เคมีแสงของ 1-เมทิลไพราโซลที่มีหมู่แทนที่ไทรฟลูออโรเมทิล

นาย เทพวุฒิ อิศรเสนา ณ อยุธยา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาเคมี ภาควิชาเคมี

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2545

ISBN 974-17-1509-9

ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

121048307

PHOTOCHEMISTRY OF TRIFLUOROMETHYL SUBSTITUTED-1-METHYLPYRAZOLES

Mr. Theppawut Israsena Na Ayudhya

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2002 ISBN 974-17-1509-9 Thesis TitlePHOTOCHEMISTRY OF TRIFLUOROMETHYL
SUBSTITUTED-1-METHYLPYRAZOLESByMr. Theppawut Israsena Na AyudhyaField of StudyChemistryThesis AdvisorAssociate Professor Supawan Tantayanon, Ph.D.Thesis Co-Advisor Professor James W. Pavlik

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree

Ward Mitty Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

(Associate Professor Sophon Roengsumran, Ph.D.)

y Zarly Thesis Advisor

(Associate Professor Supawan Tantayanon, Ph.D.)

ner W. Pavik Thesis Co-Advisor

Professor James W. Pavlik, Ph.D.)

Warin than Chavasin Member

(Assistant Professor Warintorn Chavasiri, Ph.D.)

Member

(Assistant Professor Worawan Bhanthumnavin, Ph.D.)

เทพวุฒิ อิศรเสนา ณ อยุธยา : เคมีแสงของ 1-เมทิลไพราโซลที่มีหมู่แทนที่ไทรฟลูออโรเมทิล (PHOTOCHEMISTRY OF TRIFLUOROMETHYL SUBSTITUTED-1-METHYLPYRAZOLES) อาจารย์ที่ปรึกษา : รศ. ดร. ศุภวรรณ ดันตยานนท์, อาจารย์ที่ปรึกษา ร่วม : PROFESSOR JAMES W. PAVLIK, จำนวนหน้า 120 หน้า. ISBN 974-17-1509-9.

้งานวิจัยนี้เป็นการตรวจสอบปฏิกิริยาเคมีแสงของสารกล่ม 1-เมทิลไพราโซลที่มีหม่แทนที่ไทร ฟลูออโรเมทิล 3-, 4- และ 5-ไทรฟลูออโรเมทิล-1-เมทิลไพราโซลได้ถูกสังเคราะห์และศึกษาพฤติ-กรรมทางเคมีแสงของสารเหล่านี้ ผลิตภัณฑ์ที่คาคว่าจะเกิดขึ้นได้แก่ 2-, 4- และ 5-ไทรฟลูออโรเมทิล-1-เมทิลอิมิดา โซล ได้ถูกสังเคราะห์ขึ้นด้วย ได้ทำปฏิกิริยาของแสง โดยใช้แหล่งของแสงที่เหมาะสมและ ตรวจสอบโดย จีซี-เอฟไอดี และ จีซี-เอ็มเอส การบ่งชี้ผลิตภัณฑ์ทำโดยการเปรียบเทียบข้อมลทาง ้โครมาโทกราฟี และ แมสสเปกโทรเมทรีกับสารจริง เมื่อทำการฉายแสงให้แก่ 1-เมทิล-3-ไทรฟลออโร เมทิลไพราโซล ผลของปฏิกิริยาบ่งชี้ว่าเกิด 1-เมทิล-2-ไทรฟลูออโรเมทิลอิมิคาโซล และ 1-เมทิล-4-ไทร ฟลู-ออโรเมทิลอิมิคาโซล ขึ้นโดยผ่านการปิดวงแบบอิเล็กโทรไซคลิก สารชนิดหลังเป็นผลิตภัณฑ์ที่ สองที่เกิดจาก 1-เมทิล-2-ไทรฟลูออโรเมทิล-อิมิดาโซล ปฏิกิริยาเคมีแสงของ 1-เมทิล-4-ไทรฟลูออ-โร เมทิลไพราโซลให้ 1-เมทิล-4-ไทรฟลูออโรเมทิลอิมิดาโซลเท่านั้น ในปฏิกิริยามีอินเทอร์มีเดียตที่เกิด จากการแตกออกด้วยแสงซึ่งถูกบ่งชี้ว่าเป็น ซิส และ ทรานส์ไอโซเมอร์ของ 3-N-เมทิลแอมิโน-2-ใทร ฟลูออโรเมทิลโพรพีนในไตร์ และ N-เมทิลแอมิโน-1-ไทรฟลูออโรเมทิลเอทินิลไอโซไซยาไนค์ ซึ่งตรวจสอบได้ด้วย โปรตอนเอ็นเอ็มอาร์ และ อินฟราเรคสเปกโทรสโกปี เมื่อ 1-เมทิล-5-ไทรฟลูออโร เมทิลไพราโซล ถูกฉายแสงสารจะแตกออกด้วยแสงเป็น 1-เมทิล-5-ไทรฟลูออโร-เมทิลอิมิดาโซล และ ปิดวงแบบอิเล็กโทรไซคลิกเป็น 1-เมทิล-2-ไทรฟลูออโรเมทิลอิมิดาโซล และ 1-เมทิล-4-ไทรฟลออโร เมทิลอิมิดาโซล โดยการใช้เทกนิคโปรตอนเอ็นเอ็มอาร์ และ อินฟราเรค สเปกโทรสโกปี สรุปได้ว่ามี ้อินเทอร์มีเดียตที่เกิดจากการแตกออกด้วยแสงของปฏิกิริยานี้คือ ซิส และ ทรานส์ไอโซเมอร์ คือ N-เมทิลแอมิโน-3-ไทรฟลูออโรเมทิลโพรพีนในไตร์ และ 2-N-เมทิลแอมิโน-2-ไทรฟลูออโรเมทิล เอทินิลไอโซไซยาไนด์

