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CHAPTER I

INTRODUCTION

Nowadays membrane technology plays an important role in chemical 

industries and has been used in a broad range of applications. A multitude of potential 

applications is identified and a several billion-dollar market is predicted for the 

membrane-based industry by the turn of this century. With the development of new 

membranes, the improved transport properties and better chemical and thermal 

stability in recent years, a large number of new potential applications have been 

described and the membrane-based industry responds to the market needs by rapidly 

exploiting these applications on an industrial scale.

The key property is the ability of a membrane to control the permeation rate of 

a chemical species through the membrane. Membranes and membrane processes are 

used in four main areas: the separation of molecular and particulate mixtures, the 

controlled release of active agents, the membrane reactors and the artificial organs, 

and the energy storage and the conversion systems. In these applications, a large 

variety of processes, membrane structures, and membrane materials has been used 

(Ho and Sircar, 1992)

There is currently a great deal of interest in the development and use of 

alternative non-conventional techniques that allow both the separation and 

purification of the compounds obtained during a process and the use of systems that 

combine reaction and separation into a single process unit to improve process 

performance. In recent years, membrane technology has emerged as one of the viable 

unit operations in separation processes. The potential applications of membrane 

technology in reaction engineering are being recognized (Waldburger and Widmer, 

1996; Xuehui and Lefu, 2001; Liu et al., 2001). Since separation membranes permit 

selective permeation of a component from a mixture, membrane reactors can enhance 

the conversion of thermodynamically or kinetically limited reactions through 

controlled removal of one or more reactant or product species from the reaction 

mixture (Feng and Huang, 1996).
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Esterification is one of the most important chemical processes in organic 

chemical industry and is a typically reversible process in which conversion is limited 

by equilibrium conditions. The integration of pervaporation into the conventional 

esterification process, therefore, offers the opportunity to shift the chemical 

equilibrium by removing water from the reaction mixture directly or by a side loop of 

the reactor. Due to the effect of the operating temperature, which influences the 

reactor performance through its influences on reaction rate and membrane 

permeability, it is necessary to optimize the process to operate in the most favorable 

conditions to achieve a desired objective.

As batch processes require different control strategies from those continuous 

processes do. This is due to the fact that they are operated dynamically. From an 

engineering point of view, the objectives of control of batch chemical reactors are 

divided into two categories: optimization of yield and control of product quality 

(Kravaris et al., 1989). To achieve the desired control objective, the performance of a 

proposed control strategy is generally set to force the system output to track optimal 

or reference trajectories efficiently. In summary, to achieve the desired successful 

control of batch processes, the system depends on the integration of three important 

ingredients: an optimal operating trajectory, a suitable control law, and a suitable 

design of the control configuration (Chang and Hseih, 1995).

In this work, a batch reactor integrated with pervaporation developed by Liu et 

al. (2001) is considered. The study is aimed at exothermic, reversible esterification 

reaction. A jacket is used to control the operating temperature at its desired trajectory. 

First, an off-line optimal control problem is solved with fixed batch time to find an 

optimal temperature that maximizes the final concentration of ester. A generic model 

control (GMC) coupled with an extended Kalman filter (EKF) is implemented to track 

an optimal operating temperature.
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1.1 Research Objectives

The objectives of this research are:

1. To develop a suitable model for a pervaporative membrane reactor,

2. To determine an optimal operating temperature for a pervaporative membrane 

reactor to maximize a final concentration of ester,

3. To design a control configuration for a pervaporative membrane reactor to track 

the obtained optimal operating temperature.

1.2 Scope of Research

1. A batch reactor integrated with pervaporation is considered. The study is aimed at 

exothermic, reversible esterification reactions. A jacket is used to maintain the 

temperature of a pervaporative membrane reactor.

2. An ideal case where the membrane is perfectly permselective to water is 

investigated to show the maximum improvement in reactor performance achievable 

by the use of membrane pervaporation.

3. A mathematical model of a pervaporative membrane reactor is studied.

4. An off-line optimal control problem is solved with fixed batch time to find the 

optimal temperature that maximizes the final concentration of ester. A nonlinear 

programming problem (NLP) is solved using a successive quadratic programming 

(SQP) based optimization technique.

5. An extended Kalman filter is used to estimate the amount of heat released by the 

reaction.

6. A generic model control (GMC) coupled with the extended Kalman filter (EKF) is 

implemented to track an optimal operating temperature.

7. Programs written to simulate and control the reactor are based on Matlab Program 

and Matlab Toolbox.
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1.3 Contribution of Research

1. Mathematical model of a pervaporative membrane reactor has been developed.

2. A computer program simulation has been developed to study the behavior of a 

pervaporative membrane reactor.

3. Unmeasurable state variable of a pervaporative membrane reactor has been 

estimated.

4. A pervaporative membrane reactor has been optimized and controlled to achieve a 

desire objective.

1.4 Activity Plan

1. Relevant information regarding membrane process and membrane reactor are 

reviewed.

2. Mathematical model of a pervaporative membrane reactor is developed.

3. Relevant information regarding optimization and control are reviewed.

4. Kalman filter is applied to estimate uncertain parameters.

5. An optimal operating temperature of a pervaporative membrane reactor is 

determined to achieve the desired objective.

6. A suitable control law is designed to track the obtained optimal operating 

temperature.

7. Simulation results are collected and summarized.

This thesis is divided into five chapters.

Chapter I is an introduction to this research. This chapter consists of research 

objective, scope of research, contribution of research, and activity plan.

Chapter II reviews the work carried out on pervaporative membrane reactor, 

optimization, GMC controller, and Kalman filter

Chapter III covers some background information of membrane process 

(membrane separation, membrane reactor, pervaporation process, and pervaporative 

membrane reactor), optimization, Generic model control (GMC), and Kalman filter.
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Chapter IV describes the mathematical model of a pervaporative membrane 

reactor, optimization formulation, and control configuration. Simulation results 

obtained by simulating the optimization formulation and the formulation of a GMC 

controller are detailed in each section.

Chapter V presents the conclusions of this research and makes the 

recommendations for future work.

This is follow by:

References

Appendix A: Permeability Coefficient Determination,

Appendix B: Numerical Method,

Appendix C: Integral Error Criteria,

Appendix D: Introlduction to Matlab,

Appendix E: Program Verification,

Appendix F: Tuning of GMC Controller,

Appendix G: Simulation Results.



CHAPTER II

LITERATURE REVIEW

2.1 Pervaporative membrane reactor

The majority of published work on membrane reactor to date is in the field of 

biotechnology. The membranes used are typically microporous, and the function of 

membranes is mainly for immobilizing enzymes, eliminating product inhibition, 

recycling enzymes and other biocatalysts, and manipulating substrates and nutrients. 

Recently, extensive studies have been carried out on membrane reactors applied to 

catalytic dehydrogenation, hydrogenation, and decomposition reactions. However, 

relatively little work has been done on liquid-phase reversible reactions due to lack of 

suitable membranes with good permselectivity and solvent resistance. Ultrafiltration 

membranes are too porous to effect efficient separation of small liquid molecules, 

while reverse osmosis membranes are likely to require an inconveniently high 

operation pressure due to osmotic pressure of the reaction mixtures. Pervaporation, an 

emerging membrane process specially used for organic-water and organic-organic 

separations (Huang, 1991), seems to be an appropriate choice (Feng and Huang, 

1996). In this process, the mass transport through the membrane is induced by 

maintaining a low vapor pressure on the downstream side, thereby eliminating the 

effect of osmotic pressure.

The concept of using pervaporation to remove by-product species from 

reaction mixtures was proposed in the early stage of pervaporation research by 

Jennings and Binning (1960), but the interest in pervaporative membrane reactors was 

only rekindled recently when pervaporation has been proven to be a viable separation 

technique in the chemical industry. Presently, pervaporation is best applied to 

dehydration of organic solvents, and the dehydration membranes normally work best 

when water content in feed mixture is not high. Thus, reversible reactions that 

produce by-product water are a niche of pervaporation for reaction enhancement.
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Esterification represented a significant group of the reactions commonly found 

in the chemical industry. The use of pervaporative membrane reactor for esterification 

was different from the combination of reactive distillation and pervaporation in which 

water was externally removed from the top or bottom stream. In the pervaporative 

membrane reactor, the product water was simultaneously removed from the reaction 

zone while the reaction took place. A number of reactions have been tested in this 

reactor.

Pervaporative membrane reactor for esterification of oleic acid and ethanol to 

produce ethyl oleate was studied using p-toluenesulfonic acid as a catalyst (Kita et al., 

1987-88; Okamoto et al., 1993). Polyimide, chitosan, nafion, polyetherimide and 

perfluorated ion-exchange were used as membranes. Among these membranes, 

polyimide showed the highest selectivity. Complete conversion could be achieved at 

about 6 hours when ethanol was in excess.

Bitterlich et al. (1991) proposed an alternative hybrid process combining a 

reactor and a pervaporation unit for esterification of butanol and acetic acid to 

produce butyl acetate. In the conventional process, an acid catalyst (sulfuric acid) was 

used which had to be removed from the product after the reaction by neutralization 

with sodium hydroxide. The by-product water was removed by distillation. The 

alternative process layout used a fixed bed of immobilized acid in an ion exchange 

resin to replace the sulfuric acid. Hence, no neutralization was required. Furthermore, 

the distillation for the dehydration was replaced by a pervaporation unit with 

hydrophilic membranes (Sulzer Chemtech/ GFT and University of Cologne). The 

hybrid process, therefore, overcame the problems inherent with the use of sulfuric 

acid, i.e. waste treatment and acidic corrosion problems. The use of pervaporation unit 

for the dehydration reduced the energy consumption and wastewater flow, and 

achieved an increased flexibility due to its modular design.

David et al. (1991) studied the esterification of 1-propanol and 2-propanol 

with propionic acid to produce propyl propionate and iso-propyl propionate. 

Pervaporation with PVA membranes was externally added to the reactor. It was 

revealed that the hybrid process was governed by four main parameters that 

influenced the conversion rate: in order of significance, these were temperature, initial 

molar ratio, membrane area to reaction volume ratio, and catalyst concentration.
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Most of the models presented so far of pervaporative membrane reactor 

describe both the kinetics and membrane permeation in term of concentrations of the 

reacting species.

For thermodynamically nonideal mixtures, however, activities are needed in 

the description of transport (pervaporation) by a solution-diffusion mechanism 

through the membrane. For nonideal reacting mixtures, furthermore, expressing the 

reaction rates in terms of concentration results in reaction rates constants, which often 

depend on concentrations since the latter do not completely, take into account the 

interactions between molecules. The use of activities not only rectifies this problem 

but also provides a unified approach in treating both the thermodynamic equilibrium 

and the driving force in the rate equation. Several authors have made use of activities 

for the description of esterification reaction rates.

A pervaporation-based hybrid process was analyzed by Okamoto et al., 1993 

for the esterification of oleic acid with ethanol using p-toluene sulphonic acid as 

catalyst to produce ethyl oleate. The reaction was carried out within the pervaporation 

unit using a process layout similar to the membrane reactor with asymmetric 

hydrophilic poly-etherimide (PEI), and 4,4’-oxydiphenylene pyromellitimide 

(POPMI) membranes. Though the application of this hybrid process a 98% 

conversion was achieved in experiments.

Keurentjes et al. (1994) studied the kinetic parameters for the esterification of 

tartaric acid with ethanol. Both concentration-based as well as activity-based reaction 

rate constants and equilibrium constants had been determined. The equilibrium 

composition could be shifted significantly towards the formation of the final product 

diethyltartrate when pervaporation was used to remove the water produced in this 

reaction.

Zhu et al. (1996) studied the esterification reaction between acetic acid and 

ethanol in a continuous flow pervaporation membrane reactor utilizing a 

polymeric/ceramic composite membrane. For a range of experimental conditions 

reactor conversions were observed which were higher than the corresponding 

calculated equilibrium values due to the ability of the membrane to remove water, a 
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product of the reaction. A developed model gave a reasonable fit of the experimental 

results.

Waldburger and Widmer (1996) presented a review on membrane reactors 

with special emphasis on membrane-assistance of esterification reactions and a 

continuous tube membrane reactor for the pervaporation-assistance of the 

esterification. The heterogeneously catalyzed esterification of ethanol and acetic acid 

to ethyl acetate and water was investigated as a typical chemical equilibrium reaction. 

The selective and simultaneous water separation from the reaction mixture of the 

esterification with polyvinyl alcohol pervaporation membranes was considered to be 

an interesting process alternative to the conventional distillation process. Compared to 

the distillation process, for the pervaporation-assisted process a decrease of the energy 

input of over 75% and of the investment and operating costs of over 50% each was 

calculated.

Krupicka and Koszorz (1999) studied in the same reaction. A comparison of 

the measured concentrations with those calculated according to the model showed 

sound agreement when the activities were used. The experiments were performed 

using a wide range of initial molar ratios with commercial hydrophilic PERVAP 1105 

GFT membrane. The model was independent of the initial molar ratios due to the 

stability of thermodynamic and kinetic constants.

Due to simplicity of a concentration-based model, some researchers still 

explained the models in term of concentrations. In a parameter study, Feng and Huang 

(1996) revealed that reaction and conversion rate could be improved. It was 

discovered that a complete conversion could be achieved if one reactant was in 

excess. Membrane area and permeability as well as the volume of the mixture to be 

treated were identified as the important parameters of the process. Furthermore, it was 

shown that the operating temperature influenced both the reaction and membrane 

reactor for the esterification of acetic acid and benzyl alcohol by applying p-

toluenesulfonic acid as a catalyst to form benzylacetate. In both cases concentration-

based models were used to determine the kinetic parameters. A theoretical model was 

developed and satisfactorily agreed with the obtained experimental results.
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Liu et al. (2001) developed a kinetic model for the coupling esterification of 

acetic acid with n-butanol catalyzed by Zr(SO)4⋅4H2O with pervaporation. 

Experiments were conducted to investigate the effects of several operating 

parameters, such as reaction temperature, initial molar ratio of acetic acid to n-

butanol, ratio of the membrane area to the reacting mixture volume and catalyst 

concentration, on the coupling process.

There were a number of works on developing new processes to improve the 

etherification yield. Matouq et al. (1994) proposed a process layout combining an 

external pervaporation process using hydrophilic polyvinyl alcohol (PVA) membranes 

with reactive distillation for the production of MTBE. Two types of catalysts i.e. ion 

exchange resin Amberlyst 15 and heteropoly acid for the reaction of methanol and 

TBA to form MTBE were investigated. HPA showed higher selectivity than the ion 

exchange resin. It was found that the hybrid process using pervaporation might be 

effective in removing water.

Yang and Goto (1997) implemented the similar process for the production of 

ETBE from EtOH and TBA using Amberlyst 15 as a catalyst. Microporous 

hydrophilic hollow fiber membranes were employed in the pervaporation unit to 

dehydrate in the bottom product of the reactive distillation column. Shifting the 

reaction equilibrium led to almost doubling of the mole fraction of ETBE product in 

the top product.

Worapon (2001) investigated a pervaporative membrane reactor for the 

synthesis of ethyl tert-butyl ether (ETBE) from a liquid phase reaction between 

ethanol and tert-butyl alcohol. The study was divided into 3 parts: kinetic study of 

supported β-zeolite, study on permeation through polyvinyl alcohol (PVA) membrane 

and study on pervaporative membrane reactor. In the pervaporative membrane reactor 

studies, both experiment and simulation were carried out. An activity-based model 

was developed to investigate the performance of the pervaporative membrane reactor 

using parameters obtained from the independent experiments. Simulation results 

agreed well with experimental results.
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2.2 Optimization and Control

Batch or semibatch processes require control strategies different from those 

for continuous processes because they are commonly not operated at steady states. 

From an engineering point of view, the objectives of control of batch or semibatch 

chemical reactors are divided into two categories: optimization of yield and control of 

product quality (Kravaris et al., 1989). To achieve the desired control objective, the 

performance of a proposed control strategy is generally set to force the system output 

to track some optimal or reference trajectories efficiently.

Tremblay and Luus (1989) proposed to present a computational procedure to 

enable one to examine benefits to be expected from non-steady-state operation of 

chemical reactors. Three examples showed that the proposed algorithm using dynamic 

programming can be used for a wide variety of problems, such as to maximize the 

yield, average rate of production or average concentration overtime. It was found that 

dynamic programming performed well even for a 6th order system. The optimum 

period, split of period and amplitude of the input could be obtained in a reasonable 

computation time when the optimal input signal was in fact periodic in nature.

Due to the important mechanical properties of polymers have been shown to 

depend strongly on the molecular weight distribution (MWD). Chang and Lai (1992) 

proposed a modified two-step calculation procedure for estimating the reactor 

temperature to give the desired average chain length and polydispersity of polymer at 

the desired final conversion in a polymerization batch reactor. The proposed method 

was accurate and effective. The adaptation of this calculation procedure to different 

mathematical models showed this procedure to be very flexible.

Soroush and Kravaris (1993) proposed a framework for integrated design and 

operation of single-stage batch or semibatch reactors. A systematic decoupling of 

optimization and design of reactor dynamics was proposed and applied successfully in 

an experimental demonstration (Soroush and Kravaris, 1992). One could obtain two 

subsystems with distinct characteristics. Notions of feasibility, flexibility, 

controllability, and safety of the design for batch processes were introduced for the 

first time and some criteria for their assessment were presented. The proposed 

framework included (a) mathematical modeling of the process dynamics, (b) dynamic 
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optimization (c) design of the heat exchange and/or feeding system(s) and 

investigation of process operability (feasibility, flexibility, controllability, and safety 

of the design), and (d) design of a control scheme for automatic startup and optimal 

operation of the reactor.

