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Chapter 1

Introduction

A time series is a sequence of data that are collected at equally spaced points
in time. Models for time series data can represent different stochastic processes. To
describe the claim count process, broad classes of practical importance are the au-
toregressive (AR) models and the moving average (MA) models. Integer valued time
series models in class of insurance business have innovations which are distributed
on the set of non-negative integers. McKenZie (1985) examined the INAR(1) models
which are interesting models for count data.

Cossette, Marceau and Deschamps (2010) studied risk models based on time
series by considering the class of insurance business risk models based on poisson
distributions. Later, Li (2012) introduced common factor or common shock risk
models based on poisson time series. The common shock in risk models cooperate
effects on insurance business having more than one class.

Poisson distribution is one of the most distributions studied and used in risk
models. However, expectation and variance of poisson distributions are equal which
may not hold in some applications. Therefore, many researchers proposed some al-
ternative integer-valued time series models that generalize the Poisson INAR mod-
els for wider applications. For example, McKenzie (1985) proposed INMA models
based on the negative binomial distributions for over-dispersed data. Later, Laphu-
domsakda and Suntornchost (2018) applied the Negative Binomial INMA model to
construct the new class of business risk models based on negative binomial time
series. Moreover, they derived some probabilistic properties and computed the ruin

probability of their models.



In this project, we will extend the study of Laphudomsakda and Suntornchost
(2018) to construct common shock risk models based on negative binomial time se-
ries and derive some probabilistic properties and also the upper bound of the ruin

probability.



Chapter 2

Preliminary

In this chapter, we provide some basic concepts, definitions and theorems in prob-

ability theory used in our studies.

2.1 Basic of probability theory

Definition 1. Let (Q, F, P) be a probability space and X be random variable. The

function Fx : R — [0, 1] defined as
Fx(z)=P{weQ: X(w) <z})=P(X <z) forzxeR.

is called Fx the distribution function of X.

Definition 2. Let X be a random variable and g : R — R. The expectation of
9(X), E[g(X)], is defined by

Elg(X)] = Zg(x)P(X =x) if X is a discrete random variable
and

Elg(X)] = / lg(x)| f(z)dz if X is a continuous random variable .

—00

Theorem 1. Let a,b € R and X, Y be random variables whose expected values are

finite. The following properties hold



1. Fla] = a,
2. ElaX]| = aF[X],
3. ElaX +b] = aE[X] + b,

J. E[X £Y] = E[X]+ E[Y].

Definition 3. Let X be a random variable with finite second moment. The variance

of X, Var[X], is defined as

Var[X] = B[(X — E[X])Y.

Remarks 1. An equivalent definition of the variance of X is

Var[X]) = E[X? — E*[X].

Definition 4. Let X and Y be random variables. The covariance of X and Y,
denote by Cov(X,Y), is defined as

Cov(X,Y) = E[(X — E[X])(Y — E[Y))].

Corollary 1. Let XY and Z be random variables. We have,
1. Cou(X,Y) = E[XY] - E[X]E[Y],
2. If X, Y are independent, then Cov(X,Y) =0,
3. Cov(X,X)=Var[X].
4. Cou(X,) Y +7)=Cov(X,Y)+ Cov(X,Z)

Theorem 2. Let a,b € R and X, Y be random variables such that E[X?] < oo and
E[Y?] < co. Then,



1. Var(aX +b) = a®*Var(X),

2. Var(aX +bY) = a*Var(X) + 0*Var(Y).

Definition 5. Let X be a random variable. For t € R, the generating function of
X define by
Gx(t) = E[t"]

where domain of Gx is the set of ¢ for all E[t¥] < co.

Definition 6. Let X be a random variable. For ¢ € R, the moment generating

function of X define by

where domain of My is the set of ¢ for all F[e™] < oc.

Definition 7. Let X and Y be discrete random variables such that P(Y =y) > 0,
the conditional probability of X given Y define by

P{X =2, v)

PX =zlY =y) = PY =)

Theorem 3. Let X and Y be random variables, then
E[X] = E[E[X|Y]] (2.1)

and

Var[X] = E[Var[X|Y]] + Var[E[X|Y]]. (2.2)

If Y s a discrete random variable, then the formula is equivalent to

E[X] =) EIX|Y =y]P(Y =y).



Definition 8. The random variables X1, ..., X,, are said to be independent if and

only if

Fx,..x,(®1,...,2,) = Fx,(21) ... Fx, (%)

Definition 9. The random variables X1, ..., X, are said to be identically if and

only if

Fx,(x) = Fx, (x) forallk=1,2,....n

Definition 10. (Bernoulli distribution) A random variable X is said to have

the Bernoulli distribution with parameter p € [0, 1] if
P(X =k)=p"Q1—-p)'* fork=0,1

We write X as X ~ Ber(p).

Theorem 4. Properties of Bernoulli distribution with parameter \ are as follows.
1. ElX]=0p
2. Var[X] =p(1l —p)
3. Gx(t)=(1—p)+pt

4. Mx(t) = (1= p) +pe'

Definition 11. (Poisson distribution ) A random variable X is said to have the

poisson distribution with parameter A if

k
P(X =k)=e >~ forallk=0,1,2,...

We write X as X ~ Poi()\).



Theorem 5. Properties of poisson distribution with parameter \ are as follows.
1. E[X]= A
2. VarlX] =\
3. Gx(t) =MD

4. MX(t) — e)\(et_l)

Definition 12. (Negative Binomial distribution) A random variable X has the

negative binomial distribution with parameters n and p € (0, 1) if

=
P(X:k):(k+z )pk(l—p)”’ forall k =0,1,...

We write X as X ~ NB(n,p)).

Theorem 6. Properties of negative binomial distribution with parameter n, p €

[0,1] are as follows.

_np
1B ="
2. Var[X] = %
pe' "
5 Gxli) = (1 -1 —p)t)
pe’ !

2.2 Compound random variable

In this section, we introduce the definition of compound random variable and its

properties.



Definition 13. (Compound random variable) Let N be a non-negative random
variable and let {X;,i = 1,2,...} be a sequence of i.i.d. random variables, each with
distribution function F and is independent of N. The random variable Sy defined

as

is called a compound random variable.

Note that Sy = 0 when N = 0.

Theorem 7. Properties of compound random variable in Definition 13 is as follows.
1. E[Sn] = E[N]E[X]
2. Var[Sy] = E[N]|Var[X] + Var[N|E?|X]

3. Gg\(t) = Gn(Gx)

N
Proof. Since Sy = Z X;, we obtain that

i=1
1. From (2.1) and Theorem 1(2.), we have

N

E[Sn] = E[Z Xi]

= BIE[Y] XiIN]
= E[NE[X]]
= E[N|E[X].

2. From (2.2) and Theorem 2, we have

Var[Sy] = Vm‘[z Xi]

= E[Var[z X;|NJ| + Var[E[Z XN

= E[NVar(X]| + Var[NE[X]]
= E[N|Var[X] + Var[N]E*[X].



3. From the definition of Sy,
Goy(t) = Gy x, (1)
— E[thLXz‘]

— E[E[Zn X

NJ|
= B[(B[t*])"]

= E[(Gx(t)"]

= Gn(Gx(1))

2.3 Integer valued Moving Average models

In this section, we first give definition and properties of the binomial thinning op-
erator. Then we discuss the definition of the integer value time series and provide

applications of such models.

Definition 14. (Binomial thinning operator) Let M is a random variable, « is

a parameter and 9; is i.i.d. Bernoulli with mean « and independent of M define the

[l

operator “o”as

M
CYOM225Z‘.
i=1

Lemma 1. Properties of thinning operator in Definition 14 is as following.
1. Elao M| = «E[M].
2. E[M(ao M)] = aE[M?].
3. E[(BoM)(ao M) = paE[M?].

4. Varlao M| = a(l — a)E[M] + o*Var[M].



5. Cov(awo M, M) = aVar[M].
6. Cov(BoM,aco M) = paVar[M].

7. Goonr = Gu((1 —a) + at).

10

M
Proof. Throughout the proofs of this Lemma, we let a0 M = )" §; where J; is i.i.d.

i=1

M
Ber(a), and o M = )" n; where n; is i.i.d. Ber(3).