เคมี	ลายมือชื่อนิสิต Tyrnt grik
เคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
	เกมี เกมี 2545

4473812823:MAJOR CHEMISTRY

KEY WORD :TRIFLUOROMETHYL SUBSTITUTED-1-METHYLPYRAZOLES,ELECTROCYCLIC, SIGMATROPIC SHIFT, PHOTOTRANSPOSITION

THEPPAWUT ISRASENA NA AYUDHYA: PHOTOCHEMISTRY OF TRIFLUOROMETHYL SUBSTITUTED-1-METHYLPYRAZOLES, THESIS ADVISOR: ASSOC. PROF. SUPAWAN TANTAYANON, Ph.D., THESIS CO-ADVISOR: PROF. JAMES W. PAVLIK, Ph.D., 120 pp. ISBN 974-17-1509-9.

This research involves the exploration in the photochemical reaction of trifluoromethyl substituted-1-methylpyrazoles. The 3-, 4-, and 5-(trifluoromethyl)-1-methylpyrazoles were synthesized and their photochemical behaviors were investigated. The photoreactions were carried out with appropriate light sources and monitored by GC-FID and GC-MS. The product identification was performed by the comparison of their chromatographic and mass spectroscopic data with the authentic samples. Some anticipated products, such as 2-, 4-, and 5-(trifluoromethyl)-1methylimidazoles, were also synthesized. Upon irradiation of 1-methyl-3-(trifluoromethyl)pyrazole, the result indicated the generation of 1-methyl-2-(trifluoromethyl)imidazole and 1-methyl-4-(trifluoromethyl)imidazole via electrocyclic ring closure. The latter was assumed to be the secondary product arising from 1-methyl-2-(trifluoromethyl)imidazole. The photoreaction of 1-methyl-4-(trifluoromethyl)pyrazole afforded only 1-methyl-4-(trifluoromethyl)imidazole. In this reaction the photocleavage intermidiates, which were identified as cis- and trans-isomers of 3-(N-methylamino)-2-(trifluoromethyl)propenenitrile and (N-methylamino)-1-(trifluoromethyl)ethenylisocyanide, were detected by ¹H-NMR and infrared spectroscopy. When 1-methyl-5-(trifluoromethyl)pyrazole was irradiated, it underwent photocleavage to 1-methyl-5-(trifluoromethyl)imidazole, as well as closure electrocyclic rina to 1-methyl-2-(trifluoromethyl)imidazole and 1-methyl-4-(trifluoromethyl)imidazole. By using ¹H-NMR spectroscopic technique, it could be concluded that the photocleavage intermediates of this reaction were cis- and trans- isomers of (N-methylamino)-3-(trifluoromethyl)propenenitrile and 2-(N-methylamino)-3-(trifluoromethyl)ethenylisocyanide.