Chang and Hseih (1995) proposed an integrated method for optimization and 

control of semibatch reactors. Based on the desired control objective, dynamic 

programming was applied to obtain optimal operating trajectories. Yield optimization 

was assured for a real plant by tracking model-dependent optimal trajectories 

according to the proposed modified globally linearizing control (MGLC) structure. 

The behavior of the proposed MGLC structure was predictable and reliable, with 

tuning parameters based on the proposed tuning method if the manipulated variables 

were not constrained.

Garcia et al. (1995) converted the optimal control problem into a nonlinear 

programming problem solved by the generalized reduced gradient procedure coupled 

with the golden search method, for the search of the total batch time for fine chemical 

productions in batch reactors. The efficiency of the methodology was shown by its 

application to different formulations of the problem for different chemical reaction 

schemes and with stress laid on the influence of the constraints on the limitation of 

temperature variations and byproduct formation.

Chang et al. (1996) proposed an integrated method for optimization and 

control of batch reactors. Based on the desired performance index, the modified two-

step method was applied to optimize an operating trajectory. Yield optimization was 

assured for a real plant by tracking the model-dependent optimized trajectory through 

the proposed modified globally linearizing control (MGLC) structure. Experimental 

results revealed that the proposed MGLC structure could be applied in tracking an 

operating trajectory determined on-line or off-line.

Rojnuckarin and Floudas (1996) applied an optimal control strategy to the 

problem of finding the flux profiles for the conversion of methane to ethylene and 

acetylene in a plug flow reactor. The optimal control approach implemented in the 

paper belonged to the class known as gradient methods in function space. The optimal 

control designs were performed with respect to the final mass fractions of ethylene 
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and acetylene in a plug flow reactor using heat, oxygen, and chlorine fluxes as 

controls.

Carrasco and Banga (1997) considered the dynamic optimization (optimal 

control) of chemical batch reactors. The solution of these types of problems was 

usually very difficult due to their highly nonlinear and multimodal nature. Two 

algorithms based on stochastic optimization were proposed as reliable alternatives. 

These stochastic algorithms were used to successfully solve four difficult case studies 

taken from the recent literature: the Denbign’ s system of reactions, the oil shale 

pyrolysis problem, the optimal fed-batch control of induced foreign protein 

production by recombinant bacteria, and the optimal drug scheduling of cancer 

chemotherapy. The advantages of these alternative techniques, including ease of 

implementation, global convergence properties, and good computational efficiency, 

were discussed.

Guntern et al. (1998) proposed a methodology for the optimization of 

semibatch reactors using dynamic programming. This included synthesis of a 

mathematical model, analysis of the performance of the process at its present state, 

definition of a set of decision variables, and optimization and simplification of this 

optimum toward feasibility. The methodology was applied to an industrial case study 

in the fine chemical industry using the lowest product cost as the objective function.

Luus and Okongwu (1999) determined the optimal flow rates of heating and 

cooling fluids instead of finding only the optimal temperature profile, so that the yield 

of a desired product in a batch reactor was maximized. The purpose of this paper was 

to investigate such an approach in the control of typical chemical reactors by 

considering two examples. By using iterative dynamic programming (IDP) in multi-

pass fashion, the optimal policy could be readily obtained. Optimization as carried out 

on two typical batch reactor problems showed that if the heat transfer coefficient was 

reasonably chosen, then the optimal yield could be significantly larger than what 

could be expected from the best isothermal operation.

Faliks et al. (2000) applied an optimal control methodology to the problem of 

finding the heat, hydrogen, and oxygen flux profiles for the homogeneous gas-phase 

conversion of methane to ethylene in a plug flow reactor. The calculations used a 
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detailed reaction model for the oxidative pyrolysis of methane and a model for the 

growth of polycyclic aromatic hydrocarbons and soot particle nulceation and growth.

Recently developments in nonlinear systems theory combined with advances 

in control system hardware and software made the practical application of nonlinear 

process control strategies a reality. The review article (Bequette, 1991) surveyed 

nonlinear control system techniques ranging from ad hoc or process-specific strategies 

to predictive control approaches based on nonlinear programming. The capabilities of 

these techniques to handle the common problems associated with chemical processes, 

such as time delays, constraints, and model uncertainty were discussed.

Chang and Huang (1994) proposed a modified globally linearizing control 

(MGLC) structure and a nonlinear feedforward-feedback control (NFF/FB) structure 

to track trajectories of processes in a batch reactor. The MGLC structure performed 

trajectory tracking perfectly when the model inversion could be obtained by 

linearization of state feedback. Otherwise, the NFF/FB structure was recommended. 

The performance of the control laws was compared with other control laws designed 

with the same technique. The proposed control law based on the MGLC structure 

exhibited robust performance whereas that based on NFF/FB structure produced 

decreased sensitivity to process noise.

Chang et al. (1996) proposed an integrated method for optimization and 

control of batch reactors. Based on the desired performance index, the modified two-

step method was applied to optimize an operating trajectory. Yield optimization was 

assured for a real plant by tracking the model-dependent optimized trajectory through 

the proposed modified globally linearizing control (MGLC) structure. Experimental 

results revealed that the proposed MGLC structure could be applied in tracking an 

operating trajectory determined on-line or off-line.

Ali et al. (1998) used a dynamic model describing and ethylene gas-phase 

polymerization reaction in a fluidized bed reactor to investigate the process static and 

dynamic behavior. The static analysis determined optimal operating condition at 

which the monomer conversion can be increased to 25% per pass. However, this 

optimal operating point was shown to be unstable, and thus any changes in the plant 

operation might lead to temperature runaway, degrading the reactor performance. In 
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addition, the reactor temperature must be kept within a narrow range between the gas 

dew point and the polymer melting point. For these reasons, two control algorithms, 

that was, proportional-integral (PI) and nonlinear model predictive control (NLMPC), 

were tested for the stabilization of the process during load changes.

2.3 Generic model control (GMC)

Lee and Sullivan (1988) presented a general framework for process controllers 

that relied upon a model to approximate plant behavior. By careful selection of a 

performance index and an approximate plant model, it was shown that single-loop PI 

control, feedforward and decoupling control, multivariable regulators, time horizon 

matrix controllers, internal model control and process model based control could all 

be derived. Furthermore, nonlinear process models could be imbedded directly into 

the controller without resorting to linearization. This unifying framework was 

illustrated with a number of examples to highlight the utility of such an approach.

Lee et al. (1989) summarized the use of a process model directly in a control 

algorithm. The process considered, a forced circulation single-stage evaporator, was a 

nonlinear interacting process. The control strategy employing a process model derived 

from fundamental mass and energy balances was shown to outperform single loop and 

predictive control strategies by a significant amount. The control structure was first 

presented in general form and then specifically applied to this process.

 Cott and Macchietto (1989) presented a new model-based controller for the 

initial heat-up and subsequent temperature maintenance of exothermic batch reactors. 

The controller was developed by using the Generic Model Control framework of Lee 

and Sullivan, which provided a rigorous and effective way of incorporating a 

nonlinear energy balance model of the reactor and the heat-exchange apparatus into 

the controller. It also allowed the use of the same control algorithm for both heat-up 

and temperature maintenance, thereby eliminating the need to switch between two 

separate control algorithms as was the case with today’ s more commonly used 

strategies. A deterministic on-line estimator was used to determine the amount and 

rate of heat released by the reaction. This information was, in turn, utilized to 

determine the change in jacket temperature setpoint in order to keep the reaction 
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temperature on its desired trajectory. The performance of the new GMC-based 

controller was compared to that of the commonly used dual-mode controller. 

Simulation studies showed the new controller to be as good as the dual-mode 

controller for a nominal case for which both controllers were well tuned. However, 

the new controller was shown to be much more robust with respect to changes in 

process parameters and to model mismatch.

Riggs and Rhinehart (1990) compared two nonlinear process-model based 

controllers (PMBC), nonlinear internal model control, IMC and generic model 

control, GMC. An idealized SISO CSTR and a SISO heat exchanger were considered. 

The simulation results showed that GMC and nonlinear IMC gave nearly the same 

performance throughout a wide range of process nonlinearity and process gain.

Control in the face of process constraints is of great practical importance in the 

processing industries. Lee et al. (1991) examined the use of GMC for controlling the 

level in a surge tank. In particular, it examined the effect of certain user-selectable 

parameters on the controlled response to changes in the inlet flowrate. In addition, the 

effects of model inaccuracies were considered. The overall algorithm was shown to be 

significantly lower in computational requirements than previously proposed 

algorithms for surge tank control. Implementation was straightforward and was 

suitable for even small-scale process control computing systems.

Barolo et al. (1993) proposed a new on-line control algorithm, based on GMC, 

for improving the automatic startup of a binary distillation column. A series of tests 

had been performed on an industrial-scale distillation column. The experimental 

results demonstrated the effectiveness and robustness of the proposed method with 

respect to process/model mismatch. The implementation of the algorithm was simple 

and could be accomplished with standard industrial instrumentation and a cheap 

personal computer.

When a process model differed from the true process, the closed-loop qualities 

of a model-based control algorithm such as GMC are in doubt. The conditions under 

which stability of the closed-loop GMC system was guaranteed (robust stability) and 

the performance of the closed loop system was guaranteed to meet predetermined 

performance objectives (robust performance) were given for the first time in terms of 
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the model and its uncertainty description (Signal and Lee, 1993). The GMC 

parameters, which gave the best performance, could be determined through a simple 

optimization procedure. The analytical techniques were illustrated through a simple 

example.

Kershenbaum and Kittisupakorn (1994) studied a temperature control of a 

batch reactor using GMC controller. The amount of heat released by the reactions had 

been estimated online using an extended Kalman filter, and incorporated into the 

GMC algorithm. Simulation results had shown that the Kalman filter gave an accurate 

estimate of the amount of heat released and together with the GMC controller, gave 

reliable robust control. An experimental extension of the work using the PARSEX 

reactor showed that the extended Kalman filter was rather more sensitive to 

plant/model mismatch than would have been predicted from simulations alone.

Costello (1994) investigated, by simulation, the ability to control the 

neutralization of an acid stream by a strong alkali stream using a model-based 

nonlinear transformation control technique to augment a PI controller. This approach 

was compared with a standard PI controller and GMC controller. The simulation 

results had shown that it is indeed possible to successfully control an acid-base 

neutralization process with a simple model-based nonlinear transformation applied to 

a PI controller, and that the more complex model-based control techniques, as 

represented by GMC control might not be appropriate for this problem.

Douglas et al. (1994) studied the problem of dual product composition control 

of an industrial high purity distillation column, a deisohexanizer (DIH), using a GMC 

framework. The performance of GMC incorporating different process models was 

studied. The different controllers were implemented and compared using a dynamic 

simulation of an industrial DIH to select the best candidate controller. A controller 

using a nonlinear process model emerged as the best controller and was implemented 

on the actual process, resulting in improved performance over the original controller.

Farrell and Tsai (1995) implemented a GMC algorithm for batch 

crystallization process. The resulting algorithm which was called batch GMC  

(BGMC) algorithm utilized a time variant reduced-order input-output model derived 

by correlating historical data of solubility vs. weight mean size. Control of the weight 

mean size trajectory in response to seed disturbances was demonstrated in this paper.
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Vega et al. (1995) used a dynamic model of the evolution of the temperature 

of a batch cooling crystallizer for the development of a GMC system for the 

crystallizer. This servo-control system had been found experimentally to work 

adequately. The crystallizer had also been controlled with a conventional PI 

controller, and the process had been simulated with the model. Simulations were 

accurate enough to allow the model to be used for the design of control strategies for 

programmed cooling crystallizers. The methodology described could be adapted to 

the study of other systems or control algorithms.

Khandalekar and Riggs (1995) applied the nonlinear process model based 

control (PMBC) to the Amoco/Lehigh University Model IV FCC industrial challenge 

problem. In particular, PMBC was applied for the control of reactor temperature, 

regenerator temperature and the flue gas oxygen concentration. The GMC law was 

used for the nonlinear PMBC controller. Both the nonlinear PMBC and conventional 

PI controllers were tested first for the unconstrained control. Finally, the nonlinear 

PMBC constraint controllers were used for optimization studies to analyze the 

operation at the economic optimum in the face of variations in feed characteristics and 

variations in operative constraints.

A large number of applications of GMC had been published in the literature. 

However, an overview of the potential difficulties in implementation had not been 

provided. Dunia and Edgar (1996) evaluated the basic GMC algorithm when applied 

to SISO linear processes and provided insight regarding its limitation to ensure robust 

stability. The effect of sampling time on the reference trajectory for discrete systems 

was analyzed in order to avoid unstable responses for perfect models. Finally, a 

predictive GMC was developed to handle models with dead time in a reliable way.

Xie et al. (1999) proposed a new approach to Adaptive Generic Model Control 

(AGMC), based on the theory of Strong Tracking Filter (STF). Two AGMC schemes 

were developed. The first was a parameter-estimation-based AGMC, After 

introducing a new concept of Input Equivalent Disturbance (IED), another AGMC 

scheme called IED-estimation-based AGMC was further proposed. The unmeasurable 

disturbance and structural process/model mismatches could be effectively overcome 
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by the second AGMC scheme. The laboratory experimental results on a three-tank-

system demonstrated the effectiveness of the proposed AGMC approach.

Nussara (1999) presented the application of GMC to control the temperature 

of a batch polyvinyl chloride polymerization reactor. In this work, heat released of 

reactions was needed in the GMC formulation but not available for measurement, on-

line heat released estimator was used to estimate the heat released of the reactions. 

The GMC controller coupled with the estimator could give better control performance 

than the PID controller could. Furthermore, the GMC controller was more robust than 

the PID controller in the presence of plant/model mismatches.

Aziz et al. (2000) designed and implemented three different types of 

controllers namely PI, PID (both in DM strategy) and GMC controllers to track the 

optimal reactor temperature profiles using a complex reaction scheme in a batch 

reactor. Off-line optimal control problem had been formulated and solved to obtain 

the optimum temperature profiles (dynamic set point for controllers) to maximize the 

amount of the desired product while minimizing the waste by-product. Neural 

network technique was used as the on-line estimator the amount of heat released by 

the reaction within the GMC algorithm. The GMC controller coupled with a neural 

network was found to be more effective and robust than the PI and PID controllers in 

tracking the optimal temperature profiles to obtain the desired products on target.

Pijak (2002) applied GMC for a concentration control of continuous stirred 

tank reactor with first-order exothermic reaction, which was the process of relative 

degree two. This research used an internal controlled variable, the key component that 

made the control variable to be effected directly like the relative degree one processes. 

The results showed that the GMC with internal controlled variable could use the 

techniques that improved the robustness like a conventional GMC.

2.4 Kalman filter

In most industrial processes, the state variables are not all measurable or, not 

with sufficient accuracy for control purposes. Furthermore, measurements that are 

available often contain significant amounts of random noise and systematic errors. For 

these situations, an estimator has been applied to estimate state variables. In 1960, 
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Kalman published a famous paper describing a recursive solution to the discrete data 

linear filtering problem. The Kalman filter has been the subject of extensive research 

and application, particularly in the area of autonomous or assisted navigation.

Myers and Luecke (1991) described and illustrated an efficient new algorithm 

on process examples for solution of the extended Kalman filter equations for a 

continuous dynamic system with discrete measurements. Implicit simultaneous 

methods, which were powerful in terms of accuracy and efficiency, were utilized for 

numerical integration. At the internal integration step level, the new algorithm 

exploited the decoupled nature of the state estimate and error covariance equations 

along with the symmetry of the error covariance matrix. The error control strategy 

included both the state estimates and error covariance.

Tan et al. (1991) applied two estimation techniques, the extended Kalman 

filter (EKF) and the iterative extended Kalman filter (IEKF), to a nonlinear time-

varying system that had non-measurable state variables. An iterative solution to a fed-

batch fermentation process was reported using the EKF based on measurements of the 

oxygen and carbon dioxide concentrations. The results demonstrated that this 

estimation technique could be successfully applied to complex biological processes.

An adaptive control of input-output linearizable systems, together with an 

extended Kalman filter (EKF), was applied to a simulated batch polymerization 

reactor to realize the output (monomer conversion) tracking in the presence of model 

parameter uncertainties (Wang et al., 1993). Simulation results showed that this 

technique was robust and the output tracking performance could be ensured even in 

the presence of large model parameter errors and disturbances.

Gudi et al. (1995) presented the design and development of a multirate 

software sensor for use in the chemical process industry. The measurements of 

process outputs that arrived at different sampling rates were formally accommodated 

into the estimation strategy by using the multirate formulation of the iterated extended 

Kalman filter. Measurement delays associated with some of the process outputs were 

included in the system description by addition of delayed states. Observability issues 

associated with state and parameter estimation in a multirate framework were 
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discussed and modified measurement equations were proposed for systems with 

delayed measurements to ensure relatively strong system observability.

 Ahao and Kummel (1995) presented an application of state and parameter 

estimation techniques in an altering activated sludge process with regard to biological 

phosphorus removal. A simplified model describing the phosphorus dynamics in an 

alternating activated sludge process was proposed based on insight into the process 

with a mechanistic activated sludge model. State and parameter estimation problems 

relating to the non-measurable dynamics of a most important limiting substrate poly-

hydroxy-alkanoate (PHA) were formulated and discussed. Several schemes were 

presented which involved a state estimator designed with the extended Kalman filter 

algorithm, two specific parameter estimation procedures and an adaptive scheme for 

simultaneous state and parameter estimation.

Sarawut (1998) studied the temperature control of a batch reactor with 

exothermic reaction and compared the performance of MPC with GMC. In addition, 

since both MPC and GMC were the model based controllers and needed the 

measurement of all states as well as the value of process parameters Kalman Filter 

was used to estimate the heat released of chemical reactions.