=1
1. Form Theorem 7 (1), we have

M

Elao M| = E[Z 5]

= E[E[Zm’ Z@}M]]

= BB | MIELY 6| ]

= E[M*E[n] E[3]]
= E[M*|E[n) E[3]
= BaE[M?].
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4. From Theorem 7 (2), we have

Varlao M] = Var[z di)

i=1

= E[M|Var[§] + Var[M|E*[9)
= a(l — a)E[M] + o*Var[M].
5. From 1. and 2. and the definition of covariance, we have
Cov(awo M, M) = E[(ao M)M] — E|laco M]E[M]
= aE[M?] — aE[M|E[M|E
= aVar[M].
6. From 1. and 3. and the definition of covariance, we obtain
Cov(BoM,aoM)=E[(foM)aoM)] — E[foM|E[ao M]
= E[M?|E[n|E[0] ~ E[M]E[n)E[M]E[?]
= En]E[0]Var[M]
= BaVar[M].
7. From Theorem 7 (3), we have
Guaona(t) = Et=i=1]
= Gu(Gs(t))
=Gu((1—a)+ at).
]

Definition 15. (INMA model) First-order Integer-valued Moving Average INMA(1)

is constructed by thinning operator to model integer-value time series defined by
Ny =aoeg 1+ &y,
and the Integer-Valued moving average model of order ¢ INMA(q) is defined as
Niy=aj06 1 +mmoeg o+ -+ az06 g+ ¢,

where {g;,t = 0,1, ...} is a sequence of i.i.d random variables which are independent

of N, for all t € N.
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Example of application 1. For N; is MA(1) model we let €; be the new claims
during in period t, B o e,y is the claims from period t — 1 and

Et—1

Boeg1= E 5t—1,j-
Jj=1

Therefore, N, is the number of claims in period t



Chapter 3

Main work

3.1 Introduction

In this chapter, we consider discrete-time risk models with common shock.
Let Nt(n), Ntm) and Nt(m) be independent random variables for count.

The claim-number processes for two dependent classes of business is defined by

N Z p a2,

Nt(Q) £ Nt(22) e Nt(m)-

Cossette and Marceau (2000) assumed that NN and N are indepen-
dent poisson processes with parameters A1, Ass and A5 respectively.

Risk model with common shock risk model extend Nt(n), Ntm) and Nt(m) to
poisson integer-value time series process by Li (2012).

In our common shock risk model for number of claims, Nt(n), Nt(22) and Nt(12)

are assumed to be independent negative binomial time series process.

3.1.1 Model for the number of claims

In risk model with common shock, the common shock components have effect
on more than one business class.
For ¢+ = 1,2, let Nt(i) be the number of claims of ith classes in the period t.

Define
N =N® L NI =12 (3.1)

13
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Then Nt(i) is the common shock risk model and

Nt(2) _ Nt(22) + Nt(12)7 (33)

where Nt(ii) for i = 1,2 is the number of claims independent of another class, and
Nt(lz) is the common component of the two classes.

Assume that Nt(u), Ntm) and Nt(m) are independent negative binomial MA(1)

processes which have the form
N =ayoey +e”, i j=121i<]

where {6§ij ), t=0,1,2,...} is a sequence of i.i.d. negative binomial random variables

with parameters (6;;,7v). The thinning operator “ao” is defined as

5
aoe= E 0,
i=1

where {0;;1 = 1,2, ...} isasequence of i.i.d. random variables following the Bernoulli

distribution with mean a and is independent of ¢.

3.1.2 Risk model
Let U,, be the surplus process at time n € N given by
U S=nYWnr ©8)1) (3.4)

where u is the initial surplus, 7 is the premium income rate.
Define W, as the aggregate claim amount in period ¢. Then we have the accu-

mulate aggregate claim amount
S, = Z W, (3.5)
t=1

We also define Wt(i) be the aggregate claim amount of claims of ith class for

t = 1,2 in the period t. Then the aggregate claim amount W; can be express as

We=WH+ W2 =3 X1+ Xy, (3.6)
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where X;;1,Xi:2,..., 15 a sequence claim sizes which are i.i.d. random variables

with distribution F, and is independent of Nt(i).

Remarks 2. If E[nmt — S,] > 0, then we satisfies the usual solvency condition

nm > E[S,].

3.1.3 Ruin probabilities

Let T be the time of ruin, the first time that the surplus becomes negative,

defined as
T =inf{n € N*|U,, <0, }.
Then the infinite time ruin probability is given by
Y(u) = P{T < oo|Uy = u},

and we have the asymptotic Lundberg-type result

o —IO@)

U—00 Uu

where R is the Lundberg adjustment coefficient. Based on this asymptotic result

and for large values of u, ¢(u) can be approximated by

P(u) = e B
Nyrhinen (1998) and Miiller and Pflug (2001) defined the convex function

cn(r) = % In(E[e =), (3.7)

The adjustment coefficient function ¢(r) defined as

c(r) = lim ¢, (r). (3.8)

n—oo

For r¢ > 0, if the adjustment coefficient function ¢(r) for all 0 < r < ry exists,
there also exists r € (0,7) such that ¢(r) = 0 and the positive zero-root r is the

adjustment coefficient R.
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3.2 Common shock risk model based on the neg-

ative binomial M A (1) process (CNBMA(1))

Definition 16. Assume that Nt(u), Ntm) and Nt(lz) are independent negative bino-
mial MA(1) processes which have the form
NP =aoe) +67, ij=1,2%i<j

where {59 ), t=0,1,2,...} is a sequence of i.i.d. random variables having negative

binomial with parameter (6;;,7) and the probability mass function defined as

e = (410

where ¥y =1 — .

Theorem 8. (Laphudomsakda and Suntornchost, 2018) Let {Nt(ij),t eNandi,j=
1,2} defined in Definition 16, then {Nt(ij),t € Nand i,7 = 1,2} has the following

properties.
1. {Nt(ij),t € N} is a stationary process.

Y 0,
2. B[N = ZEL(1 + ay).

7
ij 05y LY
3. Var|[N7| = 7]2 (afy + a7 +1).
0:50u5y -1
4. Coo(N N[y = ¢ 7
0, [>1.

Theorem 9. The count process Nt(i) (t > 1) and N; defined in Definition 16 have

the following properties. Fori=1,2,

i Osi 0
1. EINY| = %(1 +oag) + %7(1 +an),

7 9” _ 9 _
2. Var[N?] = 77 (a2 + a7 +1) + ;—%m +awy + 1),
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Oii0viy 1 0120127

— — ) l - 17
3. Cov(N, N(Z)) v v
0, [>1,
911%117 I 922%227 i 4912_0412’77 1=1,
4. CO'U(Nt,Nt,l) = v g Y
0, [>1

Proof. Forv,7 =1,2and 7 < j.
From Nt(i) = Nt(ii) + Nt(lz) we obtain

1. From Theorem 1 (2),

EINY) = BIN" 4+ NI
= EN™] + E[N?)

0 012
£ 77(1 + ) + 77(1 + aug).

2. Since N ) and N ) are independent and Theorem 8 (3), we have

Var[Nt(i)] = Var[Nt(ii) + Nt(u)]

= Var[Nt(ii)] + Var[Nt(m)]

By 0127y 0

=2 (aZy + iy + 1) + —- = afyy + a1 + 1).

3. Since Nt(ii) and Nt(m are independent and Theorem 8 (4), we have

CO’U( z) N ) Cov ( (44) —|—N 12),N(ii) +N(i2)>

— Cov(N NN + Cov(N'?, NI (3.9)
Qiicin"y n 912%127’ =1,

= 8 Y
0, [>1.

4. Form N, = Nt(l) N, @ and since N ) and N, (12) are independent and Theorem
8 (4), we have

Cov(Ny, Ni—y) = Cou(NM™ + NP2 4 an N 4 N&2 L an[2)
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= Coo(N", N{'P) + Cov(N, NZD) + 4Cou(N™, N

(3.10)
Qu(zlﬂ i 922%227 i 4‘912_06127, I=1,
= Y v Y
0, [ >1.
Where we use property 3 in Theorem 8 to proof (3.9) and(3.10)
]

Theorem 10. Properties of Wt(i) fori=1,2 and W, defined in equation (3.6) are

as follows.

i Oii 0
1. EwY) = ( 77(1 + ay) + %7(1 +CY12)> B[X;).

2. Var [Wt(i)] =

0;; )
77(]_ + Oé“') —+ "1;—7<1 =+ 0512)) VCLT[XZ]

eii 7 9 —
+ ( 727 (afy + iy A+ 1) + ;—2](04%27 + any + 1>> E?[X)].

i v
0, [>1.

. ‘ E[Xi]Q (Qiz‘aiﬂ 4 912%27) =1,
3. C’OU(Wt(Z), Wt(i)l) -

_ Orov(02yy + a1y + 1)

=2

4. COU(Wt(1)7 Wt(2)> 5

E[X4]E[Xy].

5quz(%§u+mn+2$ﬂ+am>EWﬂ
+ <62?27(1 + arg) + 61?27(1 + 0412)) E[X,].

