#### รายการอ้างอิง

- Abramovich, G.N. (1963). The Theory of Turbulent Jets. Massachusetts: English Translation published by M.I.T. Press.
- Albertson, M.L. Dai, Y.B. Jensen, R.A. and Rouse, H. (1950). Diffusion of submerged jets. *Trans. A.S.C.E.* 115: 639-697.
- Andreopoulos, J. (1984). Initial conditions, Reynolds number effects and the near field characteristics of the round jet in a Crossflow. *J. Flight Sci. Space Res.* 8.
- Andreopoulos, J. (1985). On the structure of jets in crossflow. J. Fluid Mech. 157: 163-197.
- Andreopoulos, J. and Rodi, W. (1984). Experimental investigation of jets in a Crossflow. J. *Fluid Mech.* 138: 93-127.
- Broadwell, J.E. and Breidenthal, R.E. (1984). Structure and mixing of a transverse jet in incompressible flow. *J. Fluid Mech.* 148: 405-412.
  - Bunyajitradulya, A. and Wangjiraniran, W. 2003. Experimental Study on Non-Zero Tangential Velocity, Non-Zero Circulation Swirling Jet in Crossflow. *Proceeding of The ASAHI GLASS FOUNDATION Conference 2003*. Chulalongkorn University.
  - Coelho, S.L.V. and Hunt, J.C.R. (1989). The dynamics of the near field of strong jets In crossflows. *J. Fluid Mech.* 200: 95-120.
  - Corrsin, S. (1946). Investigation of flow in an axially symmetric heated jet of air. N.A.C.A. Wartime Report. W-49.
  - Davidson, G.A. (1989). Simultaneous trajectory and dilution predictions from a simple integral plume model. *Atmos. Environ.* 23: 341.
  - Denev, J. Frohlich, J. and Bockhorn, H.2005. Structure and mixing of a swirling transverse jet into a crossflow. In Humphrey *et al.*(eds.), Procs. Of 4<sup>th</sup> Int. Symp. On Turbulent Shear Flow Phenomena. Williamsburg. June 27-29 2005: 1255-1260.
  - Eff, O.S. Kawall, J.G. and Keffer, J.F. (1995). Lock-in of vortices in the wake of an elevated round turbulent jet in a crossflow. *Exp. Fluids*. 19: 203-213.

Findlay, M.J. Salcudean, M. and Gartshore, I.S. (1999). Jets in a Crossflow: Effects of Geometry and Blowing Ratio. *J. Fluids Eng.* 121: 373-378.

 $\sim$ 

- Fric, T.F. (1990). Structure in the near field of the transverse jet. *Ph.D. thesis.* California Institute of Technology.
- Fric, T.F. and Roshko, A. (1989). Structure in the near field of the transverse jet. Seventh Symposium on Turbulent Shear Flows. 6.4.1-6.4.6.
- Fric, T.F. and Roshko, A. (1994). Vortical structure in the wake of a transverse jet. *J. Fluid Mech.* 279: 1-47.
- Hinze, J.O. and Zijnen, B.G. (1949). Transfer of heat and matter in the turbulent mixing zone of an axially symmetric jet. *J. Appl. Sci. Res.* A1, 435-461.
- Johari, H. Paduano, R. Dilution and mixing in an unsteady jet. Experiments in Fluids. 23: 272-280
- Kamotani, Y, and Greber, I, (1972). Experiments on a Turbulent Jet in a Crossflow. AIAA Journal. 11: 1425-1429.
- Karagozian, A.R. (1986). An analytical model for the vorticity associated with a transverse jet. *AIAA Journal.* 24: 429 436.
- Keffer J.F. and Baines, W.D. (1963). The round turbulent jet in a cross-wind. *J. Fluid Mech.* 15: 481-496.
- Kelso, R.M. Lim, T.T. and Perry, A.E. (1996). An experimental study of round jets in crossflow. *J. Fluid Mech.* 306: 111-144.
- Lighthill, M.J. (1963). in Laminar Boundary Layers. Rosenhead, L. editor: Oxford University Press.
- Magason, R.J. (1993). Fifty years of jet in Crossflow research. AGARD-CP 534. Paper1.
- Morton, B.R. (1984). The generation and decay of vorticity. *Geophys. Astrophys. Fluid Dyn.* 28: 277-293.
- Moussa, Z.M. Trischka, J.W. and Eskinazi, S. (1977). The near field in the mixing of a round jet with a cross-stream. *J. Fluid Mech.* 80: 49-80.
- Niederhaus, C.E. Champagne, F.H. and Jacobs, J.W. (1997). Scalar transport in a swirling transverse jet. *AIAA Journal*. 35: 1697-1704.

Pratte, B.D. and Baines, W.D. (1967). Profiles of the round turbulent jets in a Crossflow. Proc. A.S.C.E. *J. Hydraul. Div.* 92: 53-64.

Rajaratnam, N. (1976). Turbulent jets. New York: EISEVIER Scientific Publishing Company.

