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Chapter 1

Introduction

The integer-valued time series models for time series count data play important
roles in many applications. For examples, claim counts in insurance business and
the number of stock transactions in stock market. The model was first introduced
by McKenzie (1985) for the lag-one dependence model which is referred nowadays
as the integer-valued autoregressive of order one (INAR(1)) process.

The original integer-valued time series model is based on a binomial thinning op-
erator which is a compound sum of independent and identically distributed Bernoulli
random variables. Later, Ristic et al. (2013) generalized the binomial thinning op-
erator to construct a new INAR model, by relaxing the assumption of independence
in the compound sum to a sum of dependence Bernoulli random variables, called the
generalized binomial thinning operator. The new thinning operator can be applied
to a wider class of applications. For example, survival or collapse of some companies
in economy discussed in Ristic et al. (2013) since all companies operate in the same
macroeconomic and may affect to each others. Therefore, such problem is more
reasonable to use the dependent thinning operator than the independent thinning
operator.

In this study, we extend the dependent binomial thinning operator introduced in

Ristic et al. (2013) to construct a generalized integer-valued moving average model.



Chapter 2

Preliminary

In this chapter, we provide some basic concepts, definitions and theorems in

probability theory used in our studies.

2.1 Basic of Probability Theory [Prasanna S. (2013)]

Definition 2.1. The set of all possible outcomes of an experiment, denoted by 2,

is called the sample space of the experiment.

Definition 2.2. Consider a random experiment whose sample space is {2. A random
variable X is a function from the sample space () into the set of real numbers R
such that for interval I in R, the set {s € Q | X(s) € I} is an event in Q. If the
sample space is either finite or countably infinite, the random variable is said to be

discrete.

Definition 2.3. Let {2 be the sample space of a random experiment. A probability
measure P : P(Q2) — [0, 1] is a set function which assigns real numbers to the various

events of () satisfying

1) 0< P(A) <1 for any event A € P(1).



Theorem 2.4. Let {A;, Ao, A3, ..., A,} be a finite collection of n events such that
AZQAJ :®f0ri7éj, then

P(UA,) =Y P(4).
i=1 i=1
Theorem 2.5. Let A be any event of sample space ). Then,
P(A°) =1—- P(A).
Theorem 2.6. If A and B are any two events. Then,
P(AUB)=P(A)+ P(B)— P(AN B).

Definition 2.7. Let 2 be a sample space. The conditional probability of an event
A, given that event B has occured, is defined by

P(ANB)

PA|B) = =5

provided that P(B) > 0.

Definition 2.8. Two events A and B of sample space {2 are said to be independent
if and only if
P(ANB)= P(A)P(B).

Theorem 2.9. Let A, B C Q. If A and B are independent and P(B) > 0, then
P(A| B) = P(A).

Definition 2.10. The set {x € R | z = X (s),s € Q} is called the space of random
variable X.

Definition 2.11. Let 2 be the sample space of the random variable X. The function
f Q2 — R defined by

is called the probability mass function (pdf) of X.



Theorem 2.12. If X is a discrete random variable with the sample space (2 and

probability mass function f(z), then

1) f(z) >0 for all x € Q, and
2 Y f) =1
e

Definition 2.13. The cumulative distribution function F(z) of a random variable

X is defined by

for any real number z.

Definition 2.14. Let X and Y be two discrete random variables. Then, X and Y

are said to be independent if

P(X=z,Y=y)=P(X =2)P(Y =y).

Expected Value of Discrete Random Variables

Definition 2.15. Let X be a numerically-valued discrete random variable with sam-
ple space € and probability mass function f(x). The expected value of X, F(X), is
defined by

E(X) =) f(z),

e

provided that this sum converges absolutely. We often refer to the expected value
as mean, and denote F(X) by u for short. If the above sum does not converge

absolutely, then we say that X does not have an expected value.

Theorem 2.16. If X is a discrete random variable with sample space €2 and distri-

bution function f(z), and if g: @ — R is a function. Then,

E(g(X)) =) g(2)f(x)

e

provided the series converges absolutely.



Theorem 2.17. Let X and Y be random variables with finite expected values.
Then,
E(X+Y)=EX)+E®Y),

and if ¢ is a constant. Then,
E(cX) =cE(X).

Theorem 2.18. Let X and Y be independent random variables with finite expected
values. Then,

E(XY)=E(X)E(Y).

Theorem 2.19. If F' is any event and X is a random variable with sample space

Q = {1, 29, 23...}, then the conditional expectation of X given F is defined by

E(X|F)=) a;P(X =z | F).
J
Theorem 2.20. Let X and Y be two random variables. Then,
E(X)=E(E(X |Y)).

Variance of Discrete Random Variables

Definition 2.21. Let X be a numerically-valued random variable with expected

value = E(X). Then, the variance of X, denote by Var(X), is
Var(X) = B((X — )?).
Theorem 2.22. Let X be any random variable with F(X) = u. Then,
Var(X) = B(X?) — 2.
Theorem 2.23. Let X be any random variable and ¢ is any constant. Then,
Var(cX) = c*Var(X)

and

Var(X +c) = Var(X).



Theorem 2.24. Let X and Y be two independent random variables. Then,
Var(X +Y) =Var(X) + Var(Y).
Theorem 2.25. Let X and Y be two random variables. Then,
Var(X)=EVar(X |Y))+ Var(E(X |Y)).

Covariance and Correlation

Definition 2.26. Let X and Y be two random variables with expected values px

and py, respectively. The covariance Cov(X,Y') is defined by
Cou(X,Y) = E[(X — px)(Y — py)].

Corollary 2.27. Let X and Y be two random variables with finite expected values.
Then,
Cov(X,Y)=E(XY)—- EX)E(Y).

Corollary 2.28. Let X and Y be two independent random variables. Then,
Cov(X,Y) =0.
Theorem 2.29. Let X and Y be two random variables. Then,
Var(X +Y)=Var(X)+ Var(Y) +2Cov(X,Y).

Definition 2.30. Let X and Y be two random variables with positive variances.

The correlation of X and Y is defined as

B Cov(X,Y)
Corr(X,¥) = VVar(X)Var(Y)

Generating Function

Definition 2.31. Let X be a random variable. The generating function of X,
denote by Gx, is
Gx(t) = B(t*), fortecR.



