
CHAPTER III

THEORETICAL ASPECTES AND 
TECHNIQUE OF SOLAR FLUX 

DISTRIBUTION CALCULATION

In this chapter, we will discuss about the theoretical background needed for 
our work. First, รนท position is defined by two angles, รนท altitude and รนท azimuth 
angle. Second, the mirror orientation o f the central receiver system is calculated as a 
function o f location and time. Finally, we will calculate the solar flux distribution 
using the superposition technique.

3.1 Solar Motion
To understand the trajectory o f the รนท, the relationship between the earth’s 

axis o f rotation and the plane o f  its orbit, the ecliptic has to be defined. The earth’s 
axis makes an angle o f about 23.5 degree to the normal vector o f  the plane. Figure 3.1 
shows this relationship.

The intersection o f the equatorial plane o f the earth with the celestial sphere 
is called the celestial equator. The motion o f the earth about the รนท shown in Figure
3.1 is represented on the celestial sphere o f Figure 3.2 by a circular orbit, called the 
ecliptic, which is tilted at approximately 23.5 degree with respect to the celestial 
equator.



Equinoxes happen when the ecliptic and celestial equator intersect. When the 
รนท is moving down from above the celestial equator, crosses it, then moves below it, 
that point o f intersection between the two planes is when the autumnal equinox 
occurs. This usually happens around the 23rd o f September. When the รนท moves up 
from below the celestial equator to above it, the point o f intersection between the รนท 
and celestial equator is when vernal equinox occurs. It usually happens around 21st of  
March. During the equinoxes, all parts o f the earth experiences 12 hours o f day and 
night and that is how equinox gets it name as equinox means equal night. At winter 
solstice (December), the North Pole is inclined directly away from the รนท. Three 
months later, the earth will reach the date point o f  the March equinox and that the 
sun’s declination will be 0 degree. Three months later, the earth will reach the date 
point o f  the summer solstice. At this point it will be at declination -23.5 degree. This 
cycle will carry on, creating the seasons that we experience on earth
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Figure 3.1: Orbit o f  the earth around the รนท. The tilt angle o f  the earth with respect 
to the orbit plane is approximately 23.5 degree. The รนท crosses the celestial equinox 
on the 21st March and at autumnal equinox on 23 September. The รนท is at its greatest 
distance from the celestial equator at summer solstice on 21 June and at winter 
solstice on 22 December.
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Celestial North Pole

Celestial South Pole

Figure 3.2: The celestial sphere

3.2 The รนท Position -  Altitude and Azimuth angle
The รนท position on the sky can be specified by altitude and azimuth angles, 

as shown in Figure 3.3. The solar altitude angle (a) is measured from the horizontal 
plane upward to the center o f the รนท. The azimuth angle (t|i) is measured on the 
horizontal plane between a due south line and the projection o f  the site-to-sun line on 
the horizontal plane. The sign convention used for azimuth angle is positive eastward 
and negative westward. A less convenient angle used by some solar engineers is the 
zenith angle 9Z, which is the complement o f the altitude angle.

Solar altitude and solar azimuth angles are related to the fundamental angular 
quantities-hour angle, latitude and solar declination- all o f which will be described in 
turn. The three angles are shown in Figure 3.4.
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The solar hour angle, H, is equal to 15 degree times the number o f hours from 
local solar noon. Again, value east is positive; value west, negative. The numerical 
value o f 15 degree /  hr is based upon the nominal time (24 hr) required for the รนท to 
move around the earth (360 degree) once.

The declination o f  the รนท (ร )  is the angle between the sun’s rays and the 
zenith direction at noon on the earth equator as shown in Figure 3.4. Declinations 
north o f  the equator (summer in the northern hemisphere) are positive; those south, 
negative.

The final fundamental angle used to calculate the altitude and azimuth angles 
is site latitude ((เ>). The latitude may be read from an atlas and is positive north o f the 
equator and negative south.