0 0
6. Varlw,] = 1?”(1 +an)Var[X] + %7(1 + ) Var[Xo]

0 0
—+ %,Y(]. —+ alg)Var[Xl + XQ] -+ 17_127((1%17 + 04117 + 1)E2[X1]

a2y 0127y

+7(a3ﬂ + a7 + 1)E2[X2]+?(04%27 + a7 + 1)(E[X14+X5])%.

0 0 40
E[ng 112117+E[X2]2 22%22V +E[X1+X2]Q 12_04127’
Y Y

7. CO'U(Wt, Wt—l) =
0,

I=1,
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Proof. For i,5 = 1,2 and ¢ < j. From 3.1.2, we have W, = Wt(l) + Wt(Q) and
N(Z)

ZX”].

1. Since X;;;,j > lisii.d, and from Theorem 7 (1) and Theorem 9 (1), we have

N

2. Since X, ;,7 > 1, is i.i.d, and from Theorem 7 (2) and Theorem 9 (1,2), we
have

N

Var W( = Var| ZX”]

(%

INOWar[ X)) + Var[NP E*[ X))
0ii

(1+ o) + 91727(1 + a12)) Var[X;]

9% 0
(7W1n+%n+n+jﬁ%@v+mw+n)E%m-

3. Note that Cov(W?, Wy = EwOW ] — Bw ) EWwY).
From Theorem 7 (1),

EWEWE) = B*X,| B[N EINY). (3.11)

Since X, ; and X, ; are independent,
( ) N(l)
E[ Zth]Zthl]

N(z) N(z)

Zth]Zth lj|N(’L N(’L

Nt(”

t—l
E[> Xt |Nt(z)]E[Z X1 N,
j=1 Jj=1

= E[NY E[X,|NY,E[Xi]]



20

= E’[X,)EINYNY). (3.12)
Therefore, from (3.11) and (3.12) we have
Coo(W W) = BXX,)EINY NP + B[ X, E[N]E[N{
ov(W;, W,2) = E°[X]E] J + EF[X]EIN; VB[N,
— E?[X,]Cov(N, N

E[Xl]Q( uC_Yzﬁ + 122127)
= v g

4. Note that Coo(W, W) = Ew W] — Ew M Ew®)
From Theorem 7 (1),

EWMEW?] = EX]ENYE[X:] B[N (3.13)

Since X, ; and Xy, ; are independent,

Nt(l) Nt(2)

EWIWR =B X1 Xau,)
=1 i

1
N N
= BE[Y X4 > Xa0;INV, N
i=1 j=1
N N
= BB Xig; V] ZXMUV
j=1

= E[NVE[X N )E[XQ]]
= EINM NP E[X1)E[X). (3.14)
Then from (3.13) and (3.14), we have
Coo(W, Wy = EINY NP E[XE[X] — E[NVE[X1]E[N?|E[X,)]
= E[X1|E[Xs](Var[NY + NP = Var[N] = Var[N2]) /2
— E[X1|E[Xs)(Var[NM'V] + Var[NP?) + aVar[ N
— Var[N{"V] = Var[N?] — 2Var[N?]) /2

= E[X1)E[X.]Var[N*?)]

_ Oy(adyy + oy + 1)
— =

where we use Theorem 8(3) to obtain the last equality.

E[X1]E[Xa],
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5. From Theorem 1., we have
EW,] = EW,"] + EW;”)]

0
= (? 1 + 0511 + %7(1 + 0412)) E[Xl]

6907y 0127
+ (?(1 + a2 + 7(1 + 0‘12)) EX,).

6. From 2. and 4. ,we have
Var[Wy] = Var[w" + W]
= VarW "] + Var[W?] + 2000(W", w?)

011y 0127
= < ,y (1+ )+T(1+a12)) V(M’[Xl]

9 0
+ ( }yw(a%ﬂ +auy+1) + ;ﬂ(oﬁﬂ + a9y + 1)) E?[X,].
0 0
+ ( 257<1 + ) + %7(1 + Ozlz)) Var[Xs)
9 0
+ ( ’2;7(04327 + Yy + 1) + ;27(@%27 + QY + 1)) E*[X,).
0107 (adyy + 1oy + 1)

72
B2y
1 + Oéll)VCLT[Xl] == T(l == CYQQ)V&T[XQ]

+2

E[X1]E[X5]

9117 (

0 0
+ %’}/(1 + ozlg)Var[Xl -+ XQ] + ,1)/17 (Oé%l’)/ + Oéll’}/ + 1)E2[X1]

0227(

0
+ 127(
7

a5y + a2y + 1) E*[X5] + afyy + a1y + 1) (E[X; + Xo])?

7. Note that COU(Wt, Wt,l) = E[WtWt,l] — E[Wt]E[Wt,[]

Since {W4,t € N} is a stationary process and from 5.,

EW||E[W,| = E*[W]]
= (B[] + BW,))?
= (E[X\E[N{"] + E[Xa] E[N?))?
= B[ X,|E[NV)E[ND] + 2E[ X1 E[ X2 EINYM E[N?)]

+ B[ X, E[NP]E[ND). (3.15)
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Consider E[W;W;_],

W) = B + W)W + w,2)

Similarly to (3.14), we have

EWIWA] = E° X EINS N,

EWMW) = B[X1)E[X,)EINEING),
EWS W] = E[X) B[N E[X] B[N,
EWPWR)] = B[ X, EINP N2

t

Therefore,

E[W,W,_] = B*[X,|EINV NY) + E[X\]E[Xo) EINVE[NS)

+ E[X)|EINYE[X,) EIND + B2 X,)E[NP NP, (3.16)
Then from (3.15) and (3.16) we have

Cov(Wi, Wy_y) = B[ X (B[N ND) = EINMEIND))
+ BPGIEINI N —EINIEIND)
= E2[X,]Cou(NY, Ny + E*[X5)Cov(N, NP

} Q11Oé117 ] 922(1227 491204127

E[X1 —|—E[X +E[X1+X]

0,

]

Let SU? be the aggregate claim amount with claim-number process Nt(lz)

and claim-size distribution F,x,, and let S (¢ = 1,2) be the aggregate claim
(i4)

amount with claim-number process N, and claim-size distribution Fly,. We write

Sy = Z NI s Z N and S = 32 NM. Then we can obtain the
ti

moment generatmg functlon of S,, as the followintg theorem.

[=1,
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Theorem 11. The moment generating function of S, can be expressed as

S(ll) T‘SV(LQQ) TS”(112)

Ele™"] = E[e"" "|Ele |E[e - (3.17)
Proof. With (3.5) we have
_ <Wt(1) + Wt(2)>
t=1
Nt(l) Nt(2)
P DIR TR PR
t=1 j=1 J=1
" NV, N2 N,5(22)+N(12)
= > Kuat D Xau
t=1 j=1 j=1
" Nt(12) N(u) N(22)
= Z(Xl,t,j+X2,tj ZXlt]+ZX2t]
t=1 \ j=1
" Nt(12> 11) n N(22)
B 3D EIEEANES 55 3L WIS 35 3F
t=1 j=1 t=1 j=1 t=1 j=1
Then
" N(12) — N(11) 22)
E[ exp{rz (Xi5+ Xouj) +ZZX”J+ZZX2”
t=1 j=1 t=1 j=1 t=1 j=1
i Nt(12) L Nt(n) i Nt<22>
= E[(Mx,1x,(r))= ~ (Mx,(r))= ~ (Mxy(r))= ]
3= N2 S~ (1) 3 N3

= B[(Mx,+x,(r))= " JE[(Mx, ()= 7 ]B[(Mx, ()= ° ] (3.18)

Hence we may consider the aggregate-claim-amount process S,, as the sum of
three independent univariate aggregate-claim-amount process Sy, (12) S M and S92

Then (3.18) becomes

(1) (22)

Ele™"] = E[e™" |E[e™"

(12)

|Elemsn”).
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Theorem 12. The adjustment coefficient function c(r) of U, where Nt(i) be a
CNBMA(1) is

2|
2|

)= fulos (1 — (@0 M, (1) + an M, <r>>) s (1 (@M, () + azzMM)))
g

+ 012 1og <

—rm,
1 — y(@aMx, 4 x,(r) + a1aM3 | x, (7”))>
for r € R such that 1 — ~v(a;; Mx,(r) + O‘z’ngcl(T)) > 0, 1— ~v(a;Mx,(r) +

aijM)QQ(r)) >0, and 1 — y(@;; Mx, 4+ x,(r) + aijM)Q(ﬁXQ(r)) > 0.

Proof. With (3.17), we write ¢,(r) as

cn(r) = %log(E[er(S"_m)])

— L log(E[eS)) — rr

—3

= ~log(E[eS" B[S BleS8 ) — rr

—3

3

= _ <log(E[eTS£LH)]) + log(E[eTS£L22)]) + log(E[e’"S’(Lm])) — 7.
Thus we have

c(r) = lim ¢,(r)

n—oo
1 1 rsitH ; 1 rS&? ; 1 sy
= lim —(log(E[e™ )+ lim —log(Ele™" ]) 4 lim —log(Ele™ ) —r.

