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Chapter 1

Introduction

Count time series arise naturally in many practical situations, for example, the
insurance claim counts and the number of stock transactions. Therefore, increases
in interest in the modelling have been observed. The most common distribution
considered in count time series data is the Poisson distribution. The model is refered
as the Poisson INAR(1) model which is a stationary integer-valued time series with lag-
one dependence. The Poisson INAR model has been applied in many applications
since it was introduced by McKenzie in 1985.

However, the property of the Poisson models having equal mean and variance
is rarely found in applications. Many real-world data examples exhibit overdispersion,
i.e., the variance is larger than the mean. Therefore, the integer-valued autoregressive
(INAR) process with Poisson marginals is not adequate for modelling overdispersed
counts. Consequently, several alternative distributions have been proposed for the
integer-valued time series models, for example, geometric distribution and negative
binomial distribution. Recently, in 2017, Batteto-Souza extended the Poisson INAR(1)
to the mixed Poisson INAR(1) model to accommodate overdispersion data. In their
study, they considered the inverse-gaussian Poisson INAR(1) model.

In this project, we will extend the study of the Mixed Poisson INAR(1) model
to construct a Mixed Poisson INMA(1) model and derive their probabilistic properties
such as mean, variance and covariance. Moreover, we present distribution plots of

such data in many different settings.



Chapter 2

Preliminary

In this chapter, we present some basics of probability, an overview of count data and

definition and properties of binomial thinning operator.

2.1 Basic of probability theory

In this section, we present definitions of distribution, expectation, independence, co-
variance, variance, generating function, moment generating function and conditional

probability, and their properties.

Definition 1. Let (2, F, P) be a probability space and X be a random variable. Then
the function Fx : R — [0, 1] defined by

Fx(z)=P{weQ: X(w)<2)})=P(X <z) forzeR,
is called “the distribution function of X”.

Definition 2. Let X be a random variable and g : R — R.
If X'is a discrete random variable, the expectation of g(X), E(g(X)), is defined as

zelmX

If X is a continuous random variable, the expectation of ¢(X), E(g(X)), is defined as

Theorem 1. Let a,b € R and X be a random variable, the properties of expectation

are given as follows.



1) E(a) = a,

2) E(aX) = aB(X),

3) E(aX +b) = aB(X) +b,
4) E (zn: XZ-) - zn: E(X;).

Definition 3. Let X and Y be any two random variables, A and B be any two subsets
of real number. Then, we say that X and Y are independent random variables if
and only if

P(Xe€eAYeB)=P(X AP € B).

Definition 4. Let X and Y be random variables. The covariance of X and Y, denoted

by Cov(X,Y), is defined as
Cov(X,Y)=E((X —EX))(Y — E®Y))).

Remark 1. 1.) The covariance function has an alternative expression as

Cou(X,Y) = BE(XY) — E(X)E(Y).
2.) If X, Y are independent, then Cov(X,Y’) = 0.
3) Cov(X, X) =Var(X).

Definition 5. Let X be a random variable. The variance of X, or Var(X), is defined

as

Var(X) = E(X — E(X))*.

Theorem 2. Let a,b € R and X and Y be random variables, the properties of

variance are
1) Var(X +a) = Var(X),
2) Var(aX) = a*Var(X),

3) Var(aX +b0Y) = a*Var(X) + b*Var(Y) + 2abCov(X,Y).



Definition 6. Let X be a random variable. The generating function of X, Gx(t), is
defined as
Gx(t) = BE(t¥).

Definition 7. Let X be a random variable. The moment generating function of X or
Mx (t), is defined as
Mx(t) = E(e'¥).

Definition 8. If X and Y are discrete random variables, then the probability mass

function of X given Y = y is defined as

pX|Y<£L"y) : PO;(_Y%:Yy)_ v)

Definition 9. The conditional expectation of X given Y = y is defined by
E(X[Y =y) pr;qy z|y)
Note that for any random varibles X and Y/,
E(X) = E(E(X]Y)).
If Y is a discrete random variable, then the above formula is equivalent to
=Y EX|Y =y)P(Y =y).
Yy
Definition 10. For any random variables X and Y:

Var(X) = E(Var(X|Y)) + Var(E(X]Y)).

2.2 Count distribution

We now present some count distributions such as Bernoulli distribution, Binomial

distribution and Poisson distribution.

Definition 11. (Bernoulli) A random variable X is said to have a Bernoulli distribution

with parameter p, X ~ Ber(p), if

P(X=1)=p=1-P(X =0) forpel0,1].



The probability mass function f of this distribution over possible outcomes k can be

alternatively written as
P(k;p) = p"(1 —p)*=* for k € {0,1}.

Theorem 3. Properties of Bernoulli distribution with parameter p € [0, 1] are given

as follows.
1) E(X) =p,
2) Var(X) =p(1—p),
3) Gx(t) =1—p+pt,
4) Mx(t)=1-p+pe'.

Definition 12. (Binomial) A random variable X is said to have the binomial distribu-
tion with parameters n € N and p € [0, 1], X ~ B(n, p), if

n

P(X =k) = (k>pk(1—p)”_k fork=0,1,2,...,n,

et

Remark 2. If X ~ B(n,p), then P(X = k) is the probability of getting exactly k

where

successes in n trials.

