CHAPTER 3
QUERY PROCESSING FOR THE HETEROGENEOUS
INFORMATION SOURCES USING METADATA
DICTIONARY APPROACH

The querying process for the HIS (Arch-Int, Li, Roe, and Sophatsathit, 2003; Arch-Int,
Sophatsathit and Li, 2003) aims to enable users to pose their queries over the virtual schema
instead of the physical source schema so as to obtain relevant answers from the HIS. The
querying process of the HIS encompasses two main processes, namely, the accessing
process of the HIS and the integrating process of the results from HIS. The accessing and
integrating process of the HIS can be accomplished through the metadata dictionary
support. The accessing process s responsible for generating a global transaction associated
with the user’s request. The global transaction is then simplified, and decomposed into sub-
transactions for accessing the real data in the physical information sources. The
decomposition process focuses on mapping the virtual properties and concepts of the global
transaction to physical properties and concepts of the sub-transactions via a mapping
algorithm. In contrast, the integrating process focuses on consolidating the XML results
obtained from executing each sub-transaction on a physical information source, whereby
forming a unified XML-based data corresponding to the user’s request. This unified XML-
based data contain the relevant answers corresponding to user’s request. This chapter also
provides a means to handle data replication and query result validation and correctness
being returned to the users. The algorithms for decomposition and integration process are
given in the Appendix.

The query process is accomplished by acquiring the information from the metadata
dictionary. Since the metadata dictionary is represented in XML format which is a tree-like
structure, the metadata dictionary contents are organized in a conventional tree structure as
illustrated in Figure 8.1. Searching the metadata dictionary can be accomplished in the
same manner as a tree traversing. The proposed query process enables the semantic

70

heterogeneity to be solved at query time for local and remote processing. Details on how it
is carried out are described below.

8.1 The Accessing Process of the Heterogeneous Information Sources

The accessing process of the HIS starts at the presentation layer of the reference architecture
proposed by Arch-Int and Sophatsathit, 2002, as shown in Figure 8.3. In this step, any
virtual concept that is a subconcept of another concept inherits all of the virtual properties
from its superconcepts. These virtual properties are thus presented to the user as the
properties of the subconcept. For example, a user can view the virtual properties of
Instructor originating from Instructor and staff. The user can pose a query in a
unified-query format encircling the virtual schema provided by the user interface agent or in
standard SQL format. There are three steps involved in accessing the HIS, namely, global
transaction creation, simplification, and decomposition.

(1) Global Transaction Creation: A global transaction is a visual user requirement
represented in standard SQL format that consists of virtual concepts and properties of the
virtual schema as illustrated in Figure 8.3. Upon submission of a user query that may be in
any arbitrary complex form, the request will be sent to the user interface agent to form a
global transaction, which is a normalized query form constructed by means of the metadata
dictionary. The query normalization eliminates type mismatch, semantic mismatch, and
redundant predicates (Ozsu and Valduriez, 1999) from the global transaction. A formal
description of a global transaction is given in Definition 8.1.

Definition 8.1 Let Q be a global transaction defined as a triple <1, ¢, p>, where =
ejupij IVZ-1... , Vj—=L...m) is afinite set of the target virtual properties vpt;j (or attributes)
of the virtual concepts VG that are in the SELECT clause, and the property value of vpkc that
is defined over domain Dp, ¢ = {MGIVi=1... }is afinite set of the target virtual concepts
(or entities) in the FROM clause; and p = Qp Jp s a finite set of predicates in the
WHERE clause that consists of two kinds of predicate: (/) the set Qp = (¢- 1Vz= 1.. } of
qualifying predicates and {) the setJp= {ji IVz=1..m) ofjoin predicates, such that,

* A qualifying predicate s Qp is defined as having \d(\p'mo value, where 0 e {=5
<, >5 < >}and value e Dcare defined in the qualified virtual properw\ﬂ(\m}and

1

* Ajoin predicatejke Jp s defined as having \ﬂ(\pc = \OTMNG where k" m, and

Vic= vme

Examples of a qualifying predicate is sta ff.st_id =“11111” and ajoin predicate

might be staff.dept id = Department.dept id or Instructor.st id =
Administrator. St id.

| Metadata Dictionary

VConcepts

PhysicalSourceConfs

e

VConcept I VConcept I

| VCname l I VProperties |

VRelationships

“Staff”

| VPoid | | VPord ” VPref | VRelationship VRelationship
lVPnamc | | VDataType ‘ l VUnitType l l PProperties l [VRelname I l AssocConcept I
“st id” “string” aull “Associative” “Department”

PProperty

|Enamcl IPCnamc] IPSnamc] IPDataTypc“PUnitType”CVCnamc| [PPname] |PCname” PSnamc“ PDataType” PUnitTypel CVCname

“Staffjd” “Staff “Sourcel” “String” Null Staff
Member”

“Inst_id” “Instructor “Source2” “String” Null ~ “Instructor”
Member”

Figure 8.1 An example of the metadata dictionary contents represented by a labeled tree.

