STUDY ON USES AND POSSIBILITIES OF QUALITY UPGRADING OF OIL OBTAINED FROM TIRE PYROLYSIS: CASE OF Pd/H-BETA

Ekkarin Pintoo

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institute Français du Pétrole 2008

512004

Thesis Title:	Study on Uses and Possibilities of Quality Upgrading of Oil
	Obtained from Tire Pyrolysis: Case of Pd/H-BETA
By:	Mr. Ekkarin Pintoo
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Sirirat Jitkarnka
	Dr. Suchada Butnark

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nanlayn Janumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Asst. Prof. Sirirat Jitkarnka)

make Both

(Dr. Suchada Butnark)

T-Speething (Dr. Thammanoon Sreethawong)

.....

(Dr. Ruengsak Thitiratsakul)

บทคัดย่อ

เอกรินทร์ ปีนธุ: การศึกษาความเป็นไปได้ในการปรับปรุงคุณภาพน้ำมันที่ได้จากการไพ โรไลซิสของยางด้วยตัวเร่งปฏิกิริยาแพลลาเคียมบนซีโอไลท์เบตา (Study on Uses and Possibilities of Quality Upgrading of Oil Obtained from Tire Pyrolysis: Case of Pd/H-BETA) อ. ที่ปรึกษา ผศ. คร. ศิริรัตน์ จิตการก้า และ คร. สุชาคา บุตรนาก 104 หน้า

การไพโรไลซิสของขางโดยใช้ตัวเร่งปฏิกิริยาแพลลาเคียมบนเบตาซีโอไลท์ ทำปฏิกิริยา ในเตาปฏิกรณ์ความคันซึ่งจะแยกออกเป็น 2 ส่วนหลัก ได้แก่ ส่วนล่างเป็นส่วนที่ยางเกิดการไพ ต่อมาไอของยางที่ได้จากการไพโรไลซิสจะไหลผ่านตัวเร่งปฏิกิริยาทางด้านบนของเตา โรไลท์ ปฏิกรณ์ ในการวิจัยนี้ได้ศึกษาผลของปริมาณของแพลลาเคียมบนตัวเร่งปฏิกิริยา, อุณหภูมิของ ้ส่วนที่บรรจุตัวเร่งปฏิกิริยา, เวลาของไอยางอยู่ในเตาปฏิกรณ์ และผลของวิธีการเตรียมตัวเร่ง ปฏิกิริยาที่จะมีผลต่อคุณภาพและปริมาณของน้ำมันที่ได้จากการไพโรไลซิส ซึ่งจะพิจารณาจาก่ ปริมาณของสารไฮโครคาร์บอนอื่มตัวและสารอะโรมาติกส์ในน้ำมัน น้ำมันที่ได้จะทำการวิเคราะห์ โดยใช้เครื่องก๊าซโครมาโตกราฟ (SIMDIST-GC) และเทคนิคการแยกสารด้วยโครมาโตกราฟ แบบของเหลว ผลปรากฏว่า ตัวเร่งปฏิกิริยาแพลลาเคียมบนเบตาซีโอไลท์สามารถเพิ่มอัตราส่วน ของสารไฮโครคาร์บอนอิ่มตัว และลคปริมาณสารอะโรมาติกส์ในน้ำมันได้ การเปลี่ยนแปลง ้ปริมาณของโลหะบนตัวเร่งปฏิกิริยามีผลต่อน้ำมันในส่วนประกอบทางเคมี และสัดส่วนน้ำมันใน ้ด้านปีโตรเลียมต่างๆ นอกจากนี้ยังพบว่าการเพิ่มอุณหภูมิในส่วนบรรจุตัวเร่งปฏิกิริยา และเวลา ของไอยางที่อยู่ในปฏิกรณ์ มีผลทำให้เกิคสารไฮโครการ์บอนอิ่มตัวเพิ่มขึ้น สำหรับการไพโรไลซิส ที่อุณหภูมิในส่วนบรรจุตัวเร่งปฏิกริยาค่ำ และใช้เวลาน้อยนั้น มีผลทำให้ช่วยลดปริมาณสารอะโร มาติกส์ในผลิตภัณฑ์ที่เป็นน้ำมันได้ นอกจากนี้พบว่าตัวเร่งปฏิกิริยาที่ได้จากเตรียมด้วยวิธีการทำ ให้เอ็บชุ่ม (Impregnation) มีความสามารถในการลดปริมาณสารอะโรมาติกส์ในน้ำมันมากกว่า ตัวเร่งปฏิกิริยาที่เตรียมค้วยวิธีการแลกเปลี่ยนไอออน (Ion-exchange) จากผลการทคลองข้างค้น อาจสรุปได้ว่าสภาวะที่เหมาะสมในการปรับปรุงคุณภาพน้ำมัน ควรใช้ตัวเร่งปฏิกิริยาที่มีปริมาณ แพลลาเคียมร้อยละ 0.25 และเตรียมค้วยวิธีเอิบชุ่ม นอกจากนี้เวลา 25 นาที เป็นเวลาที่เหมาะสมที่ ้ไอของขางในเตาปฏิกรณ์ สำหรับอุณภูมิในส่วนที่บรรจุตัวเร่งปฏิกิริยากวรมีอุณภูมิต่ำ

