
โครงการ 

การเรียนการสอนเพื่อเสริมประสบการณ์ 

ชื่อโครงการ  ค่าเฉพาะระยะทางและพลังงานระยะทางของกราฟเคย์เลย์ยูนิแทรี 
Distance spectra and distance energy of unitary 
Cayley graphs 

ชื่อนิสิต นายชานนท์  ทองประยูร 5833510323 

ภาควิชา  คณิตศาสตร์และวิทยาการคอมพิวเตอร์ 
 สาขาวิชา คณิตศาสตร์  

ปีการศึกษา  2561 

คณะวิทยาศาสตร์   จุฬาลงกรณ์มหาวิทยาลัย 
บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของโครงงานทางวิชาการท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR) 

 เป็นแฟ้มข้อมลูของนิสติเจ้าของโครงงานทางวิชาการท่ีสง่ผา่นทางคณะท่ีสงักดั  

The abstract and full text of senior projects  in Chulalongkorn University Intellectual Repository(CUIR) 

are the senior project authors' files submitted through the faculty. 



คาเฉพาะระยะทางและพลังงานระยะทางของกราฟเคยเลยยูนิแทรี

นายชานนท ทองประยูร

โครงงานนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต
สาขาวิชาคณิตศาสตร ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2561

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย



Distance spectra and distance energy of unitary Cayley graphs

Mr. Chanon Thongprayoon

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science

Chulalongkorn University
Academic Year 2018

Copyright of Chulalongkorn University



#:{oTn:rtru rirrawru:vuvvrl{ Lravwn-rrru:vuvi,i'r{?o rn:rv,,lun dtnduf,rnii$
. ^Y^ -^--tFlu u'tu lj^uuyl ylo{i]:yu: Latu:satFl': 5E335ia323

U

targt'lljl nilnr{ran:
ri 'o s d

0]a]:uvr!:nBl tn:.r ilu rliafl:Tal:u a:.8fltuFt xi}]rn

nrni{rnrilnnranittavivrulnr:Fro!fr1tnoi na:vir,rurflrani aN'ra'ir-}:fl:il%rivrurfra ouffri#

rirlnr:r.rruauiurli{luai':r.rufir rornr:finurrlrrua-n6rt:ilicycyruirufrn"tu:ruirr nat4gg1n:.r.rru

iyrurnrani (Senior Project)

d

1r?14Ul Ul n',: Ul nfua fi lan :
d

tLa vl ?1 ulfl 1 :Fr0:.11,!? tFl 0:
(aran:rar:d Fr:.nquruv ufi u:rrni)

F)6uvfl :::i n'r:aorIn:rrru

rlt*a%
orrr:dfrilEnur1n:q rru

(fl ran:rqr:d o:.an#usi fi r.:rn)

op{;"A 0 oxo, e,t/ n::t] nl:
(nran:ror:d n: vlipufr onrnv':rfrt)

'\-."r ).)t n d ll^n.n-^t' il:5il ill:
( {ti'r u o r a n : r r r : ri pr :. l,w tirpr r :L uvr n r u fr Yn rj)

fw



iv

lltuud ilo{tl:vu:: Riruavrrv:vavvxttavua'r.iru:vuvylr'rtorn:rl,'ltrrtirariufrrrvrE (ots-

TANCE SPECTRA AND DISTANCE ENERGY OF UNITARY CAYLEY GRAPHS) o.fir-lsnrcrlnr'i.ir1-t:

fl.flT.ua#ud firrn, 32 ufii

t:rrirururir [av\1u:vuv?1rr *avr#rrru:vu vlTr{ror n:t^']rn dratiaflrryBluavn:rv,irirriprrol ufruyr
!{

d d d j ot I o o
:tnutau01flnr:tuuurdrlounr:rirrird.:aorfirfruutufio3rrayrrvfisirfin fi uonornflr:rfl.lriru':urir

LQl^,1'lv:vuv11r.luavvra'r.:ru:vuv?n.i1Joln:rv,ltvruttoi:vy'irlyir.:tGufil^n':uumaolflun:ry,ltnrdtari
ad4-

uuLlvt:tvuo H

nrnitr nfinoramiruayiurnnr:norfi'rrnoi arafiofiofi8 
^ 

. firw{ n*l!=V
arrritr . nfinorani arun^ofio o.firlEnrcrln:.inlu . 57.-;t y
flnr:finrgr . . . .256L. . .



# # 5833510323 : MtuOR MATHEMATICS.

KEYWORDS: DISTANCE SPECTRA, DISTANCE ENERGY

CHANON THONGPRAYCON: DISTANCE SPECTRA AND DISTANCE ENERGY CF UNI-

TARY CAYLEY GRAPHS. ADVISOR: PROF. YOTSANAN MEEMARK, PH,D., 32 ?P.

ln this project, we compute the distance spectra and distance energy of the

unitary Cayley graph and the restricted unitary Cayley graph induced from the square

mapping defined over a finite local ring fr. Furthermore, we investigate the distance

spectra and distance energy of the tensor graph of the path of length two and the

unitary Cayley graph over B.

