บทที่ 2 ทฤษฎี

2.1 ตัวดูดซับ

ปัจจัยสำคัญที่ใช้ในการพิจารณาเลือกตัวดูดขับที่เหมาะสมเพื่อใช้ในการแยกแก๊สผสม หรือของเหลวผสม ได้แก่ ความสามารถของตัวดูดขับในการเลือกดูดขับสารชนิดใดชนิดหนึ่งได้ดี การไม่เกิดปฏิกิริยากับสารประกอบอื่น ๆ และความยากง่ายของการฟื้นฟูสภาพเพื่อนำกลับมาใช้ ใหม่ ดังนั้นการเลือกตัวดูดขับจึงพิจารณาตามความเหมาะสม

2.1.1 ตัวดูดซับในอุตสาหกรรม

ตัวดูดซับที่ใช้ในอุตสาหกรรมสามารถแบ่งออกเป็น 2 กลุ่ม คือตัวดูดซับซนิดถ่านที่มีธาตุ คาร์บอนเป็นองค์ประกอบหลัก และตัวดูดซับซนิดสารประกอบอนินทรีย์ การประยุกต์ใช้งานใน อุตสาหกรรมของตัวดูดซับแต่ละซนิดสรุปได้ในตารางที่ 2.1

ตา <u>ร</u> างที่	2.1	ตัวดูดซับในอุตสาหกรรม	[17]

ตัวดูดขับ	การประยุกใช้	
ถ่านกัมมันต์	ใช้ในการแยกแก๊สและสารประกอบอินทรีย์ที่ไม่มีขั้ว	
(Activated carbon)	เช่น ตัวทำละลาย ไอของแก๊สโซลีน ใช้แยกสารมีพิษ	
คาร์บอนโมเลกูล่าร์ซีพ	กระบวนการทำไฮโดรเจนให้บริสุทธิ์ กระบวนการแยก	
(Carbon molecular sieves, CMS)	อากาศ กระบวนการทำให้อากาศบริสุทธิ์	
ซีโอไลต์ (Zeolites) : สังเคราะห์ (Synthesis)	กำจัดความขึ้น ทำไฮโดรเจนบริสุทธิ์ การทำอากาศ	
ธรรมชาติ (Natural)	ให้บริสุทธิ์ การแยกอากาศหรือแยกสารอะโรมาติก	
ซิลิกาเจล (Silica gel)	กำจัดความชื้นในแก๊สที่อุณหภูมิห้อง	
อะลูมินา (Activated alumina)	กำจัดความชื้นในแก๊สที่อุณหภูมิสูง	

จากตารางที่ 2.1 พบว่าตัวดูดซับที่นิยมใช้ในกระบวนการแยกอากาศมีอยู่ด้วยกัน 2 ชนิด ดังแสดงในตารางที่ 2.2

	~ ~		
ตารางพ	2.2	ตวดูดขบทนยม เข เนกระบวนการแยกอากาศ [4]

ตัวดูดซับ	การประยุกใช้		
1. ซีโอไลต์	- เป็นผลึกของสารประกอบอลูมิโนซิลิเกต (Aluminosilicate) ของโลหะหมู่ I และ		
	หมู่ II ซีโอไลต์มีสูตรโมเลกุลทั่วไปดังนี้		
	$M_{x/n} [(AIO_2)_x (SiO_2)_y . zH_2O$		
	เมื่อ M คือ โลหะหมู่ I และหมู่ II		
	- โครงสร้างของผลึกซีโอไลต์ประกอบด้วยผลึกทรงสี่หน้าของ SiO4 และ AlO4 ซึ่งแต่		
	ละหน่วยจัดเรียงตัวต่อกันโดยการใช้ออกซิเจนร่วมกัน เกิดเป็นโครงสร้างที่มี		
	ลักษณะเป็นวงของอะตอมออกซิเจน และต่อกันเป็นโครงสร้างที่เป็นภูปทรงหลาย เหลี่ยม ดังแสดงในภูปที่ 2.1		
	- ผลึกซีโอไลต์ชนิดต่าง ๆ ขึ้นอย่กับสัดส่วนของ ∨/x ซึ่งสัดส่วนดังกล่าวมีค่าตั้งแต่ 1		
	ขึ้นไป ลักษณะการจัดเรียงตัวของ SiO และ AIO และชนิดของโลหะประจบวก		
	ทำให้ซีโอไลต์แบ่งออกเป็นชนิดต่าง ๆ มากมาย		
	 ปริมาณการดูดขับด้วยซีโอไลต์ชนิด A , X และ Y ของแก๊สไนโตรเจนสูงกว่าแก๊ส 		
	ออกซิเจน ประมาณ 3-4 เท่า [4] ณ สภาวะเดียวกันดังแสดงในรูปที่ 2.2 แม้ว่า		
	อัตราการดูดซับของแก๊สไนโตรเจนและแก๊สออกซิเจนจะใกล้เคียงกัน แก๊ส		
	ไนโตรเจนซึ่งถูกดูดซับได้มากกว่าแก๊สออกซิเจนจะถูกแยกออกจากแก๊สออกซิเจน		
2. คาร์บอนโมเลกู	 คาร์บอนโมเลกูล่าร์ซีพเป็นถ่านชนิดพิเศษชนิดหนึ่งที่สามารถดูดขับได้มากขึ้นเมื่อ 		
ล่าร์ซีพ	พื้นที่ผิวในการดูดซับถูกเพิ่มให้มากขึ้น		
	- คาร์บอนโมเลกูล่าร์ซีพผลิตจากวัตถุดิบได้หลายชนิดที่มีคาร์บอนเป็นองค์ประกอบ		
	เช่น ถ่านโค๊ก ถ่านหิน โดยผ่านขั้นตอนการทำให้เป็นถ่านและขั้นตอนการเพิ่มพื้นที่		
	ผิว ทำให้มีโครงสร้างเป็นรูพรุนและมีพื้นที่ผิวจำเพาะสูง และมีการกระจายขนาดของ		
	ภูพมุนที่อยู่ในช่วงค่อนข้างแคบ 4-9 A [°] ดังแสดงในภูปที่ 2.3 [4]		
	 กลไกการดูดขับของคาร์บอนโมเลกูล่าร์ซีพ ขึ้นอยู่กับอัตราการแพร่ของแต่ละ 		
	โมเลกุลที่แตกต่างกัน ดังนั้นในกระบวนการแยกอากาศ แก๊สออกซิเจนจึงถูกแยก		
	ออกจากแก๊สไนโตรเจน เนื่องจากแก๊สออกซิเจนแพร่เข้าไปในรูพรุนได้เร็วกว่าแก๊ส		
	ในโตรเจน ดังแสดงในรูปที่ 2.4 [4]		

