

_{โครงการ} การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ สภาพนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุก Thermal Conductivity of Iron disilicide with Sn impurity

ชื่อนิสิต นางสาวณิชกานต์ ชาติชำนาญ

เลขประจำตัว 5833418323

ภาควิชา ฟิสิกส์

ปีการศึกษา 2561

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของโครงงานทางวิชาการที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของโครงงานทางวิชาการที่ส่งผ่านทางคณะที่สังกัด The abstract and full text of senior projects in Chulalongkorn University Intellectual Repository(CUIR) are the senior project authors' files submitted through the faculty.

โครงงานวิทยาศาสตร์นิสิตชั้นปีที่ 4

เรื่อง

สภาพนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุก

นางสาวณิชกานต์ ชาติชำนาญ

อาจารย์ที่ปรึกษาโครงงาน รองศาสตราจารย์ ดร.สมชาย เกียรติกมลชัย

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาหลักสูตร ปริญญาวิทยาศาสตรบัณฑิต ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561

สภาพนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุก
นางสาวณิชกานต์ ชาติชำนาญ
รองศาสตราจารย์ ดร.สมชาย เกียรติกมลชัย
ฟิสิกส์
2561

รายงานฉบับนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต ภาควิชาฟิสิกส์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561

คณะกรรมการได้ตรวจรับรองรายงานฉบับนี้แล้ว

Ball (ประธานกรรมการ)

(ผู้ช่วยศาสตราจารย์ ดร.บุญโชติ เผ่าสวัสดิ์ยรรยง)

ราสาร 24 (กรรมการ)

(อาจารย์ ดร.สันติพงศ์ บริบาล)

tool (อาจารย์ที่ปรึกษาโครงงาน)

(รองศาสตราจารย์ ดร.สมชาย เกียรติกมลชัย)

สภาพนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุก
นางสาวณิชกานต์ ชาติชำนาญ
รองศาสตราจารย์ ดร.สมชาย เกียรติกมลชัย
ฟิสิกส์
2561

บทคัดย่อ

โครงงานนี้เป็นการหาค่าสภาพนำความร้อนของสารไอรอนไดซิลิไซด์ที่หลอมในเตาอบที่อุณหภูมิ 1550 องศาเซลเซียส ภายใต้บรรยากาศแก๊สอาร์กอน โดยมีการเจือดีบุกในปริมาณร้อยละอะตอมเป็น 0.0, 0.1, 0.2, 0.3 และ 0.4 ด้วยเครื่อง Nano Flash ในอุณหภูมิช่วง 50-300 องศาเซลเซียส ค่าสภาพนำความร้อนถูกคำนวณโดย 3 แบบได้แก่ (1) ค่าที่ได้โดยตรงจากโปรแกรมของเครื่อง Nano Flash (2) ค่าที่ได้จากการพิตผลเฉลยของสมการนำ ความร้อนกับสัญญาณทั้งหมด และ (3) ค่าที่คำนวณจากเวลาเมื่อสัญญาณขึ้นไปเป็นครึ่งหนึ่งของค่าสูงสุด จากผล การวิเคราะห์พบว่าค่าสภาพนำความร้อนที่ได้จากทั้ง 3 วิธี มีค่าแตกต่างกันสูงสุดไม่เกิน 13% และมีค่าสูงกว่า งานวิจัยอื่นที่มีการทดลองลักษณะคล้ายๆกัน ค่าสภาพนำความร้อนมีแนวโน้มลดลงเมื่ออุณหภูมิเพิ่มขึ้น แต่มี แนวโน้มเพิ่มขึ้นตามปริมาณดีบุกที่เจือ จากการทดลองพบว่าค่าสภาพนำความร้อนมีค่าสูงสุดประมาณ 18 W/m-K ที่อุณหภูมิ 50 องศาเซลเซียส ซึ่งมีการเจือดีบุกที่ปริมาณร้อยละ 0.4 โดยอะตอม ค่าสภาพนำความร้อนที่สูงเป็นผล เนื่องจากสารที่ใช้ในการทดลองมีเฟสแอลฟาและอัฟซิลอนจำนวนมาก และมีดีบุกปริมาณมากสุด จึงนำความร้อน ได้ดี

Project title	Thermal Conductivity of Iron disilicide with Sn impurity
Name	Miss Nichakan Chatchumnan
Project advisor	Associate Professor Somchai Kiatgamolchai (Ph.D.)
Department	Physics
Academic year	2018
Department Academic year	2018

Abstract

This project measured the thermal conductivity of Iron disilicide prepared by melting method in the furnace at 1550 °C under Argon atmosphere with Sn impurity in atomic percentage 0.0, 0.1, 0.2, 0.3, 0.4. The thermal conductivity was measured with Nano Flash apparatus in temperature range 50-300 °C. The thermal conductivity was calculated by 3 methods (i) by the computer program of Nano flash apparatus (ii) by fitting the solution of thermal conductivity equation to the whole time-range of signal (iii) by using the time when the signal rises to half of its maximum. It was found that those 3 methods differ no more than 13% and the value of thermal conductivity is quite high. All samples show decreasing trend when the temperature increases and tend to increase with increasing amount of Sn impurity. From experiment the thermal conductivity have maximum value of 18 W/m•K at 50 °C for 0.4 percentage Sn impurity. The highest thermal conductivity is due to the majority of α -phase and ϵ -phase, and the highest amount of Sn.

กิตติกรรมประกาศ

โครงงานวิทยาศาสตร์เรื่อง สภาพการนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุก เป็นส่วนหนึ่งของ การศึกษาตามหลักสูตรปริญญาวิทยาศาสตรบัณฑิต ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย สำเร็จได้เนื่องจากได้รับความช่วยเหลือจากบุคลากรต่างๆ ตั้งแต่คณาจารย์ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ตลอดจนครอบครัวและ เพื่อนๆ พี่ๆ น้องๆ ทุกคน

รายงานฉบับนี้สำเร็จไปได้ด้วยความกรุณาอย่างยิ่งจากรองศาสตราจารย์ ดร.สมชาย เกียรติกมลชัย อาจารย์ที่ปรึกษาโครงงานที่ได้ให้คำแนะนำ ข้อชี้แนะ และความช่วยเหลือในหลายสิ่งหลายอย่างจนกระทั่งโครงงาน นี้ลุล่วงไปได้ด้วยดี ผู้วิจัยรู้สึกซาบซึ้งในความกรุณาและขอกราบขอบพระคุณอย่างสูงในความเมตตา การเสียสละ เวลาส่วนตัวในการช่วยเหลือของอาจารย์เป็นอย่างสูงไว้ ณ ที่นี้

ผู้วิจัยขอกราบขอบพระคุณอย่างสูงในความเมตตา กรุณา การเสียสละเวลาส่วนตัวในการช่วยเหลือใน หลายๆด้านโดยเฉพาะการใช้เครื่อง Nano Flash ของ ผู้ช่วยศาสตราจารย์ ดร.บุญโชติ เผ่าสวัสดิ์ยรรยง ประธาน กรรมการสอบโครงงาน

ขอขอบพระคุณ อาจารย์ ดร.สันติพงศ์ บริบาล กรรมการสอบโครงงานที่กรุณาเสียสละเวลาส่วนตัวในการ สอบความก้าวหน้า

ขอขอบคุณ คุณอดิศักดิ์ ถือพลอย เจ้าหน้าที่ผู้มีความชำนาญที่ให้ความกรุณาช่วยเหลือในการใช้เครื่องตัด สารที่สถาบันวิจัยโลหะและวัสดุ จุฬาลงกรณ์มหาวิทยาลัย

ขอขอบคุณ บุคคลากรในภาควิชาฟิสิกส์ที่คอยอำนวยความสะดวกในใช้อุปกรณ์ต่างๆที่จำเป็นต่อโครงงาน นี้

ขอขอบคุณ นางสาววีนัส เทศถมยา และเพื่อนนิสิต ภาควิชาฟิสิกส์ทุกคนที่คอยเป็นกำลังใจ ร่วมทุกข์ร่วม สุข และให้ความช่วยเหลือเกื้อกูลตลอดมา

โครงงานนี้เกิดความสำเร็จขึ้น จากการช่วยเหลือของอาจารย์ พี่ๆ เพื่อนๆ รวมถึงบุคคลที่มีส่วนเกี่ยวข้อง ท่านอื่นๆ ที่ผู้วิจัยไม่ได้เอ่ยนามในนี้ ผู้วิจัยขอขอบพระคุณจากใจจริงที่ทุกท่านให้ความร่วมมือและให้การช่วยเหลือ เป็นอย่างดี

ท้ายที่สุดแห่งความสำเร็จในการศึกษานี้ ขอขอบคุณพระคุณ บุคคลในครอบครัวอันเป็นที่รัก ซึ่งเป็นบุคคล ที่ให้กำลังใจกับผู้วิจัยตลอดมา ดูแล ช่วยเหลือในทุกๆ สิ่ง รวมไปถึงอาจารย์และผู้มีพระคุณทุกท่านที่ให้การ สนับสนุน ผู้วิจัยขอกราบขอบพระคุณด้วยความรักและความเคารพเป็นอย่างสูง

ณิชกานต์ ชาติชำนาญ

٩

สารบัญ

			หน้า	
บทคัดย่	อ (ภาษ	าไทย)		ก
บทคัดย่	อ (ภาษ	าอังกฤษ)		ๆ
กิตติกระ	รมประก	าศ		ค
สารบัญ				ঀ
สารบัญ	รูปภาพ			ລ
สารบัญ	ตาราง			ഴ
บทที่ 1	บทนำ			
	1.1	ความสำคัญและที่มา		1
	1.2	วัตถุประสงค์ของโครงงาน		1
	1.3	ขอบเขตของโครงงาน		2
	1.4	ประโยชน์ที่คาดว่าจะได้รับ		2
บทที่ 2	ทบทวา	นวรรณกรรม		
	2.1	อุปกรณ์เทอร์โมอิเล็กทริก		3
	2.2	ประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุ		5
	2.3	สารประกอบเหล็กและซิลิกอน		5
	2.4	การถ่ายเทความร้อน		6
	2.5	กฎของฟูเรียร์		7
	2.6	สมการนำความร้อน		7
	2.7	ค่าสภาพการนำความร้อน		9
	2.8	วิธีการวัดแบบ Nano Flash		9

บทที่ 3 ขั้นตอนการทดลองและวิธีการทดลอง

3.1	สารที่ใช้	12
3.2	อุปกรณ์	12
3.3	เครื่องมือวัด	12
3.4	ขั้นตอนและการเตรียมสารตัวอย่างและขั้นตอนการทดลอง	13
3.5	วิธีการวิเคราะห์ข้อมูลที่ได้จากเครื่อง Nano Flash	19
		หน้า
3.6	คำนวณหาค่าสภาพนำความร้อน	20

บทที่ 4 ผลการทดลองและวิเคราะห์ผลการทดลอง

4.1	ผลและ	การวิเคราะห์ค่าสภาพนำความร้อนทั้ง 3 วิธี	
	4.1.1	ค่าสภาพนำความร้อนจากการทดลองด้วยเครื่อง Nano Flash	22
	4.1.2	ค่าสภาพนำความร้อนที่ได้จากการฟิตผลเฉลยของสมการนำความร้อน	
		กับสัญญาณทั้งหมด โดยใช้โปรแกรม Origin™	23
	4.1.3	ค่าสภาพนำความร้อนที่คำนวณจากเวลาเมื่อสัญญาณขึ้นไปเป็นครึ่งหนึ่ง	
		ของค่าสูงสุดโดยใช้โปรแกรม Origin ™	25
4.2	การวิเศ	าราะห์ค่าสภาพนำความร้อนทั้ง 3 วิธี	27
4.3	การเปรี	รียบเทียบค่าสภาพนำความร้อนจากงานวิจัยอื่นๆ	28
4.4	ประสิท	ธิภาพทางเทอร์โมอิเล็กทริก	31