ABSTRACT

4971006063: Petrochemical Technology Program
Ekkarin Pintoo: Study on Uses and Possibilities of Quality Upgrading of Oil Obtained from Tire Pyrolysis: Case of Pd/H-BETA
Thesis Advisors: Asst. Prof. Sirirat Jitkarnka and Dr. Suchada
Butnark, 104 pp.

Keywords: Tire/Pyrolysis/ Palladium/H-BETA/ Quality Upgrading of Oil

Catalytic pyrolysis of tire over Pd/H-BETA catalyst was carried out using an autoclave reactor separated into two zones; tire was first pyrolyzed in the bottom zone and then, the evolved pyrolysis gases were passed through a catalytic bed on the top zone. The amount of palladium loading, catalytic temperature, residence time, and metal loading method were investigated for their influences on the quality and quantity of oil, represented by the saturated and aromatic hydrocarbons. The pyrolysis oil was characterized using a simulated distillation gas chromatograph (SIMDIST -GC) and liquid chromatography technique. The results indicated that Pd/H-BETA catalyst can produce the higher amount of saturated hydrocarbons and reduce the total aromatics in the oil product. The change of metal loading amount affected on the chemical composition and petroleum fractions in maltene. The saturated hydrocarbons were also increased with the increasing catalytic temperature and residence time. The reduction of total aromatic hydrocarbons can be enhanced at low catalytic temperatures and residence time. Moreover, the impregnated catalysts had higher activity on reducing aromatic hydrocarbons than the ion- exchanged catalysts. Therefore, the optimum conditions for upgrading of pyrolysis oil were the use of 0.25wt% Pd/H-BETA prepared by the impregnated technique, operated at 25 min of residence time, and a low catalytic temperature (350°C).

ACKNOWLEDGEMENTS

This thesis could not be complete without the assistance and support of my advisor, college and my family.

I deeply indebted to Asst. Prof. Sirirat Jitkarnka, my advisor, who provided the intensive attention, useful recommendation, valuable support, and encouragement throughout this work.

I would like to thank Dr. Suchada Butnark for valuable guidance and creative suggestion. Special thanks go to Mr. Nguyen Anh Dung, a Ph.D. student, for his valuable suggestions, comments, and encouragement.

I am grateful for the partial scholarship and partial funding of the thesis work provided by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University.

Unforgettably, appreciation is forwarded to all staff of The Petroleum and Petrochemical College for helpful in fixing the equipment, valuable suggestions in characterization instruments and other useful help.

