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Chapter 1

Introduction

The integer-valued time series models for time series count data play important

roles in many applications. For examples, claim counts in insurance business and

the number of stock transactions in stock market. The model was first introduced

by McKenzie (1985) for the lag-one dependence model which is referred nowadays

as the integer-valued autoregressive of order one (INAR(1)) process.

The original integer-valued time series model is based on a binomial thinning op-

erator which is a compound sum of independent and identically distributed Bernoulli

random variables. Later, Ristic et al. (2013) generalized the binomial thinning op-

erator to construct a new INAR model, by relaxing the assumption of independence

in the compound sum to a sum of dependence Bernoulli random variables, called the

generalized binomial thinning operator. The new thinning operator can be applied

to a wider class of applications. For example, survival or collapse of some companies

in economy discussed in Ristic et al. (2013) since all companies operate in the same

macroeconomic and may affect to each others. Therefore, such problem is more

reasonable to use the dependent thinning operator than the independent thinning

operator.

In this study, we extend the dependent binomial thinning operator introduced in

Ristic et al. (2013) to construct a generalized integer-valued moving average model.

1



Chapter 2

Preliminary

In this chapter, we provide some basic concepts, definitions and theorems in

probability theory used in our studies.

2.1 Basic of Probability Theory [Prasanna S. (2013)]

Definition 2.1. The set of all possible outcomes of an experiment, denoted by Ω,

is called the sample space of the experiment.

Definition 2.2. Consider a random experiment whose sample space is Ω. A random

variable X is a function from the sample space Ω into the set of real numbers R

such that for interval I in R, the set {s ∈ Ω | X(s) ∈ I} is an event in Ω. If the

sample space is either finite or countably infinite, the random variable is said to be

discrete.

Definition 2.3. Let Ω be the sample space of a random experiment. A probability

measure P : P(Ω) → [0, 1] is a set function which assigns real numbers to the various

events of Ω satisfying

1) 0 ≤ P (A) ≤ 1 for any event A ∈ P(Ω).

2) P (Ω) = 1.

3) P (∅) = 0.

2
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Theorem 2.4. Let {A1, A2, A3, . . . , An} be a finite collection of n events such that

Ai ∩ Aj = ∅ for i ̸= j, then

P

( n∪
i=1

Ai

)
=

n∑
i=1

P (Ai).

Theorem 2.5. Let A be any event of sample space Ω. Then,

P (Ac) = 1− P (A).

Theorem 2.6. If A and B are any two events. Then,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Definition 2.7. Let Ω be a sample space. The conditional probability of an event

A, given that event B has occured, is defined by

P (A | B) =
P (A ∩B)

P (B)

provided that P (B) > 0.

Definition 2.8. Two events A and B of sample space Ω are said to be independent

if and only if

P (A ∩B) = P (A)P (B).

Theorem 2.9. Let A,B ⊆ Ω. If A and B are independent and P (B) > 0, then

P (A | B) = P (A).

Definition 2.10. The set {x ∈ R | x = X(s), s ∈ Ω} is called the space of random

variable X.

Definition 2.11. Let Ω be the sample space of the random variable X. The function

f : Ω → R defined by

f(x) = P (X = x)

is called the probability mass function (pdf) of X.
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Theorem 2.12. If X is a discrete random variable with the sample space Ω and

probability mass function f(x), then

1) f(x) ≥ 0 for all x ∈ Ω, and

2)
∑
x∈Ω

f(x) = 1.

Definition 2.13. The cumulative distribution function F (x) of a random variable

X is defined by

F (x) = P (X ≤ x)

for any real number x.

Definition 2.14. Let X and Y be two discrete random variables. Then, X and Y

are said to be independent if

P (X = x, Y = y) = P (X = x)P (Y = y).

Expected Value of Discrete Random Variables

Definition 2.15. Let X be a numerically-valued discrete random variable with sam-

ple space Ω and probability mass function f(x). The expected value of X, E(X), is

defined by

E(X) =
∑
x∈Ω

xf(x) ,

provided that this sum converges absolutely. We often refer to the expected value

as mean, and denote E(X) by µ for short. If the above sum does not converge

absolutely, then we say that X does not have an expected value.

Theorem 2.16. If X is a discrete random variable with sample space Ω and distri-

bution function f(x), and if g: Ω −→ R is a function. Then,

E(g(X)) =
∑
x∈Ω

g(x)f(x) ,

provided the series converges absolutely.
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Theorem 2.17. Let X and Y be random variables with finite expected values.

Then,

E(X + Y ) = E(X) + E(Y ) ,

and if c is a constant. Then,

E(cX) = cE(X).

Theorem 2.18. Let X and Y be independent random variables with finite expected

values. Then,

E(XY ) = E(X)E(Y ).

Theorem 2.19. If F is any event and X is a random variable with sample space

Ω = {x1, x2, x3 . . .}, then the conditional expectation of X given F is defined by

E(X | F ) =
∑
j

xjP (X = xj | F ).

Theorem 2.20. Let X and Y be two random variables. Then,

E(X) = E(E(X | Y )).

Variance of Discrete Random Variables

Definition 2.21. Let X be a numerically-valued random variable with expected

value µ = E(X). Then, the variance of X, denote by V ar(X), is

V ar(X) = E((X − µ)2).

Theorem 2.22. Let X be any random variable with E(X) = µ. Then,

V ar(X) = E(X2)− µ2.

Theorem 2.23. Let X be any random variable and c is any constant. Then,

V ar(cX) = c2V ar(X)

and

V ar(X + c) = V ar(X).



6

Theorem 2.24. Let X and Y be two independent random variables. Then,

V ar(X + Y ) = V ar(X) + V ar(Y ).

Theorem 2.25. Let X and Y be two random variables. Then,

V ar(X) = E(V ar(X | Y )) + V ar(E(X | Y )).

Covariance and Correlation

Definition 2.26. Let X and Y be two random variables with expected values µX

and µY , respectively. The covariance Cov(X, Y ) is defined by

Cov(X,Y ) = E[(X − µX)(Y − µY )].

Corollary 2.27. Let X and Y be two random variables with finite expected values.

Then,

Cov(X, Y ) = E(XY )− E(X)E(Y ).

Corollary 2.28. Let X and Y be two independent random variables. Then,

Cov(X, Y ) = 0.

Theorem 2.29. Let X and Y be two random variables. Then,

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

Definition 2.30. Let X and Y be two random variables with positive variances.

The correlation of X and Y is defined as

Corr(X, Y ) =
Cov(X, Y )√

V ar(X)V ar(Y )
.

Generating Function

Definition 2.31. Let X be a random variable. The generating function of X,

denote by GX , is

GX(t) = E(tX), for t ∈ R.
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Theorem 2.32. Let X and Y be two independent random variables. Then,

GX+Y (t) = GX(t)GY (t), for t ∈ R.