บทที่ 5 สรุปผล	การทดลอง	32
ภาคผนวก	การหาค่า C _p โดยใช้โปรแกรม LFA analysis	33
เอกสารอ้างอิง		46

สารบัญรูปภาพ

	หน้า
รูปที่ 2.1 อุปกรณ์เทอร์โมอิเล็กทริก	3
รูปที่ 2.2 ส่วนประกอบของเทอร์โมอิเล็กทริกโมดูล	4
รูปที่ 2.3 กลไกการทำงานของเทอร์โมอิเล็กทริกเจนเนอเรเตอร์	4
รูปที่ 2.4 กลไกการทำงานของเทอรโมอิเล็กทริกคูลลิ่ง	5
รูปที่ 2.5 แผนภาพเฟสไดอะแกรมของเหล็กและซิลิกอน	6
รูปที่ 2.6 การนำความร้อนผ่านปริมาตรเล็กๆ	7
รูปที่ 2.7 หลักการทำงานของเครื่อง Nano Flash	10
รูปที่ 3.1 (ก) ผงเหล็ก ซิลิกอน และดีบุก	12
(ข) การชั่งเตรียมสาร	12
รูปที่ 3.2 (ก) การบดสาร	12
(ข) ถ้วยหลอมที่ทาเคลือบด้วยโบรอนไนไทรด์	12
รูปที่ 3.3 (ก) นำถ้วยหลอมสารไปไว้ที่ตรงกึ่งกลางของท่อหลอม	13
(ข) จัดเตรียมระบบเตาหลอม	13
รูปที่ 3.4 การตั้งโปรแกรมการหลอมสาร	13
รูปที่ 3.5 (ก) ชิ้นสารที่นำไปหล่อเรซิ่น	14
(ข) เครื่องตัดโลหะ IsoMet 4000	14
รูปที่ 3.6 (ก) ตัดชิ้นสารตามแนวขวางของชิ้นสาร	14

(ข) ชิ้นสารขนาด 1x1 cm	14
รูปที่ 3.7 การพ่นสเปร์ยแกรไฟต์เคลือบชิ้นสาร	14
รูปที่ 3.8 การใส่ชิ้นสารลงไปในเครื่อง Nano flash พร้อมกับชิ้นงานตัวอย่าง	15
รูปที่ 3.9 การเติมไนโตรเจนเหลว	15
รูปที่ 3.10 ตั้งค่าโปรแกรม Nanoflash 1.28a	16
รูปที่ 3.11 คำนวณค่าความจุความร้อน และค่าสภาพนำความร้อนจากข้อมูลที่ได้จากการทดลอง	16
	หน้า
รูปที่ 3.12 แปลงข้อมูลออกมาในรูปของไฟล์ Excel เพื่อนำไปวิเคราะห์และสรุปผล	17
รูปที่ 3.13 การหาแนวโน้มกราฟ โดยทำการเปลี่ยนค่า n _{max}	18
รูปที่ 3.14 การทดลอง fit กราฟกับ ข้อมูลที่สร้างขึ้น ในโปรแกรม matlab	18
รูปที่ 3.15 การคำนวณค่าสภาพนำความร้อนที่ได้จากการทดลอง	19
รูปที่ 3.16 การ fitting ข้อมูลทุกจุดด้วยโมเดลกราฟ	19
รูปที่ 3.17 การเลือกจุดข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุดเพื่อดูค่า พารามิเตอร์ t ₅₀	20
รูปที่ 4.1 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ ที่เจือดีบุกในปริมาณร้อยละ	
ต่างๆ รูปที่ 4.2 การfitting จุดข้อมูลจากการทดลองด้วยโมเดลกราฟ	21 22
รูปที่ 4.3 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิที่เจือดีบุกในปริมาณร้อยละ ต่างๆ	23
รูปที่ 4.4 การเลือกจุดข้อมูลที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุด เพื่อดูค่าพารามิเตอร์ t ₅₀	24
รูปที่ 4.5 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิที่เจือดีบุกในปริมาณร้อยละ ต่างๆ	25
รูปที่ 4.6 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับปริมาณดีบุก ที่อุณหภูมิ 50°C	26

รูปที่	4.7	กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับปริมาณดีบุก ที่อุณหภูมิ 300°C	27
รูปที่	4.8	กราฟเปรียบเทียบความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ	29
รูปที่	4.9	กราฟแสดงความสัมพันธ์ระหว่างประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุ	30
		กับปริมาณดีบุกที่เจือ	

สารบัญตาราง

	หน้า
ตารางที่ 4.1 ตารางแสดงการเปรียบเทียบค่าสภาพนำความร้อนจากงานวิจัยอื่นๆ	28

บทที่ 1

บทนำ

1.1 ความสำคัญและที่มาของปัญหา

ในปัจจุบันเป็นที่ทราบกันดีถึงปัญหาด้านพลังงาน เนื่องจากความต้องการในการใช้พลังงานมีเพิ่มมากขึ้น เรื่อยๆ ทั้งในด้านอุตสาหกรรม เกษตรกรรม การคมนาคมสื่อสาร รวมไปถึงจำนวนประชากรที่เพิ่มมากขึ้น ในขณะ ที่พลังงานหลักที่เกิดจากการเผาไหม้ถ่านหินหรือน้ำมันมีแนวโน้มที่จะลดลงในอนาคต[1] การผลิตพลังงานทดแทน จึงเป็นสิ่งจำเป็นที่จะได้รับการพัฒนาให้มีประสิทธิภาพมากขึ้น รวมถึงพลังงานเหลือใช้ ซึ่งพลังงานต่างๆที่นำมาเป็น พลังงานทางเลือก ได้แก่ พลังงานลม พลังงานน้ำ พลังงานแสงอาทิตย์ มาใช้เพื่อผลิตกระแสไฟฟ้า พลังงานความ ร้อนก็เป็นอีกหนึ่งทางเลือกที่สามารถนำมาใช้ผลิตไฟฟ้าได้ผ่านเทคโนโลยีอุปกรณ์หนึ่งที่เรียกว่า"เทอร์โมอิเล็กริก" [2] การใช้พลังงานไม่ว่าจะในรูปแบบใดก็ตาม มักมีการสูญเสียพลังงานสู่สิ่งแวดล้อมในรูปของพลังงานความร้อน การนำวัสดุเทอร์โมอิเล็กทริกมาใช้ในการผลิตกระแสไฟฟ้าจึงเป็นอีกหนึ่งทางแก้ปัญหาความขาดแคลนด้าน พลังงานเนื่องจากวัสดุดังกล่าวมีสมบัติในการผันกลับระหว่างความต่างของอุณหภูมิและความต่างศักย์ไฟฟ้าหรือ อีกนัยหนึ่งก็คือสามารถเปลี่ยนพลังงานความร้อนเป็นพลังงานไฟฟ้าได้ โดยอาศัยความต่างของอุณหภูมิทั้งสองด้าน ของวัสดุ

วัสดุเทอร์โมอิเล็กทริกนั้นยังไม่เป็นที่แพร่หลายนัก เนื่องจากมีราคาสูงและยังมีข้อจำกัดด้านประสิทธิภาพ โดยปัจจุบันสารเทอร์โมอิเล็กทริกที่นิยมใช้คือ บิสมัทและเทลลูเรียม ซึ่งมีราคาค่อนข้างสูง ในโครงงานนี้จึงเลือกใช้ เหล็กและซิลิกอน เป็นผลเนื่องมาจากเหล็กและซิลิกอนเป็นธาตุที่มีราคาถูกและหาได้ง่าย อีกทั้งสารประกอบเหล็ก และซิลิกอนมีสมบัติเป็นวัสดุเทอร์โมอิเล็กทริกที่ดี มีค่าความต้านทานต่ำ และไม่เป็นพิษ ในการเตรียม FeSi₂ นั้นทำ ได้โดยการนำผง Fe และ Si ผสมกันในอัตราส่วน 1:2 โดยมวลอะตอม และหลอมเหลวในเตาหลอมบรรยากาศก้าซ อาร์กอน จากงานวิจัยของสมชาย เกียรติกมลชัยและคณะ (2016) พบว่าการเจือด้วยดีบุกช่วยให้สมบัติเชิง โครงสร้างดีขึ้น กล่าวคือ เกิดสารประกอบเฟสแอลฟา (FeSi) ที่มีขนาดเกรนเล็กลง ซึ่งส่งผลดีต่อสมบัติเชิงเทอร์โม อิเล็กทริกส์ [3] ซึ่งคาดว่าจะทำให้ค่าการนำความร้อนของวัสดุเทอร์โมอิเล็กทริก มีการเปลี่ยนแปลงไป ในงานวิจัยนี จึงเป็นการศึกษาเพิ่มเติมในส่วนของสภาพนำความร้อนว่าดีบุกที่เจือนั้นมีผลอย่างไร

1.2 วัตถุประสงค์ของโครงงาน

ศึกษาสภาพนำความร้อนของไอรอนไดซิลิไซด์ที่เจือด้วยดีบุกในปริมาณร้อยละ 0.0, 0.1, 0.2, 0.3 และ 0.4 โดยอะตอม

1.3 ขอบเขตของโครงงาน

- ศึกษาผลของการเจือสารประกอบเหล็ก-ซิลิกอนด้วยธาตุดีบุก ในปริมาณร้อยละ 0.1, 0.2, 0.3 และ 0.4
 โดยอะตอม
- วัดค่าสัมประสิทธิ์การนำความร้อนที่อุณหภูมิห้อง (ประมาณ 24-26 ℃) ของสารสารประกอบเหล็ก-ซิลิกอน ที่เจือธาตุดีบุก ในปริมาณร้อยละ 0.1, 0.2, 0.3, 0.4 โดยอะตอม
- 3. พิจารณาความสัมพันธ์ของค่าสัมประสิทธิ์การนำความร้อนที่ได้จากการทดลอง และค่าทางทฤษฎี

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ได้เรียนรู้การใช้งานเครื่องมือต่างๆ และหลักการทำงานของเครื่องมือ
- ทำให้นิสิตผู้ปฏิบัติงานมีความเข้าใจในการปฏิบัติงานในแต่ละขั้นตอน เช่น การเตรียมสาร การตัดสาร การ ขัดสาร ถือเป็นการฝึกความละเอียดรอบคอบและความอดทน
- 3. ทราบสภาพนำความร้อนของไอรอนไดซิลิไซด์ที่ เจือด้วยดีบุกในปริมาณที่แตกต่างกัน
- 4. ทราบสภาพนำความร้อนของไอรอนไดซิลิไซด์ที่ เจือด้วยดีบุกที่ผ่านการอบอ่อนที่อุณหภูมิที่แตกต่างกัน