Department . Mathematics and Computer Science . Student's Signature 6"*n -hCOWI 
-

Fietd of study . . Mathematics . . Advisor's signature .$ltr^fln /l'' my?-

AcademicYear .....2018.....



vi

Acknowledgments
I would like to express my gratitude to Professor Yotsanan Meemark, Ph.D. who is

my project advisor for his help and advices. I receive valuable knowledge and expe-
riences throughout working in this project. It is my pleasure to have an opportunity
to work with him. Also, I would like to express my thanks to project committee:
Professor Patanee Udomkavanich, Ph.D. and Assistant Professor Pongdate Montagan-
tirud, Ph.D. for their great suggestions and comments. Lastly, I would like to thank
my family and my friends for their support and encouragement.



Contents

Page

Abstract in Thai iv
Abstract in English v
Acknowledgments vi
Contents vii
1 Preliminaries 1

1.1 Some Background in Ring Theory . . . . . . . . . . . . . . . . . . . . 1
1.2 Some Background in Graph Theory . . . . . . . . . . . . . . . . . . . 2
1.3 Spectra of Unitary Cayley Graphs . . . . . . . . . . . . . . . . . . . . 4
1.4 Our Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Results 7
2.1 Distance Spectra and Distance Energy of GR . . . . . . . . . . . . . . 7
2.2 Distance Spectra and Distance Energy of HR . . . . . . . . . . . . . . 15

Author’s Profile 24



Chapter 1
Preliminaries

In this project, rings always contain the identity 1 ̸= 0.

1.1 Some Background in Ring Theory
We begin by providing some facts about commutative rings which are used in this
project.

Definition 1.1. Let u be an element in a ring. Then u is a unit of R if there exists a
v ∈ R such that uv = vu = 1. Also, the set of all units in R is denoted by R×. It
forms a group under the multiplication of R.

Definition 1.2. Let R be a commutative ring and I ⊆ R. Then I is said to be an
ideal of R if it satisfies the following properties: (i) (I,+) is a subgroup of (R,+); (ii)
for any r ∈ R and a ∈ I , then ar ∈ I .

Definition 1.3. An ideal M of a ring R is said to be maximal if M ̸= R and for any
ideal J of R,

M ⊆ J ⊆ R ⇒ J = M or J = R.

Definition 1.4. A commutative ring is said to be local if it has a unique maximal ideal.

Theorem 1.5. If R is a local ring with unique maximal ideal M , then R× = R∖M .

Theorem 1.6. Let R be a finite commutative ring. Then R ∼= R1×R2× . . . Rs where
Ri is a local ring for i ∈ {1, 2, . . . , s}.

1
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1.2 Some Background in Graph Theory
In this section, we provide some definitions of graphs, spectra and energy.

Definition 1.7. A graph G is an ordered pair (V (G), E(G)) where V (G) is the set of
all vertices in G and E(G) = {{v, w} : v, w ∈ V (G)} is the set of all edges in G.

Definition 1.8. Let G and H be graphs. The cartesian product of G and H , de-
noted by G × H , is a graph whose vertex set is V (G) × V (H) and edge set is
{{(v, w), (v′, w′)} : v = v′ and {w,w′} ∈ E(H) or {v, v′} ∈ V (G) and w = w′}.

Definition 1.9. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. The
tensor product of G and H , denoted by G ⊗ H , is a graph whose vertex set is
V (G) × V (H) and the edge set is {{(v, w), (v′, w′)} : {v, v′} ∈ E(G) and {w,w′} ∈

E(H)}.

Definition 1.10. If v is a vertex of a graph G, then the degree of v is the number of
edges connecting v and denoted by deg v.

Definition 1.11. A graph G is regular if every vertex of G has the same degree.

Definition 1.12. A graph G is strongly regular with parameters (n, k, λ, µ) if G has
n vertices with regularity k and every pair of adjacent vertices and every pair of
non-adjacent vertices have λ and µ common neighbors, respectively.

Definition 1.13. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The
adjacency matrix A(G) = [aij] is an n× n matrix where aij = 1 if the vi is adjacent
to the vj ; otherwise, aij = 0 for all i, j ∈ {1, 2, . . . , n}.

Definition 1.14. The distance of two vertices v and w in a graph G is the least
number of edges connecting them. It is denoted by d(v, w). Also, d(v, v) = 0 for all
v ∈ V (G). The diameter of a graph G is diam(G) = max{d(v, w) : v, w ∈ V (G)}.

Definition 1.15. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The
distance matrix D(G) = [dij] of a graph G is also an n × n matrix where dij is the
distance from vi to vj for all i, j ∈ {1, 2, . . . , n}.
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Definition 1.16. A matrix is said to be circulant if its first row generates the other
rows by shifting the first row to the right or shifting the first row to the left.

Example 1.17. Let

A =


1 2 3

3 1 2

2 3 1


Then, A is a circulant matrix whose the first row is (1, 2, 3).

Definition 1.18. An eigenvalue of the adjacency matrix of a graph G is called a
spectrum ofG. The set of all spectra ofG is denoted by Spec(G). Also, if λ1, λ2, . . . , λn

are spectra of the adjacemcy matrix of a graph G with multiplicities m1,m2, . . . ,mn,

respectively, then we write Spec(G) =

λ1 λ2 · · · λn

m1 m2 · · · mn

 for the spectrum of G.

Definition 1.19. A graph with n vertices is said to be complete if every pair of distinct
vertices has an edge connecting them. We let Kn denote the complete graph with
n vertices.

Theorem 1.20. Spec(Kn) =

n− 1 −1

1 n− 1

.

