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ABSTRACT

4682003063: Polymer Science Program
Sumonman Niamlang: Development of Poly(p-phenylene vinylene)
for Actuator and Controlled Drug Delivery Applications
Thesis Advisor: Assoc. Prof. Anuvat Sirivat, pp.173

Keywords:  Poly(p-phenylene vinviene)/Conductive polymer/Actuator/
Electromechanical properties/Controlled drug delivery/Diffusion
coefficient

This study evaluated and characterized the use of poly(p-phenylene
vinylene) (PPV) as the electroactive polymer and in the controlled drug delivery
application. Polydimethylsiloxane (PDMS) gel and PPV/PDMS blends were
prepared and investigated as an electroactive polymer. The storage modulus, G', of
PDMS gel increases linearly with crosslink density but nonlinearly with electric
field. The gel with the crosslink ratio of 0.01 possesses the highest G' sensitivity of
41% at 2 kv/mm. For PPV/PDMS blends, the storage modulus, G1 of each blends is
higher than that of the purely crosslinked PDMS, due to PPV particles acting as a
filler in the matrix. On application of an electric field of 2 kv/mm, the storage
modulus response, G', increases between 7-50%, depending on PPV volume fraction.
The stress generated is caused by the induced polarized PPV particles leading to
interparticle interactions. Salicylic acid-loaded polyacrylamide hydrogels, SA-loaded
PAAM, and salicylic acid-doped poly(phenylene vinylene)/polyacrylamide
hydrogels, SA-doped PPV/PAAM were prepared and investigated as the controlled
drug delivery device. The apparent diffusion coefficient, Dagp of SA-doped PPV/
PAAM is higher than that of the SA-loaded PAAM, and increases with increasing
electric field strength due to the combined mechanisms: the expansion of PPV
chains inside the hydrogel; the reduction reaction under a negative potential driving
the anionic SA through the PAAM matrix; and the electroporation of the matrix pore.
Thus, the presences of the conductive polymer and applied electric field can be
combined to control the drug release rate at an optimal desired level.
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