(2) Global Transaction Simplification If a global transaction contains virtual properties
selected from both of superconcept and subconcept, ajoin predicate between these concepts
is called for to link the concepts. Such a global transaction can be simplified by substituting

12

its superconcept with the subconcept and removing the join predicates. A formal
description is given in Definition 8.2

Definition 8.2 Given a global transaction q containing the selected virtual properties
vCj.vpim and \q.\gn where i * j, that form a superconcept(vcj, vcj) and there exists ajoin
predicate \@vpik = vCjpjk Where vpik = vpjk. The global transaction q can be simplified to
Q- by substituting the superconcept vcj with the subconcept \Q denoted v, —» \@ and
removing the join predicate from q.

The example of the global transaction in Figure 8.2 (a) contains virtual properties
st id and t name of a superconcept staff, a virtual property position of a
subconcept Instructor, and ajoin predicate staff. st id = Instructor.st id.
Since all of the virtual properties of Instructor are inherited from staff, the global
transaction in Figure 8.2 (a) can be simplified to be a normalized transaction as illustrated in
Figure 8.2 (b) by replacing all properties of staff with the corresponding properties of
Instructor as well as the join predicate. This simplification is essential for subsequent
processing.

i () S e i
- 1))
[0=relas i
(a) A global transaction before (b) A global transaction after
the simplification process the simplification process

Figure 8.2. An example of the global transaction simplification.

(3) Global Transaction Decomposition: After global transaction simplification i
complete, the global transaction is sent to the managing agent where global transaction
decomposition is initiated. This process transforms the global transaction into sub-
transactions by substituting each virtual concept and property in the global transaction with
the corresponding physical concept and property of the local physical sources obtained from
the metadata dictionary. The formalization is given in Definition 8.3,

13

Virtual Schema at user’s view

Staff Instructor
Presentation [st_id[st_name[st salary[dept_id] [st_id[st_name][st_salary[dept_id[position]
Layer Department Course_Teach

[dept_id[dept name]

[st id[crs_id[crs time[num_stu]

Course

crs_name

[A

User Interface Agent
A global transaction

Mediator

SELECT Staff.st_name, Staff.st_salary,
Department.dept_name, Course.crs_name

FROM Staff, Instructor, Department, Course, Course_Teach
WHERE Staff.salary > 10000

AND Instructor.position = “Prof.” 7| Metadata
AND Staff.dept_id = Department.dept_id Dictionary
AND Instructor.st_id = Course_Teach.st_id
AND Course Teach.crs_id = Course.crs_id

Layer

v

Sub-Transaction 1

{S1| 3S, D (Staff Member(S) A Department(D) A
S.Dept_id = D.Dept_id A S.Salary > 10000 A
S1.Staff name = S.Staff_name A S1.Salary =
S.Salary A S1.Dept_name = D.Dept_name) }

Managing Agent

Sub-Transaction 2

{S2| 31, T, C (Instructor_Member(I) A Department(D) A
Course_Teach(T) A Course(C) A I.Salary > 100004
[.Ac_position = “Prof.” A I.Dept_id = D.Dept_id A LInst_id
= T.Inst_id A T.Course_id = C.Course_id A S2.Inst_name=
[.Inst_name A S2.Salary = [.Salary A S2.Dept_name =
D.Dept_name A S2.Course_name = C.Course_name)}

4 Internet L 4
Search Search Agent Search Agent
Layer i l
Resource Resource
Agent Agent
Physical
Layer el

Figure 8.3. Accessing process of the heterogeneous information sources.

74

Definition 8.3 A simplified global transaction q * can be transformed to sub-queries or sub-
transactions q'1,..., o'n Over the physical schema such that q'1...., ¢'n encompass potential
answers relevant to the user’ query. The transformation process maps the virtual schemas
inq 'to the physical schemas assigned ing'1...., q'n.

Let v be a virtual schema and p be a physical schema. The mapping relation onf
from v to p Is the function v p, such that Gj(\ﬂﬁ\m) {pkci BIE <PSname,
PCname, PPname>}, WNere pSname, PCname, and PPname are physical source name,
concept name, and property name, respectively, andi= 1. .

For example, the virtual property st_id of the simplified global transaction q ' is
replaced by staff_id of staff Member and Inst id of Instructor Member to form
sub-transaction! and sub-transaction2, respectively. A sub-transaction will subsequently
access data from the designated physical information source.

The decomposition process of the global transaction is described in two steps as
follows:

(1) mapping. The virtual concepts and properties in the SELECT clause are
mapped to the corresponding physical concepts and properties and, in turn, to the physical
sources in which each physical concept resides. Some formal definitions of the terminology
associating with a labeled tree are defined in Definition 8.4 and 85 to represent the basic
structure of the XML metadata dictionary.

Definition 8.4 A labeled tree, T, is defined as a pair <t, >, where t is a finite sub-tree
consisting of one or more nodes, « is a finite set of labeled nodes oft.

Atree, 1, has a root node denoted root(), with its children vi, .., Kk 0. If(V,)
i an edge in t, then v is called the parent of , and s a child of v. A labeled node
represents the begin-end tag in the XML data model. The attributes are denoted by tag
elements of an XML document. A node consists of the attributes and ID (or key) whose
value (true/false) is stored in that node.

