DEVELOPMENT OF POLY(P-PHENYLENE VINYLENE) FOR ACTUATOR AND CONTROLLED DRUG DELIVERY APPLICATION

Sumonman Niamlang

A Dissertation Submitted in Partial Fulfilment of the Requirements for the degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University 2008

511983

Development of Poly(p-phenylene vinylene) for Actuator and
Controlled Drug Delivery Applications
Sumonman Niamlang
Polymer Science
Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

_____ Dean

(Asst. Prof/Dr. Pomthong Malakul)

Thesis Committee:

Anwallerinal

(Asst. Prof. Dr. Pomthong Malakul) (Assoc. Prof. Dr. Anuvat Sirivat)

(Assoc. Prof. Dr. Pitt Supaphol)

Ratana Rujiravanit

(Assoc. Prof. Dr. Ratana Rujiravanit)

R

(Asst. Prof. Dr. Ladawan Wannatong)

ABSTRACT

4682003063: Polymer Science Program
Sumonman Niamlang: Development of Poly(p-phenylene vinylene) for Actuator and Controlled Drug Delivery Applications
Thesis Advisor: Assoc. Prof. Anuvat Sirivat, pp.173
Keywords: Poly(p-phenylene vinylene)/Conductive polymer/Actuator/ Electromechanical properties/Controlled drug delivery/Diffusion

coefficient

This study evaluated and characterized the use of poly(p-phenylene vinylene) (PPV) as the electroactive polymer and in the controlled drug delivery application. Polydimethylsiloxane (PDMS) gel and PPV/PDMS blends were prepared and investigated as an electroactive polymer. The storage modulus, G', of PDMS gel increases linearly with crosslink density but nonlinearly with electric field. The gel with the crosslink ratio of 0.01 possesses the highest G' sensitivity of 41% at 2 kV/mm. For PPV/PDMS blends, the storage modulus, G', of each blends is higher than that of the purely crosslinked PDMS, due to PPV particles acting as a filler in the matrix. On application of an electric field of 2 kV/mm, the storage modulus response, G', increases between 7-50%, depending on PPV volume fraction. The stress generated is caused by the induced polarized PPV particles leading to interparticle interactions. Salicylic acid-loaded polyacrylamide hydrogels, SA-loaded salicylic acid-doped poly(phenylene vinylene)/polyacrylamide PAAM, and hydrogels, SA-doped PPV/PAAM were prepared and investigated as the controlled drug delivery device. The apparent diffusion coefficient, D_{app} of SA-doped PPV/ PAAM is higher than that of the SA-loaded PAAM, and increases with increasing electric field strength due to the combined mechanisms: the expansion of PPV chains inside the hydrogel; the reduction reaction under a negative potential driving the anionic SA through the PAAM matrix; and the electroporation of the matrix pore. Thus, the presences of the conductive polymer and applied electric field can be combined to control the drug release rate at an optimal desired level.

บทคัดย่อ

สุมนมาลย์ เนียมหลาง : การพัฒนาพอลิเมอร์นำไฟฟ้าพอลิพาราฟินิลีนิไวนิลีนสำหรับ ประยุกต์เป็นแอกชูเอเตอร์และวัสดุควบคุมการปลดปล่อยยา (Development of Poly(pphenylene vinylene) for Actuator and Controlled Drug Delivery Applications) อ.ที่ ปรึกษา : รศ.ดร.อนุวัฒน์ ศิริวัฒน์ 173 หน้า