Theorem 2.32. Let X and Y be two independent random variables. Then,
Gx+y(t) = Gx(t)Gy(t), for t € R.

Theorem 2.33. Let Gx(t) and Gy (t) be generating functions of X and Y, respec-
tively. Then
Gx(t) = Gy(t), Vte R

if and only if X and Y have the same distribution.

Moment Generating Function

Definition 2.34. Let X be a random variable. The moment generating function of
X, denote by My, is
Mx(t) = B(e"), forteR.

Theorem 2.35. Let X be a random variable, and @ and b are constants. Then,
M,x4(t) = e®Mx(at), forteR.
Theorem 2.36. Let X and Y be two indepentdent random variables. Then,
Mx iy (t) = Mx(t)My(t), forteR.

Theorem 2.37. Let Mx(t) and My (t) are moment generating functions of X and
Y, respectively. Then,
Mx(t) = My (t), VteR

if and only if X and Y have the same distribution.



Mixture Distribution

Definition 2.38. Let a finite set of probability mass functions fi(z), fo(z), f3(x)

sy fu(z), or cumulative distribution functions Fi(x), Fy(z), F3(x), ..., F,(x) and

weights wy, wy, ws, . . ., w, such that w; > 0 and Z w; = 1, the mixture distribution

i=1

is defined by
F(x) = ZwiFi(a:),
i=1

or, equivalently,

flz) = szfz(%)

Theorem 2.39. Let X, X5, X3,...,X,, denote random variables, and let X de-
note a random variable from the mixture distribution. For the gernerating function

Gx,(t), 1€ {1,2,3,...,n}. Then,

Gx(t) = ZwiGXi(t), t € R.
r=1

Some Discrete Distributions

Definition 2.40 (Bernoulli distribution). A random variable X has the Bernoulli

diistribution with parameter p € [0, 1] if
P(X =k)=p"1—-p)**  for ke{01}.

We write X as X ~ Ber(p).



Theorem 2.41. Let X be a random variable having the Bernoulli distribution with

parameter p € [0, 1]. The properties of X are as follows.

3) Var(X) =p(1 —p).
4) Gx(t)=(1—p)+pt, teR.
5) Mx(t) = (1 —p)+pet, t eR.

Definition 2.42 (Binomial distribution). A random variable X has the Binomial

distribution with parameters n and p € [0, 1] if

P(X =k)= (Z)pk(l —p)"*  for ke€{0,1,2,...,n}.
We write X as X ~ Bi(n,p).

Theorem 2.43. Let X be a random variable having the Binomial distribution with

parameters n and p € [0, 1]. The properties of X are as follows.
1) E(X) = np.
2) E(X?)=np(l—p+np).
3) Var(X) =np(1 — p).
4) Gx(t) =[(1—p)+pt]", t € R.
5) Mx(t) =[(1—p)+pe'l", t € R.

Definition 2.44 (Poisson distribution). A random variable X has the Poisson

distribution with parameter A > 0 if

e—AAk
k!

for ke{0,1,2,...}.

We write X as X ~ Poi()).
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Theorem 2.45. Let X be a random variable having the Poisson distribution with

parameter A > 0. The properties of X are as follows.

3) Var(X) = A
4) Gx(t) =M=V teR.
5) Mx(t) =M=V teR.

Definition 2.46. A sequence of random variables is said to be independent and
identically distributed (i.i.d.) if all of them have the same distribution and are

mutually independent.

Definition 2.47. Let {X,},en be a sequence of i.i.d. random varibles and N be

a nonnegative integer valued random variable and independent of X;, X5, X3,... .
N

The randon variable Sy = Z X, is said to be a compound random variable.

n=1
Theorem 2.48. Let Sy be the compound random variable defined in Definition
247 and E(] X, |) < o0, E(N) < o0, respectively. Then, the following properties
hold.

1) E(Sy) = E(N)E(X).
2) Var(Sy) = E(N)Var(X) + Var(N)E(X?).
3) Gs,(t) = Gn(Gx(1)), t € R.
4) Mg, (t) = Gn(Mx(t)), t € R.
Definition 2.49. Let {X,},.en be a sequence of i.i.d. random varibles and N be

a Poisson random variable which is independent of X;, X5, X3,... . The randon
N

variable Sy = Z X, is said to be compound Poisson random variable.

n=1
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Theorem 2.50. Let {X;};en and {Y;}ien be sequences of i.i.d. Bernoulli random
variables with means a; and ay, respectively. If {X;}ien and {Y;}ien are indepen-

dent, then
N2

Ny
Cov ( Z X, Z Y,) = a1apCov(Ny, Ny).

i=1 =1

Integer-valued Time Series Model

Definition 2.51 (Binomial thinning operator). Let {B; };en, be a counting sequence
of i.i.d. Bernoulli random variables with mean « € [0, 1] and X > 0 be an integer-
valued random variable which is independent of the counting sequence. The binomial

thinning operator, «o, is defined by

X
aoX =) B
=N

Theorem 2.52 (Properties of the Binomial thinning operator). Let X be a random
variable having values in N. The binomial thinning cvoX has the following properties,

for a € [0, 1],
1) E(ao X) =aF(X),
2) Var(ao X) = a*Var(X) + a(l — a)E(X).

Definition 2.53. A process of X, is stationary if it has time invariant first and

second moments, i.e., if for any choice of ¢ € N, the following conditions hold:
1) E(X;) = pux with |ux| < oc.
2) E[(X; — px)?] = 0% < o0
3) E[(X: — pux)(Xi—n — px)] = v, Yh € N with |v,| < oc.