State estimation methods, like the extended Kalman filter (EKF) were used for 

obtaining reliable estimates of the states from the available measurements in the 

presence of model uncertainties and unmeasured disturbances. The main open issue in 

applying EKF was the need to quantify the accuracy of the model in terms of the 

process noise covariance matrix, Q. Valappil and Georgakis (1999) proposed two 

methods that utilized the parametric model uncertainties to calculate the Q matrix of 

an EKF. The first approach was based on a Taylor series expansion of the nonlinear 

equations around the nominal parameter values. The second approach accounted for 

the nonlinear dependence of the system on the fitted parameters by use of Monte 

Carlo simulations that were easily be performed on-line. The value of the process 

noise covariance matrix obtained was not limited to a diagonal and constant matrix 

and was dependent on the current state of the dynamic system. The application of 

these techniques to an example process was discussed.
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Russell et al. (2000) investigated a model-based inferential quality monitoring 

approach for a class of batch systems. First, an extended Kalman filter based fixed-

point smoothing algorithm was presented and compared to a popular approach to 

estimating the initial conditions. Subsequently, a nonlinear optimization-based 

approach was introduced and analyzed. A sub-optimal on-line approximation to the 

optimization problem was developed and shown to be directly related to the extended 

Kalman filter based results. Finally, some practical implementation aspects were 

discussed, along with simulation results from and industrially relevant example 

application.

Nantana (2000) presented the implementation of Globally Linearizing Control 

(GLC) together with an extended Kalman filter to control pH of the wastewater 

treatment process that was a part of an electroplating plant. The extended Kalman 

filter had been applied to estimate unavailable or unknown states and parameters and 

these estimates were incorporated in the control action determination in the GLC 

algorithm.

Veerayut (2000) designed and developed two software programs based on 

Kalman filter. The first one, named kSTAPEN+, was a software component based on 

Kalman filter. In kSTAPEN+, users could define their own systems including states 

and parameters to be estimated. After running the program, estimation results are 

given. The estimates obtained from the kSTAPEN+ had been compared to those 

obtained from the program written on Matlab. Furthermore, the program had been 

tested with a heater, a stirred-tank reactor and a microfeeder. In kSTAPEN-C, the 

component had been developed by using Component Object Model (COM) 

technology. The estimates obtained from kSTAPEN-C had been compared to those 

obtained from kSTAPEN+. Results had shown that both kSTAPEN-C and 

kSTAPEN+ were equivalent.



CHAPTER III

THEORY

The variety of membrane separation processes, the novel characteristics of 

membrane structures, and the geometrical advantages offered by the membrane 

modules have been employed to enhance and assist reaction schemes to attain higher 

performance levels compared to conventional approaches. Membrane reactors have 

been investigated since the 1970s and have found utility in a broad range of 

applications including biochemical, chemical, environmental, and petrochemical 

systems.

This chapter provides some background information necessary for 

understanding membrane process, optimization, generic model control (GMC) and 

Kalman filter.

3.1 Membrane Process

The details on membrane separation, membrane reactor, pervaporation 

process, and pervaporative membrane reactor are provided in the following sections.

3.1.1 Membrane Separation

Membrane can be used to satisfy many of the separation requirements in the 

process industries. These separations can be put into two general areas; where 

materials are present as a number of phases and those where species are dissolved in a 

single phase.

A membrane is a permeable or semi-permeable phase, polymer, inorganic or 

metal, which restricts the motion of certain species. This membrane, or barrier, 

controls the relative rates of transport of various species through itself and thus, as 

with all separations gives one product depleted in certain components and a second 
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product concentrated in these components. The performance of a membrane is defined 

in terms of two simple factors, flux and retention or selectivity. Flux or permeation 

rate is the volumetric (mass or molar) flowrate of fluid passing through the membrane 

per unit area of membrane per unit time. Selectivity is a measure of the relative 

permeation rates of different components through the membrane. Retention is the 

fraction of solute in the feed retained by the membrane. Ideally a membrane with a 

high selectivity or retention and with a high flux or permeability is required, although 

typically attempts to maximize one factor are compromised by a reduction in the 

other.

Membranes are used for various separations; the separation of mixtures of 

gases and vapors, miscible liquids (organic mixtures and aqueous/organic mixtures) 

and solid/liquid and liquid/liquid dispersions and dissolved solids and solutes from 

liquids. The main uses of membrane separations in industry are in:

• The filtration of micron and submicron size particulates from liquid and 

gases (Microfiltration),

• The removal of macromolecules and colloids from liquids containing ionic 

species (Ultrafiltration),

• The separation of mixtures of miscible liquids (Pervaporation),

• The selective separation of mixtures of gases and vapor and gas mixtures 

(Gas Permeation and Vapor Permeation),

• The selective transport of only ionic species (Electrodialysis),

• The virtual complete removal of all material, suspended and dissolved, 

from water or other solvents (Reverse Osmosis).

The main feature, which distinguishes membrane separations from other 

separation techniques, is the use of another phase, the membrane. This phase, either 

solid, liquid or gaseous, introduces an interface(s) between the two bulk phases 

involved in the separation and can give advantages of efficiency and selectivity. The 
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membrane can be neutral or charged and porous or non-porous and acts as a 

permselective barrier.

Transport of selected species through the membrane is achieved by applying a 

driving force across the membrane. The processes in which membranes are used can 

be classified according to the driving force used in the process. The technically and 

commercially most relevant processes are:

• pressure-driven processes, such as reverse osmosis, ultrafiltration,  

microfiltration, or gas separation,

• concentration-gradient-driven processes, such as dialysis,

• partial-pressure-driven processes, such as pervaporation,

• electrical-potential-driven processes, such as electrolysis and 

electrodialysis.

Membranes are manufactured as flat sheets, hollow fibers, capillaries, or 

tubes, for practical applications membranes are installed in a suitable device, which is 

referred to as membrane module. The most commonly used devices are pleated 

cartridges, tubular and capillary membrane modules, plate-and-frame and spiral-

wound modules, and hollow-fiber modules. There are several other module types used 

in special applications, such as the rotation cylinder and the transversal flow capillary 

module. The key properties of efficient membrane modules are high packing density, 

good control of concentration polarization and membrane fouling, low operating and 

maintenance costs, and cost-efficient production. For the efficiency of a membrane 

process in a certain application, the choice of the proper membrane module is of great 

importance.
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3.1.2 Membrane Reactor

There has been an engineering effort to combine reaction and separation into a 

single process unit so as to improve process performance. Various functions of the 

membranes in a reactor can be categorized according to the essential role of the 

membranes. They can be employed to introduce/separate/purify reactant(s) and 

products, to provide the surface for reactions, to provide a structure for the reaction 

medium, or to retain specific catalysts. Within these broad contexts, the membranes 

can be catalytic/noncatalytic, polymeric/inorganic, and ionic/nonionic and have 

different physical/chemical structures and geometries. The functions of the membrane 

in a reaction can be enhanced or increased also by the use of multiple membrane-

based schemes.

Figure 3.1 schematically identifies many of the major generic functions 

performed by a membrane in a reactor. One should not conclude from the figure that a 

given membrane in a given reactor is capable of all functions identified in the figure. 

However, a given membrane under appropriate circumstances can perform more than 

one generic function. The introduction of another membrane into the reactor can 

increase the number of generic membrane functions in the reactor or achieve the same 

generic membrane function vis-à-vis some other species. Figure 3.1 also indicates 

other activities concurrently taking place in the so-called nonreactor (or permeate) 

side of the membrane as well as in the reactor side of the membrane. A list of the 

generic membrane functions performed by a membrane or two in a reactor is provided 

next:

1. Separation of products from the reaction mixture,

2. Separation of a reactant from a mixed stream for introduction into the 

reactor,

3. Controlled addition of one reactant or two reactants,

4. Nondispersive phase contacting (with reaction at the phase interface or in 

the bulk phases),

5. Segregation of a catalyst (and cofactor) in a reactor,
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6. Immobilization of a catalyst in (or on) a membrane,

7. Membrane is the catalyst,

8. Membrane is the reactor,

9. Solid-electrolyte membrane supports the electrodes, conducts ions, and 

achieves the reactions on its surfaces,

10. Transfer of heat,

11. Immobilizing the liquid reaction medium.

Figure 3.1 Schematic of possible functions of a membrane in a reactor
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3.1.2.1 Separation of products from the reaction mixture

Separation of products from the reaction mixture is one of the most common 

functions of a membrane in a reactor and this work is mainly focused on this function. 

The separation may be purification, enrichment, or concentration. Consider the 

following elementary reversible reaction (see figure 3.1).

                                             A   +   B                      C   +   D      (3.1)

Where D is a product needed to be removed via the membrane to the permeate side. 

The separation process employed may produce a permeate side stream where the mole 

fraction of D is much higher than that in the reactor side.

Removal of D via the separation function of the membrane has the following 

effects on reaction (3.1) and the reactor performance:

• The equilibrium condition indicated in the reversible reaction (3.1) is 

shifted to the right, i.e., leading to higher equilibrium conversion of A and B to C and 

D.

• If there is an undesirable side reaction as shown below,

                                 B   +   D      E (3.2)

Taking place in the reactor (see figure 3.1), the separation of product D from the 

reaction mixture reduces the loss of reactant B to the side reaction, increasing the 

selectivity of conversion to product C (or D)

• In consecutive catalytic reactions,

                                A                      B (3.3a)

                                B                      C (3.3b)

Where B is the desired intermediate product, if the rate constant for reaction (3.3b) is 

significantly larger than the rate constant for reaction (3.3a), it is difficult to achieve a 

high selectivity to B using a conventional packed bed, plug flow reactor. By using an 

inert sweep gas on the outside of a permeable tube having the catalysts and the 
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reaction taking place inside the tube, the intermediate product B may be selectively 

removed from the reaction zone, leading to increased selectivity.

• In fermentation processes, one of the products may be inhibitory to the 

fermentation process. Removal of the product from the fermentation broth via a 

membrane can substantially reduce product inhibition and increase volumetric 

productivity of the fermentor. Further, one can use higher concentrations of the 

substrate in the feed (e.g., glucose for ethanol fermentation) since the product is being 

removed as it is being formed.

The separation of a reaction product(s) (C or D or both) can be implemented 

using a variety of membrane processes. The nature of the membrane process is 

obviously influenced by the phase of the reaction medium exposed to the membrane 

and the desired phase of the permeated product stream.

3.1.2.2 Separation of a reactant from a mixed stream for introduction into the 

reactor

Figure 3.1 identified a particular function of the membrane as “purify reactant 

A from species F before addition” to the reactor on the left-hand side. The effect of 

this separation on the reaction system is generally quite different from that of a 

reaction product from the reaction mixture. The purification may lead to pure A being 

introduced into the reactor; a direct effect of this is prevention of dilution of the 

reaction mixture. It can also lead to rejection of a class of compounds by the 

membrane while the membrane preferentially introduced reactant species (one or a 

class) into the reactor from the feed stream; the species rejected can inhibit the 

reaction. An additional possibility involves simultaneous operation of two different 

reactions on two sides of the membrane wherein the products of one reaction feed the 

other and vice versa; the latter could be in a coupled mode as well.
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3.1.2.3 Controlled addition of one reactant or two reactants

Control of the reaction pathway is a major concern in reaction engineering. 

Partial oxidation reactions of hydrocarbons are especially relevant here. In particular 

cases, possibilities of thermal runaway and catalyst poisoning do exist. In 

biodegradation processes for toxic organics, microorganism growth may be affected 

by inhibition from the toxic organics unless their concentrations are controlled. In an 

aerobic wastewater treatment process, high O2 utilization with minimum waste to the 

atmosphere requires controlled but efficient introduction of O2 to the system. In 

processes using reactants having limited half-lives, e.g., ozonation of wastewater or 

for water purification, efficient and localized introduction of O3 at a controlled rate 

can lead to higher O3 utilization. Using a membrane to introduce a reactant or two in a 

controlled fashion in the reactor can facilitate achievement of the desired reaction 

conditions.

3.1.2.4 Nondispersive phase contacting (with reaction at the phase interface or in 

the bulk phases)

In many reactions, aqueous and organic phases are frequently used together. 

One phase is dispersed as drops in the other phase followed by coalescence after the 

process is over. This can be problematic if there are tendencies for emulsification. 

Microporous/porous membranes can be particularly useful here since the two 

immiscible phases can be kept on two sides of the membrane with their phase 

interfaces immobilized at the membrane pore mouths. Solvent extraction is 

conventionally used to isolate and concentrate dilute organic products obtained from 

whole cell-based fermentation processes. If the fermentation suffers from product 

inhibition, then extraction of the product(s) during fermentation increases the 

fermentor productivity. However, solvent dispersion can lead to a phase-level toxicity 

problem for the whole cells. Nondispersive phase contacting using 

microporous/porous membranes can resolve this problem.

In nondispersive phase contacting employing microporous/porous 

hydrophobic membranes, the organic phase wets the membrane pores; the aqueous 

phase is maintained outside the pores at a pressure equal to or higher than that of the 

organic phase. As long as this excess pressure does not exceed a breakthrough 
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pressure, the aqueous-organic interface remains immobilized on the aqueous side of 

the membrane with each phase flowing on a particular side of the membrane. For 

hydrophilic microporous/porous membranes, the aqueous phase is inside the pores; 

the organic phase is kept outside the pores at a pressure higher than that of the 

aqueous phase

3.1.2.5 Segregation of a catalyst (and cofactor) in a reactor

A membrane incorporated in a catalytic reaction system can perform, among 

others, a number of functions related to the catalyst. If the catalyst is mobile in the 

reaction fluid, the membrane can prevent its escape from the system. If the catalyst is 

to be immobilized with easy access to the reactants and convenient exit for the 

products, a porous/microporous membrane structure may have the catalyst 

immobilized on/within its structure (function 3.1.2.6). Alternately, the membrane 

material itself may act as the catalyst (function 3.1.2.7). We focus here on cases where 

the catalyst is mobile in the reaction fluid. Examples of such catalysts are enzymes 

(and cofactors where applicable), whole cells, and homogeneous catalysts (in organic 

synthesis). The segregation of particulate heterogeneous catalysts by filters is not 

under consideration.

3.1.2.6 Immobilization of a catalyst in (or on) a membrane

Four basic types of catalysts are relevant: (a) enzymes and (b) whole cells for 

biocatalysis; (c) oxides and (d) metals for nonbiological synthesis. Biocatalysts will 

be considered first since their immobilization in (or on) the membrane was explored 

much earlier. Five techniques have been studied in varying degrees. They are (1) 

enzyme contained in the spongy fiber matrix; (2) enzyme immobilized on the 

membrane surface by gel polarization; (3) enzyme adsorbed on the membrane 

surface; (4) enzyme immobilized in the membrane pore by covalent bonding; (5) 

enzyme immobilized in the membrane during membrane formation by the phase 

inversion process of membrane making.
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3.1.2.7 Membrane is the catalyst

Most catalytic membrane reactors for higher temperature operations employ 

ceramic membranes in the pores/micropores of which catalysts were deposited. The 

base membranes, e.g., silica and alumina, are generally not catalysts for the reactions 

studied. There are, however, a number of membranes, which are inherently catalytic 

for particular reactions; no catalyst needs to be deposited on or in the membrane. 

Particular examples are cation-exchange membranes, Nafion membranes, palladium 

membranes, and zeolite membranes

3.1.2.8 Membrane is the reactor

In a membrane reactor, catalysts are used frequently. The membrane may 

physically segregate the catalyst in the reactor (function 3.1.2.5) or have the catalyst 

immobilized in the porous/microporous structure or on the membrane surface 

(function 3.1.2.6). The membrane having the catalyst-immobilized in/on it functions 

almost in the same way as a catalyst particle in a reactor does except separation of the 

product(s) (function 3.1.2.1) takes place, in addition, through the membrane to the 

permeate side. All such configurations involve the bulk flow of the reaction mixture 

along the reactor length while diffusion of the reactants/products takes place generally 

in a perpendicular direction to/from the porous/microporous catalyst.

3.1.2.9 Solid-electrolyte membrane supports the electrodes, conducts ions, and 

achieves the reactions on its surfaces

Solid electrolytes are solid-state materials possessing ionic conductivity. The 

two ions of the greatest relevance are H+ and O2-, although other ions, Cl-, F-, Ag+, 

etc., have been found to be conducted as well. Solid polymer electrolytes such as 

perfluorinated ionomer membranes (e.g., Nafion) allow transport of H+ ions in the 

presence of water and are often called proton-exchange membranes. Solid solutions of 

oxides of di- or trivalent cations (e.g., Y2O3) in oxides of tetravalent metals such as 

ArO2 can conduct O2- over a wide temperature range. Nonporous disks of such a solid 
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electrolyte can act as membranes for such ionic species and are quite useful for fuel 

cells and as O2- conductors.

3.1.2.10 Transfer of heat

The most recent studies of membrane reactors have been in the context of the 

petrochemical industry. They take place at higher temperatures (>200 oC) and there 

likely is a need for considerable heat transfer because the reaction may be exothermic 

or endothermic. Dehydrogenation reactions studied frequently are endothermic. The 

membrane, if inert, is in a catalytic reactor, packed bed, or fluidized bed. Thus, the 

membrane may have to participate in heat transfer.

In actual practice, there will be one particular reaction going on and heat is 

going to be supplied from a fired heater, molten salt baths, or thermal fluid jackets. 

Therefore, the membrane is most likely going to be decoupled from the heat transfer 

process. A common configuration of some interest in a packed bed membrane reactor 

consists of multiple membrane tubes inside tubular catalyst beds, placed in turn, in 

another enclosure for heat exchange. Thermal expansion properties of the membrane 

tube, sealing at the header, and protection from abrasional damage from catalyst 

particles are of much greater importance.

3.1.2.11 Immobilizing the liquid reaction medium

Many reactions are carried out in an organic solvent. These include two-phase 

reactions, e.g., those encountered in phase transfer catalysis, gas-liquid reactions, etc. 

