ลักษณะปรากฏของหินและการก่อตัวใหม่ของหมวคหินเขาขาคในพื้นที่จังหวัดสระบุรี ตอนกลางของประเทศไทย

นาย สราวุธ ธรรมบุญญา

 วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาธรณีวิทยา ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-14-2069-2 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย Mr.Sarawuth Thambunya

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Geology ' Department of Geology Faculty of Science Chulalongkorn University Academic year 2005 ISBN 974-14-2069-2

Thesis Title	Lithofacies and diagenesis of the Khao Khad Formation
	in the vicinity of Changwat Saraburi, central Thailand
By	Mr.Sarawuth Thambunya
Filed of study	Geology
Thesis Advisor	Associate Professor Visut Pisutha-Arnond, Ph.D.
Thesis Co-advisor	Associate Professor Chaiyudh Khantaprab, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

....Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

T My Chairman

(Associate Professor Punya Charusiri, Ph.D.)

(Associate Professor Visut Pisutha-Arnond, Ph.D.)

And Thesis Co-advisor

(Associate Professor Chaiyudh Khantaprap, Ph.D.)

Chriggen chughabmani Member

(Chongpan Chonglakmani, Ph.D.)

Thinis Way-inich Member

(Thanis Wongwanich, Ph.D.)

(Assistant Professor Chakkaphan Sutthirat, Ph.D.)

1 Charventitivat Member

(Assistant Professor Titima Charoentitirat, Ph.D.)

สราวุธ ธรรมบุญญา : ลักษณะปรากฏของหินและการก่อตัวใหม่ของหมวดหินเขาขาดในพื้นที่ จังหวัดสระบุรีตอนกลางของประเทศไทย. (LITHOFACIES AND DIAGENESIS OF THE KHAO KHAD FORMATION IN THE VICINITY OF CHANGWAT SARABURI, CENTRAL THAILAND) อ. ที่ปรึกษา: รศ. คร. วิสุทธิ์ พิสุทธอานนท์, อ. ที่ปรึกษาร่วม: รศ. คร. ชัยยุทธ ขันทปราบ 271 หน้า. ISBN 974-14-2069-2.

หมวดหินเขาขาดของกลุ่มหินสระบุรึในที่จังหวัดสระบุรึประกอบด้วยลำดับชั้นของหินปูน หินปูน เนื้อโดโลมิติก และหินดินดานปนหินทรายแป้ง มีชั้นและกระเปาะของหินเซิร์ตแทรกปน หมวดหินเขาขาด สะสมตัวสมัยแอสสิเลียน ต้นยุคเพอร์เมียน ถึง สมัยกาพิตาเนียน กลางยุคเพอร์เมียน ในการศึกษาครั้งนี้ได้ ทำการตรวจวัดชั้นหิน และศึกษาลักษณะเฉพาะของลำดับชั้นตะกอน ทั้งหมด 29 แนว รวมระยะทาง 28,603 เมตร พร้อมทั้งเก็บตัวอย่างหิน จำนวน 536 ตัวอย่าง โดยเลือกเก็บตัวอย่างหินเมื่อพบความ เปลี่ยนแปลงของชนิดหินตามลำดับชั้นหิน จากนั้นนำหินไปตรวจสอบในห้องปฏิบัติการเพื่อจำแนกลักษณะ เฉพาะของเนื้อหิน ส่วนประกอบ และกำหนดชื่อหิน หมวดหินเขาขาด ประกอบด้วย ดิสมิไคต์ ไบโอมิไคต์ ใบโอมิรูไดด์ แพ็กไบโอมิไกต์ ไบโอเพลสแปไรต์ ไบโอสแปไรต์ อินทราสแปไรต์ อินทราสแปรูไดต์ ไบโอ ลิไทต์ และแกลลิไทต์ การจำแนกลักษณะปรากฏทางกายภาพของลำดับชั้นตะกอนกระทำโดยใช้ลักษณะ เฉพาะทางกายภาพ สามารถจำแนกลำคับชั้นตะกอนออกได้เป็น 15 แบบ ที่บ่งบอกถึงสภาพแวดล้อมในการ สะสมตัวของตะกอนบริเวณทะเลตี้นหลังสันดอน บริเวณสันดอน และบริเวณที่ลาดเอียงด้านหน้าสันดอน