Theorem 4. Let X be a binomial random variable with parameters n and p. Then

the following properties hold.
1) E(X) = np,
2) Var(X) = np(1 —p),
3) Gx(t)=(1—p+pt)",
4) Mx(t) = (1 —p+ pet)".

Definition 13. (Poisson) A random variable X is said to have a Poisson distribution

with parameter A € [0, 00), X ~ Poi(\),

e AN

P(X =x)= forx =0,1,...

z!



Theorem 5. Let X be a poisson random variable with parameters \. Then the

following properties hold.
1) E(X)=\
2) Var(X) =\
3) Gx(t) = =D,
4) Mx(t) = e,

Definition 14. (Inverse-gaussian) A random variable X is said to have an Inverse
Gaussian distribution with parameter ¢ > 0 and p > 0, X ~ IG(u, ¢), if its density
function is defined as

Fasn o) = =] e (M)

2ulx
fort < ¢/2.

Theorem 6. Let X be an inverse-gaussian random variable with parameters ¢ > 0

and > 0. Then the following properties hold.

1) BE(X) =y,

3
2) Var(X) = %,

3) Mx(t) = exp{%(l —V1—=2p2¢71t)}.

Theorem 7. Let X be an inverse-gaussian random variable with parameters ¢ > 0

and = 1. Then the following properties hold.

1) B[X] =1,

2) Var[X] = %,

3) Mx(t) = exp{o(1 — /1 — 2011}

Definition 15. (Compound random variable) Let N be a nonnegative integer-valued

random variable and let X, X,,... be a sequence of independent and identically



distributed(i.i.d) positive random variables that are independent of N. The random

variable

Sv=>_X; (2.2.1)
is called a compound random variable.

Theorem 8. Properties of compound random variable Sy defined in Definition 15

are given as follows.
1) E(Sy) = E(N)E(X),
2) Var(Sy) = E(N)Var(X) + Var(N)E?*(X),

3) Ggy(t) = GN(Gx(1)).

2.3  Binomial Thinning Operator

In this section, we introduce the definition of the binomial thinning operator which
is the main tool in constructing an integer valued time series. Moreover, we present

its properties with their proofs.

Definition 16. Let M be a non-negative integer-valued random variable and «a €
[0,1]. The operator awo on M is referred to as the binomial thinning of M and is
defined as

M
aoM=) Y, (2.3.1)
=1

where {Y;,i =1,2,...} is a sequence of i.i.d Berniulli random variables with mean «

and is independent of M.

Theorem 9. Let Z be an non-negative integer-valued random variable. The follow-

ing properties hold.
1) E(oo Z) = aE(Z),
2) Var(ao Z) = oa*Var(Z) + a(l — a)E(Z),

3) Myoz(t) = Gz(1 — a+ aet),



4) E(Z(ao Z)) = aE(Z2),

5) E((ar 0 Z)(as 0 Z)) = a1as E(Z2),
6.) Cov(ao Z,Z) = aVar(Z),

7.) Cov(an 0 Z, a5 0 Z) = ayasVar(Z).

Proof. 1.)

E(aoZ)=E ZZ:Y>

A
B Z a) (2.3.2)

where we use the fact that Y; ~ Ber(«) (for i > 1) to obtain (2.3.2).

2.) By the definition of conditional variance, we can show that

+
=Var | E (in Z)
= Var iE(Y; Z)) E

= Var Zoz) +FE (Z a(l — a)) (2.3.3)

where we use the fact that Y; ~ Ber(«) (for i > 1) to obtain (2.3.3).



e
:E<ﬁ 1—a+ae)> (2.3.9)

(1 — o+ ae')?)

E ((
Gz(1 —a+ ae'),

where we use the fact that Y; ~ Ber(«) to obtain (2.3.4).

a.)

E(Z(aoZ)) =E ZZZ:Yi)

=1

()

A
L E ZZ a) (2.3.5)

where we use the fact that Y; ~ Ber(a) to obtain (2.3.5).

5.) Define a0 Z = ZY and apoZ = Z W; ,Y; ~ Ber(ay) and W; ~ Ber(as)

7=1
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then

(500 259

where we use the fact that Y; ~ Ber(«) to obtain (2.3.6).

6.) By the definition of covariance function and 1.), we can show that

Cov(ao Z,Z) =E(Z(aoZ)) — E(Z)E(ao Z)
= aE(Z% — aE(Z2)E(Z)
— a(B(Z%) - EX(2))
=aVar(Z).

7.) By the definition of covariance function, 1.) and 5.), we can show that
CO’U(Oél @) Z, Qg O Z) = E((Oél @) Z)(Oég ©) Z)) — E(Oél e} Z)E(OQ @) Z)
= a1 E(Z%) — a0 E(Z)E(Z)

— qyaa(E(2) — B*(2))

= aaVar(Z).



Chapter 3

Main work

In this chapter, we construct a new moving average time series model based on the
Poisson-Inverse Gaussion model. The organization of this chapter is as follows. We
first discuss the definition and properties of the Poisson-Inverse Gaussion distribution,
in Section 3.1. The construction of the new model, Poisson-Inverse Gaussian, is given
is Section 3.2. Finally, numerical simulation of distribution of such data are given in

Section 3.3.

