รายการอ้างอิง

- Smith W. L. and Harriott Macabe. <u>Unit Operation of Chemical Engineering</u>. McGraw – Hill, 4 th edition, 1985.
- 2. King C. J., Separation Process. New York : McGraw Hill. 2 nd edition, 1980.
- 3. Mentall C. L., Adsorption. New York : McGraw Hill. 2 nd edition, 1951.
- Yang R. T., <u>Gas Adsorption by Adsorption Process</u>. Boston : Butterworths , 1987.
- สิโรตม์ ศัลยพงษ์, <u>สารปรับปรุงดินจากหินภูเขาประเภทพัมมิช (pumice) พัมมิชไซต์</u> (pumicite) และพัมมิเซียสทัฟฟ์ (pumiceous tuff) จากลพบุรี. การประชุมเชิงปฏิบัติการ และสัมมนาวิชาการ. กรมทรัพยากรธรณี, 2541.
- วรวรรณ นรสุชา, <u>การหาการดูดซับไอของโทลูอีนและอะซิโตนบนหินภูเขาไฟเพอร์ไลต์และ</u> <u>พัมมิซโดยเทคนิคทางโครมาโทกราฟฟี</u>. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต จุฬาลงกรณ์มหาวิทยาลัย, 2541.
- สง่า ตั้งชวาล, <u>แร่วิทยาสำหรับวิศวกร</u>. ภาควิชาวิศวกรรมเหมืองแร่ฯ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2523.
- Ruthven D. M., <u>Sorption of Oxygen Nitrogen Carbonmonoxide Methane and These</u> <u>Gases in 5A Zeolite</u>. AIChE. Vol. 22. No. 6, 1996

- Shivaji Sircar, <u>Separation of Multicomponent Gas Mixtures with Ca and/or Sr</u> <u>exchanged Zeolite</u>. U.S. Patent No. 31,014, 1983.
- Chao C. C., <u>Process for Separating Nitrogen from Mixtures Thereof with Less Polar</u> <u>Substance</u>. U.S. Patent No. 4,859,217, 1989.
- 11. Sherman J. T., <u>Mixed Ion-Exchanged Zeolites and Process for the Use in Gas</u> <u>Separation</u>. U.S. Patent No. 5,174,979, 1992.
- 12. Coe C. G., <u>Nitrogen Adsorption with a Ca and/or Sr Exchanged Zeolite</u>. U.S. Patent No. 5,152,813, 1992.
- 13. Kirner J. F., <u>Nitrogen Adsorption with highly Lithuim Exchanged X-Zeolites</u> with Low Si/Al ration. U.S. Patent No. 5,268,023, 1993.
- Yang R. T., <u>Zeolites Containing Mixed Cations for Air Separation by Weak</u> <u>Chemisorption-Assisted Adsorption</u>. Ind. Eng. Chem. Res. 35, 3093-3099, 1996.
- 15. Huston N. D., <u>Mixed Cation Zeolites: LiAg-X as a Superior Adsorbent for Air</u> <u>Separation</u>. AIChE. Vol. 45, No. 4, 1999.
- 16. เกรียงศักดิ์ กิตติพิมาน, <u>การดูดซับออกซิเจนและในโตรเจนด้วยถ่านกัมมันต์ที่เตรียมได้จาก</u> <u>กะลามะพร้าวโดยการกระตุ้นด้วยซิงค์คลอไรด์</u>. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตร มหาบัณฑิต. จุฬาลงกรณ์มหาวิทยาลัย, 2542.
- Ruthven D.M., <u>Principle of Adsorption and Adsorption Process</u>. John Wiley&Sons, 1984.
- 18. Anthony C. T., Nature of earth materials. Prentice Hall. 2 nd edition, 1982.

