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CHAPTER |

Introduction

Most architects use existing layouts to refer how architectural floor plans were
designed in the past before they plan to build some constructions of houses or
condominiums. Furthermore, they use a similar design of floor plans while solving a
new architectural problem, in order to give more details on how previous, similar
architectural situations were solved. Additionally, most customers search for their
specific property from an existing layout to make a decision before buying or renting a

house or condominium.

The relationship of rooms is an important choice that customers will consider
while they want to buy or rent their condominium. For example, some don't want the
bathroom to be inside their bedroom and some want the living room to be connected
to the balcony. Furthermore, living in @ condominium is very popular nowadays, so
the market competition of property sale and rental is very high. Looking up through
the layouts to search for a similar floor plan can be a difficult and inconvenient process
because of large amount of floor plan data. Moreover, with the modern progress of
the digital world, several floor plans are archived in a digital form. Therefore, the floor
plan searching techniques must be adopted efficiently. We were inspired to improve
the matching technique of layouts to support the growing industry and technology of

the world.

Graph in pattern recognition is an approach creating abstractions of the raw
data to classify their pattern. The abstractions are used to find the similarity between
the objects. Therefore, a good representation of the abstractions should include
necessary data to classify objects for an appropriate model. Vector is one of the most
popular abstractions using to represent the object because it can be transformed into
a matrix space and simply using the Euclidian distance for the similarity. However,

vector is not a satisfied descriptor if we want to consider the relationship among the



components of the object. In this situation, graph representation is better to compare
the similarity of the relationship inside objects. Generally, graph encompasses more
details than vector, but its similarity cannot be found directly using the Euclidian

distance.

Graph matching methods have proven to be helpful for searching for a query
architectural floor plan. Graph plays a major role in floor plan matching (Weber, Liwicki,
& Dengel, 2011), but it also has a challenging problem since it is a computationally
expensive process when the database is very large. However, its solution can be
reducible from polynomial-time called NP-complete problem, indexing with well-
founded total order for faster subgraph isomorphism detection (Bunke, 2000) is one of
the methods that reduce the computational time, and also significantly reduces the
storage amount and indexing time for graphs. The optimal quadratic-time isomorphism
of ordered graphs was proposed in (Jiang & Bunke, 1999). A spectral method proposed
in (Qiu & Hancock, 2006), (Luo, Wilson, & Hancock, 2003) can be utilized for graph
matching by transforming the graphs into a feature vector to be matched. Furthermore,
graph spectral embedding tries to connect vector and graph representation instead of
using only one representation to greater handle with more flexibility for real
applications. This method also reduced the searching time for matching similar floor
plans. Although, graph spectral embedding is an interesting method, it has some
weakness while using with floor plan matching as shown in Figure 1 which represents
that floor plans (a) and (b) have different structures such that the bedroom is the
center that connects to another room in (a), and the living room is the center that
connects to another room in (b). However, after we use graph spectral embedding, we
found that both (a) and (b) have the same component vector, thus, leading to the

incorrect result of floor plan matching.

Even though some brute force methods are proposed to search for a similar
floor plan in the database, the complexity of computational time when increasing floor

plan data still be the obstacle in the matching process. Therefore, we
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Bedroom
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Living Room
13" %13

() (b)

Fieure 1: Example of a different structure floor plan: (a) the bedroom is the center
that connects to another room, (b) the living room is the center that connects to
another room.
have proposed a novel graph representation for room layout matching using spectral
embedding to improve the accuracy of the matching process. We enlarge the size of
an adjacency matrix from nNxn to (N+21)x(n+1) by adding a new vertex for a single
floor plan with N rooms. The area connecting between outside and inside the layout
is the additional vertex. We obtained new feature vectors from the isomorphism of
the graph. These refine the similar floor plan by considering both the structure and

label of rooms.

Background knowledge and details of the standard methods for floor plan
matching are introduced in chapter Il. chapter Il has discussed the idea of the
appended topology graph and the procedure of our proposed method. The result and

our experiment are represented in chapter IV. Finally, we conclude the proposed

method in chapter V.



CHAPTER Il

Background Knowledge and Literature Reviews

In this chapter, we will introduce the techniques that we use in our proposed
method. We use graph and topology graph to represent the floor plan. Then, graph
isomorphism is used to analyze the structure of each graph. Principal component
analysis is used in floor plan matching process. Finally, we divide graph matching into

two parts: exact and inexact graph matching.

2.1 Background Knowledge
2.1.1 Graph

Most real-world problems were created into an abstract to make it simple to
solve. The graph is also helpful to represent the structure of an architectural floor
plan by showing the data and relationship of the floor plan. A graph is a pair of sets
(V,E), where V is the set of vertices and E is the set of edges, formed by pairs of
vertices. E is a multiset, in other words, its elements can occur more than once so
that every element has a multiplicity. Often, we label the vertices with letters (for
example: a,b,c,... Or V,,V,,V,,...) or numbers 1,2,3,.... An example of graph

representation shows in Figure 2.

VA ’ ,
Z .\3 14

Figure 2: An example of graph representation with five vertices.



