การตรึงสารชีวโมเลกุลบนพื้นผิวของพอลิกาโปรแลกโทนสำหรับการประยุกต์เป็นผิวหนังเทียม

นางสาว วรัคคา มัตตะนาวี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปีโตรเคมีและวิทยาศาสตร์พอลิเมอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2548

ISBN 974-14-1799-3

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IMMOBILIZATION OF BIOMOLECULES ON SURFACE OF POLYCAPROLACTONE FOR ARTIFICIAL SKIN APPLICATION

Miss Waradda Mattanavee

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Petrochemistry and Polymer Science

Faculty of Science

Chulalongkorn University

Academic Year 2005

ISBN 974-14-1799-3

Thesis Title	Immobilization of Biomolecules on Surface of
	Polycaprolactone for Artificial Skin Application
By	Miss Waradda Mattanavee
Field of Study Petrochemistry and Polymer Science	
Thesis Advisor	Assistant Professor Voravee P. Hoven, Ph.D.
Thesis Co-Advisor	Associate Professor Pitt Supaphol, Ph.D.
-	Faculty of Science, Chulalongkorn University in Partial
ruilliment of the Re	equirements for the Master's Degree
	Leute Leve Dean of the Faculty of Science
(Profe	essor Piamsak Menasveta, Ph.D.)
Thesis committee	
	Chairman Chairman
(Profe	essor Pattarapan Prasassarakich, Ph.D.)
	Vp. Haun. Thesis Advisor
(Assis	stant Professor Voravee P. Hoven, Ph.D.)
	Thesis Co-Advisor
(Asso	ciate Professor Pitt Supaphol, Ph.D.)
	Vas Member
(Assis	stant Professor Varawut Tangpasuthadol, Ph.D.)
	Namhan Chavashi Member

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

วรัคคา มัตตะนาวี: การตรึงสารชีวโมเลกุลบนพื้นผิวของพอลิคาโปรแลกโทนสำหรับการ ประยุกต์เป็นผิวหนังเทียม (IMMOBILIZATION OF BIOMOLECULES ON SURFACE OF POLYCAPROLACTONE FOR ARTIFICIAL SKIN APPLICATION) อาจารย์ที่ ปรึกษา: ผศ.คร. วรวีร์ โฮเว่น, อาจารย์ที่ปรึกษาร่วม: รศ.คร. พิชญ์ ศุภผล, 87 หน้า ISBN 974-14-1799-3

เพื่อที่จะทำให้พอลิคาโปรแลกโทน (พีซีแอล) ซึ่งเป็นพอลิเอสเทอร์สายตรงสังเคราะห์ที่ สามารถย่อยสลายได้ทางชีวภาพและมีสมบัติความเข้ากันได้กับเซลล์ของสิ่งมีชีวิต มีสมบัติ เหมาะสมต่อการนำไปประยุกต์เป็นผิวหนังเทียม งานวิจัยนี้จึงมีเป้าหมายที่จะปรับปรุงสมบัติ ความชอบน้ำและการตอบสนองของเซลล์ของพีซีแอลโดยใช้การคัดแปรทางเคมีตามด้วยการตรึง สารชีวโมเลกุล ในขั้นแรกฟิล์มพีซีแอลผ่านการคัดแปรทางเคมีโคยการทำปฏิกิริยาอะมิโนไลซิส ของ 1,6-เฮกซะเมทิลลีนไคเอมีนหรือกราฟต์โคพอลิเมอไรเซชันของกรคอะคริลิกเพื่อทำให้พื้นผิว ของฟิล์มมีหมู่อะมิโนหรือคาร์บอกซิล ตามลำคับ จากนั้นจึงจะทำการตรึงค้วยคอลลาเจนและไค โตซานโดยใช้ระบบรีเอเจนต์คู่ควบของ ไดซักซินิมิดิลการ์บอเนต (ดีเอสซี) หรือ 1-(3-ไดเมทิลอะมิ โนโพรพิล)-3-เอทิลคาร์โบไคอิไมต์ ไฮโครคลอไรค์ (อีดีซีไอ) กับ เอ็น-ไฮครอกซีซักซินิไมค์ (เอ็น เอชเอส) ผลจากการวิเคราะห์ด้วยเอทีอาร์-เอฟที่ไออาร์และการวัดมุมสัมผัสน้ำแสดงให้เห็นว่า ฟิล์มพีซีแอลมีสมบัติชอบน้ำมากขึ้นหลังจากการคัดแปรทางเคมีและสามารถตรึงสารชีวโมเลกุลบน พื้นผิวฟิล์มพีซีแอลที่ผ่านการคัดแปรทางเคมีได้ ผลจากการศึกษาการตอบสนองในห้องปฏิบัติการ ของเซลล์เคราติโนไซต์ (เอชอีเค001) และไฟโบรบลาสต์ (แอล929) ซึ่งแสคงในรูปของสัคส่วนการ ขึดเกาะและการเพิ่มจำนวนของเซลล์ พิสูจน์ให้เห็นว่าการเติมหมู่ที่ชอบน้ำตลอดจนการตรึงสารชีว โมเลกุลลงไปนั้น ช่วยปรับปรุงความเข้ากันได้กับเซลล์ของฟิล์มพีซีแอลดั่งเติมได้เป็นอย่างดี ทั้งนี้ ประสิทธิภาพในการปรับปรุงจะขึ้นอยู่กับความหนาแน่นและชนิคของสารชีวโมเลกุลที่ทำการตรึง ค้วย