- 19. Johnston S. J., <u>Minerals for the chemical and allied industries</u>. John Wiley & Son, 1954.
- 20. Chris Pellant and Helen Pellant, Rock & Minerals. New York, 1996.
- Bruce Velde, <u>Origin and mineralogy of clays</u>. Clay and the Environment.
 Berlin Heidelberg, 1995.
- 22. Francoise Rouquerol, Adsorption by powders and porous Solids principles .Methodology and applications. New York.
- 23. บวรพงส์ พรซุติ, ซัยยุทธ ยงรัตนา และปียะศักดิ์ บุญนคร, <u>การศึกษาสมดุลการดูดซับภาย</u> <u>ใต้สภาวะความดันต่ำกว่าบรรยากาศ</u>. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรบัณฑิต. จุฬาลงกรณ์มหาวิทยาลัย, 2541.
- 24. ทบวงมหาวิทยาลัยตามโครงการปรับปรุงหลักลูะเรวิทยาศาสตร์ระดับมหาวิทยาลัย, <u>เคมี 1</u>.
 บริษัทอักษรเจริญทัศน์. พิมพ์ครั้งที่ 8, 2538.
- 25. ASTM, <u>Standard test method for chemical analysis of cadmium E 396 72a</u>. 1993.
- Cengel Y. A., <u>An Engineering Approach Thermodynamics</u>. McGraw-Hill. 2 nd edition, 1994.

ภาคผนวก

.

ภาคผนวก ก

ตัวอย่างการคำนวณ

n.1 การย่อยหินพัมมิซ [25]

การหาปริมาณของโลหะเงินที่แลกเปลี่ยนไอออนได้ ทำได้โดยการนำเอาหินพัมมิซมาทำ ให้อยู่ในรูปสารละลายก่อน โดยการใช้วิธีย่อย จากนั้นจึงนำมาหาปริมาณของโลหะเงินโดยใช้ เครื่องมือวิเคราะห์ คือ อะตอมมิกแอบซอบชั้น (Atomic Absorbtion) ตามขั้นตอนดังนี้

1. ชั่งตัวดูดซับให้มีน้ำหนัก 500 มิลลิกรัม นำมาใส่ในถ้วยกระเบื้อง (crucible)

 เติมน้ำกลั่นปริมาตร 10 มิลลิลิตร สารละลายกรดขัลฟูริก 10 มิลลิลิตร สารละลาย กรดในตริก ปริมาตร 10 มิลลิลิตร สารละลายกรดไฮโดรฟลูออริก ปริมาตร 5 มิลลิลิตร ลงใน ถ้วยกระเบื้องที่มีตัวดูดขับบรรจุอยู่

3. น้ำถ้วยกระเบื้องไปตั้งบนอุปกรณ์ให้ความร้อนพร้อมทั้งกวนสารละลายอย่างสม่ำเสมอ (ตัวดูดซับจะละลายในกรดก่อน จากนั้นจึงตกตะกอนหลังจากกรดระเหยไปจนหมด)

 ยกถ้วยกระเบื้องลงจากอุปกรณ์ให้ความร้อน จากนั้นจึงทำให้เย็นจนมีอุณหภูมิเท่า กับอุณหภูมิห้อง

 เติมสารละลายกรดไฮโดรคลอริก 19 % ปริมาตร 20 มิลลิลิตร และสารละลาย ไฮโดรเจนเปอร์ออกไซด์ 3 % ปริมาตร 30 มิลลิลิตร

ปิดถ้วยกระเบื้องด้วยกระจกนาฬิกา จากนั้นจึงนำถ้วยกระเบื้องไปตั้งบนอุปกรณ์ให้
 ความร้อนและให้ความร้อนกับสารละลายไปเรื่อย ๆ จนกระทั่งตะกอนละลายหมด

 หลังจากตะกอนละลายหมดแล้ว ยกถ้วยกระเบื้องลงจากอุปกรณ์ให้ความร้อน และ ทำให้เย็นจนมีอุณหภูมิเท่ากับอุณหภูมิห้อง

 นำสารละลายที่ได้มาเจือจางกับน้ำกลั่นให้มีปริมาตร 100 มิลลิลิตร และเก็บไว้ให้ ขวดพอลิเอทธิลีนก่อนนำไปตรวจสอบด้วยเครื่องมือวิเคราะห์

n.2 วิธีการคำนวณหาปริมาณการดูดซับ

ภายใต้สภาวะของการศึกษาวิจัยที่ได้กำหนดไว้ข้างต้น ทั้งแก๊สไนโตรเจนและแก๊ส ออกซิเจนมีพฤติกรรมเป็นแก๊สอุดมคติ ดังที่แสดงผลในตารางที่ ก.1