Department	Chemistry	Student's signature Tuym think
Field of study	Chemistry	Advisor's signature
Academic year	2002	Co-advisor's signature James W. Pavik

ACKNOWLEDGEMENT

The author wishes to express deepest gratitude to his advisor, Associate Professor Supawan Tantayanon and his co-advisor, Professor James W. Pavlik, for their generous guidance, helpful suggestions, and encouragement throughout the course of this research. He also thanks the chairman and members of the thesis committee for their valuable suggestions and comments.

He acknowledges financial support from The Development and Promotion of Science and Technology Talent Project and Tab Neelanithi Foundation, Bangkok, Thailand. He wishes to express grateful thanks to Worcester Polytechnic Institute for provision of teaching assistantship and for giving him a chance to be teaching assistant in The United States of America.

The author also would like to express his gratitude to First Lady Tinaprapa Israsena Na Ayudhya and First Lady Thudsanee Bhunyakubta for their love and encouragement.

Finally, thanks go towards to Mr. Somchoke Launhasurayotin and Miss Nantanit Wanichacheva, other Thai students, and Hubert for transportation, food and funny times in Worcester, Vikki, Starla, Emily, and Jenny for keep talking with talkative guy like me, and all of graduate students in Chemistry Department at WPI for fantastic party and funny soccer games even though Turkish guys always came late.

CONTENTS

ABSTRACT IN THA	۱ iv
ABSTRACT IN ENG	GLISHv
ACKNOWLEDGEM	ENTvi
CONTENTS	vii
LIST OF SCHEMES	Sx
LIST OF FIGURES	xii
LIST OF ABBREVIA	ATIONSxviii
CHAPTER I	INTRODUCTION1
1.1 Photoiso	merization of pyrazole1
1.2 Permutat	ion pattern analysis in <i>N</i> -methylpyrazoles5
1.3 Mechanis	stic interpretation of P_4 , P_6 and P_7 6
1.4 Related a	amount of P_4 and P_6/P_7 in <i>N</i> -methylpyrazoles9
1.5 Substitue	ent effects10
1.5.1	Methyl substitution10
1.5.2	Fluorine substitution11
1.5.3	Trifluoromethyl substitution14
1.6 Objective	es15
	16
2.1 General.	ion of starting materials and products for
2.2 Preparat	ation of starting materials and products for
pnotorea	Clion study
2.2.1	Preparation of 4-ethoxy-1, 1, 1-trifluoromethyl-3-
	buten-2-one16
2.2.2	Preparation of 1-methyl-3-(trifluoromethyl)pyrazole
	and 4,5-dihydro-1-methyl-5-(trifluoromethyl)-1H-
	pyrazole
2.2.3	Preparation of 1-methyl-5-(trifluoromethyl)pyrazole18
2.2.4	Preparation of 1-methyl-4-(trifluoromethyl)pyrazole18

CONTENTS (continued)