Definition 2.54. [The Integer-Valued Autoregressive Model : INAR(1)] A discrete
time non-negative, integer-valued process {X;}ien is called a stationary INAR(1)
process, if it follows the recursion

Xy =aoX, | +e,

where €;,t € N, is a non-negative integer-valued random variable which is indepen-

dent from X for s < t, with E(e;) = pe > 0 and Var(e) = o2 > 0.
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Theorem 2.55. If { X, }1ey is a stationary process defined in Definition 2.54. Then,

[he
D) B(X) = 72

Qe + 02

2) Var(Xy) = a2

3) B(Xi | Xi1) = aXi 1 + phe,
4) Var(X; | Xio1) = a(l — )X,y + 02

Definition 2.56. [The Integer-Valued Moving Average Model : INMA(1)] A dis-
crete time non-negative, integer-valued process { X}y is called INMA(1) process,
if it follows the recursion

Xe=o OE;_=Fts,

where €;,t € N, is a non-negative integer-valued random variable which is indepen-

dent from X for s < ¢, with E(¢;) = pe > 0 and Var(e) = 02 > 0.
Theorem 2.57. Let {X;}en be INMA(1) process defined in Definition 2.56. Then,
1) E(Xy) = (1+ a)pe,

2) Var(X;) = ol — a)pe + (1 + a?)o?.

€



Chapter 3
Main Result

The Binomial thinning operator is defined as a compound sum of identically dis-
tributed and independent Bernoulli random variables. The thinning operator has
been applied to many applications. However, the independence assumption in the
thinning operator may not be realistic in some applications. For example, Vagrants
usually live together and support themselves to do vagrancy offences. Then, the
Binomial thinning operator is not suitable for the model used to count the number
of vagrants who do vagrancy offences. Therefore, a more general thinning operator
relaxing independence assumption, called generalized Binomial thinning operator,
has been proposed in literature. (Ristic et al, 2013)

In this chapter, we apply the generalized binomial thinning operator to construct
a generalized integer-valued moving average model. The organization of this chapter
is as follows. First we state the generalized Binomial thinning operator and discus-
sion its properties in Section 3.1. We then apply it to construct the generalized
integer-valued moving average model with order 1 and general order ¢ in Section 3.2
and Section 3.3, respectively. Finally, numerical results and simulations are given
in Section 3.4.

Now, we first introduce the new binomial thinning operator by relaxing the in-
dependence assumption Bernoulli random variables, called generalized Binomial

thinning operator.

13
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3.1 Generalized Binomial Thinning Operater (o)

In this section, we consider a sequence of random variables, {U; }ien, introduced

by Ristic et al. (2013). The random variable U; defined as
Uy=1-V)W; +V,Z, (1)

where {V;};en is a sequence of i.i.d. Bernoulli (0), {W,}ien is a sequence of i.i.d.
Bernoulli («), Z is Bernoulli («) and the random variables V;, W, Z are independent
for all 7 € N and j € N.

Theorem 3.1. Let {U;};eny be the sequence of random variables defined in (1).
Then, the following properties hold.

1) U; has the Bernoulli distribution with parameter a.
2) E(U;U;) = ala+ (1 — a)b?) for i # j.
3) Cov(U;,U;) = a1 — )b for i # j.

Proof. 1) Consider

PUi=xz)=PU; =2 |V;=0)P(V;=0)+PU; =2 |V, =1)P(V; =1)
— P(W, = 2)P(V; = 0) + P(Z = 2)P(V; = 1
=a"(1—-a)'™(1—0)+a"(1—a)" "0

=a"(1—a)'™.

Then, U; has the Bernoulli distribution with parameter a.

2)
= E((1 = V)W + ViZ)((1 = V;))W; + V;Z))
:E(( — V)WW; + (1 = Vi)ViW,Z + Vi(1 = V)W, Z + ViV, Z%)
=FE((1- — V))WW;) + E((1 = V;)V;W:.2) + E(Vi(1 — V;)W;Z)
+E<VM~Z?>
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= E(1-=V)E( = V) EW;,)E(W;) + E(1 = V) E(V;) E(W;) E(Z)
+ E(V)E(1 = V) E(W))E(Z) + E(V;) E(V;)E(Z?)
= (1 -0+ (1 —0)0a* +6(1 — 0)a’* + 6*a
=ala+(1—-a)f?).
3) By 2), we have
Cov(U;, U;) = E(UU;) — E(U)E(U;)
= ala+ (1 - a)f?) — o
=a?+a(l —a)f? - a?
= a(l —a)f>.
O

Theorem 3.2. [Ristic et al. (2013)] Let {U; };en be a sequence of random variables
defined in (1). Then the random variable Uy + Uy + Uz + - - - + U, is distributed as

Bi(n, (1 —0)), w.p. 1 —a,
U+ U+ Us+ -+ Uy =
Bi(n,a+ 6 — af), w.p. a,

where w.p. refers to “with probability”.

Proof. For s € R,

E(8U1+U2+U3+~~~+Un) — (n) (1 _ e)n_ieiE(8W1+W2+W3+"'+Wn—i+iz)
1

- Z <n> (1—=0)""0"(1 —a+as)" (1 —a+as’)
=1-a)l-a(l-0)1-95)"+a(l—-(a+6—ab)(l-2s))".
(2)

Then, the random variable Uy + Uy 4+ Us + - - - + U, is distributed as follows

Bi(n,a(l1—-90)),  wp.1l-a,
U+Us+Us+-+U, =
Bi(n,a+ 6 — af), w.p. a.
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Definition 3.3. [Ristic et al. (2013)] Generalized Binomial Thinning Op-
erator. Let {U;};,eny be a sequence of Bernoulli random variables and X be a
non-negative integer-valued random variable which is independent of the counting

sequence. The generalized binomial thinning operator, aoy, is defined by

X
Q¢ Oy X = Z UZ >
i=1
where U; = (1 — V;)Wi+ V;Z is defined in (1).

Next, we state Properties of the Generalized Binomial Thinning operator defined
in Definition 3.3 given in Ristic et al. 2013. However, the proof is not provided in

the paper. Therefore, we give the proof in the following theorem.

Theorem 3.4. [Ristic et al. (2013)] Properties of Generalized Binomial Thinning

Operator.
1) E(aop X | X) = aX.
2) E((aop X)? | X) = ala+ (1 — a)i?)X2 + a1l — a)(1 — 62)X.
3) Var(aop X | X) = a(l — a)(@2X2 + (1 — 62)X).
4) E(aop X) = aB(X).
5) E(arop X)? = a1 — ) (1 = 02) E(X) + o + (1 — 0)62) E(X?).
6) E(X(a0pY)) = aEB(XY).
7) Cov(X, a0 Y) = aCov(X,Y).