- Rajaratnam, N. and Gangadhariah, T. (1980). Circular jets in cross-flow. *Tech. Report.* University of Alberta. Edmonton. Canada.
- Raud, N. Bury, Y. Bazile, R. Boree, J. and Charnay, G. (1999). Experimental Study of the Behavior of Confined Variable Density Jets in a Time Varying Crossflow. J. Fluids Eng. 121: 65-72.
- Sherif, S.A. and Pletcher, R.H. (1989). Measurements of the flow and turbulence characteristics of round jets in Crossflow. *J. Fluids Eng.* 111-165.
- Sivadas, V. Pani, B.S. Butefisch, K.A. and Meier, G.E.A. (1997). Flow visualisation studies on growth of area of deflected jets. *Exp. Fluids*. 13: 105-112.
- Smith, S.H. and Mungal, M.G. (1998). Mixing, structure and scaling of the jet in crossflow. *J. Fluid Mech.* 357: 83-122.
- Sykes, R.I. Lewellen, W.S. and Parker, S.F. (1986). On the vorticity dynamics of a turbulent jet in a crossflow. *J. Fluid Mech.* 80: 49-80.
- Tenneke, H. and Lumley, J.L. (1972). A First course in Turbulence. Cambridge: M.I.T. Press.
- Townsend, A.A. (1956). The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press.
- Wangjiraniran, W. and Bunyajitradulya, A. 2001. Temperature Distribution in Non-Zero Circulation Swirling Jet in Crossflow. *Proceeding of The Fifteenth Mechanical Engineering Network Conference*. 1: TF104-TF116.
- Yuan, L.L. and Street, R.L. (1998). Trajectory and entrainment of a round jet in crossflow. *Phys. fluids.* 10: No. 9: 2323-2335.
- Zaman, K.B.M.Q. and Foss, J.K. (1997). The effect of vortex generators on a jet in a crossflow. *Phys. Fluids.* 9: 106-114.

# ภาคผนวก

100

~

e.

### ภาคผนวก ก การหาพารามิเตอร์ที่ใช้ในการทดลอง

- $1 \qquad V_j \quad V_{cf} \quad V_{\omega} \quad d_j \quad \mu_j \quad \mu_{cf} \quad \rho_j \quad \rho_{cf}$
- 2 เลือกมิติ M. L และ t
- 3  $V d \mu \rho_{cf}$  $\frac{L}{t} L \frac{M}{Lt} \frac{M}{L^3}$

4 เลือกพารามิเตอร์ทำซ้ำ  $d_{j}$   $\rho_{j}$   $V_{j}$ 

$$(L)^{a} \left(\frac{M}{L^{3}}\right)^{b} \left(\frac{L}{l}\right)^{c} L = \frac{[]}{d} \qquad (L)^{c} \left(\frac{M}{L^{3}}\right)^{b} \left(\frac{L}{l}\right)^{c} \frac{L}{l} = \frac{[]}{V} \\ M : b = 0; a = -1 \\ L : a - 3b + c + 1 = 0; b = 0 \\ t : -c = 0; c = 0 \qquad H : b = 0; a = 0 \\ L : a - 3b + c + 1 = 0; b = 0 \\ t : -c - 1 = 0; c = -1 \qquad (L)^{c} \left(\frac{M}{L^{3}}\right)^{b} \left(\frac{L}{l}\right)^{c} \frac{M}{Ll} = \frac{[]}{d\rho V} \\ M : b + 1 = 0; a = -1 \\ L : a - 3b + c - 1 = 0; b = -1 \\ t : -c - 1 = 0; c = -1 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H : b + 1 = 0; a = 0 \\ L : a - 3b + c - 3 = 0; b = -1 \\ t : -c = 0; c = 0 \qquad H = 0; c = 0 \end{cases}$$

5 ดังนั้นมีเทอมไร้มิติ n – m = 5 เทอม

$$\Pi_{1} = d_{j}^{a} \rho_{j}^{b} V_{j}^{c} V_{cf} = \frac{V_{cf}}{V_{j}} = r \qquad \Pi_{4} = d_{j}^{a} \rho_{j}^{b} V_{j}^{c} \mu_{j} = \frac{\mu_{j}}{\rho_{j} V_{j} d_{j}} = \operatorname{Re}_{j}$$

$$\Pi_{2} = d_{j}^{a} \rho_{j}^{b} V_{j}^{c} V_{\theta} = \frac{V_{\theta}}{V_{j}} = S, \qquad \Pi_{5} = d_{j}^{a} \rho_{j}^{b} V_{j}^{c} \rho_{cf} = \frac{\rho_{cf}}{\rho_{j}}$$

$$\Pi_{3} = d_{j}^{a} \rho_{j}^{b} V_{j}^{c} \mu_{cf} = \frac{\mu_{cf}}{\rho_{j} V_{j} d_{j}}$$

$$f(\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi_{4}, \Pi_{5}) = f(r, S_{r}, \operatorname{Re}_{j}, \frac{\mu_{cf}}{\rho_{j} V_{j} d_{j}}, \frac{\rho_{cf}}{\rho_{j}}) \qquad (n.1)$$

6 Manipulate Pi Group

Assumption

- 6.1  $\mu_{cf} \approx \mu_{1}$  then  $\Pi_{7} = \Pi_{8}$
- 6.2  $\rho_{cf} \approx \rho_{t}$  then  $\Pi_{9} = cons \tan t$

$$\operatorname{Re}_{j} = f(r, S_{r}) \tag{(n.2)}$$

. .