From Figure 2, we have V ={v,,v,,V,,V,,V;} for the vertices and there are edges

from v, to v,, v, to v, v to v, v to v, and v to v,, so we have

E ={(v,,V,), (V,,Vs), (Vs,Vs), (Vs,V,), (V5,V,)} for the edges. And there is no edge that

connect to v,.

2.1.2 Graph isomorphism
Isomorphism of graphs is the concept to distinguish between two graphs
without considering the specific names of the vertices. For example, A and B in

Figure 3 are different in their vertex sets, but they are the same graph.
A B

Figure 3: A and B are isomorphic and a non-isomorphic graph C; each have four

vertices and four edges.

From Figure 3, all graphs are connected with four vertices and four edges. However,
we can distinguish C from others because its structure is different. In addition, D and
E in Figure 4 are seem different designs, but they are the same structure because
both of them have five vertices and edges, all vertices have degree equal to two, and

they have the same adjacency matrix.

Figure 4: D and E are isomorphic and a non-isomorphic graph F; each have five

vertices and five edges.



Definition 1. Two graphs are isomorphic if their vertices can be rearranged and
relabeled, without breaking any edges, to make the graphs identical (Ziff, Finch, &
Adamchik, 1997).

In Figure 3, we can relabel the vertices of graph A with those of graph B in such a
way; 1 is relabeled as a, 2 as b, 3 as ¢, and 4 as d. Then all edge sets in the relabeled
graph is already identical. Regarding the two graphs in Figure 3, we can write A= B to
denote this isomorphism. On the other hand, we cannot rearrange and relabel the

vertices in graph C with A and B, so graph C is not isomorphic to either of A or
B.

Normally, if two graphs are isomorphic their properties should be as follows:
« Have the same number of nodes and edges
« Have the same degree lists
« Have exactly the same matrix representation.

For example, all graphs in Figure 4 have the same number of their vertices and
edges which equal to five. The degree lists of D and E are (2,2,2,2,2), but the degree

lists of Fis (1,2,2,2,3). Also, their adjacency matrices are

(01100] [01100] (01100
10001 10001 10010
D=|10010 |,E=[10010|,and F=/10011
00101 00101 01100
01010| 01010 00100

Thus, we can conclude that graph D is isomorphic to graph E.

2.1.3 Topology graph
A topological graph is a representation of a graph in the plane, where the
vertices of the graph are represented by distinct points and the edges joining the

corresponding pairs of points. The points representing the vertices of a graph and the



arcs representing its edges are called the vertices and the edges of the topological
graph. For example, we have v={1234}and E={(1,2),(1,3),(L4)} for the set of

vertices and edges of the topology graph in Figure 5.

The topology graph that uses in this work consists of parent node represent
layout, child node represents a room, a solid edge represents inclusion, a dashed edge
represents adjacencies. An example of a topology graph represented a floor plan is

shown in Figure 5.

1al (b) @
Figure 5: (a) is an original floor plan, (b) is the room layout segmentation of (a), and
(c) is the topology graph of (a).
2.1.4 Principal component analysis (PCA)

Principal Components Analysis (PCA) (Shlens, 2014) is a useful statistical
technique that has found application in fields such as face recognition and image
compression, and is a common technique for finding patterns in data of high
dimension. It is a way of identifying patterns in data to highlight their similarities and

differences.

PCA is a procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables (entities each of which takes on various
numerical values) into a set of values of linearly uncorrelated variables called principal
components. It is mostly used as a tool in exploratory data analysis and often used to
visualize genetic distance and relatedness between populations. PCA can be done by
eigenvalue decomposition of a data covariance (or correlation) matrix or singular value

decomposition of a data matrix, usually after a normalization step of the initial data.



The main advantage of PCA is that the information will not lose too much while

we reduce the number of dimensions for finding the pattern of the object.

Since the data is high dimensions, its computational is also high. It’s also
indicating us to difficulty imagine about the relationship of the data. So, PCA can reduce

the dimension according to these two following main points
- An unnecessary dimension is removed
- The most important dimension will be kept

For example, our data is 2-dimension as follow

1.7321 1.7321 1.6180 2.3894
Data=| 1.7321 1.7321 1.6180 1.9653
0 0 0.6180 1.3668

The process of PCA lead us to compute the covariance matrix, so we have

14.3275 13.3142 4.2658
Cov(Data) =| 13.3142 12.4807 3.6861 .
4.2658 3.6861 2.2501

Next, we calculate the eigenvectors and eigenvalues for this matrix which tell us

useful information about our data, then we have

0.0139 0.6986 0.0135 0.7154
eigenvalue=| 1.0607 |, eigenvector =| —0.6868 0.2929 0.6652
27.9836 —0.2006 —0.9560 0.2139

Finally, we form our data in a feature vector in one dimension to represent each

data.

PCA aims to analyze only especially important data. It uses the statistic process
and mathematical tool called Matrix for explaining the data easier to understand. This
technique creates a new model to reduce the complexity of the data set as if looking

at the old data set with a new viewpoint by not changing the raw data. PCA consists



of integrated mathematical techniques such as standard deviation, variance,

covariance, covariance matrix, eigenvectors, and eigenvalues.