บทที่ 2

ทบทวนวรรณกรรม

2.1 อุปกรณเทอรโมอิเล็กทริก

อุปกรณเทอรโมอิเล็กทริก (thermoelectric devices) เปนอุปกรณที่สามารถเปลี่ยนพลังงานความรอน ใหเปนพลังงานไฟฟาได และในทางกลับกันก็ยังสามารถเปนอุปกรณที่สามารถเปลี่ยนพลังงานไฟฟาใหเปน พลังงาน ความรอนไดเซนเดียวกัน สำหรับคำวา "เทอรโมอิเล็กทริก" มาจากคำวา "เทอรโม (thermo)" ซึ่งมี ความหมาย วาความรอน และคำวา "อิเล็กทริก (electric)" ซึ่งมีความหมายวาไฟฟา เมื่อนำความหมายรวมกัน จะเปน "ความรอนและไฟฟา" ดังนั้นเทอรโมอิเล็กทริก เปนปรากฏการณในการเปลี่ยนรูปแบบพลังงานระหวาง พลังงาน ไฟฟาและพลังงานความรอน โดยผานวัสดุตัวกลางที่มีสมบัติเทอรโมอิเล็กทริก เรียกวาวัสดุเทอรโมอิเล็กทริก (thermoelectric materials) ซึ่งจะทำเปลี่ยนพลังงานความรอนใหเปนพลังงานไฟฟาหรือเปลี่ยนพลังงานไฟฟา ใหเปนพลังงานความรอน โดยอาศัยหลักการสั่นสะเทือนของโครงสรางภายในวัสดุเชิงฟสิกสควอนตัม เมื่อวัสดุเทอร โมอิเล็กทริกไดรับอุณหภูมิที่แตกตางกันระหวาง ปลายทั้งสองขางพบวาจะมีการถายเทอุณหภูมิจาก อุณหภูมิสูงไป ยังอุณหภูมิต่ำกวา นั้นคือมีการสั่นของ อนุภาคโฟนอน (phonon) และการเคลื่อนที่ของพาหะ มีทั้ง อิเล็กตรอน (electron) และโฮล (hole) จะไดพลังงานไฟฟา และในทางตรงขามเมื่อวัสดุเทอรโม อิเล็กทริก มีความ ตางศักย ไฟฟา จะมีการถายเทความตางศักยไฟนา จากความตางศักยไฟฟาสูงไปยังความตาง ศักยไฟฟาต่ำกวาจะ ได พลังงานความรอน แสดงดังรูปที่ 1

TEC [4]

TEG [5]

รูปที่ 2.1 อุปกรณเทอรโมอิเล็กทริก

ปรากฏการณเทอรโมอิเล็กทริก (thermoelectric effect) โดยทั่วไปปรากฏการณพื้นฐานที่เกี่ยวของกับ การเปลี่ยนรูปพลังงานระหวางพลังงานไฟฟาและพลังงาน ความรอน มี 3 ปรากฏการณไดแก

1. ปรากฏการณซีเบค (Seebeck effect) "เมื่อใหความรอนที่รอยตอของตัวนำสองชนิดจะทำใหเกิด กระแสไฟฟาใหลในวงจรปด"

ปรากฏการณเพลทีเยอร (Peltier effect) "เมื่อมีกระแสไฟฟาไหลจะมีความรอนเกิดขึ้นที่รอยตอของ
 ตัวนำ ความรอนจะเพิ่มขึ้น หรือ ลดลงขึ้นอยูกับทิศทางการไฟลของกระแสไฟฟา"

 ปรากฏการณฑอมสัม (Thomson effect) "เมื่อมีกระแสไฟฟาผานตัวนำไฟฟาสองจุดที่มีอุณหภูมิ แตกตางกัน ทิศทางความรอนขึ้นอยูกับ การไหลของกระแสไฟฟาจากจุดเย็นไปจุดร่อน หรือจากจุดร่อนไปจุดเย็น"

อุปกรณเทอรโมอิเล็กทริก เปนการนำเอาวัสดุเทอรโมอิเลคทริค มาประกอบใหเปนอุปกรณที่สามารถ นำ ไปใชงานได เรียกวา "เทอรโมอิเลคทริคโมดูล (Thermoelectric module)" โดยการนำวัสดุเทอรโมอิเลคทริคที่ เปนวัสดุประเภทสารกึ่งตัวนำ (semi-conductor) ชนิดเอ็น (N type) และชนิดพี (P type) มาตอกันเปนคูๆ โดย วางสลับกัน และมีโลหะขนาดเล็กเชื่อมตอทั้งคูเขาดวยกัน ซึ่งแตละคูที่ตอกันจะมีการเชื่อมตอกันแบบอนุกรม ทาง ไฟฟาตั้งแตตัวแรกจนถึงตัวสุดทาย และดานบนกับดานลางถูกประกบดวยแผนเซรามิค แสดงดังรูปที่ 2

รูปที่ 2.2 สวนประกอบของเทอรโมอิเลคทริคโมดูล [6]

เมื่อนำเทอรโมอิเลคทริคโมดูล แลวทำใหอุณหภูมิแผนเซรามิคดานบนและดานลางแตกตางกัน ทำใหเกิด ปริมาณความตางศักยไฟฟาที่โมดูลผลิตได และเมื่อนำมาตอเขากับโหลด (load) หรือภาระไฟฟาจะทำใหมี กระแสไฟฟาไหล ตามปรากฏการณของซีเบค โดยทั่วไปเรียกเทอรโมอิเลคทริคโมดูลแบบนี้วา เทอรโมอิเลคทริค เจนเนอเรเตอร(thermoelectric generator ; TEG) แสดงดังรูปที่ 3

รูปที่ 2.3 กลไกการทำงานของเทอรโมอิเลคทริคเจนเนอเรเตอร[7]

ในทางกลับกัน เมื่อปอนกระแสไฟฟาใหกับเทอรโมอิเลคทริคโมดูลจะทำใหเกิดความรอนและความเย็น เกิดขึ้นที่ผิวดานบนและดานลาง ตามปรากฏการณของเพลทีเยอรโดยทั่วไปเรียกเทอรโมอิเลคทริคโมดูลแบบนี้วา เทอรโมอิเลคทริคคูลลิ่ง (thermoelectric cooling ; TEC) แสดงดังรูปที่ 4

รูปที่ 2.4 กลไกการทำงานของเทอรโมอิเลคทริคคูลลิ่ง [8]

2.2 ประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุ

ประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุสามารถวัดได้ในรูปของค่า Figure of merit หรือ ZT ซึ่งมี ความสัมพันธ์กับอุณหภูมิ (T) สัมประสิทธิ์ของซีเบค (Seebeck coefficient, **α**) ความต้านทานไฟฟ้า (Electrical resistivity, **ρ**) และสภาพนำความร้อน (Thermal conductivity, **κ**) ของสารดังนี้

$$ZT = \frac{\alpha^2 T}{\rho \kappa} \tag{10}$$

ดังนั้นวัสดุเทอร์โมอิเล็กทริกฑู่ดีควรจะมีความนำไฟฟ้าและค่าคงฑู่ของซีเบคสูงแต่มีความนำความร้อนที่ต่ำ ซึ่งการจะควบคุมค่าสมบัติเหล่านี้ในสารนั้นเป็นเรื่องยากเนื่องจากค่าทุกค่ามีความเกี่ยวข้องกันอย่างมากและสารที่ มีความนำไฟฟ้าสูงมักจะมีความนำความร้อนสูงแต่มีค่าคงที่ของซีเบคต่ำไปด้วย

2.3 สารประกอบเหล็กและซิลิกอน

สารประกอบระหว่างเหล็กและซิลิกอน มีเฟสที่สำคัญ 3 เฟส ได้แก่ เฟส α -Fe₂Si₅ ϵ -FeSi และ β -FeSi₂ เฟส α และ ϵ มีสมบัติเป็นโลหะ ในขณะที่เฟส β มีสมบัติเป็นสารกึ่งตัวนำและเป็นวัสดุ เทอร์โมอิเล็กทริกที่ดี ซึ่งกระบวนการเกิดเฟสต่าง ๆ สามารถดูได้จากแผนภาพเฟสไดอะแกรมของเหล็ก และซิลิกอนในรูปที่ 2.3 เมื่อนำ สารประกอบระหว่างเหล็กและซิลิกอนมาการหลอมรวมกันในอัตราส่วนอะตอม 1:2 แล้วปล่อยให้เย็นตัวลง พบว่า เฟสที่เกิดขึ้น มี 2 เฟส ได้แก่ เฟส ϵ เริ่มเกิดที่อุณหภูมิ 1410 องศาเซลเซียส และเฟส α เริ่มเกิดที่อุณหภูมิ 1220 องศาเซลเซียส ส่วนเฟส β จะเกิดขึ้นจากการ อบอ่อนภายหลัง ซึ่งจะเกิดปฏิกิริยา 3 ปฏิกิริยาหลักต่อไปนี้

- 1. peritectoid reaction
- 2. eutectoid reaction
- 3. subsequent reaction
- $\epsilon + \alpha \longrightarrow \beta$ (เกิดที่อุณหภูมิ 982 องศาเซลเซียส) $\alpha \longrightarrow \beta + Si$ (เกิดที่อุณหภูมิ 937 องศาเซลเซียส) $\epsilon + Si \longrightarrow \beta$ (เกิดที่อุณหภูมิต่ำกว่า 955 องศเซลเซียส)

2.4 การถ่ายเทความร้อน

การถ่ายเทความร้อนเป็นปรากฏการณ์ธรรมชาติที่เกิดขึ้น เมื่ออุณหภูมิระหว่างตำแหน่งสองตำแหน่งมีค่า แตกต่างกัน โดยความร้อนจะถ่ายเทจากที่ที่มีอุณหภูมิสูงไปที่มีอุณหภูมิต่ำเสมอ โดยมีกลไกการถ่ายเทความร้อนได้ 3 วิธี คือ การนำความร้อน การแผ่รังสี และ การพาความร้อน [10]

 การนำความร้อน คือ การที่ความร้อนจากจุดหนึ่งส่งผ่านเนื้อของสสารไปยังอีกจุดหนึ่งโดยเนื้อของ สสารที่นิ่งอยู่กับที่

 การแผ่รังสี คือ การที่ความร้อนจากจุดจุดหนึ่งเคลื่อนที่ไปยังอีกจุดอีกจุดหนึ่งโดยการที่จุดที่มีอุณหภูมิ สูงจะแผ่รังสีในรูปของคลื่นแม่เหล็กไฟฟ้า และไม่ใช้ตัวกลางในการเคลื่อนที่

 การพาความร้อน คือ การที่ความร้อนจากจุดหนึ่งในสสารเคลื่อนที่ไปยังอีกจุดหนึ่งในสสารโดยติดไปกับ สสารที่เกิดการเคลื่อนที่

2.5 การนำความร้อน

การนำความร้อน คือ การที่ความร้อนถ่ายเทผ่านสสารโดยที่สสารไม่เกิดการเคลื่อนที่พาความร้อนนั้นไปแต่ ความร้อนไหลผ่านสสารนั้นเอง โดยสมการแสดงพฤติกรรมการนำความร้อนนั้น ได้ถูกนำเสนอโดยฟูเรียร์ และถูก รู้จักกันในนาม กฏข้อที่ 1 ของฟูเรียร์สำหรับการนำความร้อน โดยกฎของฟูเรียร์ สามารถอธิบายได้ดังนี้ ฟลักซ์ของ ความร้อนที่การถ่ายเท ณ ตำแหน่งหนึ่งๆ จะเป็นปฏิภาคตรงกับค่าลบของ เกรเดียนท์ของอุณหภูมิ ณ ตำแหน่งที่ เกิดการถ่ายเทความร้อนนั้น และสามารถเขียนเป็นสมการการนำความร้อนในแนวแกนเดียวได้ดังต่อไปนี้

$$q = -k\frac{\partial T}{\partial x} \tag{1}$$

เมื่อ *q* = ความร้อนที่เกิดการถ่ายเท มีหน่วยเป็น วัตต์ต่อตารางเมตร

k = สภาพนำความร้อน (Conductivity) มีหน่วยเป็น วัตต์ต่อเมตรต่อเคลวิน

 $\frac{\partial T}{\partial x}$ = เกรเดียนท์ของอุณหภูมิในแนวแกน × มีหน่วยเป็น เคลวินต่อเมตร