Definition 1.21. The energy of a graph G, denoted by E(G), is defined as the sum
of the absolute value of each spectrum of G counting multiplicities.

Definition 1.22. An eigenvalue of the distance matrix of a graphG is called a distance
spectrum of G. The set of all distance spectra of G is denoted by SpecD(G). Sim-
ilarly, if µ1, µ2, . . . , µn are distance spectra of the distance matrix of a graph G with

multiplicities k1, k2, . . . , kn, respectively, we write SpecD(G) =

µ1 µ2 · · · µn

k1 k2 · · · kn


for the distance spectrum of G.

Definition 1.23. The distance energy of a graphG, denoted byDE(G), is defined as
the sum of the absolute value of each distance spectrum ofG counting multiplicities.
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1.3 Spectra of Unitary Cayley Graphs
In this section, we collect the previous results on the spectra and energies of unitary
Cayley graphs from [1, 2, 3, 4, 6, 7, 8].

Definition 1.24. Let R be a finite commutative ring. The unitary Cayley graph of R
is a graph whose vertex set is R and the edge set is {{a, b} : a, b ∈ R and a−b ∈ R×}.
The unitary Cayley graph of R is denoted by GR.

Definition 1.25. Let R be a finite commutative ring. A subgraph HR of GR is called
the restricted unitary Cayley graph induced from the square mapping if the ver-
tex set of HR is R and the edge set is {{a, b} : a, b ∈ R and a − b ∈ KR(R

×2)},
where KR = {a ∈ R× : a2 = 1} and (R×)2 = {a2 : a ∈ R×}.

Definition 1.26. Let q be a prime power such that q ≡ 1 mod 4. The Paley graph is
the graph whose vertex set is the finite field of order q, denoted by Fq, and the edge
set is {{a, b} : a, b ∈ R and a− b ∈ (F×

q )
2}. The Payley graph over Fq is denoted by

HFq.

Proposition 1.27. [2]. We have the following properties of unitary Cayley graphs.

1. Let R be a finite commutative ring such that R ∼= R1 × R2 × · · · × Rs where
Ri is a local ring for i ∈ {1, 2, . . . , s}. Then GR

∼= GR1 ⊗GR2 ⊗ · · · ⊗GRs .

2. If R is a finite local ring with maximal ideal M , then GR is a complete mul-
tipartite graph whose partite sets are the cosets of M . In particular, if F is a
finite field, then GF is the complete graph on |F | elements.

Proposition 1.28. If R is a finite local ring, then diam(GR) = 2.

Proof. From Proposition 1.27 (2), GR is a complete multipartite graph, so its diameter
is 2.

Theorem 1.29. [7]. Let R be a finite local ring with maximal ideal M of size m.
Then

Spec(GR) =

|R| −m −m 0

1 |R|
m

− 1 |R|
m
(m− 1)
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and E(GR) = 2(|R| −m). In particular, if F is a field, then

Spec(GF ) =

|F | − 1 −1

1 |F | − 1


and E(GF ) = 2(|F | − 1).

Theorem 1.30. [6]. LetA be an n×n circulant matrix with the first row (a0, . . . , an−1).
Then the spectrum λj of A are

λj = a0 + a1ωj + a2ωj
2 + · · ·+ an−1ωj

n−1

where ωj = e
2πij
n for all j ∈ {1, 2, . . . , n}.

Lemma 1.31. [3]. Let A =

A0 A1

A1 A0

 be a 2×2 symmetric matrix. Then the spectra

of A can be obtained from the spectra of A0 + A1 and A0 − A1.

Lemma 1.32. [4]. Let q be a prime power such that q ≡ 1 (mod 4). The Pa-
ley graph HFq is a strongly regular graph with parameters (q, q−1

2
, q−5

4
, q−1

4
) and

Spec(HFq) =

 q−1
2

√
q−1

2

−√
q−1

2

1 q−1
2

q−1
2

.

Proposition 1.33. If q is a prime power such that q ≡ 1 (mod 4), then the Paley
graph HFq is of diameter two.

Proof. It follows from the fact that HFq is strongly regular so any two vertices has a
common neighbor.

Proposition 1.34. [1]. LetG be a regular graph of degree ρ with n vertices. If diam(G)

is at most 2, then

SpecD(G) = {2n− 2− ρ} ∪ {−λ− 2 : λ ∈ Spec(G) and λ ̸= ρ}.

Theorem 1.35. [8] Let R be a finite local ring with unique maximal ideal M of size
m and of characteristic an odd prime power.

1. −1 is a square in R if and only if lRl
m

≡ 1 mod 4.

2. If −1 is not a square in R, then HR = GR.
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3. If −1 is a square in R, then HR
∼= HR/M ⊗ K̇m where K̇m is the m-complete

graph with a loop on each vertex. Moreover, we obtain the spectra of HR as
follows:

Spec(HR) =

 |R|−m
2

m(
√

|R|
m

−1)

2

m(−
√

|R|
m

−1)

2
0

1
|R|
m

−1

2

|R|
m

−1

2
m

 .

1.4 Our Objectives
Illic [6] established the distance matrix and computed the distance energy of the

unitary Cayley graph GZn in terms of the Euler ϕ-function. Gopal [5] obtained the
distance spectra of the cartesian graph G×K2 where G is a regular graph of diameter
1 or 2.