สาขาวิชา	ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์	ลายมือชื่อนิสิต	หุขอว .	ฆ์ตาต · นาร์
ปีการศึกษา	2548	ลายมือชื่ออาจารย์ที่ป	ไรึกษา	2778
		ลายมือชื่ออาจารย์ที่ป	รึกษาร่วม	72 Say

4672399023: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEYWORD: POLYCAPROLACTONE/ COLLAGEN/ CHITOSAN/ ARTIFICIAL SKIN/ IMMOBILIZATION

WARADDA MATTANAVEE: IMMOBILIZATION OF BIOMOLECULES ON SURFACE OF POLYCAPROLACTONE FOR ARTIFICIAL SKIN APPLICATION. THESIS ADVISOR: ASSISTANT PROFESSOR VORAVEE P. HOVEN, Ph.D, THESIS CO-ADVISOR: ASSOCIATE PROFESSOR PITT SUPAPHOL, Ph.D; 87 pp ISBN 974-14-1799-3

In order to make polycaprolactone (PCL), a biocompatible and biodegradable synthetic aliphatic polyester, more favorable for artificial skin application, this research aims to increase hydrophilicity as well as to improve cellular responses of PCL by chemical modification followed by immobilization of biomolecules. PCL film was first chemically modified by aminolysis of 1,6-hexamethylenediamine or graft copolymerization of acrylic acid (AA) to introduce amino or carboxyl groups, respectively, on its surface. The immobilization of collagen and chitosan was then carried out by using disuccinimidylcarbonate (DSC) or 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI)/N-hydroxysuccinimide (NHS), as a coupling agent. Data from ATR-FTIR analysis and water contact angle measurements indicated that PCL film became more hydrophilic after chemical modification and the immobilization of biomolecules on the surface-modified PCL film was successful. In vitro responses of keratinocyte (HEK001) and fibroblast (L929) cells expressed in terms of adhesion and proliferation ratios proved that introducing hydrophilic groups and further immobilizing with biomolecules can markedly improve cytocompatibility of the virgin PCL films. The degree of improvement depended upon the density and the type of immobilized biomolecules.

Field of study Petro	chemistry and Polyme	r Science Student's signature Wara	dda Mattanavee
Academic year	2005	Advisor's signature	Vp. Houen.
•		Co-advisor's signature	

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude and appreciation to my advisor, Assistant Professor Dr. Voravee P. Hoven and my co-advisor, Associate Professor Dr. Pitt Supaphol for supporting me both in work and in life, and encouraging me throughout the course of my study. I am sincerely grateful to the members of the thesis committee, Professor Dr. Pattarapan Prasassarakich, Assistant Professor Dr. Varawut Tangpasuthadol and Assistant Professor Dr. Warithorn Chavasiri for their comments, suggestions and time to read thesis.