หินในหมวดหินเขาขาดถูกเปลี่ยนแปลงด้วยกระบวนการก่อตัวใหม่ที่ซับซ้อน พบว่ากระบวนการ ก่อตัวใหม่ในช่วงต้นประกอบด้วย กระบวนการมิคริไตเซชั่น การเชื่อมเม็ดตะกอนด้วยแร่แคลไซด์หลาย ชนิด ได้แก่ชนิด ผลึกละเอียด กลุ่มแท่งเข็ม แท่งผลึก และผลึกพอกขยายจากเม็ดตะกอน นอกจากนั้นยังพบ การละลาย การกดทับขณะตะกอนยังไม่แข็งตัว การแทนที่ด้วยแร่โดโลไมต์ชนิดผลึกละเอียด และละเอียด ปานกลาง และการแทนที่ด้วยสารซิลิกา

กระบวนการก่อตัวใหม่ในช่วงปลายประกอบด้วย การแทนที่ด้วยแร่โคโลไมต์ชนิดผลึกหยาบ การ แทนที่แร่โคโลไมต์ด้วยแร่แกลไซต์ และแร่แกลไซด์ที่มีธาตุเหล็กปน การละลายเนื่องจากการอัดแน่น และ การตกผลึกใหม่ การวิเคราะห์ส่วนประกอบในเนื้อหินพบว่าออกซิเจนไอโซโทปมีค่าตั้งแต่ -5.96 ถึง 5.49 ‰ และการ์บอนไอโซโทปมีค่าตั้งแต่ -16.75 ถึง -2.31 ‰ ซึ่งน้อยกว่าก่ามาตรฐานของการ์บอเนตในน้ำทะเล ในยุกเพอร์เมียน ซึ่งน่าจะมีสาเหตุมาจากการเปลี่ยนแปลงในการก่อตัวใหม่ พบว่าหมวดหินเขาขาดมี ปริมาณธาตุร่องรอยที่น้อยเช่นเดียวกับที่พบในกลุ่มหินราชบุรี และหมวดหินน้ำมโหฬาร จังหวัดเลย

ภาควิชา ธรณีวิทยา...... สาขาวิชา ธรณีวิทยา.....ลายมือชื่ออาจารย์ที่ปรึกษา.

4473842623 : MAJOR GEOLOGY

KEY WORD: Sedimentology / Lithofacies / Diagenesis / Permian carbonate rocks / Thailand
SARAWUTH THAMBUNYA: LITHOFACIES AND DIAGENESIS OF THE KHAO
KHAD FORMATION IN THE VICINITY OF CHANGWAT SARABURI, CENTRAL
THAILAND. THESIS ADVISOR: ASSOC. PROF. VISUT PISUTHA-ARNOND,
Ph.D. THESIS COADVISOR: ASSOC. PROF. CHAIYUDH KHANTAPRAB, Ph.D.
271 pp. ISBN 974-14-2069-2.

The Khao Khad Formation of Saraburi Group in the vicinity of Changwat Saraburi area is a repetitive sequence of limestone, dolomitic limestone and silt-shale with nodular and banded cherts. The age of the Khao Khad Formation lies between Asselian of Lower Permian to Capitanian of Middle Permian. Twenty nine measured sections, totally 28,603 meters long, were conducted to determine the lithological characteristics of sedimentary sequences. Altogether 536 rock samples of stratified sampling type were obtained from all the measured sections for petrographic determination of textures, composition and rock classification. The Khao Khad Formation consists of dismicrite, biomicrite, biomicrudite, packed biomicrite, biopelsparite, biosparite, intrasparite, intrasparudite, biolithite and calclithite. Fifteen lithofacies were distinguished from the sequence indicating the depositional environments varying from shallow restricted marine to barrier bar and foreslope.

The rocks of Khao Khad Formation have suffered a complex diagenetic alteration. The processes occurred during early diagenesis were micritization, microcrystalline calcite cement, meniscus cement, acicular fibrous cementation, burrowing, microcrystalline dolomitization, radiaxial fibrous calcite cement, dog-tooth calcite cement, early compaction, equant calcite cement, blocky calcite cement, syntaxial overgrowth cementation, dissolution, microcrystalline dolomitization, mesocrystalline dolomitization, and silicification. The processes occurred during late diagenesis were macrocrystalline dolomitization, calcitization or dedolomitization, ferroan calcitization, dissolution compaction, and neomorphism.