Finally, I would like to thank all of my friends and PhD students for their friendly cheerful, creative suggestions and useful assistance. Also, I would like to express the sincerest gratitude to my parents and my brother for their care, love, and infinite encouragement.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х

CHAPTER

72 H

1

•

I	INTRODUCTION	1	· • • • •
II	LITERATURE REVIEW	3	
	2.1 Tire	3	
	2.2 Pyrolysis of tires	4	
	2.2.1 The Influence of Operation Conditions	4	
	2.2.2 The Type of Feed (tire)	6	
	2.2.3 Catalytic Conversion	7	
III	EXPERIMENTAL	14	
	3.1 Materials	14	
	3.2 Equipment	14	
	3.3 Chemicals and Solvents	14	
	3.4 Methodology	15	
	3.4.1 Catalyst Preparation	15	
	3.4.2 Pyrolysis Process	15	

		3.4.3 Oil Analysis	16
		3.4.4 Gas Analysis	18
		3.4.5 Catalyst Characterization	18
	IV	RESULTS AND DISCUSSION	20
		4.1 Effects of Palladium no H-BETA	20
		4.1.1 Product Distribution	21
		4.1.2 Quality of Pyrolysis Oil	22
		4.1.3 Quantity of Petroleum Fractions	23
1		4.2 Effect of Pd Loading Amount	25
*		4.2.1 Catalyst Characterization	25
		4.2.2 Product Distribution	29
÷		4.2.3 Quality of Pyrolysis Oil	31
·		4.2.4 Quality of Petroleum Fractions	33
÷		4.3 Effect of Metal Loading Method	34
		4.3.1 Catalyst Characterization	34
		4.3.2 Product Distribution	36
		4.3.3 Quality of Pyrolysis Oil	37
		4.3.4 Quality of Petroleum Fractions	38
		4.4 Effect of Catalytic Temperature	39
		4.4.1 Product Distribution	40
		4.4.2 Quality of Pyrolysis	41
		4.4.3 Quantity of Petroleum Fractions	42
		4.5 Effect of Residence Time in Pyrolysis Reactor	43
		4.5.1 Product Distribution	44
		4.5.2 Quality of Pyrolysis Oil	44
		4.5.3 Quantity of Petroleum Fractions	45

CHAPTER

- •

		PAG
CONCLUSI	ONS AND RECOMMENDATIONS	47
REFERENC	ES	49
APPENDIX		54
Appendix A	Operating Temperature	54
Appendix B	Pyrolysis Gas Composition	72
Appendix C	Product Distribution	74
Appendix D	Amount of Asphaltene in Pyrolysis Oil	75
Appendix E	Product Distribution of Maltene	76
Appendix F	Carbon Number Distribution	77
Appendix G	True Boiling Point Curves	83
Appendix H	The Amount of Petroleum Fractions in Maltene	99
•	Fractions	
Appendix I	The Amount of Chemical Composition in Malte	ne100
	Fractions	
Appendix J	The Amount of Palladium Loading on H-BETA	102
	Using Ion-exchange Method.	
Appendix K	Maximum Capacity of Ion-exchanged Zeolite	102
CURRICUL	UM VITAE	104
	CONCLUSI REFERENC APPENDIX Appendix A Appendix B Appendix C Appendix C Appendix F Appendix F Appendix I Appendix I Appendix J Appendix J	CONCLUSIONS AND RECOMMENDATIONS REFERENCES APPENDIX Appendix A Operating Temperature Appendix B Pyrolysis Gas Composition Appendix C Product Distribution Appendix D Amount of Asphaltene in Pyrolysis Oil Appendix E Product Distribution of Maltene Appendix F Carbon Number Distribution Appendix G True Boiling Point Curves Appendix I The Amount of Petroleum Fractions in Maltene Fractions Fractions Appendix J The Amount of Chemical Composition in Maltene Fractions The Amount of Palladium Loading on H-BETA Using Ion-exchange Method. Using Ion-exchange Method. Appendix K Maximum Capacity of Ion-exchanged Zeolite

CURRICULUM VITAE

CHAP

.