2.1.4.1. Standard deviation
Standard deviation (S.D.) is the measurement using to explain how well the

distribution of data is.

The graph of two examples series

30
25
20
15 -
10 o
5
0
e sories 1 ==@==scries 2
1 2 5 q
series 1 0 10 14 24
series 2 10 11 13 14

Figure 6: The graph of two examples series.

From Figure 6, the average (X ) of each series are both equal to 12.

n
D%
X= i=1

n

However, this number cannot distinguish the meaning of these two series. As we see

the blue line is more distribution than the orange line. Therefore, there are some
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statistic technique called standard deviation used to find the distance between each

point and the center point as the following equation

Then, from Figure 6, we have S.D. of series 1 = 9.93311, and S.D. of series 2 =
1.825742. So, the standard deviation tells us that series 1 is more spread out from

the average than series 2.

2.1.4.2. Variance
Variance as denoting by var(X) is the variability measurement that measures
how the data span. It is the average squared deviation from the mean score. We can

compute a variance as the following formula

n
> (% =X)’
var(X)==24+——7—
n-1
2.1.4.3. Covariance
Since standard deviation and variance are the technique to analyze the data
with one dimension. If we want to analyze the data with more than one dimension,

we will have some measurement to distinguish the distribution between two sets of

data called covariance. We can compute a covariance as the following formula

3 (%~ )Y ~Y)
cov(X,Y) =2

n-1
Positive covariance refers X and Y are positively related that means if X increases
then Y also increases. The meaning of negative covariance is an exactly opposite
relationship. Zero covariance means X and Y are not related. From Figure 6, we
have cov(seriesl, series2) =17.33333, so it refers series 1 and series 2 are

positively related.
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2.1.4.4. Covariance matrix
A covariance matrix is the matrix of all coordinate covariance for each
dimension. For instance, if our data consists of three dimensions X,Y, and Z, then
the covariance matrix is
cov(X, X) cov(X,Y) cov(X,2Z)
cov(Y, X) cov(Y,Y) cov(Y,Z)
cov(Z,X) cov(Z,Y) cov(Z,Z)
We see that the main diagonal is the variance. Next, we will explain the last two
techniques called eigenvectors and eigenvalues used in PCA which are the heart of
the data science field. Therefore, the covariance matrix of series 1 and series 2 in
Figure 6 is

98.66667 17.33333
17.33333 3.333333 )

2.1.4.5. Eigenvectors and eigenvalues

An eigenvector is a vector that remains its direction when we apply a linear
transformation to it. The determination of the eigenvectors and eigenvalues of a
system is very useful in the principal component analysis (PCA). Each eigenvector is
paired with a corresponding eigenvalue. An eigendecomposition is the decomposition
of a square matrix A into eigenvectors and eigenvalues. If we calculate the
eigenvectors and eigenvalues using Matlab, we will have [T, D]=eig(A); where A
is the input matrix, T is the matrix of eigenvectors, and D is the matrix of

eigenvalues.
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and D=
0 A
Next, we would like to describe through the main process of principle

component analysis.

Step 1: Calculate the covariance matrix C of the data.

Step 2: Calculate eigenvectors and corresponding eigenvalues.

Step 3: Sort the eigenvectors according to their eigenvalues in decreasing order.
Step 4: Choose first k eigenvectors and that will be the new k dimensions.

Step 5: Transform the original n dimensional data into k dimensions.

A new set of dimensions is found by PCA and all dimension are orthogonal. The
ranked according to the variance of data along them means more important

principal.

2.2 Literature reviews

We have divided graph matching methods for floor plan matching into two
categories: exact and inexact graph matching method (Riesen, Jiang, & Bunke, 2010),

(Carletti, 2016).

2.2.1 Exact graph matching

Exact graph matching is the method to identify the structure and labels
between two graphs. Each graph structure is represented as an adjacency matrix.
However, there is no unique order for the nodes of a graph. A single graph with n
nodes has n! possibilities to order all nodes, so there are n! different adjacency
matrices. Thus, there are many patterns of their adjacency matrices we need to
compare. The identity of two graphs g, and g, is commonly established by defining

a function, termed graph isomorphism, that maps g, to g,. Although, there is no
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polynomial runtime algorithm (Hartmanis, 1982) for the problem of graph isomorphism,
many scientists developed polynomial algorithms to solve some specific types of
graphs, such as tree (Bunke & Shearer, 1998), ordered graphs (Jiang & Bunke, 1999),
planar graphs (Hopcroft & Wong, 1974), bounded-valence graphs (Luks, 1982), and
graph with unique node labels (Dickinson, Bunke, Dadej, & Kraetzl, 2004). An example

of floor plan matching using exact graph matching method is shown as the following;

Step 1: Create the topology graph for an original floor plan.

From Figure 7, we have V ={K, LR, BR,BDR}, and
E ={(LR.K), (LR, BDR), (LR, BR)}

Criginal flooplan

Figure 7: A is the topology graph representing an original floor plan.