Referring to Laphudomsakda and Suntornchost (2018), for ¢, 7 = 1,2 we have

o1 (i5) q
lim —(log(E[e™" " ]) = 6;;1 ’
nlﬁrgo n( Og( [6 ]) J Og <1 - p(@ijMZij (7') + aijM%ij (7”)))

for r € R* such that 1 — p(@;; Mz, (r) + aingij(r) >0and 7,7 =1,2;7 < j, where
Zn = X1, Zo» < Xy and Zp5 4 X+ Xo.

Therefore ¢(r) can be rewritten as

=2
=2

) =0t (T ramrn) o (e e

+ 612 1log ( — 7 5 ) — .
1 —y(@Mx, 1 x,(r) + a1aM3 ., (7))
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for r € R such that 1 — p(a;;Mx,(r) + a;M3 (r)) > 0, 1 — p(@;Mx,(r) +
;i MZ, (1) > 0, 1= p(@iMx, 4x,(r) + 03 M%, y x, (1)) > 0.
0

Remarks 3. The first two derivatives of the adjustment coefficient function c(r) in

Theorem 8 are given as follows

1.

’

de(r) — Oury(@uMy, (r) + 200 Mx, (r) My, (7))
dr 1 — (@ Mx, (r) + auM}{l (r))
9227(522M;<2 (1) + 2a92 Mx, (T)M;(Q (1))
1 — y(QpaMx, (r) + ap Mz, ()
0127 (@12 My, ¢ x, (r) + 2012 Mx, 1 x,(r) My, x,(r))
1= y(@aMx, 1 x, (1) + 12 Mz, x, (1))

de(r)  Ony(an My, (r) + 200 My, (r) My, (r) 4 2011 (M, (r))?)
dr?2 1 — (@ Mx, (r) + oan)z(l(r))
n 9227(522]\/[;(2 (1) + 200 M, (T)M;Q (r) + 20422(M),<2<7"))2)
1 — y(Qaa M, (1) + o M, (1))
012y (@12 My, x, (1) + 2000 Mx, 1. x, (1) My, x, (1) 4+ 2002(My, , x, (r))?)
+ =
L= y(@aMx,1x,(r) + c12Mz , x, (1))
ow(auM;(l (r)+ 20411M;(1 (r))2 047(@22]\4;(2 (r) + 20422M;(2 (r))?
(1 = y(@uMx, (r) + anMz, (r)? (1= y(@Mx,(r) + an Mz, (r))?
ay(@aMy, , x, (1) + 2012 My, , x,(1))?
(1 = y(@1aMx, 1 x, (1) + 1Mz 5, (1)

_|_

For r € RY such that 1 — p(ayMx, (r) + anM3 (1)) > 0, 1 — p(@aeMx,(r) +
an Mz, (1)) > 0, 1 — p(@1aMx,+x,(r) + a1sMz, , x, (1)) > 0.

Lemma 2. From the expression for adjustment coefficient function of common shock
risk model based on Negative Binomial MA(1), the equation c(r) = 0 has the unique

solution.

Proof. To prove that ¢(r) has a unique positive solution, it is sufficient to show that

de(r)
1.
dr

‘r:O < 07
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d*c(r)

2.
dr?

> 0,

1
;, 1—7(6ijMz(7“)+OéijMZ(7“) > 0, 1—7(@7’]\/[2(7")"‘

@ijM2(r) > 0 such that lim c¢(r) = +o0 fori,j =1, 2.

r—r

3. There exists r* for Mz(r) <

1. Evaluating at r = 0, we obtain.

de(r)
dr

dc(r 0 0
o = (14 an) B(X) + 229 (1 + am)E()

0
+ %’Y(l + Oélg)E(Xl + XQ) — T

= E[W] -7 <0,

by using the fact that E[W]| < 7.

2. Since X is claim size, X; > 0.
Consequently Mz, (r) >0, My (r) >0 and Mz, "(r) > 0.
d?c(r)
dr?

Since 1 — y(@ij Mz, (r) + ai; M7z, (1)) > 0, > 0.

3. Consider 1 — (a1 Mx, () + an M5 (1)).
Since Mx, (r) is increasing to infinity and continuous function on [0, o], we
obtain that
1 — y(a@ Mx, (r) + a1 M3, (1))

is decreasing and continuous function.

Then there exists r] such that

lim 1—~(@uMy,(r) + a1 M3, (r) =0

r—=ryT
and
1 —y(@ Mx, (r) + a1 M3, (r)) > 0 forall 0 <r <rj.
Hence,
lim 64 log < — il . ) = 4o0.
roryT 1 —’7(a11MX1(T) +OZHMX1(7‘))
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Consider 1 — (@2 Mx, (r) + asa M3, (1)).
Since Mx,(r) is increasing to infinity and continuous function on [0, 0o}, we
obtain that

1 — (@ Mx, (1) + an Mz, (1))

is decreasing and continuous function.

Then there exists r5 such that

lim 1 —~y(@pnMx,(r)+ 0422M)2(2 (r)=0

roTy
and
1 — (@ Mx, (1) + M3z (r)) >0 forall0 <r <rj.
Hence,
lim 65 log ( — il 5 ) = +o00.
roTy 1 # ’}/(OéQQMXQ (T’) + OZQQMX2 (’f’))

Consider 1 — y(aoMx, 1 x,(r) + a1aM% | «, (7).
Since Mx, 1 x,(r) is increasing to infinity and continuous function on [0, 0o],
we obtain that
1 — (@M, 1x,(r) + a2 My, oy, (1))
is decreasing and continuous function.

Then there exists r; such that

lim 1 — (@M, 4 x,(r) + 01aMz,  x,(r)) =0

Ty
and
1 — y(@aMy,4x,(r) + a12M3,  x,(r)) >0 for all 0 < r < 7j.
Hence,
lim 65 log < — il 5 ) = +4o00.
5T 1 —y(@aMx, 1 x,(r) + ar2M5, , x, (7))

: _ * . £k 0k
Therefore, Tl_l){ﬁr*li c(r) = +oo where r* = min{rj, r3, r5}.



28

3.3 Common shock risk model based on negative

binomial MA(q) (CNBMA(q))

In this section, we introduce the structure and properties of CNBMA(q) process.

Definition 17. Assume that Nt(u), Ntm) and Ntm) are independent negative bino-

mial MA(1) processes which have the form

N = anijo el + agjo €7y + -+ g 0 5152—]1)1 +e?, ij=12i<],

where {5,@ ),t =0,1,2,...} isa sequence of i.i.d. negative binomial random variables

with parameter (6,;,7) and probability mass function defined as

y+0ij—1
Y

ot = ),

where ¥ =1 — 7.

Theorem 13. The sequence of {Nt(ij),t € Nand i,j = 1,2} defined in Definition
17 have the following properties.

1. {Nt(ij),t € N} is a stationary process.

05y
7

2. EIN{") = = ongj + -+ + agij + 1)

ij 0ij _
3. Var[N{/] = 7]27[(0@27 o)y + (omg + o+ agi) T+ 1

qij

(07 i)
#quj , l<aq,

4 CooNPNE) = BBy

0, l>q,

\

where Bl(;j) = uij + Oi41)ijQ1dj + - Qlgig Qe g—1)ij-

Proof. Forv,7 =1,2and 7 < j.
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1. Since {5§ij), t=0,1,2,...} is a sequence of i.i.d. NB(6;;,7) random variables,

(i5)
Gy (r) = B[]

= Blrowsesiiranyos Dyt tagyos el

= Elraiea]. .. Blpoarca ] Bl |

= ngm (1—a)+ar)---G () (1—a)+ ar)Gegz-j)(r) (3.19)

q
—G(”) HG(”) 1—0&)-1-0&7’)
k=1

where we use Lemma 1 (7) to prove equation (3.19).
We can observe that GN@J (r) does not depend on t, then {Nt(ij),t € N}isa

stationary process.

2. Since {537),15 =0,1,2,...} is a sequence of i.i.d. NB(6;;,7) random variables
and by Lemma 1 (1),

E[N{] = Blohijo et 4 - + agy o el) + &)
= Elonij 0 e+ - + Elag; 0 e9)] + B[]
= alijE[s,EUi] + aqijE[&EZ]()}] + E[eg”)]

B Hzﬂ(

Ofll] + 4 Ctij == 1)

3. Since {sgij),t =0,1,2,...} is a sequence of i.i.d. NB(6;;,) random variables
and by Lemma 1 (4),

Var[N( 7 | = Varfay; o eg ]i + g o agi,j,)] + 5§ij)]
= Var|ay;j o eg ]i] + o+ Var[ag; o €t q] + Varle ”)]
= EleNVar|oy;] + Varle!) B [ay;) + - -

+ E[gt q]Var[aqzj] + Var[egwq]EQ[aqij] + Var[gfj)]
0; ”
- < ,;7(05111)(1 — o) + #;ai]) 4.

