) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {4, 8, 16, 32}
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Figure 3.3: Histograms of data generated from PIGINMA(1) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {1, 1.4, 1.8, 2}
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Figure 3.4: Histograms of data generated from PIGINMA(1) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {4, 8, 16, 32}

By the distribution plots and histograms, we can see that data skewed to the left and
the frequency of the data with small value decreases when λ increases.
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2. Comparision the Data of PIGINMA(1) model with different λ and α

For PIGINMA(1) model we set the parameter ϕ = 0.5, µ = 1 and n = 1, 2, . . . , 100.
a) λ = 1, consider α ∈ {0.1, 0.4, 0.7, 0.9}

Figure 3.5: Scatter plot of data generated from PIGINMA(1) model with parameters
λ = 1, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}



25

Figure 3.6: Histograms of data generated from PIGINMA(1) model with parameters
λ = 1, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}

By the distribution plots and histograms, we can see that data remains constant when
λ increases.
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b) λ = 32, consider α ∈ {0.1, 0.4, 0.7, 0.9}

Figure 3.7: Scatter plot of data generated from PIGINMA(1) model with parameters
λ = 32, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}
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Figure 3.8: Histograms of data generated from PIGINMA(1) model with parameters
λ = 32, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}

By the distribution plots and histograms, we can see that data remains constant when
λ increases.

By Figure 3.5 - 3.8, we can see that the data distribution for the case λ = 1 is more
heavily weighted on small values than the case λ = 32. The data for the case λ = 32

is more spread than the case λ = 1.
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3. Comparison the generate 100 series of PIGINMA(1) with different λ
We generate 100 series of PIGINMA(1) model parameter λ ∈ {1, 32}, ϕ = 0.5, µ = 1.
The histograms for X10, X20, . . . , X100 are given in Figure 3.9 and Figure 3.10.
a) Consider λ = 1,

Figure 3.9: Histograms of data X10, X20, X30, X40, X50 of PIGINMA(1) model with pa-
rameters λ = 1, ϕ = 0.5, µ = 1 and α = 0.5
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Figure 3.10: Histograms of data X60, X70, X80, X90, X100 of PIGINMA(1) model with
parameters λ = 1, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data remains constant when
λ increases.
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b) Consider λ = 32,

Figure 3.11: Histograms of data X10, X20, X30, X40, X50 of PIGINMA(1) model with pa-
rameters λ = 32, ϕ = 0.5, µ = 1 and α = 0.5
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Figure 3.12: Histograms of data X60, X70, X80, X90, X100 of PIGINMA(1) model with
parameters λ = 32, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data remains constant when
λ increases.

By Figure 3.9 - 3.12, we can see that the data distribution for the case λ = 1 is
more heavily weighted on small values than the case λ = 32. The data for the case
λ = 32 is more spread than the case λ = 1.
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4. Comparison the generate 100 series of PIGINMA(1) model with different λ

and consider X10

We generate 100 series of PIGINMA(1). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1,
consider X10 when λ ∈ {1, 4, 32}. The histograms for X10 are given in Figure 3.13.

Figure 3.13: Histograms of data X1 when generated 100 series of PIGINMA(1) model
with parameters λ ∈ {1, 4, 32}, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data skewed to the left and
the frequency of the data with small value decreases when λ increases.
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3.3.3 Numerical Simulation of PIGINMA(5) model
In this section, we study numerical simulation of the PIGINMA(5) model:

Xn = α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ α5 ◦ ϵn−5 + ϵn.

In our study, we consider 3 different settings,

1. Fix ϕ = 0.5, α = 0.5, n = 1, 2, . . . , 100 and µ = 1, consider λ ∈ {1, 1.4, 1.8, 2.4, 8, 16, 32}.

2. Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1

a) λ = 1, consider α ∈ {0.1, 0.4, 0.7, 0.9}.
b) λ = 32, consider α ∈ {0.1, 0.4, 0.7, 0.9}.

