STUDY ON CRYSTALLIZATION KINETICS AND SUBSEQUENT MELTING BEHAVIOR OF POLYMERS WITH DIFFERENT MOLECULAR CHARACTERISTICS AND POLYMERS FILLED WITH VARIOUS TYPES OF ADDITIVES

Pakin Thanomkiat

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2007

Thesis Title:	Study on Crystallization Kinetics and Subsequent Melting
	Behavior of Polymer with Different Molecular Characteristics
	and Polymer Filled with Various Types of Additives
By:	Pakin Thanomkiat
Program:	Polymer Science
Thesis Advisors:	Assoc.Prof. Pitt Supaphol
	Prof. Stephen Z.D. Cheng

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantayo Jammer College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

aya Janumet (Assoc. Prof. Nantaya Yanumet)

(Brof. Stephen Z.D.Cheng)

Ittpl ZM.

(Assoc. Prof. Ittipol Jangchud)

.....

(Assoc. Prof. Pitt Supaphol)

..... (Assist. Prof. Manit Nithithanakul) 1 Amon

(Assoc. Prof. Taweechai Amornsakchai)

ABSTRACT

4482001063: Polymer Science Program
Pakin Thanomkiat: Study on Crystallization Kinetics and Subsequent
Melting Behavior of Polymers with Different Molecular
Characteristics and Polymers Filled with Various Types of
Additives.
Thesis Advisors: Assoc. Prof. Pitt Supaphol, and Prof. Stephen Z.D.
Cheng 159 pp.
Keywords: Equilibrium melting temperature/ Crystallization kinetics/

Macrokinetic model/ Syndiotactic polypropylene/ Pigment/ TiO₂ nanoparticles

Crystallization and subsequent melting behavior for six syndiotactic polypropylene (sPP) resins having different molecular characteristics, mediumdensity polyethylene (MDPE) filled with 3 types of pigments (i.e. diarylide, phthalocyanine, and quinacridone), and isotactic polypropylene (iPP) filled with titanium(IV)oxide (TiO₂) with 3 different surface modifications were investigated by differential scanning calorimetry (DSC). The crystallization kinetics were analyzed based on various macrokinetic models, i.e. Avrami, Malkin, Urbanovici-Segal, Ozawa, and Ziabicki. The equilibrium melting temperature (T_m^0) was also estimated based on the linear and non-linear Hoffman-Weeks extrapolative methods. In general, the estimated T_m^0 values were found to increase with increasing syndiotacticity level. By comparing these values along with the values obtained from literature, the T_m^0 value for a perfect sPP can be estimated. The subsequent melting behavior of sPP after crystallization process exhibited either a single melting endotherm or double melting endotherms. For the crystallization behavior of pigmented MDPE resins, it was found that diarylide could be the only pigment that was effective in accelerating the crystallization processes compared to other two pigments.

บทคัดย่อ

ภคิน ถนอมเกียรติ : การศึกษาพฤติกรรมการตกผลึกและการหลอมเหลวของผลึกที่ เกิดขึ้นของพอลิเมอร์ที่มีคุณลักษณะของโมเลกุลต่างกัน และพอลิเมอร์ที่มีการใส่สารเติมชนิดต่าง ๆ (Study on Crystallization Kinetics and Subsequent Melting Behavior of Polymers with Different Molecular Characteristics and Polymer Filled with Various Types of Additives) อ. ที่ปรึกษา : รศ. ดร. พิชญ์ ศุภผล และ ศ.สตีเฟน เชง 159 หน้า