Hence, we turn our interests to distance spectra and distance energy of GR and
HR where R is a finite local ring. Furthermore, we also investigate the distance
spectra of K2 ⊗ GR. The results are presented in the next chapter. Section 2.1
covers the work on GR and K2 ⊗ GR and Section 2.2 discussed the work on HR

defined in Section 1.3.



Chapter 2
Results

2.1 Distance Spectra and Distance Energy of GR

In the first section, we begin by computing distance spectra of GR, followed by
K2 ⊗GR.

Theorem 2.1. Let R be a finite local ring with maximal ideal M of size m.

1. If m = 1, then SpecD(GR) =

|R| − 1 −1

1 |R| − 1

.

2. If m > 1, then SpecD(GR) =

|R|+m− 2 m− 2 −2

1 |R|
m

− 1 |R|
m
(m− 1)

.

Proof. If m = 1, then M = {0}, so R is a field. It follows from [2] that GR is a
complete graph. Then

SpecD(GR) =

|R| − 1 −1

1 |R| − 1

.

Now, assume that m > 1. Write M = {0, x2, x3, . . . , xm} and q = |R|
m
. Then

R/M = {M,a2 +M,a3 +M, . . . , aq +M}.

Thus,
R =

∪̇
1≤i≤q

ai +M =
∪̇

1≤j≤m

{xj, a2 + xj, a3 + xj, . . . , aq + xj}.

7
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By Proposition 1.27 (2), GR is a complete multipartite graph whose partite sets are
the cosets of M . So, for any vertices v and w of GR, we have

d(v, w) =


0 if v = w,
1 if v and w are from different cosets,
2 if v ̸= w and v, w are in the same cosets.

For j ∈ {1, 2, . . . ,m}, we consider the distance matrix,

Aj =

xj a2 + xj a3 + xj · · · aq−1 + xj aq + xj



0 1 1 · · · 1 1 xj

1 0 1 · · · 1 1 a2 + xj

1 1 0 · · · 1 1 a3 + xj

... ... ... . . . ... ...
1 1 1 · · · 0 1 aq−1 + xj

1 1 1 · · · 1 0 aq + xj

:= A

and for j, k ∈ {1, . . . ,m} and j ̸= k, we have the distance matrix

Bjk =

xk a2 + xk a3 + xk · · · aq−1 + xk aq + xk



2 1 1 · · · 1 1 xj

1 2 1 · · · 1 1 a2 + xj

1 1 2 · · · 1 1 a3 + xj

... ... ... . . . ... ...
1 1 1 · · · 2 1 aq−1 + xj

1 1 1 · · · 1 2 aq + xj

:= B.

The distance matrix of GR can be presented using the above two matrices A and B

as follows:

D(GR) =




A1 B12 B13 · · · B1m

B21 A2 B23 · · · B2m

... ... ... ...
Bm1 Bm2 Bm3 · · · Am

=




A B B · · · B

B A B · · · B
... ... ... ...
B B B · · · A

.
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Since A and B are circulant matrices, it follows that D(GR) is a circulant matrix. Let
ω = e

2πi
|R| and ωj = ωj for all j ∈ {0, 1, . . . , |R| − 1}. From Theorem 1.30, we obtain

the distance spectra

µj = 0 + ωj + · · ·+ ωq−1
j + 2ωq

j + ωq+1
j + · · ·+ ω2q−1

j + · · ·+ 2ω
(m−1)q
j

+ ω
(m−1)q+1
j + · · ·+ ωmq−1

j

=

|R|−1∑
k=0

ωk
j +

m−1∑
l=0

ωql
j − 2

for all j ∈ {0, 1, . . . , |R| − 1}. We may distinguish three cases.
Case 1. j = 0. Then ω0 = 1 and µ0 = |R|+m− 2.
Case 2. j = km for some k ∈ {1, 2, . . . , q − 1}. Then ωq

j = ωjq = ωkmq = ωk|R| = 1,
so µj = 0 +m− 2 = m− 2.
Case 3. j is not a multiple of m. Then ωq

j ̸= 1, so
m−1∑
l=0

ωql
j =

1− ωqm
j

1− ωq
j

=
1− 1

1− ωq
j

= 0.

Thus, µj = 0 + 0− 2 = −2.
Therefore, the above computation gives

SpecD(GR)=
|R|+m− 2 m− 2 −2

1 |R|
m

− 1 |R|
m
(m− 1)

.

This completes the proof.

Corollary 2.2. Let R be a finite local ring with maximal ideal M of size m. Then the
distance energy of GR is

DE(GR) =

2(|R| − 1) if m = 1,
4(|R| − |R|

m
) if m > 1.

Proof. If m = 1, then SpecD(GR) =

|R| − 1 −1

1 |R| − 1

, so

DE(GR) = ||R| − 1|+ (|R| − 1)|−1| = 2(|R| − 1).
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If m > 1, then SpecD(GR)=
|R|+m− 2 m− 2 −2

1 |R|
m

− 1 |R|
m
(m− 1)

, so

DE(GR) = |R|+m− 2 + |R| − 2|R|
m

−m+ 2 +
2|R|
m

(m− 1)

= 4(|R| − |R|
m

)

as desired.

Theorem 2.3. Let R be a finite local ring with maximal ideal M of size m and K2

the path of length 2.