The individual carbonate fabrics and the whole-rock samples have the isotopic composition varying from -5.96 to 5.49 ‰PDB for the δ^{13} C values and from -16.75 to -2.31 ‰PDB for the δ^{18} O values. Even though such the isotopic signature still reflect marine source, both δ^{18} O and δ^{13} C values are somewhat lighter than the normal Permian seawater carbonates probably due to the isotopic exchange with lighter isotopic sources during diagenesis. The low contents of most trace elements in the rocks of Khao Khad Formation are similar to those found in the Ratburi limestone and Nam Maholan limestone from Loei.

Department Geology	Student's signature. Forawath Thampury
Field of study Geology	Advisor's signature XINT Prover Post
A cademic year 2005	Coradvisor's signature Via Via Al
Academic year 2005	

ACKNOWLEDGEMENTS

The author would like to express his deep appreciation his thesis advisor, Associate Professor Dr. Visut Pisutha-Arnond and co-advisor, Associate Professor Dr. Chaiyudh Khantaprab, for their invaluable advices, suggestion and critical reading of the manuscript. Grateful acknowledgements are extended TPI Polene Public Company Limited, especially Mr. Mana Trakulngam, Assistant Vice President, Mr. Kamol Thavomsate, CEO Consultant, and Mr. Sompop Teppanich, Assistant Quarry Department Manager, for the generous permission granted to him to undertake this study.

The author is highly indebted to his colleagues in Quarry Department, TFI Polene Public Company Limited, for their assistance and supports during the leave of works. Special recognition and thanks are also due to Mr. Phisit Dheeradilok, CEO consultant, and Mr. Lertsin Raksaskulwong, senior geologist, Geological Survey Division, Department of Mineral Resources, for their suggestion and encouragement.

Assistant Professor Dr. Chakkaphan Sutthirat is gratefully acknowledged for supervise during the EPMA works. Dr. Christoph Hauzenberger, Institute of Earth Sciences, University Graz, Austria, also gratefully acknowledged for the help analyzing the stable oxygen and carbon isotopes. Thanks are also extended to his friends in the Department of Geology, Chulalongkorn University for their help and encouragement.

This thesis could not have been accomplished without the help and encouragement of the author's parents.

CONTENTS

		Page
ABSTRACT IN 7	ГНАІ	iv
ABSTRACT IN H	ENGLISH	v
ACKNOWLEDG	EMENTS	vi
CONTENTS		vii
LIST OF TABLE	S	xii
LIST OF FIGUR	ES	xiv
CHAPTER I	INTRODUCTION	1
	1.1 Study Area	3
	1.2 Objective	6
	1.3 Scope of Works	6
CHAPTER II	LITURATURE REVIEWS	7
	2.1 Paleozoic Rock Studies in Thailand	7
	2.2 Origin of chert	9
	2.3 Occurrences of cherts in Thailand	12
	2.4 Dolomitization processes	13
	2.5 Carbonate diagenesis	17
CHAPTER III	METHODOLOGY	22
	3.1 Preparation stage	22
	3.2 Field investigation	22
	3.3 Laboratory works	23
	3.4 Evaluation and report preparation	25
CHAPTER IV	REGIONAL GEOLOGY	26
	4.1 Geomorphology	27
	4.2 Stratigraphy and distribution of rock types	29
	4.2.1 Saraburi Group	33

v	1	1	1	

Page

.

	4.2.2 Khorat Group	36
	4.2.3 The Cenozoic Deposits	39
	4.2.4 Igneous Rocks	40
	4.3 Geological Structures	46
	4.4 Geological Evolution	47
CHAPTER V	LITHOFACIES	52
	5.1 Khao Khad Area	53
	5.1.1 Unit KD1	53
	5.1.2 Unit KD2	59
	5.1.3 Unit KD3	62
	5.1.4 Unit KD4	68
	5.1.5 Unit KD5	71
	5.1.6 Unit KD6	73
	5.1.7 Unit KD7	76
	5.1.8 Unit KD8	79
	5.1.9 Unit KD9	82
	5.2 Khao Chan Area	84
	5.2.1 Unit KC1	84
	5.2.2 Unit KC2	90
	5.2.3 Unit KC3	92
1	5.2.4 Unit KC4	94
	5.2.5 Unit KC5	96
	5.2.6 Unit KC6	99
	5.2.7 Unit KC7	101
	5.2.8 Unit KC8	103
	5.2.9 Unit KC9	104

