WATER REMOVAL FROM NATURAL GAS VIA CLINOPTILOLITE

Ms. Wantida Bamrungket

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan. The University of Oklahoma.
and Case Western Reserve University

2001

ISBN 974-13-0705-5

Thesis Title : Water Removal from Natural Gas via Clinoptilolite

By

: Wantida Bamrungket

Program

: Petrochemical Technology

Thesis Advisors: Prof. Erdogan Gulari

Dr. Pramoch Rangsunvigit

Asst. Prof. Vissanu Meeyoo

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunya Wint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Erdogan Gulari)

(Dr. Pramoch Rangsunvigit)

(Asst. Prof. Vissanu Meeyoo)

(Assoc. Prof. Sumaeth Chavadej)

บทคัดย่อ

นางสาววรรณธิดา บำรุงเขต : การกำจัดน้ำออกจากกก๊าซธรรมชาติโดยใช้คลินน์อบทิล โอไลต์ (Clinoptilolite) (Water Removal from Natural Gas via Clinoptilolite) อ. ที่ปรึกษา : ศ. เออโดแกน กูลารี (Prof. Erdogan Gulari) คร. ปราโมช รังสรรค์วิจิตร และ ผู้ช่วยศาสตราจารย์ วิษณุ มีอยู่ 62 หน้า ISBN 974-13-0705-5

งานวิจัยนี้เป็นการศึกษาการกำจัดน้ำออกจากก๊าซธรรมชาติโดยใช้คลินน็อบทิลโอไลต์ (clinoptilolite) คลินน์อบทิลโอไลต์ ที่นำมาใช้แบ่งออกเป็นสองประเภท คือ พวกที่ผ่านกระบวน การการปรับเปลี่ยนคุณสมบัติและไม่ผ่านกระบวนดังกล่าว วิธีที่ใช้ปรับเปลี่ยนคุณสมบัติของ คลิน น็อบทิลโอไลต์มีสี่วิธี ได้แก่ การอบด้วยความร้อน การใช้กรด การแลกเปลี่ยนประจุ และการผสม ระหว่างการใช้กรดกับการแลกเปลี่ยนประจุ จากการทดลองพบว่า การอบด้วยความร้อนและการ แลกเปลี่ยนประจุไม่สามารถช่วยเพิ่มพื้นที่ผิวของคลินน็อบทิลโอไลต์ ขณะที่การใช้กรดและการ ผสมระหว่างการใช้กรดกับการแลกเปลี่ยนประจุสามารถทำให้พื้นผิวของ คลินน็อบทิลโอไลต์มี ความพรุน แต่คุณสมบัติในการคูคซับน้ำลดลง การตรวจสอบด้วยเอ็กซ์อาร์ดี (XRD) และเอฟที่ไอ อาร์ (FTIR) พิสูจน์ได้ว่า โครงสร้างของคลินนี้อบทิลโอไลต์ยังคงเหมือนเคิม ไม่ว่าจะผ่านการปรับ เปลี่ยนคุณสมบัติด้วยวิธีใดก็ตาม พบว่าการใช้กรดและการผสมระหว่างการใช้กรดกับการแลก เปลี่ยนประจุก่อให้เกิดการสูญเสียอะลูมิเนียมของโครงสร้าง นอกจากนี้การใช้กรดในตริกที่ความ เข้มข้นเกินกว่า 0.1 โมลาร์ และการอบค้วยความร้อนที่สูงกว่า 300 องศาเซลเซียสส่งผลให้ความ เป็นผลึกของของคลินนี้อบทิลโอไลต์ลคลง ค่าความจุในการคูคซับน้ำของคลินนี้อบทิลโอไลต์แปร เปลี่ยนไปตามค่าอัตราส่วนของซิลิกาต่ออะลูมินา ขณะที่การเพิ่มพื้นที่ผิวกลับมีผลต่อค่าดังกล่าว คลินน็อบทิลโอไลต์ที่ปรับปรุงด้วยกรดและการผสมระหว่างการใช้กรดกับการแลก เปลี่ยนประจุมีค่าความจุในการคูคซับน้ำเพิ่มขึ้นจาก 0.0828 เป็น 0.1019 และ 0.0873 กรัมของน้ำที่ ถูกดูคซับต่อหนึ่งกรัมของคลินนี้อบทิลโอไลต์ ตามลำคับ จากการศึกษาการแข่งขันการดูคซับ ระหว่างน้ำกับไฮโดรคาร์บอนของคลินนี้อบทิลโอไลต์ พบว่าคลินนี้อบทิลโอไลต์ที่ใช้กรคและการ ผสมระหว่างการใช้กรดกับการแลกเปลี่ยนประจุมีค่าความจุในการดูคซับเพนเทนเพิ่มขึ้น นอกจาก นี้ยังพบว่าคลินนี้อบทิลโอไลต์ทั้งหมคสามารถคูดซับน้ำได้ดีกว่าไฮโครคาร์บอนโคยพฤติกรรมใน การคูคซับของคลินน์อบทิลโอไลต์จะเริ่มจากคูคซับไฮโครคาร์บอนก่อนจากนั้นไฮโครคาร์บอนถูก แทนที่ด้วยโมเลกุลของน้ำซึ่งมีคุณสมบัติของความเป็นโพลาร์ที่สูง

