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ABSTRACT (THAI) 
 ธมลวรรณ สง่าวงศ ์: การแสดงกราฟสำหรับการจับคู่แผนผังห้องโดยใช้การฝังตัวเชิง

สเปกตรัม. ( GRAPH REPRESENTATION FOR ROOM LAYOUT MATCHING USING 
SPECTRAL EMBEDDING) อ.ที่ปรึกษาหลัก : รศ. ดร.นกุล คูหะโรจนานนท์ 

  
การจับคู่กราฟมีประสิทธิภาพในการค้นหาแบบแปลนที่มีลักษณะคล้ายกันเมื่อข้ อมูล

แผนผังทางสถาปัตยกรรมมีขนาดเพิ่มมากขึ้น เนื่องจากการคำนวณเพื่อค้นหาการจับคู่แบบแปลน
โดยใช้การฝังตัวเชิงสเปกตรัมนั้นใช้เวลาในเพียงแค่ไม่ก่ีวินาที ดังนั้นวิธีนี้จึงเป็นวิธีที่ได้รับความนิยม 
อย่างไรก็ตามการสมสัณฐานของแบบแปลนแต่ละแบบทำให้ความถูกต้องแม่นยำในกระบวนการ
จับคู่ลดลงและกลายเป็นจุดอ่อนของวิธีนี้ ดังนั้นเราจึงเสนอการแสดงกราฟสำหรับการจับคู่แบบ
แปลนห้องโดยใช้การฝังตัวเชิงสเปกตรัม โดยปกติแล้วการแสดงกราฟของแบบแปลนจะกำหนด
โหนดแทนห้องและเส้นเชื่อมแทนการเชื่อมต่อระหว่างห้อง นอกจากนี้การฝังตัวเชิงสเปกตรัมมี
วัตถุประสงค์เพื่อค้นหาเวกเตอร์แสดงคุณสมบัติของแต่ละแบบแปลนโดยไม่สนใจความหมายของ
ห้องแต่วิธีที่นำเสนอนี้จัดการกับทั้งความหมายของห้องซึ่งคือการเชื่อมต่อระหว่างพื้นที่ภายนอก
และภายในห้องและโครงสร้างของแต่ละแบบแปลนด้วย และเรายังแสดงให้เห็นว่าการเพิ่มโหนด
ใหม่ขึ้นมานั้นสามารถจัดการกับการสมสัณฐานของกราฟบนแนวคิดทางคณิตศาสตร์ที่เรียกว่าการ
ทดสอบค่าเฉพาะได้ วิธีการที่นำเสนอประกอบด้วย 3 ขั้นตอน ได้แก่ การสกัดแบบแปลน การขยาย
กราฟทอพอโลยี และการจับคู่แบบแปลน ประสิทธิภาพจากการทดสอบวิธีการของเราแสดงใหเ้ห็น
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ABSTRACT (ENGLISH) 
# # 6071948323 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE 
KEYWORD: floor plan, graph representation, spectral embedding 
 Thamonwan Sa-ngawong : GRAPH REPRESENTATION FOR ROOM LAYOUT 

MATCHING USING SPECTRAL EMBEDDING. Advisor: Assoc. Prof. NAGUL 
COOHAROJANANONE, Ph.D. 

  
Graph matching is efficient to search similar layout when the architectural 

floor plan data size is increasing. Because the computational time of floor plan 
matching using spectral embedding is only in seconds, so it is one of the popular 
methods. However, the isomorphism of each floor plan leads to low accuracy in the 
matching process and it becomes the weakness of this method. Therefore, we 
propose a graph representation for room layout matching using spectral embedding. 
Normally, graph representations of the floor plan define nodes as rooms and edges 
as connections between rooms. Besides, the graph spectral embedding is to find the 
feature vector of each floor plan by ignoring the semantic of rooms. Our proposed 
method also considers both room semantic which is the connection between the 
area outside and inside the room, and the structure of each layout. Furthermore, 
we show that by adding an extra node, our method can handle the isomorphism of 
a graph based on a mathematical idea called eigenvalue testing. There are three 
main processes in the proposed method: floor plan extracting, appended topology 
graph and floor plan matching. The performance from our experiment shows that 
our proposed method improve the matched accuracy from the conventional 
method by about 27.81 percent. 
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CHAPTER I 
Introduction 

 

 Most architects use existing layouts to refer how architectural floor plans were 

designed in the past before they plan to build some constructions of houses or 

condominiums. Furthermore, they use a similar design of floor plans while solving a 

new architectural problem, in order to give more details on how previous, similar 

architectural situations were solved. Additionally, most customers search for their 

specific property from an existing layout to make a decision before buying or renting a 

house or condominium. 

 The relationship of rooms is an important choice that customers will consider 

while they want to buy or rent their condominium. For example, some don't want the 

bathroom to be inside their bedroom and some want the living room to be connected 

to the balcony. Furthermore, living in a condominium is very popular nowadays, so 

the market competition of property sale and rental is very high. Looking up through 

the layouts to search for a similar floor plan can be a difficult and inconvenient process 

because of large amount of floor plan data. Moreover, with the modern progress of 

the digital world, several floor plans are archived in a digital form. Therefore, the floor 

plan searching techniques must be adopted efficiently. We were inspired to improve 

the matching technique of layouts to support the growing industry and technology of 

the world.  

 Graph in pattern recognition is an approach creating abstractions of the raw 

data to classify their pattern. The abstractions are used to find the similarity between 

the objects. Therefore, a good representation of the abstractions should include 

necessary data to classify objects for an appropriate model. Vector is one of the most 

popular abstractions using to represent the object because it can be transformed into 

a matrix space and simply using the Euclidian distance for the similarity. However, 

vector is not a satisfied descriptor if we want to consider the relationship among the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

components of the object. In this situation, graph representation is better to compare 

the similarity of the relationship inside objects. Generally, graph encompasses more 

details than vector, but its similarity cannot be found directly using the Euclidian 

distance. 