6

Definition 8.5 A labeled node, , is a quadruple <1, d, k, p>, where / is a label, d is a
function that returns a value of the leaf node, Ais a key function that returns “true” value if
that node is a key and “false” if that node is not a key, andp is a set of pointers that point to
the child nodes accompanied by a labeling function I() returning a label to node .

The mapping process is carried out by means of a mapping algorithm, as illustrated in
Appendix ¢, to acquire physical information from the metadata dictionary.

(2) Sub-transactions creation. Each sub-transaction is successively created from the
following processes:

2.1 Grouping process. The virtual concepts/properties and the corresponding
physical concepts/properties with the same physical source are grouped.together in
accordance with the following formulation.

Let = {PSnamej | /= 1.. } be a finite set of physical source names from the
mapping process. A physical source name PSnamek e is defined as a finite set of virtual
concepts/properties and the corresponding physical concepts/properties such that PSnamek =
{Pi\i= 1.. }, wherePk is defined as a 5-tuple <vck, vpkc, PCnamek, PPnamek, CVCnamep>.

For example, the virtual properties/concepts in the global transaction of Figure 8.3
are mapped to physical information and grouped by PSname in the form of

= {"Source 1", “Source2" }, where

Source 1= {<"Staff\ “st name”, “ Staff Member”", “Staff name”, “ Staff’>5
<"Staff’, “st_salary”, “Staff Member", “Salary”, “ Staff'>5
<“Department”, “dept_name", “Department”, “Dept_name”, “Department”>}
and
Source2 = {<*Staff', “st_name”", “Instructor_Member", “Inst_name”, “Instructor”>,
<“Staff’, “st_salary”, “Instructor_Member”, “ Salary”, “Instructor”>,

<“Department”, “deptjname”, “Department”, “Deptjname”, “ Department”>,

<“Course”, “crs_name”, “Course”, “Course_name”, “Course”>}

2.2 Substitution process. In order to generate sub-transactions corresponding to the
user's query, each CVCname* of PSnamek is used to generate the initial sub-transactions.

16

The generation process can be divided into two cases, namely, no replicated data and
replicated data.

* No replicated data\ For each PSnamek e , if the subcomponent CVCnamek
matches with VG e ¢ of the global transaction then generates a sub-transaction for accessing
each PSnamek hy substituting the virtual concepts/properties in each PSnamek with the
corresponding physical concepts/properties to form a sub-transaction, denoted by PSnamek.
<vck — PCnamek, vpkc -» PPname/P>. The physical properties constitute the requested
information in the SELECT clause, and the physical concepts represent the target
information sources to be accessed in the FROM clause.

The number of sub-transactions to be generated are taken from the corresponding
virtual concept name (CVCname) for each physical source name. Since the CVCname in
both Sourcel and Source2 match with all the virtual concepts in the FROM clause of the
global transaction, a corresponding sub-transaction is generated for each source by
substituting the virtual properties/concepts by the physical properties/concepts, that is,

Sourcel: <*Staff' —»“Staff Member”, “st_ name” -» “ Staff_name”>
<*Staff' -> “ StaffIMember”, “st _salary” -> *“ Salary">

<"Department” -> “Department”, “dept_name” -» “Dept_name">

Source2: <*Staff'-> “Instructor_Member”, “st_name” -» “Inst_name”>

N

<*Staff' s “Instructor_Member”, “st salary” -» “Salary">

«“Department” —“Department”, “dept_name” -> “Dept_name”>

«"“Course” —» “Course”, “crs_name” —“Course_name”>

The initial sub-transactions are illustrated in Figure 8.4.

Sourcel Source2

SELECT Staff Member.Staff name, ~ SELECT Instructor_Member.Inst name
StaffMember.Salary, - Instructor Member.Salary, Department.Dept_name,
Department.Deptndme Course.Course_name

FROM Staff Member, Department ~ FROM Instructor Member, Department, Course Teach, Course

Figure 8.4 Two initial sub-transactions generated from the substitution process.
* Replicated data: for two or more sources containing replicated data only one sub-
transaction is generated from one of the replicated source. For example, if there is a

U

physical source named Source3 that replicates with Source?2 as illustrated in Figure 8.5,
the information mapping of the three physical sources will be generated as follows:

lVPname llVDamType | IVUnitType j

st id" “string” null

PProperty

[PPnamcl lPCname| IPSnamel IPDataTypelIPUnitType]lCVCnamcl [PPname| lPCname“ PSname ” PDataTypc”PUnitTypcl CVCnamcI

“Inst_id” “Instructor “Source2” “String” Null ~ “Instructor” “Inst_id” “Instructor “Source3” “String” Null *“Instructor”
_ Member” _Member”

Figure 8.5 A portion of metadata dictionary illustrating replicated data.