รูปที่ 2.1 โครงสร้างของซีโอไลต์ (a) secondary building units และ (b) polyhedral units [4]

รูปที่ 2.2 สมดุลการดูดขับของแก๊สในโตรเจนและแก๊สออกซิเจนด้วยซีโอไลต์ชนิด 5A [4]

รูปที่ 2.3 การกระจายขนาดรูพรุนของ (a) ซีโอไลต์ชนิด 3A (b) 4A (c) 5A (d) 10X (e) 13X (f) คาร์บอนโมเลกูล่าร์ชีพ และ (g) ถ่านกัมมันต์ [4]

รูปที่ 2.4 (a) สมดุลการดูดขับของแก๊สออกซิเจนและแก๊สไนโตรเจนด้วยคาร์บอนโมเลกูล่าร์ซีพ (b) อัตราการดูดขับด้วยคาร์บอนโมเลกูล่าร์ซีพซึ่งแสดงในรูปของสัดส่วนของปริมาณ การดูดขับที่สภาวะสมดุล [4]

2.1.2 ตัวดูดซับในธรรมชาติ

หินภูเขาไฟพบว่าจะมีปริมาณสารประกอบซิลิกาค่อนข้างมากประมาณร้อยละ 60 ถึง 70 โดยน้ำหนัก โดยกำเนิดแล้วหินภูเขาไฟเป็นหินกลุ่มที่เกิดจากการเย็นตัวของลาวา มีปริมาณไอน้ำ และแก๊สต่าง ๆ ละลายปนอยู่มาก ซึ่งสามารถแบ่งออกเป็น 2 กลุ่มตามลักษณะการเย็นตัวดังนี้

- 1. หินเพอร์ไลด์ เป็นหินภูเขาไฟที่เย็นตัวขณะที่ไหลไปตามพื้นผิว
- 2. หินพัมมิซ เป็นหินภูเขาไฟที่เย็นตัว ในขณะที่ลอยในอากาศก่อนตกถึงพื้นผิว
- 1) หินเพอร์ไลต์ (Perlite)

หินเพอร์ไลต์เป็นหินอัคนีที่มีส่วนประกอบคล้ายหินไรโอไลต์ (rhyolitic composition) [18] ไม่มีผลึกอยู่ภายในโครงสร้าง และมักจะมีน้ำอยู่ ทำให้หินนี้เมื่อแตกจะคล้ายก้นหอยอันเกิด จากการหดตัวเมื่อหินเย็นลง องค์ประกอบทางเคมีของหินเพอร์ไลต์แสดงในตารางที่ 2.3 หิน เพอร์ไลต์ส่วนใหญ่มีคุณสมบัติที่ขยายตัวได้ทันทีเมื่อได้รับความร้อนอย่างจับพลัน ทำให้หินมีคุณ ค่าในเชิงพาณิชย์ประมาณร้อยละ 70 ของผลผลิตเพอร์ไลต์ที่พองตัว นำไปใช้ผสมในปูนพลาส เตอร์ อีกร้อยละ 15 นำไปใช้ทำคอนกรีตเบา และที่เหลือนำไปใช้เป็นฉนวน เครื่องกรอง ขนาดกลาง ตัวปรับสภาพดิน ตัวเติมในสี ตัวควบคุมคุณภาพโคลนบ่อเจาะ เป็นต้น หินเพอร์ ไลต์ที่พองตัวจะเบา คือ จะมีน้ำหนักประมาณ 35.7 กิโลกรัมต่อปริมาตร 1 ลูกบาศก์เมตร แต่มักจะอ่อนและเปราะบาง ความเป็นฉนวนมักจะแปรผันไปตามความหนาแน่นของหิน กล่าวคือยิ่งมีความหนาแน่นน้อยก็ยิ่งเป็นฉนวนความร้อนได้ดี ดังนั้นจึงมักนำหินเพอร์ไลต์มาอัด แน่นเมื่อนำไปใช้ทำฉนวน [19]

1) หินพัมมิช (Pumice)

หินพัมมิซเป็นหินภูเขาไฟที่เกิดจากการเย็นตัวของลาวาในขณะที่ลอยในอากาศก่อนตกถึง พื้นผิว [18] มีลักษณะเป็นเส้นใยและช่องว่างจำนวนมาก ซึ่งช่องว่างนั้นก็คือรูพรุนที่เกิดจากการ ระเหยของก๊าซต่าง ๆ และไอน้ำ โดยส่วนที่เป็นเส้นใยก็คือ เนื้อหินซึ่งประกอบขึ้นด้วยแก้วภู เขาไฟที่ยังมีรูเป็นท่อขนาดเล็กอยู่ภายในเนื้อหินอีก โดยปกติหินพัมมิซจะนำไปใช้ประโยชน์ได้ หลายอย่าง เช่น สมัยก่อนถูกนำมาใช้ทำผงขัดตัว [19] ใช้ในการดูดซึมความชื้นและของเหลว ต่าง ๆ เป็นต้น

หินพัมมิช เป็นผลึกอลูมิโนซิลิเกต (Aluminosilicate) ของหินภูเขาไฟ ซึ่งมีลักษณะ เป็นเนื้อแก้ว มีสีจางและมีซิลิกามาก จะประกอบด้วยส่วนที่สำคัญ 3 ส่วนคือ ส่วนที่เป็นแก้ว ภูเขาไฟ ส่วนที่เป็นแร่ดินเหนียว และส่วนที่เป็นแร่ซีโอไลต์ [5] หินพัมมิชจะมีส่วนที่เป็นแร่ ดินเหนียว (Clay Minerals) เป็นส่วนประกอบที่สำคัญ ซึ่งมีโครงสร้างการจัดเรียงตัวอยู่ใน กลุ่มของแร่มอนต์โมริลโลไนต์ (Montmorillonites) หินเพอร์ไลต์และหินพัมมิชเกิดขึ้นพร้อมกัน ภายหลังการระเบิดของภูเขาไฟ องค์ประกอบทางเคมีภายในเนื้อหินทั้ง 2 ชนิดจึงคล้ายกันดัง แสดงในตารางที่ 2.3

2.1) แร่ดินเหนียว (Clay mineral group)