้ในงานวิจัยนี้ อนุภาคพอลิพาราฟินิลีนไวนิลีน ได้ถูกสังเคราะห์ขึ้นเพื่อพัฒนาเป็นแอกทู เอเตอร์และวัสคุควบคุมการปลคปล่อยยา ยางพอลิไคเมทิลไซลอกเซนและยางผสมระหว่างพอลิ ใดเมทิลไซลอกเซนกับพอลิพาราฟินิลีนไวนิลีนถูกเตรียมขึ้นเพื่อศึกษาคุณสมบัติการตอบสนอง ภายใต้กระแสฟ้า โดยค่าสตอเรจมอดูรัสของยางพอลิไคเมทิลไซลอกเซนเพิ่มโดยมีความสัมพันธ์ โดยตรงกับการเพิ่มขึ้นของอัตราส่วนร่างแห แต่มีความสัมพันธ์แบบไม่เป็นเส้นตรงกับการเพิ่มขึ้น ของความต่างศักย์ไฟฟ้าที่จ่าย และที่อัตราส่วนร่างแห 0.01 นั้น ยางพอลิไคเมทิลไซลอกเซนแสดง การตอบสนองทางไฟฟ้ามากที่สุดถึง 41% เมื่อจ่ายไฟที่มีความต่างศักยไฟฟ้า 2 กิโลโวลต์/ มิลลิเมตร การที่ระบบยางผสมระหว่างพอลิไคเมทิลไซลอกเซนและพอลิพาราฟินิลีนไวนิลีนมีก่า สตอเรจมอดูลัสมากกว่ายางพอลิไคเมทิลไซลอกเซนบริสุทธิ์นั้นเนื่องมาจากอนุภาคพอลิพาราฟีนิ ลืนไวนิลืนนั้นทำหน้าที่เหมือนสารเติมแต่งเพิ่มความแข็งแรงในระบบยางผสม นอกจากนั้นเมื่อ ้ง่ายไฟที่ความต่างศักย์ 2 กิโลโวลต์/มิลลิเมตร ระบบยางผสมมีการเพิ่มขึ้นของสตอเรจมอดูลัส ระหว่าง 7-50% ขึ้นอยู่กับปริมาณอนุภาคพอลิพาราฟีนิลีนไวนิลีนที่เติมลงไป การเพิ่มขึ้นของค่า สตอเรจมอดูลัสเมื่อมีการจ่ายไฟให้กับระบบนั้นน่าจะเกิดจากการที่อนุภาคถูกเหนี่ยวนำภายใต้ กระแสไฟฟ้าและทำปฏิกิริยาคึงดูคซึ่งกันและกันระหว่างอนุภาค นอกจากนี้พอลิมพาราฟีนิลีนไวนิ ลืนได้ถูกเตรียมและผสมกับพอลิอะคริลาไมด์เพื่อพัฒนาเพื่อเป็นวัสดุปลดปล่อขยาซาลิไซลิก ภายใด้การควบคุมโดยไฟฟ้า จากการทดลองการปลดปล่อยยาพบว่า ก่าคงที่การแพร่ของยาซาลิไซ ้ถิกจากระบบผสมระหว่างพอลิพาราฟินิลีนไวนิลีนและพอลิอะคริลาไมด์มากกว่าพอลิอะคริลาไมด์ ้บริสุทธิ์ เนื่องมาจากสามปัจจัย คือ ระบบที่มีพอถิพาราฟิลิลึนไวนิลึนจะเกิดปฏิกิริยารีดัดชันเมื่อมี การจ่ายไฟลงไปในระบบ, ช่องในพอลิอะคริลาไมค์จะขยายคัวเมื่อมีการจ่ายไฟ, และ กระแสไฟฟ้า จะช่วยผลักให้ยาซึ่งมีความเป็นขั้วลบออกมาจากพอลิอะคริลาไมค์ ดังนั้นเราสามารถสรุปได้ว่า ึการที่มีสารนำไฟฟ้าและการจ่ายไฟลงไปจะสามารถช่วยควบคุมการปลคปล่อยยาในระคับที่ ต้องการอย่างเหมาะสม

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisors, Assoc. Prof. Anuvat Sirivat from The Petroleum and Petrochemical College, Chulalongkorn University and Prof. Alexander M. Jamieson from Department of Macromolecular Science, Case Western Reserve University, for giving her the opportunity to be in the interesting avenue of research, their attention to the development of this work, invaluable knowledge, meaningful guidance, tolerance, and their encouragement all along the way.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistances.

Assist. Prof. Pomthong Malakul, Assoc. Prof. Rattana Rujiravanit and, Dr. Laddawan Wannathong are further acknowledged for being her dissertation committee, making comments, and their helpful ideas and suggestion.

She wishes to express her deep gratitude to her family for their unconditional love, continual encouragement, understanding, and for being her limitless inspiration source during all these years she has spent for her PhD study.

She owes her special thanks to all of her teachers in her life for giving her knowledge and supports. She is thankful for the contributions, wonderful friendship, liveliness, and supports from her friends and the other members of her research groups.

This work would not be carried out successfully without financial supports provided by the Thailand Research Fund (the RGJ grant no. PHD/022/2546), the Conductive and Electroactive Polymer Research Unit, KFAS of Chulalongkorn university, Thai Royal Government (Budget of Fiscal Year 2551), the Petroleun and Petrochemical and Advanced Materials consortium, and the Petroleum and petrochemical college, chulalongkorn University.