A porous/microporous membrane can immobilize an appropriate reaction medium in 

the pores. The two different phases containing reactants can be brought to the two 

sides of the membrane. As long as the two feed phases are immiscible with the 

reaction medium, reactants can partition into the reaction medium and react and then 

the products can partition back into the flowing phases on opposite sides of the 

membrane. Unfortunately, such a configuration, usually termed as the supported 

liquid membrane (SLM), has limited stability because of a variety of reasons 
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including a finite solubility of the reaction medium in the two different reactant-

containing phases.

3.1.3 Pervaporation

Pervaporation is a relatively new membrane separation process that has 

elements in common with reverse osmosis and membrane gas separation. In 

pervaporation, the liquid mixture to be separated (feed) is placed in contact with one 

side of a membrane and the permeated product (permeate) is removed as a low-

pressure vapor from the other side (Figure 3.2). The permeate vapor can be condensed 

and collected or released as desired. The chemical potential gradient across the 

membrane is the driving force for the mass transport. The driving force can be created 

by applying either a vacuum pump or and inert purge (normally air or steam) on the 

permeate side to maintain the permeate vapor pressure lower than the partial pressure 

of the feed liquid.

Vacuum pervaporation, which is customarily referred to as the standard 

pervaporation, is the most widely utilized mode of operation, while inert purge 

pervaporation is normally of interest if the permeate can be discharged without 

condensation. Besides these two modes of operation, there are several other process 

variants, including thermal pervaporation, perstraction or osmotic distillation, 

saturated vapor permeation, and pressure-driven pervaporation (Franken et al., 1990; 

Neel, 1991; Goncalves et al., 1990). Some of them are really process hybrids rather 

than process variants. Recently, electrically induced pervaporation has also been 

attempted by Timsahev et al. (1994).
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Figure 3.2 Schematic diagram of the pervaporation process. (a) Vacuum 

pervaporation, (b) purge gas pervaporation

The mass transport in non-porous pervaporation membranes can be described 

by the solution-diffusion-mechanism (see figure 3.3):

• Sorption of the permeating components in the membrane polymer on 

the retentate side of the membrane,

• Diffusion of the sorped components through the polymer membrane,

• Desorption of the permeated components by evaporation into a 

vacuum chamber or a sweep gas stream on the permeate side of the 

membrane.
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Figure 3.3 Schematic representation of the pervaporation transport mechanism: 

solution-diffusion model.

The separation of liquid mixtures by using pervaporation method can be

classified into three fields:

1) Solvent dehydration,

2) Separation of dissolved organics from water,

3) Separation of organic mixtures.

3.1.3.1 Solvent dehydration

Most of the early solvent dehydration systems were installed for ethanol 

dehydration. This is a particularly favorable application for pervaporation because 

ethanol forms an azeotrope with water at 95 percent and a 99.5 percent pure product is 

needed. Essentially all pervaporation dehydration systems installed to date have been 

equipped with poly(vinyl alcohol) membrane. Because an ethanol/water azeotrope 

forms at 95% ethanol, the concentration of ethanol from fermentation feeds to high 

degrees of purity requires rectification with a benzene entrainer, some kind of 

molecular-sieve drying process, or a liquid-liquid extraction process. All these 

processes are expensive. However, the availability of extremely water-selective 

pervaporation membranes allows pervaporation systems to produce almost pure 

ethanol (>99.9 percent ethanol from a 90 percent ethanol feed). Reliable capital and 

operation cost comparisons between pervaporation and distillation are not available. 
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Pervaporation is less capital and energy-intensive than distillation or adsorption 

processes for small plants treating less than 5000 L/h of feed solution. However, 

because of the modular nature of the process, the costs of pervaporation are not as 

sensitive to economies of scale as are the costs of distillation and adsorption 

processes. Distillation costs, however, scale at a rete proportional to 0.6 to 0.7 times 

the power consumption. Thus, distillation remains the most economical process for 

large plants.

More recently pervaporation has been applied to dehydration of other solvents, 

particularly isopropanol used as a cleaning solvent. Dehydration of other solvents, 

including glycols, acetone, and methylene chloride, has been considered. A final 

interesting application of dehydration membranes is to shift the equilibrium of 

chemical reactions. For example, esterification reactions are usually performed in 

batch reactors, and the degree of conversion is limited by buildup of water in the 

reactor. By continuously removing the water, the equilibrium reaction can be forced 

to the right. In principle, almost complete conversion can be achieved.

3.1.3.2 Separation of dissolved organics from water

A number of applications exist for pervaporation to remove or recover volatile 

organic compounds from water. If the aqueous stream is very dilute, pollution control 

is the principal economic driving force. However, if the stream contains more than 1 

to 2 percent VOC, recovery for eventual reuse can enhance the process economics.

Several types of membrane have been used to separate VOCs from water. 

Usually the membranes are made from rubbery polymers such as silicone rubber, 

polybutadiene, natural rubber, and polyamide-polyether copolymers. Rubbery 

pervaporation membranes are remarkably effective at separating hydrophobic organic 

solutes from dilute aqueous solutions. The concentration of VOCs such as toluene or 

trichloroethylene (TCE) in the condensed permeate is typically more than 1000 times 

that in the feed solution.
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3.1.3.3 Separation of organic mixtures

The third application area for pervaporation is the separation of 

organic/organic mixtures. The competitive technology is generally distillation, a well-

established and familiar technology. However, a number of azeotropic and close-

boiling organic mixtures cannot be efficiently separated by distillation; pervaporation 

can be used to separate these mixtures. It would be unusual for a pervaporation 

process to perform an entire organic/organic separation. Rather, pervaporation will be 

most efficient when combined with distillation in a hybrid process. The two main 

applications of pervaporation-distillation in hybrid processes are likely to be in 

breaking azeotrope and in removing a single-component, high-purity side stream from 

a multicomponent distillation separation.

The principal problem hindering the development of commercial systems for 

organic/organic separations is the lack of membranes and modules able to withstand 

long-term exposure to organic compounds at the elevated temperatures required for 

pervaporation.

The performance of the pervaporation process depends not only upon the 

physicochemical properties of the polymeric materials and the structure of membrane 

but also upon the operating conditions, e.g. temperature, downstream pressure and 

composition of mixture. The followings summarize the effects of various factors on 

the performance of the pervaporation process.

• Physico-chemical properties

The permeation of solvents through a non-porous membrane usually can be 

described in terms of sorption and molecular diffusion. The extent of sorption (also 

called swelling) as well as the sorption selectivity are therefore determined by 

chemical nature of polymer and that of the solvents.

• Operating temperature

The variation of permeation rate follows from the operating temperature can 

be correlated with the Arrhenius’ equation.
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Jp  =  Jo exp(-Ep/RgT) (3.4)

Where Jp is the permeation rate, Jo is the pre-exponential factor, Ep is the apparent 

activation energy of permeation, and Rg and T are the gas constant and temperature, 

respectively.

• Feed composition

A change in feed composition directly affects the sorption phenomena at the 

liquid-membrane interface. The sorption selectivity depends obviously on the power 

of interaction between components. The extent of swelling as well as the sorption 

selectivity depends on the structure of polymer network. The lower affinity to the 

membrane can penetrate into the swollen system, and contribute to better swelling.

• Feed concentration

According to Fick’s law, the permeation is proportional to the activity gradient 

across the membrane. Since the feed concentration directly affects the membrane 

activity, the increased feed concentration increased the driving force and the 

permeation flux through the membrane.

• Downstream pressure

Pervaporation process controls downstream pressure by pumping the permeate 

from downstream interface in the vapor form to provide the driving force. The 

decreased vapor pressure in downstream compartment is equivalent to and increased 

driving force for component transportation.

The values of partial vapor pressure, which directly control the transport of 

solvents, result from a dynamic equilibrium between the transport flux of the 

permeates and the pumping rate.
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3.1.4 Pervaporative Membrane Reactor

A pervaporative membrane reactor is one of the membrane reactors for yield-

enhancement of equilibrium-limited reactions. The concept was firstly proposed by 

Jenning and Binnings in 1960. While a reaction takes place in liquid phase, a by-

product (usually water) is removed through a polymeric membrane in the permeate 

stream. The downstream pressure is kept below the vapor pressure of permeating 

species. The downstream side is evacuated by a vacuum pump or at least using an 

inert purge gas as illustrated in Figure 3.4

Pervaporative membrane reactors are expected to provide a promising 

alternative due to the following considerations: (1) pervaporation is a rate-controlled 

separation process, and the separation efficiency is not limited by relative volatility as 

in distillation, (2) in pervaporation only a fraction of feed that is permeated by 

membrane undergoes the liquid-to vapor-phase change, and thus energy consumption 

is generally low as compared to distillation, (3) with an appropriate membrane, 

pervaporation can be operated at a temperature that matches the optimal temperature 

for reaction.

The most common reaction system studied for the application of pervaporative 

membrane reactor is an esterification reaction between an alcohol and an acid in the 

presence of a highly acidic catalyst:

                 R1COOH  +  R2OH                  R1COOR2  +  H2O       (3.5)

The esterification represents an important class of chemical reactions. As 

esterification is equilibrium reaction (3.5), high yields can be obtained by adding an 

excess of one reactant or by constant removal of the produced water from the reaction 

mixture in order to shift the reaction to the product side.

Application of pervaporation processes to selectively separate water from the 

reacting mixture forms an interesting alternative to conventional distillation, 

especially in the case of azeotrope formation and low boiling reactants.
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Figure 3.4 Schematic of a typical pervaporative membrane reactor (a) using vacuum 

pump, (b) using purge gas

                  (a)                                                       (b)

Figure 3.5 Configuration of a pervaporation reactor with an internal pervaporation 

unit (a) and with an external pervaporation unit (b)

Permeate PV

Permeate

Liquid phase
A  +  B                    C  +  D

Vapor phase                            D

CONDENSER

RETENTATEFEED

CONDENSER

RETENTATEFEED
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(b)

Liquid phase
A  +  B                    C  +  D

Vapor phase                            D
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Both polymer and ceramic membranes are applied in pervaporation-based 

reactors, for which Figure 3.5 shows the two basic configurations. Table 3.1 shows 

some examples of membrane-assisted esterification reactions. In addition to these low 

molecular weight esters, pervaporation can also be used for the production of 

polycondensation esters (resins).

Table 3.1 Overview of pervaporation-assisted esterification

Reaction
Membrane

material

Membrane

type

Membrane

Area (m2)

Temp.

(oC)

methanol + acetic acid  

acetate + water
Nafion Tube 5x10-3 25

ethanol + acetic acid  

ethyl acetate + water

Polyvinyl

alcohol
Flat cell 1.2 90

ethanol + acetic acid  

ethyl acetate + water
Nafion 117 Flat cell 1.2 90

ethanol + oleic acid  

oleic acid ethyl ester + water

Polyether

imide
Flat cell 1.9 60

1-propanol + propionic acid  

propionic acid propyl ester + 

water

Polyvinyl

alcohol
Flat cell 2.0 50

1-propanol + propionic acid  

propionic acid propyl ester + 

water

Polyvinyl

alcohol
Flat cell 2.0 50

1-propanol + propionic acid  

propionic acid propyl ester + 

water

PSSH-

polyvinyl

alcohol

Flat cell 2.0 50

2-propanol + propionic acid  

propionic acid propyl ester + 

water

Polyvinyl

alcohol
Flat cell 2.0 55

1-butanol + acetic acid  

butyl acetate + water

Polyvinyl

acetate

Channel

reactor
- 155

1-butanol + acetic acid  

butyl acetate + water
Nafion Tube 5.0 25
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The influence of four different operating parameters on the conversion are 

evaluated, which can be divided into three group:

• Factors, which influence directly the esterification reaction (the catalyst 

concentration and initial molar ratio),

• Factors, which influence the pervaporation kinetics directly (the ratio of 

membrane area to reactor volume),

• Factors, which influence simultaneously the esterification as well as the 

pervaporation kinetics (the temperature).

For a rapid conversion of lab-scale results into an economically viable 

reaction-pervaporation system, an optimum value can be determined for each 

parameter. Based on experimental results as well as a model describing the kinetics of 

the system, it has been found that the temperature has the strongest influence on the 

performance of the system as it affects both the kinetics of esterification and of 

pervaporation. The rate of reaction increases with temperature according to Arrhenius 

law, whereas an increased temperature accelerates the pervaporation also. 

Consequently, the water content fluctuates much faster at a higher temperature. The 

second important parameter is the initial molar ratio. It has to be noted that a deviation 

in the initial molar ratio from the stoichiometric value requires a rather expensive 

separation step to recovery the unreacted component afterwards. The third factor is 

the ratio of membrane area to reaction volume, at least in the case of a batch reactor. 

For continuous operation, the flowrate should be considered as the determining factor 

for the contact time of the mixture with the membrane and subsequently the 

permeation flux. The catalyst concentration exhibits the weakest influence on the 

pervaporation-esterification system. The reaction rate increases linearly with the 

catalyst concentration.



44

3.2 Optimization

Optimization is the use of specific methods to determine the most effective 

and efficient solution to a problem or design for a process. This technique is one of 

the major quantitative tools in industrial decision making. A wide variety of problem 

in the design, construction, operation, and analysis of chemical plants (as well as 

many other industrial processes) can be resolved by optimization (Edgar et al., 2001).

3.2.1 The Essential Features of Optimization Problems

The essential elements of the optimization problems are:

1. Objective function,

2. Decision variable,

3. Constraint.

The objective function is a mathematical function that, for the best values of 

the decision variables, reaches a minimum (or maximum). Thus, the objective 

function is the measure of value or goodness for the optimization problem. There may 

be more than one objective function for a given optimization problem. There are 

different types of objective function depending on the needs and uses. The typical 

objective functions for reactors stated in terms of the adjustable variables are:

• Maximize conversion (yield) per volume with respect to time,

• Maximize production per batch,

• Minimize production time for a fixed yield,

• Minimize total production costs per average production costs with respect 

to time per fraction conversion,

• Maximize yield per number of moles of component per concentration with 

respect to time or operating conditions,

• Design the optimal temperature sequence with respect to time per reactor 

length to obtain (a) a given fraction conversion, (b) a maximum rate of 

reaction, or (c) the minimum residence time,

• Adjust the temperature profile to specification with respect to the 

independent variables,

• Minimize volume of the reactor(s) with respect to certain concentration(s),
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• Change the temperature from To to Tf in minimum time subject to heat 

transfer rate constraints,

• Maximize profit with respect to volume,

• Maximize profit with respect to fraction conversion to get optimal recycle,

• Optimize profit per volume per yield with respect to boundary per initial 

conditions in time,

• Minimize consumption of energy with respect to operating conditions.

The decision variables are those independent variables over which the 

engineer has some control. These can be continuous variables such as temperature or 

discrete (integer) variables such as number of stages in a column.

Constraints are values that indicate the ability and limit of the feasible path of 

the process. Constraints can be classified into two types as follow:

1. Equality constraints are constraints that indicate the limits of the process or 

its product such as the purity of the products, mass and energy balance.

2. Inequality constraints are constraints that indicate the limit due to design 

and other limits

Constraints in optimization arise because a process must describe the physical 

bounds on the variables, empirical relations, and physical laws that apply to a specific 

problem. Examples of equality and inequality constraints follow:

• Production limitations,

• Raw material limitations (e.g., limitation of feedstock supplies),

• Safety or operability restrictions (e.g., temperature, pressure),

• Environmental limitations (e.g., production of toxic material),

• Physical property specifications on products.

The optimization models represent problem choices as decision variables and 

seek values that maximize or minimize objective functions of the decision variables 

subject to constraints on variable values expressing the limits on possible decision 

choices. The optimization model description is stated as:
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 f (x) objective function

Subject to: h(x) = 0 equality constraints (3.6)

g(x) ≥ 0 inequality constraints

where x is a vector of n decision variables (x1, x2, …, xn),

h(x) is a vector of equations of dimension m1,

g(x) is a vector of inequalities of dimension m2.

An efficient and accurate solution to this problem is not only dependent on the 

size of the problem in terms of the number of constraints and decision variables but 

also on characteristics of the objective function and constraints.

From equation (3.6), it is unconstrained problem if there are no constraint 

functions and no bounds on the xi. Linear Programming (LP) refer to problems in 

which both the objective function and the constraints are linear. More difficult to 

solve is the Nonlinear Programming (NLP) problem in which the objective functions 

and constraints may be nonlinear functions of the decision variables.

3.2.2 Successive Quadratic Programming (SQP)

SQP methods represent state-of-the-art in nonlinear programming methods. 

Schittowski (1985), for example, has implemented and tested a version that out 

performs every other tested method in terms of efficiency, accuracy, and percentage 

of successful solutions. At each major iteration, an approximation is made of the 

Hessian of the Lagrangian function using a quasi-Newton updating method. This is 

then used to generate a QP subproblem whose solution is used to form a search 

direction for a line search procedure (Grace, 1999).

Given the problem description in equation (3.6) the principal idea is the 

formulation of a QP subproblem based on a quadratic approximation of the 

Lagrangian function.

1

( , ) ( ) ( )
m

i i
i

L x f x g xλ λ
=

= + ⋅∑ (3.7)
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Here equation (3.6) is simplified by assuming that bound constraints have 

been expressed as inequality constraints. The QP subproblem is obtained by 

linearizing the nonlinear constraints.

3.2.2.1 Quadratic Programming (QP) Subproblem

           minimize  1 ( )
2

T T
k kd H d f x d+∇

( ) ( ) 0T
i k i kg x d g x∇ + = 1,... ei m= (3.8)

( ) ( ) 0T
i k i kg x d g x∇ + ≤ 1,...ei m m= +

This subproblem can be solved using any QP algorithm. The solution is used 

to form a new iterate

1k k k kx x dα+ = +

The step length parameter kα  is determined by an appropriate line search 

procedure so that a sufficient decrease in a merit function is obtained. The matrix kH

is a positive definite approximation of the Hessian matrix of the Lagrangian function. 

kH  can be updated by any of the quasi-Newton methods.