แร่ดินเหนียวมีองค์ประกอบทางเคมีเป็นกลุ่มไฮดรัสอะลูมินัสซิลิเกต (hydrous aluminous silicate) แต่มักมีไอออนของเหล็ก แมกนีเซียม แคลเซียม โปแตสเซียม โซเดียม เป็นต้น ประกอบอยู่ด้วย แร่ดินเหนียวส่วนใหญ่มีโครงสร้างเป็นฟิลโลซิลิเกต [7] ซึ่งมีโครง สร้างของหน่วยเซลล์เป็นแบบแผ่น เกิดจากชั้นของออกตะฮีดรอน (octahedron) 1 ชั้น แทรก อยู่ระหว่างกลางของชั้นเตตระฮีดรอน (tetrahedron) 2 ชั้นในแผ่น ยกเว้นแร่ดินเหนียวพวกแอต ตาปุลไกต์ จะมีลักษณะโครงสร้างเป็นไอโนซิลิเกต

โครงสร้างฟิลโลซิลิเกต [20]

โครงสร้างฟิลโลซิลิเกตแต่ละเตตระฮีดรอลใช้ออกซิเจนร่วมกัน 3 อะตอมกับเตตระฮีดรอล ข้างเคียง ดังแสดงในรูปที่ 2.5 โดยมีการจับตัวกันเป็นแผ่น อัตราส่วน Si : O = 2 : 5 แร่มัก เป็นเกล็ดหรือแผ่น มีรอยแตกที่สมบูรณ์ระหว่างแผ่นที่ยึดติดกันด้วยพันธะไอออนิก นอกจากนี้ หน่วยโครงสร้างอื่นอาจแทรกระหว่างแผ่นได้

ตารางที่ 2.3 องค์ประกอบทางเคมีของหินเพอร์ไลต์และหินพัมมิช [6]

องค์ประกอบ (%โดยน้ำหนัก)	เพอร์ไลต์	พัมมิซ
SiO2	72.63	66.86
Al ₂ O ₃	14.73	15.23
Fe ₂ O ₃	1.31	1.37
TiO2	0.05	0.17
CaO	1.58	1.17
MgO	0.27	0.91
Na ₂ O	2.04	1.09
K ₂ O	5.15	4.47
H₂O	0.49	1.97
LOI	1.80	6.32

แร่ที่มีโครงสร้างฟิลโลซิลิเกต ได้แก่

- 1. ทัลค์ (talc) Mg₃(Si₄O₁₀)(OH)₂
- 2. เซอร์เพนทีน (serpentine) $Mg_3(Si_2O_5)(OH)_8$
- 3. กลุ่มแร่ไมกา
 - 3.1 มัสโคไวท์ (muscovite) KAl₂(AlSi₃O₁₀)(OH)₂
 - 3.2 ไบโอไทท์ (biotite) K(Mg,Fe)₃(AlSi₃O₁₀)(OH)₂
 - 3.3 โฟลโกไปท์ (phogopite) KMg₃(AlSi₃O₁₀)(OH)₂
 - 3.4 เลพิโดไรท์ (lepidolite) K(Id,Al)₂₋₃(AlSi₃O₁₀)(O,OH,F)₂
- 4. กลุ่มแร่ดินเหนียว
 - 4.1 โครงสร้างเกาลินไนท์
 - เกาลินในท์ (kaolinite) Al₄Si₄O₁₀(OH)₈
 - ดิสออร์เดอร์เกาลินในท์ (disordered kaolinite) $Al_4Si_4O_{10}(OH)_8$
 - ดิกไคท์ (dickite) Al₄Si₄O₁₀(OH)₈
 - แฮลลอยไซท์ (halloysite) Al₂Si₂O₅(OH)₄.2H₂O
 - แอลโลเฟน (allophane) Al₂SiO₅.nH₂O
 - 4.2 โครงสร้างมอนท์โมริลโลไนท์
 - มอนท์โมริลโลไนท์ (montmorillonite) Al₄Si₈O₂₀(OH)₄
 - ี่ ฃาโปไนท์ (saponite) (Mg,Al)₆(Si,Al)₈O₂₀.(OH)₄
 - ี่ นั้นโทรในท์ (nontronite) Fe₂(Al,Si)₄O₁₀(OH)₂Na₀.₃.4H₂O
 - 4.3 โครงสร้างอิลไลท์
 - อิลไลท์ (illite) K_xAl₄(Si_{8-x}Al_x)O₂₀(OH)₄
 - 4.4 โครงสร้างคลอไรท์
 - คลอไรท์ (chlorite) (Mg,Fe)₃(Si,Al)₄O₁₀.(OH)₂(Mg,Fe)₃(OH)₆
 - 4.5 โครงสร้างเวอร์มิคูไลท์
 - ิเ∋่ เวอร์มิคูไลท์ (vermiculite) (OH)₄(Mg,Ca)_x(Si_{8-x}Al_x)(Mg,Fe)₆.O₂₀.yH₂O

2.2) โครงสร้างของแร่ดินเหนียว

ดินเหนียว หมายถึง แร่ดินเหนียวที่มีเม็ดแร่ขนาดเล็กปนกับสารอินทรีย์ สารแขวนลอย (colloid) และซิ้นส่วนแร่ชนิดอื่นที่มีขนาดเล็กมาก (น้อยกว่า 2 ไมครอน) ได้แก่ แร่ควอทซ์ เฟลด์สปาร์ โดโลไมท์ แคลไซท์ เป็นต้น [7]

แร่ดินเหนียวจะอ่อนตัวหรือมีสภาพพลาสติก (plasticity) แต่เมื่อเผาไฟจะแข็งตัวเป็นหิน นอกจากนี้ยังหดตัวได้เมื่อนำไปเผาให้แห้ง มีจุดหลอมตัว (melting temperature) ตั้งแต่ 1,000 – 1,600 ^oC แร่ดินเหนียวจัดเป็นแร่ทุติยภูมิ (secondary minerals) [7] เกิดจากการ สลายตัวของแร่ควอทซ์ เฟลด์สปาร์ ไมกาและคาร์บอเนต แร่ดินเหนียวเป็นแร่ประกอบหินของ หินตะกอน หินดินดาน ซึ่งจะสลายตัวกลายเป็นดินต่อไป

ชนิดของแร่ดินเหนียวจะแบ่งตามโครงสร้างภายในและการจัดเรียงในโครงสร้างของแร่ใน แต่ละหน่วยซึ่งประกอบด้วยชั้นที่สำคัญ 2 ชั้น [20] วางตัวข้อนกัน ได้แก่

1. ชั้นของผลึกทรงสี่หน้า (tetrahedron)

เป็นการจับตัวของซิลิกาเตตระฮีดรอน (ซึ่งประกอบด้วยไอออนของซิลิกอนกับไอออนของ ออกซิเจน) หลายขุดเข้าด้วยกันเป็นชั้น ดังแสดงในรูปที่ 2.6 โดยมีการใช้ออกซิเจนร่วมกัน แต่ละหน่วยของเตตระฮีดรอนในชั้นนี้ มีสูตรเคมีเป็น Si₂O₅ หรือถ้าหากมีไอออนของไฮโดรเจนอยู่ สูตรเคมีแทนแต่ละหน่วยจะเป็น Si₂O₃(OH)₂