TABLE OF CONTENTS

		PAGE
T	itle Page	i
A	bstract (in English)	iii
A	bstract (in Thai)	iv
А	cknowledgements	v
T	able of Contents	vi
L	ist of Tables	ix
L	ist of Figures	x
А	bbreviations	xiv
L	ist of Symbols	xv
СЦАР	rrd	
UNAF .	IER	1
1		I
11	LITERATURE SURVEY	4
II	I EXPERIMENTAL	30
IV	V ELECTROMECHANICAL RESPONSES	
	OF A CROSS-LINKED POLYDIMETHYLSILOXANE	41
	4.1 Abstract	41
	4.2 Abbreviation	41
	4.3 Introduction	42
	4.4 Experimental	43
	4.5 Results and Discussion	45
	4.6 Conclusions	51
	4.7 References	51

V

DIELECTROPHORESIS FORCE AND	
DEFLECTION OF ELECTROACTIVE	
POLY(P-PHENYLENE VINYLENE)/	
POLYDIMETHYLSILOXANE	59
5.1 Abstract	59
5.2 Abbreviation	59
5.3 Introduction	60
5.4 Experimental	62
5.5 Results and Discussion	65
5.6 Conclusions	73
5.7 References	74

VIELECTRIC FIELD ASSISTED TRNSDERMAL DRUG
DELIVERY FROM SALICYLIC ACID-LOADEDPOLYACRYLAMIDE HYDROGELS806.1 Abstract806.2 Abbreviation806.3 Introduction81

		0 1
6.4 Experimental		82
6.5 Results and Discussion	-	88
6.6 Conclusions		98
6.7 References		98

VII ELECTRICALLY CONTROLLED RELEASE OF SALICYLIC ACID FROM POLY(P-PHENYLENE VINYLENE)/POLYACRYLAMIDE HYDROGELS 7.1 Abstract 7.2 Abbreviation

7.3 Introduction 112

PAGE

111

111

111

CHAPTER		P	AGE
	7.4 Experiment	tal	113
	7.4 Results and	Discussion	119
	7.5 Conclusion	S	129
	7.6 References		130
VIII	CONCLUSIO	NS AND RECOMMENDATIONS	143
	REFERENCE	S	146
	APPENDICES	\$	153
	Appendix A	The FTIR spectrum of poly(p-phenylene	
		Vinylene)	154
	Appendix B	The thermogravimetric thermogram	
		of Poly(p-phenylene vinylene), PPV and	
		Salicylic acid doped poly(p-phenylene vinylene	e),
		SA doped PPV	156
	Appendix C	Determination of particle sizes of undoped	
		and salicylic acid doped PPV	158
	Appendix D	Determination of the Correction Factor (K)	161
	Appendix E	Conductivity Measurement	165
	Appendix F	Scanning electron micrograph of undoped	
		PPV, SA doped PPV, poly(p-phenylene	
		vinylene)/polydimethylsiloxane blend	
		and polyacrylamide hydrogel	167
	Appendix G	Electrorheological properties measurement	
		of pure polydimethylsiloxane at various degree	
		of crosslinking	169

CURRICULUM VITAE

170

LIST OF TABLES

TABLE		PAGE
	CHAPTER II	
2.1	Classification of controlled release systems	18
	CHAPTER IV	
4.1	Effect of electric field strength on electrostiction	
	behavior of PDMS films	53
	CHAPTER V	
5.1	Effect of PPV concentration on the electrostriction behavior	
	of PPV/PDMS films at various electric field strengths	73
	CHAPTER VI	
6.1	The molecular weight between crosslinks, the mesh size,	
	and the crosslinking density of PAAM hydrogels at	
	various crosslinking ratios with and without the electric field	101
6.2	Diffusion coefficients in polyacrylamide hydrogels	102
	CHAPTER VII	
7.1	The molecular weight between crosslinks, the mesh size,	
	and the crosslinking density of PAAM hydrogels at	
	various crosslinking ratios with and without	
	the electric field	133
7.2	The actual amounts of salicylic acid in PAAM and PPV/PAAM	134