A nonlinearly constrained problem can often be solved in fewer iterations than 

an unconstrained problem using SQP. One of the reasons for this is that, because of 

limits on the feasible area, the optimizer can make well-informed decisions regarding 

directions of search and step length.

3.2.2.2 SQP Implementation

The MATLAB SQP implementation consists of three main stages, which are 

discussed briefly in the following subsections:

• Updating of the Hessian matrix of the Lagrangian function,

• Quadratic programming problem solution,

• Line search and merit function calculation.
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Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the 

Hessian of the Lagrangian function, ,H  is calculated using the BFGS (Broyden, 

Flectcher, Goldfarb, and Shanno) method where ( 1,..., )i i mλ =  is an estimate of the 

Lagrange multipliers.

1

T T
k k k k

k k T T
k k k k k

q q H HH H
q s s H s+ = + −

where 1k k ks x x+= − (3.9)

1 1
1 1

( ) ( ) ( ) ( )
n n

k k i i k k i i k
i i

q f x g x f x g xλ λ+ +
= =

⎛ ⎞= ∇ + ⋅∇ − ∇ + ⋅∇⎜ ⎟
⎝ ⎠

∑ ∑

A positive definite Hessian is maintained providing T
k kq s  is positive at each 

update and that H  is initialized with a positive definite matrix. When T
k kq s  is not 

positive, kq  is modified on an element by element basis so that 0.T
k kq s >  The general 

aim of this modification is to distort the elements of ,kq  which contribute to a positive 

definite update, as little as possible. Therefore, in the initial phase of the modification, 

the most negative element of T
k kq s  is repeatedly halved. This procedure is continued 

until T
k kq s  is greater than or equal to 10-5. If after this procedure, T

k kq s  is still not 

positive, kq  is modified by adding a vector v  multiplied by a constant scalar ,w  that 

is,

k kq q wv= + (3.10)

where 1 1( ) ( ) ( ) ( )i i k i k i k i kv g x g x g x g x+ += ∇ ⋅ −∇ ⋅

if ( ) 0k iq w⋅ <

and ( ) ( ) 0k i k iq s⋅ < ( 1,...i m= )

otherwise 0iv =

and w  is systematically increased until T
k kq s  becomes positive.
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Quadratic Programming Solution

At each major iteration of the SQP method a QP problem is solved of the form 

where Ai refers to the i th row of the m x n matrix A.

           minimize  1( )
2

T Tq d d Hd c d= +

i iAd b= 1,..., ei m= (3.11)

i iAd b≤ 1,...,ei m m= +

The solution procedure involves two phases: the first phase involves the 

calculation of a feasible point, the second phase involves the generation of a iterative 

sequence of feasible points that converge to the solution. In this method an active set 

is maintained, ,kA  which is an estimate of the active constraints (i.e., which are on the 

constraint boundaries) at the solution point.

kA  is updated at each iteration, k, and this is used to form a basis for a search 

direction ˆ
kd . Equality constraints always remain in the active set, .kA  The notation 

for the variable, ˆ ,kd  is used here to distinguish it from kd  in the major iterations of 

the SQP method. The search direction ˆ ,kd  is calculated and minimizes the objective 

function while remaining on any active constraint boundaries. The feasible subspace 

for ˆ
kd  is formed from a basis, kZ  whose columns are orthogonal to the estimate of 

the active set kA  (i.e., 0k kA Z = ). Thus a search direction, which is formed from a 

linear summation of any combination of the columns of ,kZ  is guaranteed to remain 

on the boundaries of the active constraints.

Line Search and Merit Function

 The solution to the QP subproblem produces a vector ,kd  which is used to 

form a new iterate

1k k kx x dα+ = + (3.12)
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The step length parameter kα  is determined in order to produce a sufficient 

decrease in a merit function. The merit function used by Han (1977) and Powell 

(1978) of the form below has been used in this implementation.

1 1

( ) ( ) ( ) max{0, ( )}
e

e

m m

i i i i
i i m

x f x r g x r g x
= = +

Ψ = + ⋅ + ⋅∑ ∑ (3.13)

3.3 Generic Model Control (GMC)

Lee and Sullivan (1988) have generalized many of the model-based techniques 

into a generic structure called the generic model control, which allows the 

incorporation of nonlinear process models directly in the control algorithm. Consider 

a process described by:

.
x f(x,u,t)= (3.14)

( )y g x= (3.15)

where
.
x is a state variable,

u is the manipulated input variable,

y is the output of the process model.

In general, f and g  are nonlinear functions. From equations (3.14) and 

(3.15), 
.
y  can be written as

.
( , , )xy G f x u t=

where

x
gG
x
∂

=
∂

(3.16)

In a classical optimal control, the trajectory of y  is usually compared against 

a nominal trajectory, *( )y t , as a measure of system performance. As an alternative, 

consider the performance of the system to be such that:

.
* *( ) ( ) ( )y t r y= (3.17)
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where *r represents some arbitrary function to be specified.

When the process is away from its desired steady state y*, the rate of change of 

y, y*, is selected to be such that the process moves towards steady state, i.e.

.
*

1( )( )y K t y y= − (3.18)

where 1( )K t  is some diagonal matrix.

The process is selected to have zero offset, i.e.

.
*

2 ( ) ( )y K t y y dt= −∫ (3.19)

where 2( )K t  is some diagonal matrix.

1( )K t  and 2( )K t  are constant with respect to time. Good control performance 

will be given by some combination of these objectives, i.e.

.
* * *

1 2( ) ( ) ( )y K y y K y y dt= − + −∫ (3.20)

It can be seen that by different choices of 1K  and 2K  the performance 

specification can be altered for each variable separately. One can use these values to 

select any “reasonable” desired response for the system. “Reasonable” implies that the 

parameters are chosen in relation to the system’ s natural dynamic response. How well 

the system matches this performance index is governed by how closely the chosen 

model matches the plant behavior.

Taking Laplace transform of the equation (3.20), transfer function of this 

equation becomes:

* 2 2

2 1
2 1

y s
y s s

τξ
τ τξ

+
=

+ +
(3.21)

where

2

1
K

τ =      and     1

22
K

K
ξ =
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This system does not yield the same response as a classical second-order 

system (Stephanopoulos, 1984). However, similar plots to the classical second-order 

response showing the normalized response of the system */y y  vs. normalized time 

/t τ  with ξ  as a parameter can be produced and is shown in Figure 3.6. The design 

procedure can be specified as follows:

1.Choose ξ from Fig. 3.6 to give desired shape of response,

2.Choose τ from Fig. 3.6 to give “appropriate” timing of response in relation 

to known or estimated plant speed of response,

3.Calculate K1 and K2 using the following equations:

1
2K ξ
τ

= (3.22)

2 2

1K
τ

= (3.23)

Figure 3.6 Generalized GMC profile specification

t /τ

y/y*
ξ = 10

ξ = 1.0
ξ = 0.5

ξ = 3.0
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GMC has several advantages that make it a good framework for developing 

reactor controllers:

1. The process model appears directly in the control algorithm.

2. The process model does not need to be linearized before use, allowing for 

the inherent nonlinearity of exothermic batch reactor operation to be taken 

into account.

3. By design, GMC provides feedback control of the rate of change of the 

controlled variable. This suggests that the rate of temperature change, 

which as mentioned above is very important in heat-up operations, can be 

used directly as a control variable.

4. The relationship between feedforward and feedback control is explicitly 

stated in the GMC algorithm.

5. Finally and importantly, the GMC framework permits for developing a 

control algorithm that can be used for both heat-up and temperature 

maintenance and therefore eliminates the need for a switching criterion 

between different algorithms; this should result in a much more robust 

control strategy.

3.4 Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) solution of the least-squares method. The filter is very 

powerful in several aspects: it supports estimations of past, present, and even future 

states, and it can do so even when the precise nature of the model system is unknown.

3.4.1 The discrete Kalman filter

The Kalman filter addresses the general problem of trying to estimate the state 

x ∈ ℜn of a discrete-time controlled process that is governed by the linear stochastic 

difference equation

xk   =   Axk-1 +  Buk  +  wk-1 (3.24)

with a measurement z ∈ ℜm that is
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zk   =   Hxk  +  vk (3.25)

The random variables wk and vk represent the process and measurement noise 

(respectively) and assume to be independent (of each other), white, and with normal 

probability distributions

p(w)  ∼   N(0,Q) (3.26)

p(v)   ∼   N(0,R) (3.27)

In practice, the process noise covariance Q and measurement noise 

covariance R matrices might change with each time step or measurement, however 

here they are assumed to be constant.

The n x n matrix A in the difference equation (3.24) relates the state at the 

previous time step k-1 to the state at the current step k, in the absence of either a 

driving function or process noise. Note that in practice A might change with each time 

step, but here it is assumed to be constant. The n x l matrix B relates the optional 

control input u ∈ ℜl to the state x. The m x n matrix H in the measurement equation 

(3.25) relates the state to the measurement zk. In practice H might change with each 

time step or measurement, but here it is assumed to be constant.

3.4.1.1 The computational origins of the filter

Define ˆkx−  ∈ ℜn to be a priori state estimate at step k given knowledge of the 

process prior to step k, and ˆkx  ∈ ℜn to be a posteriori state estimate at step k given 

measurement zk. A priori and a posteriori estimate errors can be defined as

ˆk k ke x x− −≡ −

and ˆk k ke x x≡ −

The a priori estimate error covariance is then

[ ]T
k k kP E e e− − −= (3.28)

and the a posteriori estimate error covariance is
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[ ]T
k k kP E e e= (3.29)

An a posteriori state estimate ˆkx  is computed as a linear combination of an a 

priori estimate ˆkx−  and a weighted difference between an actual measurement zk and a 

measurement prediction ˆkHx−  as shown below in equation (3.30). Some justification 

for equation (3.30) is given in “The Probabilistic Origins of the Filter” found below.

ˆ ˆ ˆ( )k k k kx x K z Hx− −= + − (3.30)

The difference ˆ( )k kz Hx−−  in equation (3.30) is called the measurement innovation, or 

the residual. The residual reflects the discrepancy between the predicted measurement 

ˆkHx−  and the actual measurement zk. A residual of zero means that the two are in 

complete agreement.

The n x m matrix K in equation (3.30) is chosen to be the gain or blending 

factor that minimizes the a posteriori error covariance equation (3.29). This 

minimization can be accomplished by first substituting equation (3.30) into the above 

definition for ek, substituting that into equation (3.29), performing the indicated 

expectations, taking the derivative of the trace of the result with respect to K, setting 

that result equal to zero, and then solving for K. One form of the resulting K that 

minimizes equation (3.29) is given by:

1( )T T
k k kK P H HP H R− − −= +

      
T

k
T

k

P H
HP H R

−

−=
+

 (3.31)

From equation (3.31) as the measurement error covariance R approaches zero, the 

gain K weights the residual more heavily.

1

0
lim

k
kR

K H −

→
=

Another way of thinking about the weighting by K is that as the measurement error 

covariance R approaches zero, the actual measurement zk is trusted more and more, 

while the predicted measurement ˆkHx−  is trusted less and less. On the other hand, as 
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the a priori estimate error covariance kP−  approaches zero the actual measurement zk is 

trusted less and less, while the predicted measurement ˆkHx−  is trusted more and more.

3.4.1.2 The discrete Kalman filter algorithm

The Kalman filter estimates a process by using a form of feedback control: the 

filter estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the Kalman filter fall into two 

groups: time update equations and measurement update equations. The time update 

equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the feedback−i.e. for incorporating 

a new measurement into the a priori estimate to obtain an improved a posteriori

estimate.

The specific equations for the time and measurement updates are presented 

below:

Time Update (“Predict”) equations:

• Project the state ahead

                             1ˆ ˆk k kx Ax Bu−
−= +

• Project the error covariance ahead

                            1
T

k kP AP A Q−
−= +

Measurement Update (“Correct”) equations:

• Compute the Kalman gain

                           1( )T T
k k kK P H HP H R− − −= +

• Update estimate with measurement zk

                        ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −

• Update the error covariance

                          ( )k k kP I K H P−= −
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The time update equations can also be thought of as predictor equations, while 

the measurement update equations can be thought of as corrector equations. Indeed 

the final estimation algorithm resembles that of a predictor-corrector algorithm for 

solving numerical problems as shown in Figure 3.7

Figure 3.7 The discrete Kalman filter loop

3.4.1.3 Filter parameters and tuning

In the actual implementation of the filter, the measurement noise covariance R

is usually measured prior to operation of the filter. Measuring the measurement error 

covariance R is generally practical and is supposed to be able to measure the process 

anyway (while operating the filter).

The determination of the process noise covariance Q is generally more 

difficult because it does not have the ability to directly observe the estimating process. 

Sometimes a relatively simple (poor) process model can produce acceptable results if 

one injects enough uncertainty into the process via the selection of Q. Certainly in this 

case one would hope that the process measurements are reliable.

The tuning of the parameters Q and R is usually performed off-line, frequently 

with the help of another (distinct) Kalman filter in a process generally referred to as 

system identification. Under conditions where Q and R are in fact constant, both the 

estimation error covariance Pk and the Kalman gain Kk will stabilize quickly and then 

Compute Kalman gain
1( )T T

k k kK P H HP H R− − −= +

Compute error covariance

( )k k kP I K H P−= −

Measurement update

ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −

Time update

1ˆ ˆk k kx Ax Bu−
−= +

1
T

k kP AP A Q−
−= +
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remain constant. If this is the case, these parameters can be pre-computed by either 

running the filter off-line or for example by determining the steady-state value of Pk.

3.4.2 The extended Kalman filter (EKF)

As described above, the Kalman filter addresses the general problem of trying 

to estimate the state x ∈ ℜn of a discrete-time controlled process that is governed by 

the linear stochastic different equation. Some of the most interesting and successful 

applications of Kalman filtering have been such the process to be estimated and (or) 

the measurement relationship to the process is nonlinear. A Kalman filter that 

linearizes about the current mean and covariance is referred to as an extended Kalman 

filter or EKF.

Assuming the process has a state vector x ∈ ℜn, but the process is now 

governed by the nonlinear stochastic difference equation

xk  =  f(xk-1, Uk, wk-1) (3.32)

With a measurement z ∈ ℜm that is

zk  =  h(xk, vk) (3.33)

where the random variables wk and vk represent the process and measurement noise. In 

this case the nonlinear function f in the difference equation (3.32) relates the state at 

the previous time step k-1 to the state at the current time step k. It includes as 

parameters any driving function uk and the zero-mean process noise wk. The nonlinear 

function h in the measurement equation (3.33) relates the state xk to the measurement 

zk.

In practice of course one does not know the in individual values of the noise 

wk and vk at each time step. However, one can approximate the state and measurement 

vector as:

1( , ,0)k k kx f x u−= )
% (3.34)

and ( ,0)k kz h x= %% (3.35)
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where kx%  is some a posteriori estimate of the state (from a previous time step k).

To estimate a process with nonlinear difference and measurement 

relationships, begin by writing new governing equations that linearize and estimate 

equation (3.34) and (3.35),

1 1 1ˆ( )k k k k kx x A x x Ww− − −≈ + − +% (3.36)

( )k k k k kz z H x x Vv≈ + − +%% (3.37)

where xk and zk are the actual state and measurement vectors,

kx%  and kz%  are the approximate state and measurement vectors from equation 

(3.34) and (3.35),

ˆkx  is an a posteriori estimate of the state at step k,

A is the Jacobian matrix of partial derivatives of f with respect to x,

[ ]
[ , ] 1

[ ]

ˆ( , ,0)i
i j k k

j

f
A x u

x −

∂
=
∂

W is the Jacobian matrix of partial derivatives of f with respect to w,

[ ]
[ , ] 1

[ ]

ˆ( , ,0)i
i j k k

j

f
W x u

w −

∂
=
∂

H is the Jacobian matrix of partial derivatives of h with respect to x,

[ ]
[ , ]

[ ]

( ,0)i
i j k

j

h
H x

x
∂

=
∂

%

V is the Jacobian matrix of partial derivatives of h with respect to v,

[ ]
[ , ]

[ ]

( ,0)i
i j k

j

h
V x

v
∂

=
∂

%

Define a new notation for the prediction error

kx k ke x x≡ −% % (3.38)

and the measurement residual

kz k ke z z≡ −% % (3.39)
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Using equation (3.38) and (3.39) an error process can be written as:

1 1ˆ( )
kx k k ke A x x ε− −≈ − +% (3.40)

k kz x ke He η≈ +% % (3.41)

where kε  and kη  represent new independent random variables having zero mean 

and covariance matrices WQWT and VRVT.