2. ชั้นของผลึกทรงแปดหน้า (octahedral)

เป็นการจับตัวของไอออนอลูมิเนียมหรือแมกนีเซียม 1 ไอออนกับไฮดรอกซิล 6 ไอออน ทำให้ได้รูปออกตะฮีดรอน (8 หน้า) แต่ละหน่วยจะจับต่อเนื่องกันเป็นชั้น โดยมีการใช้ไฮดรอก ซิลร่วมกัน ดังแสดงในรูปที่ 2.7 อนึ่งในชั้นของออกตะฮีดรอนอาจมีการแทนที่โดยไอออนที่มี ขนาดใกล้เคียงกัน เช่น ไอออนของ Fe³⁺ หรือ Mg²⁺ แทนที่ Al³⁺ หน่วยของออกตะฮีดรอน ในชั้นนี้ก็จะมีสูตรเคมีเป็น Al₂(OH)₆ หรือ Mg₃(OH)₆ ถ้ามีการสลับชั้นกันในแผ่นแร่ก็จะทำให้ ได้แร่ดินเหนียวต่างชนิดกันไป

(a)

(c)

LEGEND

0

OXYGEN

SILICON

(b)

(d)

(a) Tetrahedral arrangement of Si and O
(b) Perspective sketch of tetrahedron linking
(c) Projection of tetrahedron on plane of sheet
(d) Top view of tetrahedron sheet

รูปที่ 2.6 โครงสร้างของผลึกทรงสี่หน้า [20]

- (a) Octahedral arrangement of Al or Mg with O or OH
- (b) Perspective sketch of tetrahedron linking
- (c) Projection of tetrahedron on plane of sheet
- (d) Top view of tetrahedron sheet

รูปที่ 2.7 โครงสร้างของผลึกทรงแปดหน้า [20]

2.3) โครงสร้างของมอนท์โมริลโลไนท์ [20]

โครงสร้างมอนท์โมริลโลไนท์ในหน่วยผลึก ดังแสดงในรูปที่ 2.8 มีส่วนประกอบ โครงสร้างดังนี้

 มีชั้นของผลึกทรงแปดหน้า 1 ชั้น แทรกอยู่ระหว่างกลางของชั้นผลึกทรงสี่หน้า 2 ชั้น (เรียกโครงสร้างแบบนี้ว่า t – o – t) ดังแสดงในรูปที่ 2.9 มีไส้ตรงกลางแต่ละชั้น จะยึดติดกัน อย่างหลวม ๆ โดยมีโมเลกุลของน้ำเป็นตัวเชื่อมระหว่างหน่วยเซลล์ แกนของแร่จึงมีระยะทางไม่ แน่นอน ระยะแกนขึ้นอยู่กับจำนวนน้ำที่เป็นตัวกลาง

2. อาจมีไอออนของแมกนีเซียมเข้าไปแทนที่อลูมิเนียม ในชั้นออกตะฮีดรอลได้บ้าง

 แต่ละหน่วยเซลล์จะมีน้ำเป็นตัวเชื่อม ปริมาณน้ำนี้อาจเพิ่มขึ้นได้และอาจมีไอออน ของแคลเซียม โซเดียม และโพแทสเซียมแทรกอยู่ระหว่างหน่วยเซลล์

แร่ที่สำคัญในกลุ่มนี้ ได้แก่ แร่มอนท์โมริลโลไนท์ ซาโปไนท์ และนันโทรไนท์ โดยมี รายละเอียดดังนี้

1. แร่มอนท์โมริลโลไนท์

เป็นแร่ที่มีรูปผลึกระบบโมโนคลีนิก มีสูตรเคมีเป็น Al₄Si₈O₂₀(OH)₄ แร่มอนท์โมริลโลไนท์ เป็นแคลเซียมมอนท์โมริลโลไนท์ (Ca – montmorillonite : Ca_{0.5}(Mg , Al)₃Si₈O₂₀(OH)₄.×H₂O หรือเป็นโซเดียมมอนท์โมริลโลไนท์ (Na – montmorillonite : Na_{0.5}(MgAl₃)Si₈O₂₀(OH)₄.×H₂O ทั้งนี้เพราะโลหะมีการแทนที่กันได้ เรียกว่า การแลกเปลี่ยนไอออนที่เป็นเบส (base exchange) โดยโซเดียมเข้าไปแทนที่แคลเซียม นอกจากนี้ในโครงสร้างของแร่มอนท์โมริลโลไนท์ ยังมีการแทน ที่อลูมิเนียมด้วยแมกนีเซียม

2. แร่ซาโปไนท์

เป็นแร่ที่มีรูปผลึกอยู่ในระบบโมโนคลีนิก มีสูตรเคมีเป็น (Mg , A!)₆(Si , Al)₈O₂₀.(OH)₄ แร่นี้มีโครงสร้างเหมือนแร่มอนท์โมริลโลไนท์ แต่ไอออนที่เป็นอลูมิเนียมถูกแทนที่ด้วยแมกนีเซียม 3. แร่นั้นโทรไนท์

เป็นแร่ที่มีรูปผลึกอยู่ในระบบโมโนคลีนิก มีสูตรเคมีเป็น Fe₂(Al,Si)₄O₁₀(OH)₂Na₀₃(H₂O)₄ แร่นี้มีโครงสร้างเหมือนแร่มอนท์โมริลโลไนท์ แต่ไอออนที่เป็นอลูมิเนียมถูกแทนที่ด้วยแมกนีเซียม

รูปที่ 2.8 โครงสร้างของแร่มอนท์โมริลโลไนท์ [20]

2.2 ทฤษฎีการดูดซับแก๊ส

การดูดขับ (Adsorption) เป็นกระบวนการที่ตัวที่ถูกดูดขับซึ่งเป็นโมเลกุลของสาร ประกอบในวัฏภาคแก๊สหรือของเหลว (Adsorbate) ยึดเกาะที่ผิวของตัวดูดขับ (Adsorbent) ที่ เป็นของแข็ง โมเลกุลของสารประกอบดังกล่าวนี้อาจยึดเกาะติดเพียง 1 ชั้นหรือมากกว่าก็ได้ [17] การดูดขับสามารถนำไปใช้ในการแยกของไหลเนื้อผสม (heterogeneous fluid) หรือของไหลเนื้อ เดียว (homogeneous fluid) ที่แยกโดยวิธีอื่นได้ยาก เช่น การแยกของไหลผสมที่มีจุดเดือดใกล้ เคียงกัน เป็นต้น