In order to calculate the solar altitude, the law o f  cosine for spherical 
triangles can be applied to triangle NPV in Figure 3.4 with the result

cos(90v - a ) -  cos(90“ -  (j)) cos(90‘ -  ร) + sin(90 -  <f>) sin(90° -  ร) cos H  (3.1)

or in a simplified from o f

sin(a) = [ cos(^) cos(ร) cos(H) ] + [sin ($  sin(c>)] . (3.2)

Using a similar technique, the solar azimuth angle can be computed from

cos(\j;) = [ sin(a) sin($) -  sin(<5) ] / [ cos(a ) c o s($  ] ( 3.3)

Figure 3.3: Solar altitude ( a )  and solar azimuth ( SF ) angles
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Figure 3.4: Definition o f  solar-hour angle H  (C-N-D), solar declination 5  (V-O-D), 
and latitude (j) (P-O-C)
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3.3 Heliostat field
The central receiver system is one kind solar concentrating system. This 

system use numbers o f  heliostats to focus sunlight on to a central receiver situated on 
a tower. The heliostat field that surrounds the tower is laid out to optimize annual 
performance o f  the plant.

A heliostat is the mirror that tracks the รนท in such a way that the reflected 
sunlight always aims at the receiver. The heliostat basically consists o f a reflector 
which can be controlled around two axes to follow the diurnal movement o f the รนท in 
order to transfer solar beam to a fixed target. Heliostat is moved around a vertical axis 
tracking the azimuth o f the รนท and a second horizontal axis which rotates around the 
vertical axis to allow tracking the elevation o f the รนท.

Figure 3.5: Two - axes heliostat

The thermal efficiency o f the operation o f the central receiver system and its 
highest achievable temperature depend on several factors, among which are
( 1) location o f  the site,
(2 ) radiation properties o f the heliostat surface and the central receiver,
(3) the orientation and tilt angle o f each heliostat and (4) the layout o f  the heliostat 
field.
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The performance o f the heliostat field is defined in term o f the optical 
efficiency; a ratio o f  the net power intercepted by the receiver to the power incident 
normally on the field. The optical losses include the cosine effect, shading and
blocking losses, imperfect mirror reflectivity and atmospheric attenuation. As 
heliostats are packed closer together, blocking and shadowing losses increase. The 
cosine effect depends on both the sun’s position and the location o f the individual 
heliostat relative to the receiver. The heliostat is positioned by the tracking 
mechanism so that its surface normal bisects the angle between the sun’s rays and a 
line from the heliostat to the tower. The effective reflection area o f the heliostat is 
reduced by the cosine o f one-half o f this angle.

The layout o f  the heliostat field can be designed using various criteria. The 
selected criterion is based on that the land area covered by the reflective surface 
should be maximized. The measure o f the land use is the mirror density, defined as 
net reflecting surface area to land covered area.

The heliostats could be uniformly spaced but with some disadvantages. There 
might be a shadowing effect, where a reflecting surface o f a heliostat comes into the 
shaded area o f another heliostat or blocking effect, where reflected rays by one 
heliostat could be blocked by the back surface o f another heliostat. This effect is more 
evident at high mirror density.

Analyses are presented to determine the percentage o f  area o f  a heliostat that 
is suffered from shadowing and blocking o f  another heliostat in a central receiver 
system. It can be analyzed by the ray-tracing techniques [5], The analyses are found to 
depend on the solar time, the day in the year, the location o f the site, the height o f  the 
central receiver, the relative position o f  the heliostats, with respect to the tower and 
with respect to one another, and the dimensions o f each heliostat.