Theorem 2.33. Let GX(t) and GY (t) be generating functions of X and Y , respec-

tively. Then

GX(t) = GY (t), ∀t ∈ R

if and only if X and Y have the same distribution.

Moment Generating Function

Definition 2.34. Let X be a random variable. The moment generating function of

X, denote by MX , is

MX(t) = E(etX), for t ∈ R.

Theorem 2.35. Let X be a random variable, and a and b are constants. Then,

MaX+b(t) = ebtMX(at), for t ∈ R.

Theorem 2.36. Let X and Y be two indepentdent random variables. Then,

MX+Y (t) = MX(t)MY (t), for t ∈ R.

Theorem 2.37. Let MX(t) and MY (t) are moment generating functions of X and

Y , respectively. Then,

MX(t) = MY (t), ∀t ∈ R

if and only if X and Y have the same distribution.
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Mixture Distribution

Definition 2.38. Let a finite set of probability mass functions f1(x), f2(x), f3(x)

, . . . , fn(x), or cumulative distribution functions F1(x), F2(x), F3(x), . . . , Fn(x) and

weights w1, w2, w3, . . . , wn such that wi ≥ 0 and
n∑

i=1

wi = 1, the mixture distribution

is defined by

F (x) =
n∑

i=1

wiFi(x),

or, equivalently,

f(x) =
n∑

i=1

wifi(x).

Theorem 2.39. Let X1, X2, X3, . . . , Xn denote random variables, and let X de-

note a random variable from the mixture distribution. For the gernerating function

GXi
(t), i ∈ {1, 2, 3, . . . , n}. Then,

GX(t) =
n∑

i=1

wiGXi
(t), t ∈ R.

Some Discrete Distributions

Definition 2.40 (Bernoulli distribution). A random variable X has the Bernoulli

diistribution with parameter p ∈ [0, 1] if

P (X = k) = pk(1− p)1−k for k ∈ {0, 1}.

We write X as X ∼ Ber(p).
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Theorem 2.41. Let X be a random variable having the Bernoulli distribution with

parameter p ∈ [0, 1]. The properties of X are as follows.

1) E(X) = p.

2) E(X2) = p.

3) V ar(X) = p(1− p).

4) GX(t) = (1− p) + pt, t ∈ R.

5) MX(t) = (1− p) + pet, t ∈ R.

Definition 2.42 (Binomial distribution). A random variable X has the Binomial

distribution with parameters n and p ∈ [0, 1] if

P (X = k) =

(
n

k

)
pk(1− p)n−k for k ∈ {0, 1, 2, . . . , n}.

We write X as X ∼ Bi(n, p).

Theorem 2.43. Let X be a random variable having the Binomial distribution with

parameters n and p ∈ [0, 1]. The properties of X are as follows.

1) E(X) = np.

2) E(X2) = np(1− p+ np).

3) V ar(X) = np(1− p).

4) GX(t) = [(1− p) + pt]n, t ∈ R.

5) MX(t) = [(1− p) + pet]n, t ∈ R.

Definition 2.44 (Poisson distribution). A random variable X has the Poisson

distribution with parameter λ > 0 if

P (X = k) =
e−λλk

k!
for k ∈ {0, 1, 2, . . .}.

We write X as X ∼ Poi(λ).
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Theorem 2.45. Let X be a random variable having the Poisson distribution with

parameter λ > 0. The properties of X are as follows.

1) E(X) = λ.

2) E(X2) = λ2 + λ.

3) V ar(X) = λ.

4) GX(t) = eλ(t−1), t ∈ R.

5) MX(t) = eλ(e
t−1), t ∈ R.

Definition 2.46. A sequence of random variables is said to be independent and

identically distributed (i.i.d.) if all of them have the same distribution and are

mutually independent.

Definition 2.47. Let {Xn}n∈N be a sequence of i.i.d. random varibles and N be

a nonnegative integer valued random variable and independent of X1, X2, X3, . . . .

The randon variable SN =
N∑

n=1

Xn is said to be a compound random variable.

Theorem 2.48. Let SN be the compound random variable defined in Definition

2.47 and E(| Xn |) < ∞, E(N) < ∞, respectively. Then, the following properties

hold.

1) E(SN) = E(N)E(X).

2) V ar(SN) = E(N)V ar(X) + V ar(N)E(X2).

3) GSN
(t) = GN(GX(t)), t ∈ R.

4) MSN
(t) = GN(MX(t)), t ∈ R.

Definition 2.49. Let {Xn}n∈N be a sequence of i.i.d. random varibles and N be

a Poisson random variable which is independent of X1, X2, X3, . . . . The randon

variable SN =
N∑

n=1

Xn is said to be compound Poisson random variable.
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Theorem 2.50. Let {Xi}i∈N and {Yi}i∈N be sequences of i.i.d. Bernoulli random

variables with means α1 and α2, respectively. If {Xi}i∈N and {Yi}i∈N are indepen-

dent, then

Cov

( N1∑
i=1

Xi,

N2∑
i=1

Yi

)
= α1α2Cov(N1, N2).

Integer-valued Time Series Model

Definition 2.51 (Binomial thinning operator). Let {Bi}i∈N, be a counting sequence

of i.i.d. Bernoulli random variables with mean α ∈ [0, 1] and X > 0 be an integer-

valued random variable which is independent of the counting sequence. The binomial

thinning operator, α◦, is defined by

α ◦X =
X∑
i=1

Bi.

Theorem 2.52 (Properties of the Binomial thinning operator). Let X be a random

variable having values in N. The binomial thinning α◦X has the following properties,

for α ∈ [0, 1],

1) E(α ◦X) = αE(X),

2) V ar(α ◦X) = α2V ar(X) + α(1− α)E(X).

Definition 2.53. A process of Xt is stationary if it has time invariant first and

second moments, i.e., if for any choice of t ∈ N, the following conditions hold:

1) E(Xt) = µX with |µX | < ∞.

2) E[(Xt − µX)
2] = σ2

X < ∞.

3) E[(Xt − µX)(Xt−h − µX)] = γh, ∀h ∈ N with |γh| < ∞.

Definition 2.54. [The Integer-Valued Autoregressive Model : INAR(1)] A discrete

time non-negative, integer-valued process {Xt}t∈N is called a stationary INAR(1)

process, if it follows the recursion

Xt = α ◦Xt−1 + ϵt,

where ϵt, t ∈ N, is a non-negative integer-valued random variable which is indepen-

dent from Xs for s ≤ t, with E(ϵt) = µϵ > 0 and V ar(ϵt) = σ2
ϵ ≥ 0.
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Theorem 2.55. If {Xt}t∈N is a stationary process defined in Definition 2.54. Then,

1) E(Xt) =
µϵ

1− α
,

2) V ar(Xt) =
αµϵ + σ2

ϵ

1− α2
,

3) E(Xt | Xt−1) = αXt−1 + µϵ,

4) V ar(Xt | Xt−1) = α(1− α)Xt−1 + σ2
ϵ .