การดูดขับแบ่งออกได้เป็น 2 ชนิด คือ การดูดขับทางกายภาพ และการดูดขับทางเคมี [17] โดยพิจารณาจากแรงของการดูดขับระหว่างผิวของของแข็งกับโมเลกุลของแก๊สที่ถูกดูดขับ

1. การดูดขับทางกายภาพ (Physical Adsorption)

เป็นการดูดซับที่โมเลกุลของตัวที่ถูกดูดซับยึดเกาะกับผิวของตัวดูดซับด้วยแรงแวนเดอร์ วาร์ล (van der Waals Forces) ซึ่งเป็นแรงชนิดเดียวกันกับแรงดึงดูดระหว่างโมเลกุลหรือระหว่าง ประจุและปริมาณที่ถูกดูดซับจะลดลงเมื่อ อุณหภูมิของระบบเพิ่มขึ้น เนื่องจากเป็นปรากฏการณ์ คายความร้อน (exothemic)

2. การดูดซับทางเคมี (Chemical Adsorption)

เป็นการดูดซับที่โมเลกุลของตัวที่ถูกดูดซับยึดเกาะกับผิวของตัวดูดซับด้วยพันธะเคมี โดยอาจเกิดขึ้นเนื่องจากการที่โมเลกุลของตัวที่ถูกดูดซับและผิวของตัวดูดซับมีการแลกเปลี่ยน อิเล็กตรอน หรือใช้อิเล็กตรอนร่วมกัน หรือเกิดปฏิกิริยาเคมีขึ้น การดูดซับชนิดนี้จำเป็นต้องใช้ พลังงานกระตุ้นเสมือนหนึ่งเกิดปฏิกิริยาเคมี

ปัจจัยที่มีผลต่อกระบวนการแยกด้วยการดูดซับคือ

1. สมดุลการดูดซับ (adsorption equilibrium)

2. อัตราการดูดซับ (adsorption rate)

2.2.1 สมดุลการดูดซับแก๊ส

สำหรับการดูดซับสารองค์ประกอบเดียว เมื่อให้ตัวที่ถูกดูดซับสัมผัสกับตัวดูดซับในระยะ เวลาที่นานเพียงพอจะเกิดสมดุลการดูดซับ ซึ่งในขณะนั้นปริมาณของสารที่ถูกดูดซับไว้จะขึ้นกับ อุณหภูมิ (T) และความดันย่อย (P) ของตัวที่ถูกดูดซับนั้น ดังแสดงในสมการ 2.1

ปริมาณที่ถูกดูดซับ (q) สามารถแสดงอยู่ในหน่วยของปริมาตรการดูดซับต่อหน่วยมวล ของตัวดูดซับ โมลที่ถูกดูดซับต่อหน่วยมวลของตัวดูดซับหรือมวลที่ถูกดูดซับต่อหน่วยมวลของตัว ดูดซับซึ่งความสัมพันธ์ของสมดุลการดูดซับมักเสนอในลักษณะของปริมาณการดูดซับในตัวดูดซับ กับความดันสำหรับการดูดซับแก๊สหรือกับความเข้มข้นสำหรับการดูดซับในของเหลง ณ อุณหภูมิ คงที่ สำหรับสมดุลการดูดซับแก๊ส สามารถแบ่งออกได้ 5 ลักษณะ ดังแสดงในรูปที่ 2.10

รูปที่ 2.10 ลักษณะสมดุลการดูดขับแก๊ส [4]

1) สมดุลการดูดซับของเฮนรี่ [17]

เมื่อปริมาณที่ถูกดูดซับ (q) มีค่าน้อย ๆ โมเลกุลของตัวที่ถูกดูดซับไว้มีผลกระทบต่อกัน ค่อนข้างน้อย ลักษณะดังกล่าวมักเกิดขึ้นเมื่อตัวถูกดูดซับมีความเช้มข้นต่ำ ๆ หรือมีปริมาณที่ ถูกดูดซับน้อย ภายใต้สภาวะดังกล่าวพบว่า ปริมาณที่ถูกดูดซับเป็นสัดส่วนโดยตรงกับความดัน ย่อยของตัวถูกดูดซับดังรูปที่ 2.11 และแสดงความสัมพันธ์ได้ตามสมการ 2.2

$$q = K_{H}P$$
(2.2)

รูปที่ 2.11 สมดุลการดูดซับเชิงเส้น

โดยที่ K_H คือ ค่าคงที่สมดุลการดูดซับ ซึ่งความสัมพันธ์ดังกล่าวสอดคล้องตามกฎของ เฮนรี่ (Henry 's Law) บางครั้งจึงเรียกว่า ค่าคงที่สมดุลการดูดซับของเฮนรี่

ค่าคงที่สมดุลการดูดซับจะขึ้นกับอุณหภูมิของระบบ ซึ่งสอดคล้องกับปฏิกิริยาคายความ ร้อน คือ เมื่ออุณหภูมิเพิ่มขึ้น ปริมาณการดูดซับจะลดลงตามสมการของ van't Hoff [4] ดัง แสดงในสมการ 2.3

$$\frac{\partial \ln K}{\partial (1/T)} = \frac{\Delta H_{ads}}{R}$$
(2.3)

เมื่อ ΔH_{ads} คือความร้อนของการดูดซับ ถ้าความร้อนของการดูดซับไม่ขึ้นกับอุณหภูมิ ล็อกการิธึม ของค่าคงที่สมดุลการดูดซับ (In K_H) จะเป็นสัดส่วนส่วนกับส่วนกลับของอุณหภูมิ (1/T) ดังนั้น ค่าความร้อนของการดูดซับหาได้จากความซันของสมการเส้นตรงระหว่างค่าคงที่สมดุลการดูดซับ (In K_H) กับส่วนกลับของอุณหภูมิ (1/T) 2) สมดุลการดูดซับของแลงเมียร์ [17]

สำหรับการดูดซับที่เกิดขึ้นเฉพาะบนพื้นผิวของตัวดูดซับเท่านั้น แม้ว่าปริมาณการดูดซับ จะเพิ่มขึ้นได้เมื่อความดันเพิ่มขึ้น แต่ปริมารการดูดซับจะถูกจำกัดด้วยพื้นที่ผิวของตัวดูดซับที่ จำกัด ดังนั้นสมการความสัมพันธ์ของสมดุลการดูดซับแก๊สคือ

$$\frac{q}{q_s} = \frac{K_L P}{1 + K_L P}$$
(2.4)