= {"Source 1", “ Source2", “ Source3"}

Source 1= {<"Staff’, “st_name”, “ Staff Member", “Staffjname”, “ Staff'>5
<"Staff“st salary”, “Staff Member", " Salary", “ Staff>3

<"Department”, “dept_name”, “Department”, “Deptjname”, “Department”>}

Source2 ={<"“Staff', “st_name”, “Instructor_ Member”, “Inst_name”, “Instructor”>,
<*Staff', “st_salary”, “Instructor_ Member”, “Salary”, “ Instructor”>,
<"Departmenf’, “dept_name”, “Department”, “Dept_name”, “Department”>3

<“Course”, “crs_name”, “Course”, “Course_name”, “Course”>}

Source3 ={<"Staff', “st_name”, “Instructor_Member", “Inst_name”, “Instructor?,
<"Staff’, “st_salary”, “Instructor_ Member", “Salary”, “Instructor”>,

<"Departmenf’, “dept_name”, “Department”, “Dept_name”, “Department”>3

<"Course”, “crs_name", “Course”, “Course_name”, “Course”>}

8

Thus, for each PSnamek e , if there exists two or more sets of PSnamejd =1...
such that PSnamei = ...= PSnamem only one sub-transaction is generated from one of these
sources. A sub-transaction similar to the one illustrated in Figure 8.4 is generated from this
substitution process.

2.3 Generating the constraints: The virtual concepts/properties in the WHERE clause of
a global transaction are also mapped to the associated physical concepts, properties and
sources through the mapping algorithm. Two kinds of predicates in WHERE clause are
considered, namely, qualifying predicates andjoin predicates.

2.3.1 Qualifying predicates. For each group with the same physical source, the
qualifying predicates of the global transaction are replaced by the physical properties and
concepts to form a set of constraints for use in a sub-transaction, that is, for each PSnamek,
{vck.vpkc 0 value) — (PCnamek.PPnamekc 0 value). For example, a qualifying predicate
Staff.st id = “11111" of Sourcel is replaced by staff Member.staff _id =
“11111" and Instructor_Member.Inst_id = “11111" to form the qualifying predicate
in sub-transactions of Sourcel and Source2, respectively.

2.3.2 Join predicates. For each PSnamek, the join predicates of the sub-transactions are
taken into consideration.

o |f PCnamek and PCnamem correspond with vck, and vem, respectively, and reside in
the same source, the join predicates of the global transaction are replaced by the
same pairs of the physical properties and concepts, that is, (vCk.vpkc = vemvpme) —»
{PCnamek.PPnamekc - PCnamemPPnarnemc), where k * m, and PPnamekc =
PPnarnemc. For example, sta ff.dept_id = Department.dept_id is replaced
by staff Member.Dept_id = Department.Dept_id in a sub-transaction of
Sourcel, since Staff Member and Department refer to the same physical
source,

* |f PCnamek and PCnamem correspond with vck, and vem respectively, but reside in
different sources, there is no join predicate to be generated in the sub-transactions,
and each individual sub-transaction operates in its respective physical source. For

"

example, the corresponding physical concept names of a join predicate
Instructor.st_id = Administrator.st_id in the global transaction refer to
Instructor_Member and Administrator_Member, which reside in Source2
and Source3, respectively, there is no join predicates to be generated in the sub-
transactions of Source2 and Source3. This means that the returned results from
these sources will be combined during the integration process that will be described
in the next section.

All constraints obtained from the above procedures are combined to form the
complete constraints of each sub-transaction as illustrated in Figure 8.3. Each sub-
transaction, together with the physical source configurations that are necessary for accessing
the HIS, is then packed and sent along with each search agent to the resource agent at the
destination physical source. The actual information retrieval will be carried out by the
resource agent.

8.2 The Integrating Process of the Heterogeneous Information Sources

Due to the different physical information sources that govern their own query languages in
manipulating data represented in different data models, query language conflicts stemming
from such differences must be eliminated. To eliminate these conflicts, each sub-
transaction is transformed into the appropriate data manipulation language, regulated by
each proprietary information source via the interface wrapper of the resource agent. The
results obtained from the execution of each sub-transaction are converted to a canonical data
model represented in an XML-based format via the interface wrappers. These XML results
are transmitted to the managing agent, where the integration process takes place. The
managing agent utilizes information obtained from the metadata dictionary to integrate
XML results into unified XML-based data that consists of XML document and XML-DTD.
The unified XML-based data is generated from the conceptual virtual schema of the global
transaction according to a formal procedural definition (8.6) and is forwarded to the user
interface agent, where the presentation formatting is configured at the presentation layer.

Definition 8.6 Given sub-transactions qi,..., g, generated from a global transaction Q, let
R(qi),..., R(qn be the results returned from each sub-transaction which are represented as

80

XML-based data. The unified XML-hased data, denoted UXML, is the final result derived
from integrating these XML results, such that

uxmL = A R(ql

where operator A denotes the integration process that can be either a merge or join

operation of the XML-based data and the mapping of the physical concepts/properties to the
virtual concepts/properties corresponding to the user's request.

The integration process can be classified into two categories as follows.
8.2.1 Single Source Integration

If the XML results returned to managing agent are obtained from a single source or a single
sub-transaction, the transformation process will map the corresponding physical properties
and data values of the XML results to the virtual properties and data values in the form of
unified XML-based data as defined in Definition 8.7. An algorithm for single source
integration is given in Appendix D.