1. If m = 1, then

SpecD(K2 ⊗GR) =

3(|R| − 1) |R| − 5 −4 0

1 1 |R| − 1 |R| − 1

.

2. If m > 1, then

SpecD(K2⊗GR) =

3|R|+ 2m− 2 |R| − 2m− 2 2m− 2 −2m− 2 −2

1 1 |R|
m − 1 |R|

m − 1 2(|R| − |R|
m )

 .

Proof. Similar to the proof of Theorem 2.1, we may write M = {0, x2, x3, . . . , xm},
q = |R|

m
. Then

R/M = {M,a2 +M,a3 +M, . . . , aq +M}.

Thus,
R =

∪̇
1≤i≤q

ai +M =
∪̇

1≤j≤m

{xj, a2 + xj, a3 + xj, . . . , aq + xj}.

By Proposition 1.27 (2), GR is a complete multipartite graph whose partite sets are
the costes of M , for any vertices (x, v) and (y, w) of K2 ⊗GR, we have

d((x, v), (y, w)) =



0 if (x, v) = (y, w),

1 if x ̸= y and v, w are from different cosets,
2 if x = y and v ̸= w,
3 if x ̸= y and v, w are from the same cosets.
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For x ∈ V (K2) and j ∈ {1, 2, . . . ,m}, we consider the distance matrix

Aj =

(x, xj) (x, a2 + xj) · · · (x, aq−1 + xj) (x, aq + xj)



0 2 · · · 2 2 (x, xj)

2 0 · · · 2 2 (x, a2 + xj)
... ... . . . ... ... ...
2 2 · · · 0 2 (x, aq−1 + xj)

2 2 · · · 2 0 (x, aq + xj)

:= A,

for x ∈ V (K2) and j, k ∈ {1, 2, . . . ,m} with ai + xj ̸= ai + xk for i ∈ {1, 2, . . . , q},
we have the distance matirx,

Bjk =

(x, xk) (x, a2 + xk) · · · (x, aq−1 + xk) (x, aq + xk)



2 2 · · · 2 2 (x, xj)

2 2 · · · 2 2 (x, a2 + xj)
... ... . . . ... ... ...
2 2 · · · 2 2 (x, aq−1 + xj)

2 2 · · · 2 2 (x, aq + xj)

:= B,

and for x, y ∈ V (K2) with x ̸= y and j, k ∈ {1, 2, . . . ,m}, we have the distance
matrix

Cjk =

(x, xk) (x, a2 + xk) · · · (x, aq−1 + xk) (x, aq + xk)



3 1 · · · 1 1 (y, xj)

1 3 · · · 1 1 (y, a2 + xj)
... ... . . . ... ... ...
1 1 · · · 3 1 (y, aq−1 + xj)

1 1 · · · 1 3 (y, aq + xj)

:= C.

If m = 1, then the distance matrix of K2 ⊗ GR is D(K2 ⊗ GR) =

A1 C11

C11 A1

. Let

θ = e
2πi
|R| and θj = θj for j ∈ {0, 1, . . . , |R| − 1}. We know from Lemma 1.31 that the

distance spectra are obtained by computing the spectra of A1 + C11 and A1 − C11
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which are both circulant. From, Theorem 1.30, we obtain the distance spectra of
A1 + C11 and A1 − C11, denoted by λj and ρj , respectively:

λj = 3

|R|−1∑
k=0

θkj and ρj =

|R|−1∑
l=0

θlj − 4

for j ∈ {0, 1, . . . , |R| − 1}. If j = 0, then λ0 = 3|R| and ρ0 = |R| − 4. If j ̸= 0, then

|R|−1∑
k=0

θkj =

|R|−1∑
l=0

θlj = 0,

so λj = 0 and ρj = −4. Consequently,

SpecD(K2 ⊗GR) =

3|R| |R| − 4 −4 0

1 1 |R| − 1 |R| − 1

 .

If m > 1, then we obtain the distance matirx

D(K2 ⊗GR) =





A1 B12 B13 · · · B1m C11 C12 C13 · · · C1m

B21 A2 B23 · · · B2m C21 C22 C23 · · · C2m

B31 B32 A3 · · · B3m C31 C32 C33 · · · C3m

... ... ... . . . ... ... ... ... · · · ...
Bm1 Bm2 Bm3 · · · Am Cm1 Cm2 Cm3 · · · Cmm

C11 C12 C13 · · · C1m A1 B12 B13 · · · B1m

C21 C22 C23 · · · C2m B21 A2 B23 · · · B2m

C31 C32 C33 · · · C3m B31 B32 A3 · · · B3m

... ... ... · · · ... ... ... ... . . . ...
Cm1 Cm2 Cm3 · · · Cmm Bm1 Bm2 Bm3 · · · Am

.
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Hence,

D(K2 ⊗GR) =





A B B · · · B C C C · · · C

B A B · · · B C C C · · · C

B B A · · · B C C C · · · C
... ... ... . . . ... ... ... ... · · · ...
B B B · · · A C C C · · · C

C C C · · · C A B B · · · B

C C C · · · C B A B · · · B

C C C · · · C B B A · · · B
... ... ... · · · ... ... ... ... . . . ...
C C C · · · C B B B · · · A

.