## ภาคผนวก ข การเตรียมสารเคมีเพื่อการเกิดสีแสดงปฏิกิริยาการผสม

ใช้การทำปฏิกิริยาทางเคมี(active scalar) เพื่อศึกษาการผสมกันในระดับโมเลกุล โดยใช้ ph indicator ช่วยทำให้เห็นถึงกระบวนการการผสม ในการทดลองของงานวิจัยนี้เลือกใช้ phenolphthalein ของ LABCHEM 368-100G ซึ่งช่วงของการเปลี่ยนสีคือไม่มีสีที่ pH 8.0 สีแดงที่ pH 10.0 โดยในการ ทดลองได้เตรียมสารละลายกรดจาก HNO<sub>3</sub> เข้มข้น 15โมล/ลิตร เตรียมสารละลายเบสจาก NaOH เข้มข้น 50% ให้ทำปฏิกิริยากันถึงจุดยุติที่อัตราส่วน HNO<sub>3</sub> : NaOH เป็น 1:1 โดยปริมาตร โดยใน ความหมายว่าหยดกรด I ส่วน ลงในเบส I ส่วนแล้วสีแดงของสารละลายเบสที่มี phenolphthalein เป็น pH indicator เปลี่ยนเป็นไม่มีสี โดยปริมาณกรดที่หยดลงไปแล้วถึงจุดยุติให้ผิดพลาดได้ประมาณ ±5 %

NaOH + HNO<sub>3</sub> 
$$\rightarrow$$
 H<sub>2</sub>O + NaNO<sub>3</sub> +   
Qa (x mol/L) Qb(y mol/L)

หาความสัมพันธ์ของความเข้มข้นเบสกับกรคที่ทำให้ pH ของสารละลายเบสเปลี่ยนจากมีสีเป็น ไม่มีสีจากสมการ pH

$$pH = 14 - pOH$$

$$8 = 14 + log \left[ \frac{x(Q_{b}) - y(Q_{a})}{Q_{a} + Q_{b}} \right]$$

$$x = \frac{(Q_{a} + Q_{b})10^{-(14-8)} + y(Q_{a})}{Q_{b}}$$
(9.1)

(uno)

pH ที่เกิดขึ้นกรณีมีกรคเหลืออยู่ในผลิตภัณฑ์

$$pH = -\log\left[\frac{y(Q_{a} + 0.05Q_{a}) - x(Q_{b})}{(Q_{a} + 0.05Q_{a}) + Q_{b}}\right]$$
(9.2)

pH ที่เกิดขึ้นกรณีมีเบสเหลืออยู่ในผลิตภัณฑ์

$$pH = 14 + \log\left[\frac{x(Q_{b}) - y(Q_{a} - 0.05Q_{a})}{(Q_{a} - 0.05Q_{a}) + Q_{b}}\right]$$
(9.3)

นำสมการของ pH ไป plot titration curve เพื่อเลือกความเข้มข้นที่จะในการทคลอง ซึ่งจากกราฟการ เตรียมสารให้ได้ความเข้มข้น HNO<sub>3</sub> 0.010002 โมล/ลิตร และ NaOH 0.01 โมล/ลิตร จะทำให้เกิดความ ผิดพลาดน้อยกว่าเพราะในช่วงของการเปลี่ยนสีอยู่ในปริมาณของการเปลี่ยนแปลงปริมาณกรคเล็กน้อย ก็ทำให้ pH เปลี่ยนจากเบสกลายเป็นกรคซึ่งทำให้สีชมพูหายไปในทันที



ภาคผนวก ค กระเปาะเพิ่ม sensitivity (การนำมานอร์มิเตอร์วัดความแตกต่างของความดันชนิดอากาศ มาใช้วัดความแตกต่างของความดันของของเหลว)







สภาวะขณะมีการใหลใน ventury

 $P_{a}V_{1} = P_{a_{2}}V_{2}$   $P_{a_{2}} = \frac{P_{a}V_{1}}{V_{2}}$   $= \frac{P_{a}\frac{\pi d_{1}^{2}l_{1}}{4}}{\frac{\pi D^{2}h'}{4} + \frac{\pi d_{1}^{2}l_{1}}{4}}$   $= \frac{P_{a}}{\frac{\pi D^{2}h'}{4} + 1}$   $= \frac{P_{atm}}{\frac{D^{2}h'}{d_{1}^{2}l_{1}} + 1}$ 

[1]

$$\frac{\text{Consider at point 5 and 2}}{P_5 = P_2}$$

$$P_{aum} + \rho g l = P_{a_2} + \rho g [l + h - h']$$

$$P_{aum} = P_{a_2} + \rho g [h - h']$$

$$P_{atm} = P_{a_2} + \rho g [h - h']$$

$$\frac{P_{atm}}{P_{atm}} + \rho g [h - h']$$

Table 1. Value A of percentage error (h'/h x 100) measuring at any h  $\,$ 

$$A = \frac{P_{atm}}{h'(P_{atm} - \rho g(h - h'))} - \frac{1}{h'}$$

=100006/(D\$2\*\$C3/100\*(100000-1000\*9.81\*(\$C3-D52\*\$C3/100)))-1/(D\$2\*\$C3/100)