3.1 Poisson Inverse Gaussian

Definition 17. (Mixed Poisson distribution) A random variable Y follows a mixed
Poisson distribution if Y'|Z = z ~ Poisson (Az), for A > 0, where Z is some non-

negative random variable.

Consequently, the probability mass function of Y for y > 0, can be derived
P =y)= [ PO =42 = 2)gul:)a:
0
o0 —Az A Y
- [ Q2 i6,(2),
0

y!
where Gy(-) is the distribution function of Z. The parameter ¢ denotes the param-

eter vector associated to the distribution of Z. We denote Y ~ M P(), ¢).

Theorem 10. Properties of mixed Poisson distribution with parameter ¢ and A > 0

defined in Definition 17 are given as follows.

11
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1) E(Y) = AE(2),
2) Var(Y) = E(Z) + N*Var(2),
3) My (t) = Mz(\(e' — 1)).

for t belonging some interval containing the value zero.

Proof. 1.)
E(Y)=E(E(Y|Z))
=E(\Z)
= \E(Z).
2.)
Var(Y)=Var(E(Y|Z)) + E(Var(Y|Z))
=Var(A\Z)+ E(\Z)
= AE(Z) +  Var(Z)
3.

[]
Theorem 11. Let Y ~ MP(X, ¢). Then, aoY ~ MP(a\, ¢) for a € [0,1).
Proof. Consider ao Y'|Z. By the Theorem 9(3), we can show that
Maoyz(t) = E((1 — a + ae’)' | 2) (3.1.1)

— 6Az(1—a+aet—1)
_ eAz(aet—a)

t_
— eAza(e 1)’
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Then a0 Y|Z ~ Poisson(Aza).

MaoY( ) — E(et (oY) )
= B(E(e"*™)|2))
= B 1) (3.1.2)
= Mz()\O{(et - 1))7
where we use the fact that a o Y'|Z ~ Poisson(Aza) in (3.1.2). ]

Definition 18. (Poisson-inverse Gaussian) A random variable X is said to have a
Poisson-inverse Gaussian distribution of X|Z = z ~ Poisson(Az) and Z ~ IG(u, ¢).
We denote X ~ PIG(u, ¢).

Remark 3. A random variable X is said to have a Poisson-Inverse Gaussian distribution
with parameter A > 0, ¢ > 0 and p > 0, X ~ PIG(u, @), if its density function,
f(z; A, 1, @) is defined as

0 —)\z)\ 45 1 — — 2
o= [T o (e,

fort < ¢/2.

Theorem 12. Let X be a Poisson-Inverse Gaussian distribution with parameter A > 0,

w=1and ¢ > 0. Then the following properties hold.
1) E(X)=\

2) Var(X) =M1+ Xp7h),

3) Mx(t) = exp{p(1 — /1T =20 A(e! — 1))}, fort <log(1+ ¢/(2)\)).

Proof. 1.) By Theorem 7(1) and Theorem 10(1), we can show that
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2.) By Theorem 7(2), Theorem 10(1) and theorem 29(2), we can show that

Var(X) = AE(Z) + X*Var(Z)
= A+ A\ !
= A1+ o).

3.) By Theorem 7(3) and Theorem 10(3), we can show that

My (t) = My(\(e! — 1))
= exp{e(1 — /1 — 29~ 1A(e! — 1))}

3.2 (Poisson-inverse Gaussian INMA(Q))

In order to present our class of Poisson-Inverse Gaussian INMA(q) processes and dis-
cuss its properties. We begin this section by giving the definition of the Integer-Valued

moving average model.

Definition 19. The Integer-Valued moving average model of order ¢, denoted by

INMA(q), is defined as
Xn:@10671,1+06206n,2+"'+05q06n,q+€n

for n > 1, with {€,}22, be a sequence of i.i.d random variables independent of ¢;,

for j < n, for all n.

Definition 20. Poisson-Inverse Gaussian INMA(g) The sequence {X,,}22 is said to
be a Poisson-inverse Gaussian INMA(q) process, defined in Definition 19 if {¢;}5°, is a

sequence of i.i.d PIG(u, ¢).

Theorem 13. The mgf of X, is defined as

My, (t) = exp ((q +1)¢— Y o1 =20 Nai(el — 1) — /1 - 20 A(ef — 1)) :

i=1

and {X,,,n € N} is a stationary process.
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Proof. Since {e€,}5°, is a sequence independent random variable, from theorem 9(3),

MXn (t) :qu Q;0€n—i+€n (t)
—F(e (o ioen— l+€")t)

:E(et 23:1 aioen—i)E<€€nt)

E(et(a,—osn,i))E(eent)

Il
Azg

s
Il
i

Il
A:Q

@
Il
—

Maioﬁn—i (t)Ment (t)

My(Oai(et — 1)) x M, (1) (3.2.1)

|
.EQ

I
—

where we use the fact that theorem 10(3) and theorem 11 in 3.2.1. Substitute My(t)
and M.(t) from Theorem 7(3) and Theorem 12(3) respectively, then the mgf of X, is

My, (1) (H exp{p(1 — /1 = 26~ Aay(e! >>}> x exp{p(1 — /1 — 20~ 1A(ef — 1))}

:exp<q—|—1 Z¢\/1—2¢ D (e — /1= 24" 1\(et )).