.

•

.

. .

viii

LIST OF TABLES

	TABLE		PAGE
	2.1	The condition of pyrolysis of tire that give the high oil yield production	5
	3.1	The optimized composition and volumes of mobile phases	
		for preparative separation of petroleum maltene using chromatographic column	18
	4.1	The boiling point and carbon range of refinery products	22
	4.2	Surface area and the average pore volume of impregnated catalysts	28
	4.3	Surface area and the average pore volume of ion-exchanged	
		catalysts	36
÷	Al	Operating temperatures, Non catalytic pyrolysis (Catalytic	
		temp. 400°C)	54
	A2	Operating temperatures, Non catalytic pyrolysis (Catalytic	55
1		temp. 350°C)	
	A3	Operating temperatures, Non catalytic pyrolysis (Catalytic temp. 450°C)	56
	A4	Operating temperatures, (0.25 wt % Pd/H-BETA)	57
	A5	Operating temperatures, (0.50 wt % Pd/H-BETA)	57
	A6	Operating temperatures, (0.75 wt % Pd /H-BETA)	59
	A7	Operating temperatures, (1.00 wt % Pd/H-Beta)	60
	A8	Operating temperatures, (1.25 wt % Pd/H-Beta)	61
	A9	Operating temperatures, (0.25 wt % Pd/H-BETA, Cat temp 400°C)	62
	A10	Operating temperatures, (0.25 wt % Pd/H-BETA, Cat temp 450°C)	63

PAGE

A11	Operating temperatures, (0.25 wt % Pd/H-BETA, Cat temp	64
	500°C)	
A12	Operating temperatures, (0.25 wt % Pd/H-BETA, Residence	65
	time 5 min)	
A13	Operating temperatures, (0.25 wt % Pd/H-BETA, Residence	66
	time 15 min)	
A14	Operating temperatures, (0.25 wt % Pd/H-BETA, Residence	67
	time 50 min)	
A15	Operating temperatures, (0.25 wt % Pd/H-BETA, Ion-	68
	exchange)	
A16	Operating temperatures; (0.50 wt % Pd/H-BETA, Ion-	69
	exchange)	
A17	Operating temperatures, (1.0 wt % Pd/H-BETA, Ion-	70
	exchange)	
B1	The percent volume of gas product at different catalytic	71
	temperature	
B2	The percent volume of gas products at different palladium	71
	loading amounts (incipient wetness impregnation)	
B3	The space time yield of gas products at various residence	72
	time	
B4	The percent volume of gas products at different palladium	72
	loading amounts (Ion-exchanged catalyst)	
C1	The weight percent of gas, liquid, and solid at different	73
	catalytic temperature	
C2	The weight percent of gas, liquid, and solid at different	73
	palladium loading amounts (incipient wetness impregnation)	

C3	The weight percent of gas, liquid, and solid at various	73
	residence time	
C4	The weight percent of gas, liquid, and solid at different	74
	palladium loading amounts (Ion-exchanged catalyst)	
Dl	The amount of asphaltene in pyrolysis oil	74
El	Product distribution of maltenes in non catalytic pyrolysis	75
	(400°C)	
E2	Product distribution of maltenes in non catalytic pyrolysis	75
	(350°C)	
E3	Product distribution of maltenes in non catalytic pyrolysis	75
	(1.00%wt Pd/H-BETA)	
F1	The carbon number distribution of maltenes at various metal	76
	loading (incipient wetness impregnation)	
F2	The carbon number distribution of maltenes at different cat.	77
	temperature	
F3	The carbon number distribution of maltenes at different	78
	residence time	
F4	The carbon number distribution of maltenes at various	79
	catalyst (ion-exchanged catalysts)	
F5	The carbon number distribution of saturated hydrocarbons	80
F6	The carbon number distribution of total aromatics	81
Gl	True boiling point curves of non-catalytic pyrolysis	82
	(Catalytic temp.350°C)	
G2	True boiling point curves of non-catalytic pyrolysis	83
	(Catalytic temp.400°C)	