Definition 2.56. [The Integer-Valued Moving Average Model : INMA(1)] A dis-

crete time non-negative, integer-valued process {Xt}t∈N is called INMA(1) process,

if it follows the recursion

Xt = α ◦ ϵt−1 + ϵt,

where ϵt, t ∈ N, is a non-negative integer-valued random variable which is indepen-

dent from Xs for s ≤ t, with E(ϵt) = µϵ > 0 and V ar(ϵt) = σ2
ϵ ≥ 0.

Theorem 2.57. Let {Xt}t∈N be INMA(1) process defined in Definition 2.56. Then,

1) E(Xt) = (1 + α)µϵ,

2) V ar(Xt) = α(1− α)µϵ + (1 + α2)σ2
ϵ .



Chapter 3

Main Result

The Binomial thinning operator is defined as a compound sum of identically dis-

tributed and independent Bernoulli random variables. The thinning operator has

been applied to many applications. However, the independence assumption in the

thinning operator may not be realistic in some applications. For example, Vagrants

usually live together and support themselves to do vagrancy offences. Then, the

Binomial thinning operator is not suitable for the model used to count the number

of vagrants who do vagrancy offences. Therefore, a more general thinning operator

relaxing independence assumption, called generalized Binomial thinning operator,

has been proposed in literature. (Ristic et al, 2013)

In this chapter, we apply the generalized binomial thinning operator to construct

a generalized integer-valued moving average model. The organization of this chapter

is as follows. First we state the generalized Binomial thinning operator and discus-

sion its properties in Section 3.1. We then apply it to construct the generalized

integer-valued moving average model with order 1 and general order q in Section 3.2

and Section 3.3, respectively. Finally, numerical results and simulations are given

in Section 3.4.

Now, we first introduce the new binomial thinning operator by relaxing the in-

dependence assumption Bernoulli random variables, called generalized Binomial

thinning operator.

13
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3.1 Generalized Binomial Thinning Operater (◦θ)

In this section, we consider a sequence of random variables, {Ui}i∈N, introduced

by Ristic et al. (2013). The random variable Ui defined as

Ui = (1− Vi)Wi + ViZ, (1)

where {Vi}i∈N is a sequence of i.i.d. Bernoulli (θ), {Wi}i∈N is a sequence of i.i.d.

Bernoulli (α), Z is Bernoulli (α) and the random variables Vi,Wj, Z are independent

for all i ∈ N and j ∈ N.

Theorem 3.1. Let {Ui}i∈N be the sequence of random variables defined in (1).

Then, the following properties hold.

1) Ui has the Bernoulli distribution with parameter α.

2) E(UiUj) = α(α + (1− α)θ2) for i ̸= j.

3) Cov(Ui, Uj) = α(1− α)θ2 for i ̸= j.

Proof. 1) Consider

P (Ui = x) = P (Ui = x | Vi = 0)P (Vi = 0) + P (Ui = x | Vi = 1)P (Vi = 1)

= P (Wi = x)P (Vi = 0) + P (Z = x)P (Vi = 1)

= αx(1− α)1−x(1− θ) + αx(1− α)1−xθ

= αx(1− α)1−x.

Then, Ui has the Bernoulli distribution with parameter α.

2)

E(UiUj) = E
(
((1− Vi)Wi + ViZ)((1− Vj)Wj + VjZ)

)
= E

(
(1− Vi)(1− Vj)WiWj + (1− Vi)VjWiZ + Vi(1− Vj)WjZ + ViVjZ

2
)

= E
(
(1− Vi)(1− Vj)WiWj

)
+ E

(
(1− Vi)VjWiZ

)
+ E

(
Vi(1− Vj)WjZ

)
+ E

(
ViVjZ

2
)
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= E(1− Vi)E(1− Vj)E(Wi)E(Wj) + E(1− Vi)E(Vj)E(Wi)E(Z)

+ E(Vi)E(1− Vj)E(Wj)E(Z) + E(Vi)E(Vj)E(Z2)

= (1− θ)2α2 + (1− θ)θα2 + θ(1− θ)α2 + θ2α

= α(α + (1− α)θ2).

3) By 2), we have

Cov(Ui, Uj) = E(UiUj)− E(Ui)E(Uj)

= α(α + (1− α)θ2)− α2

= α2 + α(1− α)θ2 − α2

= α(1− α)θ2.

Theorem 3.2. [Ristic et al. (2013)] Let {Ui}i∈N be a sequence of random variables

defined in (1). Then the random variable U1 + U2 + U3 + · · ·+ Un is distributed as

U1 + U2 + U3 + · · ·+ Un =

Bi(n, α(1− θ)), w.p. 1− α,

Bi(n, α + θ − αθ), w.p. α,

where w.p. refers to “with probability”.

Proof. For s ∈ R,

E(sU1+U2+U3+···+Un) =
n∑

i=1

(
n

i

)
(1− θ)n−iθiE(sW1+W2+W3+···+Wn−i+iZ)

=
n∑

i=1

(
n

i

)
(1− θ)n−iθi(1− α + αs)n−i(1− α + αsi)

= (1− α)(1− α(1− θ)(1− s))n + α(1− (α + θ − αθ)(1− s))n.

(2)

Then, the random variable U1 + U2 + U3 + · · ·+ Un is distributed as follows

U1 + U2 + U3 + · · ·+ Un =

Bi(n, α(1− θ)), w.p. 1− α,

Bi(n, α + θ − αθ), w.p. α.



16

Definition 3.3. [Ristic et al. (2013)] Generalized Binomial Thinning Op-

erator. Let {Ui}i∈N be a sequence of Bernoulli random variables and X be a

non-negative integer-valued random variable which is independent of the counting

sequence. The generalized binomial thinning operator, α◦θ, is defined by

α ◦θ X =
X∑
i=1

Ui ,

where Ui = (1− Vi)Wi+ ViZ is defined in (1).

Next, we state Properties of the Generalized Binomial Thinning operator defined

in Definition 3.3 given in Ristic et al. 2013. However, the proof is not provided in

the paper. Therefore, we give the proof in the following theorem.

Theorem 3.4. [Ristic et al. (2013)] Properties of Generalized Binomial Thinning

Operator.

1) E(α ◦θ X | X) = αX.

2) E((α ◦θ X)2 | X) = α(α + (1− α)θ2)X2 + α(1− α)(1− θ2)X.

3) V ar(α ◦θ X | X) = α(1− α)(θ2X2 + (1− θ2)X).

4) E(α ◦θ X) = αE(X).

5) E(α ◦θ X)2 = α(1− α)(1− θ2)E(X) + α(α + (1− α)θ2)E(X2).

6) E(X(α ◦θ Y )) = αE(XY ).

7) Cov(X,α ◦θ Y ) = αCov(X, Y ).