Then, our distance matrix is of the form
A0 A1

A1 A0

. By Lemma 1.31, the distance

spectra can be obtained by computing the eigenvalues of the matrices A0 + A1

and A0 − A1 whcih are |R| × |R| circulant matrices. Thus, we compute the spectra
of A0 − A1, then A0 + A1 from their first row. First, let ω=e 2πi

|R| and ωj=ωj for all
j ∈ {0, 1, . . . , |R| − 1}. For each j ∈ {0, 1, . . . , |R| − 1}, let µj denote a spectrum of
A0 −A1, and κj denote a spectrum of A0 +A1. From Theorem 1.30, we obtain the
distance spectra

µj = −3 + ωj + · · ·+ ωq−1
j + (−1)ωq

j + ωq+1
j + · · ·+ ω2q−1

j + · · ·+ (−1)ω
(m−1)q
j

+ ω
(m−1)q+1
j + · · ·+ ωmq−1

j

=

|R|−1∑
k=0

ωk
j − 2

m−1∑
l=0

ωql
j − 2

and
κj = 3 + 3ωj + · · ·+ 3ωq−1

j + 5ωq
j + 3ωq+1

j + · · ·+ 3ω2q−1
j + · · ·+ 5ω

(m−1)q
j

+ 3ω
(m−1)q+1
j + · · ·+ 3ωmq−1

j

= 3

|R|−1∑
k=0

ωk
j + 2

m−1∑
l=0

ωql
j − 2
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for all j ∈ {1, 2, . . . , |R| − 1}. We now distinguish j into three cases.
Case 1. j = 0. Then ω0 = 1 so µ0 = |R| − 2m− 2, κ0 = 3|R|+ 2m− 2.
Case 2. j = km for some k ∈ {1, 2, . . . , q − 1}. Then ωq

j = ωjq = ωkmq = ω|R|k = 1.
Thus, µj = −2m− 2 and κj = 2m− 2.
Case 3. j is not a multiple of m. Then ωq

j ̸= 1.
m−1∑
l=0

ωql
j =

1− ωqm
j

1− ωq
j

=
1− 1

1− ωq
j

,
m−1∑
k=0

ωqk
j =

1− ωqm
j

1− ωq
j

=
1− 1

1− ωq
j

= 0.

Thus, ωj = −2 and κj = −2.
Therefore, we have

SpecD(K2 ⊗GR) =

3|R|+ 2m− 2 |R| − 2m− 2 2m− 2 −2m− 2 −2

1 1 |R|
m − 1 |R|

m − 1 2(|R| − |R|
m )

 .

This completes the proof.

Corollary 2.4. Let R be a finite local ring with maximal ideal M of size m and K2

the path of length 2.

1. If m = 1, then DE(K2 ⊗GR) =

8|R| − 8 if |R| ≥ 4,

6|R| if |R| = 1, 2 or 3.

2. If m > 1, then DE(K2 ⊗GR) =

12|R| − 4m− 4 |R|
m

− 4 if |R| ≥ 2m+ 2,

10|R| − 4 |R|
m

if |R| < 2m+ 2.

Proof. If m = 1, then

SpecD(K2 ⊗GR) =

3|R| |R| − 4 −4 0

1 1 |R| − 1 |R| − 1

.

Case 1. |R| ≥ 4. Then ||R| − 4| = |R| − 4, so

DE(K2 ⊗GR) = 3|R|+ (|R| − 4) + (|R| − 1)|−4| = 8|R| − 8.

Case 2. |R| < 4. Then ||R| − 4| = 4− |R|, so

DE(K2 ⊗GR) = 3|R|+ (4− |R|) + (|R| − 1)|−4| = 6|R|.
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If m > 1, then

SpecD(K2 ⊗GR) =

3|R|+ 2m− 2 |R| − 2m− 2 2m− 2 −2m− 2 −2

1 1 |R|
m

− 1 |R|
m

− 1 2(|R| − |R|
m
)

 .

DE(K2 ⊗GR)) = |3|R|+ 2m− 2|+ ||R| − 2m− 2|+ (
|R|
m

− 1)|2m− 2|+

(
|R|
m

− 1)|−2m− 2|+ (2(|R| − |R|
m

))|−2|

= (3|R|+ 2m− 2) + (||R| − 2m− 2|) + (2|R| − 2
|R|
m

− 2m+ 2)+

(2|R|+ 2
|R|
m

− 2m− 2) + (4|R| − 4
|R|
m

)

= 11|R| − 2m− 4
|R|
m

− 2 + ||R| − 2m− 2|.

Case 1. |R| ≥ 2m+ 2. We have ||R| − 2m− 2| = |R| − 2m− 2. Then

DE(GK2 ⊗GR)) = 11|R| − 2m− 4
|R|
m

− 2 + ||R| − 2m− 2|

= 11|R| − 2m− 4
|R|
m

− 2 + |R| − 2m− 2

= 12|R| − 4m− 4
|R|
m

− 4.

Case 2. |R| < 2m+ 2. We have ||R| − 2m− 2| = 2m+ 2− |R|. Then

DE(GK2 ⊗GR)) = 11|R| − 2m− 4
|R|
m

− 2 + ||R| − 2m− 2|

= 11|R| − 2m− 4
|R|
m

− 2 + 2m+ 2− |R|

= 10|R| − 4
|R|
m

.

Hence, we have the corollary.