 Graph matching methods have proven to be helpful for searching for a query 

architectural floor plan. Graph plays a major role in floor plan matching (Weber, Liwicki, 

& Dengel, 2011), but it also has a challenging problem since it is a computationally 

expensive process when the database is very large. However, its solution can be 

reducible from polynomial-time called NP-complete problem, indexing with well-

founded total order for faster subgraph isomorphism detection (Bunke, 2000) is one of 

the methods that reduce the computational time, and also significantly reduces the 

storage amount and indexing time for graphs. The optimal quadratic-time isomorphism 

of ordered graphs was proposed in (Jiang & Bunke, 1999). A spectral method proposed 

in (Qiu & Hancock, 2006), (Luo, Wilson, & Hancock, 2003) can be utilized for graph 

matching by transforming the graphs into a feature vector to be matched. Furthermore, 

graph spectral embedding tries to connect vector and graph representation instead of 

using only one representation to greater handle with more flexibility for real 

applications. This method also reduced the searching time for matching similar floor 

plans. Although, graph spectral embedding is an interesting method, it has some 

weakness while using with floor plan matching as shown in Figure 1 which represents 

that floor plans (a) and (b) have different structures such that the bedroom is the 

center that connects to another room in (a), and the living room is the center that 

connects to another room in (b). However, after we use graph spectral embedding, we 

found that both (a) and (b) have the same component vector, thus, leading to the 

incorrect result of floor plan matching.  

 Even though some brute force methods are proposed to search for a similar 

floor plan in the database, the complexity of computational time when increasing floor 

plan data still be the obstacle in the matching process. Therefore, we 
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Figure 1: Example of a different structure floor plan: (a) the bedroom is the center 
that connects to another room, (b) the living room is the center that connects to 

another room. 
have proposed a novel graph representation for room layout matching using spectral 
embedding to improve the accuracy of the matching process. We enlarge the size of 
an adjacency matrix from n n  to ( 1) ( 1)n n+  +  by adding a new vertex for a single 
floor plan with n  rooms. The area connecting between outside and inside the layout 
is the additional vertex. We obtained new feature vectors from the isomorphism of 
the graph. These refine the similar floor plan by considering both the structure and 
label of rooms.   

Background knowledge and details of the standard methods for floor plan 

matching are introduced in chapter II. chapter III has discussed the idea of the 

appended topology graph and the procedure of our proposed method. The result and 

our experiment are represented in chapter IV. Finally, we conclude the proposed 

method in chapter V. 
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CHAPTER II 
Background Knowledge and Literature Reviews 

 

  

 In this chapter, we will introduce the techniques that we use in our proposed 

method. We use graph and topology graph to represent the floor plan. Then, graph 

isomorphism is used to analyze the structure of each graph. Principal component 

analysis is used in floor plan matching process. Finally, we divide graph matching into 

two parts: exact and inexact graph matching. 

2.1 Background Knowledge 
2.1.1 Graph  

        Most real-world problems were created into an abstract to make it simple to 

solve. The graph is also helpful to represent the structure of an architectural floor 

plan by showing the data and relationship of the floor plan. A graph is a pair of sets 

( , ),V E  where V is the set of vertices and E  is the set of edges, formed by pairs of 

vertices. E  is a multiset, in other words, its elements can occur more than once so 

that every element has a multiplicity. Often, we label the vertices with letters (for 

example: , , ,...a b c  or 
1 2 3, , ,...v v v ) or numbers 1,2,3,... . An example of graph 

representation shows in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2: An example of graph representation with five vertices. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

From Figure 2, we have 
1 2 3 4 5{ , , , , }V v v v v v=  for the vertices and there are edges 

from  
1v  to 

2v , 
2v  to 

5v , 
5v  to 

5v , 
5v  to 

4v  and 
5v  to 

4v , so we have 

1 2 2 5 5 5 5 4 5 4{( , ), ( , ), ( , ), ( , ), ( , )}E v v v v v v v v v v=  for the edges. And there is no edge that 

connect to 
3v . 

2.1.2 Graph isomorphism 

 Isomorphism of graphs is the concept to distinguish between two graphs 

without considering the specific names of the vertices. For example, A  and B  in 

Figure 3 are different in their vertex sets, but they are the same graph. 

 

 

 

 

Figure 3: A and B are isomorphic and a non-isomorphic graph C; each have four 
vertices and four edges. 

From Figure 3, all graphs are connected with four vertices and four edges. However, 

we can distinguish C  from others because its structure is different. In addition, D  and 

E  in Figure 4 are seem different designs, but they are the same structure because 

both of them have five vertices and edges, all vertices have degree equal to two, and 

they have the same adjacency matrix. 

 

 

 

 

Figure 4: D and E are isomorphic and a non-isomorphic graph F; each have five 
vertices and five edges. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

Definition 1. Two graphs are isomorphic if their vertices can be rearranged and 

relabeled, without breaking any edges, to make the graphs identical (Ziff, Finch, & 

Adamchik, 1997). 

In Figure 3, we can relabel the vertices of graph A with those of graph B  in such a 

way; 1 is relabeled as a, 2 as b, 3 as c, and 4 as d. Then all edge sets in the relabeled 

graph is already identical. Regarding the two graphs in Figure 3, we can write A B  to 

denote this isomorphism. On the other hand, we cannot rearrange and relabel the 

vertices in graph C  with A  and ,B  so graph C  is not isomorphic to either of A  or 

.B   

 Normally, if two graphs are isomorphic their properties should be as follows: 

• Have the same number of nodes and edges  

• Have the same degree lists 

• Have exactly the same matrix representation.   