Since the moment generating function does not depend on n, so {X,,,n € N} is a

stationary process. []

Theorem 14. Let a sequence {X,,}>2, be a PIGINMA(q) defined in Definition 20, if

Z ~ IG(1,¢). The mean, variance and covariance of (X,,) are as follows.

1) E(X —A(Za,ﬂ)

2) Var(X,) = zq:[afm + 7N F a1 —a) A F A1+ o),

=1
4

q—k
AL+071N) (% +) aiakH) fork < g,
=1

3 CovlXon %) = 4 0 \(1 4 61 fork =g

0 fork > q.
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A1+~ ) (ar+ ) aiagys )

S 021+ TN )+ (T—a) A +A(1+¢~ 1N fork <q

— o )\(1+¢_1)\) .
4) Corr(Xn, Xnot) = § ST N0 s (T a ) NN fork=q
0 fork >q.

\

Proof. 1.) From the Definition 19 and Theorem 9(1), we can show that
E(Xy)
=F(aj0€, 1+az0€, o+ -+ Olg O €pg + €n)

=E(aro6,1) + Elazoens) + -+ E(ag o eng) + Elen)

q
= Z a;E(en—i) + E(e,)
i=1
=1 ,
=\ (Z o; + 1) .
=1

2.) From the Definition 19 and Theorem 9(2), we can show that

Var(X,)

=Var(ogo€,1+ 00 €a+ -+ a,0€6 4+ ¢€,)

q
= Z Var(a; o €,-;) + Var(e,)
i—1

= [afVar(ens) + ai(l — @) E(en—)] + (1 + ¢~ 1)

i=1
q
= oL+ ¢ ) + (1 — )] + p(1+ ¢~ p).
i=1
3.) To find Cor(X,, X,,_x), we consider four different cases which are k =1,

k<qk=gq and k > q.
For k = 1, since {¢;} are independent, theorem 9(5),(6) and theorem 12, we have
Cov(X,, Xx) = Cov(X,, X, 1)
:CO/U(al O€p—1t+Q20€y 9+ + Qg O €p—gq + €n, X1 O €p—2 +agso€, 3+ -+ Qg O €p—g—1 + en—l)
=Cov(ag 0 €y_1,€,-1) + Cov(az 0 €y_9,00 0 €_9) + - + Cov(ay 0 €y_g, Qg—1 0 €7—g)
= Var(e,—1) + cqaVar(e,—o) + -+ + ag10,Var(e,—g)

=M1+ o7 "Ny + ajag + -+ agq1ay).
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Fork < gq
Since {¢;} are independent, Theorem 9(5-6) and Theorem 12, we have

Cov(X,, Xok)

:CO’U(OQ O€p—1+ -+ Qg O €pgqg + €, 1 0 €1+ -+ Qg O €p_k—q + en—k)
=Cov(a, © €n—p, €n—t) + Cov(Qi1 0 €npp—1,01 0 €ng—1) + -+ + Cov(Qy—k © €ngy Ay © €n—y)
= Var(e,—) + arapVar(en_r—1) + -+ + g Var(e,—y)

:>\(1 + cb_l)\)(ak + a0y + 20y + -0+ aq_kaq).

Fork =gq
Since {¢;} are independent, Theorem 9(5) and Theorem 12, we have

Cov(X,, Xn—q)

=Cov(ago€y_1+ -+ 0,06 g+ €,,010€6, g1+ - +050€_g g+ €n_y)
=Cov(0y © €n—g, €n—q)
= Var(€,—q)

=Xy (1+¢7'N).

Consider k > ¢
Since {¢;} are independent, Theorem 9(5) and Theorem 12, we have

Cov( Xy, Xok)

:CO’U(OQ O€p—1+ -+ Qg O €p_g +€n, 10 €pf—1 -+ Qg O €pn_k—q + en—k)

=0.

Hence
4

q—Fk

A1+ 971N (ak + Z oziozkﬂ») fork < g,
i=1

Cov(Xn, Xn-t) = A1+ ¢71N) fork =¢q

\O for k > q.
4.) From 2.) and 3.), the autocorrelation function of X is
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Cov(Xp, Xn_k)
VVar(X,)Var(X,—r)
~ Cov(Xy,, Xy g)
 Var(X,)

Corr(Xn, Xn_k) =

A(1+o71N) (ak +YF OéiOék+i)

S (02X (1+6~ TN+ (1= A+ A (11N for k <q
= [e1 >\(1+(f)71)\) -

ST Nt (T a) AT 6T for k=q

0 for k> q.

\

3.3 Data Simulation

In this section, we study numerical simulation of data distribution of the Poisson-

Inverse Gaussion INMA(g) model in different settings.

3.3.1 Data Generation Algorithm

For our simulation experiment, we use the following algorithm to generate data.