2.2 Distance Spectra and Distance Energy of HR

Throughout the second section, we obtain the distance spectra of Paley graphs, HR

and HZn .

Theorem 2.5. Let q be a prime power such that q ≡ 1 mod 4. Then

SpecD(HFq) =

3
2
(q − 1)

−3−√
q

2

−3+
√
q

2

1 q−1
2

q−1
2

.
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Proof. By Lemma 1.32, HFq is regular of degree q−1
2

and

Spec(HFq) =

 q−1
2

√
q−1

2

−√
q−1

2

1 q−1
2

q−1
2

. We know from Proposition 1.33 that diam(HFq) =

2. Therefore, by Proposition 1.34, SpecD(HFq) = {2n − 2 − q−1
2
} ∪ {−λ − 2 : λ ∈

Spec(HFq) and λ ̸= q−1
2
}. Hence,

SpecD(HFq) =

2q − 2− q−1
2

1−√
q

2
− 2

√
q+1

2
− 2

1 q−1
2

q−1
2



=

3
2
(q − 1)

−3−√
q

2

−3+
√
q

2

1 q−1
2

q−1
2


as desired.

Corollary 2.6. Let q be a prime power such that q ≡ 1 mod 4. Then

DE(HFq) =


1
4
(2q

3
2 + 6q − 2

√
q − 6) if q ≥ 9,

6 + 2
√
5 if q = 5.

Proof. By Theorem 2.5,

DE(HFq) =

∣∣∣∣32(q − 1)

∣∣∣∣+ (
q − 1

2
)

∣∣∣∣−3−√
q

2

∣∣∣∣+ (
q − 1

2
)

∣∣∣∣−3 +
√
q

2

∣∣∣∣
If q ≥ 9, then

DE(HFq) =
3q − 3

2
+ (

q − 1

2
)(

√
q + 3

2
) + (

q − 1

2
)(

√
q − 3

2
)

=
3q − 3

2
+

q
3
2 + 3q −√

q − 3

4
+

q
3
2 − 3q −√

q + 3

4

=
1

4
(2q

3
2 + 6q − 2

√
q − 6).

If q = 5, then DE(HF5) = 6 + 2
√
5.

Lemma 2.7. Let G be a graph with n vertices and K̇m denote them-complete graph
with a loop on each vertex. IfG is regular of degree k, then A(G⊗K̇m) is anmn×mn

matrix of the form
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A(G⊗ K̇m) =


A(G) A(G) · · · A(G)

A(G) A(G) · · · A(G)
... ... ...

A(G) A(G) · · · A(G)

.

Moreover, G⊗ K̇m is regular of degree mk.

Proof. Let (u1, v1) and (u2, v2) be a pair of vertices of G ⊗ K̇m. Since v1 and v2 is
adjacent, whether (u1, v1) and (u2, v2) are adjacent to each other or not depending
on u1, u2. Consequently, we obtain the above A(G⊗ K̇m).

Theorem 2.8. Let R be a finite local ring with maximal ideal M of size m and
characteristic of an odd prime power. If −1 is not a square in R, then HR = GR (by
Theorem 1.35), so DE(HR) = DE(GR). If −1 is a square in R, then

SpecD(HR) =

3|R|+m−4
2

−m(
√

|R|
m

−1)+4

2

m(
√

|R|
m

+1)−4

2
−2

1
|R|
m

−1

2

|R|
m

−1

2
m

 and

DE(HR) =


1
2
(3|R|+ 5m− 4 + (|R| −m)

√
|R|
m
) if m(

√
|R|
m

+ 1) ≥ 4,
1
2
(3|R|+ 5m− 4 + ( |R|

m
− 1)(4−m)) if m(

√
|R|
m

+ 1) < 4.

Proof. Assume that −1 is a square in R. Then by Theorem 1.35, HR
∼= HR/M ⊗ K̇m.

Note that HR/M is a Paley graph. Moreover, we obtain the spectra of HR as follows:

Spec(HR) =

 |R|−m
2

m(
√

|R|
m

−1)

2

m(−
√

|R|
m

−1)

2
0

1
|R|
m

−1

2

|R|
m

−1

2
m

.

Since HR/M is a Paley graph, it is regular of degree
|R|
m

−1

2
. By Lemma 2.7, HR is a

regular graph of degree |R|−m
2

. From Proposition 1.34, SpecD(HR) = {2|R|−2− |R|−m
2

}

∪ {−λ− 2 : λ ∈ Spec(G) and λ ̸= |R|−m
2

}. Then the distance spectra of HR is given
by

SpecD(HR) =

3|R|+m−4
2

−m(
√

|R|
m

−1)+4

2

m(
√

|R|
m

+1)−4

2
−2

1
|R|
m

−1

2

|R|
m

−1

2
m

.
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Next, we compute the distance energy of HR.
Case 1. m(

√
|R|
m

+ 1) ≥ 4. We have
∣∣∣∣m(

√
|R|
m

+1)−4

2

∣∣∣∣ = m(
√

|R|
m

+1)−4

2
.