 For example, all graphs in Figure 4 have the same number of their vertices and 

edges which equal to five. The degree lists of D and E are (2,2,2,2,2), but the degree 

lists of F is (1,2,2,2,3). Also, their adjacency matrices are 

  

0 1 1 0 0

1 0 0 0 1

1 0 0 1 0

0 0 1 0 1

0 1 0 1 0

D

 
 
 
 =
 
 
  

,

0 1 1 0 0

1 0 0 0 1

1 0 0 1 0

0 0 1 0 1

0 1 0 1 0

E

 
 
 
 =
 
 
  

, and 

0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 0

0 0 1 0 0

F

 
 
 
 =
 
 
  

. 

Thus, we can conclude that graph D is isomorphic to graph E. 

2.1.3 Topology graph 

 A topological graph is a representation of a graph in the plane, where the 

vertices of the graph are represented by distinct points and the edges joining the 

corresponding pairs of points. The points representing the vertices of a graph and the 
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arcs representing its edges are called the vertices and the edges of the topological 

graph. For example, we have {1,2,3,4}v = and {(1,2),(1,3), (1,4)}E =  for the set of 

vertices and edges of the topology graph in Figure 5. 

 The topology graph that uses in this work consists of parent node represent 

layout, child node represents a room, a solid edge represents inclusion, a dashed edge 

represents adjacencies. An example of a topology graph represented a floor plan is 

shown in Figure 5. 

  

 

 

 

 

 

Figure 5: (a) is an original floor plan, (b) is the room layout segmentation of (a), and 
(c) is the topology graph of (a). 

2.1.4 Principal component analysis (PCA) 

 Principal Components Analysis (PCA) (Shlens, 2014) is a useful statistical 

technique that has found application in fields such as face recognition and image 

compression, and is a common technique for finding patterns in data of high 

dimension. It is a way of identifying patterns in data to highlight their similarities and 

differences.  

 PCA is a procedure that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables (entities each of which takes on various 

numerical values) into a set of values of linearly uncorrelated variables called principal 

components. It is mostly used as a tool in exploratory data analysis and often used to 

visualize genetic distance and relatedness between populations. PCA can be done by 

eigenvalue decomposition of a data covariance (or correlation) matrix or singular value 

decomposition of a data matrix, usually after a normalization step of the initial data. 
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 The main advantage of PCA is that the information will not lose too much while 

we reduce the number of dimensions for finding the pattern of the object. 

         Since the data is high dimensions, its computational is also high. It’s also 

indicating us to difficulty imagine about the relationship of the data. So, PCA can reduce 

the dimension according to these two following main points 

         - An unnecessary dimension is removed 

         - The most important dimension will be kept 

For example, our data is 2-dimension as follow 

  1  .7321  1  .7321  1  .6180   2.3894

  1  .7321  1  .7321  1  .6180  1  .9653

        0        0            0.6180  1  .3668

Data

 
 

=
 
  

. 

The process of PCA lead us to compute the covariance matrix, so we have  

14.3275  1  3.3142   4.2658

1  3.3142  1  2.4807   3.6861

   4.2658   3.6861    2.2501

( )Cov Data

 
 

=
 
  

. 

Next, we calculate the eigenvectors and eigenvalues for this matrix which tell us 

useful information about our data, then we have 

   0.0139

  1  .0607

  27.9836

eigenvalue

 
 

=  
 
 

, 
0.6986    0.0135   0.7154

  0.6868   0.2929   0.6652

  0.2006   0.9560   0.2139

eigenvector

 
 

=  
 
 

−

− −

. 

Finally, we form our data in a feature vector in one dimension to represent each 

data. 

 PCA aims to analyze only especially important data. It uses the statistic process 

and mathematical tool called Matrix for explaining the data easier to understand. This 

technique creates a new model to reduce the complexity of the data set as if looking 

at the old data set with a new viewpoint by not changing the raw data. PCA consists 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

of integrated mathematical techniques such as standard deviation, variance, 

covariance, covariance matrix, eigenvectors, and eigenvalues. 

 2.1.4.1. Standard deviation 

 Standard deviation (S.D.) is the measurement using to explain how well the 

distribution of data is. 

  

 

  

 

 

 

 

 

 

 

 

Figure 6: The graph of two examples series. 
From Figure 6, the average ( x ) of each series are both equal to 12. 
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However, this number cannot distinguish the meaning of these two series. As we see 

the blue line is more distribution than the orange line. Therefore, there are some 
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statistic technique called standard deviation used to find the distance between each 

point and the center point as the following equation 

2

1

( )

. .
1

n

i

i

x x

S D
n

=

−

=
−


. 

Then, from Figure 6, we have . .S D  of series 1 = 9.93311, and . .S D  of series 2 = 

1.825742. So, the standard deviation tells us that series 1 is more spread out from 

the average than series 2. 

 2.1.4.2. Variance 

 Variance as denoting by var( )X is the variability measurement that measures 

how the data span. It is the average squared deviation from the mean score. We can 

compute a variance as the following formula 

2

1

( )

var( )
1

n

i

i

x x

X
n

=

−

=
−


. 

 2.1.4.3. Covariance 

 Since standard deviation and variance are the technique to analyze the data 

with one dimension. If we want to analyze the data with more than one dimension, 

we will have some measurement to distinguish the distribution between two sets of 

data called covariance. We can compute a covariance as the following formula 

1

( )( )

cov( , )
1

n

i i

i

x x y y

X Y
n

=

− −

=
−


. 