Proof. 1) Since the random variable {U; };en have the Bernoulli distribution param-

eter «,

E(ao(,X]X):E(f;Ui|X)

— XE(U))

= aX.
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2) By 2) of Theorem 3.1, we have

Bllae X1 = B( (300’1 X)

=1

X X X X-1
= E(ZUi2+ZU1Ui+ZU2Ui+---+ZUXUZ-|X)
i=1

i=1 i#1 i#2

X X X
= E(ZUZ? | X) +E(ZU1U1- | X) +E(ZU2U1- | X) +
i=1 i#1 i#2
X-1

+E(ZUXUZ- | X)

=aX +tala+(1—a)f*)(X —1)+afa+(1—a)f*)(X —1)+---
+ala+(1—a)f*) (X -1)
=aX +ala+ (I —a)f*)(X —-1)X

=ala+ (1 =a)fH)X*+a(l —a)(l - H)X.
3) By 1) and 2), we have

Var(aog X | X) = E((aopg X)? | X) — (E(aog X | X))?
=ala+ (1 —a)fHX* +a(l —a)l-60*)X — (aX)?

= a(l —a)(®X* + (1 - 0*)X).
4) By 1), we have

B(aog X) = E(E(aop X | X))
= E(aX)
=aE(X).

5) By 2), we have
E((aog X)?)

E(E((aog X)* | X)

( )
(a(a+ (1= a)f*)X? +a(l —a)(1 - 6°)X)
(a

E )
E(a(a+ (1 - a)0?)X?) + E(a(l — a)(1 — 02)X)
(X

= ala+ (1 —a)f®)E(X?) +a(l —a)(1 - 0*)E(X).



6) By using Theorem 2.20 and 1), we have

E(X(aogY

B(
B
:E(X E(aogY |Y) | X))
E(XaE(Y | X))

= aE(E(XY | X))

= aB(XY).

7) By using Corollary 2.27, 4) and 6), we have

Cov(X,a0Y) =

E(X(ao0pY)) = E(X)E(xopY)
= aB(XY) - aB(X)E(Y)

= a(B(XY) - E(X)E(Y))

= aCov(X,Y).

18
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3.2 Model: DBINMA(1)

Now, we construct the integer-valued moving average model based on the gener-

alized binomial thinning operator order 1, called DBINMA(1) model.

Definition 3.5. DBINMA(1)
A discrete time non-negative, integer-valued process {X;}ien is called a stationary

DBINMA (1) process, if it follows the recursion
Xi=aope_1+e

where {¢ }en is a sequence of i.i.d. Poisson random variables with mean A.

Theorem 3.6. Let {X;}ien be the DBINMA(1) defined in Definition 3.5 , then

X, — Poi(Ma(l—60)+ 1)), wp. 1—a,

Poi(A(0 + (1 —0)+ 1)), w.p. a.

Proof. By (2) of Theorem 3.2 and Definition 3.3, for s € R, we have

GXi (8)

E(gXco€t— 1+6t)

E(s “U“tlﬁ 1)

(s

E(

B(E(s>="" | &.4)) - B(s%)

=F((l-a)l-a(l=0)(1—-s)"+a(l—(a+0—ab)(l—s)"")
G 5)

= [(1-a)Ge_,(1 — (1 =0)(1 —5)) + aGe,_,(1 — (a+ 0 — ab)(1 — s)]
- Ge(s)

= [(1 — a)eM-O=D] | gAl+a(-O)=D]] . A1)

— (1 — @) MNoU=0+16=1) | q ANo+a(-0)+11(s-1),

From Theorem 2.39, we have

X, _ Poi(A(a(1 = 0) + 1)), wp l—a,

Poi(A0+ a(1 —0)+1)), w.p. a
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Theorem 3.7. The Properties of the DBINMA(1) defined in Definition 3.5 are as

follows
1) E(Xt) - )\(Oé + 1).

2) Var(X;) = M1+ a+ a(l — a)f?).

a\, k=1,
3) COU(Xt,Xt_k) =
0, k> 1.
@ k=1,
4) Corr(Xy, X,_p) = 1 Hat a(l —a)f
0, k> 1.

Proof. 1)

E(X;) = E(aoge_1+€)
= FE(aoge 1)+ E(e)
= aB(e1) + E(a)
=al+ A

= Aa+1).
2) By 4) and 5) of Theorem 3.4, we have

Var(X;) = Var(aoge_1 + €)
= Var(aoge_q) + Var(e)
= E((aoge-1)%) — (E(avog €-1))* + Var(e)
=a(l—a)(1 =) E(e_1) +ala+ (1 —a)b?)E(E ) — (E(aoge_y))?
+ Var(e)
=a(l—a)(1-P)A+ala+ (1—a)f*)(AN*+A) — (Aa)*+ A

=A1+a+a(l—a)f?).
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3) Since {€}ien is a sequence of i.i.d. Poisson random variables with mean A

and 1), we have

Cov(X, Xio) = E(X,X,_p) — E(X,)E(X,_p)

E((aoger1+e)(aoge 1 +er)) — B(X)E(X_p)
= E((cvop er1)(op € p1) + (aog 1) (e—k) + (v 0g €-p-1) (1)
+eer) — E(X)E(Xi—)
= E((a o9 €-1)(a 09 €—1-1)) + E((vog €-1)(€r-))
+ E((a0g €-r-1)(€) + Bererr,) — B(X,) B(Xi—)
= E(aoge1)E(aoge )+ E((aoger)(es))
+ E(avog er-p-1)E(er) + Eler) Eee- ks) E(
= (aX)(aX) + (@)X + X = (Ma+1))* + E((aog €-1)(er—))

= E((a o et,l)(et%)) — a)?.

Xi)E(Xi)

If £ =1, then by 6), we have

Cov(Xy, Xy_g) = E((a 0g etﬁl)(et,l)) —a\?
= aB(e& ) —a)?
= a(\? + ) — X’
= al.

If £ > 1, since ¢_; and ¢,_j are independent, then

Cov(Xy, Xi—k) = E((a o et_l)(et_k)) — a\?
= FBlaoge_1)E(e_y) — a)?
= (M)A — aN?

= 0.
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4) If k = 1, by Definition 2.30, we have

Cov(Xy, Xi1)
VVar(X,)Var(X;-1)
a
A1+ a+a(l —a)f?)
a
1+a+a(l—a)f?