เมื่อ q_s เป็นปริมาณที่ถูกดูดขับสูงสุด และ K_t เป็นค่าคงที่ของแลงเมียร์ (Langmuir 's constant) เมื่อความดันของระบบเพิ่มขึ้น ปริมาณการดูดซับจะเข้าใกล้ปริมาณการดูดซับสูงสุดแต่ความ ดันของระบบจะต้องต่ำกว่าความดันอิ่มตัวของแก๊สที่ถูกดูดซับ ณ อุณหภูมิที่เกิดการดูดซับ สม ดุลการดูดซับมีลักษณะตามแบบที่ I ดังรูปที่ 2.10

3) สมดุลการดูดซับของฟรอยดลิช [17]

สำหรับการดูดซับที่ปริมาณการดูดซับไม่ถูกจำกัดด้วยพื้นที่ผิวของตัวดูดซับ นั่นคือ ปริมาณการดูดซับยังคงเพิ่มขึ้นได้เมื่อความดันของระบบเพิ่มสูงขึ้น สมการความสัมพันธ์ของสม ดุลการดูดซับคือ

$$q = K_F P^n , n \neq 1$$
 (2.5)

โดยที่ K_F คือ ค่าคงที่สมดุลการดูดซับของฟรอยดลิช (Freundlich 's constant) และ n คือ ค่าคงที่ซึ่งไม่เท่ากับหนึ่ง ถ้า n น้อยกว่า 1 สมดุลการดูดซับมีลักษณะเดียวกับสมดุล ชนิดที่ I ในรูปที่ 2.10 และถ้า n มากกว่า 1 สมดุลการดูดซับจะมีลักษณะเดียวกับสมดุลชนิด ที่ III ในรูปที่ 2.10 สำหรับการดูดขับที่เกิดขึ้นบนชั้นของตัวถูกดูดขับซึ่งอยู่บนผิวของตัวดูดซับ มีผลให้ ปริมาณการดูดขับไม่ถูกจำกัดด้วยพื้นผิวของตัวดูดขับ และปริมาณการดูดซับจะเพิ่มขึ้นอย่างรวด เร็วเมื่อความดันของระบบลู่เข้าสู่ใกล้ความดันไอของสารที่ถูกดูดซับ ซึ่งมีลักษณะคล้ายกลับสม ดุลการดูดซับชนิดที่ II ในรูปที่ 2.10 สมการความสัมพันธ์ของสมดุลการดูดซับคือ

$$\frac{q}{q_s} = \frac{K_{BET}(P/P_s)}{(1 - (P/P_s) + K_{BET}(P/P_s))(1 - (P/P_s))}$$
(2.6)

โดยที่ q_s คือปริมาณที่ถูกดูดซับเต็มพื้นผิวของตัวดูดซับหรือบนพื้นผิว 1 ชั้น P_s คือ ความดันไออิ่มตัวของตัวที่ถูกดูดซับได้ และ K_{BET} คือค่าคงที่ของสมดุลการดูดซับตาม BET นอกจากนี้สมดุลการดูดซับแบบนี้สามารถประมาณค่าได้ใกล้เคียงกับความเป็นจริง เมื่อความดัน ของระบบสอดคล้องกับเงื่อนไขข้างล่างนี้

$$0.05 \leq P/P_{s} \leq 0.35$$

2.2.2 การวัดสมดุลการดูดซับ

การวัดสมดุลการดูดซับสำหรับแก๊สชนิดหนึ่ง ควรวัดทั้งปริมาณแก๊สที่ถูกดูดซับไว้บนตัว ดูดซับ และปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิที่กำหนดเลือกไว้ โดยทั่วไปเพื่อให้สมดุล การดูดซับเกิดขึ้นได้อย่างรวดเร็ว การวัดสมดุลการดูดซับแก๊สจึงมักเริ่มต้นที่ความดันสูญญากาศ สัมบูรณ์ การวัดสมดุลการดูดซับแก๊สดังกล่าวข้างต้นสามารถแบ่งออกเป็น 2 วิธี คือ

- วัดปริมาณแก๊สที่เหลือในลักษณะของความดันของระบบที่เปลี่ยนไปและวัดปริมาณแก๊สที่เติม เข้าสู่ระบบ จากข้อมูลทั้งสองส่วนสามารถคำนวณหาปริมาณที่ถูกดูดซับได้ วิธีนี้ต้องการ อุปกรณ์วัดความดันที่ละเอียดมาก และปริมาตรของระบบที่ถูกต้อง เครื่องมือวัดชนิดนี้ สามารถแสดงได้ดังรูปที่ 2.12
- 2. วัดปริมาณที่ถูกดูดขับไว้บนผิวของตัวดูดขับ ซึ่งอาศัยการวัดมวลของตัวดูดขับที่เพิ่มขึ้น และ ปริมาณแก๊สที่เหลือของความดันของระบบที่เปลี่ยนไป เมื่อเติมแก๊สที่ต้องการดูดขับเข้าสู่ ระบบ เช่น CAHN 2000, McBain Bark [22] ซึ่งใช้ง่ายและวัดปริมาณการดูดขับได้ถึง ระดับ 0.1 μg วิธีนี้จำเป็นต้องใช้เครื่องมือวัดมวลที่มีความแม่นยำมาก ๆ และอุปกรณ์วัด ความดันที่ละเอียดพอควร เครื่องมือวัดชนิดนี้สามารถแสดงได้ดังรูปที่ 2.13

รูปที่ 2.12 ชุดอุปกรณ์วัดปริมาณแก๊สที่ถูกดูดขับด้วยวิธีเชิงปริมาตร [22]

×

ส่วนการวัดสมดุลการดูดซับ ณ ความดันบรรยากาศหรือสูงกว่า และอุณหภูมิที่กำหนด โดยให้แก๊สผสมระหว่างแก๊สที่ต้องการดูดซับกับแก๊สเฉื่อยต่อการดูดซับ ไหลผ่านชั้นตัวดูดซับที่ จัดเตรียมไว้ สามารถแบ่งออกได้ 2 วิธีคือ