หน่วยของค่าทั้งสามสามารถเปลี่ยนแปลงได้ตามหน่วยการวัดที่ใช้วัดความร้อน อุณหภูมิ และ ความยาว นอกจากนี้ในกรณีที่ความร้อนมีการถ่ายเทในสามแนวแกนพร้อมกันเราจะเขียนสมการ กฏข้อที่ 1 ของฟูเรียร์ สำหรับการนำความร้อนได้ดังนี้

$$q = -k\left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z}\right) = -k\nabla T$$
⁽²⁾

และเมื่อทำประยุกต์รวมกฎข้อที่ 1 ของฟูเรียร์สำหรับการนำความร้อน เข้ากับกฎข้อที่ 1 ของทางเทอร์โมไดนามิกส์ ซึ่งกล่าวว่าพลังงานในจักรวาลนี้เป็นปริมาณคงที่ และสมมุติให้ทำการศึกษาการถ่ายเทความร้อนใน ระบบที่การ ถ่ายเทความร้อนเกิดขึ้นโดยการนำความร้อนเท่านั้น เราจะได้สมการดังสมการข้างล่างสำหรับกรณี การนำความ ร้อนแกนเดียว ซึ่งเราเรียกสมการดังกล่าวว่า กฏข้อที่ 2 ของฟูเรียร์สาหรับสำหรับการนำความร้อน

$$\frac{\partial T}{\partial t} = \frac{\partial (\alpha \frac{\partial T}{\partial x})}{\partial x} \tag{3}$$

เมื่อ
$$rac{\partial T}{\partial t}$$
 = อัตราการเปลี่ยนแปลงอุณหภูมิ $lpha$ = ค่าการแพร่ความร้อน (Thermal diffusivity) = $rac{k}{
ho C_p}$

และสำหรับการถ่ายเทความร้อนภายในระบบที่มีการนำความร้อนอย่างเดียวนั้นกฎข้อที่ 2 ของฟูเรียร์ สามารถ เขียนได้ดังนี้

$$\frac{\partial T}{\partial t} = \nabla(\alpha \nabla T) = \alpha \frac{\partial^2 T}{\partial x^2}$$
(4)

2.6 ค่าสภาพการนำความร้อน

ในการวัดสมบัติการนำความร้อนของวัสดุ จะมีค่าที่บ่งบอกถึงความสามารถในการถ่ายเทความร้อนของ วัสดุ คือ ค่าสภาพการนำความร้อน(Thermal conductivity, k) ซึ่งเป็นการวัดอัตราการไหลของพลังงานความร้อน ที่จุดใดๆผ่านมวลวัสดุที่มีอุณหภูมิแตกต่างกันตามชนิดของวัสดุ โดยจะมีค่าแตกต่างกันตามชนิดของวัสดุ ถ้าวัสดุ สามารถนำความร้อนได้ดี ก็จะมีค่า k สูง แต่ถ้าวัสดุใดนำความร้อนได้น้อย ก็จะมีค่า k ต่ำ โดยการวัดค่าสภาพการ นำความร้อน สามารถแบ่งตามเทคนิคของการวัดได้เป็น 2 กลุ่มใหญ่ๆคือ

1) การนำความร้อนในสภาวะคงตัว (Steady state heat transfer, ไม่มีการสะสมพลังงานในทุกจุดภายใน ระบบ) คือ การถ่ายเทความร้อนในขณะที่อุณหภูมิของวัสดุในตำแหน่งต่างๆ ของระบบคงที่ไม่เปลี่ยนแปลงตาม เวลา แต่อุณหภูมิ ณ ตำแหน่งต่างๆ ในระบบจะไม่เท่ากันทุกจุด (Non-homogenous temperature) ซึ่งการไม่ เท่ากันของอุณหภูมินี้ทำให้เกิดการถ่ายเทความร้อนด้วยการนำความร้อนขึ้น

2) การนำความร้อนในสภาวะไม่คงตัว (Transient heat transfer, มีการสะสมพลังงานในจุดต่างๆของ ระบบ) คือ การวัดความร้อนในขณะที่มีการให้ความร้อนเข้าไป เป็นการวัดแบบเป็นฟังก์ชั่นกับเวลา ซึ่งการวัดแบบ นี้มีข้อดีคือ ไม่จำเป็นต้องรอให้ระบบเข้าสู่ สภาวะคงที่ ตัวอย่างวิธีการวัดแบบสภาวะไม่คงที่ เช่น Laser flash method วิธีนี้จะวัดการเพิ่มขึ้นของอุณหภูมิของชิ้นงานแผ่นบางเมื่อมีการให้พลังงานจาก laser pulse การวัด แบบนี้มีความรวดเร็ว เหมาะกับวัสดุหลายชนิด ประยุกต์ใช้งานได้หลากหลาย เนื่องจากช่วงอุณหภูมิของการวัดที่ กว้าง ตั้งแต่ประมาณ -120 ถึง 2800 °C [11]

2.7 วิธีการวัดแบบ Laser Flash

วิธี laser flash นี้ จะวัดค่า Thermal diffusivity เป็นหลักและคำนวณหาค่าสภาพนำความร้อนจาก สมการ

$$k = \alpha \rho C_p$$
 (5)

โดยที่ lpha คือ ค่าการแพร่ความร้อน (Thermal diffusivity)

k คือ สภาพการนำความร้อน (Thermal conductivity)

ho คือ ความหนาแน่น (Bulk density)

 C_p คือ ความจุความร้อน (Heat capacity)

วิธีการวัดแบบ Laser Flash นี้ เป็นวิธีการที่นิยมใช้เพื่อวิเคราะห์ปัญหาเกี่ยวกับการนำความร้อนในชิ้นงานที่มี ความหนา L เริ่มทำการวัดค่า โดยที่ชิ้นงานมีอุณหภูมิคงที่และให้ความร้อนบนด้านหนึ่งของชิ้นงานซึ่งให้พลังงาน laser เข้าไปแบบ pulse เป็นการให้ความร้อนเพียงชั่วขณะ สามารถเขียนอุณหภูมิของชิ้นงานอีกด้านในรูปฟังก์ชัน ของเวลาได้ดังสมการนี้ [12]

$$\frac{T(L,t)}{T_{\infty}} = 1 + 2\sum_{n=1}^{\infty} (-1)^n \exp(-n^2 \pi^2 \frac{t}{t_c})$$
(6)

โดยที่ T_∞ คือ อุณหภูมิที่สมดุล $= rac{Q}{
ho CL}$

Q คือ ความเข้มของพลังงานความร้อน และ $t_c=rac{L^2}{lpha}$

L คือ ความหนาของชิ้นงาน มีหน่วยเป็น มิลลิเมตร

โดยถ้าหากเราเลือกจุดที่ ($T_{\frac{\infty}{2}}, t_{\frac{1}{2}}$) แล้วนำไปแทนลงในสมการที่ (6) จะสามารถนำไปสู่การคำนวณหาค่า α (Parker et al. [13]) ได้ดังนี้

$$\alpha = 0.1388 \frac{L^2}{t_{\frac{1}{2}}} \tag{7}$$

โดยที่ $t_{rac{1}{2}}$ คือ เวลาที่สอดคล้องกับการเพิ่มขึ้นสูงสุดของ $rac{T(L,t)}{T_{\infty}}$ ครึ่งหนึ่ง

เมื่อทำการ fitting ข้อมูลจากการทดลองด้วยสมการ (6) พบว่า วิธีการวัดแบบ Laser Flash Method แสดงค่า ข้อมูลเมื่อเทียบกับค่าทางทฤษฎี ได้ดีกว่า เมื่อเปรียบเทียบกับการวัดวิธีอื่นๆ [14]

บทที่ 3

ขั้นตอนการทดลองและวิธีการทดลอง

3.1 สารที่ใช้

- 1. ผงเหล็กความบริสุทธิ์ 99.99+%
- 2. ผงซิลิกอนความบริสุทธ์ 99.99%
- 3. ผงดีบุกความบริสุทธิ์ 99.99%
- 4. เรซิ่นหล่อใส
- 5. สารดูดความชื้น(ซิลิกาเจล)
- 6. น้ำกลั่น
- 7. ในโตรเจนเหลว

3.2 อุปกรณ์

- 1. เครื่องชั่ง 4 ตำแหน่ง
- 2. แผ่นอะลูมิเนียมฟอยล์
- 3. โกร่งหรือถ้วยบดสาร
- 4. ถ้วยอะลูมินัม เคลือบด้วยผงโบรอนไนไทรด์
- 5. เตาเผา Lenton tube furnance model LTF 16/50/180
- 6. เวอร์เนียแคลิเปอร์
- 7. ถุงมือยาง
- 8. ถุงมือหนัง

3.3 เครื่องมือวัด

- 1. เครื่องตัดโลหะ IsoMet 4000
- 2. เครื่อง Laser flash ยี่ห้อ Nertzch

3.4 ขั้นตอนการเตรียมสารตัวอย่าง

การเตรียมสารตัวอย่างเริ่มจากการผสมผงเหล็กและผงซิลิกอนเข้าด้วยกันในอัตราส่วน 1:2 โดยอะตอม จากนั้นผสมผงดีบุกในปริมาณร้อยละต่างๆที่กำหนดไว้ แล้วบดส่วนผสมเข้าด้วยกัน นำสารที่บดเรียบร้อยใส่ถ้วย หลอมอะลูมินา จากนั้นนำสารดังกล่าวไปหลอมที่อุณหภูมิ 1550 องศาเซลเซียส เมื่อสารตัวอย่างเย็นตัวจึงนำไปตัด เป็นแผ่นให้มีขนาด 1x1 เซนติเมตร หนา 2 มิลลิเมตร จากนั้นนำไปวัดเพื่อหาค่าสภาพนำความร้อนด้วยเครื่อง Laser Flash โดยมีขั้นตอนอย่างละเอียดดังนี้

 เตรียมผงเหล็กและซิลิกอนโดยคำนวณและชั่งด้วยเครื่องชั่ง 4 ตำแหน่ง ให้มีอัตราส่วน 1:2 โดยอะตอม แล้วเติมผงดีบุกในปริมาณต่างๆ ได้แก่ 0.1, 0.2, 0.3, 0.4 และไม่เจือเลย ซึ่งการเจือในสัดส่วนร้อยละ 0.1 โดยอะตอม หมายถึง การเตรียมสาร FeSi₂ จำนวน 100 อะตอม (Fe 33.33 อะตอมและ Si 66.67 อะตอม) จะเจือดีบุกลงไป 0.1 อะตอม โดยให้มวลรวมของสารที่ผสมประมาณ 15 กรัม และการชั่งสาร จะใช้แผ่นอะลูมิเนียมฟอยด์รองไว้เพื่อความสะดวกในการเคลื่อนย้าย เมื่อชั่งสารได้ตามที่ต้องการแล้ว จึงเทสารลงในถ้วยดสาร