Proof. 1) Since the random variable {Ui}i∈N have the Bernoulli distribution param-

eter α,

E(α ◦θ X | X) = E

( X∑
i=1

Ui | X
)

= XE(U1)

= αX.
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2) By 2) of Theorem 3.1, we have

E((α ◦θ X)2 | X) = E

(( X∑
i=1

Ui

)2 | X)

= E

( X∑
i=1

U2
i +

X∑
i̸=1

U1Ui +
X∑
i ̸=2

U2Ui + · · ·+
X−1∑
i=1

UXUi | X
)

= E

( X∑
i=1

U2
i | X

)
+ E

( X∑
i̸=1

U1Ui | X
)
+ E

( X∑
i̸=2

U2Ui | X
)
+ · · ·

+ E

(X−1∑
i=1

UXUi | X
)

= αX + α(α + (1− α)θ2)(X − 1) + α(α + (1− α)θ2)(X − 1) + · · ·

+ α(α + (1− α)θ2)(X − 1)

= αX + α(α + (1− α)θ2)(X − 1)X

= α(α + (1− α)θ2)X2 + α(1− α)(1− θ2)X.

3) By 1) and 2), we have

V ar(α ◦θ X | X) = E((α ◦θ X)2 | X)− (E(α ◦θ X | X))2

= α(α + (1− α)θ2)X2 + α(1− α)(1− θ2)X − (αX)2

= α(1− α)(θ2X2 + (1− θ2)X).

4) By 1), we have

E(α ◦θ X) = E
(
E(α ◦θ X | X)

)
= E(αX)

= αE(X).

5) By 2), we have

E((α ◦θ X)2) = E
(
E((α ◦θ X)2 | X)

)
= E

(
α(α + (1− α)θ2)X2 + α(1− α)(1− θ2)X

)
= E

(
α(α + (1− α)θ2)X2

)
+ E

(
α(1− α)(1− θ2)X

)
= α(α + (1− α)θ2)E(X2) + α(1− α)(1− θ2)E(X).
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6) By using Theorem 2.20 and 1), we have

E(X(α ◦θ Y )) = E
(
E(X(α ◦θ Y ) | X)

)
= E

(
XE(α ◦θ Y | X)

)
= E

(
XE(E(α ◦θ Y | Y ) | X)

)
= E

(
XαE(Y | X)

)
= αE

(
E(XY | X)

)
= αE(XY ).

7) By using Corollary 2.27, 4) and 6), we have

Cov(X,α ◦θ Y ) = E(X(α ◦θ Y ))− E(X)E(α ◦θ Y )

= αE(XY )− αE(X)E(Y )

= α
(
E(XY )− E(X)E(Y )

)
= αCov(X,Y ).
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3.2 Model: DBINMA(1)

Now, we construct the integer-valued moving average model based on the gener-

alized binomial thinning operator order 1, called DBINMA(1) model.

Definition 3.5. DBINMA(1)

A discrete time non-negative, integer-valued process {Xt}t∈N is called a stationary

DBINMA(1) process, if it follows the recursion

Xt = α ◦θ ϵt−1 + ϵt

where {ϵt}t∈N is a sequence of i.i.d. Poisson random variables with mean λ.

Theorem 3.6. Let {Xt}t∈N be the DBINMA(1) defined in Definition 3.5 , then

Xt =

Poi(λ(α(1− θ) + 1)), w.p. 1− α ,

Poi(λ(θ + α(1− θ) + 1)), w.p. α.

Proof. By (2) of Theorem 3.2 and Definition 3.3, for s ∈ R, we have

GXt(s) = E(sα◦θϵt−1+ϵt)

= E(E(s
∑ϵt−1

i=1 Ui+ϵt | ϵt−1))

= E(E(s
∑ϵt−1

i=1 Ui | ϵt−1)) · E(sϵt)

= E
(
(1− α)(1− α(1− θ)(1− s))ϵt−1 + α(1− (α + θ − αθ)(1− s))ϵt−1

)
·Gϵt(s)

=
[
(1− α)Gϵt−1(1− α(1− θ)(1− s)) + αGϵt−1(1− (α + θ − αθ)(1− s)

]
·Gϵt(s)

=
[
(1− α)eλ[α(1−θ)](s−1)] + αeλ[θ+α(1−θ)](s−1)]

]
· eλ(s−1)

= (1− α)eλ[α(1−θ)+1](s−1) + αeλ[θ+α(1−θ)+1](s−1).

From Theorem 2.39, we have

Xt =

Poi(λ(α(1− θ) + 1)), w.p. 1− α ,

Poi(λ(θ + α(1− θ) + 1)), w.p. α.
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Theorem 3.7. The Properties of the DBINMA(1) defined in Definition 3.5 are as

follows

1) E(Xt) = λ(α + 1).

2) V ar(Xt) = λ(1 + α + α(1− α)θ2).

3) Cov(Xt, Xt−k) =

αλ, k = 1,

0, k > 1.

4) Corr(Xt, Xt−k) =


α

1 + α + α(1− α)θ2
, k = 1,

0, k > 1.

Proof. 1)

E(Xt) = E(α ◦θ ϵt−1 + ϵt)

= E(α ◦θ ϵt−1) + E(ϵt)

= αE(ϵt−1) + E(ϵt)

= αλ+ λ

= λ(α + 1).

2) By 4) and 5) of Theorem 3.4, we have

V ar(Xt) = V ar(α ◦θ ϵt−1 + ϵt)

= V ar(α ◦θ ϵt−1) + V ar(ϵt)

= E((α ◦θ ϵt−1)
2)− (E(α ◦θ ϵt−1))

2 + V ar(ϵt)

= α(1− α)(1− θ2)E(ϵt−1) + α(α + (1− α)θ2)E(ϵ2t−1)− (E(α ◦θ ϵt−1))
2

+ V ar(ϵt)

= α(1− α)(1− θ2)λ+ α(α + (1− α)θ2)(λ2 + λ)− (λα)2 + λ

= λ(1 + α + α(1− α)θ2).
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3) Since {ϵt}t∈N is a sequence of i.i.d. Poisson random variables with mean λ

and 1), we have

Cov(Xt, Xt−k) = E(XtXt−k)− E(Xt)E(Xt−k)

= E
(
(α ◦θ ϵt−1 + ϵt)(α ◦θ ϵt−k−1 + ϵt−k)

)
− E(Xt)E(Xt−k)

= E
(
(α ◦θ ϵt−1)(α ◦θ ϵt−k−1) + (α ◦θ ϵt−1)(ϵt−k) + (α ◦θ ϵt−k−1)(ϵt)

+ ϵtϵt−k

)
− E(Xt)E(Xt−k)

= E
(
(α ◦θ ϵt−1)(α ◦θ ϵt−k−1)

)
+ E

(
(α ◦θ ϵt−1)(ϵt−k)

)
+ E

(
(α ◦θ ϵt−k−1)(ϵt)

)
+ E(ϵtϵt−k)− E(Xt)E(Xt−k)

= E(α ◦θ ϵt−1)E(α ◦θ ϵt−k−1) + E
(
(α ◦θ ϵt−1)(ϵt−k)

)
+ E(α ◦θ ϵt−k−1)E(ϵt) + E(ϵt)E(ϵt−k)− E(Xt)E(Xt−k)

= (αλ)(αλ) + (αλ)λ+ λ2 − (λ(α+ 1))2 + E
(
(α ◦θ ϵt−1)(ϵt−k)

)
= E

(
(α ◦θ ϵt−1)(ϵt−k)

)
− αλ2.