- วิธีวัดสมดุลการดูดขับ โดยให้แก๊สผสมที่กำหนดความเข้มข้นไว้ไหลผ่านขั้นตัวดูดขับ จน กระทั่งแก๊สผสมที่ไหลผ่านขั้นตัวดูดขับออกมามีความเข้มข้นเท่ากับแก๊สผสมที่ไหลเข้าขั้นตัว ดูดขับ ปริมาณการดูดขับคำนวณได้จากผลต่างของปริมาณแก๊สดูดขับที่ไหลเข้าสู่ชั้นตัวดูด ขับกับไหลออกจากขั้นตัวดูดขับ ซึ่งสมดุลกับความเข้มข้นของแก๊สผสมนี้ไหลเข้าสู่ชั้นตัวดูด ขับ นอกจากนี้ชั้นตัวดูดขับต้องกว้างเพียงพอให้เกิดสมดุลการดูดขับได้
- วิธีวัดค่าคงที่ของสมดุลการดูดซับ โดยการเติมแก๊สที่ถูกดูดซับปริมาณน้อย ๆ เข้าในแก๊ส เฉื่อยที่ไหลผ่านชั้นตัวดูดซับ ค่าคงที่ของสมดุลการดูดซับสามารถคำนวณได้จากช่วงเวลาที่ แก๊สที่ถูกดูดซับเคลื่อนที่ผ่านชั้นตัวดูดซับ วิธีนี้ใช้ได้ดีเฉพาะสมดุลการดูดซับที่สอดคล้องกับ สมการของเฮนรี่

2.3 กลไกการดูดซับ

การดูดขับเป็นกระบวนการที่ตัวที่ถูกดูดขับเคลื่อนที่จากวัฏภาคของไหลเข้าสู่ภายในตัวดูด ขับซึ่งมีรูพรุนขนาดเล็ก ดังนั้นอัตราการดูดขับจึงขึ้นกับอัตราการแพร่ของโมเลกุลของสารที่ถูกดูด ขับไปบนพื้นผิวของตัวดูดขับ ดังนั้นกลไกของการดูดขับจะประกอบด้วยการแพร่ผ่านขั้นฟิล์มรอบ ตัวดูดขับ ซึ่งเป็นขั้นตอนที่ตัวถูกดูดซับเคลื่อนที่จากวัฏภาคของไหลเข้าสู่พื้นผิวภายนอกของตัวดูด ขับ และการแพร่ผ่านรูพรุนของตัวดูดซับ ซึ่งเป็นขั้นตอนที่ตัวถูกดูดขับเคลื่อนที่จากพื้นผิวภายนอก ของตัวดูดขับผ่านรูพรุนของตัวดูดซับ ซึ่งเป็นขั้นตอนที่ตัวถูกดูดขับเคลื่อนที่จากพื้นผิวภายนอก ของตัวดูดขับผ่านรูพรุนของตัวดูดซับ ดังแสดงในรูปที่ 2.14 ขั้นตอนที่ช้าที่สุดระหว่างการแพร่ ผ่านขั้นฟิล์มรอบตัวดูดซับ และการแพร่ผ่านรูพรุนของตัวดูดขับจะเป็นขั้นตอนการกำหนดอัตรา การดูดซับของตัวที่ถูกดูดซับ อย่างไรก็ตามโมเลกุลของสารประกอบบางชนิดไม่สามารถเคลื่อนที่ ผ่านรูพรุนเข้าไปภายในรูได้ ดังนั้นอัตราการดูดซับของโมเลกุลนั้นจึงขึ้นกับอัตราการแพร่ของ โมเลกุลของสารที่ถูกดูดขับเข้าไปบนพื้นผิวตัวดูดขับภายนอก

2.3.1 การแพร่ผ่านชั้นฟิล์ม [17]

ถ้าอัตราการแพร่ผ่านขึ้นฟิล์มรอบตัวดูดซับเป็นขั้นตอนกำหนดอัตราการดูดซับจะสามารถ แสดงความสัมพันธ์ระหว่างอัตราการดูดซับกับสัมประสิทธิ์การแพร่ผ่านชั้นฟิล์มได้ดังแสดงในสม การ 2.7

$$R_{ads} = (k_f a) \frac{\varepsilon (c_b - c_s)}{\rho_s (1 - \varepsilon)}$$
(2.7)

สัมประสิทธ์การถ่ายเทมวล (mass transfer coefficient,k) สามารถคำนวณได้จาก ความสัมพันธ์ระหว่าง เรย์โนลนัมเบอร์ (Reynold number,Re) และชมิดนัมเบอร์ (Schmidt number,Sc) สำหรับตัวดูดซับทรงกลมที่มีรัศมี R_p ค่าสัมประสิทธิ์การถ่ายเทมวลสามารถ คำนวณได้จากความสัมพันธ์ของ Ranz และ Marshall [17] ดังแสดงในสมการ 2.8

$$k_{f} \frac{2R_{p}}{D_{m}} = 2.0 + 0.6 Sc^{1/3} \text{Re}^{1/2}$$
 (2.8)
Sc = $\mu/\rho D_{m}$
Re = $2R_{p}G/\mu$

สำหรับแพ็กเบด (packed bed) ที่มีอนุภาคตัวดูดซับขนาดรัศมี R_P เดียวกันสามารถ หาความสัมพันธ์ของสัมประสิทธ์การถ่ายเทมวลแพร่ผ่านชั้นฟิล์มภายนอก (mass transfer coefficient) ได้จาก Wakao และ Funazki ดังแสดงในสมการ 2.9

$$k_f \frac{2R_p}{D_m} = 2.0 + 1.1 \text{Re}^{0.6} Sc^{1/3}$$
 (2.9)
Sc = $\mu/\rho D_m$
Re = $2R_pG/\mu$

เมื่อเรย์โนลนัมเบอร์ (Reynold number) อยู่ในช่วง 3 – 10,000

2.3.2 การแพร่ผ่านฐพรุน [17]

การแพร่ภายในรูพรุนของตัวดูดซับขึ้นอยู่กับความถี่ของการขนกันเองระหว่างโมเลกุลที่ถูก ดูดซับและระหว่างโมเลกุลที่ถูกดูดซับกับผนังของรูพรุน ถ้าความถี่ของการขนกันเองระหว่าง โมเลกุลที่ถูกดูดซับสูงกว่าความถี่ของการขนกันระหว่างโมเลกุลที่ถูกดูดซับกับผนังของรูพรุน การแพร่ผ่านรูพรุนจะเทียบเท่ากับการแพร่แบบโมเลกุล (Molecular diffusion) แต่ถ้าตรงกันข้าม การแพร่ผ่านรูพรุนจะเทียบเท่ากับการแพร่แบบนัดเซน (Knudsen diffusion)

หลักสำคัญที่ใช้สำหรับการกำหนดลักษณะการแพร่ผ่านรูพรุนทั้งสองแบบ คือ อัตราส่วน ระหว่างเส้นผ่านศูนย์กลางรูพรุนเฉลี่ย (average pore diameter) ของตัวดูดซับกับ mean free path ของตัวที่ถูกดูดซับ ถ้าอัตราส่วนมากกว่า 10 การแพร่ผ่านรูพรุนจะเป็นการแพร่แบบโมเลกุล แต่ถ้าอัตราส่วนน้อยกว่า 0.1 จะเป็นการแพร่แบบนัดเซน