Vs KE

TN V1 W2 Vi va

| V3 1 0 BR 0
- Vi 1 o 0 BOR
Vs

An adjacency matrix

=

Figure 8: A topology graph (left) and its adjacency matrix (right).
Step 2: Transform the topology graph into an adjacency matrix where the element in

row i and column | is equal to 1 if room i connects to room ], and 0 otherwise.
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Step 3: Determine all permutations of an adjacency matrix.

24 patterns of an adjacency matrix as shown in Figures 9 and 10.
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Since, there are four rooms in the original floor plan, so we have to generate

V1 V2 K] Vi
LR 1 1 1
1 K. 0 1]
1 0 BR 0
1 0 0 BEDR
@&
V1 2 Vd V3
LR 1 1 1
1 K 0 0
1 0 EDR 0
1 0 0 BR
(d)

W2 V3 Va V1
K ¥] o 1
0 BR | 0 1
0 4] BDR 1
1 1 1 LR

(=)

Ve Va V3 W1
K LH H 1
0 BDR H 1
0 0 ER 1
1 1 1 LR

i

Figure 9: Matrices (a)-(1) show permutations of an adjacency matrix of an original

V1

1~.|3

V2

v

V2

V1

V3

Wi

Wi

W1

"'u‘l 2

V3

'|_.'2

W1

W

Vi3

Vi V3 V2 Wd
LR 1 1 1
1 BR 0 0
1 0 K 0
1 4] 0 BDR
k)
V2 ¥l V3 Wi
K 1 0 H]
1 LR 1 1
L 1 BR H]
1] 1 0 | BOR
(=)
Wi V1 V2 V3
BDR 1 0 0
1 LR 1 1
LH i K 0
L1 1 0 BR
th}
V2 Vi Va Va3
K 1 0 o
1 LR 1 1
0 1 BOR H
0 1 0 BR
k)

floor plan.

¥1

Wi

V2

V3

Ve

V3

W1

W

V2

W

W1

V3

V1

V2

va

V1 Vd W2 V3
LR 1 1 1
1 BDR 0 0
1 0 K o
1 0 0 ER
a]

V2 V3 Vi Wi
K v 1 0
0 BR 1 0
1 1 LR 1
0 0 1 BOR

i
V2 v V1 V3
K 0 1 0
0 BOR 1 a
1 1 LR 1
Q 0 1 BR
0
Vi vl vz v
BR 1 0 0
1 LR 1 1
0 1 K 0
H i 0 BDR
iy




V3

V2

V1

Vi
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V1
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V3

Vi

Va

V3

V2

Vi

Vi ovz vl owa
BR 0 1 0
0 K 1 0
1 1 LR 1
0 0 1 | BDR

(m)

Vi oovz o ova vl
BR 0 0 1
0 K 0 1
0 0 |BOR| 1
1 1 1 LR

(p)
va  v2 V3oVt
BDR [ 0 0 1
0 K 0 1
0 0 BR 1
1 1 1 LR
(s)
va vz V2 vt
BDR | 0 0 1
0 BR 0 1
0 0 K 1
1 1 1 LR
(v)

V3

Va

V1

V2

V3

Va

V2

V1

Va

V3

Vi

V2

V1

V3

va

V2

Vi ooova V12
BR 0 1 0
0 |BDOR| 1 0
1 1 LR 1
0 0 1 K

()

Vi ova vz ooV
BR 0 0 1
0 [BOR| 0 1
0 0 K 1
1 1 1 LR

()

Vd V3 ove W

BOR | © 1 0
0 BR 1 0
1 1 LR 1
0 0 1 K

()
Vi va o ova vz
LR 1 1 1
1 BR 0 0
1 0 [BOR]| 0
1 0 0 K
(w)

V3

V1

Va

V2

Va

W2

V1

V3

va

V1

V3

V2

V1

va

V3
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Vi ovi va 2

BR 1 0 0

1 LR 1 1

0 1 | BDR| 0

0 1 0 K

(o)

Vd V2 V1 V3
BDR [ © 1 0
0 K 1 0
1 1 LR 1

0 0 1 BR

n
va vt w32
BDR | 1 0 0
1 LR 1 1
0 1 BR 0
0 1 0 K
(u)

Vioova V32
LR 1 1 1
1 | BDR| 0 0
1 0 BR 0
1 0 0 K

Figure 10: Matrices (m)-(x) show permutations of an adjacency matrix of an original

floor plan.
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Figure 11: a;-a, are the row-column vector of an adjacency matrix A.

Step 4: Transform all adjacency matrices into row-column vectors.

From Figure 11, we have four row-column vectors of an adjacency matrix A as the

following:
a =(LR)
a,=>0K,1)
a,=(0,BR,0,1)

a, =(1,0,0,BDR,0,0,1)

Step 5: Create the decision tree for an adjacency matrix.