Pressure (kPa)	Teperature (K)	N ₂	0 ₂
0	273	Z ≅ 1	Z ≅ 1
	301	$Z \cong 1$	Z ≅ 1
101.325	273	Z ≅ 1	Z ≅ 1
	301	Z ≅ 1	$Z \cong 1$

ตารางที่ ก.1 ค่า compressibility factor (Z) ที่สภาวะต่างๆ ในการทดลอง [26]

การคำนวณโดยใช้ค่าความดันและอุณหภูมิที่วัดได้

จาการทดลอง เรานำค่าความดันและอุณหภูมิแต่ละครั้งที่เข้าสมดุล มาคำนวณหา ปริมาณโมลของแก๊สที่สมดุลอยู่ภายในอุปกรณ์วัดสมดุลการดูดขับ ก็คือปริมาณโมลของแก๊สที่ไม่ ถูกดูดขับนั่นเอง โดยใช้สมมติฐานว่าเป็นแก๊สอุดมคติ (Ideal gas) เนื่องจากในการทดลองใช้ สภาวะความตันและอุณหภูมิต่ำ และคำนวณค่า compressibility factor ดังแสดงในตารางที่ ก.1 หลังจากนั้นนำปริมาณโมลของแก๊สที่ไม่ถูกดูดซับที่คำนวณได้ที่ความดันสมดุลแต่ละครั้ง มา หาปริมาณโมลของแก๊สที่ไม่ถูกดูดซับที่เพิ่มขึ้นเมื่อมีการฉีดแก๊สเพิ่มในแต่ละครั้ง (จากค่าความดัน ระบบค่าหนึ่งไปยังค่าความดันระบบค่าถัดไป) แล้วนำปริมาณโมลของแก๊สที่เพิ่มขึ้นนี้มาลบจาก ปริมาณโมลของแก๊สที่ฉีดเข้าไปในเครื่องดูดซับแต่ละครั้ง โดยถือว่าอุณหภูมิที่ฉีดแต่ละครั้งคงที่ที่ อุณหภูมิห้อง (28 °C) ค่าที่ได้ก็คือ ปริมาณโมลของแก๊สที่ถูกดูดซับในการฉีดแก๊สเพิ่มในแต่ละ ครั้ง นำค่าที่คำนวณได้ในการฉีดแต่ละครั้งมารวมกัน จะได้ปริมาณโมลที่ถูกดูดซับทั้งหมดใน การทดลองแต่ละครั้ง

ดังนั้น ความดันของระบบจึงสัมพันธ์กับปริมาณแก๊สที่เหลือในระบบ ดังนี้ แก๊สอุดมคติ

<u>ตัวอย่าง</u>	ความดัน	อุณหภูมิ	ปริมาณโมลของแก๊สที่ไม่ถูกดูดซับ
			ณ. จุดที่ความดันเข้าสู่สมดุล
	P ₁	T,	$n_1 = P_1 V / RT_1$
	P ₂	T ₂	$n_2 = P_2 V / RT_2$

โดย V = ปริมาตรของอุปกรณ์วัดสมดุลการดูดซับที่หักปริมาตรของตัวดูดซับที่อยู่ภายใน อุปกรณ์วัดสมดุลการดูดซับออก

ปริมาณโมลของแก๊สที่ไม่ถูกดูดซับที่เพิ่มขึ้นเมื่อมีการฉีดแก๊สเพิ่มในแต่ละครั้ง

$$= n_2 - n_2$$

ปริมาณของแก๊สที่ฉีดเข้าสู่ระบบในแต่ละครั้ง = P_sV_s /RT = n_s โดย P_s = ความดันภายในเข็มฉีด = 1 atm V_s = ปริมาตรในการฉีดแต่ละครั้ง T = อุณหภูมิของแก๊สที่ฉีด