DE(HR) =

∣∣∣∣3|R|+m− 4

2

∣∣∣∣+ (
|R|
m − 1

2
)

∣∣∣∣∣∣−m(

√
|R|
m − 1) + 4

2

∣∣∣∣∣∣+ (
|R|
m − 1

2
)

∣∣∣∣∣∣m(

√
|R|
m + 1)− 4

2

∣∣∣∣∣∣
+m|−2|

=
3|R|+ 5m− 4

2
+ (

|R|
m − 1

4
)(m(

√
|R|
m

− 1) + 4) + (
|R|
m − 1

4
)(m(

√
|R|
m

+ 1)− 4)

=
3|R|+ 5m− 4

2
+ (

|R|
m − 1

4
)(2m

√
|R|
m

)

=
3|R|+ 5m− 4

2
+ (

|R| −m

2
)

√
|R|
m

=
1

2
(3|R|+ 5m− 4 + (|R| −m)

√
|R|
m

).

Case 2. m(

√
|R|
m + 1) < 4. We have

∣∣∣∣∣m(
√

|R|
m

+1)−4

2

∣∣∣∣∣ = 4−m(
√

|R|
m

+1)

2 .

DE(HR) =

∣∣∣∣3|R|+m− 4

2

∣∣∣∣+ (
|R|
m − 1

2
)

∣∣∣∣∣∣−m(

√
|R|
m − 1) + 4

2

∣∣∣∣∣∣+ (
|R|
m − 1

2
)

∣∣∣∣∣∣m(

√
|R|
m + 1)− 4

2

∣∣∣∣∣∣
+m|−2|

=
3|R|+ 5m− 4

2
+ (

|R|
m − 1

4
)(m(

√
|R|
m

− 1) + 4) + (
|R|
m − 1

4
)(4−m(

√
|R|
m

+ 1))

=
3|R|+ 5m− 4

2
+ (

|R|
m − 1

4
)(8− 2m)

=
1

2
(3|R|+ 5m− 4 + (

|R|
m

− 1)(4−m)).

This completes the proof.
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Background and Rationale

A commutative ring with identity 1 is said to be a local ring if it has a unique
maximal ideal. Let R be a finite commutative ring with identity 1 and S ⊆ R. The
Cayley graph of R, denoted by Cay(R,S), is a graph whose vertex set is R and
the edge set is {{a, b} : a, b ∈ R and a − b ∈ S}. If S = R×, then Cay(R,R×) is
called the unitary Cayley graph of R. Also Cay(R,R×) is denoted by GR. Here,
R× denotes the group of units of R. It follows from [1] that if R is a finite local ring,
then GR is a complete multi-partite graph whose partite sets are the cosets of M
where M is the maximal ideal of R.

The adjacency matrix A = [aij] of a graph G with n vertices is a n × n matrix
where aij = 1 if the ith vertex is adjacent to the jth vertex; otherwise, aij = 0 for
all i, j ∈ {1, 2, ..., n}. An eigenvalue of A is called a spectrum of G. The distance
of the ith vertex and the jth vertex is the least number of edges connecting them.
The distance matrix D = [dij] of a graph G is also an n× n matrix where dij is the
distance from ith vertex to jth vertex and dij = 0 if i = j for all i, j ∈ {1, 2, ..., n}
and the eigenvalue of D is called the distance spectrum of the graph G.

The energy of a graph G, denoted by E(G), is the sum of its absolute values of
spectra. Similarly, the distance energy of the graph G, denoted by DE(G), is the
sum of its absolute values of distance spectra.

Akhtar et al. [2] studied and obtained all spectra of the unitary Cayley graph of
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a finite commutative ring R. Consequently, the energy is computed. Later, A.Illic.
[1] established the distance matrix and computed the distance energy of GZn in
terms of Euler function as follows: 1. 2(p − 1) where n is a prime p; 2. 4(n − 2) if
n is a power of 2; 3. 2(2n + ϕ(n)(2k−1 − 1) − m − 2 +

∏k
i=1(2 − pi)) where m =

p1p2...pk is the maximal square-free divisor of n which is an odd composite number; 4.
2n−2m+ϕ(n)2k−1−(2+2ϕ(n))−(2−2ϕ(n))+(5n

2
−2(ϕ(n)+1))+

∣∣2(ϕ(n)− 1)− n
2

∣∣)
where n is even with odd prime divisor.

In this project, we focus on computing the distance energy of the unitary Cay-
ley graphs of finite local rings. We also plan to extend our domain to some finite
commutative rings.

Objectives

To compute the distance spectra and the distance energy of the unitary Cayley
graphs of a finite local ring and a finite commutative ring.

Project Activities

1. Study the articles [1] and [3].

2. Review the elementary knowledge in Abstract Algebra and Graph Theory.

3. Construct the distance matrix and compute the distance spectrum of the uni-
tary Cayley graph over finite local rings.

4. Continue to work on the distance matrix and the distance energy of GR where
R is a finite commutative ring.

5. Write a report.
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Activities Table

Project Activities August 2018 - April 2019

Aug Sep Oct Nov Dec Jan Feb Mar Apr

1.Study the articles [1] and
[3].

2.Review the elementary
knowledge in Abstract
Algebra and Graph Theory.

3.Construct the distance
matrix and compute the
distance spectrum of the
unitary Cayley graph over
finite local rings.

4.Continue to work on the
distance matrix and the dis-
tance energy ofGR where R

is a finite commutative ring.

5.Write a report.
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Benefits

To obtain the general results of the distance energy of the unitary Cayley graphs
whose vertices are elements in finite local rings and some finite commutative rings.

Equipment

1. Computer

2. Printer

3. Stationery

4. Paper
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