Corr(X;. X;1) =

If k£ > 1, by Definition 2.30, we have

Corr(X. X ) = Cou(Xy, Xi-4) =0
- VVar(X,)Var(X;_x)

3.3 Model: DBINMA(q)

In this section, we extend the DBINMA(1) model studied in the previous section
to a more general model by extending the lag-dependence to general order ¢q. The

definition of the model is given as follows.

Definition 3.8. DBINMA(q).
A discrete time non-negative, integer-valued process {X;}ien is called a stationary

DBINMA (q) process, if it follows the recursion
X =0109€6_1+ Q09 €9+ Q3096 3+ -+ 0500 €+ 6

where {€; }en is an i.d.d. sequence of Poisson random variables with mean .

Theorem 3.9. Let {X;}:en be the DBINMA(q) defined in Definition 3.8. Then

Poi | A (1—9)zq:ai+1>), w.p. ﬁ(l—ozi),
Poi | A (1—9)zq:ozi+9+1>), W.p-zq:aiﬁ(l—aj),

/

Poi ()\ <(1—9)io¢i+q9+1>> . W.p. f[ozi.

=1
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Proof. Since {€:}ien is a sequence of i.i.d. Poisson random variables with mean A,

using Theorem 2.32, for s € R, we have

GXt(S) = HGaioeftfi(S) ) G€t<8)

=1
q
= H 1 - az G i(1—0)oes— ( ) + aiG(9+ai(170))oet,i(S)]
=1
_ 6>\(s 1) |: 1 —O[ A(1=0) 37 ag)(s—1)

=1

+ Zaz H (1— a; A(1-0) 3oL, i +0)(s—1)

i=1 1#]

q
¢ N0 Y a4 gb)(s — 1)
+-+ H e i=1 }
=1

:{_(

I
>

1 _ ) /\((1 9) = 10%"1‘1)(5_1)
(07

q
+ : H 1 ~ a, A(A=0) 3L | ai+6+1)(s—1)
=1 i#£j
q
+ H Q;

i1 ai+q9+1)(5_1):| )

From theorem 2.39, we have

Poi | A (1—0)&0@4—1)), Ww.p. H(l—%’),

(

q q q
Poi [ A (1—«9)Zai+6+1>), wop. Yo [J(1—ay),
X, = i=1 i=1 i

Poi ()\ ((1—9)%%4—(]@—{—1)) , W.p. ﬁai.

=1
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Theorem 3.10. The Properties of the DBINMA(q) defined in Definition 3.8 are as

follows

1) B(X,) =\ (i a + 1) .

i=1

2) Var(X;) =\ [/\6’2<ZaZ Za)—l—ioszl

( q—1
()\2 + /\) (Oél + ZaiaiH) s k= 1,
B
()\2 + )\) (CYQ + Z OéiOéH_g) s k= 2,
i=1

3) COU(Xt, thk) =

aq()\2+A)7 szv
ko7 k>q.
(
)\ + 1 (Oél =5 Z a1a1+1>
Y k = 17
H2 (Z&i = Zaf) —i—ZOzi—i— 1
i=1 i=1 i=1
q—2
()\ + 1) (062 + Z Oéi()éi+2>
i=1 k=2,
4) Corr(Xy, Xy ) = (Z 15 Za ) . Z&" +1
=1
aq(A +1) k=g
(Zaz Za ) +Za’+1
=1
0, k>q




Proof. 1)

E(X;) = E(o1 09 €1+ Q209 €9+ Q309 €3+ -+ 0y 0p €4—g + €)
= FE(o10g€-1)+ E(agog€er—2) + E(agog€—3) + -+ -+ E(cg 0p €1—¢)
+ E(e)
= a1 E(e;-1) + a2E(€1-2) + asE(e3) + - - + oy E(er—q) + Eler)

:Oél)\+052)\+063)\+“'+04q)\+)\

= A(iaﬁ-l).

2) Claim that Var(aoge) = aX + al?6? — a?2%0.

Var(aoge) = Var(aoge)

= E((@oy e)?) — (Bla oy &)’

a(l —a)(1—0*)E(e) + ala+ (1 —a)0?)E(e?) — (E(aoge))?
=a(l—a)1—0)A+ala+ (1 —a)f*)(A+ ) — (Aa)?

= a) + ar?0? — o’ ).

Var(X;) = Var(ayog 1+ ag0g €9+ a3 0g €3+ -+ + Qg 0p €_q + €)
=Var(a;oge_1) + Var(azogeo) + Var(agoges)+ -+
+ Var(ag o €—q) + Var(e,)
= (A + 207 — afN20%) + (o) + ap\*0? — a3N%0?)
+ (asA + asA?0® — a3 N?0%) + -+ - + (agh + agX0° — a2X*0%) 4+ A
= (A + ag) + azA + -+ a\) + (g A20 + ap\?0? + az A0 + - -

+ g A20%) — (N0 + a3 N0 + a3 A*0% + - - + a2 X*0%) + A

= [/\02 (iai — iaf) —i—iai—i- 1
i=1 i=1 i=1

3) Since ¢; and €; are independent, by Corollary 25, then

OO’U(Ei, Ej) = 0.
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Ifk=1,

Cov(Xy, Xi—1) = Cov(ag 0g €41 + g 0 €49 + (i3 09 €13 + - - - + Qy Op €1 + €4,
Q1 0g €9+ Q0 €43+ A3 0g € + -+ + Qg Op €4—g—1 + €_1)
= Cov(aq og €;_1,01 09 €_2) + Cov(ay 0g €_1,2 09 €4_3) + - -
+ Cov(ayg og €1, €1-1) + Cov(ag og €9, 1 0g €_3)
+ Cov(ag og €9, 00909 €;_3) + - -+ + Cov(ag 0 €49, €1) + -+ -
+ Cov(e, a1 0 €4_9) + Cov(ey, g 0g €4_3) + -+ + Cov(ey, €4_1)
= Cov(ag og€1,€61) + Cov(ag og €9, 01 0g €_2)
+ Cov(az og €43, i 09 €,_3) + - - -
+ Cov(oy—1 09 €1—g—1, Qg Og €t—g—1)
= 1Cov(€e_1,6-1) + a1aaCov(€ 9, €49) + asasCov(€;_3, €_3)
+ 4 ay10,Cov(€r—g—1, €t—g-1)

= (A2 + ) + araa(AN2 + ) + agas(A2 + ) + -+ ag1a,(A + N)
q—1

= (AN +)) (Oq + Z OéiOéi+1> .
=1

In case of k € {2,3,4,...,q}, follow the same method as in the case k = 1, then we

can show that
q—Fk
Cov(Xy, Xo_p) = (N2 +N) (ak + Z aiai+k) .
i=1

for k € {1,2,3,...,q}.
If k£ > ¢, then it is clear that Cov(X;, X;—x) = 0.