BR

™~
1K 1\L1 BDR

A D B W C X E K N OH V P R T

Figure 12: A decision tree for graph A.
We need to generate the decision tree using n! patterns of all adjacency matrices to
compare with only one floor plan in the database, so this approach has a major

drawback from finding all adjacency matrices as we see in Figure 12.
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The major advantage of exact graph matching method is their strict definition
and substantial mathematical foundation. However, it is required that the

corresponding node and edge labels in the two graphs have to be identical.
2.2.2 Inexact graph matching

Because of the fact that it is inflexible to use the exact graph matching method
in a real-world application when the attributes are different in shape or distortion.
Many scientists propose an inexact graph matching to handle with inflexible errors
from an exact method. Finding a descriptor of each graph to detect similarities
between two graphs is the general concept of inexact graph matching method. The
descriptors that used to compare the structure of graphs also depend on their
representation. Thus, the additional important features of a pattern recognition system
were affected by the representation. Vector is the maximum descriptor used among
all the possible representations. The floor plans are described as vectors by extracting
a finite set of numerical features.

Graph spectral embedding is an interesting inexact graph matching technique
since its approach depends on the decomposition of the matrices corresponding to
the structure of floor plans. The matrices will obtain the same eigendecomposition if
two graphs are isomorphic. This technique directly finds a descriptor expanded for
vectorial object descriptions, so it is more convenient than other methods. Generally,
the converse from the equality of eigendecompositions to graph isomorphism is not
true. Hence, it is not guaranteed that the same feature vector, will be matched with
the same floor plan. In addition, the drawback of this approach is that they are rather
sensitive towards structural errors such as missing or some nodes. These main
problems motivate us to improve this technique to be more accurate in the matching
process.

In summary, both exact and inexact graph matching is differently useful for
floor plan matching. However, the node and edge labels used to find the similarity in
exact graph matching method have to be identical. Thus, the inexact graph matching
method better handles with a more general floor plan than exact graph matching. Our

proposed method, consider the region outside the floor plan in the extracting process.
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We improve accuracy in the matching process under the converse from the equality
of eigendecompositions to graph isomorphism by fixing the room through graph

spectral embedding (Carletti, 2016; Sharma, Chattopadhyay, & Harit, 2016).
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CHAPTER il
Proposed Method

In this work, we proposed a graph representation for room layout matching
using spectral embedding. The basic idea of this method is to find a descriptor for each
floor plan using the eigendecomposition, then use it to compare the similarity between
the query floor plan and floor plans in our database. Although, Graph spectral
embedding is effective for floor plan matching (Chung & Graham, 1997), (Fischler &
Elschlager, 1973), there are some drawbacks. If two graphs of floor plans are
isomorphic, it is not guaranteed that the structure of room relationship is similar.
Therefore, our proposed method tries to handle with this problem by adding the area
outside the room as the external node into the original graph in the appended

topology graph process.

Proposed Process flow

Topology
graph
appending
phase

Output

Input data

Step 2 tep
create the add the external -spectral feature
topology graph  node in the representation
for the layout topology graph -spectral feature
embedding

Figure 13: The process flow of our proposed method.

We modify a structure of graphs by putting more details which are the position
outside connected to inside the layout. The method can handle with two isomorphic
graphs that their relation of rooms is different from each other. In addition, we obtain

new feature vectors from eigendecomposition and the result is more efficient than a
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conventional method. The proposed method is divided into three parts: 1) floor plan
extracting, 2) appended topology graph, and 3) floor plan matching. We create a
topology graph for the original floor plan in the first step, then add the external node
during the second step. Finally, we use graph spectral embedding to match the query
floor plan with floor plans in our database.

3.1 Floor plan extracting

We create the topology graph from the original floor plan image as shown in
Figure 14. The attributes of the topology graph are that a parent node represents
layout, a child node represents a room, a solid edge represents inclusion, and a dashed

edge represents adjacency.

3.2 Topology graph appending

The external node which is the connection between outside and inside the
room will be added into the original topology graph. Graph spectral embedding is very
sensitive when its structure has been changed, so adding more vertices would change
the eigendecomposition result. The paradigm illustrates in Figure 15. Thus, the
proposed method significantly matches between the feature vector and its

corresponding floor plan more accurately.

P~ 1,

N
25 (Al

(a) (b)

Figure 14: (a) and (b) are the original floor plan, (c) is the topology graph represent
(a), and (d) is the topology graph represent (b).
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T ]

Il | @
147 x 14"
R

(a)
Figure 15: (a) and (b) are the original floor plan, (c) is the appended topology graph

represent (a), and (d) is the appended topology graph represent (b).

3.3 Floor plan matching
There are three main steps for floor plan matching: spectral feature

representation, spectral feature embedding, and feature matching.

3.3.1 Spectral feature representation
Spectral feature representation is the method to represent each graph in

terms of its eigenvalue and eigenvector as follow:
Step 1: Given N images of the floor plan in our dataset.
Step 2: Let G, =(V,,E,) be the k™ graph,
where V, is the set of vertices.
E, is the set of edges.
Afterwards, graphs G,,G,,...,G, are represented for all floor plans.
Step 3: Construct an adjacency matrix A for each graph G,.

Thisis a |V, | x|V, | symmetric matrix whose element with row index

i and column index j is

&:{1 (1, ))eE

0 otherwise
From the adjacency matrices A,k =12,...,N.