รูปที่ 3.1 (ก) ผงเหล็ก ซิลิกอน และดีบุก (ข) การชั่งเตรียมสาร

 นำผงเหล็ก ซิลิกอน และดีบุกที่เจือในปริมาณที่ต้องการบดผสมกันในถ้วยบดสาร บดสารโดยใช้แท่ง บดสารคนเป็นวงกลมไปเรื่อยๆประมาณ 15 นาที จากนั้นนำใส่ถ้วยหลอมอะลูมินาที่ทาเคลือบด้วย โบรอนไนไทรด์

รูปที่ 3.2 (ก) การบดสาร (ข) นำสารใส่ถ้วยหลอมที่ทาเคลือบด้วยโบรอนไนไทรด์

 นำถ้วยอะลูมินาเข้าไปวางไว้ตรงกลางท่อหลอม ปิดฝาท่อหลอมทั้งสองด้านดังรูปที่ แล้วทำการปั้มไล่ อากาศออกและแทนที่ด้วยก๊าซอาร์กอน ทำซ้ำอย่างน้อย 10 รอบ เพื่อให้ระบบมีอากาศปกติใน สัดส่วนที่น้อยที่สุด (ประมาณ 0.15¹⁰ ส่วน)

รูปที่ 3.3 (ก) นำถ้วยหลอมสารไปไว้ที่ตรงกึ่งกลางของท่อหลอม (ข) จัดเตรียมระบบเตาหลอม

 ปรับบรรยากาศในท่อหลอมให้เป็นแก๊สอาร์กอน ซึ่งมีอัตราการไหล 100 มิลลิลิตรต่อนาที จากนั้น หลอมสารที่อุณหภูมิ 1550 องศาเซลเซียส เป็นเวลา 1 ชั่งโมง 30 นาที โดยเริ่มต้นจากการเพิ่ม อุณหภูมิภายในเตาหลอมด้วยอัตราการเพิ่มอุณหภูมิ 8 องศาเซลเซียสต่อนาที จากอุณหภูมิห้องไป จนถึง 800 องศาเซลเซียส หลังจากนั้นลดอัตราการเพิ่มอุณหภูมิเป็น 5 องศาเซลเซียสต่อนาทีไป จนถึงที่อุณหภูมิ 1550 องศาเซลเซียส และคงอุณหภูมิไว้ที่ 1550 องศาเซลเซียสเป็นเวลา 1 ชั่วโมง 30 นาที แล้วค่อย ๆ ลดอุณหภูมิไปจนถึง 800 องศาเซลเซียสด้วยอัตราการลดอุณหภูมิ 5 องศา เซลเซียสต่อนาทีและเพิ่มอัตราการลดอุณหภูมิเป็น 8 องศาเซลเซียสต่อนาที ไปจนถึงอุณหภูมิห้อง

รูปที่ 3.4 การตั้งโปรแกรมการหลอมสาร

 เมื่อชิ้นงานเย็นตัวลงแล้ว นำชิ้นงานไปหล่อด้วยเรซิ่น เพื่อความสะดวกในการตัดชิ้นงาน จากนั้นนำ ชิ้นงานที่หล่อเรซิ่นแล้วไปตัดด้วยเครื่องตัดโลหะ IsoMet 4000

รูปที่ 3.5 (ก) ชิ้นสารที่นำไปหล่อเรซิ่น (ข) เครื่องตัดโลหะ IsoMet 4000

 ทำการตัดชิ้นงานโดยตัดตามแนวขวางของชิ้นงานให้มีความหนา 2 มิลลิเมตร จากนั้นทำการตัดขอบ ด้านข้างจนได้ชิ้นงานรูปสี่เหลี่ยมจัตุรัสที่มีขนาด 1×1 เซนติเมตร ซึ่งชิ้นงานที่ต้องการจะต้องไม่มีรูพรุน

รูปที่ 3.6 (ก) ตัดขึ้นสารตามแนวขวางของขึ้นสาร (ข) สารที่ตัดจนมีขนาด 1x1cm

 นำชิ้นงานไปวัดค่าสภาพนำความร้อนด้วยเครื่อง laser flash พ่นชิ้นงานด้วยสเปรย์ graphite ให้ทั่ว ทั้งชิ้นงาน

รูปที่ 3.7 พ่นสเปร์ยแกรไฟต์เคลือบชิ้นสารให้ทั่วทั้งชิ้น

 ใส่ชิ้นงานลงใน holder ที่มีลักษณะเหมาะสมกับขนาดของชิ้นงาน จากนั้นปิดทับด้วยที่ปิดอีกชั้นหนึ่ง จากนั้นนำไปใส่ในเครื่อง Laser Flash โดยใส่ ชิ้นงานตัวอย่าง Alumina ลงไปด้วยเพื่อใช้ในการ เปรียบเทียบเป็นค่ามาตรฐาน

รูปที่ 3.8 ใส่ชิ้นสารลงไปในเครื่อง Laser flash พร้อมกับชิ้นงานตัวอย่าง

9. ค่อยๆทำการเติมไนโตรเจนเหลวลงไปในเครื่อง Laser Flash ทีละเล็กน้อยจนกว่าจะเต็ม(ควันพุ่ง ออกมา) เมื่อเต็มแล้วปิดด้วยฝาทองเหลืองเช็คดูว่าฝาปิดได้สนิทไม่มีแรงดัน ดันออกมา

รูปที่ 3.9 เติมไนโตรเจนเหลวลงไป

10. ตั้งค่าโปรแกรม Nanoflash 1.28a เพื่อใช้ในการวัด เลือกใช้อุณหภูมิที่ 50, 100, 150, 200, 250 และ 300 องศาเซลเซียส โดยให้มีการยิงรังสีอินฟาเรดซ้ำ 5 ครั้ง ที่อุณหภูมินั้นๆ เมื่อโปรแกรมทำงาน เสร็จสิ้น รอจนอุณหภูมิลดลงจนมีค่าเท่ากับอุณหภูมิห้องจากนั้นทำการพลิกด้านของชิ้นงานแล้วทำ การทดลองซ้ำอีกครั้งหนึ่ง export ข้อมูลจากโปรแกรมเพื่อนำไปวิเคราะห์ผลต่อไป (โดยถ้าหากมีการ แจ้งเตือนว่าไนโตรเจนเหลวหมดในระหว่างการทำงานของเครื่อง สามารถหยุดเติมไนโตรเจนแล้วให้ เครื่องทำงานต่อไปได้เลย)

TextName	My Test Run		Ë i	Temperature (Dept	C) 📫	Detals					
Operator Name	MyNane			alunina	Satiple 2	10.00					
Program Start	2019. 03. 22. 20.2	0.17	-			1					
entral				25.4	25.4	F					
- I what a log	8 0.00					7.50					
		Automatic Ada	at _	1	2						
Fluntme Step				3		5.00					
1						-					
						1 E					
						2.50					
				-		E					
GIGISI				Sample	Changer	e.00					
R R R				S ample I Center F	Duanger	 		1 1 1 20	3.0	40	₅
& K X	Location	Status	Shots	Sample Center P	Dunger Taler (15ght)	Vok(V)	Pube Width	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0 Main Amp (pain)	4.0 Duration (ma)	Delay(s.)
Sangle Name	Location	Status	Shots	Sample I Center F TempidagC	Duanger Tostion	0.00 <u>Y</u> 0.5 Vok(V)	Pube Width	hearp (gan)	1 1 1 1 1 3.0 Main Ang (gain)	4 0 Duration (me)	Delas(s.)
Sangle Name Sangle Name Amina angle 2	Location 7	Statue	Shots	Sample I Center F TempidagC 50	Duanger Tostion	6.00 ¥ 6.8 Volt(V) 270	Pube Width Unit of the Medure	Pesno (gan)	Main Ang (gain)	4 0 Duration (me) 2000 2000	Delasta I
Sangle Name Krana angle 2 Krana angle 2	Location	Status 0	Shots 5 5	Sample Center F TempldegC 50 100	Dunger folion File (13ghi) 100 100 100	6.00 Y 6.8 Volt(V) 270 270	Pulse Width Midure Midure	Pesno (gan)	1 1 1 3.0 Main Ang (gain) 2520 2520 2520	4 0 Duration (me) 2000 2000 2000	Delip(i.)
Sangle Name Sangle Name Jonna angle 2 Jonna angle 2 Jonna	Location 2 1 2	Status O O O	Shots 5 5 5 5	Sample Center P TemptidegC.) 50 50 50 50 50 50 50 50 50 50 50 50 50	Pate (15ght) File (15ght) 100 100 100 100	6.00 Y 0.8 Volt.(V) 270 270 270 270 270 270	Tute Widh Pute Widh Medure Medure Medure	28 Phearip (gan) 10 10 10 10 10	1 1 1 1 3.6 Man Amp (gair) 5520 2520 2520 2520	4.0 Duration [ne] 2000 2000 2000 2000	Delip(s.)
Sangle Name umina angle 2 umina angle 2 umina angle 2 umina angle 2	Location 7 1 2 1 2	Status O O O O	Shots 5 5 5 5 5 5 5 5 5 5	Sample I Center P TemptidegC 50 100 100 100 150	Pate (15gh) 100 100 100 100 100 100 100 10	0.00 Y 0.8 Yok(V) 270 270 270 270 270 270 270 270	Tube Width Tube Width Medun Medun Medun Medun	2.3 Pheanp (gain) 10 10 10 10 10 10 10 10	Man Ang (gair) 2530 2530 2530 2530 2530 2530 2530 2530	4.8 Duration (me) 2000 2000 2000 2000 2000 2000	Delip(s.)
Sangle Name Sangle Name Annes angle 2 Annes angle 2 Annes Annes	Location 2 1 2 1 2 1 2	Status O O O O O O O O	Shots 5 5 5 5 5 5 5 5 5 5 5	Sample Center F TempidegC) 50 50 50 50 50 50 50 50 50 50 50 50 50	Tanger Totion 78e (15gin) 100 100 100 100 100 100 100	Val(V) 270 270 270 270 270 270 270 270	Pulse Width Hedum Medum Medum Medum Medum	Peanp (pan) () 10 10 10 10 10 10 10 10 10 10	Man Ang Igan 7570 7570 7570 7570 7570 7570 7570 757	4.8 Duration (ms) 2000 2000 2000 2000 2000 2000 2000 20	Delig(s.)
Sangle Name Kanna angle 2 kanna angle 2 kanna angle 2 kanna angle 2 kanna angle 2 kanna angle 2 kanna angle 2 kanna	Location 2 1 2 1 2 1 2 2 1 2 2	Status O O O O O O O O O O O O	Shots 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Certer F Certer F TemptilegC 50 50 50 150 150 150 200 200	Duanger (selion 78er (35ph) 100 100 100 100 100 100 100 100	¥ 6.80 ¥ 6.8 Vol.(V) 270 270 270 270 270 270 270 270	Pulie Widh Nedun Medun Medun Medun Medun Medun Medun Medun	28 Pearspigant 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.0 Duration [ne] 2000 2000 2000 2000 2000 2000 2000 20	Deliptic J
Sangle Name Sangle Name Amina angle 2 Amina angle 2 Amina angle 2 Amina angle 2 Amina Amina Amina	Location 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2	Statur O O O O O O O O O O O O	Shots 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Center F TerccidegC 100 100 150 150 150 200 200 200 200 200	Dearger (skion File: (15chi) Vici 100 100 100 100 100 100	¥ 6.50 ¥ 6.5 ¥ 0.5 270 270 270 270 270 270 270 270	Tala Wath Nedun Medun Medun Medun Medun Medun Medun Medun Medun	28 Pleanp (gain) 10 10 10 10 10 10 10 10 10 10 10 10 10	Man Amp (gan) 7520 7520 7520 7520 7520 7520 7520 7520	4.0 Dutation [me] 2000 2000 2000 2000 2000 2000 2000 20	Delisita I
K K K Sangle Name Annra Jangle 2 Annra	Location 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2	Status O O O O O O O O O O O	Shots 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Center F Center F TemptilegC 50 50 100 150 150 150 200 200 200 200 200 200	Dianger Totalion File: 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	4.50 Y 68 Yok(V) 270 270 270 270 270 270 270 270	10 Pulie Width Medum Medum Medum Medum Medum Medum Medum	2.9 Pleanp [gain] 10 10 10 10 10 10 10 10 10 10 10 10 10	3.0 3.0 3.0 2500 2500 2500 2500 2500 2500 2500 25	4.0 2000 2	Delay(s.)
A A K K Sangle Name danina Sangle 2 danina Sangle 2 danina	Location 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	5telue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Shots 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Center F TemptidegC) 50 50 50 50 50 50 50 50 50 200 200 200	Plant (15c)+10 Vition Vition	€.09 ¥ 68 Vok(V) 270 270 270 270 270 270 270 270	10 Pulie Width Kedum Medum Medum Medum Medum Medum Medum Medum Medum	20 Preservo (ganv) 10 10 10 10 10 10 10 10 10 10 10 10 10	5.0 Main Ang (ger) 7500 2500 2500 2500 2500 2500 2500 2500	1 4 0 Duration (ms) 2000 20	Deligits)