พฤติกรรมการตกผลึกและการหลอมเหลว ของซินดิโอแทคติกพอลิโพรพิลีน ที่มี คุณลักษณะของโมเลกุลต่าง ๆ กัน พอลิเอทิลีนความหนาแน่นปานกลางที่เติมด้วยรงควัตถุต่างกัน สามชนิด (ได้แก่ ไดอะริลไลด์ ฟะทาโลไซยานิน และควินอะคริโดน) และไอโซแทคติกพอลิโพร ที่เดิมด้วยไทเทเนียมไดออกไซด์ที่มีอนุภากงนาดนาโนเมตร และมีคุณสมบัติของพื้นผิว พิลีน ต่างกันสามชนิด ได้รับการศึกษาโดยอาศัยเทคนิคดิฟเฟอเรนเชียล สแกนนิง แคลอรีเมทรี ซึ่ง ้สามารถนำผลการทุดลองจากเทกนิกดังกล่าวมาวิเกราะห์ โดยอาศัยโมเดลต่าง ๆ ได้แก่ อาฟรามี มาลคิน เออร์บาโนวิช-เซกาล โอซาวา และ ไซอะบิกกิ ซึ่งสามารถทำให้สามารถเปรียบเทียบ ้อัตราการตกผลึก รวมทั้งกลไกการตกผลึกของพอลิเมอร์ต่าง ๆ คังกล่าวได้ จคหลอมเหลวสมคูล ของพอลิเมอร์สามารถหาได้จากวิธีการของฮอฟแมน-วีค ซึ่งพบว่า เมื่อปริมาณซินดิโอแทคติกมาก ้ขึ้น ค่าจุดหลอมเหลวสมคุลจะมีค่าเพิ่มขึ้น นอกจากนี้ ยังทำให้ประมาณค่าของจุดหลอมเหลว ้สมคุลสำหรับซินดิโอแทกติกพอลิโพรพิลีนที่มีปริมาณซินดิโอแทกติกร้อยเปอร์เซ็นต์ได้ สำหรับ รงกวัตถุที่มีผลต่อการตกผลึกของพอลิเอทีลีนนั้น พบว่า สารไดอะริลไลด์ เป็นสารที่สามารถเร่ง การตกผลึกของพอลิเอทิลีนได้ดีที่สุด ในส่วนของการตกผลึกของไอโซแทคติกพอลิโพรพิลีน ที่ ้เติมด้วย ไทเทเนียมไดออกไซด์ที่มีอนุภาคขนาดนาโนเมตร พบว่า ไททาเนียมไดออกไซด์ ที่ฉาบ พื้นผิวด้วยซิลิกอนไดออกไซด์ จะสามารถช่วยให้เกิดการตกผลึกของพอลิโพรพิลีนได้ดีกว่า ไททา เนียมใดออกไซด์ที่ไม่ได้ผ่านการฉาบสารเคลือบผิว แต่ไททาเนียมไดออกไซด์ที่ฉาบด้วยกรด ไขมัน มีแนวโน้มในการทำให้กระบวนการตกผลึกของพอลิโพรพิลีนช้าลง

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

This work was also supported in parts by the Thailand Research Fund (TRF) through the Royal Golden Jubilee PhD Program (2.L.CU/45/H.1).

Ratchanu Buhngachat was acknowledged for her contribution in preparing the pigmented MDPE samples investigated in this work.

Finally, Assoc. Prof. Pitt Supaphol was also acknowledged for his advices throughout all the works presented in this dissertation.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abstr	act (in English)	iii
	Abstr	act (in Thai)	iv
	Ackn	owledgements	v
	Table	of Contents	vi
	List o	f Tables	ix
	List o	f Figures	xiii
	Abbre	eviations	xix
	List o	f Symbols	xx
CH	APTER	ł	
	Ι	INTRODUCTION	1
	II	LITERATURE REVIEW	4
	III	EXPERIMENTAL	16
	IV	INFLUENCE OF MOLECULAR CHARACTERISTICS	
		ON OVERALL ISOTHERMAL MELT-	
		CRYSTALLIZATION BEHAVIOR AND EQUILIBRIUM	
		MELTING TEMPERATURE OF SYNDIOTACTIC	
		POLYPROPYLENE	24
		4.1 Abstract	24
		4.2 Introduction	24
		4.3 Theoretical Background	25
		4.4 Experimental	28
		4.5 Results and Discussion	31
		4.6 Conclusions	53

CHAPTER		PAGE
	4.7 Acknowledgements	54
	4.8 References	54
V	INFLUENCE OF MOLECULAR CHARACTERISTICS	
	ON NON-ISOTHERMAL MELT-CRYSTALLIZATION	
	KINETICS OF SYNDIOTACTIC POLYPROPYLENE	56
	5.1 Abstract	56
	5.2 Introduction	56
	5.3 Theoretical Background	57
	5.4 Experimental	62
	5.5 Results and Discussion	64
	5.6 Conclusions	84
	5.7 Acknowledgements	85
	5.8 References	85
VI	NON-ISOTHERMAL MELT-CRYSTALLIZATION AND	
	SUBSEQUENT MELTING BEHAVIOR OF	
	PIGMENTED MEDIUM-DENSITY POLYETHYLENE	87
	6.1 Abstract	87
	6.2 Introduction	87
	6.3 Theoretical Background	88
	6.4 Experimental	89
	6.5 Results and Discussion	92
	6.6 Conclusions	116
	6.7 Acknowledgements	116
	6.8 References	116

1 ÷

19.