|   |           |        | /     |       |       |        |       |        |        |        |        |        |
|---|-----------|--------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|
|   | С         | D      | /     |       |       |        |       |        |        |        |        |        |
| 2 | h\(%b'/h) | 0.001  | 0.01  | 0.1   | 0.25  | 0.5    | 1     | 2      | 3      | 5      | 10     | 50     |
| 3 | 0.000254  | 9810.1 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8070 | 3.1720 | 1.8639 | 0.8829 | 0.0981 |
| - | 0.0003    | 9810.1 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8070 | 3.1720 | 1.8640 | 0.8829 | 0.0981 |
|   | 0.00035   | 9810.2 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8071 | 3.1720 | 1.8640 | 0.6829 | 0.0961 |
|   | 0.0004    | 9810.2 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8071 | 3.1720 | 1.8640 | 0.8829 | 0.0981 |
|   | 0.00045   | 9810.3 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8071 | 3.1720 | 1.8640 | 0.8829 | 0.0981 |
|   | 0.0005    | 9810.3 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8071 | 3.1721 | 1.8640 | 0.8829 | 0.0981 |
|   | 0.00055   | 9810.4 | 980.9 | 98.00 | 39.14 | 19.522 | 9.712 | 4.8072 | 3.1721 | 1.8640 | 0.8829 | 0.0951 |
|   | 0.004     | 9813.7 | 981.2 | 98.04 | 39.15 | 19.529 | 9.715 | 4.8087 | 3.1731 | 1.8646 | 0.8832 | 0.0981 |
|   | 0.0042    | 9813.9 | 981.3 | 98.04 | 39.15 | 19.529 | 9.715 | 4.8088 | 3.1732 | 1.8646 | 0.8832 | 0.0981 |
|   | 0.0044    | 9814.1 | 981.3 | 98.04 | 39.15 | 19.530 | 9.716 | 4.8089 | 3.1732 | 1.8647 | 0.8832 | 0.0991 |
|   | 0.0046    | 9814.3 | 981.3 | 98.04 | 39.15 | 19.530 | 9.716 | 4.8090 | 3.1733 | 1.8647 | 0.8833 | 0.0981 |
|   | 0.0048    | 9814.5 | 981.3 | 98.04 | 39.16 | 19.531 | 9.716 | 4.8091 | 3.1733 | 1.8647 | 0.8833 | 0.0981 |
|   | 0.005     | 9814.7 | 981.3 | 98.04 | 39.16 | 19.531 | 9.716 | 4.8092 | 3.1734 | 1.8648 | 0.8833 | 0.0981 |
|   | 0.0052    | 9814.9 | 981.4 | 98.05 | 39.16 | 19.531 | 9.716 | 4.8093 | 3.1735 | 1.8648 | 0.8833 | 0.0981 |
|   | 0.0054    | 9815.1 | 981.4 | 98.05 | 39.16 | 19.532 | 9.717 | 4.8094 | 3.1735 | 1.8648 | 0.8833 | 0981   |
|   | 0.0056    | 9815.2 | 981.4 | 98.05 | 39.15 | 19.532 | 9.717 | 4.8095 | 3.1736 | 1.8643 | 0.8833 | 0.0981 |
|   | 0.0058    | 9815.4 | 981.4 | 98.05 | 39.15 | 19.533 | 9.717 | 4.8096 | 3.1737 | 1.8649 | 0.8834 | 0.0981 |
|   | 0.006     | 9815.6 | 981.4 | 98.05 | 39.16 | 19.533 | 9.717 | 4.8097 | 3.1737 | 1.8649 | 0.8834 | 0.0981 |
|   | 0.0062    | 9815.8 | 981.4 | 98.06 | 39.16 | 19.533 | 9.717 | 4.8098 | 3.1738 | 1.8650 | 0.8834 | 0.0981 |
|   | 0.0064    | 9816.0 | 981.5 | 98.06 | 39.16 | 19.534 | 9.717 | 4.8099 | 3.1738 | 1.8650 | 0.8834 | 0.0961 |
|   | 0.0066    | 9816.2 | 981.5 | 98.06 | 39.16 | 19.534 | 9.718 | 4.8100 | 3.1739 | 1.8650 | 0.8834 | 0.0981 |
|   | 0.0068    | 9816.4 | 981.5 | 98.06 | 39.16 | 19.534 | 9.718 | 4.8100 | 3.1740 | 1.8651 | 0.8834 | 0.0981 |
|   | 0.007     | 9816.6 | 981.5 | 98.06 | 39.16 | 19.535 | 9.718 | 4.8101 | 3.1740 | 1.8651 | 0.8834 | 0.0981 |
|   | 0.0072    | 9816.8 | 981.5 | 98.07 | 39.16 | 19.535 | 9.718 | 4.8102 | 3.1741 | 1.8652 | 0.8835 | 0.0981 |
|   | 0.0074    | 9817.0 | 981.6 | 98.07 | 39.17 | 19.536 | 9.718 | 4.8103 | 3.1741 | 1.8652 | 0.8835 | 0.0981 |
|   | 0.0076    | 9817.2 | 381.6 | 98.07 | 39.17 | 19.536 | 9.719 | 4.8104 | 3.1742 | 1.8652 | 0.8835 | 0.0961 |
|   | 0.0078    | 9817.4 | 981.6 | 98.07 | 39.17 | 19.536 | 9.719 | 4.8105 | 3.1743 | 1.8653 | 0.8835 | 0.0981 |
|   | 0.008     | 9817.6 | 981.6 | 98.07 | 39.17 | 19.537 | 9.719 | 4.8106 | 3.1743 | 1.8653 | 0.8835 | 0.0981 |
|   | 0.0082    | 9817.7 | 981.6 | 98.08 | 39.17 | 19.537 | 9.719 | 4.8107 | 3.1744 | 1.8653 | 0.6835 | 0.0981 |
|   | 0.0084    | 9817.9 | 981.7 | 98.08 | 39.17 | 19.537 | 9.719 | 4.8108 | 3.1744 | 1.8654 | 0.8836 | 0.0981 |
|   | 0.0086    | 9618.1 | 981.7 | 98.08 | 39.17 | 19.538 | 9.720 | 4.8109 | 3.1745 | 1.8654 | 0.8836 | 0.0981 |

.