LIST OF FIGURES

FIGURE

CHAPTER I

1.1	Approach for classification of smart or active materials	1
	CHAPTER II	
2.1	Repeating units of several conductive polymers	5
2.2	Schematic representation of the band structure of a metal,	6
	a semiconductor, and an insulator. (E_g is the energy gap	
	between the valence band, VB, and the conduction band, CB)	7
2.3	Soliton in trans-polyacetylene (left) and electronic state	
	induced between the VB and CB by the soliton (right)	12
2.4	Schematic illustration of the electroviscoelastic effect	
2.5	Drug levels in the blood with (a) traditional drug dosing and	
	(b) controlled delivery dosing	14
2.6	Chemical structure of salicylic acid	16
2.7	Drug delivery from (1) a typical matrix drug delivery system	
	(2) typical reservoir devices: (a) implantable or oral systems,	
	(b) transdermal systems	18
2.8	Transport processes in transdermal drug delivery	19
2.9	Drug delivery from (a) reservoir and (b) matrix swelling-	
	controlled release systems	20
2.10	Drug delivery from: (a) the bulk-eroding; and (b) the surface-	
	eroding biodegradable systems	21
2.11	Schematic of the components of an iontophoretic patch	22

CHAPTER IV

4.1 Effect of crosslink density of PDMS: (a) storage modulus G' (ω =1 rad/s) vs. number density of strand at electric field strengths of 0, 100, 1000 and 2000 V/mm; (b) storage

FIGURE

	modulus response $\Delta G'(\omega=1 \text{ rad/s})$ vs. electric field	
	strength, strain = 1%, and temperature of 27 $^{\circ}$ C	54
4.2	Temporal response of PPV/PDMS90 with electric field	
	strength of 1000 and 2000 V/mm and PDMS N_{c}/N_{m} =	
	0.01 with electric field strength of 2000 V/mm at 27 $^{\circ}$ C,	
	frequency of 1 rad/s, and strain of 1%	55
4.3	The schematic diagram of the deflection experiment set up	56
4.4	Deflection of PDMS ($N_c/N_m = 0.01$) film as a function	57
	of electric field strength	
4.5	Degree of bending, θ (degree) and dielectrophoresis	
	force, $F_D(N)$ of the crosslinked PDMS films at various	
	electric field strength	58

CHAPTER V

5.1	Morphology of a) poly (p-phenylene vinylene), PPV,	
	and b) poly(p-phenylene vinylene)/polydimethylsiloxane	
	blends, PPV/PDMS-10 at a magnification of 350	74
5.2	Temporal response of PPV/PDMS-10 with electric field	
	strength of (a) 1000 and (b)2000 V/mm, at 27 °C, frequency of	
	1 rad/s, and strain of 1%	75
5.3	Effect of particle volume fraction of the PPV/PDMS blends on:	
	(a) storage modulus response $\Delta G'$ (ω =1 rad/s) vs particle	
	Concentration at electric field strengths of 2 kV/mm, and the storage	
	modulus at $E = 0$ (G' ₀) and 2 kV/mm (G' _{2kV/mm});	
	(b) the storage modulus response $\Delta G'$ (ω = 1 rad/s)	
	vs electric field strength with strain = 1%	
	and temperature = $27 ^{\circ}C$	76

PAGE

FIGURE

5.4	Current vs electric field strength of the PPV/PDMS blends	77
5.5	Schematic of the deflection experiment set up,	
	and deflections of PPV/PDMS-10 film, as a function	
	of electric field strength	78
5.6	Degree of deflection, θ (degree) and dielectrophoresis force of	
	PPV/PDMS films at various electric field strengths	79

CHAPTER VI

6.1	Morphology of PAAM hydrogel after swelling with and	
	without electric field	104
6.2	Absorption infrared spectra of a) PAAM hydrogel and	
	b) 0.2% w/w SA-loaded PAAM hydrogel	105
6.3	Amount of SA release from SA-loaded PAAM hydrogel at	
	time t vs. t (hr) at various crosslink ratios, $E = 0$ V, pH 5.5,	
	and at 37 [°] C	106
6.4	Amount of SA release from SA-loaded PAAM hydrogel at	
	time t vs. $t^{1/2}$ (hr ^{1/2})at various crosslink ratios, E = 0 V,	
	pH 5.5, and at 37 [°] C	107
6.5	Apparent diffusion coefficient, Dapp of SA from SA-loaded PAAM	
	hydrogels vs. crosslink ratios and mesh size at an electric field	
	strength of 0 and 0.1 V, pH 5.5, and at 37 C	108
6.6	Apparent diffusion coefficient, D _{app} of SA from SA-loaded PAAM	
	hydrogels vs. drug size/mesh size of hydrogel at an electric field	
	strength of 0 and 0.1 V, pH 5.5, and at 37 $^{\circ}$ C	109
6.7	Amount of SA release from SA-loaded PAAM hydrogel	
	(PAAM_0.016) at time t vs. $t^{1/2}$ at various electric field strength,	
	pH of 5.5, and at 37 [°] C	110
6.8	Apparent diffusion coefficient, Dapp of SA from SA-loaded PAAM	
	hydrogels (PAAM_0.016) vs. electric field strength at pH 5.5,	
	and at 37 °C	111