3. We generate 100 series of PIGINMA(1). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1.
a) Consider λ = 1

b) Consider λ = 32

4. We generate 100 series of PIGINMA(1). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1,
consider X10 when λ ∈ {1, 4, 32}.
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1. Comparison the Data of PIGINMA(5) model with different λ
For PIGINMA(5) model we set the parameters ϕ = 0.5, α = 0.5, n = 100 and t = 1.

Figure 3.14: Scatter plot of data generated from PIGINMA(5) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {1, 1.4, 1.8, 2}
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Figure 3.15: Scatter plot of data generated from PIGINMA(5) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {4, 8, 16, 32}
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Figure 3.16: Histograms of data generated from PIGINMA(5) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {1, 1.4, 1.8, 2}
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Figure 3.17: Histograms of data generated from PIGINMA(5) model with parameters
ϕ = 0.5, µ = 1 and λ ∈ {4, 8, 16, 32}

By the distribution plots and histograms, we can see that data skewed to the left and
the frequency of the data with small value decreases when λ increases.
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2. Comparision the Data of PIGINMA(5) model with different λ and α

For PIGINMA(5) model we set the parameter ϕ = 0.5, µ = 1 and n = 1, 2, . . . , 100.
a) λ = 1, consider α ∈ {0.1, 0.4, 0.7, 0.9}

Figure 3.18: Scatter plot of data generated from PIGINMA(5) model with parameters
λ = 1, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}
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Figure 3.19: Histograms of data generated from PIGINMA(5) model with parameters
λ = 1, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}

By the distribution plots and histograms, we can see that data skewed to the left.
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b) λ = 32, consider α ∈ {0.1, 0.4, 0.7, 0.9}

Figure 3.20: Scatter plot of data generated from PIGINMA(5) model with parameters
λ = 32, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}
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Figure 3.21: Histograms of data generated from PIGINMA(5) model with parameters
λ = 32, ϕ = 0.5, µ = 1 and α ∈ {0.1, 0.4, 0.7, 0.9}

By the distribution plots and histograms, we can see that data remains constant when
λ increases.

By Figure 3.19 and Figure 3.21, we can see that the data distribution for the case
λ = 1 is more heavily weighted on small values than the case λ = 32. The data for
the case λ = 32 is more spread than the case λ = 1.
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3. Comparison the generate 100 series of PIGINMA(5) with different λ
We generate 100 series of PIGINMA(5) model parameter λ ∈ {1, 32}, ϕ = 0.5, µ = 1.
The histograms for X10, X20, . . . , X100 are given in Figure 3.22 and Figure 3.23.
a) Consider λ = 1,

Figure 3.22: Histograms of data X10, X20, X30, X40, X50 of PIGINMA(5) model with pa-
rameters λ = 1, ϕ = 0.5, µ = 1 and α = 0.5
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Figure 3.23: Histograms of data X60, X70, X80, X90, X100 of PIGINMA(5) model with
parameters λ = 1, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data remains constant when
λ increases.
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b) Consider λ = 32,

Figure 3.24: Histograms of data X10, X20, X30, X40, X50 of PIGINMA(5) model with pa-
rameters λ = 32, ϕ = 0.5, µ = 1 and α = 0.5
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Figure 3.25: Histograms of data X60, X70, X80, X90, X100 of PIGINMA(5) model with
parameters λ = 32, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data remains constant when
λ increases.

By Figure 3.22 - 3.25, we can see that the data distribution for the case λ = 1 is
more heavily weighted on small values than the case λ = 32. The data for the case
λ = 32 is more spread than the case λ = 1.
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4. Comparison the generate 100 series of PIGINMA(5) model with different λ

and consider X10

We generate 100 series of PIGINMA(5). Fix ϕ = 0.5, n = 1, 2, . . . , 100 and µ = 1,
consider X10 when λ ∈ {1, 4, 32}. The histograms for X10 are given in Figure 3.26.

Figure 3.26: Histograms of data X1 when generated 100 series of PIGINMA(5) model
with parameters λ ∈ {1, 4, 32}, ϕ = 0.5, µ = 1 and α = 0.5

By the distribution plots and histograms, we can see that data skewed to the left and
the frequency of the data with small value decreases when λ increases.