ABSTRACT

4271028063 PETROCHEMICAL TECHNOLOGY PROGRAM

Wantida Bamrungket: Water Removal from Natural Gas via

Clinoptilolite.

Thesis Advisors: Prof. Erdogan Gulari,

Dr. Pramoch Rangsunvigit, and Asst. Prof. Vissanu Meeyoo

62 pp ISBN 974-13-0705-5

Keywords Water/ Adsorption/ Clinoptilolite/ Natural gas/ Zeolite

Water removal from natural gas was carried out over modified and unmodified clinoptilolite. Four different techniques were used to modify origin clinoptilolite: thermal treatment, acid treatment, ion exchange, and combined acid treatment with ion exchange. The results showed that the surface area of clinoptilolite modified by the thermal treatment and ion exchange was rather constant while the porosity and hydrophobicity of the surface of clinoptilolite modified by the acid treatment and acid treatment prior to ion exchange was improved. The XRD and FTIR results suggested that the structures of all modified clinoptilolites were similar to natural clinoptilolite. Dealumination was found in the case of acid treatment and acid treatment prior to ion exchange. A decrease in the crystallinity of clinoptilolite was observed when the calcination temperature was above 300 C or the concentration of the acid was higher than 0.1 M. The results suggested that water adsorption capacity was a function of the Si/Al ratio. On the other hand, the improvement in the surface area hardly enhanced the water adsorption capacity. In this work, the water adsorption capacity of clinoptilolite modified by the acid treatment and acid treatment prior to ion exchange increased from 0.0828 to 0.1019 and 0.0873 g adsorbed water/g clinoptilolite. In the simulated natural gas system, the results from the competitive adsorption between water and hydrocarbons

the results from the competitive adsorption between water and hydrocarbons showed that the pentane adsorption of clinoptilolite modified by the acid treatment and acid treatment prior to ion exchange increased. The modified and unmodified clinoptilolites preferentially adsorbed water to hydrocarbons. The hydrocarbons were adsorbed on the clinoptilolite surface but they were desorbed later by the replacement of water molecules, which possess higher polarity.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors, Professor Erdogan Gulari and Dr. Pramoch Rangsunvigit for being my mentor and for their support, patience and kindness. I am also deeply indebted to my coadvisor, Assistant Professor Vissanu Meeyoo for his extensive suggestions throughout this research work, to Associate Professor Sumaeth Chavadej for being in my committee, and to Mr. Sumet Lertviriyakijskul for giving me essential recommendations. Without them this research would not be as good as it is.