CHAPTER VII

7.1	Morphology of (a) poly(phenylene vinylene), PPV, and	
	(b) salicylic acid-doped poly(phenylene vinylene),	
	SA-doped PPV, at a magnification of 350	135
7.2	Absorption infrared spectra of	
	(a) poly(phenylene vinylene), PPV,	
	(b) salicylic acid, SA, and	
	(c) salicylic acid-doped poly(phenylene vinylene), SA-doped PPV	136
7.3	Thermogravimetric thermograms of poly(phenylene vinylene);	
	salicylic acid;SA; and salicylic acid-doped poly(phenylene vinylene)	137
7.4	Amounts of SA released from SA-loaded PAAM hydrogels	
	at time t (hr) at various crosslinking ratios, $E = 0 V$,	
	pH 5.5, and at 37°C	138
7.5	Amounts of SA released from SA_PPV/PAAM hydrogels	
	at time t (hr) at various electric field strengths, pH of 5.5,	
	and at 37°C	139
7.6	Effect of electric field strength on,	
	(a) mesh size of PAAM hydrogel,	
	(b) the apparent diffusion coefficient (D_{app})	
	of SA from SA-doped PPV/PAAM hydrogels	
	and SA-loaded PAAM hydrogels at pH 5.5, and at 37 $^{\circ}$ C	140
7.7	Apparent diffusion coefficient, Dapp, of SA from SA-	
	loaded PAAM hydrogels and SA-doped PPV/PAAM	
	hydrogels vs. drug size/mesh size of hydrogel at electric	
	field strengths of 0 and 0.1 V, pH 5.5, and at 37 °C	141
7.8	Amounts of SA released from SA_PPV loaded PAAM	
	hydrogels at time t vs. t (hr) with the anode and	
	cathode as the driving electrodes, at pH of 5.5, and at 37 C	142

ABBREVIATION

- ER Electrorheology
- DC Direct current
- AC Alternate current
- PPV Poly (p-phenylene vinylene)
- PAAM Polyacrylamide
- PDMS Polydimethylsiloxane
- FT-IR Fourier transform infrared spectrometer
- UV-Vis Ultraviolet-visible spectrometer
- TGA Thermogravimetric analysis
- SA Salicylic acid
- SEM Scanning electron microscopy

LIST OF SYMBOL

- E_o applied electric field strength
- G' storage modulus (Pa/s)
- G" loss modulus (Pa/s)
- t_{ind} induction time
- t_{rec} recovery time
- ϕ volume fraction
- α scalling exponent
- γ scailing exponent
- σ electrical conductivity
- R resistant
- t disk thickness
- K geometric correction fractor
- β relative polarizability
- K_f dielectric permittivity of medium
- η^* complex oscillatory steady shear viscosity
- ω frequency
- F_D dielectrophoresis force
- F_d elastic deflection force
- N_c mole of crosslinker

N_m mole of monomer

- v_1 the molar volume of solvent (M_w/density)
- w_o the original polymer weight
- $w_{\rm s}$ the swollen polymer weight
- χ the polymer-solvent interaction parameter
- R the universal gas constant, 8.29 N_m/mol.K,
- δ the solubility parameter
- v number density of strands
- Dapp diffusion Coefficient
- mt amount of drug release at time t

- ξ mesh size
- ξe electrical mesh size
- M_c molecular weight between crosslinks
- M_n the number-average molecular weight of the polymer before crosslinking
- v the specific volume of PAAM (0.741 mL/g), and
- \overline{V}_1 the molar volume of water (18.1 mL/mol).
- $v_{2,r}$ the polymer volume fraction in the gel in the relaxed state
- $v_{2,s}$ the polymer volume fraction in the gel in the swollen state
- M_t the amount of drug released from a hydrogel at time t
- M_{∞} the total amount of drug released
- *n* the diffusion scaling exponent, determining the dependence of the release rate on time that can be related to the drug transport mechanism
- *a* the size of the drug
- D_0 the diffusion coefficient as the drug size approaches the mesh size