\*

97

.



$$P_{5} = \rho g l + P_{Atm} \qquad P_{2} = P_{a_{2}} + \rho g [l + h - h']$$

$$P_{6} = \rho g [L + l + h - hh] + P_{Atm} \qquad P_{4} = P_{b_{2}} + \rho g [L + l + h - hh]$$

$$\boxed{P_{5} = P_{2}}$$

$$\rho g l + P_{Atm} = P_{a_{2}} + \rho g [l + h - h']$$

$$P_{Atm} = P_{a_{2}} + \rho g [h - h']$$

$$\boxed{P_{6} = P_{4}}$$

$$\rho g [L + l + h - hh] + P_{Atm} = P_{b_{1}} + \rho g [L + l + h - hh]$$
(A)

\*

A = B

$$\rho g [L+l+h-hh] + P_{Alm} = P_{b_2} + \rho g [L+l+h-hh]$$

$$P_{Alm} = P_{b_2} + \rho g [hh-hh']$$
[B]

$$P_{a_{2}} + \rho g[h - h'] = P_{b_{2}} + \rho g[hh - hh']$$

$$\frac{P_{a_{2}} - P_{b_{2}}}{\rho g} = [hh - hh'] - [h - h']$$

$$= [hh - h] - [hh' - h']$$

$$\frac{V_{3}^{2} - V_{1}^{2}}{2g} = \frac{P_{a_{2}} - P_{b_{2}}}{\rho g} + hh' - h'$$

$$\frac{\left(\frac{Q}{A_{3}}\right)^{2} - \left(\frac{Q}{A_{1}}\right)^{2}}{2g} = \frac{P_{a_{2}} - P_{b_{2}}}{\rho g} + hh' - h'$$

$$Q^{2} = \frac{2g\left[\frac{P_{a_{2}} - P_{b_{2}}}{\rho g} + hh' - h'\right]}{\frac{1}{A_{3}^{2}} - \frac{1}{A_{1}^{2}}}$$
[C]

98

Approximate the term of

....

54

$$\frac{\left(\frac{P_{a_2}-P_{b_2}}{\rho g}\right)}{hh'-h'}$$

$$P_{a_{2}}V_{a_{2}} = P_{b_{2}}V_{b_{2}}$$

$$\frac{P_{a_{2}}}{P_{b_{2}}} = \frac{V_{b_{2}}}{V_{a_{2}}}$$

$$= \frac{V_{i} + \frac{\pi}{4}D^{2}hh'}{V_{i} + \frac{\pi}{4}D^{2}h'}$$

$$= \frac{1 + \frac{D^{2}}{d_{1}^{2}l}hh'}{1 + \frac{D^{2}}{d_{1}^{2}l}h'}$$

$$= \frac{1 + Ahh'}{1 + Ah'}$$

$$Define A_{probe_1} = A_{probe_2} \rightarrow m_{a2}RT_2 = m_{b2}RT_2$$

$$\frac{P_{a_2}}{P_{b_2}} - 1 = \frac{1 + Ahh'}{1 + Ah'} - 1$$

$$\frac{P_{a_2} - P_{b_2}}{P_{b_2}} = \frac{A(hh' - h')}{1 + Ah'}$$

$$P_{a_2} - P_{b_2} = P_{b_2} \left(\frac{A(hh' - h')}{1 + Ah'}\right)$$

$$\frac{P_{a_2} - P_{b_2}}{\rho g} = \frac{P_{b_2}}{\rho g} \left(\frac{A}{1 + Ah'}\right)(hh' - h')$$
[5]

Replace [B] in [5]

$$= \frac{P_{Atm} - \rho g [hh = hh']}{\rho g} \left( \frac{A}{1 + Ah'} \right) (hh' - h')$$
$$= \left( \frac{P_{Atm}}{\rho g} - (hh - hh') \right) \left( \frac{A}{1 + Ah'} \right) (hh' - h')$$
$$\frac{\left( \frac{P_{a_2} - P_{b_2}}{\rho g} \right)}{hh' - h'} = \left( \frac{P_{Atm}}{\rho g} - (hh - hh') \right) \left( \frac{A}{1 + Ah'} \right)$$
[5.1]

....