Definition 8.7: Single source integration.

Let R(qg be the returned results obtained from executing a sub-transaction ga of a single
source a, represented by a labeled tree, such that R(qJ - {Ai I V/-1..W} is a finite set of
records at the leaf nodes of the tree, where each record Ai = {<PPNX PPDx> IVx = 1..m] is
afinite set of physical property name PPNi and its data value PPD)] pair.

The unified XML-based data UXML is generated from mapping R(qd to UXML such
that R(qd -> UXML and UXML = {X, IVI=] .. }, wherexi= {<VP}, VPDj> IV/ = 1..m) is
a finite set of virtual property VP, and its data value VPDi pair. The VPiand VPDi are
obtained from mapping PPNi —» VPiand PPDj— VPDi, respectively.

The following is an example of the XML returned results of the global transaction in
Figure 8.2 (b) that are sent from a single source as illustrated in Figures 8.6 (a) and (b). For
example, in Figure 8.6 (b), there are two records returned from Source2. The unified
XML-based data generated from integrating the above two records as illustrated in Figures
8.7 (a) and (b) becomes atwo element array X[l], | =1.. .2 that take the form

X[I] = {("st_id", “11111"), (* t_name", “David"), (“position”, “Prof.")}
X[2] = {(“st_id", “12211"), (*st_name", “John"), (“position”, “Asst.Prof.")}

The set UXML is generated from joining the array of X[I] as follow:

UXML = Xl
-1 [1]

8l

That is, UXML = {{(* t.id", “11111"), (*st name", “David"), (“position”, “Prof.")},
{("st_id", “12211"), (“st_name”, “John"), (“position”, “Asst.Prof.")}}

<IDOCTYPE Source2 [

<IELEMENT Source2(Instructor_Member)+>
<IELEMENT Instructor_Member (Inst_name,
Ac_Position)>

<!ATTLIST Inst_id ID #REQUIRED>
<!ELEMENT Inst_name (#PCDATA)>
<IELEMENT Ac_Position (#PCDATA)>
1>

(a) XML-DTD of returned results.

| Source2 l

LInstructor_Member I

[Instructor_Member I

I lnst_iﬂ[lnst__name]IXC_Positiorj I Inst_id*”Tnst_nﬁI|Ac_Position|

“11111" “David” “Prof.” 12211 “John”

(b) XML tree structure representing XML

“Asst.Prof.”

document conforming to the XML-DTD in (a).

Figure 8.6 The XML returned results from Source2 to be sent to the managing agent.

<IDOCTYPE UXML [
<IELEMENT UXML(Result)+>
<IELEMENT Result (st_id, st_name, position)>

<!ELEMENT st _id (#PCDATA)>

<!ELEMENT st_name (#PCDATA)>

<!IELEMENT position (#PCDATA)>

> I st_id ” st_name “ position || st_id ” st_name lrposition |
“11111” “David” “Prof.” “12211” “John” “AsstProf”

(a) XML-DTD of the unified XML-based
data.

(b) XML tree structure representing XML

document conforming to the XML-DTD in (a).

Figure 8.7 The unified XML-based data generated from the managing agent.

82

8.2.2 Multiple Sources Integration

To provide a flexible integration of the XML results obtained from multiple sources, a key
or ID denoting each XML result is required for proper identification of the designated XML
record. Each record ac e R(q9 contains key properties and non-key properties. Let Kacbe a
finite set of key properties of the record ac such that Kac ¢ ac, and Xac be a finite set of
non-key properties of the record ac such thatXacc ac and Kac Xac= $

For each tree ri, the physical concepts/properties in each record will be mapped to
virtual concepts/properties by acquiring the mapping information from the metadata
dictionary. The mapping of physical concepts/properties of each tree to virtual
concepts/properties of the unified XML-based data is defined in Definition 8.8.

Definition 8.8: Multiple source integration
Given the returned results R(qa) and R(gb) being sent to the managing agent, let Ace R(qJ
be arecord in R(ga) and Bje R(qh) be arecord in R(gh)- Each PPNk e Ac and PPNme Bd is
searched for its corresponding virtual property in the metadata dictionary. 1f any PPNk and
PPNm are children of the same parent virtual property and contain the same data values,
these terms will be treated as synonymous terms and combined with the parent virtual
property. In other words, PPNk ~ PPNmiff ChildOf(PPNk, VP1 A ChildOf(PPNm VP), and
PPDk = PPDmsuch that PPNk and PPNmand their data values are integrated into a pair of
<VPh VPDk> in the unified XML-based data.

For example, the staff_name in Sourcel and Inst_name in Source2 are
synonymous since they are children of the same virtual property st_name and hoth contain

the same data value. These synonymous terms are combined into st_name in the unified
XML-based data.

The multiple sources integration process can be classified into two cases, namely,
merging and joining the XML results.