225	1 Doutoria 1 mothyl 2 (trifluoromathyl) pyrazola	Pages
2.2.5	4-Deuteno-1-metryi-3-(timuorometryi)pyrazole	10
0.0.0	Descention of Trifluoremethylauthetituted 1	19
2.2.0	Preparation of Thiluoromethyl substituted-1-	40
	methylimidazoles	.19
2.3 Irradiatio	n and analysis procedures	20
CHAPTER III	RESULTS AND DISCUSSIONS	22
3.1 Synthesis	s of photochemical reactants and expected	
photoche	emical products.	22
3.1.1	Synthesis of 1-methyl-3-(trifluoromethyl)pyrazole, 4.5-	
	Dihvdro-1-methyl-5-trifluoro-1 <i>H</i> -pyrazole, and	
	1-methyl-5-(trifluoromethyl)pyrazole	22
3.1.2	Synthesis of 1-methyl-4-(trifluoromethyl)pyrazole	35
3.1.3	Synthesis of 1-methyl-2-(trifluoromethyl)imidazole,	
	1-methyl-4-(trifluoromethyl)imidazole, and	
	1-methyl-5-(trifluoromethyl)imidazole	. 38
3.2 Photorea	ction of 1-methyl-3-(trifluoromethyl)pyrazole	.49
3.2.1	UV-absorption analysis of 1-methyl-3-(trifluoromethyl)	
	pyrazole	49
3.2.2	Investigation of the photoreaction by	
	UV spectrophotometer	.51
3.2.3	Investigation of the photoreaction by	
	gas-liquid chromatography	53
3.2.4	Identification of phototransposition product by GC-MS	62
3.2.5	¹ H-NMR spectrum of the photolysate of 1-methyl-3-	
	(trifluoromethyl)pyrazole	64
3.2.6	Permutation pattern study for 1-methyl-3-	
	(trifluoromethyl)pyrazole	. 67
3.3 Photorea	action of 1-methyl-4-(trifluoromethyl)pyrazole	72
3.3.1	UV-absorption analysis of 1-methyl-4-(trifluoromethyl))
	pyrazole	. 72

CONTENTS (continued)

	P	ages
3.3.2	Investigation of the photoreaction by	
	UV spectrophotometer7	3
3.3.3	Investigation of the photoreaction by	
	gas-liquid chromatography7	8
3.3.4	Analysis of irradiation solution by GC-MS	3
3.3.5	¹ H-NMR spectrum of the photolysate of 1-methyl-4-	
	(trifluoromethyl)pyrazole	6
3.4 Photorea	action of 1-methyl-4-(trifluoromethyl)pyrazole9	1
3.4.1	UV-absorption analysis of 1-methyl-5-(trifluoromethyl)	
	pyrazole9	1
3.4.2	Investigation of the photoreaction by	
	UV spectrophotometer9	2
3.4.3	Investigation of the photoreaction by	
	gas-liquid chromatography9	6
3.4.4	Identification of photocleavage product by GC-MS1	00
3.4.5	¹ H-NMR spectrum of the photolysate of 1-methyl-5-	
	(trifluoromethyl)pyrazole1	04
3.5 Mechani	stic Discussion1	11
CHAPTER IV	CONCLUSION1	16
4.1 Photorea	action of 1-methyl-3-(trifluoromethyl)pyrazole, 1-methyl-	
4-(trifluo	romethyl)pyrazole, and 1-methyl-5-(trifluoromethyl)	
pyrazole		16
4.2 Proposa	I for future work 1	17
REFERENCES		18
VITA		20