PAGE

158

118
118
119
120
121
124
153
153
154
155

CURRICULUM VITAE

LIST OF TABLES

TABLE

PAGE

CHAPTER III

3.1	Molecular characteristics of sPP#9 to sPP#14	17
3.2	Specific properties of the TiO ₂ nanoparticles	18

CHAPTER IV

4.1	Molecular characteristics of sPP# 9-14 and the equilibrium	
	melting temperature (T_m^0) based on linear and nonlinear	
	Hoffman-Weeks extrapolation	29
4.2	Characteristic data of the melting endotherm after isothermal	
	crystallization of sPP# 9-14	34
4.3	Isothermal crystallization kinetic parameters of sPP# 9-14	
	based on Avrami analysis	42
4.4	Isothermal crystallization kinetic parameters of sPP# 9-14	
	based on Malkin analysis	46
4.5	Isothermal crystallization kinetic parameters of sPP# 9-14	
	based on Urbanovici-Segal analysis	48

CHAPTER V

5.1	Molecular characteristics of sPP# 9 to sPP#14 and the	
	estimated equilibrium melting temperature (T_m^0) based on	
	linear Hoffman-Weeks extrapolative method	63
5.2	Characteristic data from non-isothermal melt-crystallization	
	exotherms for sPP# 9 to sPP#14	67
5.3	Quantitative analysis of the relative crystallinity functions of	
	time which were converted from non-isothermal melt-	
	crystallization of sPP#9 to sPP#14	71

TABLE

PAGE

5.4	y-intercept, slope, and the r^2 values of regression lines drawn	
	through plots of $\ln(t_{\theta})$ against $\ln(\phi)$ for various relative	
	crystallinity values	73
5.5	Characteristic data of subsequent melting endotherms after	
	non-isothermal melt-crystallization for sPP#9 to sPP#14	75
5.6	Non-isothermal melt-crystallization kinetic parameters for	
	sPP# 9 to sPP#14 based on Avrami analysis	77
5.7	Non-isothermal melt-crystallization kinetic parameters for	
	sPP# 9 to sPP#14 based on Urbanovici-Segal analysis	78
5.8	Non-isothermal melt-crystallization kinetic parameters for	
	sPP# 9 to sPP#14 based on Ozawa analysis	81
5.9	Non-isothermal melt-crystallization kinetic parameters for	
	sPP# 9 to sPP#14 based on Ziabicki's kinetic crystallizability	
	analysis	82
5.10	Effective energy barrier for overall non-isothermal melt-	
	crystallization of sPP#9 to sPP#14 based on the differential	
	iso-conversional method of Friedman	83
	CHAPTER VI	
6.1	Characteristic data of non-isothermal melt-crystallization	
	exotherms for neat MDPE and pigmented MDPE	97
6.2	Quantitative analysis of the relative crystallinity as a	
	functions of time for neat MDPE	100
6.3	Quantitative analysis of the relative crystallinity as a	
	functions of time for MDPE filled with various amount of	
	diarylide	102
6.4	Quantitative analysis of the relative crystallinity as a	
	functions of time for MDPE filled with various amount of	
	phthalocyanine	103

TABLE

6.5	Quantitative analysis of the relative crystallinity as a	
	functions of time for MDPE filled with various amount of	
	quinacridone	104
6.6	y-intercept, slope, and the r^2 values of regression lines drawn	
	through plots of $\ln(t_{\theta})$ against $\ln(\phi)$ for various θ values	105
6.7	Characteristic data of subsequent melting endotherms after	
	non-isothermal melt-crystallization for neat and pigmented	
	MDPE	109
6.8	Non-isothermal melt-crystallization kinetics for pure MDPE	
	and pigment-added MDPE based on Avrami analysis for	
	primary crystallization process (covering the θ range of 0.1-	
	0.4)	112
6.9	Non-isothermal melt-crystallization kinetics for pure MDPE	
	and pigment-added MDPE based on Avrami analysis for	
	secondary crystallization process (covering the θ range of	
	0.6-0.9)	114
	CHAPTER VII	
7.1	Specific properties of the TiO_2 nanoparticles	122