8

(1) Merging the XML results. Given the individual result of a sub-transaction previously
decomposed from the join predicates of a global transaction, each result holds the
corresponding physical concepts/properties residing in the same source. The merging
process will combine all the properties and data values of the physical property in each
record from the labeled tree ri, despite some differences in the key properties of each
record. The process begins by mapping the physical property and data value from each
record of the labeled tree rj to a pair of virtual property and data value of the virtual
property. For each record, if the mapping key properties and data values of each record are
the same, these records are merged into the unified XML-based data. The records that have
different mapping key properties and data values from other trees are also merged into the
unified XML-based data with slight variation treatments. The merging process is defined in
Definition 8.9.

Definition 8.9 Merging ofthe XML resuits.

Given the returned results r (g4. Letaabearecord inR(qd and k a= {<vej, veoj> |Vi
= \... } be afinite set of virtual property vex and data value veo« obtained from mapping
the key property ppnk 0faa to vek, andepok 0fthat key property to veok.

Letxa ={<vpj, veoj> |Vy =\ .n) be afinite set of virtual property and data value
pair. The vrcobtained from mapping the non-key property ppnc 0faato vee, and veoc
obtained from mapping » p o c of that non-key property to veoc.

Given the returned results R(gb). Letsn be arecord in R(qt) and kb - {<vei, veD > IV
= 1. beafinite set ofa pair of virtual property vek and data value veok obtained from
mapping the key property ppnk 0fsb to vek, andep ok 0fthat key property to veok.

Letxo = (<vej, veoj> VY= 1..m} be afinite set of virtual property and data value
pair. The vec obtained from mapping the non-key property ppnc 0f Bb 10 vee, and veoe
obtained from mapping proc of that non-key property to veoc.

There are four possible cases for merging consideration of each record of the labeled
tree rj, that is,

(i) If(ka==«kb) A(xa==xb) then
Add (ka xa)touxmt, if(vecinkge ofthe global transaction, or
Add xato uxmc, if (vecinka) £ o0fthe global transaction.

(i) If (ka ==«b) A(xa C xb) then
Add (kb xb)touxme, if (vee inkb) e ofthe global transaction, or
Add xb to uxmc, if (veeinkb) g ofthe global transaction.

(ii)) If (ka==kb) A(xb C xa) then
Add (ka xa)touxmc, if(vec inka) e ofthe global transaction, or
Addxato uxmti, if (vecinka) € ofthe global transaction.

(iv) If (ka * (vkb e R(qt)) then
Add (ka Xa@touxme, if vecinko) € ofthe global transaction, or
Add xa to uxm, if (veeinka) £ 0fthe global transaction.

The process of comparing and merging of the XML results yields the unified XML-
based data which is carried out by the algorithms given in Appendix E. Note that there will
not be duplicated record being added to the UXML by virtue of set principles.

An example of integrating the XML results that are sent from multiple sources sourcel
and source2 hased on the global transaction in Figure 8.3 are illustrated in Figures 8.8 and
8.9. The XML results are represented by the labeled trees ri and r 2as illustrated in Figures
8.8 (a) and (b), respectively. From this example, Sourcel returns two records of data
values, whilst Source2 returns one record. The tree ri and r 2 contains the sets ki and
xui, Vi = 1.. , such that each k at is a finite set of virtual property and data value pair,
which in turn are mapped from the physical key property and its data value. On the other
hand, the set xui is a finite set of virtual property and data value pair, which are mapped
from a physical non-key property and its data value. Hence, the first record of tree ri
contains afinite set ofkey k ai and non-key x ai, that is,

Kal= { (“st_id",“22211") },and
Xa1= {(“st_name”", “Anna”), (“st_salary”, " 11000"), (“dept_name”, “Personnel")}

The second record contains a finite setof key Ka2 and non-key Xa2, that is,
Ka2= { (“st_id", " 12211") }, and
Xa2= {(“st_name”, “John"), (st _salary”,“ 12000"), (*dept_name", “Computer")}.

For the tree R2, only one record contains afinite set of key Kb 1 and non-key Xb], that is,
Kb1= { (“st_id", " 12211") }, and
Xb, = {(“ t_name”, “John"), (“st_salary”, “ 12000"), (“dept_name”, “Computer),
(“crs_name”, “CS 111")}}.

UXML

-

Result gt (c) XML tree Structure
re&resentmg the unified
XML document.
st_name ISt_Sa ary”dept name] Ist name] [st salany] Idept name]

“Anna” “11000” “Personnel” ~ “John” *12000" “Computer” “CS 111"

N

Staff_Member| f Instructor_Member l

Staff_id| Staffnamel Salary Deptjname [staff id Staff_name Salary Dept_name Inst_id .]nst_name| Salary Deptname Coursename
“22011” “Anna” “11000” “Personnel” “12211” “John” Sm=> “Computer” «12211* “John” “12000” “Computer’ “CS 111"

(a) XML tree structure (R) representing (b) XML tree structure (R representing
XML document sending from source L XML document sending from source2.

Staff_Member

Figure 8.8 Multiple sources integration by merging the XML documents into the
unified XML document.