4) From Definition 2.30,

Corr( Xy, Xi—g) =

;

q—1
()\ + 1) (Ofl + Z O-/iai—&-l)
q q S q ’
6?2 (Zai — Zaf) + Zozi +1
q—2
()\ + 1) (CYQ + Z OZiOZH.Q)
q q S q ’
G2 (Zai — Zaf) + Zoz,- +1
=1 i=1 =1

| ag(A+1)

G2 (i&i — ia?) + iai +1
=1 i=1

i=1

0,

\
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k=1,
k=2,

O
k=gq,
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3.4 Data Simulation

3.4.1 Data Simulation for DBINMA (1)

1. Data Generation Algorithm

For our simulation experiment, we use the following algorithm to generate data.

Following DBINMA (1) model defined in Definition 3.5:
Xy =o€+ €,
for t € {1,2,3,...,n}, and the thinning operator oy defined in Definition 3.3.
1. Set parameters «, 6, A\, n, where «, 6 € [0,1], A > 0 and n is a positive integer.

2. Generate a positive finite integer vector Eps = [eg, €1, €2, . . ., €,], where €,
t€{0,1,2,3,...,n} are generated from the Poisson distribution with param-

eter .

3. Generate a positive finite vector W = [wy, wy, ws, . . ., w,], where wy = 0 and

wy, t € {1,2,3,...,n} are generated from the Uniform distribution on [0, 1].

4. Generate a positive finite integer vector Thin = [Ty, Ty, T3, ..., T,], where
To=0and Ty = aoge_q, t € {1,2,3,...,n} are generated from the Binomial
distribution with parameters ¢;,_; and a(l — ) if w; < a, and if w; > a,
T, = aoge;_q are generated from the the Binomial distribution with parameters

e—1 and 0+ a(1 —0).

5. Generate a positive finite integer vector X = [Xo, X1, Xo, ..., X,,], where
Xo=0and X;, =T, + ¢, t€{1,2,3,...,n}.
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2. Comparison the Data of INMA (1) and DBINMA (1) model

Figure 3.1 below shows comparisons of data generated from INMA(1) model de-
fined in Definition 2.56 and DBINMA(1) model defined in Definition 2.56 for dif-
ferent values of § (0 = 0, 0.25, 0.5, 0.75 and 1). The corresponding histograms are
presented in Figure 3.2.
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Figure 3.1: Scatter plots of data generated from DBINMA (1) model with parameters
A =100, @ = 0.5 and § = 0 (INMA(1) model), 0.25, 0.5, 0.75 and 1.
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Figure 3.2: Histograms of data generated from DBINMA (1) model with parameters
A =100, « = 0.5 and # = 0 (INMA(1) model), 0.25, 0.5, 0.75 and 1.

From Figures 3.1 and 3.2, the parameter 0 affects the aggregation of X;. We
can see that the data generated from INMA(1) model is unimodal, while the data
generated from DBINMA (1) model is bimodal. Moreover, the distance between the

two models of DBINMA(1) model is greater when 6 increases.
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3. Comparison the Data of DBINMA (1) with different values of «a.

Figures 3.3 and 3.4 show respective the data plots and histograms of data gen-
erated from DBINMA (1) model for different values of o when 6 and A are fixed to

be 0.5 and 100, respectively. The values of a considered in these figures are o = 0,

0.25, 0.5, 0.75 and 1.
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Figure 3.3: Scatter plots of data generated from DBINMA (1) model with parameters

A =100, 0 = 0.5 and a = 0, 0.25, 0.5, 0.75 and 1.
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Figure 3.4: Histograms of data generated from DBINMA (1) model with parameters
A =100, 0 = 0.5 and o = 0, 0.25, 0.5, 0.75 and 1.

From Figures 3.3 and 3.4, the parameter « affects values of X, becuase the
expectation of X; is A(a + 1). Therefore, we can see that the modes of data are
higher when « increases. The data show unimodal pattern for cases when o = 0

and o = 1.
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4. Comparison the generate 100 series of DBINMA (1) model

Figures 3.5 and 3.6 show histograms of Xig, Xo9, X30, ..., X109 of data gener-
ated from DBINMA(1) model when 6, « and \ are fixed to be 0.5, 0.5 and 100,

respectively.
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Figure 3.5: Histograms of data Xig, Xoo, X30, X40 and X5o of DBINMA(1) model
with parameters A = 100, « = 0.5 and 6 = 0.5.
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Figure 3.6: Histograms of data Xgo, X70, Xg0, Xoo and Xj9o of DBINMA(1) model
with parameters A = 100, & = 0.5 and 6 = 0.5.

From Figures 3.5 and 3.6, X, X290, X30, ..., X100 show the same pattern of

mixed distributions with two modes which agrees to the Theorem 3.6.
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3.4.2 Data Simulation for DBINMA (2)

1. Data Generation Algorithm

For our simulation experiment, we use the following algorithm to generate data.

Following DBINMA(2) model defined in Definition 3.8:

Xy =0109€-1+ 209 €9+ €,

for t € {2,3,4,...,n} and the thinning operator oy defined in Definition 3.3.

1.

Set parameters ay, ag, 0, A\, n, where a1, as, § € [0,1], A > 0 and n is a

positive integer.

. Generate a postive finite integer vector Eps = [, €1, €2, . . ., €,], where ¢,

t€{0,1,2,...,n} are generated from the Poisson distribution with parameter
A
Generate a postive finite vector W1 = [wyg, w11, W1a, - . ., W1,|, where wyg = 0
and wy, t € {1,2,3,...,n} are generated from the Uniform distribution on
[0, 1]
Generate a postive finite vector W2 = [waq, wa1, Waa, . . ., Way,|, where wyy = 0
and wy, t € {1,2,3,...,n} are generated from the Uniform distribution on
0, 1].