Positive covariance refers X and Y  are positively related that means if X  increases 

then Y  also increases. The meaning of negative covariance is an exactly opposite 

relationship. Zero covariance means X and Y  are not related. From Figure 6, we 

have cov( 1, 17.333332) ,series series =  so it refers series 1 and series 2 are 

positively related. 
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 2.1.4.4. Covariance matrix 

 A covariance matrix is the matrix of all coordinate covariance for each 

dimension. For instance, if our data consists of three dimensions , ,X Y  and ,Z  then 

the covariance matrix is 

cov( , )  cov( , )  cov( , )

cov( , )   cov( , )   cov( , )

cov( , )   cov( , )  cov( , )

X X X Y X Z

Y X Y Y Y Z

Z X Z Y Z Z

 
 
 
 
 

. 

We see that the main diagonal is the variance. Next, we will explain the last two 

techniques called eigenvectors and eigenvalues used in PCA which are the heart of 

the data science field. Therefore, the covariance matrix of series 1 and series 2 in 

Figure 6 is 

98.66667 17.33333

17.33333 3.333333

 
 
 

. 

 2.1.4.5. Eigenvectors and eigenvalues 

 An eigenvector is a vector that remains its direction when we apply a linear 

transformation to it. The determination of the eigenvectors and eigenvalues of a 

system is very useful in the principal component analysis (PCA). Each eigenvector is 

paired with a corresponding eigenvalue. An eigendecomposition is the decomposition 

of a square matrix A  into eigenvectors and eigenvalues. If we calculate the 

eigenvectors and eigenvalues using Matlab, we will have [ , ] ( );T D eig A=  where A  

is the input matrix, T  is the matrix of eigenvectors, and D  is the matrix of 

eigenvalues. 

1 2

                

       

                

n
T x x x  

 
 

=  
 
 
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and 

1

1

                0  

             

             

0                 n

D







 
 
 =
 
 
 

. 

 Next, we would like to describe through the main process of principle 

component analysis. 

Step 1: Calculate the covariance matrix C of the data. 

Step 2: Calculate eigenvectors and corresponding eigenvalues. 

Step 3: Sort the eigenvectors according to their eigenvalues in decreasing order. 

Step 4: Choose first k eigenvectors and that will be the new k dimensions. 

Step 5: Transform the original n dimensional data into k dimensions. 

A new set of dimensions is found by PCA and all dimension are orthogonal. The 

ranked according to the variance of data along them means more important 

principal. 

2.2 Literature reviews  
 We have divided graph matching methods for floor plan matching into two 

categories: exact and inexact graph matching method (Riesen, Jiang, & Bunke, 2010), 

(Carletti, 2016). 

 2.2.1 Exact graph matching 

 Exact graph matching is the method to identify the structure and labels 

between two graphs. Each graph structure is represented as an adjacency matrix. 

However, there is no unique order for the nodes of a graph. A single graph with n  

nodes has !n  possibilities to order all nodes, so there are !n  different adjacency 

matrices. Thus, there are many patterns of their adjacency matrices we need to 

compare. The identity of two graphs 
1g  and 

2g  is commonly established by defining 

a function, termed graph isomorphism, that maps 
1g  to 

2.g  Although, there is no 
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polynomial runtime algorithm (Hartmanis, 1982) for the problem of graph isomorphism, 

many scientists developed polynomial algorithms to solve some specific types of 

graphs, such as tree (Bunke & Shearer, 1998), ordered graphs (Jiang & Bunke, 1999), 

planar graphs (Hopcroft & Wong, 1974), bounded-valence graphs (Luks, 1982), and 

graph with unique node labels (Dickinson, Bunke, Dadej, & Kraetzl, 2004). An example 

of floor plan matching using exact graph matching method is shown as the following; 

Step 1: Create the topology graph for an original floor plan. 

From Figure 7, we have { , , , },V K LR BR BDR=  and 
{( , ), ( , ), ( , )}E LR K LR BDR LR BR=  

 

 

 

 

 

 
 

Figure 7: A is the topology graph representing an original floor plan. 
 

 

 
 
 
 

Figure 8: A topology graph (left) and its adjacency matrix (right). 
Step 2: Transform the topology graph into an adjacency matrix where the element in 

row i  and column j  is equal to 1 if room i  connects to room j , and 0 otherwise. 
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Step 3: Determine all permutations of an adjacency matrix. 

 Since, there are four rooms in the original floor plan, so we have to generate 
24 patterns of an adjacency matrix as shown in Figures 9 and 10.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: Matrices (a)-(l) show permutations of an adjacency matrix of an original 
floor plan. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Matrices (m)-(x) show permutations of an adjacency matrix of an original 
floor plan. 
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(v) (w) (x) 
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Figure 11: a1-a4 are the row-column vector of an adjacency matrix A. 
Step 4: Transform all adjacency matrices into row-column vectors. 

From Figure 11, we have four row-column vectors of an adjacency matrix A as the 
following: 
 

1 ( )a LR=  
 

2 (1, ,1)a K=  
 

3 (1,0, ,0,1)a BR=  
 

4 (1,0,0, ,0,0,1)a BDR=  
Step 5: Create the decision tree for an adjacency matrix. 
 

 

 

 

 

 

 

 

 

 

 

Figure 12: A decision tree for graph A. 
We need to generate the decision tree using !n  patterns of all adjacency matrices to 
compare with only one floor plan in the database, so this approach has a major 
drawback from finding all adjacency matrices as we see in Figure 12. 
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 The major advantage of exact graph matching method is their strict definition 
and substantial mathematical foundation. However, it is required that the 
corresponding node and edge labels in the two graphs have to be identical. 