I gratefully acknowledge a research funding from the Thailand Research Fund: TRF Master Research Grants (MRG475S016) and Multidisciplinary Research Series in Tissue Engineering of Skin, National Research Council of Thailand (Principal Investigator: Dr.Tanom Bunprasert) for financial support.

Special thanks are extended to Spectroscopy Research Group and Associate Professor Dr. Sanong Egkasit for ATR-FTIR facility, National Metal and Materials Technology Center (MTEC) for contact angle goniometer, Dr. Jisheng Pan from Institute of Materials Research and Engineering, Singapore for XPS analysis, and Ms. Songchan Puthong from the Institute of Biotechnology and Genetic Engineering, Chulalongkorn University for her excellent assistance and suggestions on cell culture studies.

Many thanks go to all members of Organic Synthesis Research Unit, and all my friends, for their assistance, suggestions, comment, concerning experimental techniques during my thesis work.

Finally, I would like to especially thank my family members for their love, kindness and support throughout my entire study.

CONTENTS

Page
ABSTRACT IN THAIiv
ABSTRACT IN ENGLISHv
ACKNOWLEDGEMENTSvi
CONTENTSvii
LIST OF FIGURESxi
LIST OF TABLESxv
LIST OF SCHEMESxviii
LIST OF ABBREVIATIONxix
CHAPTER I INTRODUCTION1
1.1 Statement of Problem1
1.2 Objectives2
1.3 Scope of Investigation
CHAPTER II THEORY AND LITERATURE REVIEW3
2.1 Polycaprolactone
2.2 Surface Modification of Biomaterial by Introduction of
Hydrophilic Group3
2.2.1 Graft Copolymerization4
2.2.2 Aminolysis5
2.3 Surface Modification of Biomaterial by Immobilization
of Biomolecules6
2.4 Biomolecules9
2.4.1 Chitosan9
2.4.2 Collagen10
2.4.3 Immobilization of Biomolecules on Polymer

Page

2.5 Skin, '	Wound Healing and Artificial skin	14
2.5.1	Functions of the Skin	14
2.5.2	Layers of Skin	15
2.5.3	Wound Healing	18
2.5.4	Artificial Skin	20
2.6 Cell S	urface and Cell Adhesion	20
2.6.1	Celll-Cell Adhesion	20
2.6.2	Cell-Extracellular Matrix (ECM) Adhesion	21
2.7 Chara	cterization Techniques	22
2.7.1	Attenuated Total Reflectance-Fourier Transform	
	Infrared Spectroscopy (ATR-FTIR)	22
2.7.2	Contact Angle Measurements	23
2.7.3	X-ray Photoelectron Spectroscopy (XPS)	24
2.7.4	MTT Reduction Assay	26
CHAPTER III EXI	PERIMENTAL	27
3.1 Mater	ials	27
3.2 Equip	ments	28
3.2.1	Contact Angle Measurements	28
3.2.2	Photochemical Reactor	29
3.2.3	Attenuated Total Reflectance-Fourier Transform	
	Infrared Spectrometer (ATR-FTIR)	29
3.2.4	UV-Spectrometer	29
3.2.5	Microplate Reader	29
3.2.6	X-ray Photoelectron Spectrometer (XPS)	29
3.2.7	Statistical Analysis	30
3.3 Metho	ods	30
3.3.1	Preparation of Polycaprolactone Films	30
3.3.2	Surface Modification of PCL Film via Aminolysis	30