/.1	specific properties of the Trog nanoparticles	144
7.2	Characteristic data of non-isothermal melt-crystallization	
	exotherms for neat and TiO ₂ -filled iPP	126
7.3	Quantitative analysis of the relative crystallinity as a	
	functions of time for neat iPP	132
7.4	Quantitative analysis of the relative crystallinity as a	
	functions of time for iPP filled with CYU201	133
7.5	Quantitative analysis of the relative crystallinity as a	
	functions of time for iPP filled with CYU202	134

TABLE

7.6	Quantitative analysis of the relative crystallinity as a	
	functions of time for iPP filled with CYU203	135
7.7	y-intercept, slope, and the r^2 values of regression lines drawn	
	through plots of $\ln(t_{\theta})$ versus $\ln(\phi)$ for various θ values	136
7.8	Characteristic data of subsequent melting endotherms after	
	non-isothermal melt-crystallization for neat and TiO2-filled	
	iPP	143
7.9	Non-isothermal melt-crystallization kinetics for neat and	
	TiO ₂ -filled based on Avrami analysis over the crystallinity	
	range of 10 to 80%	146

LIST OF FIGURES

FIGURE

CHAPTER II

2.1 The proposed polymer crystal morphologies (a) "fringedmicelle model" (b) "folded-chain lamellar model" and (c) "spherulitic morphology"

CHAPTER III

3.1 Chemical structure of the three pigments investigated: (a) quinacridone or 'Pigment Red 122', (b) phthalocyanine or 'Pigment Blue 25', and (c) diarylide or 'Pigment Yellow 83'

CHAPTER IV

4.1	(a) Isothermal melt-crystallization exotherms for sPP#10	
	observed at different crystallization temperatures, ranging	
	from 88 to 108°C.	32
	(b) Subsequent melting thermograms for sPP#10 observed	
	during subsequent heating at a heating rate of 20°C min ⁻¹	
	after isothermal melt-crystallization at different	
	crystallization temperatures, ranging from 88 to 108°C.	33
4.2	Observed melting temperature as a function of crystallization	
	temperature for sPP#9. The raw data are shown as	
	geometrical points. The dotted line represents the linear	
	Hoffman-Weeks extrapolation and the solid line represents	
	the non-linear Hoffman-Weeks extrapolation.	36
4.3	Determination of the equilibrium melting temperature for a	
	perfect sPP (i.e. sPP of 100% syndiotacticity level) by	
	extrapolation of the observed equilibrium melting	

5

FIGURE

temperatures (i.e. T_m^{1HW}) of the sPP resins shown in Table 4.1 as a function of the racemic pentad content. Keys: data obtained from this work (•) and from the literature (o).

- 4.4 Determination of the equilibrium melting temperature for a perfect sPP by means of a modified Flory's theory for the depression of the equilibrium melting temperature in copolymers through the plot of $1/T_m^{LHW}$ versus $-\ln p_r$, where p_r is the racemic dyad content. Keys: data obtained from this work (•) and from the literature (o).
- 4.5 (a) Relative crystallinity as a function of crystallization time for sPP#11 observed at different crystallization temperatures, ranging from 92 to 110oC. The experimental data, shown as various geometrical points, were fitted to the Avrami macrokinetic models, in which the best fits are shown as solid lines.

(b) Relative crystallinity as a function of crystallization time for sPP#11 observed at different crystallization temperatures, ranging from 92 to 110oC. The experimental data, shown as various geometrical points, were fitted to the Malkin macrokinetic models, in which the best fits are shown as solid lines.

(c) Relative crystallinity as a function of crystallization time for sPP#11 observed at different crystallization temperatures, ranging from 92 to 110°C. The experimental data, shown as various geometrical points, were fitted to the Urbanovici-Segal macrokinetic models, in which the best fits are shown as solid lines. PAGE

38

- 4.6 Reciprocal half-times of crystallization as a function of crystallization temperature for (●) sPP#9, (○) sPP#10, (▼) sPP#11, (▽) sPP#12, (■) sPP#13, and (□) sPP#14.
- 4.7 Various crystallization rate parameters shown as various geometrical points as a function of crystallization temperature for sPP#12 observed at different crystallization temperatures, ranging from 74 to 96°C.