 2.2.2 Inexact graph matching 

 Because of the fact that it is inflexible to use the exact graph matching method 
in a real-world application when the attributes are different in shape or distortion. 
Many scientists propose an inexact graph matching to handle with inflexible errors 
from an exact method. Finding a descriptor of each graph to detect similarities 
between two graphs is the general concept of inexact graph matching method. The 
descriptors that used to compare the structure of graphs also depend on their 
representation. Thus, the additional important features of a pattern recognition system 
were affected by the representation. Vector is the maximum descriptor used among 
all the possible representations. The floor plans are described as vectors by extracting 
a finite set of numerical features. 
 Graph spectral embedding is an interesting inexact graph matching technique 
since its approach depends on the decomposition of the matrices corresponding to 
the structure of floor plans. The matrices will obtain the same eigendecomposition if 
two graphs are isomorphic. This technique directly finds a descriptor expanded for 
vectorial object descriptions, so it is more convenient than other methods. Generally, 
the converse from the equality of eigendecompositions to graph isomorphism is not 
true. Hence, it is not guaranteed that the same feature vector, will be matched with 
the same floor plan. In addition, the drawback of this approach is that they are rather 
sensitive towards structural errors such as missing or some nodes. These main 
problems motivate us to improve this technique to be more accurate in the matching 
process. 
  In summary, both exact and inexact graph matching is differently useful for 
floor plan matching. However, the node and edge labels used to find the similarity in 
exact graph matching method have to be identical. Thus, the inexact graph matching 
method better handles with a more general floor plan than exact graph matching. Our 
proposed method, consider the region outside the floor plan in the extracting process. 
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We improve accuracy in the matching process under the converse from the equality 
of eigendecompositions to graph isomorphism by fixing the room through graph 
spectral embedding (Carletti, 2016; Sharma, Chattopadhyay, & Harit, 2016). 
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CHAPTER III 
Proposed Method 

 
In this work, we proposed a graph representation for room layout matching 

using spectral embedding. The basic idea of this method is to find a descriptor for each 
floor plan using the eigendecomposition, then use it to compare the similarity between 
the query floor plan and floor plans in our database. Although, Graph spectral 
embedding is effective for floor plan matching (Chung & Graham, 1997), (Fischler & 
Elschlager, 1973), there are some drawbacks. If two graphs of floor plans are 
isomorphic, it is not guaranteed that the structure of room relationship is similar. 
Therefore, our proposed method tries to handle with this problem by adding the area 
outside the room as the external node into the original graph in the appended 
topology graph process. 

 
 
 
 
 
 
 
 
 
 
 

Figure  13: The process flow of our proposed method. 
 
 We modify a structure of graphs by putting more details which are the position 

outside connected to inside the layout. The method can handle with two isomorphic 
graphs that their relation of rooms is different from each other. In addition, we obtain 
new feature vectors from eigendecomposition and the result is more efficient than a 
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conventional method. The proposed method is divided into three parts: 1) floor plan 
extracting, 2) appended topology graph, and 3) floor plan matching. We create a 
topology graph for the original floor plan in the first step, then add the external node 
during the second step. Finally, we use graph spectral embedding to match the query 
floor plan with floor plans in our database.   

 3.1 Floor plan extracting 

 We create the topology graph from the original floor plan image as shown in 

Figure 14. The attributes of the topology graph are that a parent node represents 

layout, a child node represents a room, a solid edge represents inclusion, and a dashed 

edge represents adjacency.  

 3.2 Topology graph appending 

 The external node which is the connection between outside and inside the 

room will be added into the original topology graph. Graph spectral embedding is very 

sensitive when its structure has been changed, so adding more vertices would change 

the eigendecomposition result. The paradigm illustrates in Figure 15. Thus, the 

proposed method significantly matches between the feature vector and its 

corresponding floor plan more accurately. 

 
 

 

 

 

Figure 14: (a) and (b) are the original floor plan, (c) is the topology graph represent 
(a), and (d) is the topology graph represent (b). 
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Figure 15: (a) and (b) are the original floor plan, (c) is the appended topology graph 
represent (a), and (d) is the appended topology graph represent (b). 

 

 3.3 Floor plan matching 

 There are three main steps for floor plan matching: spectral feature 

representation, spectral feature embedding, and feature matching. 

 3.3.1 Spectral feature representation 

 Spectral feature representation is the method to represent each graph in 

terms of its eigenvalue and eigenvector as follow:  

  Step 1: Given N  images of the floor plan in our dataset. 

  Step 2: Let ( , )k k kG V E=  be the thk graph, 

              where 
kV  is the set of vertices. 

              
kE is the set of edges. 

  Afterwards, graphs 
1 2, ,..., NG G G  are represented for all floor plans. 

  Step 3: Construct an adjacency matrix 
kA  for each graph .kG  

  This is a | | | |k kV V  symmetric matrix whose element with row index 

  i  and column index j  is 

1 ; ( , )
    

0
k

i j E
A

otherwise


= 


 

   From the adjacency matrices , 1,2,..., .kA k N=  

- Calculate the eigenvalues 
k  by solving the equation 
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| | 0.k kA I− =  

- The associated eigenvectors 
k  by solving the system of 

equations  

.k k k kA   =  

  Spectral feature vector representing the spectrum of the graph 
k  is 

  constructed from the top n eigenvalues of 
kA  taken in decreasing  

  order.  