Page
3.3.3 Determination of the Amino Groups on Aminolyzed
PCL Surface31
3.3.4 Activation of Aminolyzed PCL and Immobilization
of Collagen or Chitosan31
3.3.5 Surface Modification of PCL Film via Photo-oxidation
and Graft Copolymerization31
3.3.6 Determination of the Carboxyl Groups on
PCL-g-PAA Surface32
3.3.7 Activation of PCL-g-PAA and Immobilization
of Collagen or Chitosan32
3.3.8 Determination of the Amino Groups on PCL surface
after Collagen or Chitosan Immobilization33
3.3.9 Cell Study33
CHAPTER IV RESULTS AND DISCUSSION35
4.1 Surface Modification of PCL Film via Aminolysis35
4.1.1 Effect of Aminolyzing Time35
4.1.2 Effect of Amine Concentration36
4.2 Activation of Aminolyzed PCL Film and Immobilization of
Biomolecules
4.2.1 Activation of Amino Group on Aminolyzed PCL Film39
4.2.2 Immobilization of Biomolecules on Activated
Aminolyzed PCL Film40
4.2.2.1 Effect of Immobilization Time40
4.2.2.2 Effect of Biomolecule Concentration41
4.3 Surface Modification of PCL Film via Photo-oxidation and
Graft Copolymerization45
4.3.1 Effect of Photo-oxidation Time
4.3.2 Effect of Grafting Time47
4.3.3 Effect of Monomer Concentration48

Pag	e
4.4 Activation of PCL-g-PAA Film and Immobilization of	
Biomolecules49	1
4.4.1 Activation of PCL-g-PAA Film50	ı
4.4.2 Immobilization of Biomolecules on Activated	
PCL-g-PAA Film51	
4.4.2.1 Effect of Immobilization Time51	
4.4.2.2 Effect of Biomolecule Concentration52	,
4.5 Cell Culture56)
4.5.1 Keratinocyte (HEK001) Cell Culture57	,
4.5.2 Fibroblast (L929) Cell Culture60)
CHAPTER V CONCLUSION AND SUGGESTION65	
REFERENCES67	,
APPENDICES72	
APPENDIX A73	ļ
APPENDIX B78	,
APPENDIX C85	;
VITAF 87	,

LIST OF FIGURES

Figure	Page
2.1	Structure of polycaprolactone
2.2	Schematic representation of aminolysis and further
	immobilization of biomolecules on polyester membrane5
2.3	Biomolecules react via their amino groups with different
	active groups on polymers9
2.4	Structures of chitin and chitosan9
2.5	Structure of a typical collagen molecule
2.6	Structure of skin
2.7	Five layers of the epidermis
2.8	Three mechanisms by which cell-surface molecules
	can mediate cell-cell adhesion
2.9	Example of extracellular matrix: the connective
	tissue underlying an epithelium21
2.10	Diagram of ATR-FTIR22
2.11	Schematic representation of the Young's equation23
2.12	Schematic representation of wettability24
2.13	Schematic diagram of the x-ray photoelectron emission process25
2.14	Reduction of the MTT tetrazolium salt to formazan26
4.1	Water contact angle (advancing (●) and receding (○)) and
	amount of NH ₂ group (▲) of PCL films after reaction with 1M
	1,6-hexamethylenediamine/IPA as a function of reaction time36
4.2	Water contact angle (advancing (●) and receding (○)) and
	amount of NH ₂ group (▲) of PCL films after reaction with varied
	concentration of 1,6-hexamethylene diamine/IPA for 8 h37
4.3	ATR-FTIR spectra of PCL film before and after aminolysis by 1.5 M
	1.6-hexamethylenediamine/IPA solution for 8 h

Figure	F	Page
4.4	Water contact angle of aminolyzed PCL films after the reaction	
	with 0.1 M DSC/DMSO: advancing (●) and receding (○)	39
4.5	Advancing water contact angle (●) and amount of NH ₂ group (○)	
	of activated aminolyzed PCL films after collagen immobilization	
	as a function of immobilization time	40
4.6	Advancing water contact angle (●) and amount of NH ₂ group (○)	
	of activated aminolyzed PCL films after immobilization with	
	varied concentration of collagen	41
4.7	Advancing water contact angle (●) and amount of NH ₂ group (○)	
	of activated aminolyzed PCL films after immobilization with varied	
	concentration of chitosan MW 15000	42
4.8	Advancing water contact angle (●) and amount of NH ₂ group (O)	
	of activated aminolyzed PCL films after immobilization with varied	
	concentration of chitosan MW 83000	43
4.9	ATR-FTIR spectra of virgin PCL film and aminolyzed PCL films	
	before and after activation and biomolecule immobilization	44
4.10	Water contact angle (advancing (●) and receding (○)) and	
	amount of COOH group (A) of PCL-g-PAA films as a function of	
	photo-oxidation time. The graft copolymerization was conducted	
	in 10% AA solution at 30°C for 1 h	46
4.11	Water contact angle (advancing (●) and receding (○)) and	
	amount of COOH group (▲) of PCL-g-PAA films as a function of	
	grafting time. The graft copolymerization was conducted in 10% AA	
	solution at 30°C after photo-oxidation for 30 min	47
4.12	Water contact angle (advancing (●) and receding (○)) and	
	amount of COOH group (A) of PCL-g-PAA films as a function of	
	acrylic acid concentration. The graft copolymerization was conducted	
	at 30°C for 1 h after photo-oxidation for 30 min	48