0: 0iiy 0iiy
+ < ]v(aqij)(l - O‘qij) + #O@j) + %2

=2l

_ 91]7

—

(% +oota ng)7+<alw+'”+aqij>7+1)

72
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4. To prove (4) we use the fact that {5§ij),t =0,1,2,...} is a sequence of i.i.d.

y 0;:
NB(6,,7) random variables having variance Varle(?] = 2=
f‘)/

We divide the proof into three cases; | < ¢, | = ¢q, and [ > q.
For | < ¢, we first show calculation for /[ = 1 and then the calculation for any
[ <q.

For [ =1, we have

C’ov(Nt(ij), Nt(ijl))
= Cov(ayj o 8,51_% + -t ag;o 6,§i_j()] + 5£ij)’ 145 © 5§’_3; a0 5§i—j¢);—1 + gl(tz_q)
= Cov(aui; o ("}, £{”)) + Cov(ani; 0 ), anyj 0 ) + -+ + Cov(ag; 0 e agoryy 0 £f7))
= cxujVar[aEi_j%] + Oézz'j&ujVar[gf_j%] RVE /A OéqijOé(q_l)ijVar[egi_j;]
057y

N ?[aw + Qg0 + oo Qi O g—1yigl-
For [ < q, we have

Cov(N{”, N;23)

= COU(CYU]' o 6?_]% +-+ Qlgij © 5?_],)1 = €§ij), 145 © Egiji,l +---+ Qgij © 55/?2171 + 61(51]1))

= Cov(ay; o »SEZ), egljl)) + Cov(aus1)ij © gi?zlﬂ), Q5 EEZ_JEZH)) e
+ Cov(ag; o 57@31’ Q(g-1)ij © 57@31)

= (Xlijvar[gfgl—]z)] + a(z+1)ija1ijVGT[€£Z_2H1)] -l ~'Y aqija(q_l)ijVar[gf_];]
«9U7

= ?[Oﬂij + Q41005 F 0 F Qi g-yig),

For [ = ¢, we have

Cov(NP, Ny
= Cov(anj; 0 ggl—]i g o 5§i—j21 + 5§ij), Q135 © ei"_jé_l + ot ag;o E,Ei_jzl—q + egl_];)

= Cov(ag; o et?), (%))
Oiy
= %aqija
where we use Lemma 1 (6) to prove the last equality.

Forl>gq,thent—1—1<t—q.

Therefore,

Cov (Nt(ij) ) Nt(ijl) )
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= Cov(ay;; o 5,@} + - Fag;o 6§ 31 + 5( i) , Q15 © af_jl)_l + o Fag;o 5,52  + &;E”))
(3.20)
=0,
where 5,(jj ' in (3.20) are all different.
02 i ()
5B, 1<q,
Hencea COU(Nt(ij)7 Nt(ijl)) = ewfé—;ﬂu [ = q,
v
0, l>q,

]

Theorem 14. Properties ofN fori=1,2 and N, defined in Definition 16 are as

follows.

i Oii 6
1. E[Nt( )] = ( fy(alii"i_"‘"i_aqii‘i‘ 1)) - ( 1;7(0412—1- —i—()qug—i-l)) :

7 91‘2‘ _
2. Var[Nt( )] = < J((a§“+-~ + q”)wr(am+-~-+aqii)7+1)>

7
0 _
n ( ;27 ((04%12 YR qw)’Y + (a2 + -+ aq2)¥ + 1)) :

(O @ 0
_;B( ) 12273(12)’ 1'%y,
Y
3. Cov(N! N(z)) 9ii_042ii’7 3 9125421277 reg,
g v
\0, [>q.
(6 0 46
1_12731((11 ) 2273(22) _122’7Bl(q12)7 l<q,
g Y
4. Cov(Ny, Ny_y) = ané;ﬂ i ‘922_062227 i 4912_0241277 l=gq,
v v v
07 l > q.

\

where Bl(;j) = uij + Oi41)iQ14j + - QlgijQg—1)ij-

Proof. For i,j = 1,2 and ¢ < j. From Nt(i) = Nt(ii) + Nt(m) and Definition 17, we

obtain the following poofs.
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1. From Theorem 13 (2), we have

EINY] = BN + N

= EIN] + E[N"?]

0, 6
= < 77(0411'1 T+ Qg 1)) + (%7(04112 T+ Qgiz + 1)) :

2. Since Nt(ii), Nt(m are independent and by Theorem 13 (3), we have

Var[Nt(i)] = Var[Nt(ii) + Nt(w)]

= Var[Nt(ii)] + Var[Nt(lz)]

Oiiry —
= (BMt o b G oo 1)
0127y 2 2 _
+ ?[(04112 + o)yt (e + - o)y +H1]
3. Since Nt(ii), Nt(12) are independent and by Theorem 13 (4), we have

C’ov(Nt(i), Nt(i)l) = C’ov(Nt(ii) -+ Nt(m), Nt(iil) + Nﬁ?))

— Cou(N, Ny + Cou(N", NI

( Oy iy 0127 L12)
972 By Z?qu , 1<q
= n‘ff;ﬁ — 123421277 l=gq
8 0
0, [>q.

\

4. Note that N, = Nt(l) U Nt(2). Therefore,

Cov(Ny, Ni—y) = Cou(NM™ 4+ NP2 an NM 4 N&2 4 a2

= Coo(N", N{1P) + Cov (N, NZD) + 4Cou(N™, NP

(g g 0, <

_ 911342117 + 9222222’7 n 4912_6512”7, I=q
Y Y g

0, [ >q.
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Theorem 15. Properties of Wt(i) fori=1,2 and W, defined in 3.1.2 are as follows.

i 0 0
1. EW] = (< 77(0% o g+ 1)> + ( 1;7(%2 Fo g+ 1))> E[X].

O
727[(04%14‘ tota qu)7 + (oni + -+ + i)Y )
0
" <%_22/7[(a%12 t-ta ng)fy + (O{112 +ooet aq12)7 1 ) ]
3. Cov(W?, Wt(i)l)
(
eii (2 0
E2[X)] ( 7]Bl‘ )+ i—ﬂB(q”)> , 1<q,
6“’0&“ 6 (6%
= E2[Xi] ( - i i 12_212’7) : VL
7y &
07 l > q.

\

0
4. Coo(WH W) = %—227((04%12 e ad)y + (ane o+ age)T + D EXG]E[X).

0 0
( 11’Y a111 + -t ag + 1) + %2(04112 + o+ ago + 1)) E[Xl]

) 0
+( 257 (a2 + - +age+1)+ %7(1 + o+ Qgiz + 1)) BX].

011 025
0. V(ZT’[Wt] = 77 (06111—|— +Oéq11+1)va/f'[X1] 7(@1224—' . '+ozq22+1)Va7“[X2]

ji
0127y

+ T(Oém +oo A age + D(VarXa] + Var[X))

0
+ ,1—}/127((04%11 + 4 a2y + (e 4 - aqu)T + 1) E?[X]

9 —
+ ?7227«04%22 +oe o ag)Y + (Qaz e g2)T + 1) BN

0
+%_227(<O‘%12 o alp)y + (ane + A age)T + D(E[X+E[X,])?.

7. COU(Wt, Wt l)

' 9 9 9
E? [Xl]—;wB (11) | po [XQ]—%QVB(”) +E2X) + Xo] ;WB(”), 1<q,
0 9 0
={ g2 X4] 110z117 EQ[X2] 2204227 EQ[X1+X2] 1231277 l=q,
0, [>q.

\

where Bl(;]) = Quij + O(141)ij0ij T =+ Qi X (g—1)ij -
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Proof. For i,5 = 1,2 and ¢ < j. From 3.1.2 we have W, = Wt(l) + Wt@) and
N(Z)

Z th]7

1. From Theorem 7 (1) and of Theorem 9 (1), we have

N

= E[; Xit]
= E[N)E[X)]
_ ((02‘%‘7(0411»1» bt ag + 1)> + (91;7(@112 + ot g+ 1))) E[X,).