- Calculate the eigenvalues 4, by solving the equation
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| A=Al =0.
- The associated eigenvectors ¢, by solving the system of

equations

A = A

Spectral feature vector representing the spectrum of the graph ¢, is
constructed from the top n eigenvalues of A taken in decreasing

order.

For the k™ graph, this vector is:
Fo= (o A8 4)" (1)
3.3.2 Spectral feature embedding
We use the concept of principal components analysis (PCA)
follow by the parametric eigenspace idea. The reason of using this approach
is to classify graphs into a pattern-space in which similar structures are close
to one another, and dissimilar structures are far apart. The extracted graph
from each image is vectorized. Then we compute the feature vector Ifk using
Principal components analysis. Afterwards, we arrange their spectrums in a
matrix as R=[|51,Ifz,...,|fN] for the different graph representations of the
layouts in the database, and compute the covariance matrix as, C = RR™. A
spectral decomposition of C results in the eigenvalues p and the
corresponding eigenvectors@. The Principal components directions are
obtained by using the first three leading eigenvectors of C. Three

orthogonal vectors span the co-ordinate system of the eigenspace as
¢:(¢11¢21¢3)-

This aids in projecting the individual graphs represented by the vectors

Ifk;k =1,...,N on the pattern space as

%, =§"E.. 2)
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Hence, each graph obtained from a layout is represented as a three-

component vector X, in the eigenspace as
% = (% %0 %)
3.3.3 Feature matching
Feature matching and retrieval of similar layouts is performed by determining
the nearness between all the layouts. The distance between query graph’s

feature vector X, = (X,,%,,X,)" and that of the model graph’s feature vector

X = (x;n,x:n,x;; T is calculated as

d = 0% = %,)" + (% = %) + (% —%,)°. (3)

The similarity of two graphs is measured by using Euclidian distance.
Then, rank the order of distances in ascending order. The smallest distance is
the most similar floor plan between the query floor plan and the floor plan in

our dataset.

3.4 Eigenvalues and non-isomorphism

While it is very difficult to prove that two graphs are isomorphic, it is relatively
simpler to prove that two graphs are non-isomorphic (Spielman, 2018). Since
two graphs are isomorphic when the correctly relabeled graph have the same
matrix representation. They must have the same eigenvalue. Since the
eigenvalues of Figures 16 (a) and (b) which calculated by Matlab are clearly

different, we can conclude that they are non-isomorphic.

3.5 Non-isomorphic graphs

We can use eigenvalues to show that two graphs are non-isomorphic.
Claim: Two graphs that have different eigenvalues cannot possibly be isomorphic.

Proof: Two isomorphic graphs can be rearranged and relabeled such that they both

have the same matrix representation. Thus, they have the same eigenvalues.
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Therefore, if two graphs do not have the same eigenvalues, then they cannot possibly

be isomorphic (McKay, 1981).

o 0 0 1 1 -1.8478
0 0 0 1 0 -0.7654
000 10 =Z> 0
1 1 1 0 0 0.7654
1.0 0 0 0 1.8478
(b) (c)
o1 1 1 1 2.0000
100 0 0 0
10000 => 0
1.0 0 0 0 0
100 0 0 2.0000
(d) (e) ()

Figure 16: Testing of the isomorphism of graph using eigenvalue: (a) and (d) are the
eraphs of floor plans, (b) and (e) are adjacency matrices of (a) and (d), respectively.

(c) and (f) are eigenvalues of (a) and (d), respectively.
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CHEPTER IV

Results and Discussion

We evaluated our method using 800 of floor plan images of condominiums
holding almost all characteristics of all floor plan patterns. Our dataset includes eight

floor plan types as shown in Table 1.

Table 1: The quantity of each type of floor plan image in our dataset.

number of rooms 2 3 4 5 6 7 8 9

quantity 51 89 159 147 121 65 a3 25

There are 11 types of rooms: Living Room, Bedroom, Bathroom, Kitchen, Study Room,
Closet Room, Patio, Retreat Room, Exercise Room, Utility Room, and Balcony. There
are 38% of floor plans that the center of layout is a living room, 38% that the center
are a living room and a bedroom, 16% that the center is a bedroom, and 9% for others.
One query floor plan was selected for all different types from floor plans with two to
nine rooms. We compare the results from the matching process between a
conventional and our proposed methods as shown in Table 2. The first row of each
type of floor plans represents the number of correct matched result from our dataset
which has the same label and structure with the query floor plan, the second row
represents the number of incorrect matched floor plan which has some different in
their label and structure with the query floor plan, and the last row represents the
percentage of accuracy for matching process. The result shows that the accuracy of
our proposed method always greater than or equal to a conventional method for all
patterns of query floor plans. The reason is from the isomorphism of floor plan
structure. We are not only considering the structure but also handle with both of the
structure and the label of rooms for each floor plan. Our method can ignore some
possible floor plans that have the same structure but different room labels. Thus, the

results of our proposed method would better than the original method.
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Table 2: The result of matching process compares between a conventional and

proposed method.