If k = 1, then by 6), we have

Cov(Xt, Xt−k) = E
(
(α ◦θ ϵt−1)(ϵt−1)

)
− αλ2

= αE(ϵ2t−1)− αλ2

= α(λ2 + λ)− αλ2

= αλ.

If k > 1, since ϵt−1 and ϵt−k are independent, then

Cov(Xt, Xt−k) = E
(
(α ◦θ ϵt−1)(ϵt−k)

)
− αλ2

= E(α ◦θ ϵt−1)E(ϵt−k)− αλ2

= (αλ)λ− αλ2

= 0.
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4) If k = 1, by Definition 2.30, we have

Corr(Xt.Xt−1) =
Cov(Xt, Xt−1)√

V ar(Xt)V ar(Xt−1)

=
αλ

λ(1 + α + α(1− α)θ2)

=
α

1 + α+ α(1− α)θ2
.

If k > 1, by Definition 2.30, we have

Corr(Xt.Xt−k) =
Cov(Xt, Xt−k)√

V ar(Xt)V ar(Xt−k)
= 0.

3.3 Model: DBINMA(q)

In this section, we extend the DBINMA(1) model studied in the previous section

to a more general model by extending the lag-dependence to general order q. The

definition of the model is given as follows.

Definition 3.8. DBINMA(q).

A discrete time non-negative, integer-valued process {Xt}t∈N is called a stationary

DBINMA(q) process, if it follows the recursion

Xt = α1 ◦θ ϵt−1 + α2 ◦θ ϵt−2 + α3 ◦θ ϵt−3 + · · ·+ αq ◦θ ϵt−q + ϵt

where {ϵt}t∈N is an i.i.d. sequence of Poisson random variables with mean λ.

Theorem 3.9. Let {Xt}t∈N be the DBINMA(q) defined in Definition 3.8. Then

Xt =



Poi

(
λ

(
(1− θ)

q∑
i=1

αi + 1

))
, w.p.

q∏
i=1

(1− αi) ,

Poi

(
λ

(
(1− θ)

q∑
i=1

αi + θ + 1

))
, w.p.

q∑
i=1

αi

q∏
j ̸=i

(1− αj),

...

Poi

(
λ

(
(1− θ)

q∑
i=1

αi + qθ + 1

))
, w.p.

q∏
i=1

αi.
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Proof. Since {ϵt}t∈N is a sequence of i.i.d. Poisson random variables with mean λ,

using Theorem 2.32, for s ∈ R, we have

GXt(s) =

q∏
i=1

Gαi◦θϵt−i
(s) ·Gϵt(s)

= eλ(s−1) ·
q∏

i=1

[
(1− αi)Gαi(1−θ)◦ϵt−i

(s) + αiG(θ+αi(1−θ))◦ϵt−i
(s)
]

= eλ(s−1) ·
[ q∏

i=1

(1− αi)e
λ((1−θ)

∑q
i=1 αi)(s−1)

+

q∑
i=1

αi

q∏
i̸=j

(1− αj)e
λ((1−θ)

∑q
i=1 αi+θ)(s−1)

+ · · ·+
q∏

i=1

αie

λ((1−θ)

q∑
i=1

αi + qθ)(s− 1)]

=

[ q∏
i=1

(1− αi)e
λ((1−θ)

∑q
i=1 αi+1)(s−1)

+

q∑
i=1

αi

q∏
i̸=j

(1− αj)e
λ((1−θ)

∑q
i=1 αi+θ+1)(s−1)

+ · · ·+
q∏

i=1

αie
λ((1−θ)

∑q
i=1 αi+qθ+1)(s−1)

]
.

From theorem 2.39, we have

Xt =



Poi

(
λ

(
(1− θ)

q∑
i=1

αi + 1

))
, w.p.

q∏
i=1

(1− αi) ,

Poi

(
λ

(
(1− θ)

q∑
i=1

αi + θ + 1

))
, w.p.

q∑
i=1

αi

q∏
j ̸=i

(1− αj),

...

Poi

(
λ

(
(1− θ)

q∑
i=1

αi + qθ + 1

))
, w.p.

q∏
i=1

αi.
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Theorem 3.10. The Properties of the DBINMA(q) defined in Definition 3.8 are as

follows

1) E(Xt) = λ

(
q∑

i=1

αi + 1

)
.

2) V ar(Xt) = λ

[
λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

]
.

3) Cov(Xt, Xt−k) =



(λ2 + λ)

(
α1 +

q−1∑
i=1

αiαi+1

)
, k = 1,

(λ2 + λ)

(
α2 +

q−2∑
i=1

αiαi+2

)
, k = 2,

...

αq(λ
2 + λ), k = q,

0, k > q.

4) Corr(Xt, Xt−k) =



(λ+ 1)

(
α1 +

q−1∑
i=1

αiαi+1

)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = 1,

(λ+ 1)

(
α2 +

q−2∑
i=1

αiαi+2

)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = 2,

...
αq(λ+ 1)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = q,

0, k > q.
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Proof. 1)

E(Xt) = E(α1 ◦θ ϵt−1 + α2 ◦θ ϵt−2 + α3 ◦θ ϵt−3 + · · ·+ αq ◦θ ϵt−q + ϵt)

= E(α1 ◦θ ϵt−1) + E(α2 ◦θ ϵt−2) + E(α3 ◦θ ϵt−3) + · · ·+ E(αq ◦θ ϵt−q)

+ E(ϵt)

= α1E(ϵt−1) + α2E(ϵt−2) + α3E(ϵt−3) + · · ·+ αqE(ϵt−q) + E(ϵt)

= α1λ+ α2λ+ α3λ+ · · ·+ αqλ+ λ

= λ
( q∑

i=1

αi + 1
)
.

2) Claim that V ar(α ◦θ ϵt) = αλ+ αλ2θ2 − α2λ2θ.

V ar(α ◦θ ϵt) = V ar(α ◦θ ϵt)

= E((α ◦θ ϵt)2)− (E(α ◦θ ϵt))2

= α(1− α)(1− θ2)E(ϵt) + α(α + (1− α)θ2)E(ϵ2t )− (E(α ◦θ ϵt))2

= α(1− α)(1− θ2)λ+ α(α + (1− α)θ2)(λ2 + λ)− (λα)2

= αλ+ αλ2θ2 − α2λ2θ2.