  For the thk  graph, this vector is: 

1 2 3( , , ) .T

k k k kF   =                                   (1) 

 3.3.2 Spectral feature embedding 

  We use the concept of principal components analysis (PCA)

 follow by the parametric eigenspace idea. The reason of using this approach 

 is to classify graphs into a pattern-space in which similar structures are close 

 to one another, and dissimilar structures are far apart. The extracted graph 

 from each image is vectorized. Then we compute the feature vector kF  using 

 Principal components analysis. Afterwards, we arrange their spectrums in a 

 matrix as 1 2[ , ,..., ]NR F F F=  for the different graph representations of the 

 layouts in the database, and compute the covariance matrix as, .TC RR=  A 

 spectral decomposition of C  results in the eigenvalues   and the 

 corresponding  eigenvectors .  The Principal components directions are 

 obtained by using  the first three leading eigenvectors of .C  Three 

 orthogonal vectors span the  co-ordinate system of the eigenspace as 

 
1 2 3( , , ).   =  

 This aids in projecting the individual graphs represented by the vectors

 ; 1,...,kF k N=  on the pattern space as 

                                              .T

k kx F=                                         (2) 
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 Hence, each graph obtained from a layout is represented as a three-

 component vector 
kx in the eigenspace as  

' '' '''( , , ) .T

k k k kx x x x=  

 3.3.3 Feature matching 

 Feature matching and retrieval of similar layouts is performed by determining 

 the nearness between all the layouts. The distance between query graph’s 

 feature vector ' '' '''( , , )T

q q q qx x x x= and that of the model graph’s feature vector 

 ' '' '''( , , )T

m m m mx x x x=  is calculated as 

                                 ' ' 2 '' '' 2 ''' ''' 2( ) ( ) ( ) .q m q m q md x x x x x x= − + − + −                        (3) 

            The similarity of two graphs is measured by using Euclidian distance. 

 Then, rank the order of distances in ascending order. The smallest distance is 

 the most similar floor plan between the query floor plan and the floor plan in 

 our dataset. 

 3.4 Eigenvalues and non-isomorphism 

 While it is very difficult to prove that two graphs are isomorphic, it is relatively 

 simpler to prove that two graphs are non-isomorphic (Spielman, 2018). Since 

 two graphs are isomorphic when the correctly relabeled graph have the same 

 matrix  representation. They must have the same eigenvalue. Since the 

 eigenvalues of Figures 16 (a) and (b) which calculated by Matlab are clearly 

 different, we can conclude that they are non-isomorphic. 

 3.5 Non-isomorphic graphs 

 We can use eigenvalues to show that two graphs are non-isomorphic. 

Claim: Two graphs that have different eigenvalues cannot possibly be isomorphic. 

Proof: Two isomorphic graphs can be rearranged and relabeled such that they both 

have the same matrix representation. Thus, they have the same eigenvalues. 
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Therefore, if two graphs do not have the same eigenvalues, then they cannot possibly 

be isomorphic (McKay, 1981). 

 

 

 

 

 

 

 

Figure 16: Testing of the isomorphism of graph using eigenvalue: (a) and (d) are the 
graphs of floor plans, (b) and (e) are adjacency matrices of (a) and (d), respectively. 

(c) and (f) are eigenvalues of (a) and (d), respectively. 
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CHEPTER IV 
Results and Discussion 

 

 We evaluated our method using 800 of floor plan images of condominiums 

holding almost all characteristics of all floor plan patterns. Our dataset includes eight 

floor plan types as shown in Table 1. 

Table 1: The quantity of each type of floor plan image in our dataset. 
number of rooms 2 3 4 5 6 7 8 9 

quantity 51 89 159 147 121 65 43 25 
 

There are 11 types of rooms: Living Room, Bedroom, Bathroom, Kitchen, Study Room, 

Closet Room, Patio, Retreat Room, Exercise Room, Utility Room, and Balcony. There 

are 38% of floor plans that the center of layout is a living room, 38% that the center 

are a living room and a bedroom, 16% that the center is a bedroom, and 9% for others. 

One query floor plan was selected for all different types from floor plans with two to 

nine rooms. We compare the results from the matching process between a 

conventional and our proposed methods as shown in Table 2. The first row of each 

type of floor plans represents the number of correct matched result from our dataset 

which has the same label and structure with the query floor plan, the second row 

represents the number of incorrect matched floor plan which has some different in 

their label and structure with the query floor plan, and the last row represents the 

percentage of accuracy for matching process. The result shows that the accuracy of 

our proposed method always greater than or equal to a conventional method for all 

patterns of query floor plans. The reason is from the isomorphism of floor plan 

structure. We are not only considering the structure but also handle with both of the 

structure and the label of rooms for each floor plan. Our method can ignore some 

possible floor plans that have the same structure but different room labels. Thus, the 

results of our proposed method would better than the original method. 
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Table  2: The result of matching process compares between a conventional and 
proposed method. 

Number of rooms Conventional method Proposed method 

2 

Correct 50 50 

Incorrect 0 0 

Recall 100% 100% 

3 

Correct 118 118 

Incorrect 64 10 

Recall 65% 92% 

4 

Correct 8 8 

Incorrect 105 1 

Recall 7% 89% 

5 

Correct 3 3 

Incorrect 78 72 

Recall 4% 4% 

6 

Correct 25 25 

Incorrect 41 37 

Recall 38% 40% 

7 

Correct 1 1 

Incorrect 35 2 

Recall 3% 33% 

8 

Correct 2 1 

Incorrect 8 0 

Recall 20% 100% 

9 

Correct 2 2 

Incorrect 1 1 

Recall 67% 67% 
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Figure 17: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with two rooms. 

 

 

 

 

 

 

 

 

 

Figure 18: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with two rooms in the form of topology graph. 
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Figure 19: The result of the conventional method (left) and the proposed method 

(right) using a query floor plan with three rooms. 
 

 

 

 

 

 

 

 

 

Figure 20: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with three rooms in the form of topology graph. 
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 From Figure 17, the top row is the query floor plan with its graph 

representation. Floor plans (c)-(h) are the result of the conventional method and floor 

plans (k)-(p) are the result of the proposed method. The structure of the topology 

graph comparing between both methods is shown in Figure 18. The following results 

show only the top six order according to the query floor plan. 