Clearly, the heliostats should be carefully distributed in the field so that 
maximum efficiency is obtained. It is generally best to arrange heliostats in a radial 
stagger pattern, which is originally proposed by the team o f University o f Houston 
[6 ]. This pattern minimizes land usage as well as shadowing and blocking losses. 
Heliostats are tightly packed near the tower but must be sufficiently separated to 
prevent mechanical interference. For heliostats located further from the tower, the 
spacing between two consecutive rings increases in order to minimize blocking effect.
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F.M.F. Siala and M.E. Elayeb used a graphical method to layout the 
distribution o f the heliostats in the field [7]. This method is based on the heliostat 
radial stagger arrangement as shown in Figure 3.6. In brief, on the horizontal plane, 
the heliostat is represented by a circle. From top view the diameter o f  which equals to 
the heliostat diagonal. On the vertical plane, the diameter o f  the circle should equal to 
the height o f  the heliostat. Heliostats are divided into several groups and each group is 
divided into many rings. For the same group, any adjacent two rings o f  heliostats are 
azimuthally spaced as shown in Figure 3.6 (a). The radius o f the second ring in each 
group is determined from Figure 3.6 (b) where the line ab touches both circles. This 
method is repeated until the mirror density o f heliostats decreases significantly. Then 
a new group o f heliostats should be initiated.

In Figure 3.7, we define the directional vector ร  starting from the center of 
the mirror towards the รนท. This vector is independent o f heliostat position and can be 
described in term o f  directional cosines รx, Sy, and ร: relative to the tower base. The 
components o f the unit vector for incident ray with respect to the tower base in term 
o f  the angles a  and y/are

Let t be a directional vector starting from the center o f the mirror toward the receiver 
surface. The normal vector o f the mirror at anytime is therefore

ร1 = cos(a )cos(<(/), 
ร = cos(a)sin<y), 
ร2 = sin(y).

(3.4)

t +s (3.5)

where f, h, and ร are on the same plane.
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Figure 3.6: The top view and side view o f radial stagger heliostat layout pattern. A 
heliostat is represented by circle.
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Figure 3.7: Schematic diagram showing how the angular movement o f  a mirror can 
direct the รนท ray toward the target

3.4 Solar Flux Density Distribution on Image Plane

3 .4 .1  G e o m e try  o f  th e  C o o rd in a te  S y s te m

For convenience, there are three coordinate systems used in this research (see 
Figure 3.8)
1 . {}นุ,}นุ,}นุ)- coordinate is a heliostat position coordinate system with }นุ and h2 on 
the horizontal plane and h3 in the vertical direction.

2 . (๓ 1,/ผิ2,๓ 3) -  coordinate is used to specify a point position on the mirror surface. 
๓1 is always parallel to the ground. ๓1 and ๓2 are on the plane o f  the mirror and ๓3 

is the normal o f  the mirror.
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3. (/p (2, i3) - coordinate is that o f the image plane where i1 is always parallel to the 
ground, 11 and โ2 are on the image plane, and โ, points toward the center o f the 
heliostat.

Receiver

Figure 3.8: The coordinate systems for the heliostat field, mirror, image plane and the 
receiver plane

3 .4 .2  T h e  P r in c ip a l  Im a g e  o f  a  H e lio s ta t

Consider the flat mirror surface as shown in Figure 3.9(a) with coordinate m, 
and /พิ2. Assuming parallel solar rays and neglecting any error due to the imperfection 
in the reflecting surface and in the tracking mechanism, the image o f the mirror on the 
image plane would appear as shown in Figure 3.9(b) where points Aj, Bj, c„ and Di 
correspond to the mirror corners A, B, c  and D respectively. This image is called the 
principal image. The principal axes o f this image are £ andๆ. An angle 0X is the 
anticlockwise angle between the line OJ; and the axis โ,. The angle 0* is the



anticlockwise angle between the line 0 ฤ  and the axis<9£. The lengths LH and Lr o f  
the principal image correspond to DH and D f o f  the mirror.
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(a) Mirror surface and mirror coordinate

h

(b) Principal image and image plane coordinate



Figure 3.9: Mirror plane and image plane and their coordinates assuming the รนท as a 
point source

(in 1, iii2) coordinate can be expressed in term o f the (^ ,//) coordinate with the 
following procedure:
1) Separate coordinate o f any point in 77 coordinates into two perpendicular 
components £  + 77 cos 6' and ๆ  sin <9*.