2. From Theorem 7 (2) and Theorem 9 (1,2), we have

N

Var| Wt = Var| Z Xt

—E N“ Var[X,] + Var[N] E*[X;]
(X 9
= (( fY alzz -4+ aqii + 1)) += < 1,)2/7 (Oéllg + 4 Oéqlg + 1))) V(IT[XZ]

ZZ’V J—
( 72 [(afi + -+ o)y + (i + -+ + aga)7 + 1]) E*[X;)

7
+ ( ,1—;27 @y +---+a W)’Y + (0qi2+ -+ ag2)7 + 1]) E?[X;].
3. Similar to Theorem 10 (3), we have

Coo(W, W) = EwPw] — Ew 1 EWS)

= E?[X,]Cov(N", N¥)

/

Oy i 012y
px) (228 + B5) i<

— Ez[Xl] < i Qg7 + 1204127) 7 | — q,

7 7

0, [ >q.

\

4. Similar to Theorem 10 (4), we have

Coo(W, W) = BEWOWS — B EW?)
= BINYNPE[X)E[Xs) — EIN1B[X1] B[N E[Xs)



= E[X1]E[X.]Var[N*?)]

o ‘9127« 2

— (g + -

5. From Theorem 9 (1), we have

EW,) = EW] + E[W?)

0 0
= (%7(04111 + - agn + 1) 127

0 0
i (%7(0‘122 ot g 1)+

6. From 2. and 4. we have

VarWy] = Var[w? + W]
= VarlW"] + VarlW?] + 2000wV, w?)

0117y 022y

= ?(05111 R aqll + 1)VG/T'[X1}

oy

+ ?(am + o+ age + D)Var[Xq] + Var[Xs)]
0
+ %_127(@%11 V ;oo a211)7 + (i + -+ agn)7 + DE*[X]]
ooy 2 2 — 2
7((04122 s O‘q22)7 + (a1aa+ -+ ag)7 + 1) E7[Xo)]
0
+ 2 (oo o)+ Qo aqn)7 + (BRG] + BLX))?

7. Similar to Theorem 10 (7), we have

COU(VVta Wt—l)
= E[W,Wi| — EW]E[W,;_)]
= B[(W" + W)W + W) - B2 W]

= E2[X]Cou(NY, N) + E*[Xa)Cou(N, N2)

( 0127y

0
227 —|—E2[X1 —|—X2] 72 B(12)

0
AL EQ[X2]—72 B®)

72
O110017
72

E?[X]

lg lq

O120127y
7

0
E?[Xy) + O 4 B X

0,

\

)

35

-+ 06212)’)/ + (&112 +---+ qu12)7 + 1)E[X1]E[X2]

+ ?(04112 + -t age + 1)) E[X]

—|— ?(1 —|— 112 —+ -+ Oéqlg + 1)) E[XQ]

+ ?(Oélzg 4+ 4+ Oéqgg + 1)VGT[X2]
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Lemma 3. For Nt(u), Nt(n) and Ntm) be a NBMA(q) defined in Definition 17, we

have

1 i
lim —(log(E["")) = 615 log i
n—oo N -~
L — v Mx, 4 x,(r) [T (@2 + ciraMx, 4 x,(7))
i=1
q 1
where r € {r € RY|Mx,+x, [[(@i12 + cinaMx,+x,) < 5};
i=1
. 1 rott) il
lim —(log(E[e™" ]) = 611 log 7
n—oo M, -~
L —yMx, (r) [T(@1 + aniMx, (1))
i=1
q 1
where r € {r € RT|Mx, [[(@i11 + cit1Mx,) < ;}7
i=1
. 1 rs? il
lim —(log(E[e™" ]) = 64 log q
n—,oo N, —
1-— ”)/sz (T) H (051'22 + 047;22MX2 (T))
=1
q 1
where r € {r € RT|Mx, [[ (@22 + isaMx,) < ;}
i=1
Nt(12) N2

Proof. We rewrite S — >

(n)
Xy + Xoyjas 57(112) = > Xk + Xox.
1 k=1

—_

j=
1,2,...} is a sequence of i.i.d. random variables with

t
Assume that { X + Xox, k

mgf MX1+X2 .

Then the m.g.f. of S8 can be expressed as
~(12)
Eler ™) = oS Xt

g
= E[E[er 2= Xiet+Xok |N((i)2)]]

(12)
N

— B[] Bl

k=1
(12)

N,
= E[Mxl(ﬁr)XQ (r)]
= GN(“?) (MX1+X2 (T))v (321)

where G a2 (r) is the generating function of ]\7((;)2 ). Then
(n)

(12) | A(12) | Ar(12)
Gy (r) = B e
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[T(Egm)+a1120€§1_21)+---+aq1208§1_2;) ((12)+a1120€é 1)+ +aq1208é ;)Jr +(a11205( )1+ +ag1 205(12)+ (12))]

[raql2oa§1—23]E[ RICE 1)120‘5(2 3—&-%1205;1_2;] X e X E[Tolluoéém)+---+aq1205812)]

E
E

n—q
% E[rauzoem Dy +0g120€m, (12) (12)

(12) , (12) (12)
+em ]E[TQHQOEH o 1+"'+a(q*1)1206n—q—1+8n—q—1]

3
I

(12)+ (12) (12)

X oo x B[reneesaten ) gl ] (3.22)

where t,q € N.

Since {d;12} is a sequence of i.i.d. Bernoulli random variables with mean ;o

and {61512),75 =0,1,2,...} is a sequence of i.i.d. Negative Binomial random variable
with parameters (0;2,7).

Counsider
{2

Bl = BB el

(12)

= F H E 5zq12

LIE 551_23
= (Oéqlz + Oéq127“)
012
= , (3.23)
(1 Y(Cq12 + %127‘))
for aqlg + Qq127 < —.
7
Consider
&7 12)
12
E[r (a— 1)12°Eg 3+Oéq1 0‘5; Zz] — E[E[ Zz 1 5l(q 1)12+Zl 1 5lq12|€ 12)“
i (12) (12)
—FE|E Zz 17 Su(q- 1129‘5(12 E Zz 1 5lq12;’€ (12)
q —q
(12) (12)

= F H E[r di(q— 12] H Elr 5lq12

(12)

(12)
=F |:(a(q1)12 + Oé(q71)127“)€27q (@g12 + Oéq127")€2q]

(12)
=K [((a(q—l)lz + Oé(q_l)lgr)(aqu + aqlzr))szq]

012

= ! , (3.24)

q
—v II (@a2 + aier)
1=q—1




q 1
for H (@m + Oéilg’l") < —.

i=q—1 Y
Consider

(12)
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(12) (12)

oo ) = gty fu i 1)

=F

g 1

for H(am + 061'127’) < ;
=1

Form=1,2,...,n—q,

E[TOC112O€1<'1}L2>+"‘+Oéq12057<'r11,2>+5£7%,2) —
=
=F
=F
=F

a 1
for r H(am + OéilgT’) < —.
i=1 Y

a _(12)
HE [rzlol 511‘12;“8((]12):”

[ i=1

r (12)
q €o
IT (110
i=1 =1

[ _12)
H (@12 + aypor)"°

O E(()12)

q
( (@ira + sz?"))
=

2

\ : (3.25)
1—7 1:[

=1

(@irz + o)

(12) (12)
BEfSi st e+ fuatl? | 02))

[— =2
rem HE

_(12)
TZZ’:"I 6li12|€£é2)

| i=1
I (12) e

12
rem H H E[Tﬁmz]

=1 =1

T s e
T H(Oéilz + a;197)
| i=1

- (12)

q €7IL
r | (@2 + ainar)
i=1

012

f)/

: (3.26)

q
1L —r [[ (@2 + aser)
i=1
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Consider

(12) (12)
E[r‘111208 o208, ) 1+55333H] - E[E[rzl T S T Sy rakel 2 1|5n122] 1]
(12)

(12) gnqulé (12)
— En— = 1312
=F|r qlllE reei=1 |5n_q_1

(12)

q— nql

— F T‘ESEL*IH H E’[Tésmz]
=1

i=1
q—1
(12) (12)

= FE |rfr-a H(am + urar )Tt

=1

—1 En—qfl

=\F T (Ozzlz -+ 041127’)
1,

£y

)

f)/
3 N , (3.27)
L —r [ (@12 + ai1ar)
A,

q—1 1
for r H (5112 + OéilgT’) < —.

i=1 Y
Consider

(12 )
E[T&11206(12)+€(12)] = E[E’[ Zz 1 Loinatel 1|5 12)“

i _a2) (12)
= F |rn1F Zl 1 51112|€ (12)

(12)

(12)

12
=F [T n— 1(06112 -+ 061127’) i|

2
(@r1or + ca12r?) "

E
012
= , 3.28
<1 7( 041127“-1—041127”2)) ( )

for @iyiar + 11212 < —.
v

and

B[] = <L> " (3.29)
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for 0 <r < —.

g
Substituting equations (3.23) - (3.29) into (3.22), we obtain

012
5 012 5
G ij = X
N<(n>)(r) (1—7( ))

Qg12 + Qg1aT ﬁ
=q—

(04212 + &2127")

7 1

—yr H @itz + Q127)
Z
012

y gl

Q127 + Q1272

012

012(n—q)
-T1 i

q
1 — v [[(@i2 + aier)

=5

) Y
s=1

q
1L —r [T (@12 + qirar)
i=1

012
q—1 —

< [ !