LIST OF SCHEMES

		Pages
Scheme 1	Permutation pattern for five-membered cyclic compounds	5
Scheme 2	Mechanism for photoisomerization of 1-methylpyrazole	7
Scheme 3	Formation of 1-methyl-5-(trifluoromethyl)pyrazole [42] from	
	[38] and [41]	22
Scheme 4	Formation of 1-methyl-5-(trifluoromethyl)pyrazole [42] from	
	[50]	23
Scheme 5	Reaction of 4-ethoxy-1,1,1-trifluoro-3-buten-2-one [38]	
	with methylhydrazine [41]	34
Scheme 6	Reaction of 1,1,5,5-tetramethyl-1,5-diaza-3-(trifluoromethyl)-	
	1,3-pentadienium hexafluorophosphate [44] with	
	methylhydrazine [41]	35
Scheme 7	Trifluoromethylation of 1-methylimidazole [2]	38
Scheme 8	Assignment of the chemical shifts for the protons of	
	components in the photolysate [39] in acetonitrile after	
	30 minutes of irradiation	64
Scheme 9	Deuterium labeling reaction on 1-methyl-3-(trifluoromethyl)	
	pyrazole [39]	67
Scheme 10	Photoreaction for irradiation of 4-deuterio-1-methyl-3-	
	(trifluoromethyl)pyrazole [39-4d1]	69
Scheme 11	Assignment of the chemical shifts for the protons of	
	components in the photolysate [43] in acetonitrile after	
	30 minutes of irradiation	.87
Scheme 12	Assignment of the chemical shifts for the protons of	
	components in the photolysate [42] in acetonitrile after	
	30 minutes of irradiation	.105
Scheme 13	Primary steps in the P ₄ pathway for 1-methyl-4-	
	(trifluoromethyl)pyrazole [43]	111
Scheme 14	Mechanism proposed in the P_4 and photocleavage	
	pathways for 1-methyl-4-(trifluoromethyl)pyrazole	112
Scheme 15	Reaction mechanism of P ₄ pathway for 1-methyl-3-	
	(trifluoromethyl)pyrazole [39]	113

LIST OF SCHEMES (continued)

		Pages
Scheme 16	Reaction mechanism of the P_6 and P_7 pathways for	
	1-methyl-3-(trifluoromethyl)pyrazole [39]	. 114
Scheme 17	Reaction mechanism of the P ₆ and P ₇ pathways for	
	1-methyl-4-(trifluoromethyl)pyrazole [43]	. 114
Scheme 18	Reaction mechanism of the P_4 , P_6 , and P_7 pathways for	
	1-methyl-5-(trifluoromethyl)pyrazole [42]	. 115

LIST OF FIGURES

		Pages
Figure 1	The mass spectrum of more volatile component,	-
	1-methyl-3-(trifluoromethyl)pyrazole [39]	24
Figure 2	The ¹ H-NMR spectrum of more volatile component,	
	1-methyl-3-(trifluoromethyl)pyrazole [39]	25
Figure 3	The ¹³ C-NMR spectrum of more volatile component,	
	1-methyl-3-(trifluoromethyl)pyrazole [39]	26
Figure 4	The mass spectrum of non-volatile component with an oven	
	temperature of 70 °C, 4,5-dihydro-1-methyl-5-	
	(trifluoromethyl)pyrazol-5-ol [40]	27
Figure 5	The mass spectrum of non-volatile component with an oven	
	temperature of 100 °C, 1-methyl-5-(trifluoromethyl)	
	pyrazole [42]	27
Figure 6	The ¹ H-NMR spectrum of 4,5-dihydro-1-methyl-5-	
	(trifluoromethyl)pyrazol-5-ol [40]	29
Figure 7	The ¹³ C-NMR spectrum of 4,5-dihydro-1-methyl-5-	
	(trifluoromethyl)pyrazol-5-ol [40]	30
Figure 8	The ¹³ H-NMR spectrum of 1-methyl-5-(trifluoromethyl)	
	pyrazole [42]	32
Figure 9	The ¹³ H-NMR spectrum of 1-methyl-5-(trifluoromethyl)	
	pyrazole [42]	33
Figure 10	The mass spectrum of 1-methyl-4-(trifluoromethyl)	
	pyrazole [43]	35
Figure 11	The ¹ H-NMR spectrum of 1-methyl-4-(trifluoromethyl)	
	pyrazole [43]	36
Figure 12	The ¹³ C-NMR spectrum of 1-methyl-4-(trifluoromethyl)	
	pyrazole [43]	37
Figure 13a	The ¹ H-NMR spectrum of 1-methyl-2-(trifluoromethyl)	
	imidazole [45]	. 41
Figure 13b	The ¹³ C-NMR spectrum of 1-methyl-2-(trifluoromethyl)	
	imidazole [45]	. 42
Figure 14	The GC-MS analysis of 1-methyl-2-(trifluoromethyl)	
	imidazole [45] (a) GC analysis (b) mass spectrum	. 43