รูปที่ 3.10 ตั้งค่าโปรแกรม Nanoflash 1.28a

 นำข้อมูลที่ได้จากโปรแกรม Nanoflash 1.28a มาเปิดและหาค่า ความจุความร้อน (C_p) จากการ เปรียบเทียบค่ากับค่าความจุความร้อนของชิ้นงานมาตรฐานที่ใส่ลงไปพร้อมกับชิ้นงานที่ใช้ทำการ ทดลอง จากนั้นทำการคำนวณหาค่าสภาพนำความร้อน โดยใช้โปรแกรม LFA Analysis

รูปที่ 3.11 คำนวณค่าความจุความร้อน และค่าสภาพนำความร้อนจากข้อมูลที่ได้จากการทดลอง

12. แปลงข้อมูลจากการทดลองให้ออกมาเป็นไฟล์ Excel เพื่อนำไปวิเคราะห์ผลต่อไป

รูปที่ 3.12 แปลงข้อมูลออกมาในรูปของไฟล์ Excel เพื่อนำไปวิเคราะห์และสรุปผล

3.5 วิธีการวิเคราะห์ข้อมูลที่ได้จากเครื่อง Laser Flash

หลังจากทำการทดลองแล้ว ขั้นตอนต่อไป คือ ขั้นตอนการวิเคราะห์ข้อมูลที่ได้จากการทดลองด้วยเครื่อง Laser Flash โดยจะทำการวิเคราะห์เปรียบเทียบแนวโน้มกราฟของข้อมูลที่ได้จากการทำการทดลองและค่าที่ ได้จากทางทฤษฎี (สร้างกราฟจากสมการทางทฤษฎี) และวิเคราะห์กราฟที่ได้จากการทดลองด้วยโปรแกรม origin โดยมีขั้นตอนดังนี้

3.5.1 วิเคราะห์โมเดลกราฟที่ได้จากสมการทางทฤษฎีโดยโปรแกรม Matlab

พิจารณาแนวโน้มของกราฟจากสมการทางทฤษฎิโดยโปรแกรม Matlab โดยทำการเปลี่ยน จำนวนเทอมที่ใช้ในสมการไปเรื่อยๆ เริ่มจาก 1 เทอม ซึ่งพบว่า กราฟมีแนวโน้มที่ดีและมีค่าเริ่มต้นที่ 0 เมื่อเลือกใช้ 7 เทอม ดังนั้นจึงนำกราฟนี้ไปใช้เพื่อเป็นโมเดลในการ fit จำนวนข้อมูลที่ได้จากการทำ การทดลอง แสดงได้ ดังรูป

รูปที่ 3.13 พิจารณากราฟ โดยทำการเปลี่ยนจำนวนเทอมในสมการ ให้data แทน จำนวนเทอม

รูปที่ 3.14 ทดลอง fit กราฟกับ ข้อมูลที่สร้างขึ้น

3.5.2 วิเคราะข้อมูลที่ได้จากการทดลองด้วยเครื่อง Laser Flash โดยโปรแกรม Origin

นำข้อมูลที่ได้จากการทดลองมาวิเคราะห์ผลในโปรแกรม origin เพื่อดูแนวโน้มของข้อมูลโดยจะ ใช้โมเดลกราฟเป็นตัว fitting ข้อมูลจากการทดลองละเพื่อหาค่าพารามิเตอร์ ซึ่งจะนำไปสู่การคำนวณหาค่าสภาพ นำความร้อน โดยแบ่งออกเป็น 2 วิธี ดังนี้

1.) ใช้ข้อมูลทุกจุดที่ได้จากการทดลอง เพื่อหาค่าพารามิเตอร์ t_c

รูปที่ 3.15 fitting ข้อมูลทุกจุดด้วยโมเดลกราฟ

ใช้เพียงจุดข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุดเพื่อหาค่า พารามิเตอร์ t₅₀

รูปที่ 3.16 เลือกจุดข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุดเพื่อดูค่า พารามิเตอร์ t₅₀

3.5.3 คำนวณหาค่าสภาพน้ำความร้อน

จากการทดลองและการวิเคราะห์ผลการทดลองสามารถนำไปคำนวณหาค่าสภาพนำความร้อนได้ 3 วิธี ดังนี้

1. ค่าสภาพนำความร้อนที่ได้จากเครื่อง Laser Flash (\mathcal{K}_{exp})

คำนวณได้จากโปรแกรม LFA Analysis

2. ค่าสภาพนำความร้อนที่ได้จากการคำนวณ โดยใช้จุดข้อมูลทั้งหมดจากการทดลอง (κ_{fit})

ใช้ค่า t_c ในการคำนวณหาค่าการแพร่ความร้อน ($lpha_{fit}$) แล้วจึงนำไปคำนวณหาค่า สภาพนำความร้อนโดยใช้การเปรียบเทียบอัตราส่วน $rac{\kappa_{exp}}{\kappa_{fit}}=rac{lpha_{exp}}{lpha_{fit}}$

3. ค่าสภาพนำความร้อนที่ได้จากการคำนวณ โดยใช้การเลือกจุดข้อมูลเพียงจุดเดียว (\mathcal{K}_{50})

ใช้ค่า t₅₀ ในการคำนวณหาค่าการแพร่ความร้อน ($lpha_{50}$) แล้วจึงนำไปคำนวณหาค่า สภาพนำความร้อนโดยใช้การเปรียบเทียบอัตราส่วน $rac{\kappa_{exp}}{\kappa_{50}}=rac{lpha_{exp}}{lpha_{50}}$

บทที่ 4

ผลการทดลองและการวิเคราะห์ผลการทดลอง

4.1 ผลการทดลองที่ได้จากเครื่อง Laser Flash

จากการทดลองด้วยเครื่อง Laser Flash เมื่อนำมาคำนวณในโปรแกรม LFA Analysis ทำให้ทราบค่า สภาพนำความร้อนของชิ้นงาน โดยทำการหาความจุความร้อน (\mathcal{C}_p) จากการเปรียบเทียบกับชิ้นงานมาตรฐานที่ ทราบค่าความจุความร้อนอยู่แล้ว ซึ่งทำการใส่ลงไปในเครื่อง Laser Flash พร้อมกับชิ้นงานที่ทำการทดลอง

รูปที่ 4.1 คำนวณค่าสภาพนำความร้อนที่ได้จากการทดลอง

	Calibri Calibri			- 11 - A' A' = =			- Wrap Test		General			
Pa	ste Sermat Pa	inter B J L	1 -	UII - 🔎	· A ·	107 108	-11 412 412	III Merge & C	ienter -	5	- 96	· 54
	Clipboard	n-	Pa	eet.	15		Alige	unent	- 6		Num	
163	- 18	X 2	f=									
				. C		D		F.	6		н	
12	wwitesuits											
13	#shot_number	#Temperature,	ac w	Model	HDiffs	isivity/(WConductive	ity,#Cp/(J/g/K)	#Pulse	type		
4	1	5	0.1 C	owan + p	F	3.564	16.8	73 0.93	1	2		
15	2		50 C	owan + p	fa .	3.59	16.9	96 0.977	/	2		
6			50 C	owan + p	F-	3.604	17.0	63 0.942	1	-2		
7	4		50 C	owan + p	£.	3.58	16.9	46 0.974	1	-2		
18	5		50 C	owan + p	6	3.602	17.0	52 0.966	5	- 2		
9	wittean		50			3.588	16.9	0.954	5			
ò	#Std_Dev		0			0.017	0.0	0.021	L .			
	6		100 C	osvan + p	Er.	3.431	16.2	41 1.013	,	2		
2	7		100 C	owan + p	c.	3.416	16.	17 1.021	£	2		
3	8		100 C	owan + p	E.,	3,394	16.0	65 0.963		2		
4	9		100 C	owan + p	E. 1	3.41	16.1	45 0.991	5	2		
5	10		100 C	owan + p	fa-	3.401	16.0	99 1.012	2	2		
16	Whitean		100			3.41	16.1	44 1.001	t .			
7	#Std_Dev		0			0.014	0.0	68 0.024	1			
18	31	14	19.9 C	owan + p	ŧ+.	3.307	15.6	55 1.011)	2		
9	12		150 C	owan + p	É-	3.312	15.6	81 0.976	3	2		
0	13	15	60.1 C	owan + p	E+ .	3.321	15.	72 0.94	8	2		
1	14	14	19.9 C	owan + p	E .	3.305	15.6	45 1.012	2	2		
2	15	15	50.1 C	owan + p	F-	3.308	15.	66 0.968	8	2		
13	WMean		150			3.311	15.6	72 0.991	L			
18	WStd_Dev		0.1			0.006	0.	03 0.023				
-		mante entrete et	ann r	3 03510		in and		4 9/10				

4.2 ผลและการวิเคราะห์ข้อมูลที่ได้โดยใช้โปรแกรม Origin

4.2.1 ผลและการวิเคราะห์โดยการ fitting กราฟด้วยข้อมูลทุกจุด

นำข้อมูลที่ได้จากการทดลองมา fitting ด้วยโมเดลกราฟ โดยทำการเลือกข้อมูลในช่วงที่เหมาะสม.... จากนั้นเมื่อทำการ fitting กราฟด้วยข้อมูลทั้งหมดแล้วจะได้ค่าพารามิเตอร์ t_c