The integration process will join the records obtained from each tree that have the same
set of key Kac and Kbk For the first record of each tree R, and R2, since Ka, * Kb, and

86

st_id is not designated in the global transaction, that is, st_id £ , only Xai is added to
the set UXML. For the next record of tree Ri, since Kiiz—Khi and Xi2<z X bi, thus Xbi is
added to the set UXML. Therefore, the unified XML-based data becomes

UXML = { {(* t_name”,“Anna"), (“st_salary”, “ 11000"), (*dept_name”, “Personnel")},
{(* t_name”,“John"), (“st_salary”,“ 12000"), (“dept_name”, “Computer"),
(“crs_name”, “CS 111")}}

<IDOCTYPE UXML [

<IELEMENT UXML(Result)+>
<IELEMENT Result (st_name, st_salary
dept_name, crs_name)>

<!IELEMENT st name (#PCDATA)>
<IELEMENT st salary (#PCDATA)>
<!ELEMENT dept name (#PCDATA)> | (¢) The XML-DTD of the unified
<!ELEMENT crs_name (#PCDATA)> | XML-based data on user’s view

> generated by the managing agent
A A
<IDOCTYPE Sourcel [<IDOCTYPE Source2 [
<IELEMENT Sourcel (Staff Member)+> <IELEMENT Source2 (Instructor_Member)+>
<!ELEMENT Staff Member (Staff name, <IELEMENT Instructor_Member (Inst_name,
Salary, Dept_name)> Salary, Dept_name, Course_name)>
<IATTLIST Staff Member Staff id ID <IATTLIST Instructor_ Member Inst_id ID
#REQUIRED> #REQUIRED>
<!IELEMENT Staff name (#PCDATA)> <IELEMENT Inst_name (#PCDATA)>
<IELEMENT Salary (#PCDATA)> <IELEMENT Salary (#PCDATA)>
<IELEMENT Dept_name (#PCDATA)> <IELEMENT Dept name (#PCDATA)>
> <!IELEMENT Course_name (#PCDATA)>
1>
() The resulting XML-DTD generated from (b) The resulting XML-DTD generated from
Source 1 Source 2.

Figure 8.9 Multiple sources integration by merging the XML-DTD of each source into the
unified XML-DTD.

(2) Joining the XML results. This process occurs when the join predicates of a global
transaction are decomposed into join predicates of individual sub-transaction that consists of
the corresponding physical concepts/properties residing in the different sources. In this
process, only the records with the same physical key properties and data values are joined to
form the unified XML-based data. Thejoining process is defined in Definition 8.10.

87

Definition 8.10 Joining of the XML results.

Given the results R(q9 and R(qb). Letaa be arecord in R(qJ and Bb be a record in R(gh),
Ka, Kb, be the set of mapping key properties of records a2 and sb. Let Xa and xn be the set
of mapping non-key properties of records aa and sb, respectively, as given in Definition 8.9.
The joining of each record in among the labeled tree Ri occurs when the set ka is matched
with the set kb, that is,

If (ka =xb) then
Add (xa u IflU Xb)to UXML, if (vec inka) € ofthe global transaction, or
Add (Xa Xb) to UXML, if (vee inko) g ofthe global transaction.

The process of comparing and joining of the XML results to form the unified XML-
based data is carried out by the algorithms given in Appendix F.

SELECT Instructor.st_id, Instructor.st_name,
Instructor.position, Administrator.resp
FROM Instructor, Administrator

WHERE Instructor.position = “Prof.” (a) A global transaction
AND Instructor.st_id = Administrator.st_id generated from the user
/\ interface agent.
SELECT Instructor_Member.inst_id, SELECT Admin_Member.Adm_id,
Instructor_ Member.inst_name, Admin_Member.Adm_name,
Instructor_Member.Ac_position Admin_Member.Responsibility
FROM Instructor_Member FROM Admin_Member

WHERE Instructor_Member.Ac_position = “Prof.”

(b) A sub-transaction decomposed from the (c) A sub-transacti‘on decomposed from the
global transaction sent to Source2. global transaction sent to Source3.

Figure 8.10 An example of the global transaction decomposition into sub-transactions.

The example in Figure 8.10 (a) depicts a global transaction that selects properties from
the virtual concepts Instructor and Adm inistrator. This example illustrates a partial
IS-A " relationship, where some (not all) instructors are administrators and some
administrators are instructors. However, these concepts are sub-concepts of the concept
staff. [f the physical concepts of these virtual concepts reside in different sources, the
sub-transactions will be generated without the join predicate of these physical concepts as

88

shown in Figures 8.10 (b) and (c). The returned results from each sub-transaction will
subsequently bejoined into a unified XML result.

Examples of integrating the XML documents and DTDs that are sent from multiple
sources Source2 and Source3 based on the global transaction in Figure 8.10 (a) are
llustrated in Figures 8.11 and 8.12. The XML results are represented as the labeled trees R/
and Rz in Figures 8.11 (a) and (b), respectively. In this example, both Source2 and
Source3 return two records shown below.