2) Rotate £ + 77cos#* and 77 sin O' clock wisely about the m3-axis by $ 1 to become 
in2 and ๓1 respectively.
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Figure: 3.10: The (พ ิ1,/พิ2) coordinate can be expressed in term o f the coordinates £ 
and 77
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Those two steps can be described as

พิเ" cos -s in # , 1 cos# ' ~<r
in 2 sin#, cos#. 0  sin #' _ๆ (3.6)

3 .4 .3  P r in c ip a l  Im a g e  A re a

In this section, solar flux density distribution on image plane is calculated. 
First geometry and area o f  a principal image o f each heliostat are calculated by using 
ray tracing technique. This technique computes the intersection between a ray from 
heliostat corner and the receiver surface. The analytical form o f the equation depends 
on the shape o f receiver. In this work, the receiver is a cylinder. Any ray can be 
presented in a vector form as

P (x ,y ,z )  = Ê (x0,y 0,z0) + tR (xc/,y d,zd), (3.7)

where£ ( * 0,y0, z0) represents the initial position o f  the reflecting ray.R {xJ,y J,Z j)
represents the reflecting ray directional vector from center o f  mirror to center o f  
cylinder. The variable t indicates how far along the ray the intersection point
£ ( x ,y ,z )  is on the cylinder.

The geometry o f  principal image on the image plane is parallelogram. For a 
special case where the รนท altitude is 90 degrees, the geometry o f  image is rectangle. 
The area o f this image can be calculated following

1/2 I (x,y2 + x2y3 + x3y4 + ...+xnyi) - (y,x2 + y2x3 + y3X4 +...+ y„Xi)|, (3.8)

where (x ,,y () is the vertices o f polygon, arranged in a clockwise or anticlockwise
manner. If the coordinates are arranged in a clockwise manner, the value within 
absolute sign is negative. If the coordinates are arranged in a counterclockwise 
manner, the value within the absolute sign is positive.
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3 .4 .4  T h e  C o n e  o f  R e f le c te d  R a y s

So far, the รนท is assumed the perfect point source. In fact, the finite size o f  
the รนท makes the reflecting sunlight from any point on the mirror surface belonging 
to a light cone o f solid angle (ร)

ร  =  na)

a s is a solar angle and a s =- 0.5 degree [8 ].

(3.9)

Figure 3.11: The mapping o f  the รนท on image plane due to point เท

The intersection o f the cone with the image plane can be assimilated to a solar disk of  
center p. The radius o f solar disk (R x ) depends on the distance d  between the mirror 
center and the aiming point at the center o f the receiver plane, where

Rs = d  tan a s . (3.10)

The distribution o f  the solar intensity on solar disk is circular, i.e.

ร = S(rs),0< rs < Rs 
ร  = 0; r > R' (3 .11 )



The solar intensity 1ร(น) is a function o fa  . Among several empirical models o f ร(น)
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we have selected the one proposed by Walzel et al.[9]

ร (a) = 1ร'0 <h-2 (3.12)

where A = 0.5138 and 0 < น < « 1. Solar intensity equals to ร0 when น = 0 and 
decreases to zero when a  ~ 0 .6  degree.

By definition, the solar intensity ■ ร'(a )  is the rate o f  energy propagation in a 
given direction per unit solid angle and per unit area. The solar intensity is related to 
the solar beam irradiance at normal incidenceGbn. From equation (3.12) we can draw
the relation between ร0(W.m~2.sr~x) and the normal flux density Ghn(พ .m~2) at the 
consider time

Ghn = (น )-2n\.m(a)(\ +tan2 น)d a  . (3.13)

(see Appendix B for the derivation o f equation (3.13)) 
The terms higher than น] can be neglected which yields

V - V
(3.14)

Figure 3.12: Solar intensity
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3 .4 .5  S o la r  F lu x  D e n s i ty  D is tr ib u tio n  o n  th e  Im a g e  P la n e