V ar(Xt) = V ar(α1 ◦θ ϵt−1 + α2 ◦θ ϵt−2 + α3 ◦θ ϵt−3 + · · ·+ αq ◦θ ϵt−q + ϵt)

= V ar(α1 ◦θ ϵt−1) + V ar(α2 ◦θ ϵt−2) + V ar(α3 ◦θ ϵt−3) + · · ·

+ V ar(αq ◦θ ϵt−q) + V ar(ϵt)

= (α1λ+ α1λ
2θ2 − α2

1λ
2θ2) + (α2λ+ α2λ

2θ2 − α2
2λ

2θ2)

+ (α3λ+ α3λ
2θ2 − α2

3λ
2θ2) + · · ·+ (αqλ+ αqλ

2θ2 − α2
qλ

2θ2) + λ

= (α1λ+ α2λ+ α3λ+ · · ·+ αqλ) + (α1λ
2θ2 + α2λ

2θ2 + α3λ
2θ2 + · · ·

+ αqλ
2θ2)− (α2

1λ
2θ2 + α2

2λ
2θ2 + α2

3λ
2θ2 + · · ·+ α2

qλ
2θ2) + λ

= λ

[
λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

]
.

3) Since ϵi and ϵj are independent, by Corollary 25, then

Cov(ϵi, ϵj) = 0.
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If k = 1,

Cov(Xt, Xt−1) = Cov(α1 ◦θ ϵt−1 + α2 ◦θ ϵt−2 + α3 ◦θ ϵt−3 + · · ·+ αq ◦θ ϵt−q + ϵt,

α1 ◦θ ϵt−2 + α2 ◦θ ϵt−3 + α3 ◦θ ϵt−4 + · · ·+ αq ◦θ ϵt−q−1 + ϵt−1)

= Cov(α1 ◦θ ϵt−1, α1 ◦θ ϵt−2) + Cov(α1 ◦θ ϵt−1, α2 ◦θ ϵt−3) + · · ·

+ Cov(α1 ◦θ ϵt−1, ϵt−1) + Cov(α2 ◦θ ϵt−2, α1 ◦θ ϵt−2)

+ Cov(α2 ◦θ ϵt−2, α2 ◦θ ϵt−3) + · · ·+ Cov(α2 ◦θ ϵt−2, ϵt−1) + · · ·

+ Cov(ϵt, α1 ◦θ ϵt−2) + Cov(ϵt, α2 ◦θ ϵt−3) + · · ·+ Cov(ϵt, ϵt−1)

= Cov(α1 ◦θ ϵt−1, ϵt−1) + Cov(α2 ◦θ ϵt−2, α1 ◦θ ϵt−2)

+ Cov(α3 ◦θ ϵt−3, α2 ◦θ ϵt−3) + · · ·

+ Cov(αq−1 ◦θ ϵt−q−1, αq ◦θ ϵt−q−1)

= α1Cov(ϵt−1, ϵt−1) + α1α2Cov(ϵt−2, ϵt−2) + α2α3Cov(ϵt−3, ϵt−3)

+ · · ·+ αq−1αqCov(ϵt−q−1, ϵt−q−1)

= α1(λ
2 + λ) + α1α2(λ

2 + λ) + α2α3(λ
2 + λ) + · · ·+ αq−1αq(λ

2 + λ)

= (λ2 + λ)

(
α1 +

q−1∑
i=1

αiαi+1

)
.

In case of k ∈ {2, 3, 4, . . . , q}, follow the same method as in the case k = 1, then we

can show that

Cov(Xt, Xt−k) = (λ2 + λ)

(
αk +

q−k∑
i=1

αiαi+k

)
.

for k ∈ {1, 2, 3, . . . , q}.

If k > q, then it is clear that Cov(Xt, Xt−k) = 0.
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4) From Definition 2.30,

Corr(Xt, Xt−k) =



(λ+ 1)

(
α1 +

q−1∑
i=1

αiαi+1

)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = 1,

(λ+ 1)

(
α2 +

q−2∑
i=1

αiαi+2

)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = 2,

...
αq(λ+ 1)

λθ2

(
q∑

i=1

αi −
q∑

i=1

α2
i

)
+

q∑
i=1

αi + 1

, k = q,

0, k > q.
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3.4 Data Simulation

3.4.1 Data Simulation for DBINMA(1)

1. Data Generation Algorithm

For our simulation experiment, we use the following algorithm to generate data.

Following DBINMA(1) model defined in Definition 3.5:

Xt = α ◦θ ϵt−1 + ϵt,

for t ∈ {1, 2, 3, . . . , n}, and the thinning operator ◦θ defined in Definition 3.3.

1. Set parameters α, θ, λ, n, where α, θ ∈ [0, 1], λ > 0 and n is a positive integer.

2. Generate a positive finite integer vector Eps = [ϵ0, ϵ1, ϵ2, . . . , ϵn], where ϵt,

t ∈ {0, 1, 2, 3, . . . , n} are generated from the Poisson distribution with param-

eter λ.

3. Generate a positive finite vector W = [w0, w1, w2, . . . , wn], where w0 = 0 and

wt, t ∈ {1, 2, 3, . . . , n} are generated from the Uniform distribution on [0, 1].

4. Generate a positive finite integer vector Thin = [T0, T1, T2, . . . , Tn], where

T0 = 0 and Tt = α ◦θ ϵt−1, t ∈ {1, 2, 3, . . . , n} are generated from the Binomial

distribution with parameters ϵt−1 and α(1 − θ) if wt ≤ α, and if wt > α,

Tt = α◦θϵt−1 are generated from the the Binomial distribution with parameters

ϵt−1 and θ + α(1− θ).

5. Generate a positive finite integer vector X = [X0, X1, X2, . . . , Xn], where

X0 = 0 and Xt = Tt + ϵt, t ∈ {1, 2, 3, . . . , n}.
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2. Comparison the Data of INMA(1) and DBINMA(1) model

Figure 3.1 below shows comparisons of data generated from INMA(1) model de-

fined in Definition 2.56 and DBINMA(1) model defined in Definition 2.56 for dif-

ferent values of θ (θ = 0, 0.25, 0.5, 0.75 and 1). The corresponding histograms are

presented in Figure 3.2.
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Figure 3.1: Scatter plots of data generated from DBINMA(1) model with parameters

λ = 100, α = 0.5 and θ = 0 (INMA(1) model), 0.25, 0.5, 0.75 and 1.
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Figure 3.2: Histograms of data generated from DBINMA(1) model with parameters

λ = 100, α = 0.5 and θ = 0 (INMA(1) model), 0.25, 0.5, 0.75 and 1.