		-
	5.3 Rock units in Pak Chong to Khao Yai area	108
	5.3.1 Unit PK1	108
	5.3.2 Unit PK2	112
	5.3.3 Unit PK3	116
CHAPTER VI	DIAGENESIS	118
	6.1 General Statement of Diagenesis	118
	6.2 Elemental Compositions of Carbonate Constituents	119
	6.3 Cathodoluminescence	122
	6.4 Oxygen and Carbon Isotopes	124
	6.4.1 The Original Isotopic Composition of Permian	
	Seawater Carbonates	126
	6.4.2 The Isotopic Composition of Various Diagenetic	
	Fabrics	126
	6.4.3 Comparison with Other Permian Carbonates	130
	6.5 Carbonate Constituents	130
	6.5.1 Fusulinid Tests	132
	6.5.2 Crinoid Fragments	132
	6.5.3 Brachiopod and Gastropod Shells	133
	6.5.4 Bryozoa Fagments	133
	6.5.5 Algal Fragments	134
141	6.5.6 Intraclasts	134
	6.5.7 Pellets	135
	6.5.8 Oncoids	135
	6.5.9 Micrite	136
	6.5.10 Calcite cement	137

ix

Page

- 91

		Page
	6.6 Diagenetic Processes	137
	6.6.1 Grain Destruction and Bioturbations	137
	6.6.2 Meniscus Cementation	144
	6.6.3 Calcite Cementation	146
	6.6.4 Dolomitization	161
	6.6.5 Silicification	169
	6.6.6 Calcitization	172
	6.6.7 Dissolution	174
	6.6.8 Neomorphism	174
	6.6.9 Compaction	176
	6.7 Diagenetic Evolution	178
	6.7.1 Early Diagenesis	180
	6.7.2 Late Diagenesis	183
	6.7 Diagenetic Evolution	184
CHAPTER VII	LITHOSTRATIGRAPHIC CLASSIFICATION AND	
	DEPOSITIONAL ENVIRONMENT	185
	7.1 Lithostratigraphic Correlation	185
	7.1.1 Lithofacies A: Calcilutite with nodular chert	190
	7.1.2 Lithofacies B: Algal biolithite	191
	7.1.3 Lithofacies C: Crinoidal calcirudite	193
	7.1.4 Lithofacies D: Crinoidal calcirudite with nodular	194
	chert	
	7.1.5 Lithofacies E: Crinoidal calcirudite with banded	195
	dolomite	
	7.1.6 Lithofacies F: Grade-bedded calcarenite with	196
	banded chert	
	7.1.7 Lithofacies G: Fusulinid bearing fine calcirudite.	197

a a

x

	7.1.8 Lithofacies H: Coral biolithite	198
	7.1.9 Lithofacies I: Laminated dolomitic calcarenite	200
	7.1.10 Lithofacies J: Fusulinid and intraclasts bearing	
	calcirudite	201
	7.1.11 Lithofacies K: Fenestral and disturbed	
	dolomitic micrite	202
	7.1.12 Lithofacies L: Fusulinid bearing calcarenite	203
	7.1.13 Lithofacies M: Intraclasts bearing calcarenite	204
	7.1.14 Lithofacies N: Argillaceous limestone with	
	silty shale	205
	7.1.15 Lithofacies O: Cross-laminated calcarenite	207
	7.2 Reconstruction of Depositional Environment	207
	7.2.1 The Transgressive Sequences	211
	7.2.2 The Regressive Sequence	213
	7.2.3 Conclusion	214
CHAPTER VIII	CONCLUSION	215
	8.1 Lithostratigraphy of the Khao Khad Formation	215
	8.2 Facies change	219
	8.3 Depositional environments	220
	8.4 Diagenesis of the Khao Khad Formation	220
REFERENCES		222
APPENDICES		253
	APPENDIX A	254
	APPENDIX B	267
BIOGRAPHY		271

Page

LIST OF TABLES

Table		Page
2.1	Average silica concentration in some natural water	10
4.1	Stratigraphic classification and nomenclature of Changwat Saraburi	
	and neighbouring area	32
5.1	The lithologic descriptions and depositional environments of	
	lithofacies of the Khao Khad Formation	144
5.1	The lithologic descriptions and depositional environments of	
	lithofacies of the Khao Khad Formation (continue)	145
6.1	The distribution coefficient of trace element in aragonite, calcite and	
	dolomite	121
6.2	Summary of trace element contents of crinoid fragments	132
6.3	Summary of trace element concentrations of well preserved	
	brachiopod shells	134
6.4	Summary of trace element compositions of micrite matrix	136
6.5	Summary of trace element compositions of micritized grains	140
6.6	Summary of trace element composition of microcrystalline calcite	
	cement	147
6.7	Summary of trace element compositions of acicular fibrous calcite	
	cement	149
6.8	Summary of trace element compositions of dog-tooth calcite cement	151
6.9	Summary of trace element compositions of radiaxial fibrous calcite	
	cement	153
6.10	Summary of trace element compositions of syntaxial overgrowths	
	calcite cement	156
6.11	Summary of trace element compositions of equant calcite cement	159