I wish to express my thankfulness to all faculties, Mr. Siriphong Roatluechai, and Ms. Apanee Luengnaruemitchai at the Petroleum and Petrochemical College, Chulalongkorn University and Assistant Professor Tawan Sooknoi at the chemistry department, King Mongkut's Institute of Technology Ladsrabang who have tendered invaluable knowledge to me. I extend my sincere thanks to Ms. Arissara Suthasut at the Petroleum Authority of Thailand (PTT) for providing me useful information on my literature survey.

A special thanks to my friends, a group of wonderful people who gave me a warm encouragement, and to the college staff for their assistance.

Finally my deepest thanks to my parents and my brothers for their love, trust, support, encouragement, and for being a constant source of inspiration.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	V
	Acknowledgements	vi
	Table of Contents	vii
	List of Tables	X
	List of Figures	xi
CHAPTER		
I	INTRODUCTION	1
II	BACKGRUND AND LITERATURE SURVEY	3
	2.1 Natural Gas Dehydration	3
	2.2 Solid Desiccants	4
	2.3 Zeolite	6
	2.4 Clinoptilolite	7
	2.4.1 Clinoptilolite Structure	7
	2.4.2 Properties and Applications of	
	Clinoptilolite	9
	2.4.2.1 Ion Exchange Properties	9
	2.4.2.2 Adsorption Properties	11
III	EXPERIMENTAL SECTION	15
	3.1 Materials	15
	3.2 Adsorbent Modification	15

СНАРТЕ	CR .	X-	PAGE
	3.2.1	Thermal Treatment	15
	3.2.2	Acid Treatment	16
	3.2.3	lon Exchange	16
	3.2.4	Acid Treatment prior to Ion Exchange	16
		rbent Characterization	17
	3.3.1	BET Surface Area Measurement	17
	3.3.2	X-ray Diffraction (XRD) Analysis	17
	3.3.3	Fourier Transform Infrared	
		Spectroscopy (FTIR)	17
	3.3.4	Energy-Dispersive X-Ray	
		Spectrometer (EDS)	18
	3.3.5	Thermogravimetric Analysis (TGA)	18
	3.4 Adso	rption Experiments	18
IV	RESULT	TS AND DISCUSSION	
	4.1 Adso	rbent Characteristics	22
	4.1.1	BET Surface Areas Measurement of	
		Clinoptilolites	23
	4.1.2	X-Ray Diffraction Results of	
		Clinoptilolites	25
	4.1.3	Fourier Transform Infrared	
		Spectroscopy	28
	4.1.4	Compositions of Clinoptilolites	33
	4.1.5	Water Adsorption Capacity of	
		Clinoptilolite	35

CHAPTER		PAGE
	4.1.6 Desorption Temperature of	
	Clinoptilolite	37
	4.2 Competitive Adsorption of Water and	
	Hydrocarbons in the Simulated Natural Gas	
	System	39
V	CONCLUSIONS AND RECOMMENDATIONS	50
	REFERENCES	52
	APPENDICES	55
	CURRICULUM VITAE	62

LIST OF TABLES

TABLE		PAGE	
4.1	Notations of clinoptilolite used in this work	22	
4.2	BET surface area and pore volume of the pretreated		
	clinoptilolite and modified clinoptilolite	24	
4.3	Composition of the pretreated clinoptilolite and		
	modified clinoptilolite	34	
4.4	Water adsorption capacity of the pretreated		
	clinoptilolite and modified clinoptilolite	36	
4.5	The breakthrough time comparison between		
	hydrocarbons and water on one gram of the pretreated		
	clinoptilolite and modified clinoptilolite	48	
4.6	The selective adsorption capacity of hydrocarbons and		
	water of the simulated natural gas on the pretreated		
	clinoptilolite and modified clinoptilolite	49	
A.1	Composition of adsorbents at two different conditions		
	used in the ion-exchange method	55	
B.1	The comparison of the pore size of the pretreated		
	clinoptilolite and modified clinoptilolite	56	
C.1	The comparison of the four most intense d-spacing		
	from literature, the pretreated clinoptilolite, and		
	modified clinoptilolite	57	
D 1	Zeolite infrared assignments	59	