Number of rooms | Conventional method Proposed method

2 Incorrect 0 0

Recall 100% 100%

3 Incorrect 64 10

Recall 65% 92%

4 Incorrect 105 1

Recall 7% 89%

5 Incorrect 78 72

Recall 4% 4%

6 Incorrect 41 37

Recall 38% 40%

7 Incorrect 35 2

Recall 3% 33%

8 Incorrect 8 0

Recall 20% 100%

9 Incorrect 1 1

Recall 67% 67%
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Conventional Method Proposed Method

Figure 17: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with two rooms.

Conventional Method Proposed Method

Figure 18: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with two rooms in the form of topology graph.
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Conventional Method : Proposed Method

(n)

Figure 19: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with three rooms.

Conventional Method : Proposed Method

r"

\‘
)
4’,

(0)

Figure 20: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with three rooms in the form of topology graph.
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From Figure 17, the top row is the query floor plan with its graph
representation. Floor plans (c)-(h) are the result of the conventional method and floor
plans (k)-(p) are the result of the proposed method. The structure of the topology
graph comparing between both methods is shown in Figure 18. The following results

show only the top six order according to the query floor plan.

From Figure 19, the top row is the query floor plan with its graph
representation. Floor plans (c)-(h) are the result of the conventional method and Floor

plans (k)-(p) are the result of the proposed method. The circle represents an incorrect

result.
Conventional Method | Proposed Method
(m] T @-\
m “I

 PEDT PR (e
= (5]

(k) U] (m)

- -

-
-

,,:,,,,
1
1':['

________

Figure 21: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with four rooms.
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Conventional Method | Proposed Method
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Figure 22: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with four rooms in the form of topology graph.

The first row in Figure 21 is the query floor plan with its graph representation. Floor
plans (c)-(h) are the result of the conventional method and floor plans (k)-(p) are the
result of the proposed method. The circle represents an incorrect result. In addition,

the following topology graph is shown in Figure 22.

From Figure 23, the top row is the query floor plan with its graph representation.
Floor plans (c)-(h) are the result of the conventional method and floor plans (k)-(p) are
the result of the proposed method. The structure of the topology graph comparing
both methods is shown in Figure 24. The following results show that when there are
five rooms in the floor plan, the accuracy from the floor plan matching of our proposed

method is decreasing due to unexpected layouts as shown in the red circles.
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Conventional Method Proposed Method

----—---
’

fm s me---
’ A
D

M @ | @
Figure 23: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with five rooms.
Conventional Method Proposed Method

3 -"(6)"",

Figure 24: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with five rooms in the form of topology graph.
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Conventional Method Proposed Method

-

Figure 25: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with six rooms.

From Figure 25, the top row is the query floor plan consists of six rooms with
its graph representation. Floor plans (c)-(h) are the result of the conventional method
and floor plans (k)-(p) are the result of the proposed method. The structure of the
topology graph comparing both methods is shown in Figure 26. The following results
show that when there are six rooms in the floor plan, the accuracy from the floor plan
matching of our proposed method seems to be as same as the conventional method

due to unexpected layouts as shown in the red circles.

The results from Figures 27-32 show that our proposed method is not well suited
for the floor plans consisted of rooms greater than four. Since most layouts have the
same structure of the room connection, but they have many room types arranged for

each floor plan.
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Conventional Method : Proposed Method

i b
Figure 26: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with six rooms in the form of topology graph.

Conventional Method Proposed Method

(@) (h)

Figure 27: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with seven rooms.
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Conventional Method : Proposed Method

Figure 28: The result of the conventional method and the proposed method using a

query floor plan with seven rooms in the form of topology graph.

Conventional Method Proposed Method

Figure 29: The result of the conventional method (left) and the proposed method
(right) using a query floor plan with eight rooms.
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Conventional Method : Proposed Method

Figure 30: The result of the conventional method and the proposed method using a

query floor plan with eight rooms in the form of topology graph.

Conventional Method Proposed Method

(a)

Lujtﬁ

()

0}

.........

Figure 31: The result of the conventional method (left) and the proposed method

(right) using a query floor plan with nine rooms.
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Conventional Method Proposed Method

Figure 32: The result of the conventional method and the proposed method using a

query floor plan with nine rooms in the form of topology graph.

According to the results from the experiments, we can see that adding a new
node in the original topology graph makes the relationship among graph more
meaningful. Firstly, the attributes in an original eraph are not sufficient to represent
each of floor plans. Extending more details in the graph representation process can
omit some undesirable retrieval results but it cannot avoid the floor plans we should
retrieve. The proposed method can handle with the isomorphism of graph by fixing
some nodes, then we obtain the new feature vector because the eigendecomposition

is very sensitive if some details in the matrix has changed.

In Figures 33 (a) and (b), we see that adding a new node will extend one more
dimension of its adjacency matrix. Then the eigendecomposition may lead us to the
new eigenvalues and eigenvectors. In addition, from Figure 34 we see that the graph
with two vertices has two different points to add an extra node. Besides, their
adjacency matrices after adding the extra node lead us to the same

eigendecomposition that means extending the size of an adjacency matrix is not affect
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the eigenvalues and eigenvectors. So, this is the reason why the efficiency of the floor

plan with two rooms in our proposed method equal to the conventional method.