Following Poisson-Inverse Gaussian INMA(qg) model:
Xn:alOen—l+a206n—2+"'+aqoen—q+€n

1. Set parameters A, i, ¢, o, n, g in INMA(q) model where €, ~ PIG(\u, ¢) with
parameter o; € [0, 1] where a; = o foralli, 5 =1,2,...,¢, p =1and \,¢,n,q

are a positive integer.

2. Generate a positive finite integer matrix

€11 €12 ... €1n
€21 €22 ... €9y,
Eps =
€1 €2 ... €Ep
where ¢;, 1 =0,1,--- ,n is generated from the Poisson-inverse Gaussian distri-

bution with parameter A, ¢.
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3. Generate a positive finite integer matrix

Ty Toy ... Ty,
Thll’] _ 21 22 2
T T ... T
where T; ;, i = 1,2,...,tand j = 1,2,...,n is generated from Binomial distri-

bution with parameter a.

4. Generate a positive finite integer matrix

p— Xop Xop .. Xop
Ko Ko - Xin

i+q—1
where X; ;= Y Tij+e€q i=12.. tandj=1,2,... n

=i

3.3.2 Numerical Simulation of PIGINMA(1) model
In this section, we study numerical simulation of the PIGINMA(1) model:
X, =a10€,_1+ €,.
In our study, we consider 3 different settings,
1. Fix¢p =05, =0.5,n=1,2,...,100and u = 1, consider A € {1,1.4,1.8,2.4,8, 16, 32}.

2. Fix¢p=05n=12...,100and u=1
a) A =1, consider a € {0.1,0.4,0.7,0.9}.
b) A = 32, consider a € {0.1,0.4,0.7,0.9}.

3. We generate 100 series of PIGINMA(1). Fix ¢ = 0.5, n =1,2,...,100 and pu = 1.
a) Consider A =1
b) Consider A = 32
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4. We generate 100 series of PIGINMA(1). Fix ¢ = 0.5, n =1,2,...,100 and u = 1,
consider Xjo when A € {1,4, 32}.

1. Comparison the Data of PIGINMA(1) model with different A
For PIGINMA(1) model we set the parameters ¢ = 0.5, = 0.5, n = 100 and ¢ = 1.

MA(1) model with PIG(1,phi=0.5) MA(1) model with PIG(1.4,phi=0.5)

100
|
100
|

Xt
60
|
Xt
60
|

MA(1) model with PIG(1.8,phi=0.5) MA(1) model with PIG(2,phi=0.5)
o -}
S S
. 8- ——
b4 ] b4 i
R
it |
AN

Figure 3.1: Scatter plot of data generated from PIGINMA(1) model with parameters
=05 p=1and A € {1,1.4,1.8,2}
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MA(1) model with PIG(4,phi=0.5) MA(1) model with PIG(8,phi=0.5)

100
|
100
|

*
t t
MA(1) model with PIG(16.phi=0.5) MA(1) model with PIG(32,phi=0.5)
= e ] - =
27 o =27 5 o
" o 2 " o s
2 o ° o g1 ;° OD%OD o DO@%
X C’ 2 = & O@D o 3; g %o
] Q a0 19 oo Cg o © o®
S & oﬁg 8%’0 g eefo 0 0 WS @
N %ﬁ N Lo © F L o 8

s r T T T T T T
20 40 60 B0 100 0 20 40 B0 80 100

=

Figure 3.2: Scatter plot of data generated from PIGINMA(1) model with parameters
¢»=0.5,p=1and X € {4,8,16,32}
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MA(1) model with PIG(1,phi=0.5) MA(1) model with PIG(1.4,phi=0.5)
2 2
= © z ©
= o
g 8 —/"\\\ 8 3 —f*\\
= =
g | CT T T T 1T o g FEEET T )
[=] I I I T [ 1 ] I [ I | I ]
0 20 40 60 80 100 0 20 40 60 80 100
Xt Xt
MA(1) model with PIG(1.8,phi=0.5) MA(1) model with PIG(2,phi=0.5)
3 | g _
= =
8 S 4 8 2 4
- \ 5 %»—
g L ITrrrrrrrr— g _ D I I e
o I I I | [ ] (=} | I I | I ]
0 20 40 60 80 100 0 20 40 60 80 100
Xt Xt

Figure 3.3: Histograms of data generated from PIGINMA(1) model with parameters
»=05pu=1and A € {1,1.4,1.8,2}



23

MA(1) model with PIG(4,phi=0.5) MA(1) model with PIG(8,phi=0.5)
3 3
z © z ©
£ oyl 3 B
= %\ =
= | [ T T 1T T 7T T = [T T T T 11—
= I | [ | | ] ] I [ I [ I [ 1
0 20 40 [a1] a0 100 0 20 40 60 80 120
xt Xt
MA(1) model with PIG(16,phi=0.5) MA(1) model with PIG(32,phi=0.5)
3 3
e < PN
T o 5 o
0 =T o =
[ ) e }
5 _ﬂl\h—ﬁ\ e W
S - 8 M
= I I [ [ [ | ] I | I I 1
0 50 100 150 200 250 0 50 100 150 200
xt Xt

Figure 3.4: Histograms of data generated from PIGINMA(1) model with parameters
¢» =05 p=1and X\ € {4,8,16,32}

By the distribution plots and histograms, we can see that data skewed to the left and

the frequency of the data with small value decreases when X increases.