รูปที่ 4.3 fitting จุดข้อมูลจากการทดลองด้วยโมเดลกราฟ

จากรูปที่ 4.3 เมื่อทำการ fitting ข้อมูลที่ได้จากการทดลองชิ้นงานทั้ง 5 ชิ้น ที่เจือดีบุกในปริมาณที่ แตกต่างกันคือ 0.1, 0.2, 0.3, 0.4 และไม่เจือเลย ด้วยโมเดลที่สร้างขึ้นจากสมการทางทฤษฎี(6) จะเห็นว่ากราฟช่วง ปลายมีลักษณะไม่ค่อยสอดคล้องกับโมเดลที่ใช้ในการ fit โดยโมเดลมีค่าต่ำกว่ากราฟที่ได้จากการทดลอง ซึ่งกราฟที่ ได้จากชิ้นงานทุกชิ้นนั้นมีลักษณะใกล้เคียงกัน กล่าวคือ กราฟที่ได้นั้นช่วงปลายจะมีลักษณะที่ไม่ค่อยสอดคล้องกับ โมเดลทางทฤษฎี ซึ่งการที่เกิดปรากฏการณ์เช่นนี้ขึ้น เนื่องจาก ช่วงแกน y ยังไม่ใช่ temp ยังป็น volt อยู่ ซึ่งยังไม่ แน่นอนว่าความสัมพันธ์ระหว่าง temp กับvolt เป็นเส้นตรงจริงหรือไม่ อาจจะมีความสัมพันธ์เป็นเส้นตรงเพียงแค่ ในช่วงต้นจึงทำให้ช่วงปลายมีลักษณะไม่ค่อยซ้อนทับกัน เมื่อได้ค่าพารามิเตอร์ t_c นำไปคำนวณหาค่าการแพร่ความร้อน (**מ**) และนำไปคำนวณหาค่าสภาพนำความ ร้อน ได้ดังนี้

รูปที่ 4.4 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ ที่เจือดีบุกร้อยละ 0.4

รูปที่ 4.5 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ ที่ไม่เจือดีบุก

จะเห็นว่ากราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนและอุณหภูมิ โดยที่มีการเจือดีบุกในปริมาณที่ แตกต่างกัน มีแนวโน้มที่คล้ายกันนั่นคือ มีค่าสภาพนำความร้อนลดลงเมื่ออุณหภูมิเพิ่มขึ้น ซึ่งค่าสภาพนำความร้อน จะมีค่าสูงสุดคือ ประมาณ 18 w/mK เมื่อเจือด้วยดีบุกปริมาณ 0.4 โดยอะตอม และมีค่าต่ำสุดคือ ประมาณ 13.5 w/mK เมื่อไม่ได้เจือดีบุกเข้าไปในชิ้นสาร

4.2.2 ผลและการวิเคราะห์โดยการ fitting กราฟด้วยการเลือกจุดข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่ง หนึ่งของค่าสูงสุด

นำข้อมูลที่ได้จากการทดลองในช่วงที่เหมาะสมมาพล็อตกราฟจากนั้นทำการเลือกจุดข้อมูลที่ สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุด จะได้ค่าพารามิเตอร์ t₅₀

รูปที่ 4.6 เลือกจุดข้อมูลที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุด เพื่อดูค่าพารามิเตอร์ t₅₀

เมื่อได้ค่าพารามิเตอร์ t₅₀ นำไปคำนวณหาค่าการแพร่ความร้อน (**a**) และนำไปคำนวณหาค่าสภาพนำ ความร้อน ได้ดังนี้

รูปที่ 4.7 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ ที่เจือดีบุกร้อยละ 0.4

รูปที่ 4.8 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ ที่ไม่เจือดีบุก

จะเห็นว่ากราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนและอุณหภูมิ โดยที่มีการเจือดีบุกในปริมาณที่ แตกต่างกัน มีแนวโน้มที่คล้ายกันนั่นคือ มีค่าสภาพนำความร้อนลดลงเมื่ออุณหภูมิเพิ่มขึ้น ซึ่งค่าสภาพนำความร้อน จะมีค่าสูงสุดคือ ประมาณ 17 w/mK เมื่อเจือด้วยดีบุกปริมาณ 0.4 โดยอะตอม และมีค่าต่ำสุดคือ ประมาณ 13 w/mK เมื่อไม่ได้เจือดีบุกลงไปในชิ้นสารนั้น

4.3 ผลและการวิเคราะห์ค่าสภาพน้ำความร้อน

4.3.1 ผลและการวิเคราะห์ค่าสภาพนำความร้อนทั้ง 3 วิธี

จากการใช้โปรแกรม Origin เพื่อวิเคราะห์การหาค่าสภาพนำความร้อน ทั้งสองวิธี คือ

1.เลือกใช้จุดข้อมูลทุกจุด (fitting)

2.เลือกใช้จุดข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุด t₅₀

และเมื่อนำทั้งสองวิธีนี้มาเปรียบเทียบกับข้อมูลที่ได้จากการทดลองจากเครื่อง Laser Flash โดยนำไปเขียนในรูป ของกราฟ เพื่อแสดงความสัมพันธ์ระหว่างค่าสภาพนำความร้อนและปริมาณของดีบุกที่เจือเข้าไป โดยกราฟที่แต่ละ อุณหภูมิ (50, 100, 150, 200, 250 และ 300 °C) มีลักษณะเช่นเดียวกัน แสดงให้เห็น ได้ดังนี้

รูปที่ 4.9 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับปริมาณดีบุก ที่อุณหถูมิ 50 °C

รูปที่ 4.10 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับปริมาณดีบุก ที่อุณหถูมิ 300 °C

จากรูปที่ 4.9 และ 4.10 จะเห็นว่ากราฟมีลักษณะที่คลายคลึงกันที่สังเกตเห็นได้โดยชัดเจนเลย คือ กราฟ ที่ได้จากการ fitting จุดข้อมูลทั้งหมดและกราฟที่ได้จากการเลือกจุดที่ข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของ ค่าสูงสุด t₅₀ กราฟทั้งสองนี้มีแนวโน้มไปในทิศทางเดียวกัน คือกราฟมีแนวโน้มเพิ่มขึ้นตามปริมาณดีบุกที่เจือเข้าไป ส่วนกราฟที่ได้จากการทดลองมีลักษณะที่แตกต่างออกไป แต่ก็มีแนวโน้มเพิ่มขึ้นเช่นกัน โดยกราฟที่แต่ละอุณหภูมิ (50, 100, 150, 200, 250 และ 300 °C) มีลักษณะเช่นเดียวกัน แต่สิ่งที่สังเกตได้คือ ค่าสภาพนำความร้อนจะมี ค่าลดลงเมื่ออุณหภูมิมีค่าเพิ่มมากขึ้น

4.3.2 ผลและการวิเคราะห์ค่าสภาพนำความร้อนจากการทดลองด้วยเครื่อง Laser Flash

จากการทดลองได้ทำการทดลองด้วยชิ้นสาร 5 ชิ้น โดยแต่ละชิ้นมีการเจือดีบุกในปริมาณที่แตกต่างกัน คือ เจือ 0.1, 0.2, 0.3, 0.4 และไม่เจือเลย โดยที่ทำการทดลองทั้งสองด้านของชิ้นสาร ซึ่งผลการทดลองของทั้งสองด้าน นั้นมีค่าใกล้เคียงกันจึงนำค่าเฉลี่ยมาใช้ในการวิเคราะห์ผล ค่าสภาพนำความร้อนของสารแต่ชิ้น แสดงได้ดังนี้

รูปที่ 4.11 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหถูมิ ที่แต่ละปริมาณดีบุกที่เจือ

จากรูปที่ 4.11 กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนและอุณหภูมิ จะเห็นว่าค่าสภาพนำความ ร้อนมีแนวโน้มลดลงเมื่ออุณหภูมิมีค่าเพิ่มมากขึ้น และค่า *K* ที่ได้มีค่าสูง อาจเป็นเพราะว่า สารที่ใช้ในการทดลอง เป็นสารประเภทโลหะมีเฟสเป็น **α** เยอะ เลยนำความร้อนได้ดีกว่า เปรียบเทียบกับเปเปอร์อื่นๆ ดังตาราง

ตารางที่ 4.1

สาร	วิธีที่ใช้	K (w/mK)	อ้างอิง
(Fe _{29.4} Si _{70.6}) _{1-x} Ge _x	Spark Plasma Sintering	10.5-7	[15]
	(300-800 K)		

lpha-Fe ₂ Si _{5-x} Al _x	Arc melted and Hot pressed	17.57 - 7.55 (non-	[16]
	(300-773 K)	doped)	
Fe _{28.91} Co _{0.59} Si _{70.5-x} P _x	Powder mixtures and sintered at	7.4 – 5.5 (non-doped)	[17]
	1000 °C		
	(200-800 °C)		
Fe _{0.98} Co _{0.02} Si ₂	Hot pressing (HP) and Spark	2.73 (SPS)	[18]
	plasma sintering (SPS)		
	(300-1100 K)		
FeSi ₂ Ge _{0.01}	Field-activated and pressure-	17.8-7.5 (PM)	[19]
	assisted synthesis (FAPAS)	14-6 (HP)	
	(300-725 K)	3-4 (FAPAS)	
Fe _{0.98} Co _{0.02} Si ₂ sintered	Mechanical alloying	5-6 (non-doped)	[20]
with Y_2O_3	(300-1100 К)		
SiGe	Spark plasma sintering (900 °C)	2.1	[21]
$Fe_{1-x}M_xSi_2$ doped with Ti,	Hot-pressed (300-1100 K)	12.4-7.3 (non-doped)	[22]
Nb and Zr		10-7 (doped Ti)	
		9-6 (doped Nb)	
		11-9 (doped Zr)	
Fe _{0.95} Co _{0.05} Si ₂	Hot-pressing and annealing	4.5	[23]
	processing (923 K)		
Fe _{0.95} Co _{0.05} Si _{1.958} Ge _{0.042}	Powder metallurgy technique	16-9 (non-doped)	[24]
	(845 K)	4-5 (doped Ge)	
Fe _{0.91} Mn _{0.09} Si ₂	Hot pressing (HP) and Spark	9.7-6.8 (HP)	[25]
	plasma sintering (SPS)	7.7-6 (SPS)	
	(300-1100 K)		
Fe _{0.98} Co _{0.02} Si ₂	High energy ball milling (HEBM)	4.4-5.5 (non-doped)	[26]
	and annealing		
	(0-800 K)		

จากตาราง 4.1 จะเห็นว่ามีการเตรียมชิ้นงานด้วยชนิดของสารและวิธีการเตรียมมราแตกต่างกันออกไปแต่ แตกต่างกันแค่เพียงชนิดของสารที่เจือเข้าไปเท่านั้น โดยสังเกตเห็นว่าค่าสภาพนำความร้อนในบางงานวิจัยนั้นมีค่า ใกล้เคียงกับค่าสภาพนำความร้อนที่ได้จากการทดลอง จึงได้ทำการสร้างกราฟโดยรวมค่าสภาพนำความร้อนของแต่ ละงานวิจัยให้อยู่ในกราฟเดียวกันเพื่อวิเคราะห์ผลและดูแนวโน้มของค่าสภาพนำความร้อนที่เปลี่ยนไปเมื่ออุณหภูมิ เพิ่มขึ้น สร้างกราฟได้ดังรูป