	Pa	iges
Figure 15a	The ¹ H-NMR spectrum of 1-methyl-5-(trifluoromethyl)	
	imidazole [46] 44	
Figure 15b	The ¹³ C-NMR spectrum of 1-methyl-5-(trifluoromethyl)	
	imidazole [46] 45	
Figure 16	The GC-MS analysis (a) GC analysis of 1-methyl-5-	
	(trifluoromethyl)imidazole [46] (b) mass spectrum of	
	1-methyl-5-(trifluoromethyl)imidazole [46] 46	
Figure 17a	The ¹ H-NMR spectrum of 1-methyl-4-(trifluoromethyl)	
	imidazole [47] 47	
Figure 17b	The ¹³ C-NMR spectrum of 1-methyl-4-(trifluoromethyl)	
	imidazole [47] 48	I
Figure 18	The GC-MS analysis of 1-methyl-4-(trifluoromethyl)	
	imidazole [47] (a) GC analysis (b) mass spectrum	I
Figure 19	UV absorption spectra of [39] (a) in acetonitrile (b) in	
	methanol	I
Figure 20	UV absorption spectra of [39] at various irradiation times	
	(a) in acetonitrile (b) in methanol 52	•
Figure 21	UV absorption spectra of 1-methyl-2-(trifluoromethyl)imidazole	
	[45] (2.5 x 10 ⁻⁴ M), 1-methyl-4-(trifluoromethyl)imidazole [47]	
	(2.5 x 10 ⁻⁴ M), and 1-methyl-5-(trifluoromethyl)imidazole [46]	
	(2.5 x 10 ⁻⁴ M) in acetonitrile 53)
Figure 22	GC trace on 15 meter column of [39] in acetonitrile before	
	irradiation	
Figure 23	GC trace on 15 meter column of [39] in acetonitrile after	
	5 minutes of irradiation55)
Figure 24	GC trace on 15 meter column of [39] in acetonitrile after	
	10 minutes of irradiation55	,
Figure 25	GC trace on 15 meter column of [39] in acetonitrile after	
	15 minutes of irradiation56	;
Figure 26	GC trace on 15 meter column of [39] in acetonitrile after	
	20 minutes of irradiation56	;

		Pages
Figure 27	GC trace on 15 meter column of [39] in acetonitrile after	
	30 minutes of irradiation	.57
Figure 28	GC trace on 30 meters column of authentic (a) 1-methyl-2-	
	(trifluoromethyl)imidazole [45] (b) 1-methyl-4(trifluoromethyl)	
	imidazole [47] (c) 1-methyl-5-(trifluoromethyl)imidazole [46].	
	Analysis on 15 meters column	. 58
Figure 29	GC trace on 30 meters column of the mixture of 1-methyl-2-	
	(trifluoromethyl)imidazole [45] , 1-methyl-4-(trifluoromethyl)	
	imidazole [47], and 1-methyl-5-(trifluoromethyl)	
	imidazole [46]	. 58
Figure 30	(a) GC trace on 30 meters column of [39] after 30 minutes o	f
	irradiation (b) spiked with authentic 1-methyl-2-(trifluorometh	yl)
	imidazole [45]	
Figure 31	GC trace on 15 meters column of [45] in acetonitrile before	
	irradiation	61
Figure 32	GC trace on 15 meters column of [45] in acetonitrile after	
	30 minutes of irradiation	62
Figure 33	(a) The GC trace of [39] after 30 minutes of irradiation	
	(from GC-MS) (b) The mass spectrum of peak at retention	
	time 17.6 minutes (c) 22.6 minutes (d) 35.3 minutes	. 63
Figure 34	The ¹ H-NMR spectrum of [39] in acetonitrile after 30 minutes	6
	of irradiation	. 65
Figure 35	The expantion of ¹ H-NMR spectra of [39] in acetonitrile after	
	30 minutes of irradiation (a)3.3-5.3 ppm and (b)6.2-7.6 ppm.	. 66
Figure 36	The mass spectrum of 4-deuterio-1-methyl-3-(trifluoromethy)
	pyrazole [39-4d ₁]	68
Figure 37	The ¹ H-NMR spectrum of 4-deuterio-1-methyl-3-	
	(trifluoromethyl)pyrazole [39-4d1	. 68
Figure 38	The ¹ H-NMR spectrum of 4-deuterio-1-methyl-3-	
	(trifluoromethyl)pyrazole [39-4d1] in acetonitrile after	
	10 minutes of irradiation	.70