xiii

Table		Page
6.12	Summary of trace element compositions of blocky calcite cement	160
6.13	Summary of trace element composition of microcrystalline dolomite	164
6.14	Summary of trace element composition of mesocrystalline dolomite	165
6.15	Summary of trace element compositions of macrocrystalline	
	dolomite	166
6.16	Summary of trace element compositions of authegenic quartz	170
6.17	Summary of trace element compositions of calcitized/dedolomite	
	rhombs	173
6.18	Summary of trace element compositions of neomorphic calcite in	
	matrix	176
6.19	Summary of trace element compositions of neomorphic calcite in	
	grains	176
7.1	The lithologic descriptions and depositional environments of	
	lithofacies of the Khao Khad Formation	208

LIST OF FIGURES

Figure		Page
1.1	Hypsographic map with three stratigraphic sections used for this	
	study	4
1.2	Location of the study area and its vicinity illustrating the network of	
	the national and provincial highways	5
4.1	Hypsographic map of Changwat Saraburi and neighbouring area	28
4.2	The drainage pattern map of Changwat Saraburi and neighbouring	
	area	30
4.3	Geological map of Changwat Saraburi and neighbouring area	31
4.4	Schematic diagram of plate tectonic model of Tethyan region during	
	Early Carboniferous to Lat e Triassic	50
4.5	Schematic diagram of plate tectonic model of Thailand during	
	Middle Carboniferous to Cretaceous	51
5.1	Topographic map showing traverses of eleven measured sections	
	along the Khao Khad route	54
5.2	The graphic representation of 11 measured sections along Khao Khad	
	route	55
5.3	The graphic representation of the representative sedimentary	
	sequence of Khao Khad Formation at Khao Khad area	56
5.4	An outcrop, rock slab and photomicrographs of fossiliferous micrite,	
	packed biomicrite, poorly washed biopelsparite of unit KD1	58
5.5	Photomicrograph of poorly washed biosparite and calcareous	
	microcrystalline chert of the unit KD1	59
5.6	The knotty exposures, rock slab of algal stromatolite build-up and	
	photomicrograph of laminated algal stromatolite and pelsparite of the	
	unit KD2	60

Figure		Page
5.7	Photomicrograph of oncoilite, algal stromatolite and radiaxial fibrous	
	calcite cement and macrocrystalline dolomite associated with sparry	
	calcite cement in the central area of intergranular pore space of the	
	algal stromatolite build-up of the unit KD2	63
5.8	Photomicrograph of the macrocrystalline dolomite An outcrop and	
	rock slab of the unit KD3	64
5.9	Photomicrograph of packed biopelmicrite, unsorted biopelsparite,	
	microcrystalline quartz and dolomitic biosparite of the unit KD3	66
5.10	An outcrop, rock slab and photomicrograph of calcareous silt,	
	biosparite, vadose silt and meniscus cement of the unit KD4	69
5.11	Photomicrograph of biosparite showing micrite filled and abundant	
	mesocrystalline dolomite of the unit KD4	70
5.12	An old quarry and rock samples of the unit KD5	72
5.13	Photomicrograph of packed biomicrudite, packed intramicrite,	
	biopelsparite and intraclast bearing biosparudite of the unit KD5	74
5.14	Outcrops, rock slabs photomicrograph of fusulinid bearing biosparite,	
	biopelsparite and packed biomicrite of the unit KD6	75
5.15	Photomicrograph packed biomicrite and silicified dolomitic	
	limestone of the unit KD6	77
5.16	Outcrops, rock slabs of coquinite and small burrow of the unit KD7	78
5.17	Photomicrograph of burrow, bird's eye structure and fenestral feature	
	in disturbed micrite of the unit KD7	80
5.18	An outcrop, rock slab of weathered calcarenite interbedded with	
	silicified argillaceous limestone and photomicrograph of packed	
	biomicrite and silicified limestone of the unit KD8	81
5.19	An outcrop, rock slab and photomicrograph of packed biomicrite and	
	silicified limestone of the unit KD9	83