(a) (b)

- 011
100]
100/

(c) (d)
Figure 33: (a) is an original graph, (b) is an added extra node of graph (a), (c) and (d)

are their adjacency matrices.

(a) (b) (c)

017 011] 010

l 0] 1ooJ 101

b 100 |010]

(d) (e) (f)

r—10] [-14142 0 o0 | { 14142 0 0

| 01l 0 0 0 0 0 0
- | 0o 014142 | 0o o0 14142
(@) (h) 0]

Figure 34: (a)is an original graph, (b) and (c) are an added extra node in different
vertex of graph (a), (d)-(f) are their adjacency matrices, and the values in diagonal of

matrices (g)-(i) are their eigenvalues.
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(a) (b) (c) (d)
o . [0101] f0111]
?;f ?é; 1010 11000
‘ ‘ 10100 11000
i L0 11000 11000

(e) 4] (e) ("

Figure 35: The first row is the topology graphs and the second row is their adjacency

matrices.

Furthermore, four graphs in Figures 35 (a)-(d), we see that original graphs in (a) and (b)
have the same structure called isomorphism, but they are different in their room type
labels. Because node B in(a) is the center connecting between nodes A and C, but
node A in (b) is the center connecting between node B and C. However, the
eigendecomposition of (a) and (b) are not different. After we add an extra node at
node A in () and (d), we construct a new non-isomorphic graph. So, the
eigendecomposition leads us to the new different eigenvalues and eigenvectors to
generate a new feature vector representing each floor plan. Therefore, we can
distinguish two graphs having the same structure but different in their node
arrangements under conditions that two graphs consist of three rooms with the same
vertices set and have the same added extra node. Moreover, the greater number of
rooms, the more room type. So, if the layouts consist of more rooms but their structure
still isomorphic, then the proposed method cannot distinguish them using the
eigendecomposiotion well enough. Hence, efficiency of the proposed method

decreases when the number of rooms increases.
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CHAPTER V

Conclusions

In summary, we proposed a graph representation for floor plan matching using
spectral embedding. A spectral embedding uses less time during the matching process
than other conventional methods. Its decomposed an adjacency matrix of a graph to
generate a descriptor to represent each floor plan as three component vectors called
a feature vector. After we enlarged the size of an adjacency matrix, the feature vector
of the proposed method not only determined the structure of each floor plan but
also considers the center of rooms. In addition, our proposed method helped in
clustering the pattern of a similar floor plan by ranking the order of the distance
between a query floor plan and floor plans in a dataset. This method support searching
the similar floor plan in more specific details. The customer can search for their query

floor plan more correctly.

The result of matching process compares between a
conventional and proposed method

120%
100%
80%
60%
40%
20%
0%

Recall

1 2 3 4 5 6 7 8 9
Number of room

e Conventional Method  es====Proposed method

Figure 36: The graph of floor plan matching.

The proposed method is useful for room layout matching. The execution time
using to match the query floor plan with floor plans in the dataset is taken only in
seconds. The accuracy during the matching process is improved. However, the

proposed method cannot handle some variables such as the variety of rooms in each
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floor plan as shown in Figure 37. The reason of our weakness is that the
eigendecomposition cannot extract all important data from the graph such as the label
of rooms. So, from Figure 36 indicate us that the increasing number of rooms
significantly reduces the accuracy in the matching process. Thus, the query floor plan
with the number of rooms not greater than four is suitable for the proposed method,

and this became the limitation for our proposed method.

5.1 Future work
In this work, our proposed method concentrated only on dealing with the

isomorphism of graph causes it to show undesirable results. Thus, the proposed

©,
7y
Koot
®
©,
3
ko

BDR BDR @

(d) (e) (f)

Figure 37: (a) is the query floor plan and (d) is the topology graph of (a). (b) is a
correct retrieved result and (e) is the topology graph of (b). (c) is an incorrect

retrieved result of our proposed method and (f) is the topology graph of (c).
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method is not sufficient for the floor plans that differs from the standard pattern such
as the floor plan that includes special rooms. Moreover, when the query floor plan
consists of rooms greater than four, it infers us to consider more extra details
corresponding to the information and the number of rooms in the floor plan. For
further work, if we can find the descriptor considering both the semantic and structure
of the room, it can improve the efficiency for floor plan matching base on the idea of

graph representation.
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Table 3: The result of matching process compares between a conventional and

APPENDIX

proposed method

Number of rooms

Correct
(51)

Conventional Method

(Sharma, 2016)

50

Proposed method

‘

50

Recall

Correct
(189)

100%

118

100%

|

118

Recall

Correct
(159)

65%

92%

|

Recall

Correct
(147)

7%

89%

|

Recall

Correct
(121)

4%

25

4%

‘

25

Recall

Correct

38%

40%

|

(65)
Recall

Correct
(43)

3%

33%

‘

Recall

Correct

20%

100%

|

(25)
Recall

67%

67%
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From Table 3, The recall from our experiment for floor plans with two to nine rooms
of the conventional method is 37.87%, and the recall of our proposed method is
65.67%. Therefore, our proposed method improves the matched accuracy from the

conventional method by 27.81%.
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