CHAPTER V

5.1 (a) Non-isothermal melt-crystallization exotherm of sPP#10 observed for seven different cooling rates, ranging from 5 to 40°C min⁻¹.
(b) Subsequent melting endotherm of sPP#10 after non-isothermal melt-crystallization at corresponding cooling rates. The subsequent melting endotherm was recorded at a heating rate of 20°C min⁻¹
5.2 (a) Relative crystallinity as a function of time of sPP#11 observed for seven different cooling rates, ranging from 5 to 40°C min⁻¹. The raw experimental data are shown as various geometrical points; whereas the model predictions based on Avrami model are shown as solid lines.
(b) Relative crystallinity as a function of time of sPP#11

observed for seven different cooling rates, ranging from 5 to 40oC min-1. The raw experimental data are shown as various geometrical points; whereas the model predictions based on Urbanovici-Segal model are shown as solid lines. XV

PAGE

51

52

65

66

68

FIGURE

5.3	Crystallization time at various relative crystallinity values as	
	a function of cooling rate for sPP#10. The inset figure shows	
	a relationship between apparent total crystallization period	
	and cooling rate in a log-log plot.	70
5.4	Relationship between crystallization time at various relative	
	crystallinity values and cooling rate in a log-log plot for	
	sPP#10.	74
5.5	Typical Ozawa analysis based on non-isothermal melt-	
	crystallization data of sPP#13.	80

	CHAPTER VI	
6.1	Chemical structure of the three pigments investigated: (a)	
	quinacridone or 'Pigment Red 122', (b) phthalocyanine or	
	'Pigment Blue 25', and (c) diarylide or 'Pigment Yellow 83'.	90
6.2	(a) Non-isothermal melt-crystallization exotherm of MDPE	
	filled with 0.1 phr of phthalocyanine (PB01) at six different	
	cooling rates ranging from 5 to 30°C min ⁻¹	93 ·
	(b) Corresponding subsequent melting endotherm recorded	
	at a heating rate of 20°C min ⁻¹	94
6.3	(a) Non-isothermal melt-crystallzation exotherm of neat and	
	pigmented MDPE recorded at a cooling rate of 10°C min ⁻¹	95
	(b) Corresponding subsequent melting endotherm recorded	
	at a heating rate of 20°C min ⁻¹ .	96
6.4	Relative crystallinity as a function of time of MDPE filled	
	with 0.1 phr of diarylide (PY01) at six different cooling rates	
	ranging from 5 to 30°C min ⁻¹ .	99

FIGURE

6.5	Crystallization time at various relative crystallinity values as	
	a function of cooling rate for MDPE filled with 0.1 phr of	
	quinacridone (PR01). The inset figure shows a relationship	
	between apparent total crystallization period and cooling rate	
	in a log-log plot.	101
6.6	Crystallization time at various relative crystallinity values as	
	a function of cooling rate in a log-log plot for MDPE filled	
	with 0.1 phr of quinacridone (PR01).	108
6.7	Typical Avrami analysis for MDPE filled with 0.1 phr of	
	diarylide (PY01).	111

CHAPTER VII

7.1	Non-isothermal melt-crystallization exotherm of neat iPP at	
	six different cooling rates.	125
7.2	Non-isothermal melt-crystallization exotherm of neat and	
	TiO2-filled iPP recorded at a cooling rate of 10°C min ⁻¹ .	128
7.3	Non-isothermal melt-crystallization exotherms of iPP filled	
	with 30wt% CYU202 at six different cooling rates.	130
7.4	Relative crystallinity as a function of time for iPP filled with	
	5wt% CYU202 at six different cooling rates after excluding	
	an induction period.	131
7.5	Crystallization time at various relative crystallinity values as	
	a function of cooling rate for neat iPP. The inset figure shows	
	a relationship between apparent total crystallization period	
	and cooling rate in a log-log plot.	136
7.6	Crystallization time at various relative crystallinity values as	
	a function of cooling rate in a log-log plot for neat iPP.	137