G3	True boiling point curves of non-catalytic pyrolysis	84
	(Catalytic temp.450°C)	
G4	True boiling point curves of catalytic pyrolysis	85
	(0.25%Pd/H-BETA, incipient wetness impregnation)	
G5	True boiling point curves of catalytic pyrolysis	86
	(0.50%Pd/H-BETA, incipient wetness impregnation)	
G6	True boiling point curves of catalytic pyrolysis	87
	(0.75%Pd/H-BETA, incipient wetness impregnation)	
G7	True boiling point curves of catalytic pyrolysis	88
	(1.00%Pd/H-BETA, incipient wetness impregnation)	
G8	True boiling point curves of catalytic pyrolysis	89
	(1.25%Pd/H-BETA, incipient wetness impregnation)	
G9	True boiling point curves of catalytic pyrolysis	90
	(0.25%Pd/H-BETA, Catalytic temperature 400°C)	
G10	True boiling point curves of catalytic pyrolysis	91
	(0.25%Pd/H-BETA, Catalytic temperature 450°C)	
G11	True boiling point curves of catalytic pyrolysis	92
	(0.25%Pd/H-BETA, Catalytic temperature 500°C)	
G12	True boiling point curves of catalytic pyrolysis	93
	(0.25%Pd/H-BETA, Residence time 5 min)	
G13	True boiling point curves of catalytic pyrolysis	94
	(0.25%Pd/H-BETA, Residence time 15 min)	
G14	True boiling point curves of catalytic pyrolysis	95
	(0.25%Pd/H-BETA, Residence time 50 min)	
G15	True boiling point curves of catalytic pyrolysis	96
	(0.25%Pd/H-BETA, Ion-exchanged method)	
G16	True boiling point curves of catalytic pyrolysis	97
	(0.50%Pd/H-BETA, Ion-exchanged method)	

G17	True boiling point curves of catalytic pyrolysis	98
	(1.00%Pd/H-BETA, Ion-exchanged method)	
Hl	The amount of petroleum fractions in maltene at different	99
	catalytic temperatures (Non-catalytic pyrolysis)	
H2	The amount of petroleum fractions in maltene at different	99
	catalytic temperatures (catalytic pyrolysis)	
H3	The amount of petroleum fractions in maltene at different	99
	amount of palladium loading amounts	
H4	The amount of petroleum fractions in maltene at different	100
	residence time	
H5	The amount of petroleum fractions in maltene obtained from	100
	the ion-exchanged catalysts with various metal loading	
	amounts	
I1	The amount of chemical composition in maltene fractions at	100
	different catalytic temperature (non-catalytic pyrolysis)	
I2	The amount of chemical composition in maltene fractions at	101
	different palladium loading amounts (ion-exchange method)	
I3	The amount of chemical composition in maltene fractions at	101
	different catalytic temperature (0.25wt%Pd/H-BETA,	
	impregnation)	
I4	The amount of chemical composition in maltene fractions at	101
	different palladium loading amounts (Impregnation method)	
15	The amount of chemical composition in maltene fractions at	102
	different residence time (0.25wt% Pd/H-BETA,	
	impregnation method)	
J1	The amount of palladium loading of ion-exchanged catalyst	102