=1
where

re{re R+|max{H(O@12 + @i1a7), T

q s 1
H (@12 + auaom), T H (@2 + aer), T} < —}
Combining equatlon (3 21), (3.22) a d

=1
(3 30), we have

012
Elorsi?) _ d v
e ] =] 7

s=1

1=s

1—7 H(am + @inaMx, 1 x, (7))

012(n—q)
X 7 1
1 — v Mx, 4 x,(r) [T (@2 + iiaMx, 4 x,(7))
i=1
012
q—1 ~
<I1 —
s=1

1= yMx, 4, (r) JT (@2 + qinaMx, 1 x, (7))

i=1
y ( 5 )912
1- PYMX1+X2 (T)

(3.31)

—
012(n—q)
X 7 g
1—7 H (@ir2 + i1ar)

_ 012
XA X — 7 X
= (1 = )) (
1L —r [T (@2 + ciror)
i=1

— 012
i x (1 _7 T) (3.30)
s=1 \ 1 —~r H (@it + viror) !

40

1—r

)912
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wherer € {r € RT| H(az12+04112MX1+X2) My, +x, H(%1z+04112MX1+X2) My, +x, H(Oém—l—

=8 =1 i=1
1
ditoMx, 1 x,), Mx, 4 x, < ;}
Hence,
1 502 2l
lim —(log(E[e™" |) = 612 1og 7
n—oo M, —
1 —yMx, 1 x,(7) [T(@n2 + anaMx, 1 x,(7))
i=1

a 1
where 7 € {r € RT|Mx, . x, [[ (@12 + ai1aMx, 1x,) < ;}
=1
(11) ‘ V(2
We rewrite S\ Z Z X4, as SEH =D o Xik-
t=1 j=

Assume that { X5, k=1 2, ...} is a sequence of i.i.d. random variables with m.g.f.
My,

Similarly to S we can derive

1 1
lim —(log(l}?[(a’"s’(l1 )]) = 011 log 7 !
n—oo N, -~
L — My, (r) [T (@1 + amnnMx, (1))

=1

g 1
where r € {T - ]R—i_“\fx1 H(ain —+ Oéiqul) < ;}

i=1
(22) n N(22) 22) N2
We rewrite Sy, = ) Z Xoy, as 4 — Y o Xo.
t=1 j=

Assume that {Xog, k=1 2, ...} is a sequence of i.i.d. random variables with m.g.f.
Msy,.

Similarly to S we can derive

1
lim —(log(E[eTSgQ)]) = Oy log q -
n—oo M, -~
L — yMx, (r) [T (G2 + cinaMx, (7))

=1

q 1
where r € {r € RT|Mx, [[ (@22 + aiaMx,) < —}.
i=1 i
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Theorem 16. The adjustment coefficient function c(r) of U, where N (i=1,2)
be a CNBMA(q) is

c(r) =b121og 2
L — v Mx, 4 x,(r) [T (@2 + o Mx, 4 x, (7))
i=1
+ 011 log q E
1 — yMx, (r) [T(@m + i Mx, (7))
i=1
+ 03 log q E -
L — yMx, (r) [T (@ig2 4+ cinaMx, (7))
i=1

q q
where v € {r € RY|maz{Mx,  x, [[(@2 + qinaMx, 1 x,), Mx, [T (@11 + i Mx, ),

i=1 =1

q 1
My, [[(@iz2 + ainaMx,)} < ;}

i=1

Proof. Similarly to Theorem 12, we have

1 1 1
c(r) = lim —(log(E[e"" " ]) + lim = log(E[e"*"]) + lim — log(E[e"5* ")) — rr.

n—oo 1 n—oo M, n—oo M

Therefore, by Lemma 3 ¢(r) can be rewritten as

5

c(r) =b2 log

(@i2 + anaMx, 1 x,(r))
1

1- ’YMXH-Xz (T‘)

q
1=

)

+ 911 IOg q 7
1 —yMx, (r) [T(@1 + i Mx, (1))
=1
+ ‘922 lOg 7 7 —rm,
1 —yMx,(r) [T (@22 + ctisaMx, (7))

1

q

q
where r € {r € RT|max{Mx, +x, [[ (@12 + ai1aMx,+x,), Mx, [T (@11 + cinMy,),
i=1 i=1

1 1
M, [T (Qig2 + qigaMx,)} < ;} =

=1
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3.4 Numerical Examples and Simulations

In this section, numerical studies are carried out to assess the adjustment coef-
ficient and ruin probability.

We write the premium rate 7 as
T = (1 + U)E[Wt]’

where 1 > 0 is regarded as the relative security loading.

3.4.1 CNBMA(1) model

For CNBMA(1) model we study the effect of the Negative Binomial MA(1) depen-
dence parameters on the adjustment coefficient R. In the CNBMA(1) model, we

have

7= (1+n) ((%ﬁ(l +aq1) + %ﬁ(l + alg)) E[X]]

+ <92T27(1 + ag) + 9—13—7(1 + a12)) E[Xg]) :
Y i

Example 1. We set 617 = 0.6, 6 = 0.9, 615 = 0.2, and consider claim-size

distributions in the two classes are X1 ~ Exp(p1), Xo ~ Exp(fs), where the mean

parameters =1 and By € {0.5,1,1.5,2}.

We set relative security loadingn = 0.2 and initial surplusw = 10. For the time series

dependence parameters (a1, s, 1a), we use siz sets of values (0,0,0), (0.8,0,0),

(0,0.4,0), (0,0,0.5), (0.8,0.4,0.5) and (1,1,1).

(0411, 92, Ollz)

Claims X; Claims X, (0,0,0) (0.8,0,0) (0,0.4,0) (0,0,0.5) (0.8,0.4,0.5) (1,1,1)

Exp(1)  Exp(0.5) 0.07804 0.07745 0.06388 0.06568  0.05904  0.04968

Exp(1)  Exp(1) 0.13224 0.11319 0.11749 0.10684  0.09507  0.08329

Exp(1)  Exp(1.5) 0.15672 0.12169 0.14898 0.12630  0.10919  0.09885
(1)

Exp(1 Exp(2) 0.16605 0.12274 0.16422 0.13508 0.11402  0.10522

Table 3.1: Adjustment coefficient: claim effect of CNBMA(1)
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Results in Table 3.1 show that the ordering of the adjustment coefficient R is
Ro50,0, Roo.4,0, and Ry in the bracket is not stable. In our evample, we observe
that the ranking of Roso0, Rooa0, and Rooos change if Bo change. We have
an impression that the parameter for the common shock s affects on adjustment
coefficient more than 11 and aae. Hence we can confirm that if other things are
equal, the greater the negative binomial MA(1) dependence parameter ayy gives the

smaller the adjustment coefficient R.

(11, g, 12)
Claims X; Claims X, (0,0,0) (0.8,0,0) (0,0.4,0) (0,0,0.5) (0.8,0.4,0.5) (1,1,1)
Exp(1) Exp(0.5) 0.4582 0.4609 0.5278  0.5184 0.5540 0.6084
Exp(1) Exp(1) 0.2664 0.3224  0.3088  0.3432 0.3864 0.4347
Exp(1) Exp(1.5) 0.2086 0.2961 0.2254  0.2827 0.3355 0.3721
Exp(1) Exp(2) 0.1900 0.2930  0.1935  0.2590 0.3197 0.3491

Table 3.2: Ruin probability ¢(u): comparison time series of CNBMA(1)

Results in Table 3.2 show that the ranking of the ruin probability is given by
Yo,0,0(u) < (Yos00(u), Yopa0(w),Yopo0s(w) < ogoaos(u) < ri1(w). We notice
that the probability of ruin increases as the adjustment coefficient decreases. We also
observe that Yog00(u) < ¥o005(w) < Yooa0(w) if B2 = 0.5 the ranking of the ruin
probability is not consistent with the ranking of the adjustment coefficient. This may

be due to the computational errors in approximating the ultimate ruin probabilities.

Example 2. We set 617 = 0.6, O = 0.9, 015 = 0.2, and consider claim-size
distributions in the two classes as X1 ~ Exp(p1) and Xy ~ Exp(Bs), where the
mean parameters $y =1 and Py = 0.5.