The a posteriori state estimates for the original nonlinear process can be 

obtained by:

ˆ ˆk k kx x e= +% (3.42)

The random variables of equation (3.40) and (3.41) have approximately the 

following probability distributions:

( )
kxp e%  ∼ (0, [ ])

k k

T
x xN E e e% %

( )kp ε   ∼  (0, )T
kN WQ W

( )kp η   ∼  (0, )T
kN VR V

Given these approximations and letting the predicted value of ke)  be zero, the Kalman 

filter equation used to estimate ˆke  is

ˆ
kk k ze K e= % (3.43)

Substituting (3.43) back into (3.42) and making use of (3.39) gives:

ˆ
kk k k zx x K e= +% %

     ( )k k k kx K z z= + −% % (3.44)
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The specific equations for the time and measurement updates are presented 

below:

Time Update (“Predict”) equations:

• Project the state ahead

                        1ˆ ˆ( , ,0)k k kx f x u−
−=

• Project the error covariance ahead

                       1 1
T T

k k k k k k kP A P A W Q W−
− −= +

Measurement Update (“Correct”) equations:

• Compute the Kalman gain

                     1( )T T T
k k k k k k k k kK P H H P H V R V− − −= +

• Update estimate with measurement zk

                   ˆ ˆ ˆ( ( ,0))k k k k kx x K z h x− −= + −

• Update the error covariance

                     ( )k k k kP I K H P−= −

Figure 3.8 The extended Kalman filter loop

Compute Kalman gain
1( )T T T

k k k k k k k k kK P H H P H V R V− − −= +

Compute error covariance

( )k k k kP I K H P−= −

Measurement update

ˆ ˆ ˆ( ( ,0))k k k k kx x K z h x− −= + −

Time update

1ˆ ˆ( , ,0)k k kx f x u−
−=

1 1
T T

k k k k k k kP A P A W Q W−
− −= +



CHAPTER IV

PERVAPORATIVE MEMBRANE REACTOR

This chapter is divided into three sections: mathematical model of a 

pervaporative membrane reactor, optimization study, and control study. Simulation 

results obtained by simulating the optimization formulation and the formulation of a 

GMC controller are detailed in each section.

In this work, a batch reactor integrated with pervaporation developed by Liu et 

al. (2001) is considered. An ideal case where the membrane is perfectly permselective 

to water is investigated to show the maximum improvement in reactor performance 

achievable by the use of membrane pervaporation. The study is aimed at exothermic 

and reversible esterification reaction. A jacket is used to maintain the temperature of a 

pervaporative membrane reactor at a desired set point. The objectives of this work 

are: (1) to obtain optimum temperature that maximizes the final concentration of 

ester; (2) to track the optimum temperature obtained in (1) using GMC coupled with 

an extended Kalman filter.

Figure 4.1 Membrane reactor schematic diagram

Heat
Exchanger

Cold

Hot

Pump

T  TC

Tj

Tjsp
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4.1 Mathematical Model

As shown in Fig. 4.1, an esterification of acetic acid and butanol studied by

Liu et al. (2001) carried out in a batch reactor equipped with a pervaporation unit has

been considered.

                 R1COOH  +  R2OH                  R1COOR2  +  H2O            (4.1)

4.1.1 Material Balance

A pervaporation module consists of a hydrophilic membrane through which

water permeates preferentially. Applying a material balance on any reactant or

product species (Feng and Huang, 1996), the material balance of the pervaporative

membrane reactor is given by:

i
i i

d(CV) rV J S
dt

= − − (4.2)

where iC is the concentration of component i (mol/l),

iJ is the permeation flux of component i (mol/m2 hr),

V is the volume of reaction mixtures (liter),

S is the membrane area for permeation (cm2),

ir is the rate of disappearance of the species in the reactor due to chemical            

reaction; for product species, is the rate of formation and takes negative 

sign.

Since the stoichiometric coefficients for reactants and products are equal, the 

numerical values of reaction rate expressed with respect to any species i are equal. 

The reaction rate can be written by the following equation,

1 2A B cat E W catr k C C C k C C C= − (4.3)
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where CA, CB, CE and CW are concentration of alcohol, acid, ester and water, 

respectively (mol/l),

Ccat is the catalyst concentration (g/l),

k1  and  k2  are rate constants for forward and reverse reactions, respectively.

According to the Arrhenius’ equation, the rate of reaction depends on the 

temperature as shown in equation (4.4).

exp( )Ok k E RT= − (4.4)

where k0 is the pre-exponential factor,

E is the activation energy of reaction,

R is the gas constant,

T is the absolute temperature.

From Liu et al. (2001), the reaction rate constants for this reaction are 

described by the following equations.

6
1

63904.531 10 expk
T

−⎛ ⎞= × ⎜ ⎟
⎝ ⎠

(4.5)

6
2

70904.376 10 expk
T

−⎛ ⎞= × ⎜ ⎟
⎝ ⎠

(4.6)

From Feng and Huang (1996), the volume change of the reaction mixtures in 

the membrane reactor is given by:

i i

i i

dV J M S
dt ρ

= −∑ (4.7)

where Mi is the molar mass of species i (g/mol),

ρi is the density of species i (g/l),
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then equation (4.2)-(4.4) constitute the basic equations describing a batch-wise

pervaporative membrane reactor. An ideal case where the membrane permeates only

water is considered. Rewriting equation (4.7) gives

W W

W

dV J M S
dt ρ

= −  (4.8)

The permeation flux through a pervaporation membrane is usually

concentration dependent. To simplify the process model, it is assumed that the water

flux is proportional to water concentration as seen in the following equation.

W W WJ P C= (4.9)

where PW  is the permeability coefficient of water.

The relationship between the permeability coefficient and operating 

temperature can be expressed by Arrhenius’ equation.

exp( )O aP P E RT= − (4.10)

where P0 is the pre-exponential factor,

Ea is the activation energy of permeation.

From Liu et al. (2001), a curve fitting method is employed to find the 

relationship between the permeability coefficient and the operating temperature as  

given in Appendix A, then

1039.24exp 4.2934WP
T

⎛ ⎞= −⎜ ⎟
⎝ ⎠

(4.11)

By substituting equation (4.8) into equation (4.2), the concentration of the 

components in the reaction can be determined:
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i
i
dV dCC V rV
dt dt

+ = −

W W i
i

W

J M dCC S V rV
dtρ

− + = −

i W W
i

W

dC J M Sr C
dt Vρ

= − + (4.12)

where subscript  i denotes A, B and E.

The concentration of water can be determined through the following 

equations:

W
W W

dV dCC V rV J S
dt dt

+ = − −

W W W
W W

W

J M dCC S V rV J S
dtρ

− + = − −

W W W
W W

W

dC S J M Sr J C
dt V Vρ

= − − + (4.13)

where the reaction rates of component E and W take negative sign.

4.1.2 Energy Balance

For temperature control of a batch reactor, a process model relating the reactor 

temperature, Tr, to the manipulated variable, the jacket temperature, Tj, is required. 

The energy balance around the reactor contents is given by the following equations:

( )rQ H rV= −∆

( )r j rr

r pr

Q UA T TdT
dt M C

+ −
= (4.14)

( )r A B E WM C C C C V= + + + ⋅ (4.15)
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and pA A pB B pE E pW W
pr

A B E W

C C C C C C C C
C

C C C C
⋅ + ⋅ + ⋅ + ⋅

=
+ + +

(4.16)

where Qr is the heat released by the reaction (J/hr),

U is the heat-transfer coefficient (J/m2 hr K),

A is the heat transfer area (m2),

∆H  is the heat of reaction (J/mol),

Mr is the mole of the reactor contents (mole),

Cpr is the molar heat capacity of the reactor contents (J/mol K).

The dynamic of the jacket is

( ) ( )j j j pj jsp j j r

j j pj

dT q C T T UA T T
dt V C

ρ
ρ
− − −

= (4.17)

It is reasonable to assume that the dynamics of the jacket temperature control 

are approximately first order (Liptak, 1986) with time constant τ j and, hence, the    

Tjsp(k), can be calculated by the following equation:

( )( ) ( 1) ( ) ( 1)j
jsp j j jT k T k T k T k

t
τ

= − + − −
∆

(4.18)

where j
j

j

V
q

τ =

qj is the jacket flow rate (l/hr),

ρj is the jacket density (g/l),

Vj is the jacket volume (liter),

Cpj is the mass heat capacity of the jacket (J/g K).

All the parameters and constant values used in the model are given in Table 

4.1
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Table 4.1 The constant parameter values of the model

Variable Value Variable Value

S 34 cm2 Ccat 8.9 g/liter

V 150 ml qj 1 liter/hr

CpA 124.265 J/mol K Vj 50 ml

CpB 177.025 J/mol K U 50000 J/m2 hr K

CpE 255.5 J/mol K A 45 cm2

CpW 75.4 J/mol K ρw 1000 g/liter

Cpj 4.2 J/g K ρj 1000 g/liter

MW 18 g/mol H∆ -3.97x103 J/mol

Initial Conditions

CA,0 8.74 mol/l CE,0 0 mol/l

CB,0 5.47 mol/l CW,0 0 mol/l

Tr,0 298 K Tj,0 298 K
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4.2 Optimization Study

The mathematical models of a pervaporative membrane reactor indicate that 

an operating temperature is one of key factors of the pervaporative membrane reactor, 

which influences both the reaction and pervaporation process through the reaction 

rates and membrane permeability. In order to operate the pervaporative membrane 

reactor efficiently, optimization framework is formulated to determine an optimal 

temperature of the esterification of acetic acid and butanol studied by Liu et al. 

(2001). An optimization goal is to determine an optimal operating temperature for the 

pervaporative membrane reactor to maximize a final concentration of ester with a 

fixed batch time.

In this work, a Matlab program is written to solve the optimization problem by 

using a successive quadratic programming (SQP) algorithm in Matlab Optimization 

Toolbox. The written program is tested to determine an optimal temperature of the 

exothermic batch reactor studied by Aziz et al. (2000) as detailed in Appendix E. The 

optimization results show that this program is effective and applicable to determine an 

optimal temperature of this work.

4.2.1 Optimization Formulation

The esterification of acetic acid and butanol studied by Liu et al. (2001) is

considered. The reaction can be written as:

Acetic Acid (A)  +  Butanol (B)                  Butyl Acetate (E)  +  Water (W)

where butyl acetate is a desired product and water is permeated and removed from the 

reactor to shift the chemical equilibrium.
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The objective function is to maximize the final concentration of butyl acetate 

at the specified final time. The objective function can be written as:

max
T

 ( )E fC t

Subject to A W W
A

W

dC J M Sr C
dt Vρ

= − +

B W W
B

W

dC J M Sr C
dt Vρ

= − +

E W W
E

W

dC J M Sr C
dt Vρ

= +

W W W
W W

W

dC S J M Sr J C
dt V Vρ

= − +

where 1 2A B cat E W catr k C C C k C C C= −

6
1

63904.531 10 expk
T

−⎛ ⎞= × ⎜ ⎟
⎝ ⎠

6
2

70904.376 10 expk
T

−⎛ ⎞= × ⎜ ⎟
⎝ ⎠

W W WJ P C=

1039.24exp 4.2934WP
T

⎛ ⎞= −⎜ ⎟
⎝ ⎠

and 298 K   ≤   T   ≤   363 K

An initial state of [CA, CB, CE, CW] used to solve an off-line optimization 

problem is given as

x(0)  =  [8.74, 5.47, 0, 0] T

All parameters and constant values used in the model are given in Table 4.1. 

The batch time (tf) is specified for 8 hour. The lower bound on the temperature is the 

initial temperature that operates at the ambient condition and the upper bound is 

dictated by the maximum temperature of the experimental data used by Liu et al. 

(2001) to build their models.
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4.2.2 Optimization Results

An off-line optimal control is solved with fixed batch time to find the optimal 

temperature that maximizes the final concentration of butyl acetate. In this research, 

two runs of off-line optimal control are carried out:

Run 1: to determine an optimal temperature set point using one control interval (time),

Run 2: to determine an optimal temperature profile using four fixed control intervals.

As batch processes require different control strategies from those continuous 

processes do. This is due to the fact that they are operated dynamically. The purposes 

of this study are to compare the simulation results obtained by an optimal temperature 

set point and by an optimal temperature profile and to show the improvement of the 

final concentration of ester obtained by dynamic operation over steady state operation.

A Matlab program is written to simulate both a normal batch reactor without 

pervaporation and a pervaporative membrane reactor. The simulation results of both 

reactors are compared.

Case 1: a normal batch reactor without pervaporation,

Case 2: a pervaporative membrane reactor.

The optimization results are shown in Table 4.2 and Figure 4.2-4.3. Both 

optimal temperature set point and optimal temperature profile for the pervaporative 

membrane reactor obtained in this section are used as set point(s) in the control study 

of the pervaporative membrane reactor.

Table 4.2 The optimization results

Off-line optimal temperature (K)

Switching time (hr)Case Condition

0 2 4 6

CE(tf)*

Batch Reactor -   Run 1
-   Run 2

326.40
333.95

-
332.84

-
328.11

-
308.88

4.7976
4.8169

Pervaporative
Membrane Reactor

-   Run 1
-   Run 2

363
363

-
363

-
363

-
340.83

5.2560
5.2669

* CE(tf) is a final concentration of butyl acetate (mol/l)
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Figure 4.2 Optimal temperature set point and concentration profiles of a normal batch 

reactor

Figure 4.3 Optimal temperature profile and concentration profiles of a normal batch 

reactor
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Figure 4.4 Optimal temperature set point and concentration profiles of a 

pervaporative membrane reactor

Figure 4.5 Optimal temperature profile and concentration profiles of a pervaporative

membrane reactor
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4.2.3 Discussion

The optimization results given in Table 5.1 indicate that:

• The batch reactor without pervaporation operated under the condition of 

an optimal temperature profile gives CE(tf) = 4.8169 mol/l which is 0.4% higher than 

the concentration CE(tf) = 4.7976 mol/l obtained by operating under the  condition of 

an optimal temperature set point.

• The pervaporative membrane reactor operated under the condition of an 

optimal temperature profile gives CE(tf) = 5.2669 mol/l which is 0.2% higher than the 

concentration CE(tf) = 5.2560 mol/l obtained by operating under the condition of an 

optimal temperature set point.

It can be concluded that the operation of reactors by an optimal temperature 

profile gives an increase in the concentration of the desired product rather than using 

an optimal temperature set point.

• In comparison between the batch reactor without pervaporation and the 

pervaporative membrane reactor, simulation results show that the pervaporative 

membrane reactor gives 8.72% improvement for an optimal temperature set point and 

8.54% improvement for an optimal temperature profile higher than the concentration 

obtained by the batch reactor without pervaporation.

From the above results, it can be concluded that the pervaporative membrane 

reactor can enhance the conversion of thermodynamically or kinetically limited 

reactions by the removal of the produced water from the reaction mixture. Then the 

performance of the pervaporative membrane reactor is superior to the conventional 

reactor.
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4.3 Control Study

The purpose of this study is to design a control configuration for a 

pervaporative membrane reactor to track an optimal operating temperature. In this 

research, a generic model control (GMC) coupled with an extended Kalman filter 

(EKF) is implemented to track an optimal operating temperature. Either optimal 

temperature set point or optimal temperature profile obtained in section 4.2 is used as 

set point(s) of a pervaporative membrane reactor in this section.

The operating temperature is used as the controlled variable and is bounded 

between 298 K and 363 K. A jacket is used to control the reactor temperature at its 

desired trajectory. Due to the heat-exchanger capacities, the jacket temperature is 

assumed to be limited to the range 298-393 K. The reaction mixture is assumed to be 

at 298 K at the starting point. A generic model control (GMC) coupled with an 

extended Kalman filter (EKF) is implemented to track either optimal temperature set 

point or optimal temperature profile shown in Figure 4.4 and 4.5.

• Controlled variable: Reactor temperature, (Tr)

• Manipulated variable: Jacket temperature, (Tj)

• Unmeasured  variable: Heat released by the reaction, (Qr)

For the simulation studies, equations (4.3), (4.5), (4.6), (4.9), and (4.11)-(4.18) 

from the section 4.1 are solved to simulate the behavior of the reactor. The parameters 

and constant values used in the model are listed in Table 4.1.

4.3.1 Generic Model Control (GMC) Configuration

GMC is a model-based controller developed by Lee and Sullivan (1988).

There are several advantages that make GMC a good control algorithm. The main

advantage of the GMC is that the nonlinear process model does not need to be

linearized because it directly inserts nonlinear process model into the controller itself.

The generic model control diagram is shown in figure 4.6.
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Figure 4.6 The generic model control diagram

The general form of the GMC control algorithm can be written as:

1 2( ) ( )sp sp
dy K y y K y y dt
dt

= − + −∫ (3.20)

where y is the current value of controlled variable,

ysp is a desired value of controlled variable,

K1 and K2 are tuning constants.

The desired response can be obtained by incorporating two tuning parameters.

The GMC defines the performance objective in terms of the time derivatives of the

process output, i.e. minimizing the difference between the desired derivative of the

process output and the actual derivative.

For temperature control of a pervaporative membrane reactor, the manipulated

input of this tracking system is the jacket temperature, Tj and the tracked variable is

the reactor temperature, Tr. It is assumed that the amount of heat retained in the walls

of the reactor is small compared with the heat transferred in the reactor, an energy

balance around the reactor contents gives:

( )r j rr

r p

Q UA T TdT
dt M C

+ −
= (4.14)

Process

GMC

Mathematical
Model

Output

Manipulated
Variable

Input
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Substituting Tr for y and Trsp for ysp in equation (3.20), combing equation 

(3.20) and (4.14), and finally solving for the manipulated variable, Tj, the control 

formulation is given by:

{ }1 2( ) ( )r p r
j r rsp r rsp r

M C QT T K T T K T T dt
UA UA

= + − + − −∫  (4.23)

The discrete form of Eq. (4.23) for the kth time interval is given by:

1 2
0

( ) ( ) [ ( )] [ ( )]
k

r p r
j r rsp r rsp r

M C QT k T k K T T k K T T k t
UA UA

⎧ ⎫
= + − + − ∆ −⎨ ⎬

⎩ ⎭
∑  (4.24)

where ∆t is the sampling time of the controller.