¢) XML tree structure
re&resentlng the unified
L document.
[stid | [st_name] [position][_resp |
“11111” “David” “Prof" “President™

Instructor_Member Admin_Member Admin_Member

Instructor_Member

Ilns(_idl [Inst_namcl lAc _posi(ion] Ilnst_id] m_nnmg] IA: _positionJ IAdm_idI LAdm_nami] [Rcsponsibilityl IAdm_id' lAdm_namcl IRcsponsibiIityI

“11111" “David” “Prof™ “14111" “Mary” “Prof” “11111” “David" “President” “13222" “Willy” “Vice President™
(a) XML tree structure &RI) representing (b) XML tree structure (R2) representing
XML document sent from source2. XML document sent from sources.

Figure 8.11 Multiple sources integration by joining the XML documents into the
unified XML document.

For the tree Ri, the first record contains a finite set ofkey k aj and non-key x ai, that is,
kal={(“st.id","11111")}, and
xai = {(* t_name”,"David"), (“position”, “Prof.")}

The second record contains afinite set of key kci2and non-key x a 2, that is,
ka2= { (“st_id", " 14111")}, and

89

Xa2={(“st_name”, “Mary"), (“position”, “Prof.")}.
For the tree R2, the first record contains a finite set of key Kb I and non-key Xhi, that is,

Kb\ = { (“st.id”, " 11111")}, and
Xb, = {(“st_name”, “David"), (“resp”, “President")}.

The second record contains a finite set of key Kb2and non-key Xb2, that is,
Kb2={ (“st_id", * 13222") }, and
Xb2={(*“st_name”, “Willy"), (“resp”, “Vice President")}.

For this example, only the first record of each tree Ri and R2will bejoined according to
Kai = Kbl, Since st id is the designated virtual property in the global transaction, that is,
st_id 6 , therefore Kai Xa\ Xbi are added to the set UXML. The unified XML-
based data becomes

UXML = {{(* t_id",“11111"), (“st_name",“David"), (“position”, “Prof.”),
(“resp”,“President”) }}

<IDOCTYPE UXML [
<IELEMENT UXML (Result)+>
<IELEMENT Result (st_id, , st name
position, resp)>

<IELEMENT st name (#PCDATA)> . i

<IELEMENT position (PCDATA)> umitied, SMEasec. datl on

<IELEMENT resp (#PCDATA)> user’s view generated by the

managing agent

1>
<IDOCTYPE Source2 [<IDOCTYPE Source3 [
<!ELEMENT Source2 (Instructor_Member)+> <IELEMENT Source3 (Admin_Member)+>
<!ELEMENT Instructor_Member (Inst_name, <!IELEMENT Admin_Member (Adm_name,
Ac_position)> Responsibility)>
<IATTLIST Instructor_Member Inst_id ID <IATTLIST Admin_Member Adm_id ID
#REQUIRED> #REQUIRED>

<!ELEMENT Inst_name (#PCDATA)> <IELEMENT Adm_name (#PCDATA)>
<!IELEMENTACc_postion (#PCDATA)> <!IELEMENT Responsibility (#PCDATA)>
> >

() The resulting XML-DTD generated from (b) The resulting XML-DTD generated from

Source 1 Source 2.

Figure 8.12 Multiple sources integration by joining the XML-DTD of each source into the
unified XML-DTD.

90

8.3 The Query Validation

In order to ensure that the query process returns the relevant answers, query validation is
required. The validation process is carried out in two steps, namely, query requirement
correctness validation and result correctness validation.

8.3.1 The Query Requirement Correctness Validation

This process is carried out at the first step of the global transaction creation during the query
normalization process. The objective is to match the requested virtual properties/concepts
from the structural requirements of a user's query with the virtual properties/concepts
residing in the metadata dictionary.

Definition 8.11 Validation of the query correctness.

Given a user's query (Q) containing the set of target properties): \g-FIIVi =
=1 } and target concepts (C): {QIV/: L..,m} Letc ={WIVi=1,., }he
afinite set ofvirtual concepts in the metadata dictionary, and ={wu IV/=1.m) be
a finite set of virtual properties of the virtual concept \Lk the set (G) s comect if Y0 ¢

and vpij € R\Q), where Vi= 1., jvy=1..,m.
8.3.2 The Result Correctness Validation

This process takes place after the unified XML-based data is generated. The result
correctness aims to verify that the virtual properties of the unified XML-based data match
the requested virtual properties of the global transaction. The validation algorithms are
given in Appendix G.

Definition 8.12 Validation ofthe result correctness.

Given a unified XML-based data UXML = {Xi | Vi=l,..., }, such that each Xk = {<VPj,
VPDj> vy =1 m} is afinite setofvirtual property and data value pair. Let UDTD = {v,
IV/-1,..., } beafinite set of virtual properties in UXML and SEL = { /lvy=l,..., m} be a
finite set of selected virtual properties S(or attributes) in the SELECT clause of a global
transaction Q. The unified XML-based data is correct if set UDTD = SEL.

	CHAPTER 8 QUERY PROCESSING FOR THE HETEROGENEOUS INFORMATION SOURCES USING METADATA DICTIONARY APPROACH
	8.1 The Accessing Process of the Heterogeneous Information Sources
	8.2 The Integrating Process of the Heterogeneous Information Sources
	8.3 The Query Validation