24

2. Comparision the Data of PIGINMA(1) model with different A and «
For PIGINMA(1) model we set the parameter ¢ = 0.5,u=1and n=1,2,...,100.
a) A =1, consider € {0.1,0.4,0.7,0.9}

alpha=0.1 alpha=0.4
= 4 i
o _| a o _ o
% %
o Lo o
- s} n o o
o o oo [oe)
g0 00 _0 @ om0 oD o mo
o0 ] o] i} g
OO OO O OO MO CRO0 I O O CEE O
o — O Ommnn O SOOI O d == @0 O JOOIED [« I+
0] 20 40 60 80 100 0 20 40 g0 80 100
t t
alpha=0.7 alpha=0.9
o w
= = = @
a — o
> o o > 5 o o
w o o o w o L+ T
om w o 00 O ® O o)
0 oo Q o0 am o O oo O
Qo o] Q [os] QO D L] Qoo 00 oo o
o DG O O D am D O TEIRO O O O O 0D O 0o
= = oD oD JmOCdEh OO0 o0 O O =2 = @0 O @moo@  ofdoo O O
T T T T T T T E — T T
0 20 40 60 80 100 0 20 40 60 80 100

Figure 3.5: Scatter plot of data generated from PIGINMA(1) model with parameters
A=1,¢=05 p=1and a € {0.1,0.4,0.7,0.9}
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alpha=0.4

_/"‘\\
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Figure 3.6: Histograms of data generated from PIGINMA(1) model with parameters

A=1,¢=05pu=1and a € {0.1,0.4,0.7,0.9}

By the distribution plots and histograms, we can see that data remains constant when

A increases.
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b) A = 32, consider a € {0.1,0.4,0.7,0.9}
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Figure 3.7: Scatter plot of data generated from PIGINMA(1) model with parameters
A=32,¢0=05 p=1and a € {0.1,0.4,0.7,0.9}
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Figure 3.8: Histograms of data generated from PIGINMA(1) model with parameters
A=326=05pu=1and a e {0.1,0.4,0.7,0.9}

By the distribution plots and histograms, we can see that data remains constant when

A increases.

By Figure 3.5 - 3.8, we can see that the data distribution for the case A = 1 is more
heavily weighted on small values than the case A = 32. The data for the case A = 32

is more spread than the case A = 1.
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3. Comparison the generate 100 series of PIGINMA(1) with different \

We generate 100 series of PIGINMA(1) model parameter A € {1,32},¢ = 0.5, u = 1.
The histograms for Xq, Xoo, . .., X100 are given in Figure 3.9 and Figure 3.10.

a) Consider A =1,

X10 X20
(==} [= =3
2 o = o
g o=
a = \,-\#_ a8 = S
= e = l’"“‘-n—
[= 1 T 1 = UL I 1
] 2 4 [} 8 10 ] 2 4 [ ] 10
X1 X1
X30 X40
2 o 21 o 7]
L = 2%«
& = T 4 © :t/ﬁ
= l"‘="—n:-_— = l"‘="'——a_
= — = = T 7 ]
] 2 4 [} B 10 ] 2 4 [ ] 10
X1 X1
X50
oo
P ]
n
c =
4 = \/‘\__
= l"‘:‘:-—-—\—
= I -1 T 1 1
] 2 4 [} B 10
X1

Figure 3.9: Histograms of data Xig, X290, X30, X410, X50 Of PIGINMA(1) model with pa-
rameters A\=1,¢=0.5, p=1and a = 0.5
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Figure 3.10: Histograms of data Xgo, X70, Xg0, Xo0, X100 Of PIGINMA(1) model with
parameters A\ =1, =05, u=1and a=0.5

By the distribution plots and histograms, we can see that data remains constant when

A\ increases.
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b) Consider X = 32,
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Figure 3.11: Histograms of data X, Xa0, X30, Xa0, X50 Of PIGINMA(1) model with pa-
rameters A\ =32, ¢ =05, u=1and a=0.5
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By the distribution plots and histograms, we can see that data remains constant when

A\ increases.

By Figure 3.9 - 3.12, we can see that the data distribution for the case A = 1 is

more heavily weighted on small values than the case A = 32. The data for the case

A = 32 is more spread than the case A = 1.
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4. Comparison the generate 100 series of PIGINMA(1) model with different A
and consider X

We generate 100 series of PIGINMA(1). Fix ¢ = 0.5, n = 1,2,...,100 and u = 1,
consider X3o when A € {1,4, 32}. The histograms for X, are given in Figure 3.13.
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Figure 3.13: Histograms of data X; when generated 100 series of PIGINMA(1) model
with parameters A € {1,4,32}, ¢ = 0.5, u =1and a = 0.5

By the distribution plots and histograms, we can see that data skewed to the left and

the frequency of the data with small value decreases when X increases.
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3.3.3 Numerical Simulation of PIGINMA(5) model

In this section, we study numerical simulation of the PIGINMA(5) model:
X,=a10€¢,_1+as0€¢,_9+ 4+ a50€,_5+ €,.
In our study, we consider 3 different settings,
1. Fix¢p =05, =0.5,n=1,2,...,100and u = 1, consider A € {1,1.4,1.8,2.4,8, 16, 32}.