xvii

PAGE

xviii

FIGURE

PAGE

7.7	Subsequent melting endotherm (recorded at 10°C min ⁻¹) of	
	neat iPP after non-isothermal melt-crystallization at six	
	different cooling rates.	141
7.8	Subsequent melting endotherm (recorded at 10°C min ⁻¹) of	
	iPP filled with 20wt% CYU203 after non-isothermal melt-	
	crystallization at six different cooling rates.	142
7.9	Typical Avrami analysis according to the relative crystallinity	
	as a function of time for neat iPP after non-isothermal melt-	
	crystallization at six different cooling rates.	148
7.10	Tensile strength at yield for neat and TiO ₂ -filled iPP	150
7.11	Young's modulus for neat and TiO ₂ -filled iPP.	150
7.12	Elongation at yield for neat and TiO ₂ -filled iPP.	151
7.13	Impact resistance for neat and TiO ₂ -filled iPP.	151
7.14	Flexural strength for neat and TiO ₂ -filled iPP.	152
7.15	Flexural modulus for neat and TiO ₂ -filled iPP.	152

ABBREVIATIONS

sPP	syndiotactic polypropylene
iPP	isotactic polypropylene
MDPE	medium-density polyethylene
DSC	different scanning calorimetry
NMR	nuclear magnetic resonance
LHW	linear Hoffman-Weeks extrapolation method
NLHW	non-linear Hoffman-Weeks extrapolation method
PY	pigment yellow (diarylide C.I.21108)
PB	pigment blue (phthalocyanine C.I.74160)
PR	pigment red (quinacridone C.I.73915)

LIST OF SYMBOLS

t	time
Т	temperature
T _c	crystallization temperature
T _m	melting temperature
T_m^0	equilibrium melting temperature
ΔT_{c}	degree of undercooling defined as $T_m^0 - T_c$
$\theta(t)$	relative crystallinity function of time
$\theta(T)$	relative crystallinity function of temperature
$\mathrm{d}H_{\mathrm{c}}$	instantaneous enthalpy of crystallization released at an arbitrary crystallization
	time
$\Delta H_{\rm c}$	enthalpy of crystallization released over the course of crystallization period
G	linear growth rate of crystal
Ι	primary nucleation rate
K _A	Avrami rate constant
n _A	Avrami exponent
C_0	Malkin exponent
C_1	Malkin rate constant
K _{US}	Urbanovici-Segal rate constant
n _{US}	Urbanovici-Segal exponent
r	parameter in Urbanovici-Segal macrokinetics model which satisfies the
	condition r>0
K _O	Ozawa rate constant
n _O	Ozawa exponent
ϕ	cooling rate
<i>K</i> (<i>T</i>)	temperature dependent crystallization rate function
K _{max}	maximum crystallization rate

.

- D the width at the half-height of the crystallization rate function of temperature
- *G*_z Ziabicki's crystallizability
- G_{ϕ} crystallizability at an arbitrary cooling rate
- $\dot{\theta}_{a}(T)$ derivation function of the relative crystallinity as a function of temperature
- $\dot{\theta}_{\max,\phi}$ the maximum crystallization rate of the derivation function of the relative crystallinity
- D_{ϕ} the width at half-height of the derivation function of the relative crystallinity
- σ lateral surface free energy of crystal lamellae
- $\sigma_{\rm e}$ fold surface free energy of crystal lamellae
- *l* crystal lamelar thickness
- *l*_{min} the minimum lamellar thickness needed to form a thermodynamically stable nucleus
- l_{g}^{*} critical lamellar thickness to form a thermodynamically stable nucleus at the fastest rate
- δl the increment above l_{\min} to give l_g^*
- k Boltzman constant

$$\beta^{m}$$
 thickening coefficient

- σ_e^{GT} the basal interfacial free energy associated with nuclei of critical size including the extra lateral surface energy due to fold protrusion and the mixing entropy associated with stems of different lengths
- σ_e^1 the interfacial energy associated with the formation of the basal plane of the initial crystals
- ΔH_f^0 the equilibrium enthalpy of fusion
- Δt_{inc} incubation period or time period which the polymer is still in the molten state
- $\Delta t_{\rm c}$ crystallization time
- T_{onset} the actual temperature where the sample began to crystallize

- t_0 crystallization time at an arbitrary relative crystallinity
- $t_{0.01}$ crystallization time at relative crystallinity equal to 0.01
- $t_{0.99}$ crystallization time at relative crystallinity equal to 0.99
- $t_{0.5}$ crystallization time at relative crystallinity equal to 0.5 or crystallization halftime
- $t_{0.5}^{-1}$ reciprocal crystallization half-time