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ABSTRACT
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Solubilization in adsorbed surfactant aggregates (admicelle) at solid/liquid
interfaces has been well studied for decades, launching many related fundamental
and applied studies. A related phenomenon, when admicelles solubilize solutes, is
called adsolubilization. This work aims to study temperature effects on
adsolubilization and elucidate the nature of molecular interactions or
microenvironment in the admicelle. The preferential loci of adsolubilization for
hydrophobic and hydrophilic solutes are the admicellar core and palisade/headgroup
regions, respectively. The partition coefficient is affected by temperature change in
three primary ways, (1) changing aqueous solubility of solute (2) changing surfactant
packing density in the admicelle and (3) changing the strength of attractive
interactions between solute and surfactant molecules. The third factor appears to
have a strong impact on the 2-D structure of admicelles. Highly hydrophobic solutes
show a higher partition coefficient in high region |1 of surfactant adsorption than that
in region 111 A preference of surfactant adsorption region (high region Il or region
I11) for adsolubilization of hydrophilic p-tolunitrile would be governed by cation-TT
and dipole-dipole attractive forces and surfactant packing density in admicelle.
Differential scanning calorimetry shows 3 loci of micellar solubilization, whereas, it
cannot distinguish the sharp difference hetween each loci in admicelle possibly due
to uniform packing density in admicelle although the composition and
hydrophobicity of microenvironment in admicelle are different. Based on this
knowledge, a simple thermodynamic model of adsolubilization is developed.
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