LIST OF FIGURES

FIGURE		PAGE	
2.1	Zeolite topology	7	
2.2	Clinoptilolite structure	8	
2.3	Clinoptilolite structure showing channel A, B, and C		
	and intersection I ₁ and I ₂	9	
3.1	Schematic flow diagram of the equipment setup	21	
4.1	XRD diffractograms of clinoptilolite modified by the		
	thermal treatment with different calcination		
	temperatures	26	
4.2	XRD diffractograms of clinoptilolite modified by the		
	acid treatment with different nitric acid concentrations	26	
4.3	XRD diffractograms of clinoptilolite modified by the		
	ion exchange with different cations	27	
4.4	XRD diffractograms of clinoptilolite modified by the		
	acid treatment prior to ion exchange with different		
	cations	27	
4.5	Infrared spectra of clinoptilolite modified by the		
	thermal treatment with different calcination		
	temperatures	29	
4.6	Infrared spectra of clinoptilolite modified by the acid		
	treatment with different nitric acid concentrations	30	
4.7	Infrared spectra of clinoptilolite modified by the ion		
	exchange with different cations	31	
4.8	Infrared spectra of clinoptilolite modified by the acid		
	treatment prior to ion exchange with different cations	32	

FIGURE		PAGE	
	4.9	Water adsorption capacity of clinoptilolite with	
		different Si/Al ratios	37
	4.10	The thermogram of the water-saturated pretreated	
		clinoptilolite, showing the desorption temperature	38
	4.11	Breakthrough curves from the adsorption of	
		humidified natural gas with a mixture of 6.44%vol	
		methane, 1.26%vol ethane, 1.16%vol propane,	
		0.29%vol n-butane, 0.42%vol iso-butane, 1.35%vol n-	
		pentane, and 1.12%vol water vapor in N ₂ at the total	
		flow rate of 25 ml/min on the pretreated clinoptilolite	40
	4.12	Breakthrough curves from the adsorption of	
		humidified natural gas with a mixture of 6.44%vol	
		methane, 1.26%vol ethane, 1.16%vol propane,	
		0.29%vol n-butane, 0.42%vol iso-butane, 1.35%vol n-	
		pentane, and 1.12%vol water vapor in N ₂ at the total	
		flow rate of 25 ml/min on the H-clino (0.1)	41
	4.13	Breakthrough curves from the adsorption of	
		humidified natural gas with a mixture of 6.44%vol	
		methane, 1.26%vol ethane, 1.16%vol propane,	
		0.29%vol n-butane, 0.42%vol iso-butane, 1.35%vol n-	
		pentane, and 1.12%vol water vapor in N ₂ at the total	
		flow rate of 25 ml/min on the Na-clino	42

IGURE		
4.14	Breakthrough curves from the adsorption of	
	humidified natural gas with a mixture of 6.44%vol	
	methane, 1.26%vol ethane, 1.16%vol propane,	
	0.29%vol n-butane, 0.42%vol iso-butane, 1.35%vol n-	
	pentane, and 1.12%vol water vapor in N ₂ at the total	
	flow rate of 25 ml/min on the Acid-Na-clino	43
4.15	Breakthrough curves of hydrocarbons in the presence	
	of 1.20%vol water on the pretreated clinoptilolite	44
4.16	Breakthrough curves of hydrocarbons in the presence	
	of 1.20%vol water on the H-clino (0.1)	45
4.17	Breakthrough curves of hydrocarbons in the presence	
	of 1.20%vol water on the Na-clino	46
4.18	Breakthrough curves of hydrocarbons in the presence	
	of 1.20%vol water on the Acid-Na-clino	47
B.1	Scanning electron micrograph of the pretreated	
	clinoptilolite at 200 X Magnification	60
B.2	Scanning electron micrograph of the pretreated	
	clinoptilolite at 1500 X Magnification	60