Chapter 4
Conclusion

In this project, we extend the study of the Mixed Poisson INAR(1) model to construct a
Mixed Poisson INMA(1) model and derive their probabilistic properties such as mean,
variance and covariance. Moreover, we presented distribution plots of such data in
many different settings. From our simulation study, we found that the distribution
of data is skewed to the left as the value of λ increases. However, the distribution is
hardly affected by the value of α.
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Appendix
Coding for PIGINMA(1)

n=1000#number of simulation

t=100#number of Xt

q=1#MA(1)

mu=32

phi=0.5*mu

alpha=0.5

fEps<-function(t,q,n,mu,phi){

Eps=rep(1,((t+q)*n))

for(i in 1:((t+q)*n)){Eps[i]=rpoisinvgauss(1,mu,dis=(1/phi))}

return(Eps)}

A=fEps(t,q,n,mu,phi)

MEps=matrix(A,nrow = n)

Thin=matrix(MEps,n,(t+q))

for (i in 1:n){

for(j in 1:(t+q-1)){Thin[i,j]=rbinom(1,MEps[i,j],alpha)}

}

Xmat=matrix(1,n,t)

for (j in 1:n){

for(i in 1:t){Xmat[j,i]=sum(Thin[j,(i:(i+q-1))])+MEps[j,(i+q)]}

}
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Background and Rationale
Count time series arise naturally in many practical situations, for example, the

insurance claim counts and the number of stock transactions. Therefore, increases
in interest in the modelling have been observed. The most common distribution
considered in count time series data is the Poisson distribution. The model is refered
as the Poisson INAR(1) model which is a stationary integer-valued time series with lag-
one dependence. The Poisson INAR model has been applied in many applications
since it was introduced by McKenzie in 1985.

However, the property of the Poisson models having equal mean and variance
is rarely found in applications. Many real-world data examples exhibit overdispersion,
i.e., the variance is larger than the mean. Therefore, the integer-valued autoregressive
(INAR) process with Poisson marginals is not adequate for modelling overdispersed
counts. Consequently, several alternative distributions have been proposed for the
integer-valued time series models, for example, geometric distribution and negative
binomial distribution. Recently, in 2017, Batteto-Souza extended the Poisson INAR(1)
to the mixed Poisson INAR(1) model to accommodate overdispersion data. In their
study, they considered the inverse-gaussian Poisson INAR(1) model.

In this project, we will extend the study of the Mixed Poisson INAR(1) model
to construct a Mixed Poisson INMA(q) model and derive their probabilistic properties
such as mean, variance and covariance. Moreover, we present distribution plots of
such data in many different settings.
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Objectives
To extend the one order integer-valued time series model based on the mixed

Poisson distribution, Mixed Poisson INAR(1),to construct a Mixed Poisson INMA(1)
model and derive their probabilistic properties such as mean, variance and covari-
ance. Moreover, we present distribution plots of such data in many different settings.

Scope
In this project, we consider the integer-valued time series models based on

the Mixed Poisson distribution.

Project Activities
1. Study fundamental concepts of probability theory and integer-valued time se-

ries models.

2. Study properties and constructions of Mixed Poisson distributions.

3. Study Mixed Poisson INAR(1) processes.

4. Construct Mixed Poisson INMA(q) model and study its properties.

5. Summarize and write the report.
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Scheduled Operations

Procedures Months

Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

1. Study fundamental concepts of

probability theory integer-valued time series

models.

2. Study properties and constructions of

Mixed poisson distributions.

3. Study Mixed Poisson INAR(1) processes.

4. Construct Mixed Poisson INMA (q) model

and study its properties.

5. Summarize and write the report.

Benefits
The benefits for student who implement this project.

1. To learn properties of integer-valued time series for count data.

2. To gain knowledge in probability theory and apply the models to suitable ap-
plications.

The benefits for users of the project.
To have more general Mixed Poisson integer-valued time series processes for

wider applications.

Equipment
Software

1. Mathematica
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2. RStudio

3. Adobe PDF

4. Latex

Hardware

1. Printer

2. Computer
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