ปริมาณโมลของแก๊สที่ถูกดูดซับที่เพิ่มขึ้นเมื่อมีการฉีดแก๊สเพิ่มในแต่ละครั้ง = n_s - (n₂ - n₁)

n.3 การตรวจสอบอุปกรณ์วัดสมดุลการดูดซับ

- 1. ภายใต้สภาวะความดันต่ำกว่าบรรยากาศ
 - 1.1 ประกอบเครื่องมือโดยไม่ต้องใส่ตัวดูดซับในเครื่องมือ
 - 1.2 เปิดเครื่องปั้มอากาศ ดูดอากาศในเครื่องมือเพื่อให้อยู่ในสภาวะความดันต่ำกว่าความ ดันบรรยากาศ (2 มิลลิเมตรปรอท)
 - 1.3 จากนั้นปิดวาล์วหยุดการดูดอากาศแล้วปิดปั้ม
 - 1.4 จดค่าความดันจากเครื่องตรวจวัดความดัน
 - 1.5 จากนั้นทิ้งไว้ดูความเปลี่ยนแปลง โดยให้ระยะเวลา 2 วัน
 - 1.6 ถ้าไม่มีการเปลี่ยนแปลงก็ถือว่าไม่มีการรั้วซึม
- 2. ภายใต้สภาวะความดันสูงกว่าความดันบรรยากาศ
 - 2.1 เตรียมน้ำสบู่
 - 2.2 เตรียมปั้มที่สามารถเพิ่มความดันได้

- 2.3 ประกอบปั้มต่อกับอุปกรณ์วัดสมดุลการดูดซับ
- 2.4 เดินเครื่องปั้มเพื่อเพิ่มความดัน
- 2.5 น้ำน้ำสบู่ซะโลมบริเวณข้อต่อ และจุดเชื่อมต่อของเครื่องมือ
- 2.6 สังเกตฟองสบู่ที่บริเวณข้อต่อ ถ้ามีฟองเกิดขึ้น แสดงว่าบริเวณนั้นเกิดรูรั่วหรือจุดรั่วขึ้น

ภาคผนวก ข

ข้อมูลการทดลอง

ตารางที่ ข.1 ปริมาณโลหะเงินที่อยู่ในหินพัมมิซ (มิลลิโมลต่อกิโลกรัมของหินพัมมิซ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	2.45	3.05	3.70	4.30
40 g/L	3.64	3.81	4.17	4.18
60 g/L	5.87	6.09	6.60	6.90
80 g/L	11.27	11.77	12.66	12.77
100 g/L	11.19	11.95	12.61	12.81

ตารางที่ ข.2 พื้นที่ผิวของหินพัมมิช (ตารางเซนติเมตรต่อกรัมหินพัมมิช)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	7.14	7.99	8.42	8.47
40 g/L	7.31	9.06	8.65	9.95
60 g/L	9.50	9.32	9.18	10.59
80 g/L	10.12	9.58	9.65	10.65
100 g/L	10.93	9.90	9.85	11.10
หินพัมมิซที่ยังไม่ได้แลก	8.44			
เปลี่ยนไอออน				

ตารางที่ ข.3 มวลของตัวดูดซับ (กรัม)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	20.0035	20.0023	20.0081	20.0059
40 g/L	19.9947	20.0074	19.9929	19.9987
60 g/L	19.9995	20.0063	19.9937	20.0137
80 g/L	19.9993	20.0163	20.0063	20.0136
100 g/L	20.0023	20.0236	20.0031	20.0013
หินพัมมิซที่ยังไม่ได้แลก	20.0084			
เปลี่ยนไอออน				

ตารางที่ ข.4 ปริมาตรของชุดอุปกรณ์การทดลองหลังจากบรรจุตัวดูดซับ (ลูกบาศก์เซนติเมตร)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	190.29	191.37	190.17	190.27
40 g/L	191.80	190.06	191.34	191.69
60 g/L	190.85	190.08	190.61	189.88
80 g/L	191.10	190.10	191.80	189.85
100 g/L	190.09	190.18	191.91	191.08
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	189.35			
ไอออน				

ตารางที่ ข.5 ค่าคงที่ของเฮนรี่ของการดูดซับแก๊สในโตรเจน โดยการดูดซับด้วยวิธีวัดปริมาณแก๊สที่ เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียล (มิลลิโมลต่อกรัมต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.0663	0.0841	0.0900	0.1012
40 g/L	0.0851	0.0886	0.0953	0.0963
60 g/L	0.0802	0.1072	0.1301	0.1311
80 g/L	0.1270	0.1464	0.1514	0.1481
100 g/L	0.1286	0.1471	0.1515	0.1546
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.0256			
ไอออน				