#### Error from Method

.

$$Q_{Acr} = \sqrt{\frac{2g\left[\frac{P_{a_{1}} - P_{b_{2}}}{\rho g} + hh' - h'\right]}{\frac{1}{A_{3}^{2}} - \frac{1}{A_{1}^{2}}}}$$

$$Q_{Mec} = \sqrt{\frac{2g\left[\frac{P_{a_{2}} - P_{b_{1}}}{\rho g}\right]}{\frac{1}{A_{3}^{2}} - \frac{1}{A_{1}^{2}}}}$$
% error<sub>Q</sub> =  $\left[\frac{Q_{Acr} - Q_{Mec}}{Q_{Acr}}\right] \times 100\%$ 

$$= \left(\frac{\sqrt{\frac{P_{a_{2}} - P_{b_{1}}}{\rho g}} + hh' - h' - \sqrt{\frac{P_{a_{2}} - P_{b_{2}}}{\rho g}}}{\sqrt{\frac{P_{a_{2}} - P_{b_{1}}}{\rho g}}}\right) \times 100\%$$

$$= \left(1 - \frac{1}{1 + \frac{hh' - h'}{\frac{P_{a_{1}} - P_{b_{1}}}{\rho g}}}\right) \times 100\%$$
(6)

Replace [5.1] in [6]

$$= \left( \frac{1 - \frac{1}{1 + \frac{1}{\left(\frac{P_{Atm}}{\rho g} - (hh - hh')\right)\left(\frac{A}{1 + Ah'}\right)}}}{\left(\frac{P_{Atm}}{\rho g} - (hh - hh')\right)\left(\frac{A}{1 + Ah'}\right) + 1} \times 100\%$$

$$= \frac{1}{\left(\frac{P_{Atm}}{\rho g} - (hh - hh')\right)\left(\frac{A}{1 + Ah'}\right) + 1}$$
[6.1]

÷ .

100

#### Percent error in measuring

$$\operatorname{For}_{Q_{all}} = \% \operatorname{Error}_{Q_{natures}} + \% \operatorname{Error}_{Q_{natures}} +$$

£ 4

.

%  $\text{Error}_{Q_{all}} = \% \text{Error}_{Q_{method}} + \% \text{Error}_{Q_{method}}$ 

\$

## ภาคผนวก ง การสอบเทียบโปรแกรมการทำกระบวนการทางภาพ

ในการปรับเทียบโปรแกรมที่ใช้งานมีความสำคัญเพื่อให้โปรแกรมที่ใช้งานมีความถูกต้องและ น่าเชื่อถือ โดยมีวิธีในการปรับเทียบ จะสร้างไฟล์รูปภาพ 3 ชุด ประกอบด้วย 1.) ชุดข้อมูลแทน X<sub>ij,k</sub> คือ X1.tif, X2.tif และ X3.tif.2 ) ข้อมูลแทน  $\overline{NR}_{ij}$  คือ B.tifและ 3.) ข้อมูลแทน $\overline{B}_{ij}$  คือ NR.tif



ผลสอบเทียบของโปรแกรมที่ใช้คำนวณเฉลี่ยค่า  $\overline{C}_N$ แสดงผลการนำค่า $\overline{C}_N$  ที่ได้จากการคำนวณจากสมการ $\overline{C}_N_{_g} = -\frac{1}{n} \sum_{k=1}^{n=3000} \ln \left( \frac{X_{y,k} - \overline{NR}_y}{\overline{B}_y - \overline{NR}_y} \right)$ มาคูณด้วย 50 เพื่อแสดงผลในคอมพิวเตอร์ให้สามารถมองเห็นได้เนื่องจากค่า $\overline{C}_{N_g}$  ที่ได้ส่วนใหญ่มีค่า น้อยกว่า 1 ซึ่งภาพที่แสดงในคอมพิวเตอร์ได้จะต้องมีค่าเป็นจำนวนเต็มและอยู่ในช่วง 0 - 255 เท่านั้น ค่าที่เป็นลบเนื่องจาก $\overline{C}_{N_g}$  นั้นเป็นลบเมื่อคูณด้วย 50 แล้วจะถูกบวกด้วย 256 ไปเรื่อยๆจนกว่าค่าที่ได้ จะมีค่ามากกว่าหรือเท่ากับศูนย์ อนึ่งค่า $\overline{C}_{N_g}$  ที่เป็นบวกแต่เมื่อคูณด้วย 50 แล้วเกิน 255 จะถูกลบด้วย 256 ไปเรื่อยๆจนกว่าค่าที่ได้จะน้อยกว่า 256 นั้นคือค่าที่จะใช้แสดงผลบนจอ



ซึ่งการการสอบเทียบพบว่าผลของภาพที่ได้คือ Extinction × 50.tif มีค่าระดับความเข้มแสงในรูปภาพ สอดคล้องกับค่าระดับความเข้มแสงในการคำนวณ ซึ่งมีรายละเอียดดังนี้

ในการคำนวณนั้น เพื่อให้การคำนวณเดินหน้าต่อไปได้ เทอมที่ไม่สามารถนิยามค่าได้เช่น  $\frac{R}{0}$ 

$$\ln(0), \ln(R^{-}) \,\vec{n}$$
 จะนำไปแทนในสมการ $\overline{C_{N_{y}}} = -\frac{1}{n} \sum_{k=1}^{n} \ln\left(\frac{X_{y,k} - NR_{y}}{\overline{B}_{y} - NR_{y}}\right)$ จำเป็นต้องหลีกเลี่ยง

โดยปกติแล้ว X<sub>y k</sub> และ B<sub>y</sub> จะมีค่ามากกว่า NR<sub>y</sub> เพราะมีสัญญาณของแสงแต่ในรูปภาพที่มี pixel เป็นแสน pixel เป็นไปได้ว่ามี 1 pixel หรือมากกว่าที่ไม่มีสัญญาณแสงหรือมีน้อยมากเช่น ภาพถ่าย topview ที่ปากเจ็ตเป็นโลหะและการให้แสงนั้นมาจากด้านหลังจึงเป็นบริเวณที่ไม่มี สัญญาณแสงเข้ามาสู่ ccd ในภาพถ่าย sideview นั้น ฝุ่นที่ติดผนัง test section ก็สามารถบังแสงได้ เช่นกัน ด้วยเหตุนี้จำเป็นต้องกำหนดค่าให้ pixel นั้นใหม่เพื่อหลีกเลี่ยงปัญหาดังกล่าว