Equation (4.24) gives the actual jacket temperature, Tj (k) that is not the jacket 

temperature set point, Tjsp (k), needed to control the reactor temperature at its set point, 

Trsp. However, it is reasonable to assume that the dynamics of the jacket temperature 

control are approximately first order (Liptak, 1986) with time constant τj and hence 

the Tjsp (k) can be calculated by equation (4.18):

[ ( ) ( 1)]
( ) ( 1) j j

jsp j j

T k T k
T k T k

t
τ

− −
= − +

∆
(4.18)

4.3.2 GMC with Extended Kalman Filter

As several model-based controllers, GMC requires the measurement or the 

estimation of the states of an appropriate process model. However, in most industrial, 

the state variables are not all measurable or, not with sufficient accuracy for control 

purposes. To succeed these difficulties, the estimation techniques have been used 

together with simplified process models. The flowchart of GMC with extended 

Kalman filter is shown in figure 4.7

As seen in equation (4.24), the success of the GMC controller is largely 

depended on the ability to measure, estimate, or predict the heat released, rQ  at any 

given period of time. In this work, it is assumed that users have some knowledge.
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Figure 4.7 Flowchart of GMC with extended Kalman filter

(perhaps, mistaken) of the physical parameters in the system: ,rM  ,pC  ,U  A . The 

extended Kalman filter is used to estimate rQ  by using the bilinear models 

(Kershenbaum and Kittisupakorn, 1994). Due to the sensitivity of the estimation of 

the heat released by reaction to the heat transfer coefficient change, the extended 

Kalman filter is used to estimate the heat transfer coefficient to compensate the 

mismatch.

A simple model, which attempts to reflect the basic chemical kinetics in the 

batch reactor, is assumed that the rate of reaction, R, varies with respect to the reactant 

concentration, Mr, and the reactor temperature, Trm, as shown in the following 

equation:

r
r rm

dM R bM T
dt

= − = − (4.25)

 where b is a pseudo reaction rate constant.

The estimated heat released from the reaction is given by:

( )r r rmQ H VR bVM T H= −∆ = − ∆ (4.26)

Process

GMC

Mathematical
Model

Output

Manipulated
Variable

Input
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State & Parameter
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where H∆  is the of reaction.

Define

rN bVM H≡ − ∆ (4.27)

From energy balances on the jacket and reactor, the state equations for 

purposed of estimation are:

( ) ( )jm rm jm jsp jm

j j pr j

dT UA T T T T
dt V Cρ τ

− −
= + (4.28)

( )jm rmrm re

r pr r pr

UA T TdT Q
dt M C M C

−
= + (4.29)

rm
dN bNT
dt

= − (4.30)

re rm
rm

dQ dT dNN T
dt dt dt

= + (4.31)

0db
dt

= (4.32)

0dUA
dt

= (4.33)

Tjm and Trm are measurable and are used to estimate the entire state, [Tjm, Trm, 

N, Qre, b]T, by an extended Kalman filter. The diagram of the estimation is shown in 

figure 4.8.

Figure 4.8 The estimation diagram of heat released from the reaction

Reactor Simulation

Extended Kalman Filter

GMC Controller

Tjsp

Qre, UA

Tjm, Trm
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4.3.3 Control Results

The simulation shown in figure 4.9 illustrates the open-loop response for the

pervaporative membrane reactor operated under the ambient condition where the

parameters and constant values used to simulate are given in Table 4.1. It has shown

that the reactor temperature increases with time from 298 K to 333 K, which does not

reach 363 K, the optimal temperature. Since the reactor temperature is one of the key

factors, in order to operate the pervaporative membrane reactor efficiently, it is

necessary to control the reactor temperature to the optimal operating temperature.

A generic model control (GMC) coupled with an extended Kalman filter 

(EKF) is implemented to track either optimal temperature set point or optimal 

temperature profile of a pervaporative membrane reactor as shown in Figure 4.4 and 

4.5. The performance of GMC controller coupled with extended Kalman filter are 

simulated in nominal case, in which all model parameter used to simulate are 

specified correctly, and plant/model mismatch case, in which some parameters have 

changed from their nominal value.

Figure 4.9 Open loop of pervaporative membrane reactor.
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In this work, the appropriate values of the tuning parameters of GMC 

controller are K1 = 5 hr-1 and K2 = 0.0008 hr-2. Two measurements (Tj and Tr) are 

available and are used to obtain estimates of the entire state, [Tj, Tr, N, Qre, b]T, using 

an extended Kalman filter. The values of Kalman filter parameters and initial state 

estimates are given in Table 4.3.

Table 4.3 Kalman filter parameters and initial state estimates for simulation

Tj
0  =  298 K P(1,1)  =  1 Q(1,1)  =  1

Tr
0 =  298 K P(2,2)  =  1 Q(2,2)  =  1

N0 =  100 P(3,3)  =  106 Q(3,3)  =  106

Qr
0 =  559 J/hr P(4,4)  =  2000 Q(4,4)  =  2000

b0 =  1.75 x 10-3 P(5,5)  =  100 Q(5,5)  =  100

P(6,6)  =  106 Q(6,6)  =  106

R(1,1)  =  0.001 R(2,2)  =  0.001

Although the GMC controller coupled with the extended Kalman filter is

effective to control the reactor temperature for the nominal case, it is important to

examine the robustness aspects of both controllers with respect to changes in

operating and process parameters and with respect to plant-model mismatch. The

GMC controller coupled with the extended Kalman filter, tuned for the nominal case,

is used to control an optimal operating temperature where some of the conditions have

changed from their nominal value. The robustness test is divided into six cases as

listed below:

• Rate constant, k1, increase 30%,

• Rate constant, k2, decrease 30%,

• Rate constants, k1 increase 30% and k2, decrease 30%,

• Heat of reaction, ,H∆  increase 30%,

• Heat transfer coefficient, U, decrease 30%,

• k1, H∆ increase 30% and k2, U decrease 30%.

In this section, two cases of temperature control are carried out:
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Case 1: tracking an optimal temperature set point

In this case, the control objective is to heat the reactor rapidly from a 

temperature of 298 K to 363 K and maintain the temperature at this value. The 

simulation results are shown in figure 4.10-4.23.

Table 4.4 The IAE and ISE comparison of Tr and Qr (Case 1)

Reactor Temperature Heat Released
Condition

IAE ISE IAE ISE

Nominal case 45.089 1.864e+03 2.987 7.765

+30% k1 44.640 1.839e+03 4.860 199.340

-30% k2 45.032 1.863e+03 3.018 7.847

+30% k1 and -30% k2 44.574 1.838e+03 4.884 199.422

+30% ∆H 43.452 1.831e+03 4.832 198.903

-30% U 60.261 2.468e+03 7.426 1.711e+03

+30% k1, ∆H and -30% k2, U 56.774 2.333e+03 8.325 1.579e+03

Case 2: tracking an optimal temperature profile.

In this case, the control objective is to track an optimal temperature profile as 

shown in figure 4.3. The simulation results are shown in figure 4.24-4.37.

Table 4.5 The IAE and ISE comparison of Tr and Qr (Case 2)

Reactor Temperature Heat Released
Condition

IAE ISE IAE ISE

Nominal case 53.310 1.981e+03 3.348 7.987

+30% k1 52.853 1.956e+03 5.226 199.565

-30% k2 53.248 1.980e+03 3.385 8.070

+30% k1 and -30% k2 52.782 1.955e+03 5.255 199.648

+30% ∆H 51.677 1.929e+03 5.196 199.129

-30% U 70.891 2.622e+03 7.745 1.711e+03

+30% k1, ∆H and -30% k2, U 67.389 2.487e+03 8.656 1.579e+03
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Figure 4.10 Estimates of heat released for nominal case (Case 1).

Figure 4.11 Response of pervaporative membrane reactor for nominal case (Case 1).
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Figure 4.12 Estimates of heat released for +30% k1 change (Case 1).

Figure 4.13 Response of pervaporative membrane reactor for +30% k1 change

(Case 1).
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Figure 4.14 Estimates of heat released for -30% k2 change (Case 1).

Figure 4.15 Response of pervaporative membrane reactor for -30% k2 change

(Case 1).
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Figure 4.16 Estimates of heat released for +30%k1 and -30%k2 change (Case 1).

Figure 4.17 Response of pervaporative membrane reactor for +30%k1 and -30%k2

change (Case 1).
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Figure 4.18 Estimates of heat released for +30% ∆H change (Case 1).

Figure 4.19 Response of pervaporative membrane reactor for +30%∆H change

(Case 1).
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Figure 4.20 Estimates of heat released for -30% U change (Case 1).

Figure 4.21 Response of pervaporative membrane reactor for -30%U change

(Case 1).
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Figure 4.22 Estimates of heat released for +30%k1, -30%k2, +30%∆H and -30%U

change (Case 1).

Figure 4.23 Response of pervaporative membrane reactor for +30%k1, -30%k2, 

+30%∆H and -30%U change (Case 1).
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Figure 4.24 Estimates of heat released for nominal case (Case 2).

Figure 4.25 Response of pervaporative membrane reactor for nominal case (Case 2).
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Figure 4.26 Estimates of heat released for +30% k1 change (Case 2).

Figure 4.27 Response of pervaporative membrane reactor for +30% k1 change

(Case 2).
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Figure 4.28 Estimates of heat released for -30% k2 change (Case 2).

Figure 4.29 Response of pervaporative membrane reactor for -30% k2 change

(Case 2).
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Figure 4.30 Estimates of heat released for +30%k1 and -30%k2 change (Case 2).

Figure 4.31 Response of pervaporative membrane reactor for +30%k1 and -30%k2

change (Case 2).
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Figure 4.32 Estimates of heat released for +30% ∆H change (Case 2).

Figure 4.33 Response of pervaporative membrane reactor for +30%∆H change

 (Case 2).
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Figure 4.34 Estimates of heat released for -30% U change (Case 2).

Figure 4.35 Response of pervaporative membrane reactor for -30%U change

(Case 2).
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Figure 4.36 Estimates of heat released for +30%k1, -30%k2, +30%∆H and -30%U

change (Case 2).

Figure 4.37 Response of pervaporative membrane reactor for +30%k1, -30%k2, 

+30%∆H and -30%U change (Case 2).
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4.3.4 Discussion

Case 1: tracking an optimal temperature set point

• Nominal case

Figure 4.10 and 4.11 show the heat released estimation and the response of the 

GMC controller in tracking an optimal temperature set point (Tr
sp = 363 K) of a 

pervaporative membrane reactor operating under a nominal case, respectively. It can 

be seen from figure 4.10 that the extended Kalman filter gives a reasonable estimate 

of the heat released. With this estimate of heat released, the GMC controller performs 

satisfactorily; the reactor temperature is delivered to the desired set point with no 

overshoot as shown in figure 4.11.

• Rate constant change

In the cases of the rate constant changes, the results are given in figure 4.12-

4.17. It can be seen that the estimation of the heat released by reaction is not sensitive 

to the rate constant changes. The GMC controller has still provided good control 

action similar to the nominal case.

• Heat of reaction change

The results given in figure 4.18-4.19 show the heat released estimation and the

responses of the GMC controller for the case of the heat of reaction change,

respectively. In this case, the heat of reaction has been increased by 30%. Figure 4.18

illustrates that the extended Kalman filter has still provided a reasonable estimate. The

GMC controller is still robust.

• Heat transfer coefficient change

Figure 4.21 gives the response of the GMC controller in response to a heat

transfer coefficient change. This change tests the performance of the controllers in

light of a change in unmeasured parameters. It can be seen that the estimation of the

heat released by reaction is sensitive to the heat transfer coefficient. Figure 4.20

shows the behavior of the estimator when the heat transfer coefficient decreases with

30% of the actual value. The performance of the extended Kalman filter has

deteriorated when compared to that of the nominal case. However, the GMC
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controller is able to provide adequate control but with more sluggish than in the

nominal case.

• Rate constants, heat of reaction, and heat transfer coefficient change

Figure 4.22 and 4.23 show the performances of the extended Kalman filter and

the GMC controller for the case that combines the increase in the rate constants, k1,

and the heat of reaction and the decrease in the rate constants, k2, and the heat transfer

coefficient. Figure 4.22 illustrates that at the beginning, the estimate of the amount of

heat released is poor. However, the GMC controller still gives reasonably good

control, but more sluggish than in the nominal case due to the decrease of the heat

transfer coefficient.

Case 2: tracking an optimal temperature profile

• Nominal case

Figure 4.24 and 4.25 show the estimate of the amount of heat released by the 

reaction and the response of the GMC controller in tracking an optimal temperature 

profile of a pervaporative membrane reactor operating under a nominal case, 

respectively. It can be seen from figure 4.24 that the extended Kalman filter gives a 

reasonable estimation. As shown in figure 4.25, the GMC controller performs 

satisfactorily; the reactor temperature is delivered to the desired set point with no 

overshoot.

• Rate constant change

The simulation results of the rate constant change are given in figure 4.26-

4.31. It can be seen that the estimation of the heat released by reaction is not sensitive 

to the rate constant changes. The GMC controller has still provided good control 

action similar to the nominal case.

• Heat of reaction change

Figure 4.32 and 4.33 show the estimate of the amount of heat released by the

reaction and the responses of the GMC controller for the case of the heat of reaction

change, respectively. In this case, the heat of reaction has been increased by 30%. The
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extended Kalman filter has still provided a reasonable estimate as illustrated in figure

4.32. Figure 4.33 shows that the GMC controller is still robust.

• Heat transfer coefficient change

Figure 4.35 gives the response of the GMC controller in response to a heat

transfer coefficient change. It can be seen that the estimation of the heat released by

reaction as shown in figure 4.34 is sensitive to the heat transfer coefficient. The

performance of the extended Kalman filter has deteriorated when compared to that of

the nominal case. However, the GMC controller still gives reasonably good control

action as shown in figure 4.35 but the response is more sluggish than in the nominal

case.

• Rate constants, heat of reaction, and heat transfer coefficient change

Figure 4.36 and 4.37 show the performances of the extended Kalman filter and

the GMC controller for the case that combines the increase in the rate constants, k1,

and the heat of reaction and the decrease in the rate constants, k2, and the heat transfer

coefficient. Figure 4.36 illustrates that at the beginning, the estimate of the amount of

heat released is poor. However, the GMC controller is able to provide adequate

control.

The GMC controller coupled with the extended Kalman filter is implemented 

to track either optimal temperature set point or optimal temperature profile of a 

pervaporative membrane reactor. The performance of GMC controller coupled with 

extended Kalman filter are simulated in nominal case, in which all model parameter 

used to simulate are specified correctly, and plant/model mismatch case, in which 

some parameters have changed from their nominal value. From simulation results, it 

can be observed that this controller is able to accommodate all the changes very well. 

The GMC controller with the extended Kalman filter has been found to be effective 

and robust in tracking either optimal temperature set point or optimal temperature 

profile of the pervaporative membrane reactor.



CHAPTER V

CONCLUSIONS AND RECCOMENDATIONS

In this work, the pervaporative membrane reactor has been studied. In 

summary, to achieve the desired successful control of batch processes, the system 

depends on the integration of three important ingredients: an optimal operating 

trajectory, a suitable control law, and a suitable design of the control configuration. 

Due to the significant of the operating temperature, the optimization framework is 

formulated to determine the optimal temperature. The obtained optimal temperature is 

used as the set point for the pervaporative membrane reactor in the control study.

5.1 Conclusions

The optimization goal is to determine an optimal operating temperature for the 

pervaporative membrane reactor to maximize a final concentration of ester at 

specified batch time. From the optimization study it can be concluded that:

- The optimization program written in Matlab is tested to determine an 

optimal temperature of the exothermic batch reactor studied by Aziz et al. (2000) as 

detailed in Appendix D. The optimization results show that this program is effective 

and applicable to determine an optimal temperature of this work.

- The combination of a pervaporation with a conventional esterification 

process can shift the thermodynamically or kinetically limited reactions by removing 

water from the reaction mixture and, therefore, increases the yield of the desired 

product.

- The use of an optimal temperature profile gives an increase in the 

concentration of the desired product rather than an optimal temperature set point.

A generic model control (GMC) coupled with an extended Kalman filter 

(EKF) is implemented to track the optimal operating temperature. Both optimal 

temperature set point and optimal temperature profile are used as set point in this 

study. From the control study it can be concluded that:
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- For nominal case, in which all model parameter used to simulate are 

specified correctly, the GMC controller performs satisfactorily in tracking both 

optimal temperature set point and optimal temperature profile of the pervaporative 

membrane reactor. The extended Kalman filter gives a reasonable estimate of the heat 

released. With this estimate of heat released, the GMC controller performs 

satisfactorily; the reactor temperature is delivered to the desired set point with no 

overshoot

- The robustness of the controllers is evaluated by changing process 

parameters such as rate constant, heat of reaction, and heat transfer coefficient. It has 

been found that the estimation of the heat released by reaction is sensitive to the heat 

transfer coefficient. Although the performance of the extended Kalman filter has 

deteriorated when compared to that of the nominal case, the GMC controller still 

gives reasonably good control action. From control study, it can ensure that the GMC 

controller coupled with the extended Kalman filter has been found to be effective and 

robust in tracking both optimal temperature set point and optimal temperature profile 

of the pervaporative membrane reactor.

5.2 Recommendations

In this research, the optimization technique is formulated to determine the 

optimal operating temperature of the esterification in the pervaporative membrane 

reactor studied by Liu et al. (2001). In fact, the performance of the pervaporative 

membrane reactor depends not only upon the operating temperature but also upon the 

initial molar ratio, the ratio of membrane area to reactor volume, and the catalyst 

concentration. The researchers must take the effect of the above parameters into 

account in order to optimize design parameters and operating conditions.

Due to the variation of the models and parameters used to simulate, e.g. 

kinetic or physical parameters, the uncertainty in process design and operations has 

been an active research area. The optimization under process model uncertainty is 

considered necessary to ensure that the process design and operation are flexible to 

operate over a given range of parameter values.
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APPENDIX A

PERMEABILITY COEFFICIENT DETERMINATION

The relationship between the permeablility coefficient and operating 

temperature can be expressed by Arrhenius’ equation

exp( )O aP P E RT= − (A.1)

where OP  is the pre-exponential factor,

aE  is the activation energy of permeation,

R  is the gas constant,

T  is the absolute temperature.

