EFFECT OF METALS LOADED ON ZEOLYTIC SUPPORTS ON TIRE PYROLYSIS PRODUCTS: Ru ON HMOR AND HZSM5

Kittikom Kongkadee

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

Thesis Title:	Effect of Metals Loaded on Zeolytic Supports on Tire Pyrolysis	
	Products: Ru on HMOR and HZSM5	
By:	Kittikom Kongkadee	
Program:	Petrochemical Technology	
Thesis Advisors:	Asst. Prof. Sirirat Jitkarnka	
	Assoc. Prof. Sujitra Wongkasemjit	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayo Janumb College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

- 1⁻

e pan

(Asst. Prof. Sirirat Jitkarnka)

lupha se

(Assoc. Prof. Sujitra Wongkasemjit)

.....د Sherly Ċ

(Dr. Thammanoon Sreethawong)

make Jaka

(Dr. Suchada Butnark)

ABSTRACT

4971021063: Petrochemical Technology Kittikom Kongkadee: Effect of Metals Loaded on Zeolytic Supports on Tire Pyrolysis Products: Ru on HMOR and HZSM5 Thesis Advisors: Asst. Prof. Sirirat Jitkarnka, and Assoc. Prof. Sujitra Wonkasemjit 132 pp.
Keywords: Pyrolysis / Temperature / Residence time / Light olefins / Ruthenium

/ HMOR / HZSM5 / Bifunctional catalysts

The pyrolysis of waste tire has been studied in this research. The goals were to maximize the yield of light olefins (ethylene and propylene) in the gaseous product by varying the pyrolysis conditions and the amount of ruthenium metal loaded on the zeolytic support in order to investigate their effects on the quality and quantity of pyrolysis products. In this work, the pyrolysis was carried out in a bench-scale autoclave reactor at room temperature to a final temperature varied from 500-700°C, with a 10 °C/min heating rate in atmospheric pressure. The nitrogen flow rate was also controlled in order to vary the residence time of the reaction. The other parameters were kept constant. It was found that the shorter residence time, the higher the yield of light olefin was obtained. For the catalytic cases, the light olefin yield reached a maximum at 0.7% loading of ruthenium metal. Moreover, the bifunctional catalysts can reduce the oil yield and produce a higher amount of gas yield. In addition, all catalysts can reduce heavy fractions, such as HVGO and LVGO; therefore, they produced a higher quality gasoline and kerosene than the noncatalytic case.

บทคัดย่อ

นายกิตติคม คงคดี: ผลของการเติมโลหะบนตัวรองรับที่เป็นซีโอไลท์ต่อผลผลิตจาก กระบวนการไพโรไลซิสยางรถยนต์: Ru บน HMOR และ HZSM5 (Effect of Metals Loaded on Zeolytic Supports on Tire Pyrolysis Products: Ru on HMOR and HZSM5) อ. ที่ปรึกษา: ผศ. คร. ศิริ รัตน์ จิตการก้า และ รศ. คร. สุจิตรา วงศ์เกษมจิตต์ 132 หน้า

งานวิจัยนี้เป็นงานวิจัยที่ศึกษาเกี่ยวกับกระบวนการไพโรไลซิสยางรถยนต์หมดสกาพ โดยมี เป้าหมายหลักคือ การเพิ่มผลผลิตของสารประกอบโอเลฟินส์เบา เช่น เอทิลีน และ โพรพิลีน ใน ผลิตผลที่เป็นก๊าซโดยการเปลี่ยนภาวะของกระบวนการไพโรไลซิส และปริมาณของโลหะรูทีเนียม (Ruthenium) ที่เดิมบนตัวรองรับที่เป็นซีโอไลต์ (zeolite) เพื่อการตรวจสอบผลกระทบต่อคุณภาพและ ปริมาณของผลิตผลจากกระบวนการไพโรไลซิส ในงานวิจัยนี้กระบวนการไพโรไลซิสเกิดขึ้นใน เครื่องปฏิกรณ์โดยการเพิ่มอุณหภูมิจากเริ่มด้นถึงอุณหภูมิสุดท้าย ที่ควบคุมให้อยู่ในช่วง 500 ถึง 700°C ด้วยอัตราเพิ่ม 10°C/นาที่จากอุณหภูมิห้อง ที่ความดันบรรยากาศ อัตราการไหลของก๊าซ ในโตรเจนถูกควบคุมเพื่อปรับเปลี่ยนระยะเวลาการเกิดปฏิกิริยา ส่วนตัวแปรอื่น ๆ ถูกรักษาให้ดงที่ไว้ จากการศึกษาพบว่า ปริมาณโอเลฟินส์เบาถูกผลิตได้สูงสุดที่การเดิมโลหะรูทีเนียมร้อยละ 0.7 ยิ่งไปกว่านั้น การใช้ดัวเร่งปฏิกิริยาที่มี 2 คุณสมบัติ (Bifunctional catalyst) ทำให้ปริมาณน้ำมัน ลดลงและส่งผลให้ผลิตก๊าซได้เพิ่มขึ้น นอกจากนี้ยังพบว่าการใช้ตัวเร่งปฏิกิริยาสามารถลดปริมาณ ของส่วนที่หนักในน้ำมัน เช่น น้ำมันก๊าซออยล์หนัก และ น้ำมันก๊าซออยล์เบา ดั้งนั้น คุณภาพของ น้ำมันแก๊สโซลีน และน้ำมันก๊าดที่ได้ จึงดีกว่าในกรณีที่ไม่มีตัวเร่งปฏิกิริยาในระบบ