We set relative security loading n = 0.2 and initial surplus w = 10. For the time
series dependence parameters we set ayp = 0.8, agy = 0.4 and we change a5 to siz

sets of values 0, 0.2, 0.4, 0.6, 0.8 and 1.
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Q12
0 0.2 0.4 0.6 0.8 1
R 0.06482 0.06236 0.06010 0.05801 0.05607 0.05427
Y(u) 0.52296 0.53595 0.54822 0.55980 0.57076 0.58114

Table 3.3: Adjustment coefficient and ruin probability i(u): time series effect of
CNBMA(1)

Results in Table 3.3 clearly confirms that the adjustment coefficient R decreases as
the dependence parameter s increases. As the adjustment coefficient decreases,
the upper bound 1 (u) increases. Therefore, if the dependence claim number random
variables is at a high level then probability that business classes will be more risky

to be ruined.

3.4.2 CNBMA(q) model

For CNBMA(q) model we study the effect of the Negative Binomial MA(q) depen-
dence parameters on the adjustment coefficient R. In this subsection we will show

numerical examples of CNBMA(q) in the case g = 2.
In the CNBMA(2) model, we have

0 0
™= (1+n) (%7(04111 + o +1) + %7(04112 + ag1p + 1)) E[X1]

0 7
+ <%7(06122 + g +1) + %7(04112 + qo12 + 1)> E[X,].

Example 3. We set 11 = 0.6, O3 = 0.9, 015 = 0.2, and consider claim-size dis-
tributions in the two classes as X; ~ Exp(p1) and Xy ~ Exp(5y), where the mean
parameters fy =1 and By € {0.5,1,1.5,2}.

We set relative security loading n = 0.2 and initial surplus v = 10. For simplicity,
the time series dependence parameters we assume that (o1, ige, i12) = (a1, a2, a3)
fori=1,2 and consider siz sets of values: (0,0,0), (0.8,0,0), (0,0.4,0), (0,0,0.5),
(0.8,0.4,0.5) and (1,1,1).
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(ala G, OéS)

Claims X; Claims X, (0,0,0) (0.8,0,0) (0,0.4,0) (0,0,0.5) (0.8,0.4,0.5) (1,1,1)

Exp(1) Exp(0.5) 0.07804 0.07310 0.05394 0.05469  0.04825  0.03640
Exp(1) Exp(1) 0.13224 0.09329 0.10390 0.08651 0.07533  0.06073
Exp(1) Exp(1.5) 0.15672 0.09509 0.13876 0.10216  0.08507  0.07214
Exp(1) Exp(2) 0.16605 0.09405 0.15890 0.10999  0.08816  0.07694

Table 3.4: Adjustment coefficient: claim effect of CNBMA(2)

Similar to Example 1, results in Table 3.4 show that the ordering of the adjustment
the ranking of Ros o0, o040, and Rooos in the bracket is not consistent. Hence
we can confirm that if other things is equal, the greater the Negative binomial MA (1)

dependence parameter ayy give the smaller the adjustment coefficient R.

(a1, iz, a3)
Claims X; Claims X, (0,0,0) (0.8,0,0) (0,0.4,0) (0,0,0.5) (0.8,0.4,0.5) (1,1,1)
Exp(1)  Exp(0.5) 04582 04814 05830 05787  0.6171  0.6948
Exp(1)  Exp(1) 0.2664 0.3934 0.3537 0.4209 04707  0.5447
Exp(1)  Exp(1.5) 0.2086 0.3863 0.2496 0.3600  0.4270  0.4860
Exp(1) Exp(2) 0.1900 0.3904 0.2041  0.3328 0.4141  0.4632

Table 3.5: Ruin probability ¥ (u): comparison time series of CNBMA(2)

Similar to Example 1, results in Table 3.2 show that as usual the ranking of the ruin
probability is given by 1o0,0(u) < (Yo.s,00(t); V0,0.4,0(w), Yo005(u) < Yog04,05(u) <
Yy 11(u), we see that the probability of ruin increases as the adjustment coefficient

decreases.

Example 4. We set 011 = 0.6, 025 = 0.9, 015 = 0.2, and consider claim-size distribu-
tions in the two classes X1 ~ Exp(p1), Xo ~ Exp(Bs), where the mean parameters
61 =1 and 52 = 0.5.

We set relative security loading n = 0.2 and initial surplus u = 10. For simplicity,



47

the time series dependence parameters we assume that (o1, s, di2) = (a1, g, as)

fori=1,2. We set a; = 0.8, ap = 0.4 and a3 € {0,0.2,0.4,0.6,0.8,1}.

as
0 0.2 0.4 0.6 0.8 1
R 0.05500 0.05246 0.04968 0.04682 0.04401 0.04133
P(u) 0.57690 0.59174 0.60844 0.62608 0.64391 0.66143

Table 3.6: Adjustment coefficient and ruin probability ¥ (u): time series effect of
CNBMA(2)

Similar to Example 2, results in Table 3.3 clearly confirm that the adjustment coef-
ficient R decreases as the dependence parameter aqs increases. As the adjustment
coefficient decreases, the upper bound 1(u) increases. Therefore, if the dependence
claim number random variables is at a high level then probability that business classes

will be more risky to be ruined.



Chapter 4

Conclusion

In this project we have constructed and derived probabilistic properties of com-
mon shock risk models based on negative binomial moving average models. In our
study, we first constructed the common shock risk model based on INBMA(1) in
Section 3.2 and then generalized the model to a more general risk model based on
INBMA(q) modes in Section 3.3. Numerical results of the cases when ¢ = 1 and
q = 2 were shown in Section 3.4. The numerical results suggest that the level of the
ruin probability depend on the level of the adjustment coefficient but the level of
the ruin probability in CNBMA (q) model is greater than CNBMA(1) model. These
results suggest that the surplus process is more risky when the dependency between
the two classes of business is higher.

Our study can be extended in many different directions such as to extend the
model to n classes of business or to change the moving average model to the autore-

gressive model.
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Background and Rationale

A time series is a sequence of data that are collected at equally spaced points
in time. Models for time series data can represent different stochastic process. To
describe the claim count process, broad classes of practical importance are the au-
toregressive (AR) models and the moving average (MA) models. Integer valued time
series models in class of insurance business have innovations which are distributed
on the set of non-negative integers. McKenZie (1985) examined the INAR(1) models
which are interesting models for count data.

Cossette, Marceau and Deschamps (2010) studied risk models based on time
series by considering the class of insurance business risk models based on poisson
distributions. Later, Li (2012) introduced common factor or common shock risk
models based on poisson time series. The common shock in risk models cooperate
effects on insurance business having more than one class.

Poisson distribution is one of the most distributions studied and used in risk
models. However, expectation and varience of poisson distributions are equal which
may not hold in some applications. Therefore, there are many researchers proposed
some alternative integer-valued time series models that generalize the Poisson INAR
models for wider applications. For example, McKenzie (1985) proposed INMA mod-
els based on the negative binomial distributions for over-dispersed data. Later, La-
phudomsakda and Suntornchost (2018) applied the Negative Binomial INMA model

to construct the new class of business risk models based on negative binomial time
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series. Moreover, they derived some probabilistic properties and computed the ruin
probability of their models.

In this project, we will extend the study of Laphudomsakda and Suntornchost
(2018) to construct common shock risk models based on negative binomial time se-
ries and derive some probabilistic properties and also the upper bound of the ruin

probability.

Objectives

To extend the risk models based on negative binomial time series to common

shock risk models based on negative binomial time series.

Scope

The integer-valued time series consider in this project is based on the nega-
tive binomial distributions. The probabilistic properties considered in this project
are expectation, variance, covariance, adjustment coefficient and infinite-time ruin

probability.

Project Activities

—_

. Study fundamental concepts of probability theory and risk models.

2. Study basic properties of common shock risk models based on poisson time

series.
3. Study basic properties of risk models based on negative binomial time series.
4. Construct common shock risk models based on negative binomial time series.

5. Study properties of common shock risk models based on negative binomial

time series.

6. Summarize and write the report.



Scheduled Operations
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Months

Procedures

1. Study fundamental concepts of probability

theory and risk models.

2. Study common shock risk models based on

poisson time series.

3. Study risk models based on negative

binomial time series.

4. Construct common shock risk models

based on negative binomial time series.

5. Study properties of common shock
risk models based on negative binomial

time series.

6. Summarize and write the report.

Benefits

The benefits for student who implement this project.

1. To learn properties and applications of risk models in actuarial science.

2. To gain knowledge in probability theory and apply the models to suitable

applications.

The benefits for users of the project.

To have a general thinning risk model based on negative binomial time series

for wider applications.
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Equipments

Software

1.

Beamer

2. Adobe PDF

3.

4.

d.

Latex

R

Mathematica

Hardware

1.

2.

Printer

Computer
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