การกำหนดค่ามีได้หลายวิธีสำหรับค่าที่ pixel นั้นมีปัญหาในการคำนวณ เช่นนำค่า pixel รอบๆมาทำการคำนวณด้วยเพื่อประมาณค่าใน pixel ที่มีปัญหา แต่ในงานวิจัยนี้เลือกเปลี่ยนค่าใน แบบคงไว้ซึ่งความใกล้เคียงค่าในรูปภาพเดิม โดยพิจารณาว่า  $X_{g,k} - \overline{NR}_{g}$  และ  $\overline{B}_{g} - \overline{NR}_{g}$  จะต้อง มากกว่าหรือเท่ากับศูนย์เสมอ เพราะสัญญาณความเข้มแสงควรที่จะมีค่ามากกว่า noise แต่บาง pixel ที่สัญญาณความเข้มแสงนั้นมีค่าใกล้กับศูนย์(เนื่องจากเวลาบันทึกภาพอาจมีฝุ่นมาบังแสง ณ pixel ที่สัญญาณความเข้มแสงนั้นมีค่าใกล้กับศูนย์(เนื่องจากเวลาบันทึกภาพอาจมีฝุ่นมาบังแสง ณ pixel นั้น)แล้ว noise กลับมีค่ามากกว่าหรือเท่ากัน จึงทำให้ค่า  $X_{g,k} - \overline{NR}_{g}$  หรือ  $\overline{B}_{g} - \overline{NR}_{g}$  ที่ได้มีค่า เป็นลบหรือศูนย์ได้ แต่บางกรณีที่ได้ค่าของ  $X_{g,k} - \overline{NR}_{g}$  และ  $\overline{B}_{g} - \overline{NR}_{g}$  เป็นลบทั้งคู่ในการหารกันทำ ให้สามารถคำนวณต่อได้ก็จะไม่ทำการเปลี่ยนค่าสัญญาณความเข้มแสง

เมตริกซ์ข้างล่างนี้แสดงกรณีทั้งหมดที่จะเกิดขึ้นได้ในระหว่างการคำนวณ จึงได้กำหนดตัวเลข ใหม่ให้สอดคล้องกับความหมายในรูปภาพเดิมให้มากที่สุด ด้วยตัวเลขตามเมตริกซ์ทางขวามือ

$$\begin{bmatrix} \frac{I}{I} & 0 & \frac{I}{I} & \frac{1}{I} \\ \frac{I}{0} & 0 & \frac{I}{0} \\ \frac{I}{I} & 0 & \frac{I}{I} & \frac{I}{0} \\ \frac{I}{I} & \frac{I}{I} & \frac{I}{I} & \frac{I}{I} & \frac{I}{I} \\ \frac{I}{I} & \frac{I}{I} & \frac{I}{I} & \frac{I}{I} & \frac{I}{I} \\ \frac{I}{I} & \frac{I}{I} & \frac{I}{I} & \frac{I}{I} \\ \frac{I}{I} &$$

 $\overline{R}_{11} = -\frac{\ln \frac{200 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{2} = -\frac{\ln \frac{100}{1} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{2} = -1.535056729$ 3 3  $\overline{R}_{12} = -\frac{\ln \frac{100 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{2} = -\frac{\ln \frac{1}{1} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{2} = 0$ 3 3  $\overline{R_{13}} = -\frac{\ln \frac{180 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{-100} = -\frac{\ln \frac{80}{1} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{-100} = -1.460675545$ 3 3  $\overline{R}_{21} = -\frac{\ln \frac{80 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{2} = -\frac{\ln \frac{-20}{-100} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{2} = 0.536479304$ 3 3  $\overline{R}_{22} = -\frac{\ln \frac{160 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{\ln \frac{100}{0 - 100}} = -\frac{\ln \frac{60}{1} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{\ln \frac{100}{0}} = -1.364781521$ 3 3  $\overline{R}_{23} = -\frac{\ln \frac{60 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100} + \ln \frac{0 - 100}{0 - 100}}{2} = -\frac{\ln \frac{-40}{-100} + \ln \frac{-100}{-100} + \ln \frac{-100}{-100}}{2} = 0.305430244$ 3