PAGE

LIST OF FIGURES

FIGURE

PAGE

2.1	Tire component and main rubber compositions in tire.		3
2.2	BETA zeolite: (a) Channel system and (b) structure.		12
3.1	The schematic diagram of the pyrolysis process.		16
3.2	The schematic diagram of the oil analysis.		17
4.1	Product distribution of catalytic pyrolysis of scrap tire using		
	H-BETA and 1%wt Pd /H-BETA.		22
4.2	Carbon number distribution of (a) saturated hydrocarbons,		23
	(b) total aromatic compounds in maltene fractions obtained		
	from non catalytic and catalytic pyrolysis at the catalytic	4	
	temperature of 350°C.	1. ¹	
4.3	Petroleum fractions in maltene obtained from catalytic		24
	pyrolysis using H-BETA and 1 %wt Pd /H-BETA at the		
	catalytic temperature of 350°C.		
4.4	Chemical composition in gasoline fraction obtained form		25
	catalytic pyrolysis using H-BETA and 1 %wt Pd /H-BETA at		
	the catalytic temperature of 350°C.		
4.5	Chemical composition of gas products obtained from		25
	catalytic pyrolysis using H-BETA and 1 %wt Pd /H-BETA at		
	the catalytic temperature of 350°C.		
4.6	The XRD patterns of various impregnated catalysts with		27
	different palladium loading (* The palladium peak position,		
	$2\theta = 40.116^{\circ}$).		
4.7	The TEM image of Pd/H-BETA: (a) 0.25wt% of Pd/H-		27
	BETA (impregnated catalyst), and (b) 1.00wt% of Pd/H-		
	BETA (impregnated catalyst).		

FIGURE

.....

.

xv

4.8	The TPO pattern of various spent catalysts at different	29
	palladium loading amounts.	
4.9	The percentage of coke formation on spent catalysts having	29
	different palladium loading amounts.	
4.10	The product distribution of the catalytic pyrolysis of scrap	30
	tire at different palladium metal loading amounts.	
4.11	Chemical composition in maltenes obtained from the catalytic	31
	pyrolysis of Pd/H-BETA with different Pd loading amounts.	
4.12	The amount of asphaltene in liquid products obtained from	32
	catalytic pyrolysis of Pd/H-BETA with different Pd loading	
1	amounts.	
4.13	Petroleum fractions in maltene obtained from non-catalytic	33 .
	and catalytic pyrolysis at different metal loading amounts.	
4.14	The XRD patterns of various ion-exchanged catalysts with	34
	different palladium loading amounts (* The palladium peak	
	position, $2\theta = 40.116^{\circ}$).	
4.15	The TEM images of 0.25 wt % Pd/H-BETA: (a) impregnated	35
	catalysts, and (b) ion-exchanged catalyst.	
4.16	The product distributions of catalytic pyrolysis of scrap tire	37
	using the impregnated and ion-exchanged catalysts at	
	different Pd loading amounts.	
4.17	The yield of saturated hydrocarbons and total aromatic in	38
	maltene obtained from catalytic pyrolysis using the	
	impregnated and ion-exchanged catalysts at different Pd	
	loading percentages.	

FIGURE

+

÷.

·. ·

• • • •

.

xvi

4.18	Petroleum fractions in maltene obtained from catalytic		39
	pyrolysis using: (a) 0.25wt% Pd/H-BETA, and (b) 1.00wt%		
	Pd/H-BETA		
4.19	The products obtained from the non catalytic and catalytic		40
	pyrolysis of scrap tire at the different temperatures of		
	catalytic zone.		
4.20	Chemical composition in maltenes obtained from catalytic		42
	(0.25wt% Pd/H-BETA) and non-catalytic pyrolysis at		
	different catalytic temperatures.		
4.21	Petroleum fractions in maltene obtained from non- catalytic		43
	and catalytic pyrolysis (0.25wt% Pd/H-BETA) at different		
1999 - F	catalytic temperatures.		
4.22	The product distributions of catalytic pyrolysis of scrap tire		45
	at different residence time.		
4.23	The yield of chemical compositions in maltene obtained		45
	from catalytic pyrolysis at different residence time	•	
4.24	Petroleum fractions in maltene obtained from catalytic		46.
	pyrolysis at different resident time.		