ตารางที่ ข.6 ค่าคงที่ของเฮนรี่ของการดูดซับแก๊สในโตรเจน โดยการดูดซับด้วยวิธีวัดปริมาณ แก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (มิลลิโมลต่อกรัมต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.0607	0.0708	0.0822	0.1073
40 g/L	0.0717	0.0743	0.0738	0.0762
60 g/L	0.0885	0.0918	0.1067	0.1288
80 g/L	0.1267	0.1349	0.1408	0.1439
100 g/L	0.1288	0.1206	0.1406	0.1427
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.0216			
ไอออน				

ตารางที่ ข.7 ค่าคงที่ของเฮนรี่ของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัดปริมาณ แก๊สที่เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียส (มิลลิโมลต่อกรัมต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.0659	0.0656	0.0808	0.0847
40 g/L	0.0738	0.0708	0.0748	0.0873
60 g/L	0.0953	0.0906	0.0976	0.1035
80 g/L	0.1102	0.1206	0.1269	0.1294
100 g/L	0.1113	0.1213	0.1217	0.1378
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.0205			
ไอออน				

ตารางที่ ข.8 ค่าคงที่ของเฮนรี่ของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัดปริมาณ แก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (มิลลิโมลต่อกรัมต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.0607	0.0644	0.0822	0.0823
40 g/L	0.0588	0.0651	0.0681	0.0731
60 g/L	0.0679	0.0734	0.0860	0.1011
80 g/L	0.0983	0.1127	0.1201	0.1234
100 g/L	0.1004	0.1133	0.1201	0.1294
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.0199			
ไอออน				

ตารางที่ ข.9 ค่าคงที่ของแลงเมียร์ของการดูดซับแก๊สในโตรเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียส (ต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2407	0.2514	0.2563	0.2638
40 g/L	0.2416	0.2586	0.2608	0.2662
60 g/L	0.2917	0.2974	0.3009	0.3050
80 g/L	0.3174	0.3380	0.3480	0.3482
100 g/L	0.3220	0.3443	0.3473	0.3506
หินพัมมิชที่ยังไม่ได้แลกเปลี่ยน	0.1838			
ไอออน				

ตารางที่ ข.10 ค่าคงที่ของแลงเมียร์ของการดูดซับแก๊สไนโตรเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (ต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2390	0.2409	0.2455	0.2527
40 g/L	0.2407	0.2550	0.2556	0.2614
60 g/L	0.2755	0.2709	0.2860	0.2951
80 g/L	0.3527	0.3532	0.3599	0.3642
100 g/L	0.3730	0.3732	0.3778	0.3823
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.1627			
ไอออน				

ตารางที่ ข.11 ค่าคงที่ของแลงเมียร์ของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียส (ต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2287	0.2314	0.2411	0.2468
40 g/L	0.2651	0.2688	0.2754	0.2829
60 g/L	0.2680	0.2713	0.2848	0.2915
80 g/L	0.3107	0.3187	0.3251	0.3297
100 g/L	0.3152	0.3225	0.3239	0.3266
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.1768			
ไอออน				

ตารางที่ ข.12 ค่าคงที่ของแลงเมียร์ของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (ต่อบรรยากาศ)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2005	0.2085	0.2149	0.2230
40 g/L	0.2328	0.2344	0.2451	0.2465
60 g/L	0.2517	0.2565	0.2596	0.2676
80 g/L	0.2948	0.3085	0.3174	0.3189
100 g/L	0.3004	0.3145	0.3218	0.3224
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.1530			
ไอออน				

ตารางที่ ข.13 ปริมาณที่ถูกดูดซับสูงสุดของการดูดซับแก๊สไนโตรเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียส (มิลลิโมลต่อกรัม)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2911	0.3440	0.3464	0.3533
40 g/L	0.3301	0.3690	0.3982	0.3773
60 g/L	0.3924	0.4023	0.4239	0.4444
80 g/L	0.4311	0.4651	0.4970	0.5095
100 g/L	0.4440	0.4753	0.4982	0.5228
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.2233			
ไอออน				