		Pages
Figure 39	The expantion of ¹ H-NMR spectra of [39-4d₁] in acetonitrile	
	after 10 minutes of irradiation (a) 3.3-5.3 ppm and	
	(b) 6.2-7.6 ppm	70
Figure 40	IR speatra of 1-methyl-3-(trifluoromethyl)pyrazole [39],	
	photolysate in acetonitrile after 30 minutes of irradiation, and	
	photolysate in methanol after 30 minutes of irradiation	71
Figure 41	UV absorption spectra of [43] (a) in acetonitrile	
	(b) in methanol	73
Figure 42	UV absorption spectra of [43] at various irradiation times	
	(a) in acetonitrile (b) in methanol	75
Figure 43	(a) UV absorption spectra of [43] in acetonitrile after	
	30 minutes of irradiation and the addition of one drop of acid	
	(b) UV absorption spectra of [43] in methanol after	
	30 minutes of irradiation and the addition of one drop of acid.	77
Figure 44	GC trace on 15 meters column of [43] in acetronitrile before	
	irradiation	78
Figure 45	GC trace on 15 meters column of [43] in acetronitrile	
	after 5 minutes of irradiation	79
Figure 46	GC trace on 15 meters column of [43] in acetronitrile	
	after 10 minutes of irradiation	79
Figure 47	GC trace on 15 meters column of [43] in acetronitrile after	
	15 minutes of irradiation	80
Figure 48	GC trace on 15 meters column of [43] in acetronitrile after	
	20 minutes of irradiation	80
Figure 49	GC trace on 15 meters column of [43] in acetronitrile after	
	30 minutes of irradiation	81
Figure 50	(a) GC on 30 meters column trace of [43] after 30 minutes	
	of irradiation (b) GC trace on 30 meters column of [43]	
	after 30 minutes of irradiation added authentic 1-methyl-2-	
	(trifluoromethyl)imidazole [45] (c) GC trace on 30 meters	
	column of [43] after 30 minutes of irradiation added authentic	;
	1-methyl-5-(trifluoromethyl)imidazole [46]	82

.

	Pa	ages
Figure 51	The GC-MS of 1-methyl-4-(trifluoromethyl)pyrazole [43]84	1
Figure 52	(a) The GC trace of [43] after 30 minutes of irradiation	
	(from GC-MS) (b) The mass spectrum of peak at retention	
	time 13.9 minutes (c) 35.3 minutes (d) 36.7 minutes	5
Figure 53	The ¹ H-NMR spectrum of 1-methyl-4-(trifluoromethyl)pyrazole	
	[43] in acetonitrile after 30 minutes of irradiation	3
Figure 54	The expantion of ¹ H-NMR spectra of [43] in acetonitrile after	
	30 minutes of irradiation (a) 2.3-3.3 ppm (b) 3.3-5.3 ppm	
	(c) 6.5-8.0 ppm	Э
Figure 55	IR speatra of 1-methyl-4-(trifluoromethyl)pyrazole [43],	
	photolysate in acetonitrile after 30 minutes of irradiation, and	
	photolysate in methanol after 30 minutes of irradiation90)
Figure 56	(a) Expansion IR speatra of 1-methyl-4-(trifluoromethyl)	
	pyrazole [43], photolysate in acetonitrile after 30 minutes of	
	irradiation (b) photolysate in methanol after 30 minutes of	
	irradiation)
Figure 57	UV absorption spectra of [42] (a) in acetonitrile	
	(b) in methanol92	2
Figure 58	UV absorption spectra of [42] at various irradiation times	
	(a) in acetonitrile (b) in methanol	3
Figure 59	(a) UV absorption spectra of [42] in acetonitrile after	
	30 minutes of irradiation and added drop of acid	
	(b) UV absorption spectra of [42] in methanol after	
	30 minutes of irradiation and added drop of acid	ō
Figure 60	GC trace of [42] in acetronitrile before irradiation	
	(a) from 15 meters column (b) from 30 meters column	7
Figure 61	GC trace of [42] in acetronitrile after 5 minutes of irradiation	
	(a) from 15 meters column (b) from 30 meters column97	7
Figure 62	GC trace of [42] in acetronitrile after 10 minutes of irradiation	
	(a) from 15 meters column (b) from 30 meters column 98	3
Figure 63	GC trace of [42] in acetronitrile after 15 minutes of irradiation	
	(a) from 15 meters column (b) from 30 meters column	3