From Figures 3.1 and 3.2, the parameter θ affects the aggregation of Xt. We

can see that the data generated from INMA(1) model is unimodal, while the data

generated from DBINMA(1) model is bimodal. Moreover, the distance between the

two models of DBINMA(1) model is greater when θ increases.
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3. Comparison the Data of DBINMA(1) with different values of α.

Figures 3.3 and 3.4 show respective the data plots and histograms of data gen-

erated from DBINMA(1) model for different values of α when θ and λ are fixed to

be 0.5 and 100, respectively. The values of α considered in these figures are α = 0,

0.25, 0.5, 0.75 and 1.
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Figure 3.3: Scatter plots of data generated from DBINMA(1) model with parameters

λ = 100, θ = 0.5 and α = 0, 0.25, 0.5, 0.75 and 1.
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DBINMA(1) model with alpha=0
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Figure 3.4: Histograms of data generated from DBINMA(1) model with parameters

λ = 100, θ = 0.5 and α = 0, 0.25, 0.5, 0.75 and 1.

From Figures 3.3 and 3.4, the parameter α affects values of Xt becuase the

expectation of Xt is λ(α + 1). Therefore, we can see that the modes of data are

higher when α increases. The data show unimodal pattern for cases when α = 0

and α = 1.
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4. Comparison the generate 100 series of DBINMA(1) model

Figures 3.5 and 3.6 show histograms of X10, X20, X30, . . ., X100 of data gener-

ated from DBINMA(1) model when θ, α and λ are fixed to be 0.5, 0.5 and 100,

respectively.
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Figure 3.5: Histograms of data X10, X20, X30, X40 and X50 of DBINMA(1) model

with parameters λ = 100, α = 0.5 and θ = 0.5.
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Figure 3.6: Histograms of data X60, X70, X80, X90 and X100 of DBINMA(1) model

with parameters λ = 100, α = 0.5 and θ = 0.5.

From Figures 3.5 and 3.6, X10, X20, X30, . . ., X100 show the same pattern of

mixed distributions with two modes which agrees to the Theorem 3.6.
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3.4.2 Data Simulation for DBINMA(2)

1. Data Generation Algorithm

For our simulation experiment, we use the following algorithm to generate data.

Following DBINMA(2) model defined in Definition 3.8:

Xt = α1 ◦θ ϵt−1 + α2 ◦θ ϵt−2 + ϵt,

for t ∈ {2, 3, 4, . . . , n} and the thinning operator ◦θ defined in Definition 3.3.

1. Set parameters α1, α2, θ, λ, n, where α1, α2, θ ∈ [0, 1], λ > 0 and n is a

positive integer.

2. Generate a postive finite integer vector Eps = [ϵ0, ϵ1, ϵ2, . . . , ϵn], where ϵt,

t ∈ {0, 1, 2, . . . , n} are generated from the Poisson distribution with parameter

λ.

3. Generate a postive finite vector W1 = [w10, w11, w12, . . . , w1n], where w10 = 0

and w1t, t ∈ {1, 2, 3, . . . , n} are generated from the Uniform distribution on

[0, 1]

4. Generate a postive finite vector W2 = [w20, w21, w22, . . . , w2n], where w20 = 0

and w2t, t ∈ {1, 2, 3, . . . , n} are generated from the Uniform distribution on

[0, 1].

5. Generate a postive finite integer vector Thin1 = [T10, T11, T12, . . . , T1n], where

T10 = 0 and T1t = α1 ◦θ ϵt−1, t ∈ {1, 2, 3, . . . , n} are generated from the

Binomial distribution with parameters ϵt−1 and α1(1 − θ) if w1t ≤ α1, and if

w1t > α1, T1t = α1 ◦θ ϵt−1 are generated from the Binomial distribution with

parameters ϵt−1 and θ + α1(1− θ).

6. Generate a postive finite integer vector Thin2 = [T20, T21, T22, · · · , T2n], where

T20 = 0, T21 = 0 and T2t = α2 ◦θ ϵt−2, t ∈ {2, 3, 4, . . . , n} are generated from

the Binomial distribution with parameters ϵt−2 and α2(1− θ) if w2t ≤ α2, and

if w2t > α2, T2t = α2 ◦θ ϵt−2 are generated from the Binomial distribution with

parameters ϵt−2 and θ + α2(1− θ).
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7. Generate a postive finite integer vector X = [X0, X1, X2, . . . , Xn], where

X0 = 0, X1 = 0 and Xt = T1t + T2t + ϵt, t ∈ {2, 3, 4, . . . , n}.
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2. Comparison the Data of INMA(2) and DBINMA(2) model

Figure 3.7 below shows comparisons of data generated from DBINMA(2) model

for different values of θ (θ = 0, 0.25, 0.5, 0.75 and 1). The corresponding histograms

are presented in Figure 3.8.
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Figure 3.7: Scatter plots of data generated from DBINMA(2) model with parameters

λ = 100, α1 = α2 = 0.5 and θ = 0 (INMA(2) model), 0.25, 0.5, 0.75 and 1.
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Figure 3.8: Histograms of data generated from DBINMA(2) model with parameters

λ = 100, α1 = α2 = 0.5 and θ = 0 (INMA(2) model), 0.25, 0.5, 0.75 and 1.

From Figures 3.7 and 3.8, we can see that the data generated from INMA(2)

model is unimodal while the data genereted from DBINMA(2) model is trimodal.

Moreover, the distances between the three models are greater when θ increases.



39

3. Comparison the Data of DBINMA(2) with different values of α.

Figures 3.9 and 3.10 show respective the data plots and histograms of data gener-

ated from DBINMA(2) model from different values of α1 and α2 when θ and λ are

fixed to be 0.5 and 100, respectively. The values of α1 and α2 considered in these

figures are α1 = α2 = 0, 0.25, 0.5, 0.75 and 1.
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Figure 3.9: Scatter plots of data generated from DBINMA(2) model with parameters

λ = 100, θ = 0.5 and α1 = α2 = 0, 0.25, 0.5, 0.75 and 1.
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Figure 3.10: Histograms of data generated from DBINMA(2) model with parameters

λ = 100, θ = 0.5 and α1 = α2 = 0, 0.25, 0.5, 0.75 and 1.



41

From Figures 3.9 and 3.10, the parameters α1 and α2 affect values of Xt becuase

the expectation of Xt is λ(α1 + α2 + 1). Therefore, we can see that the modes of

data are higher when α1 and α2 increases. The data show unimodal pattern for

cases when α1 = α2 = 0 and α1 = α2 = 1.
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4. Comparision the generate 100 series of DBINMA(2) model

Figures 3.11 and 3.12 show histograms of X10, X20, X30, . . ., X100 of data generated

from DBINMA(2) model when θ, α1, α2 and λ are fixed to be 0.5, 0.5, 0.5 and 100,

respectively.
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Figure 3.11: Histograms of data X10, X20, X30, X40 and X50 of DBINMA(2) model

with parameters λ = 100, α1 = α2 = 0.5 = 0.5 and θ = 0.5.
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Figure 3.12: Histograms of data X60, X70, X80, X90 and X100 of DBINMA(2) model

with parameters λ = 100, α1 = α2 = 0.5 = 0.5 and θ = 0.5.