Figure		Page
5.20	Topographic map showing traverses of five measured sections along	
	the Khao Chan route	85
5.21	The graphic representation of 5 measured sections along Khao Chan	
	route	86
5.22	The graphic representation of the representative sedimentary	
	sequence of the Khao Khad Formation at Khao Chan area	87
5.23	An outcrop, rock slab and photomicrograph of packed biomicrite,	
	poorly washed biosparite, poorly washed biopelsparite and poorly	
	washed biosparudite of the lower part of unit KC1	89
5.24	An exposure, rock slab of encrinite and photomicrograph of crinoidal	
	biosparite of unit KC2.	91
5.25	The outcrop and photomicrograph of sorted biosparite, poorly	
	washed biosparite of the unit KC3	93
5.26	An outcrop, rock slab and photomicrograph of poorly washed	
	biosparite, dolomitic biomicrite of the unit KC4	95
5.27	An outcrop, rock slab and photomicrograph of poorly-washed	
	intrasparite, packed biomicrite and fossiliferous micrite with	
	microcrystalline quartz of the unit KC5	98
5.28	An outcrop, rock slab and photomicrograph of unsorted biosparite of	
	the unit KC6	100
5.29	An outcrop and photomicrograph of packed intramicrite, biomicrite	
	and dolomitic intrasparite of the unit KC7	102
5.30	An outcrop, rock slab and photomicrograph of poorly washed	
	biosparite, intramicrite and porcelanite of the unit KC8	105
5.31	An outcrop and photomicrograph of poorly-washed biosparite,	
	packed biomicrite and sparse biomicrite with microcrystalline quartz	
	of the unit KC9	107

xvi

Figure		Page
5.32	Topographic map showing traverses of thirteen measured sections	
	along the route Pak Chong to Khao Yai	109
5.33	The graphic representation of 13 measured sections at Pak Chong to	
	Khao Yai route	110
5.34	The graphic representation of the representative sedimentary	
	sequence of Khao Khad Formation at Pak Chong to Khao Yai area	111
5.35	An outcrop, rock slabs and photomicrograph of packed biomicrite,	
	aggrading neomorphic pseudosparite and quartz chert of the unit	
	PK1	113
5.36	An outcrop, rock slabs and photomicrograph of packed biomicrite	
	and disturbed micrite of the unit PK2	115
5.37	An outcrop, rock slabs and photomicrograph of fusuline biosparite	
	and medium crystalline dolomitic biosparite of the unit PK2	117
6.1	The $\delta^{18}O$ and $\delta^{13}C$ cross- plot of various carbonate fabrics of the	
	Khao Khad Formation and original Permian seawater carbonates	129
6.2	The δ^{18} O and δ^{13} C cross plot of the Khao Khad Formation, Ratburi	
	limestone and Nam Maholan Formation	131
6.3	Photomicrograph of diagenetic fabrics, micritization and abrasion	139
6.4	Pictures of rock slab of dismicrite with abundant burrows and	
	photomicrograph of diagenetic fabrics, burrows	143
6.5	Photomicrograph of diagenetic fabrics, cementation	145
6.6	Graphic plot of 4 trace element contents in the microcrystalline	
	calcite cement, acicular fibrous calcite cement, dog-tooth calcite	
	cement, radiaxial fibrous calcite cement and impure equant calcite	
	cement	147
6.7	Photomicrograph of diagenetic fabrics, cementation	150

iii

Figure		Page
6.8	Photomicrograph of diagenetic fabrics, cementation	155
6.9	Graphic plot of 4 trace elements contents of syntaxial overgrowths	
	calcite cement	157
6.10	The trace element concentrations in microcrystalline, mesocrystalline	
	and macrocrystalline dolomite	162
6.11	Photomicrograph of diagenetic fabrics, dolomitization	163
6.12	Photomicrograph of diagenetic fabrics, dolomitization and	
	silicification	167
6.13	Photomicrograph of diagenetic fabrics, silicification	171
6.14	Photomicrograph of diagenetic fabrics, neomorphism and	
	compactions	175
6.15	Generalized diagenetic sequence of the Khao Khad Formation in	
	relative tine	179
7.1	The stratigraphic correlation of the Khao Khad Formation from three	
	measured section, Khao Khad, Khao Chan and Pak Chong to Khao	
	Yai areas	187
7.2	Stratigraphic columns of the representative sections of fifteen	
	lithofacies of the Khao Khad Formation	188
7.3	The characteristics of depositional environments of carbonate rocks	189
7.4	The schematic block diagram representing the depositional model of	
	the Khad Formation. A: During regression period. B: During	
	transgression period.	210