. Generate a postive finite integer vector Thinl = [Ty, 111, Th2, . - ., T1s], where

Tio = 0and Ty, = 091, t € {1,2,3,...,n} are generated from the
Binomial distribution with parameters ¢;_; and a;(1 — 0) if wy; < aq, and if
wy > aq, Ty = aq og €,_1 are generated from the Binomial distribution with

parameters €;_1 and 6 + aq(1 — 6).

Generate a postive finite integer vector Thin2 = [Ty, To1, Tae, - - - , Tay], where
Too=0,Ty; =0and Ty, = agog €9, t € {2,3,4,...,n} are generated from
the Binomial distribution with parameters €; 5 and as(1 — ) if wy; < a, and
if wo; > g, Toy = g 0y €;_5 are generated from the Binomial distribution with

parameters €;_o and 6 + ay(1 — 6).



7. Generate a postive finite integer vector X = [Xo, X1, Xo, ...
XO = 0, X1 =0 and Xt IT1t+T2t+€t, t e {2,3,4,...,71}.

, Xp|, where

36
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2. Comparison the Data of INMA (2) and DBINMA (2) model

Figure 3.7 below shows comparisons of data generated from DBINMA(2) model
for different values of 6 (# = 0, 0.25, 0.5, 0.75 and 1). The corresponding histograms

are presented in Figure 3.8.
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Figure 3.7: Scatter plots of data generated from DBINMA (2) model with parameters
A =100, a; = ag = 0.5 and 6 = 0 (INMA(2) model), 0.25, 0.5, 0.75 and 1.
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Figure 3.8: Histograms of data generated from DBINMA (2) model with parameters
A =100, a; = as = 0.5 and 6 = 0 (INMA(2) model), 0.25, 0.5, 0.75 and 1.

From Figures 3.7 and 3.8, we can see that the data generated from INMA(2)
model is unimodal while the data genereted from DBINMA(2) model is trimodal.

Moreover, the distances between the three models are greater when 6 increases.
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3. Comparison the Data of DBINMA (2) with different values of «a.

Figures 3.9 and 3.10 show respective the data plots and histograms of data gener-
ated from DBINMA (2) model from different values of o; and ay when 6 and A are
fixed to be 0.5 and 100, respectively. The values of a; and «s considered in these

figures are a; = ay = 0, 0.25, 0.5, 0.75 and 1.

DBINMA(2) model with alphal=alpha2=0 DBINMA(2) model with alphal=alpha2=0.25
§ a . . o . .
. L4 *
o Y .
<7 e * e g1 4 .
. ;o So o . )
S 4 . R P *e ¢ * . .
- « ° . . " A . ¢ 0 o .
° - D T . 3 * LIS .
S % o 4 . *e® o b .
- oo .. . * L l. L L[] ° ®
. . . - e « o . 'o.o'.o‘.'u'_...
o] e e ) . o0 o ° ° % e e
3 o o — ®e o o, ‘. .
.o . O . . « °
B o S | .
o . . =1
® 7 L] .
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
t t
DBINMA(2) model with alphal=alpha2=0.5 DBINMA(2) model with alphal=alpha2=0.75
. .
. .
. . o o’
g Cee .« o . / . S1.¢. » * A '.
. * . $ ° ¢ %% o - .o.. o . K . .
. . . ®en
0 . o - . L4 . « ® ® .
= . C e et o . < .
X S 4 '. M % o, % o0 . x) x o ° 4 .
87 . . w &N, . I . e
. oo . ° L) * o
. * o . - . 0
% & 0 . A .
.. . . . s | o . R ..
s | . s —— D S /| .
- * . . .. . O . 3
Y .
. . .
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
t t
DBINMA(2) model with alphal=alpha2=1
. « =
9 . o o° . .
& . o .
o ° ® . . A .
Cl I I
o .-. . ® . oy o
8 .« ® . ® e e
= . . o)
. A4 .
s |- . .’ .
N . - -
(=]
8
.
T T T T T T
0 20 40 60 80 100

Figure 3.9: Scatter plots of data generated from DBINMA (2) model with parameters
A =100,0 = 0.5 and a; = as = 0, 0.25, 0.5, 0.75 and 1.
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From Figures 3.9 and 3.10, the parameters « and «s affect values of X; becuase
the expectation of X; is A(a; + ag + 1). Therefore, we can see that the modes of

data are higher when a; and asy increases. The data show unimodal pattern for

cases when oy = ap = 0 and a; = oy = 1.
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4. Comparision the generate 100 series of DBINMA (2) model

Figures 3.11 and 3.12 show histograms of X, X209, X30, . .., X100 of data generated
from DBINMA (2) model when 6, a1, ap and X are fixed to be 0.5, 0.5, 0.5 and 100,

respectively.
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Figure 3.11: Histograms of data Xio, Xs9, X309, X40 and X559 of DBINMA(2) model
with parameters A = 100, a; = ap, = 0.5 = 0.5 and # = 0.5.
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Figure 3.12: Histograms of data X0, X70, Xs0, Xoo and Xjgo of DBINMA(2) model
with parameters A = 100, a; = ap, = 0.5 = 0.5 and # = 0.5.

From Figures 3.11 and 3.12, X;o, Xa9, X30, ..., X100 show the same pattern of

mixed distributions with three modes which agrees to the Theorem 3.9.



Chapter 4

Conclusion

In this project, we extended the study of the regular INMA model to construct
a new INMA model with generalized binomial thinning operator, called DBINMA
model and derived thier probabilistic properties such as mean, variance and covari-
ance. Moreover, we presented the data and distribution plots in different setting. For
our simulation study, we found that the parameter 6 affects the distribution. The
histograms show multimodel of the mixture distribution the parameter 6 increases.

However, the distribution is hardly affected by the parameter a.

44



References

1]

Al-Osh, M. A., and Alzaid, A. A. (1987). First-oder integer-valued autoregres-
sive (INAR(1)) process. Journal of Time Series Analysis 8(3), 261-275.

Al-Osh, M., and Alzaid, A. A. (1988). Integer-valued moving average (INMA)
process. Statistical Papers 29, 281-300.