A computer simulation o f  the solar flux density distribution o f  the central 
receiver system requires knowledge o f the flux density o f  reflected sunlight due to 
each heliostat in the field. The problem o f calculating the flux density o f  light 
reflected by a single heliostat can be formulated in various ways, but each has its 
limitations. The Monte-Carlo approach represents all o f  the heliostat behavior but is 
slow [10]. FLASH is an analytical exact approach for flat polygonal heliostat but it is 
slow and not application to dished heliostat [11], Cone optic programs evaluate the 
flux density by a direct numerical integration o f  double integral, but method is very 
slow if  accuracy is required [12]. Finally, HOCEF is a two dimensional Hermite 
polynomial method which is fast but the polynomial approximation breaks down for 
near heliostat [9].

In our work, the solar flux distribution on a given image plane is calculated 
by the superposition technique [13]. The concept o f  this is that an infinitely-small area 
o f a mirror produces a light cone o f sunlight. The superposition o f  this cone from all 
over area o f  the mirror produces the flux distribution on the image plane. For each 
cone, there exists the distribution following equation (3.12).

A point m on the mirror plane causes a pinhole image ร  o f  solar disk 
intercept with principal image p. The solar flux density, F, on the image plane is the 
convolution o f ร  and p. Following Refs. 9 andl 1, this could be given as

F = ร* p  (3.15)

which is the integration o f ร  over the intersection area between ร  and p, as shown in 
Figure 3.13.

The determination o f F  in the equation (3.15) depends on the geometry o f the 
principal image and the ratio o f the radius o f the solar disk ร  to the lengths o f the sides 
o f  the principal image. In a special coordinate system both ร  and p  could be 
normalized by the radius o f  the effective solar disk to give ร' and P' ; then

F = ร '*  P' (3 .16 )
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Figure 3.13: The geometry o f  mirror plane, image plane, and the convolution o f solar 
disk and principal image

Let F0 (# ') be the normalized principal image and with angle#* at comer o , the solar 
flux density distribution F0 is then given as

F0 (#*) = F'*F0 (# ๆ  (3.17)

For a point Oj on F0 (# * ), the flux density F0 (#*) is dependent only on the coordinates 
(£, ๆ ) o f  point o  and angle#*, as shown in Figure 3.14. For the normalized principal 
image p ' o f  finite sides L'H and น1. and corners A, B, c and D the flux density 
distribution F  then become:

F  = F 4(#*) + Fr (# * ) -F fi(# * ) -F D(#*) (3.18)

The above equation is obtained from equation (3.17) by superposition. The 
distribution FA,F B,FC and F0 are all obtained from F after transforming the £1-   ๆ
coordinate from point o  to the points A, B, c and D, respectively.
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Following Ref. 14 the convolution o f the unit รนท disk ร ' with the principal image of  
comer o  and with infinite lengths o f  sides is given by

F0( e \ ç , ๆ) = p c \ \s 'd l ; d n (3.19)

where p  is the reflectivity o f  the mirror, c  is concentration ratio and F  obtained by the 
integration to be carried out over the intersection area a between ร' and P0 o f  corner 
at o  and the center o f  ร' is at the point (ç ,ๆ) .
Equation (3.19) may then be rewritten in the following form:

พ , £ ? )  = pCGbn<S>{e\t\ๆ ')  (3.20)

where o  is a dimensionless flux distribution function . If ร' fall fully inside P0(d*) 
and thusO = 1 . But, ร' cannot intersect P0(#*) and thus<£> = 0 .

O (0 \£ > ')=  พ ■ §-^ '*ท’
a bn

(3 .2 1 )



w ith :
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£ * = | ร ๒ 0 * เ £  ; /7 * =|ร๒#*เ77 (3.22)

Equation (3.18) and (3.20) are combined to give:

F  =  p C G b„[<S>A +  ง >c - 0 8 - O 0 ] (3.23)

3 .4 .6  T h e  P ro c e d u re  to  D e te rm in e  th e  F lu x  D im e n s io n le s s  by  
S u p e rp o s it io n  T e c h n iq u e .