 From Figure 19, the top row is the query floor plan with its graph 

representation. Floor plans (c)-(h) are the result of the conventional method and Floor 

plans (k)-(p) are the result of the proposed method. The circle represents an incorrect 

result.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with four rooms. 
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Figure 22: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with four rooms in the form of topology graph. 

  

The first row in Figure 21 is the query floor plan with its graph representation. Floor 

plans (c)-(h) are the result of the conventional method and floor plans (k)-(p) are the 

result of the proposed method. The circle represents an incorrect result. In addition,  

the following topology graph is shown in Figure 22. 

         From Figure 23, the top row is the query floor plan with its graph representation. 

Floor plans (c)-(h) are the result of the conventional method and floor plans (k)-(p) are 

the result of the proposed method. The structure of the topology graph comparing 

both methods is shown in Figure 24. The following results show that when there are 

five rooms in the floor plan, the accuracy from the floor plan matching of our proposed 

method is decreasing due to unexpected layouts as shown in the red circles. 
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Figure 23: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with five rooms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with five rooms in the form of topology graph. 
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Figure 25: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with six rooms. 

 From Figure 25, the top row is the query floor plan consists of six rooms with 

its graph representation. Floor plans (c)-(h) are the result of the conventional method 

and floor plans (k)-(p) are the result of the proposed method. The structure of the 

topology graph comparing both methods is shown in Figure 26. The following results 

show that when there are six rooms in the floor plan, the accuracy from the floor plan 

matching of our proposed method seems to be as same as the conventional method 

due to unexpected layouts as shown in the red circles. 

         The results from Figures 27-32 show that our proposed method is not well suited 

for the floor plans consisted of rooms greater than four. Since most layouts have the 

same structure of the room connection, but they have many room types arranged for 

each floor plan. 
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Figure 26: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with six rooms in the form of topology graph. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with seven rooms. 
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Figure 28: The result of the conventional method and the proposed method using a 
query floor plan with seven rooms in the form of topology graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with eight rooms. 
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Figure 30: The result of the conventional method and the proposed method using a 
query floor plan with eight rooms in the form of topology graph. 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: The result of the conventional method (left) and the proposed method 
(right) using a query floor plan with nine rooms. 
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Figure 32: The result of the conventional method and the proposed method using a 
query floor plan with nine rooms in the form of topology graph. 

 

 According to the results from the experiments, we can see that adding a new 

node in the original topology graph makes the relationship among graph more 

meaningful. Firstly, the attributes in an original graph are not sufficient to represent 

each of floor plans. Extending more details in the graph representation process can 

omit some undesirable retrieval results but it cannot avoid the floor plans we should 

retrieve. The proposed method can handle with the isomorphism of graph by fixing 

some nodes, then we obtain the new feature vector because the eigendecomposition 

is very sensitive if some details in the matrix has changed.  

 In Figures 33 (a) and (b), we see that adding a new node will extend one more 

dimension of its adjacency matrix. Then the eigendecomposition may lead us to the 

new eigenvalues and eigenvectors. In addition, from Figure 34 we see that the graph 

with two vertices has two different points to add an extra node. Besides, their 

adjacency matrices after adding the extra node lead us to the same 

eigendecomposition that means extending the size of an adjacency matrix is not affect 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37 

the eigenvalues and eigenvectors. So, this is the reason why the efficiency of the floor 

plan with two rooms in our proposed method equal to the conventional method. 

 

 

 

 

 

 

 

 

Figure 33:  (a) is an original graph, (b) is an added extra node of graph (a), (c) and (d) 
are their adjacency matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34:  (a) is an original graph, (b) and (c) are an added extra node in different 
vertex of graph (a), (d)-(f) are their adjacency matrices, and the values in diagonal of 

matrices (g)-(i) are their eigenvalues. 
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Figure 35: The first row is the topology graphs and the second row is their adjacency 
matrices. 

 

Furthermore, four graphs in Figures 35 (a)-(d), we see that original graphs in (a) and (b) 

have the same structure called isomorphism, but they are different in their room type 

labels. Because node B  in (a) is the center connecting between nodes A  and ,C  but 

node A  in (b) is the center connecting between node B  and .C  However, the 

eigendecomposition of (a) and (b) are not different. After we add an extra node at 

node A  in (c) and (d), we construct a new non-isomorphic graph. So, the 

eigendecomposition leads us to the new different eigenvalues and eigenvectors to 

generate a new feature vector representing each floor plan. Therefore, we can 

distinguish two graphs having the same structure but different in their node 

arrangements under conditions that two graphs consist of three rooms with the same 

vertices set and have the same added extra node. Moreover, the greater number of 

rooms, the more room type. So, if the layouts consist of more rooms but their structure 

still isomorphic, then the proposed method cannot distinguish them using the 

eigendecomposiotion well enough. Hence, efficiency of the proposed method 

decreases when the number of rooms increases. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

CHAPTER V 
Conclusions 

 

 In summary, we proposed a graph representation for floor plan matching using 

spectral embedding. A spectral embedding uses less time during the matching process 

than other conventional methods. Its decomposed an adjacency matrix of a graph to 

generate a descriptor to represent each floor plan as three component vectors called 

a feature vector. After we enlarged the size of an adjacency matrix, the feature vector 

of the proposed method not only determined the structure of each floor plan but 

also considers the center of rooms. In addition, our proposed method helped in 

clustering the pattern of a similar floor plan by ranking the order of the distance 

between a query floor plan and floor plans in a dataset. This method support searching 

the similar floor plan in more specific details. The customer can search for their query 

floor plan more correctly. 