2. Fix¢g=05n=12...,100and u=1
a) A =1, consider a € {0.1,0.4,0.7,0.9}.
b) A = 32, consider a € {0.1,0.4,0.7,0.9}.

3. We generate 100 series of PIGINMA(1). Fix ¢ = 0.5, n =1,2,...,100 and u = 1.
a) Consider A =1
b) Consider A = 32

4. We generate 100 series of PIGINMA(1). Fix ¢ = 0.5, n =1,2,...,100 and u = 1,
consider Xjp when A € {1,4, 32}.
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1. Comparison the Data of PIGINMA(5) model with different A
For PIGINMA(5) model we set the parameters ¢ = 0.5, = 0.5, n = 100 and ¢ = 1.

MA(5) model with PIG(1,phi=0.5) MA(5) model with PIG(1.4,phi=0.5)
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Figure 3.14: Scatter plot of data generated from PIGINMA(5) model with parameters
¢»=05 p=1and A € {1,1.4,1.8,2}
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MA(5) model with PIG(4,phi=0.5) MA(5) model with PIG(8,phi=0.5)

300
|
300
|

200
1
200
1

Al
100
L1
X1
100
L1

MA(5) model with PIG(16,phi=0.5) MA(5) model with P1G(32,phi=0.5)

300
]
300
]

o g

Xt
200
| 1
g
o
D% o
X1
200
1 1
By, ©
Oy
e g
o

100
i
@@, 5

%
% &
g
o o
100
pr
;D

&
(s}

@@O

Figure 3.15: Scatter plot of data generated from PIGINMA(5) model with parameters
¢»=0.5,p=1and X € {4,8,16,32}
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MA(5) model with PIG(1,phi=0.5) MA(5) model with PIG(1.4,phi=0.5)
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Figure 3.16: Histograms of data generated from PIGINMA(5) model with parameters
»=05 pu=1and A € {1,14,1.8,2}
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MA(5) model with PIG(4,phi=0.5) MA(5) model with PIG(8,phi=0.5)
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Figure 3.17: Histograms of data generated from PIGINMA(5) model with parameters
¢» =05 p=1and X € {4,8,16,32}

By the distribution plots and histograms, we can see that data skewed to the left and

the frequency of the data with small value decreases when X increases.
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2. Comparision the Data of PIGINMA(5) model with different A and «
For PIGINMA(5) model we set the parameter ¢ = 0.5,u=1and n=1,2,...,100.
a) A =1, consider a € {0.1,0.4,0.7,0.9}
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Figure 3.18: Scatter plot of data generated from PIGINMA(5) model with parameters
A=1,¢=05pu=1andae {0.1,04,0.7,0.9}
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Figure 3.19: Histograms of data generated from PIGINMA(5) model with parameters
A=1,¢=05 p=1and a € {0.1,0.4,0.7,0.9}

By the distribution plots and histograms, we can see that data skewed to the left.
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b) A = 32, consider a € {0.1,0.4,0.7,0.9}
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Figure 3.20: Scatter plot of data generated from PIGINMA(5) model with parameters
A=32¢=05p=1and a€{0.1,0.4,0.7,0.9}
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Figure 3.21: Histograms of data generated from PIGINMA(5) model with parameters

A=32¢=05p=1and ac {0.1,0.4,0.7,0.9}

By the distribution plots and histograms, we can see that data remains constant when

A increases.

By Figure 3.19 and Figure 3.21, we can see that the data distribution for the case

A = 1 is more heavily weighted on small values than the case A = 32. The data for

the case A = 32 is more spread than the case A = 1.
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3. Comparison the generate 100 series of PIGINMA(5) with different \

We generate 100 series of PIGINMA(5) model parameter A € {1,32},¢ = 0.5, u = 1.
The histograms for X¢, Xoo, . .., X100 are given in Figure 3.22 and Figure 3.23.
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Figure 3.22: Histograms of data X1, Xa0, X30, X40, X50 Of PIGINMA(5) model with pa-
rameters \=1,¢=0.5, p=1and a = 0.5
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Figure 3.23: Histograms of data Xgo, X70, X50, Xo0, X100 Of PIGINMA(5) model with
parameters A\ =1, =05, u=1and a=0.5

By the distribution plots and histograms, we can see that data remains constant when

A\ increases.



b) Consider X = 32,
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Figure 3.24: Histograms of data X9, Xag, X30, X409, X50 of PIGINMA(5) model with pa-

rameters A\ =32, ¢ =0.5, p =1 and a = 0.5
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Figure 3.25: Histograms of data X0, X70, Xs0, X909, X100 Of PIGINMA(5) model with
parameters A = 32, ¢ = 0.5, p=1and a = 0.5

By the distribution plots and histograms, we can see that data remains constant when

)\ increases.