From Figures 3.11 and 3.12, X10, X20, X30, . . ., X100 show the same pattern of

mixed distributions with three modes which agrees to the Theorem 3.9.



Chapter 4

Conclusion

In this project, we extended the study of the regular INMA model to construct

a new INMA model with generalized binomial thinning operator, called DBINMA

model and derived thier probabilistic properties such as mean, variance and covari-

ance. Moreover, we presented the data and distribution plots in different setting. For

our simulation study, we found that the parameter θ affects the distribution. The

histograms show multimodel of the mixture distribution the parameter θ increases.

However, the distribution is hardly affected by the parameter α.
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Appendix
Coding for INMA(1)

alpha = 0.5

theta = 0.5

lambda = 100

n = 101 #number of Xt+1

N = 10000 #number of simulation

Eps=c(numeric(n))

Thin = c(numeric(n))

w = c(numeric(n))

Xt = c(numeric(n))

sim = array(numeric(n*4*N),dim = c(n,4,N))

for (k in 1:N){

for (i in 1:n){

Eps[i] = rpois(1,lambda)

}

for (i in 1:n-1){

w[1] = 0

Thin[1] = 0

Xt[1] = 0

w[i+1] = runif(1,0,1)

if (w[i+1] <= alpha) { Thin[i+1] = rbinom(1,Eps[i],alpha+theta-

alpha*theta)}

else{Thin[i+1]= rbinom(1,Eps[i], alpha*(1-theta))}

Xt[i+1] = Thin[i+1] + Eps[i+1]

M = cbind(w,Thin,Eps,Xt)

}

for (i in 1:n){
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for (j in 1:4){

sim[i,j,k] = M[i,j]

}

}

}

rownames(sim)<-rownames(sim, do.NULL = FALSE, prefix = "index")

colnames=c("w","Thin","Eps","Xt")

dimnames(sim)<-list(rownames(sim), colnames)
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Coding for INMA(2)

alpha1 = 0.5

alpha2 = 0.5

theta = 0.5

lambda = 10

n = 101 #number of Xt+1

N = 10000 #number of simulation

Eps = c(numeric(n))

w1 = c(numeric(n))

w2 = c(numeric(n))

Thin1 = c(numeric(n))

Thin2 = c(numeric(n))

Xt = c(numeric(n))

sim = array(numeric(n*6*N),dim = c(n,6,N))

for (k in 1:N){

for (i in 1:n){

Eps[i] = rpois(1,lambda)

}

for (i in 1:n-1){

w1[1] = 0

Thin1[1] = 0

w1[i+1] = runif(1,0,1)

if (w1[i+1] <= alpha1) { Thin1[i+1] = rbinom(1,Eps[i],alpha1+theta-

alpha1*theta)}

else{Thin1[i+1]= rbinom(1,Eps[i], alpha1*(1-theta))}

}

for (i in 1:n-2){

w2[1] = 0

w2[2] = 0

Thin2[1] = 0



49

Thin2[2] = 0

Xt[1] = 0

Xt[2] = 0

w2[i+2] = runif(1,0,1)

if (w2[i+2] <= alpha2) { Thin2[i+2] = rbinom(1,Eps[i],alpha2+theta-

alpha2*theta)}

else{Thin2[i+2]= rbinom(1,Eps[i], alpha2*(1-theta))}

Xt[i+2] = Thin1[i+2] + Thin2[i+2] + Eps[i+2]

M = cbind(w1,w2,Thin1,Thin2,Eps,Xt)

}

for (i in 1:n){

for (j in 1:6){

sim[i,j,k] = M[i,j]

}

}

}

rownames(sim)<-rownames(sim, do.NULL = FALSE, prefix = "index")

colnames=c("w1","w2","Thin1","Thin2","Eps","Xt")

dimnames(sim)<-list(rownames(sim), colnames)
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Background and Rationale

The integer-valued time series models for time series count data play important

roles in many applications. For examples, claim counts in insurance business, and

the number of stock transactics in stock market. The model was first introduced by

McKenzie (1985) for the lag-one dependence model which is referred nowadays as

the integer-valued autoregressive of order one (INAR(1)) process.

The original integer-valued time series model is based on a Binomial thinning op-

erator which is a compound sum of independent and identically distributed Bernoulli

random variables. Later, Ristic et al. (2013) generalized the Binomial thinning op-

erator to construct a new INAR model, by relaxing the assumption of independence

in the compound sum to a sum of dependence Bernoulli random variables, called the

generalized Binomial thinning operator. The new thinning operator can be applied

to a wider class of applications. For example, survival or collapse of some companies

in economy discussed in Ristic et al. (2013) since all companies operate in the same

macroeconomic and may affect to each others. The problem is more reasonable to

use the dependent thinning operator than the independent thinning operator.
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In this study, we extend the generalized Binomial thinning operator introduced

in of Ristic et al. (2013) to construct more general integer-valued moving average

models, called DBINMA.

Objectives

To extend the INAR(1) model based on the generalized Binomial thinning oper-

ator to DBINMA models and study its properties and applications.

Scope

In this project we will study properties and applications of DBINMA models

based on the generalized binomial thinning operator.

Project Activities

1. Study probabilistic properties of integer-valued time series models and bino-

mial thinning operators.

2. Study probabilistic properties of the Poisson INAR model.

3. Study probabilistic properties of Poisson INMA model.

4. Study probabilistic properties of INAR(1) model with dependent Bernoulli

thinning operator.

5. Construct DBINMA models and derive their probabilistic properties.

6. Summarize the project and write a report.
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Scheduled Operations

Benefits

The benefits for student who implement this project.

1. To learn properties and applications of the proposed model.

2. To gain knowledge in probability theory and to apply the model to suitable

application.

The benefits for users of the project

1. To have an alternative Integer-valued time series model for wider applications.

Equipment

Software
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1. Microsoft Word

2. Mathematica

3. Program R

4. Latex

Hardware

1. Computer

2. Printer

References

1. McKenzie, E. (1985). Some simple models for discrete variate series. Water

Resources Bulltin 21, 640-650.

2. Ristic, M. M., Nastic, A. S., and Miletic Ilic, A. V. (2013). A geometric time

series model with dependent Bernoulli counting series. Journal of Time

Series Analysis 34, 466-476.



54

Author Profile
Mr. Namchai Pew-On ID 583 35293 23

Branch of Mathematics

Department of Mathematics and Computer Science

Chulalongkorn University


	Cover 
	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgments
	Contents
	Chapter 1 Introduction
	Chapter 2 Preliminary
	Chapter 3 Main Result
	Chapter 4 Conclusion
	References
	Appendix
	Vitae