Aly, E. E., and Bouzar, N. (1994). On some integer-valued autoregressive mov-

ing average models. Journal of Multivariate Analysis 50, 132-151.

McKenzie, E. (1985). Some simple models for discrete variate series. Water

Resources Bulltin 21, 640-650.

Prasanna, S. (2013). Probability and mathematical statistics. Louisvile: Uni-

versity of Louisvile.

Ristic, M. M., Nastic, A. S., and Miletic Ilic, A. V. (2013). A geometric time se-
ries model with dependent Bernoulli counting series. Journal of Time Series

Analysis 34, 466-476.

45



46

Appendix

Coding for INMA(1)

alpha = 0.5

theta 0.5
lambda = 100

101 #number of Xt+1

n

N 10000 #number of simulation
Eps=c(numeric(n))

Thin = c(numeric(n))

w = c(numeric(n))

Xt = c(numeric(n))

sim = array(numeric(n*4*N),dim = c(n,4,N))
for (k in 1:N){
for (i in 1:n){
Eps[i] = rpois(1,lambda)
}
for (i in 1:n-1){
wl1] =0
Thin[1] = 0
Xt[1] =0
wli+1] = runif(1,0,1)
if (wl[i+1] <= alpha) { Thin[i+1] = rbinom(1,Eps[i],alpha+theta-
alphaxtheta)}
else{Thin[i+1]= rbinom(1,Eps[i], alpha*(l-theta))}
Xt[i+1] = Thin[i+1] + Eps[i+1]
M = cbind(w,Thin,Eps,Xt)
}
for (i in 1:n){



for (j in 1:4){
sim[i,j,k] = M[1i,j]
}
}
}

rownames (sim) <-rownames (sim, do.NULL = FALSE, prefix = "index")
colnames=c("w","Thin","Eps","Xt")

dimnames(sim)<-list(rownames(sim), colnames)
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Coding for INMA (2)

alphal = 0.5

0.5

alpha?2
theta = 0.5
lambda = 10

101 #number of Xt+1

n

N

10000 #number of simulation

Eps = c(numeric(n))

wl = c(numeric(n))

w2 = c(numeric(n))

Thinl = c(aumeric(n))

Thin2 = c(numeric(n))

Xt = c(aumeric(n))

sim = array(numeric(n*6*N),dim = c(n,6,N))
for (k in 1:N){
for (1 in 1:n){
Eps[i] = rpois(1,lambda)
}
for (i in 1:n-1){
wil[1l =0
Thin1[1] = 0O
wil[i+1] = runif(1,0,1)
if (wi[i+1] <= alphal) { Thin1[i+1] = rbinom(1,Eps[i],alphal+theta-
alphal*theta)}
else{Thin1[i+1]= rbinom(1,Eps[i], alphalx(1-theta))}
}
for (i in 1:n-2){
w2 [1]

0
w2[2] =0
Thin2[1] = 0O
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Thin2[2] = 0

Xt [1] 0

Xt [2] 0

w2 [1+2] runif(1,0,1)
if (w2[i+2] <= alpha2) { Thin2[i+2] = rbinom(1,Eps[i],alpha2+theta-
alpha2+*theta)}
else{Thin2[i+2]= rbinom(1,Eps[i], alpha2x(1-theta))}
Xt[i+2] = Thin1[i+2] + Thin2[i+2] + Eps[i+2]
M = cbind(wl,w2,Thinl,Thin2,Eps,Xt)
}
for (i in 1:n){
for (j in 1:6){
sim[i,j,k] = M[i,j]
}
}

3

rownames (sim)<-rownames(sim, do.NULL = FALSE, prefix = "index")
colnames=c("wl","w2","Thinl","Thin2" 6 "Eps","Xt")

dimnames(sim)<-list(rownames(sim), colnames)
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Background and Rationale

The integer-valued time series models for time series count data play important
roles in many applications. For examples, claim counts in insurance business, and
the number of stock transactics in stock market. The model was first introduced by
McKenzie (1985) for the lag-one dependence model which is referred nowadays as
the integer-valued autoregressive of order one (INAR(1)) process.

The original integer-valued time series model is based on a Binomial thinning op-
erator which is a compound sum of independent and identically distributed Bernoulli
random variables. Later, Ristic et al. (2013) generalized the Binomial thinning op-
erator to construct a new INAR model, by relaxing the assumption of independence
in the compound sum to a sum of dependence Bernoulli random variables, called the
generalized Binomial thinning operator. The new thinning operator can be applied
to a wider class of applications. For example, survival or collapse of some companies
in economy discussed in Ristic et al. (2013) since all companies operate in the same
macroeconomic and may affect to each others. The problem is more reasonable to

use the dependent thinning operator than the independent thinning operator.
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In this study, we extend the generalized Binomial thinning operator introduced
in of Ristic et al. (2013) to construct more general integer-valued moving average

models, called DBINMA.

Objectives

To extend the INAR(1) model based on the generalized Binomial thinning oper-
ator to DBINMA models and study its properties and applications.

Scope

In this project we will study properties and applications of DBINMA models

based on the generalized binomial thinning operator.

Project Activities

1. Study probabilistic properties of integer-valued time series models and bino-

mial thinning operators.
2. Study probabilistic properties of the Poisson INAR model.
3. Study probabilistic properties of Poisson INMA model.

4. Study probabilistic properties of INAR(1) model with dependent Bernoulli

thinning operator.
5. Construct DBINMA models and derive their probabilistic properties.

6. Summarize the project and write a report.
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Scheduled Operations

Procedures

1. Study Integer-valued time series
maodels and binomial thinning

operators.
2. Study the Poisson INAR models.

3. Study Poisson INMA models.

4. Study INAR models with
dependent Bernoulli thinning

operator.
5. Construct DBINMA models and
derive their properties,

6. Summarize the project and write
a report.

Benefits

The benefits for student who implement this project.
1. To learn properties and applications of the proposed model.

2. To gain knowledge in probability theory and to apply the model to suitable

application.
The benefits for users of the project

1. To have an alternative Integer-valued time series model for wider applications.

Equipment

Software
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1. Microsoft Word

2. Mathematica

3. Program R

4. Latex
Hardware

1. Computer

2. Printer
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