Figure	Page
4.13	ATR-FTIR spectra of PCL and PCL-g-PAA films (photo-oxidation
	for 30 min and graft copolymerization in 10% AA for 1h)
4.14	Water contact angle of PCL-g-PAA films after the reaction with
	aqueous solution of 0.1 M NHS/0.4 M EDCI: advancing (●) and
	receding (O) water contact angle51
4.15	Advancing water contact angle (●) and amount of NH ₂ group (○)
	of activated PCL-g-PAA films after collagen immobilization as a
	function of immobilization time52
4.16	Advancing water contact angle (●) and amount of NH ₂ group (○)
	of activated PCL-g-PAA films after the immobilization with varied
	concentration of collagen for 24 h53
4.17	Advancing water contact angle (●) and amount of NH ₂ group (○)
	of activated PCL-g-PAA films after the immobilization with varied
	concentration of chitosan MW 1500054
4.18	Advancing water contact angle (●) and amount of NH ₂ group (○)
	of activated PCL-g-PAA films after the immobilization with varied
	concentration of chitosan MW 8300055
4.19	ATR-FTIR spectra of virgin PCL film and PCL-g-PAA films
	before and after activation and biomolecule immobilization56
4.20	In vitro cell adhesion ratio of HEK001 on aminolyzed PCL before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	• •

different from PCL with p<0.01.....58

significantly different from PCL with p<0.01......58

4.21 In vitro cell proliferation ratio of HEK001 on aminolyzed PCL

TCPS and virgin PCL. * indicates that the sample was

before and after biomolecule immobilization in comparison with

Figure	Dage
riguic	Page

4.22	In vitro cell adhesion ratio of HEK001 on PCL-g-PAA before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0159
4.23	In vitro cell proliferation ratio of HEK001 on PCL-g-PAA before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0160
4.24	In vitro cell adhesion ratio of L929 on aminolyzed PCL before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0161
4.25	In vitro cell proliferation ratio of L929 on aminolyzed PCL before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0161
4.26	In vitro cell adhesion ratio of L929 on PCL-g-PAA before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0162
4.27	In vitro cell proliferation ratio of L929 on PCL-g-PAA before
	and after biomolecule immobilization in comparison with TCPS
	and virgin PCL. * indicates that the sample was significantly
	different from PCL with p<0.0163
A-1	Calibration curve of UV absorbance as a function of 1,6-hexa
	methylenediamine concentration analyzed by ninhydrin method
A-2	Formation of the complex between toluidine blue O and carboxyl group76
A-3	Calibration curve of UV absorbance as a function of
	toluidine blue O concentration