 

 

 

 

 

 

 

Figure 36: The graph of floor plan matching. 
 The proposed method is useful for room layout matching. The execution time 

using to match the query floor plan with floor plans in the dataset is taken only in 

seconds. The accuracy during the matching process is improved. However, the 

proposed method cannot handle some variables such as the variety of rooms in each 

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9

R
ec

al
l

Number of room

The result of matching process compares between a 
conventional and proposed method

Conventional Method Proposed method



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

floor plan as shown in Figure 37. The reason of our weakness is that the 

eigendecomposition cannot extract all important data from the graph such as the label 

of rooms. So, from Figure 36 indicate us that the increasing number of rooms 

significantly reduces the accuracy in the matching process. Thus, the query floor plan 

with the number of rooms not greater than four is suitable for the proposed method, 

and this became the limitation for our proposed method.  

5.1 Future work 
 In this work, our proposed method concentrated only on dealing with the 

isomorphism of graph causes it to show undesirable results. Thus, the proposed  

 

 

 

 

 

 

 

 

 

 

 

Figure 37:  (a) is the query floor plan and (d) is the topology graph of (a). (b) is a 
correct retrieved result and (e) is the topology graph of (b). (c) is an incorrect 
retrieved result of our proposed method and (f) is the topology graph of (c). 
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method is not sufficient for the floor plans that differs from the standard pattern such 

as the floor plan that includes special rooms. Moreover, when the query floor plan 

consists of rooms greater than four, it infers us to consider more extra details 

corresponding to the information and the number of rooms in the floor plan. For 

further work, if we can find the descriptor considering both the semantic and structure 

of the room, it can improve the efficiency for floor plan matching base on the idea of 

graph representation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

REFERENCES 
 

 

Bunke, H. (2000). Graph matching: Theoretical foundations, algorithms, and 
applications. Paper presented at the Proc. Vision Interface. 

Bunke, H., & Shearer, K. (1998). A graph distance metric based on the maximal 
common subgraph. Pattern recognition letters, 19(3-4), 255-259.  

Carletti, V. (2016). Exact and Inexact Methods for Graph Similarity in 
Structural Pattern Recognition PhD thesis of Vincenzo Carletti.  

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory: American 
Mathematical Soc. 

Dickinson, P. J., Bunke, H., Dadej, A., & Kraetzl, M. (2004). Matching graphs with 
unique node labels. Pattern Analysis and Applications, 7(3), 243-254.  

Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of 
pictorial structures. IEEE Transactions on computers(1), 67-92.  

Hartmanis, J. (1982). Computers and intractability: a guide to the theory of NP-
completeness (michael r. garey and david s. johnson). Siam Review, 
24(1), 90.  

Hopcroft, J. E., & Wong, J.-K. (1974). Linear time algorithm for isomorphism of 
planar graphs (preliminary report). Paper presented at the Proceedings 
of the sixth annual ACM symposium on Theory of computing. 

Jiang, X., & Bunke, H. (1999). Optimal quadratic-time isomorphism of ordered 
graphs. Pattern Recognition, 32(7), 1273-1283.  

Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested 
in polynomial time. Journal of computer and system sciences, 25(1), 
42-65.  

Luo, B., Wilson, R. C., & Hancock, E. R. (2003). Spectral embedding of graphs. 
Pattern Recognition, 36(10), 2213-2230.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

 

McKay, B. D. (1981). Practical graph isomorphism: Department of Computer 
Science, Vanderbilt University Tennessee, USA. 

Qiu, H., & Hancock, E. R. (2006). Graph matching and clustering using spectral 
partitions. Pattern Recognition, 39(1), 22-34.  

Riesen, K., Jiang, X., & Bunke, H. (2010). Exact and inexact graph matching: 
Methodology and applications. In Managing and Mining Graph Data 
(pp. 217-247): Springer. 

Sharma, D., Chattopadhyay, C., & Harit, G. (2016). A unified framework for 
semantic matching of architectural floorplans. Paper presented at the 
2016 23rd International Conference on Pattern Recognition (ICPR). 

Shlens, J. (2014). A tutorial on principal component analysis. arXiv preprint 
arXiv:1404.1100.  

Spielman, D. A. (2018). Testing for Graph Isomorphism Using Eigenvalues.  
Weber, M., Liwicki, M., & Dengel, A. (2011). Indexing with well-founded total 

order for faster subgraph isomorphism detection. Paper presented at 
the International Workshop on Graph-Based Representations in Pattern 
Recognition. 

Ziff, R. M., Finch, S. R., & Adamchik, V. S. (1997). Universality of finite-size 
corrections to the number of critical percolation clusters. Physical 
review letters, 79(18), 3447.  

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 
 

Table  3: The result of matching process compares between a conventional and 
proposed method 

Number of rooms 
Conventional Method 

(Sharma, 2016) 
Proposed method 

2 
(51) 

Retrieved 50 50 
Correct 50 50 

Recall 100% 100% 

3 
(189) 

Retrieved 182 128 
Correct 118 118 

Recall 65% 92% 

4 
(159) 

Retrieved 113 9 

Correct 8 8 

Recall 7% 89% 

5 
(147) 

Retrieved 81 75 

Correct 3 3 

Recall 4% 4% 

6 
(121) 

Retrieved 66 62 

Correct 25 25 
Recall 38% 40% 

7 
(65) 

Retrieved 36 3 

Correct 1 1 
Recall 3% 33% 

8 
(43) 

Retrieved 10 1 

Correct 2 1 
Recall 20% 100% 

9 
(25) 

Retrieved 3 3 

Correct 2 2 
Recall 67% 67% 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

From Table 3, The recall from our experiment for floor plans with two to nine rooms 
of the conventional method is 37.87%, and the recall of our proposed method is 
65.67%. Therefore, our proposed method improves the matched accuracy from the 
conventional method by 27.81%. 
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