0 /4, are the flux dimensionless with the origin o f and ๆ' 
coordinates transferred to the corners A, B, c and D respectively.

The domain o f integration a in equation (3.21) is divided into five zones as 
shown in Figure 3.15. Only zone 1 needs to be determined either numerically or 
analytically. In zone 2 where-1  <£* < 1 , o  is independent o f ๆ' and thus it could 
be obtained directly from zone 1. Similarly, in zone 3, w here-1 < ๆ' < 1 , 0  is 
independent of£", and it is the same as its value on the edge o f  zone 1. In zone 4, ร' 
fall fully inside P0 (é?*) and thus0  = 1. In zone 5, ร' cannot intersect F’0(#*) and 
thusO = 0 . The distribution o f o  in zone 1 could then be determined once ร' is 
specified.

From equation (3.21) it is difficult to find limit o f  integral thus we transfer 
coordinate (เ^*,^*) to comer A, B, c and D respectively. So that limit o f  integral is 
zero to infinite. The procedure to determine the solar flux dimensionless on the image 
plane is as follows:
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Figure 3.15: Zone o f  the flux density distribution on the infinite principal image
n (« ')

1. Determine the (^*,ๆ’) on the image plane which corresponds to(m v m2), using
equation (3.6) and (3.22). In this example, let consider the top-right corner o f  the 
mirror.

*

A B
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2. Draw a unit solar disk centered at(<̂  *,77 *).

3. Move the origin o f coordinate (^*,77*) to the corner^, calculate . In this picture, 
it is = 1 because the whole circle is within the 1st quadrant o f (^*,77* ) coordinate.

-p ท น - ใ เ V น
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4. Move the origin o f coordinate (£‘ , 77')  to the corner B, calculated^ . In this picture, 
it is ® B = 0 .5  because the half o f  circle is within the 1st quadrant o f (<̂ *, 77* ) 
coordinate.

>

5. Move the origin o f  coordinate (£*5ๆ ')  to the corner c, calculate In this 
picture, it is ® c less than 0.5 because the few o f circle within the 1st quadrant of 

{ ^ , ๆ ')  coordinate.
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6 . Move the origin o f coordinate (<̂ *,77*) to the corner D, calculated)0 . In this 
picture, it is d> 0  = 0 .5  because the half o f circle within the 1st quadrant o f (^*,^*) 
coordinate.

7. The last, calculated* for point (^*, ๆ ') by equation (3.18)

< £ (£ * ,/ /• )=  d ^ - d ^ + d v - d ^ (3.24)
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3.5 Solar Flux Density Distribution on the Cylindrical 
Receiver Surface

The solar flux density distributions produced on the surface o f a central tower 
receiver by large mirror fields have been determined using the superposition 
technique. All distributions are transferred from the image plane onto the cylindrical 
surface via our two-stage projection.

The first projection, we project each point on principal image to a plane that 
normal vector parallel to radius o f cylinder by ray tracing as shown in Figure 3.16. 
The height o f  principal image is increased but the width o f  principal image is the 
same.

Figure 3.16: The first projection

The second projection, we project each point on that plane from the first projection on 
to surface o f cylinder by ray tracing again. Cylindrical surface is divided to small 
window, the 1 degree in horizontal and the height in vertical is 1 cm. Each point o f  
principal image on image plane is projected onto cylindrical surface. If it is a decimal, 
it is rounded to the nearest integers. dR is surface angle, measured from south in 
eastward direction.
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Receiver

(a) Side view

Figure 3.17: Projection on to surface o f  cylinder



The flux density r at point (xR,y R) on the receiver plane is given in terms o f  flux 
density function F on the image plane by the following relation

r ( XR (3.25)

where 6r is tower altitude (see Figure 3.16)
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Figure 3.18: Cylindrical surface is divided to small window
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