LIST OF TABLES

Table	Page
2.1	Purposes of ultraviolet light5
2.2	Properties of physical adsorption and chemical binding7
2.3	Some types of collagen and their properties12
2.4	Growth factors involved in wound healing
4.1	Atomic composition of virgin PCL film and aminolyzed PCL
	films before and after biomolecule immobilization45
4.2	Atomic composition of virgin PCL film and PCL- g-PAA films
	before and after biomolecule immobilization56
4.3	Optimized conditions used for the modification of PCL films
	that were chosen for cytocompatibility investigation57
4.4	Amount of active functional groups (NH ₂ or COOH)
	obtained after surface modification and NH ₂ density on the surface
	of biomolecule-immobilized PCL films64
A-1	UV absorbance at $\lambda = 538$ nm of standard 1,6-hexamethylenediamine
	solution for generating a calibration curve74
A-2	UV absorbance at $\lambda = 633$ nm as a function of toluidine blue o
	Concentration
B-1	Water contact angle and amount of amino group of PCL films
	after reaction with 1 M 1,6-hexamethylenediamine/IPA as a
	function of reaction time
B-2	Water contact angle and amount of amino group of PCL films
	after reaction with 1,6-hexamethylenediamine/IPA for 8 h as a
	function of amine concentration
B-3	Water contact angle of aminolyzed PCL films after the reaction with
	a solution of 0.1 M DSC/DMSO as a function of activation time79

Table Page

B-4	Advancing water contact angle (θ_A) and amount of amino group of
	activated aminolyzed PCL films after the reaction with 10 mg/mL
	collagen solution as a function of immobilization time79
B-5	Advancing water contact angle (θ_A) and amount of amino group of
	activated aminolyzed PCL films after the immobilization with
	biomolecules for 24 h as a function of biomolecule concentration80
B-6	Amount of amino group on activated aminolyzed PCL films after
	the immobilization with biomolecules for 24 h as a function of
	biomolecule concentration80
B-7	Water contact angle and amount of carboxyl group of
	PCL-g-PAA films as a function of photo-oxidation time.
	The graft copolymerization was conducted in 10% AA
	solution at 30°C for 1 h81
B-8	Water contact angle and amount of carboxyl group of
	PCL-g-PAA films as a function of grafting time. The
	graft copolymerization was conducted in 10% AA solution
	at 30°C after photo-oxidation for 30 min81
B-9	Water contact angle and amount of carboxyl group of
	PCL-g-PAA films as a function of acrylic acid concentration.
	The graft copolymerization was conducted at 30°C for 1 h
	after photo-oxidation for 30 min82
B-10	Water contact angle of PCL-g-PAA films after the reaction with
	aqueous solution of 0.1 M NHS/0.4 M EDCI as a function of
	activation time82
B-11	Advancing water contact angle (θ_A) and amount of amino group of
	activated PCL-g-PAA films after the reaction with 10 mg/mL
	collagen solution as a function of immobilization time83

Table	Page
Table	Page

B-12	Advancing water contact angle (θ_A) of activated PCL-g-PAA films	
	after the immobilization with biomolecules for 24 h as a function of	
	biomolecule concentration	.83
B-13	Amount of amino group on activated PCL-g-PAA films after	
	the immobilization with biomolecules for 24 h as a function of	
	biomolecule concentration	.84
C-1	Keratinocyte (HEK001) cell adhesion and proliferation on	
	modified and unmodified PCL films	.85
C-2	Fibroblast (L929) cell adhesion and proliferation on	
	modified and unmodified PCL films	.86

LIST OF SCHEMES

Scheme		Page
4.1	Mechanism of an activation of surface amino group followed	
	by a coupling reaction with biomolecules	39
4.2	Mechanism of an activation of surface carboxyl group followed	
	by a coupling reaction with biomolecules	50

LIST OF ABBREVIATION

XIX

AA : Acrylic acid

Abs : Absorbance

ATR-FTIR : Attenuated Total Reflectance-Fourier Transform Infrared

Spectroscopy

DMSO : Dimethylsulfoxide

DSC : N, N'-Disuccinimidyl carbonate

ECM : Extracellular matrix

EDCI : 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

hydrochloride

FBS : Fetal bovine serum

HEK001 : Keratinocyte Cell

IPA : Isopropanol

L929 : Fibroblast Cell

MTT : 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium

bromide

NHS : *N*-hydroxysuccinimide

OD : Optical Density

PBS : Phosphate buffer saline

PCL : Polycaprolactone

RPMI : Roswell Park Memorial Institute

TCPS : Tissue culture polystyrene

XPS : X-ray photoelectron spectroscopy

 θ_A : Advancing contact angle

 θ_R : Receding contact angle