By Figure 3.22 - 3.25, we can see that the data distribution for the case A = 1 is
more heavily weighted on small values than the case A = 32. The data for the case

A = 32 is more spread than the case A = 1.
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4. Comparison the generate 100 series of PIGINMA(5) model with different A

and consider X
We generate 100 series of PIGINMA(5). Fix ¢ = 0.5, n = 1,2,...,100 and u = 1,
consider Xjo when A € {1,4, 32}. The histograms for X, are given in Figure 3.26.

lambda=1 lambda=4

0.006
0.006

Density
0.003

Density
0.003
1 d

_r"-'f-‘j)

[ T T T T T [ T~ [T T T T T T T~
1T 1T 1T ] 1T 1T 1T 1

0 200 400 600 800 71000 0 200 400 800 BOD 1000

0.000
|
0.000

xt b

lambda=32

0.006

Density
0.003

L 1T 1T T [ 13-
T T  1WW leTN|

0 200 400 600 800 1000

0.000

Xt

Figure 3.26: Histograms of data X; when generated 100 series of PIGINMA(5) model
with parameters A € {1,4,32}, ¢ =0.5, u =1and a = 0.5

By the distribution plots and histograms, we can see that data skewed to the left and

the frequency of the data with small value decreases when X increases.



Chapter 4

Conclusion

In this project, we extend the study of the Mixed Poisson INAR(1) model to construct a
Mixed Poisson INMA(1) model and derive their probabilistic properties such as mean,
variance and covariance. Moreover, we presented distribution plots of such data in
many different settings. From our simulation study, we found that the distribution
of data is skewed to the left as the value of A increases. However, the distribution is

hardly affected by the value of «.

ar
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Appendix

Coding for PIGINMA(1)

n=1000#number of simulation
t=100#number of Xt

q=1#MA (1)

mu=32

phi=0.5*mu

alpha=0.5

fEps<-function(t,q,n,mu,phi){

Eps=rep(1, ((t+q)*n))

for(i in 1:((t+q)*n)){Epsl[il=rpoisinvgauss(l,mu,dis=(1/phi))}
return(Eps)}
A=fEps(t,q,n,mu,phi)

MEps=matrix(A,nrow = n)

Thin=matrix (MEps,n, (t+q))
for (i in 1:n){
for(j in 1:(t+q-1)){Thin[i,jl=rbinom(1,MEps([i,j],alpha)}

Xmat=matrix(1l,n,t)
for (j in 1:n){
for(i in 1:t){Xmatl[j,i]=sum(Thin[j, (i:(i+q-1))])+MEps([j, (i+q)]}
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Background and Rationale

Count time series arise naturally in many practical situations, for example, the
insurance claim counts and the number of stock transactions. Therefore, increases
in interest in the modelling have been observed. The most common distribution
considered in count time series data is the Poisson distribution. The model is refered
as the Poisson INAR(1) model which is a stationary integer-valued time series with lag-
one dependence. The Poisson INAR model has been applied in many applications
since it was introduced by McKenzie in 1985.

However, the property of the Poisson models having equal mean and variance
is rarely found in applications. Many real-world data examples exhibit overdispersion,
i.e., the variance is larger than the mean. Therefore, the integer-valued autoregressive
(INAR) process with Poisson marginals is not adequate for modelling overdispersed
counts. Consequently, several alternative distributions have been proposed for the
integer-valued time series models, for example, seometric distribution and negative
binomial distribution. Recently, in 2017, Batteto-Souza extended the Poisson INAR(1)
to the mixed Poisson INAR(1) model to accommodate overdispersion data. In their
study, they considered the inverse-gaussian Poisson INAR(1) model.

In this project, we will extend the study of the Mixed Poisson INAR(1) model
to construct a Mixed Poisson INMA(q) model and derive their probabilistic properties
such as mean, variance and covariance. Moreover, we present distribution plots of

such data in many different settings.
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Objectives

To extend the one order integer-valued time series model based on the mixed
Poisson distribution, Mixed Poisson INAR(1),to construct a Mixed Poisson INMA(1)
model and derive their probabilistic properties such as mean, variance and covari-

ance. Moreover, we present distribution plots of such data in many different settings.

Scope

In this project, we consider the integer-valued time series models based on

the Mixed Poisson distribution.

Project Activities

1. Study fundamental concepts of probability theory and integer-valued time se-

ries models.
2. Study properties and constructions of Mixed Poisson distributions.
3. Study Mixed Poisson INAR(1) processes.
4. Construct Mixed Poisson INMA(g) model and studly its properties.

5. Summarize and write the report.
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Scheduled Operations

Procedures Months

.|Nov.|Dec.|Jan.|Feb.|Mar.|Apr.

1. Study fundamental concepts of
probability theory integer-valued time series

models.

2. Study properties and constructions of

Mixed poisson distributions.

3. Study Mixed Poisson INAR(1) processes.

4. Construct Mixed Poisson INMA (g) model

and study its properties.

5. Summarize and write the report.

Benefits

The benefits for student who implement this project.

1. To learn properties of integer-valued time series for count data.

2. To gain knowledge in probability theory and apply the models to suitable ap-

plications.

The benefits for users of the project.
To have more general Mixed Poisson integer-valued time series processes for

wider applications.

Equipment
Software

1. Mathematica
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2. RStudio

3. Adobe PDF

4. Latex
Hardware

1. Printer

2. Computer
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