การเพิ่มพื้นที่ผิวจำเพาะ (Specific surface area) ของตัวดูดซับมีผลทำให้เส้นผ่าน ศูนย์กลางรูพรุนเฉลี่ยมีแนวโน้มลดลง ดังนั้นการแพร่ผ่านรูพรุนจึงเป็นการแพร่แบบนัดเซน สามารถเขียนความสัมพันธ์ดังแสดงในสมการ 2.10 [17]

$$D_{\kappa} = \frac{2\sqrt{8RT}}{3\sqrt{M\pi}} R_{\rho}$$
(2.10)

เมื่ออัตราการแพร่ผ่านรูพรุนเป็นขั้นตอนกำหนดอัตราการดูดซับ สามารถเขียนสมการ แสดงในรูปของสัมประสิทธิ์การถ่ายเทมวลแพร่ผ่านรูพรุน (pore mass transfer coefficient, k_{pore}) ดังแสดงในสมการ 2.11 [17]

$$R_{ads} = k_{\rho ore} (c_s - c_e)$$
(2.11)

อย่างไรก็ตาม สัมประสิทธิ์การถ่ายเทมวล (mass transfer coefficient) อาจได้มาจาก การทดลองเพียงอย่างเดียว ดังนั้นจึงหาอัตราการดูดซับประจักษ์ (effective rate of adsorption) แทนการหาอัตราการแพร่ภายในรูพรุน (rate of pore diffusion) ซึ่งหาได้จากสมการที่อยู่ในรูป ของสัมประสิทธิ์การถ่ายเทมวลรวม (overall mass transfer coefficient,k_o) ดังแสดงในสมการ 2.12 [17]

$$R_{ads} = k_o (C_b - C_e) \tag{2.12}$$

2.4 การฟื้นฟูสภาพของตัวดูดซับ

การฟื้นฟูสภาพของตัวดูดซับ [23] คือ การนำตัวดูดซับที่ได้ดูดซับตัวที่ถูกดูด ซับไว้จนเต็มปริมาณแล้วกลับมาใช้งานอีกครั้ง โดยการปล่อยตัวที่ถูกดูดซับไว้ออกจากผิวของตัว ดูดซับ จนกระทั่งมีปริมาณตัวที่ถูกดูดซับไว้เหลือน้อยที่สุด หรือไม่มีสารใด ๆ ถูกดูดซับไว้เลย การฟื้นฟูสภาพสามารถดำเนินการได้ด้วยการปรับสภาวะของระบบการดูดซับให้เหมาะสมด้วยวิธี ใดวิธีหนึ่งหรือหลายวิธี ดังนี้

- การเปลี่ยนอุณหภูมิ เนื่องจากการดูดซับเป็นปรากฏการณ์คายความร้อน ปริมาณที่ถูกดูด ซับที่อุณหภูมิสูงขึ้น จะน้อยกว่าปริมาณที่ถูกดูดซับที่อุณหภูมิต่ำ ดังนั้นเมื่อให้ความร้อนกับ ระบบการดูดซับ ตัวที่ถูกดูดซับไว้จะถูกปล่อยออกมาจากผิวของตัวดูดซับ นั่นคือสามารถ นำกลับมาใช้งานได้อีกครั้ง วิธีนี้สามารถฟื้นฟูสภาพตัวดูดซับได้อย่างมีประสิทธิภาพสูง แต่ ต้องใช้ช่วงเวลานานและอาจทำให้ตัวที่ถูกดูดซับสลายตัวหรือเปลี่ยนเป็นสารอื่นเนื่องจาก ความร้อนได้
- 2. การเปลี่ยนความดัน ปริมาณที่ถูกดูดซับจะลดน้อยลงเมื่อความดันรวมของระบบการดูดซับลด ต่ำลง โดยเฉพาะอย่างยิ่งเมื่อลดความดันลงต่ำกว่าความดันบรรยากาศ แต่มักไม่นิยมใช้ ต้องใช้อุปกรณ์มากขึ้นและมีค่าใช้จ่ายสูงขึ้นด้วย แม้ว่าวิธีการนี้จะไม่สามารถฟื้นฟูสภาพตัว ดูดซับได้ทัดเทียมกับวิธีการเปลี่ยนอุณหภูมิ แต่วิธีการนี้มีช่วงเวลาการฟื้นฟูสภาพที่สั้นกว่าวิธี การเปลี่ยนอุณหภูมิมาก จึงมักนิยมใช้กับระบบที่การดูดซับไม่เหนียวแน่นมาก

- 3. การไล่ด้วยสารเฉื่อย สารเฉื่อย คือ สารที่ไม่ถูกดูดขับด้วยตัวดูดขับขนิดหนึ่งที่เลือกไว้ ดัง นั้นการไล่ด้วยสารเฉื่อยให้ผลเทียบเท่ากับการลดความดัน แต่เป็นความดันย่อยของระบบที่ เป็นแก๊ส หรือเทียบเท่ากับการลดความเข้มข้นของตัวที่ถูกดูดขับได้ของระบบที่เป็นของเหลว โดยทั่วไปการไล่ด้วยสารเฉื่อยจะดำเนินการให้ไหลสวนทางกับการดำเนินการปกติ และเพื่อ ลดค่าใช้จ่ายสำหรับการลงทุนและการดำเนินการ จึงมักนิยมใช้ผลิตภัณฑ์ที่ผลิตได้เป็นสาร สำหรับไล่สารที่ถูกดูดขับไว้บนผิวของตัวดูดขับ
- 4. การแทนที่ด้วยตัวที่ถูกดูดซับอื่น ตัวที่ถูกดูดซับอื่น ๆ สามารถเข้าไปแทนที่ตัวที่ถูกดูดซับไว้ ก่อนได้ ถ้าตัวที่ถูกดูดซับอื่นนั้นสามารถเกาะบนผิวของตัวดูดซับได้ดีกว่าหรือเหนียวแน่นกว่า ดังนั้นตัวดูดซับที่ฟื้นฟูสภาพแล้วจะดูดซับตัวที่ถูกดูดซับอื่นไว้ และจะถูกแทนที่ด้วยสารที่ ต้องการแยกอีกครั้งในการใช้งานตามปกติ อย่างไรก็ตามวิธีการนี้จำเป็นต้องมีอุปกรณ์อื่น ๆ เพิ่มเติมสำหรับแยกของผสมของสารที่ต้องการแยกออกจากตัวที่ถูกดูดซับอื่นที่ใช้สำหรับฟื้นฟู สภาพของตัวดูดซับ