xvi

		Pages
Figure 64	GC trace of [42] in acetronitrile after 20 minutes of irradiation	
	(a) from 15 meters column (b) from 30 meters column	99
Figure 65	GC trace of [42] in acetronitrile after 30 minutes of irradiation	
	(a) from 15 meters column (b) from 30 meters column	99
Figure 66	The GC-MS of 1-methyl-5-(trifluoromethyl)pyrazole [42]	101
Figure 67	(a) The GC trace of [42] after 30 minutes of irradiation	
	(from GC-MS) (b) The mass spectrum of peak at retention	
	time 12.5 minutes (c) 20.2 minutes (d) 21.0 minutes	102
Figure 67	(e) The mass spectrum of peak at retention time 24.0	
	minutes (f) 29.1 minutes (g) 34.4 minutes (h) 37.5 minutes	103
Figure 68	The ¹ H-NMR spectrum of 1-methyl-5-(trifluoromethyl)	
	pyrazole [42] in acetonitrile after 30 minutes of irradiation	106
Figure 69	The expantion of ¹ H-NMR spectra of [42] in acetonitrile after	
	30 minutes of irradiation (a) 2.0-3.3 ppm (b) 3.3-5.3 ppm and	ł
	(c) 6.7-7.6 ppm	107
Figure 70	The 2D-NMR spectra of [42] in acetonitrile after 30 minutes of	of
	irradiation	108
Figure 71	(a) IR spectra of 1-methyl-5-(trifluoromethyl)pyrazole [42]	
	(b) photolysate in acetonitrile after 30 minutes of irradiation	
	(c) photolysate in methanol after 30 minutes of irradiation	109
Figure 72	(a) IR spectra of 1-methyl-5-(trifluoromethyl)pyrazole [42],	
	photolysate in acetonitrile after 30 minutes of irradiation	
	(b) photolysate in methanol after 30 minutes of irradiation	109
Figure 73	(a) IR speatra of 1-methyl-5-(trifluoromethyl)pyrazole [42],	
	photolysate in acetonitrile after 15 minutes of irradiation	
	(b) IR speatra of 1-methyl-5-(trifluoromethyl)pyrazole [42],	
	photolysate in acetonitrile after 15 minutes of irradiation	
	added one drop of concentrate acetic acid	110

LIST OF ABBREVIATIONS

- cm⁻¹ unit of wavenumber
- ⁰C degree celsius
- d doublet
- dd doublet of doublet
- dt doublet of triplet
- FID flame ionization detector
- FT fourier transform
- GC gas chromatography
- Hg mercury
- IR infrared
- J coupling constant
- M multiplet
- m/z mass per charge
- mp melting point
- MS mass spectrometry
- NMR nuclear magnetic resonance
- ppm parts per million
- q quartet
- s singlet
- t triplet
- THF tetrahydrofuran
- W watt
- ε extinction coefficient
- δ chemical shift