 $\overline{G}_{11} = -\frac{\ln \frac{0-100}{210-100} + \ln \frac{200-100}{210-100} + \ln \frac{0-100}{210-100}}{3} = -\frac{\ln \frac{1}{110} + \ln \frac{100}{110} + \ln \frac{1}{110}}{3} = 3.165423637$   $\overline{G}_{12} = -\frac{\ln \frac{0-100}{190-100} + \ln \frac{100-100}{190-100} + \ln \frac{0-100}{190-100}}{3} = -\frac{\ln \frac{1}{10} + \ln \frac{1}{90} + \ln \frac{1}{90}}{3} = 4.49980967$   $\overline{G}_{13} = -\frac{\ln \frac{0-100}{100-100} + \ln \frac{180-100}{100-100} + \ln \frac{0-100}{100-100}}{3} = -\frac{\ln \frac{1}{10} + \ln \frac{1}{90} + \ln \frac{1}{90}}{3} = -1.460675545$   $\overline{G}_{21} = -\frac{\ln \frac{0-100}{170-100} + \ln \frac{80-100}{170-100} + \ln \frac{0-100}{170-100}}{3} = -\frac{\ln \frac{1}{10} + \ln \frac{1}{10} + \ln \frac{1}{10}}{3} = -1.460675545$   $\overline{G}_{22} = -\frac{\ln \frac{0-100}{90-100} + \ln \frac{160-100}{90-100} + \ln \frac{0-100}{90-100}}{3} = -\frac{\ln \frac{1-100}{10} + \ln \frac{1}{10} + \ln \frac{1}{10}}{3} = -2.899838249$ 

 $\frac{\ln \frac{0}{70 - 100} + \ln \frac{60 - 100}{70 - 100} + \ln \frac{00 - 100}{70 - 100}}{3} = -\frac{\ln \frac{-100}{-30} + \ln \frac{-40}{-30} + \ln \frac{-100}{-30}}{3} = -0.89854256$   $\frac{\ln \frac{0}{-100} + \ln \frac{0}{0 - 100} + \ln \frac{0}{0 - 100} + \ln \frac{200 - 100}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{-100}{-100} + \ln \frac{100}{-100}}{3} = -1.535056729$   $\frac{\ln \frac{0}{-100} + \ln \frac{-100}{0 - 100} + \ln \frac{0}{0 - 100} + \ln \frac{100 - 100}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{-100}{-100} + \ln \frac{1}{1}}{3} = 0$   $\frac{\ln \frac{0}{-100} + \ln \frac{-100}{-100} + \ln \frac{100}{0 - 100} + \ln \frac{180 - 100}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{-100}{-100} + \ln \frac{1}{1}}{3} = 0$   $\frac{\ln \frac{0}{-100} + \ln \frac{-100}{-100} + \ln \frac{80}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{80}{-100} + \ln \frac{80}{-100}}{3} = -1.460675545$   $\frac{\ln \frac{0}{-100} + \ln \frac{-100}{-100} + \ln \frac{0}{0 - 100} + \ln \frac{80 - 100}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{-100}{-100} + \ln \frac{-20}{-100}}{3} = -1.364781521$   $\frac{\ln \frac{0}{-100} + \ln \frac{-100}{0 - 100} + \ln \frac{0}{0 - 100} + \ln \frac{60 - 100}{0 - 100}}{3} = -\frac{\ln \frac{-100}{-100} + \ln \frac{-100}{-100} + \ln \frac{-40}{-100}}{3} = -1.364781521$ 

เมื่อนำไปแสดงผลในรูปแบบของระบบปฏิบัติการ windows จึงคูณด้วยตัวเลขคงที่ทั้งภาพ

 $R_{11} \times 50 = -1 \ 535056729 \times 50$  $= -76 \ 7528$  $\Rightarrow 179.2472$  $R_{12} \times 50 = 0 \times 50$ = 0

104

105

 $\sim^{\epsilon}$ 

 $\tilde{s}_{i}$ 

 $\overline{R}_{13} \times 50 = -1.460675545 \times 50$ = -73.0338 ⇒182.9662  $\overline{R}_{21} \times 50 = 0.536479304 \times 50$ = 26.8240  $\overline{R}_{22} \times 50 = -1.364781521 \times 50 + 256$ = -68.2391 ⇒187.7609  $R_{23} \times 50 = 0.305430244 \times 50$ = 15.2715  $\overline{G}_{11} \times 50 = 3.165423637 \times 50$ = 158.2712  $\overline{G}_{12} \times 50 = 4.49980967 \times 50$ = 224.9905  $\bar{G}_{13} \times 50 = -1.460675545 \times 50$ = -73.0338 ⇒182.9662

 $\overline{G}_{21} \times 50 = 4.248495242 \times 50$ = 212 4248  $\overline{G}_{22} \times 50 = -2.899838249 \times 50$ = -144.9919  $\Rightarrow 111.0081$ 

 $\overline{G}_{23} \times 50 = -0.89854256 \times 50$ = -44 9271 ⇒ 211.0729  $\overline{B}_{11} \times 50 = -1.535056729 \times 50$ = -76.7528 ⇒179.2472  $\overline{B}_{12} \times 50 = 0 \times 50$ = 0  $\overline{B}_{13} \times 50 = -1.460675545 \times 50$ = -73 0338 ⇒182.9662  $B_{21} \times 50 = 0.536479304 \times 50$ = 26.8240  $\overline{B}_{12} \times 50 = -1.364781521 \times 50$ = -68.2391 ⇒187.7609  $B_{23} \times 50 = 0.305430244 \times 50$ = 15.2715

# ประวัติผู้เขียนวิทยานิพนธ์

นาย ธีวรา ยิ่งเจริญ เกิดวันที่ 14 ตุลาคม พ.ศ.2518 ที่กรุงเทพมหานคร สำเร็จการศึกษา วิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร สถาบันเทคโนโลยีพระจอม เกล้าเจ้าคุณทหารลาดกระบัง ในปีการศึกษา 2540 และเข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร มหาบัณฑิต สาขาวิศวกรรมเครื่องกล จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2545