รูปที่ 4.12 กราฟเปรียบเทียบความสัมพันธ์ระหว่างค่าสภาพนำความร้อนกับอุณหภูมิ

จากรูปที่ 4.12 จะเห็นว่าเมื่อนำกราฟค่าสภาพนำความร้อนของชิ้นสาร (FeSi₂-0.4%Sn) ที่ได้จากการ ทดลอง มาพล็อตกราฟเทียบกับค่าสภาพนำความร้อนของสาร FeSi₂ โดยมีการเจือสารที่แตกต่างกันออกไป จะเห็น ว่ากราฟมีแนวโน้มเหมือนกัน กล่าวคือ ค่าสภาพนำความร้อนมีค่าลดลงเมื่ออุณหภูมิเพิ่มขึ้น แต่จะเห็นว่าค่าสภาพ นำความร้อนที่ได้จากการทดลองของเรานั้นมีค่าที่ค่อนข้างสูง เนื่องจากชิ้นงานของเราไม่ได้ผ่านการอบ จึงทำให้มี เฟส **α** ค่อนข้างมาก จึงทำให้มีความสามารถในการนำความร้อนได้ดี ค่าสภาพนำความร้อนของวัสดุนั้นบ่งบอกถึงความสามารถในการถ่ายเทความร้อน ซึ่งถ้าหากในวัสดุใดมีค่า สภาพนำความร้อนสูงหมายถึงวัสดุนั้นมีความสามารถในการถ่ายเทความร้อนได้ดี แต่ในทางกลับกันในอุปกรณ เทอรโมอิเล็กทริกนั้นต้องการให้ค่าสภาพนำความร้อนนั้นมีค่าต่ำๆ จึงจะแสดงถึงประสิทธิภาพที่ดี โดยการคำนวณ ประสิทธิภาพของอุปกรณ์เทอร์โมอิเล็กทริกนั้นสามารถคำนวณได้จากค่า Figure of merit โดยใช้ค่าสภาพนำความ ร้อนที่ได้จากการทดลอง และค่าความต้านทานไฟฟ้า กับสัมประสิทธิ์ซีเบค จากงานวิจัยของนางสาววีนัส[] โดย คำนวณออกมาได้ดังนี้

รูปที่ 4.13 กราฟแสดงความสัมพันธ์ระหว่างประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุกับปริมาณดีบุกที่เจือ

จากรูปที่ 4.13 จะเห็นว่า ค่าประสิทธิภาพทางเทอร์โมอิเล็กทริกของวัสดุนั้น มีแนวโน้มที่สูงขึ้นเมื่อปริมาณ ดีบุกที่เจือเพิ่มขึ้น แสดงให้เห็นว่าชิ้นงานมีประสิทธิภาพทางเทอร์โมอิเล็กทริกดีมากยิ่งขึ้น

บทที่ 5

สรุปผลการทดลอง

้จากผลการทดลองหาค่าสภาพน้ำความร้อนด้วยเครื่อง Laser Flash พบว่า ค่าสภาพน้ำความร้อนที่ได้มี ้ค่าประมาณ 18 w/mK ที่อุณหภูมิ 50 °C และมีค่า ลดลงเหลือประมาณ 13 w/mK เมื่ออุณหภูมิเพิ่มขึ้นเป็น 300 °C และเมื่อทำการหาค่าสภาพนำความร้อนเพื่อเปรียบเทียบโดยการวิเคราะห์จากข้อมูลที่ได้จากการทดลอง ด้วยโปรแกรม Origin โดยได้ทำการวิเคราะห์ 2 วิธี คือ 1.เลือกใช้จุดข้อมูลทั้งหมด และ 2.เลือกใช้จุดที่ข้อมูลเวลาที่ ้สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุด พบว่า ทั้งสองวิธีนี้ กราฟความสัมพันธ์ระหว่างค่าสภาพนำความร้อนและ ้ปริมาณดีบุกที่เจือเข้าไปมีลักษณะที่คล้ายคลึงกัน แต่ค่าสภาพนำความร้อนของวิธีที่ 1 ที่เลือกใช้จุดข้อมูลจากการ ทดลองทั้งหมด จะมีค่าสูงกว่า วิธีที่ 2 ที่เลือกใช้เพียงจุดที่ข้อมูลเวลาที่สัญญาณขึ้นไปที่ครึ่งหนึ่งของค่าสูงสุดเสมอ เนื่องจากการที่เลือก ใช้จุดข้อมูลทั้งหมดที่ได้จากการทดลองนั้น ทำให้เกิดความแม่นยำในการคำนวณมากกว่าการ ้เลือกใช้จุดข้อมูล ที่น้อยกว่า จึงทำให้ค่าสภาพนำความร้อนมีค่ามากกว่า และเมื่อนำค่าสภาพนำความร้อนที่ได้จาก การวิเคราะห์ ไปเปรียบเทียบกับค่าสภาพนำความร้อนที่ได้จากการทดลองด้วยเครื่อง Laser Flash พบว่าค่าสภาพ ้นำความร้อนมีค่าที่ใกล้เคียงและมีแนวโน้มเพิ่มขึ้น ตามปริมาณของดีบุกที่เจือเข้าไป เช่นเดียวกัน แต่สิ่งที่สังเกตได้ ้ชัดเจนคือ ค่าสภาพนำความร้อนที่มีค่าค่อนข้างสูงและมีแนวโน้มลดลงเมื่ออุณหภูมิเพิ่มขึ้น ซึ่งเมื่อทำการค้นคว้า ้งานวิจัยอื่นๆเพื่อใช้ในการเปรียบเทียบพบว่า ผลของงานวิจัยอื่น มีค่าสภาพนำความร้อนที่ลดลงเมื่ออุณภูมิเพิ่มขึ้น เช่นกัน แต่ค่าสภาพนำความร้อนของงานวิจัยอื่นจะมีค่าต่ำกว่าค่าสภาพนำความร้อนที่ได้จากการทดลองเนื่องจาก ในงานวิจัยอื่นได้ทำการอบเพื่อทำให้เฟส lpha ที่มีผลต่อการนำความร้อน หายไป จึงทำให้ค่าสภาพนำความร้อนของ ้งานวิจัยอื่นๆมีค่าน้อย ซึ่งชิ้นงานที่ผู้ทดลองใช้ทดลองในงานวิจัยนั้นไม่ได้ผ่านการอบ จึงทำให้ยังคงมีเฟส α ้เหลืออยู่ค่อนข้างเยอะ ส่งผลทำให้ค่าสภาพนำความร้อนมีค่าสูง ทั้งนี้หากจะนำไปประยุกต์ใช้ในอุปกรณ์เทอร์โม อิเล็กทริกส์นั้น จะต้องคำนึงถึงค่า figure of merit ซึ่งเป็นค่าที่บ่งบอกถึงประสิทธิภาพของอุปกรณ์เทอร์โมอิเล็ก ทริก โดยยิ่งมีค่ามากแสดงว่าอุปกรณ์เทอร์โมอิเล็กทริกนั้นมีประสิทธิ ภาพที่ดี

เอกสารอ้างอิง

- [1] Thermoelectric [Online]. Available from: <u>https://thermal.ferrotec.com/products/peltier-</u> thermoelectric-cooler-modules/high-power/ [15,October,2018]
- [2] Thermoelectric generator [Online]. Available from:

https://en.wikipedia.org/wiki/Thermoelectric_generator [15,October,2018]

- [3] Somchai Kiatgamolchai et al, "The effects of elements with different melting points on E-FeSi size in FeSi2 alloy," <u>Journal Physics</u>, Department of Physics, Faculty of Science, Chulalongkorn University. [11 January 2016]
- [4] Thermoelectric cooler [Online]. Available from: https://thermal.ferrotec.com/products/peltierthermoelectric-cooler-modules/high-power [20, March. 2019]
- [5] Thermoelectric generator [Online]. Available from: https://en.wikipedia.org/wiki/Thermoelectric generator [20, March, 2019]
- [6] Thermoelectric module [Online]. Available from: http://www.kryotherm.ru[20, March, 2019]
- [7] Thermoelectric generator [Online]. Available from:

https://www.digikey.com/en/articles/techzone/2014/apr/thermoelectric-energy-

generationtakes-flight-for-aircraft-and-spacecraft-monitoring [20,March,2019]

[8] Thermoelectric cooling [Online].Available from: https://thermal.ferrotec.com/technology/thermoelectric-reference-guide/thermalref02/

[20,March,2019]

[9] Phase diagram [online].Available from: http://www.himikatus.ru/art/phase-diagr1/Fe-Si.php [7 may 2015] [10] Thermal conductivity [Online]. Available from:

http://eng.sut.ac.th/metal/images/stories/pdf/3_1.pdf [15,October,2018]

- [11] Thermal conductivity measurement [Online].Available from: http://www.eic.co.th/Portals/4//Thermal%20conductivity%20measurement.pdf [15,October,2019]
- [12] F. Cernuschi1, P.G. Bison2, S. Marinetti2, "Comparison of thermal diffusivity measurement techniques," <u>J. Appl. Phys.</u> (1967)
- [13] W.P. PARKER, R.J. JENKINS, C. P. BUTTLER and G.L. ABBOTT, <u>J. Appl. Phys.</u>, 32, pp.1679, (1961).
- [14] F. CERNUSCHI, A. FIGARI, L. FABBRI, Journal of Materials Science 35, (2000), 5891-5897.
- [15] Naiming Liu et al, "Tunable β -FeSi₂ Si_{1-y}Ge_y nanocomposites by a novel React/Transform Spark Plasma Sintering approach for thermoelectric applications," <u>Materials Today Physics</u> 4 (2018): 19-27.
- [16] P.Rajasekar and Arun M. Umarji, "Effect of Al-doping on suppression of thermal conductivity in Si dispersed β -FeSi₂," Intermetallics 89 (June 2017): 57-64.
- [17] Farah Liana Binti Mohd Redzuan, Mikio Ito and Masatoshi Takeda, "Phosphorus doping in n-type β -FeSi₂/Si composites and its effects on thermoelectric properties," <u>Intermetallics</u> 108 (February 2019): 19-24.
- [18] Xiurong Qu, Shuchen Lu, Jianmin Hu and Qingyu Meng, "Microstructure and thermoelectric properties of β -FeSi₂ ceramics fabricated by hot-pressing and spark plasma sintering," <u>Journal of Allovs and Compounds</u> 509 (August 2011): 10217-10221.

- [19] Q.S.Meng, W.H.Fan, R.X.Chen and Z.A.Munir, "Thermoelectric properties of nanostructured FeSi₂ prepared by field-activated and pressure-assisted reactive sintering," <u>Journal of Alloys</u> <u>and Compounds</u> 492 (2010): 303-306.
- [20] Mikio Ito, Tomoyuki Tada and Shigeta Hara, "Thermoelectric properties of hot-pressed β -FeSi₂ with yttria dispersion by mechanical alloying," <u>Journal of Alloys and Compounds</u> 408-412 (2006): 363-367.
- [21] Avinash Vishwakarma et al, "Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering," <u>Current Applied Physics</u> 18 (2018): 1540-1545.
- [22] Mikio Ito et al, "Effects of Ti, Nb and Zr doping on thermoelectric performance of β -FeSi₂," Journal of Alloys and Compounds 315 (2001): 251-258.
- [23] Zeming He et al, "Thermoelectric properties of hot-pressed Al-and Co-doped iron disilicide materials," <u>Journal of Alloys and Compounds</u> 438 (2007): 303-309.
- [24] S.W.Kim et al, "High temperature thermoelectric properties of p- and n-type $m{eta}$ -FeSi₂ with some dopants," Intermetallics 11 (2003): 399-405.
- [25] K.Nogi and T.Kita, "Rapid production of β -FeSi₂ by spark plasma sintering," <u>Journal of</u> <u>materials science</u> 35 (2000): 5845-5849.
- [26] Xiurong Qu et al, "Growth mechanism and thermoelectric properties of β -FeSi₂ matrix with Si nanowires," <u>Materials Science and Engineering B</u> 176(2011): 1291-1296.