ตารางที่ ข.14 ปริมาณที่ถูกดูดซับสูงสุดของการดูดซับแก๊สไนโตรเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (มิลลิโมลต่อกรัม)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2592	0.3030	0.3223	0.3272
40 g/L	0.2900	0.3168	0.3359	0.3482
60 g/L	0.3521	0.3755	0.3966	0.4044
80 g/L	0.4014	0.4328	0.5527	0.4668
100 g/L	0.4067	0.4346	0.4711	0.4751
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.1172			
ไอออน				

ตารางที่ ข.15 ปริมาณที่ถูกดูดซับสูงสุดของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 0 องศาเซลเซียส (มิลลิโมลต่อกรัม)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2481	0.2895	0.3139	0.3186
40 g/L	0.2682	0.2989	0.3369	0.3503
60 g/L	0.3324	0.3481	0.3680	0.3762
80 g/L	0.3823	0.3977	0.4195	0.4304
100 g/L	0.3910	0.4064	0.4211	0.4369
หินพัมมิซที่ยังไม่ได้แลกเปลี่ยน	0.0786			0.16
ไอออน				

ตารางที่ ข.16 ปริมาณที่ถูกดูดซับสูงสุดของการดูดซับแก๊สออกซิเจน โดยการดูดซับด้วยวิธีวัด ปริมาณแก๊สที่เหลือในระบบ ที่อุณหภูมิ 28 องศาเซลเซียส (มิลลิโมลต่อกรัม)

อุณหภูมิในการแลกเปลี่ยนไอออน	30 °C	50 °C	70 °C	90 °C
ความเข้มข้นของ AgNO ₃				
20 g/L	0.2257	0.2567	0.2932	0.3044
40 g/L	0.2385	0.2724	0.3088	0.3281
60 g/L	0.2883	0.3084	0.3322	0.3440
80 g/L	0.3392	0.3457	0.3591	0.3665
100 g/L	0.3476	0.3551	0.3585	0.3718
หินพัมมิชที่ยังไม่ได้แลกเปลี่ยน	0.0744			
ไอออน				

ภาคผนวก ค

ไอโซเทอมการดูดซับ

รูปที่ ค.1 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 30 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 28 °C แก๊สไนโตรเจน

รูปที่ ค.2 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 30 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 28 °C แก๊สออกซิเจน

(n)

(1)

รูปที่ ค.3 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 30 [°]C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 [°]C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.4 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 50 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 28 °C (บน) แก๊สไนโตรเจน (ล่าง) แก๊สออกซิเจน

รูปที่ ค.5 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 50 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.6 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 70 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 28 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.7 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 70 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.8 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิ ในการแลกเปลี่ยนไอออน 90 °C โดยวิธีวัดปริมาณแก๊สที่เหลือในระบบ ณ อุณหภูมิ 28 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

(ก)

(1)

รูปที่ ค.9 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 90 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.10 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 30 [°]C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 28 [°]C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.11 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 30 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.12 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 50 [°]C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 28 [°]C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

(ก)

รูปที่ ค.13 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 50 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.14 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราสวนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 70 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 28 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.15 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 70 ^oC โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 ^oC (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

รูปที่ ค.16 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 90 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 28 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

(1)

รูปที่ ค.17 สมดุลการดูดซับด้วยหินพัมมิซซึ่งแลกเปลี่ยนไอออนกับเงินในอัตราส่วนต่าง ๆ อุณหภูมิในการแลกเปลี่ยนไอออน 90 °C โดยวิธีเชิงปริมาตร ณ อุณหภูมิ 0 °C (ก) แก๊สไนโตรเจน (ข) แก๊สออกซิเจน

ประวัติผู้เขียน

นางสาวอัญชลี จันทใช้ เกิดในเดือนตุลาคม พ.ศ. 2521 ที่จังหวัดอุตรดิตถ์ สำเร็จ การศึกษาระดับมัธยมศึกษาตอนปลายจากโรงเรียนอุตรดิตถ์ดรุณี ในปีการศึกษา 2538 และ สำเร็จการศึกษาระดับปริญญาตรี วิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมเคมี มหาวิทยาลัย ศรีนครินทรวิโรฒ ในปีการศึกษา 2542 และเข้าศึกษาต่อในภาควิชาวิศวกรรมเคมี คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