Table A.1 shows the values of the permeability coefficient at different 

temperatures given by Liu et al. (2001). Consider an ideal case where the membrane 

permeates only water. A curve fitting method is employed to find the relationship 

between the permeability coefficient and operating temperature.

Table A.1 The permeability coefficient of water at different temperatures

T  ( oC ) WP

90

80

70

4.20

3.87

3.52
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2.70E-3 2.75E-3 2.80E-3 2.85E-3 2.90E-3 2.95E-3
1/T , (K-1)

1.24

1.28

1.32

1.36

1.40

1.44

ln
P

w

Fit Results

Fit 1:  Linear, Y=B*X+A
Equation:
Y = -1039.24 * X + 4.29343
Number of data points used = 3
Average X = 0.00283333
Average Y = 1.34893
Regression sum of squares = 0.0156242
Residual sum of squares = 1.09975E-006
Coef of determination, R-squared = 0.99993
Residual mean square, sigma-hat-sq'd = 1.09975E-006

T = 363 K

T = 353 K

T = 343 K

Figure A1 The variation of the permeation coefficient of water with temperature

Figure A1 shows the Arrhenius plot of the permeability coefficient, which can 

be expressed by the following equation:

1039.24ln 4.2934WP
T

= − (A.2)

so that,
1039.24exp 4.2934WP

T
⎛ ⎞= −⎜ ⎟
⎝ ⎠

(A.3)



APPENDIX B

NUMERICAL METHOD

Any equation that expresses a relation between a function ( )y t  and its 

derivatives is a differential equation; in particular, if the indicated relationship is 

nonlinear, it is a nonlinear differential equation. For example, the equation (B.1) is a 

first-order nonlinear differential equation if ( , )f t y  is a nonlinear function of y .

( , )dy f t y
dt

= (B.1)

The general nonlinear nth-order differential equation may be represented as:

1

1; ;...; ; ; 0
n n

n n

d y d y dyf y t
dt dt dt

−

−

⎛ ⎞
=⎜ ⎟

⎝ ⎠
(B.2)

where ( )f ⋅  is some nonlinear function of the indicated arguments.

There are no corresponding general procedures for generating solutions to all 

nonlinear equations. In fact, the determination of analytical solutions for nonlinear 

equations of any order is not always possible in general; only in a few very special 

cases are there some specialized methods for obtaining analytical solutions. In the 

vast majority of cases, one must resort to numerical techniques for constructing the 

approximate solutions

B.1 The Euler Method

In solving the nonlinear first-order equation shown in equation (B.1):

( , )dy f t y
dt

=

given the initial condition 0( ) (0) :y t y=

1. Letting ( )y k represent ( )y t  at the point kt t=  and replacing the continuous 

( , )f t y  with ( , ( ))kf t y k , and

2. Replacing the derivative with the finite difference approximation:
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1( ) ( ) ( )k kdy t y t t
dt t

+ −
≈

∆
(B.3)

then the differential equation becomes:

1( ) ( ) ( , ( ))k k
k

y t t f t y k
t

+ −
=

∆
(B.4)

which is easily rearranged to give:

1( ) ( ) ( , ( ))k k ky t y t tf t y k+ = + ∆ (B.5)

or, simply:

( 1) ( ) ( , ( ))ky k y k tf t y k+ = + ∆ (B.6)

Observe now that starting with the initial value (0),y  equation (B.6) can be 

used recursively to generate the sequence (1),y  (2),y  (3),y  … as the required 

approximate solution to equation (B.1)

The formula in equation (B.4) is known as Euler’s method; it represents one of 

the simplest schemes available for solving initial-value problems. It has the advantage 

that it is very straightforward to use, and very easy to program on the computer; its 

main disadvantage is that it is not very accurate.

B.2 The Runge-Kutta Method

The formula given in equation (B.7) is the formula for the (fourth-order) 

Runge-Kutta method; it is a very accurate and very popular method for obtaining 

numerical solutions to initial value problems (despite the fact that it is more 

complicated than the Euler methods).

1 2 3 4( 1) ( ) ( 2 2 )
6
ty k y k c c c c∆

+ = + + + + (B.7)

where 1 ( , ( ))kc f t y k= (B.8a)
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2 1
1 1( ; ( ) )
2 2kc f t t y k tc= + ∆ + ∆ (B.8b)

3 2
1 1( ; ( ) )
2 2kc f t t y k tc= + ∆ + ∆ (B.8c)

4 3( ; ( ) )kc f t t y k tc= + ∆ + ∆ (B.8d)



APPENDIX C

 INTEGRAL ERROR CRITERIA

Integral error measures indicate the cumulative deviation of the controlled 

variable from its set point during the transient response. The following formulations 

of the integral can be proposed.

Figure C1 Definition of error integrals

Integral of the absolute value of error (IAE)

0

( )IAE e t dt
∞

= ∫ (C.1)

Integral of the square of error (ISE)

2

0

( )ISE e t dt
∞

= ∫ (C.2)

Integral of time-weighted absolute error (ISE)

0

( )ITAE e t tdt
∞

= ∫ (C.3)

where e is the usual error (i.e., set point – control variable).

Each of the three figures of merit given by equation (C.1), (C.2), and (C.3) 

have different purposes. The ISE will penalize (i.e., increase the value of ISE) the 

response that has large errors, which usually occur at the beginning of a response, 

because the error is squared. Th ITAE will penalize a response, which has errors that 

t

e(t)

0



115

persist for a long time. The IAE will be less severe in penalizing a response for large 

errors and treat all errors (large and small) in a uniform manner. The ISE figure of 

merit is often used in optimal control theory because it can be used more easily in 

mathematical operations (for example differentiation) than the figures of merit, which 

use the absolute value of error. In applying the tuning rules to be discussed in the next 

section, these figures of merit can be used in comparing responses that are obtained 

with different tuning rules.



APPENDIX D

INTROLDUCTION TO MATLAB

MATLAB, developed by Math Works Inc., is a technical environment for high 

performance numeric computation and visualization. The combination of analysis 

capabilities, flexibility, reliability, and powerful graphics makes MATLAB the 

premier software package for engineers. MATLAB provides extensive numerical 

resources. It contains over 200 reliable, accurate mathematical subprograms. These 

subprograms provide solutions to a broad range of mathematical problems including 

matrix algebra, complex arithmetic, linear systems, eigenvalues, differential 

equations, nonlinear systems, and many special functions

MATLAB also features a family of application-specific solutions- toolboxes-. 

Toolboxes are collections of MATLAB function (M-files) that extend the MATLAB 

environment in order to solve particular classes of problems. Areas in which 

toolboxes are available include optimization, signal processing, control design, 

dynamic systems simulation, and so on.

D.1 Optimization Toolbox

The Optimization Toolbox is a collection of functions that extend the 

capability of the MATLAB numeric-computing environment. The Optimization 

Toolbox consists of functions that perform minimization (or maximization) on general 

nonlinear functions. Functions for nonlinear equation solving and least squares (data-

fitting) problems are also provided.

D.1.1 Problems Covered by the Toolbox

The table D.1 shows the functions available for minimization problem.
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Table D.1 Minimization

Type Notation Function
Scalar Minimization min ( )

a
f a  such that 1 2a a a< < fminbnd

Unconstrained Minimization min ( )
x

f x fminunc,

fminsearch

Linear Programming min T

x
f x  such that

,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

linprog

Quadratic Programming 1min
2

T T

x
x Hx f x+  such that

 ,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

quadprog

Constrained Minimization min ( )
x

f x  such that

( ) 0,c x ≤  ( ) 0ceq x =

,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

fmincon

Goal Attainment
,

min
x γ

γ  such that

( )F x wγ− ≤ goal

( ) 0,c x ≤  ( ) 0ceq x =

,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

fgoalattain

Minimax min
x { }

max
iF
{ }( )iF x  such that

( ) 0,c x ≤  ( ) 0ceq x =

,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

fminimax

Semi-Infinite Minimization min ( )
x

f x  such that

( , ) 0K x w ≤  for all w

( ) 0,c x ≤  ( ) 0ceq x =

,A x b⋅ ≤  ,Aeq x beq⋅ =  l x u≤ ≤

fseminf
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D.1.2 Using the Optimization Functions

Most of these optimization routines require the definition of an M-file 

containing the function to be minimized, i.e., the objective function. Alternatively, an 

inline object created from a MATLAB expression can be used. Maximization is 

achieved by supplying the routines with ,f−  where f  is the function being 

optimized.



APPENDIX E

PROGRAM VERIFICATION

The purpose of this chapter is to verify a Matlab program written to optimize 

in this research. An optimization program written in Matlab is tested to illustrate that 

the program is reliable and can be applied to other processes. The case study 

considered here involves the batch reactor studied by Aziz et al. (2000).

E.1 Case Study

In this work, the exothermic batch reactor studied by Aziz et al. (2000) is used 

to be a case study for the testing of an optimization program. Aziz et al. used the 

reaction scheme considered by Cott and Macchietto (1989) to solve an off-line 

optimal control problem with fixed batch time to find the optimum temperature 

profile that maximizes the conversion of the desired product. A Matlab program is 

written to solve the optimization problem by using a successive quadratic 

programming (SQP) algorithm in Matlab Optimization Toolbox.

The reaction scheme considered here is a well-mixed, liquid-phase reaction 

system, which is:

A  +  B                C (E.1)

A  +  C                D (E.2)

where A, B are the raw materials,

C is the desired product,

D is the waste product.

E.1.1 Mathematical Model

The model equations for the batch reactor can be written as:

1 2
AdM R R

dt
= − − (E.3)
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1
BdM R

dt
= − (E.4)

1 2
CdM R R

dt
= + − (E.5)

2
DdM R

dt
= + (E.6)

where

1 1 A BR k M M= (E.7)

2 2 A CR k M M= (E.8)

1 2
1 1

1 exp
273.15r

k kk
T

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

(E.9)

1 2
2 2

2 exp
273.15r

k kk
T

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

(E.10)

All the parameters and constant values used in the model are given in Table 

E.1.

Table E.1 The constant parameter values of the model

Parameter Name Value Unit
1
1k Rate constant 1 for reaction 1 20.9057 -

2
1k Rate constant 2 for reaction 1 10000 -

1
2k Rate constant 1 for reaction 2 38.9057 -

2
2k Rate constant 2 for reaction 2 17000 -

Initial Condition

AM Number of moles of component A 12 kmol

BM Number of moles of component B 12 kmol

CM Number of moles of component C 0 kmol

DM Number of moles of component D 0 kmol

Two runs of off-line optimal control are carried out; run1 uses one control 

interval (time) and run2 uses three fixed control intervals. The batch time is 120 

minutes.
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The objective function is to maximize is the desired product ‘C’ (this will 

automatically minimize the by-product ‘D’) at the specified final time (tf). The 

objective function can be written as:

( )C ff M t=

Subject to temperature constraints:

20 oC   ≤   T   ≤   100 oC

The initial values of [ ,AM ,BM ,CM DM ] are [12, 12, 0, 0]. To solve the 

optimization problem, the function fmincon, a successive quadratic programming 

code in MATLAB, is employed in this work. The results (optimal temperature 

profiles) are shown in Table E.2 for both runs.

Table E.2 Simulation results

Off-line optimum temperature (oC)

Switching time (min)Run From

0 40 80

MC
*

1 This work
Paper

92.4612
92.46

-
-

-
-

6.5156
6.5126

2 This work
Paper

92.83
92.83

91.20
91.17

93.40
93.41

6.5201
6.5171

* MC is off-line product (kmol)

Table E.2 shows an agreement between the optimization results obtained in 

this work and obtained by Aziz et al. (2000). Therefor the written program is reliable 

and applicable to determine an optimal temperature of other processes.



APPENDIX F

 TUNING OF GMC CONTROLLER

Lee and Sullivan (1988) outline a system for tuning GMC controllers based on 

choosing a target profile of the controlled variable, *( )y t . This profile is characterized 

by two values, ξ and τ. Lee and Sullivan present a figure that outlines the relative 

control performances of different combinations of ξ and τ as shown in figure F1. The 

similar plots to the classical second-order response showing the normalized response 

of the system y/y* vs. normalized time t/τ with ξ as a parameter can be produced.

Figure F1 Generalized GMC profile specification

The general form of GMC control algorithm can be written as

1 2( ) ( )sp spdy K y y K y y dt
dt

= − + −∫ (F.1)

The value of the two tuning constants, K1 and K2, are obtained using the 

following relationships:

1
2K ξ
τ

= (F.2)

2 2

1K
τ

= (F.3)

t /τ

y/y*
ξ = 10

ξ = 1.0
ξ = 0.5

ξ = 3.0



123

In tuning the GMC controller, because overshoot is undesirable, ξ is set to 10. 

The value of τ is obtained by examining the tuning charts given by Lee and Sullivan 

and recognizing that, with ξ = 10, the controlled variable shall cross the set point at 

approximately 0.25τ.

•  t = 1 hr. gives 1 4
0.25

τ = =  hr, then

1
2 10 5

4
K ×

= =  hr-1  and   2 2

1 0.0625
(4)

K = =  hr-2

Figure F2 Response of GMC controller (K1 = 5 hr-1, K2 = 0.0625 hr-2)

•  t = 2 hr. gives 2 8
0.25

τ = =  hr, then

1
2 10 2.5

8
K ×

= =  hr-1  and   2
2 2

1 1.5625 10
(8)

K −= = ×  hr-2

Figure F3 Response of GMC controller (K1 = 2.5 hr-1, K2 = 1.5625x10-2 hr-2)
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Figure F2 and F3 show the response of GMC controller using to track the 

reactor temperature with different tuning parameter. GMC controller is able to track 

the reactor temperature. However, the reactor temperature is operated with an offset. 

Offset can be described as a steady-state deviation of the controlled variable from set 

point, or simply as a steady-state error. From equation F.2, the first expression, 

1( ( )),spK y y−  is to bring the process back to steady state due to change in dy/dt. The 

second expression, 2( ( ) ),spK y y dt−∫  is introduced in order to make the process have 

a zero offset. In this work, the appropriate values of the tuning parameters of GMC 

controller are K1 = 5 hr-1 and K2 = 0.0008 hr-2. With these parameters, GMC controller 

is able to track the reactor temperature without offset.

For temperature control of a batch reactor, the energy balance on the reactor 

contents is given by the following equation:

( ) ( ) ( ) ( ( ) ( ))( ) j rr

r pr

H r t V t UA T t T tdT t
dt M C

−∆ + −
= (F.1)

This equation is nonlinear, so the nonlinear term must first be linearized as the 

following equation.

           1 2 1 2 1 1 2 2
1 2

[ ( ), ( ),...] ( , ,...) [ ( ) ] [ ( ) ] ...f ff x t x t f x x x t x x t x
x x
∂ ∂

≈ + − + − +
∂ ∂

(F.2)

Defining the following deviation variables

( ) ( )A A AC t c t c= −             ( ) ( )B B BC t c t c= −             ( ) ( )E E EC t c t c= −

( ) ( )W W WC t c t c= −            ( ) ( )V t v t v= −                  ( ) ( )r rt T t TΓ = −

( ) ( )j j jt T t TΓ = −

From equation (F.2), the transfer function is

31 2 4

1 1 1 1

( ) ( ) ( ) ( ) ( )
1 1 1 1A B E

KK K Ks V s C s C s C s
s s s sτ τ τ τ

Γ = + + +
+ + + +

                       5 6

1 1

( ) ( )
1 1W j

K KC s s
s sτ τ

+ + Γ
+ +

(F.3)
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where

1
fK
V
∂

=
∂

                        2
A

fK
C
∂

=
∂

                         3
B

fK
C
∂

=
∂

4
E

fK
C
∂

=
∂

                       5
W

fK
C
∂

=
∂

                         6
j

fK
T
∂

=
∂

The following transfer function can be obtained.

6

1

( )
( ) 1j

Ks
s sτ

Γ
=

Γ +
(F.4)

From equation (F.4), the dynamic response of the control system can be 

represented by first-order system while the close loop response of GMC controller 

represents by second-order system. This is the reason that why the reactor temperature 

controlled in this work by using the tuning chart given by Lee and Sullivan cannot 

give a reasonable response.



APPENDIX G

SIMULATION RESULT

This chapter shows the concentration profiles and the reaction rate of a normal 

batch reactor and a pervaporative membrane reactor. The simulation results of 

tracking an optimal temperature set point (Case 1) are shown in figure G3-G9 and the 

simulation results of tracking an optimal temperature profile (Case 2) are shown in 

figure G10-G16.

Fig.G1 The concentration profiles and the reaction rate of a normal batch reactor

(Open-loop).

Fig.G2 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor (Open-loop).
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Fig.G3 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for nominal case (Case 1).

 Fig.G4 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30% k1 change (Case 1).

Fig.G5 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for -30% k2 change (Case 1).
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Fig.G6 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30%k1 and -30%k2 change (Case 1).

 Fig.G7 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30% ∆H change (Case 1).

 Fig.G8 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for -30% U change (Case 1).
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 Fig.G9 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30%k1, -30%k2, +30%∆H and -30%U change (Case 1).

Fig.G10 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for nominal case (Case 2).

Fig.G11 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30% k1 change (Case 2).
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 Fig.G12 The concentration profiles and the reaction rate of a pervaporative 

membrane reactor for -30% k2 change (Case 2).

Fig.G13 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30%k1 and -30%k2 change (Case 2).

Fig.G14 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30% ∆H change (Case 2).
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 Fig.G15 The concentration profiles and the reaction rate of a pervaporative 

membrane reactor for -30% U change (Case 2).

Fig.G16 The concentration profiles and the reaction rate of a pervaporative membrane 

reactor for +30%k1, -30%k2, +30%∆H and -30%U change (Case 2).
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