ACKNOWLEDGEMENTS

This work would not have been possible without the support and encouragement from all people as follows;

I would like to express my sincere and deep gratitude to my advisors, Asst. Prof. Sirirat Jitkarnka and Assoc. Prof. Sujitra Wongkasemjit for their suggestions, recommendations, detailed and constructive comments, and for their important support throughout this research work.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand.

Special gratitude is given to all The Petroleum and Petrochemical College's staffs, who kindly helped with the analytical instruments and gave the good suggestion in this work.

I warmly thank Mr. Nguyen Anh Dung, Ph.D. student, for his valuable advice and friendly help. His extensive discussions around my work and interesting explorations in operations have been very helpful for this study.

I greatly appreciate all my colleges, who shared good discussion and gave recommendations throughout the study period at PPC.

Finally, I am deeply indebted to my family for their love, understanding all supports to me all the time.

TABLE OF CONTENTS

					PAC	ЗE
		Title	e Page		i	
		Abs	tract (in English)		iii	
		Abs	tract (in Thai)		iv	
		Ack	nowledgements		v	
		Tab	le of Contents		vi	
		List	of Tables		ix	
		List	of Figures		xiii	۹. چ
	СН	АРТЕ	R			
						•
18 ° 1		I.	INTRODUCTION	а.,	1.	. *
		II	LITERATURE REVIEW	.†	3	
		Ш	EXPERIMENTAL		11	÷
			3.1 Materials		 11	
			3.2 Equipment		11	
			3.3 Chemicals and Solvents		-11	
			3.4 Methodology		12	
			3.4.1 Catalyst Preparation		12	
			3.4.2 Pyrolysis Process		13	
			3.4.3 Oil Analysis		14	
			3.4.4 Gas Analysis		15	
			3.4.5 Catalyst Characterization		16	
		VI	RESULTS AND DISCUSSION		17	
			4.1 Effect of Pyrolysis Conditions		17	
			4.1.1 Effect of Temperature on Py	rolysis Product	17	
			4.1.1.1 Percentage of Produ	uct Yields	17	

	4.1.1.2 Gas Compositions	19
	4.1.1.3 Heating Value of Gases	23
	4.1.2 Effect of Residence Time	24
	4.1.3 Light olefins production	27
	4.1.4 Liquid Analysis	30
	4.1.4.1 Petroleum Fraction Analysis	31
	4.1.4.2 Quality of Pyrolysis Oil	34
	4.2 Effect of Catalyst Supports	39
	4.2.1 Product Distributions	39
	4.2.2 Gas Compositions	40
	4.2.3 Light Olefins Production	41
	4.2.4 Quality of Pyrolysis Oil	42
	4.3 Effect of Ru Loading Amount	43
	4.3.1 Product Distributions	43
	4.3.2 Gas Composition	44
	4.3.3 Light Olefins Production	46
	4.3.4 Liquid Analysis	47
	4.3.4.1 Petroleum Fraction Analysis	47
	4.3.4.2 Quality of Pyrolysis Oil	49
	4.4 Catalyst Characterization	52
	4.4.1 Crystal Structure of Catalysts	52
	4.4.2 Metal Particle Size	53
	4.4.3 Specific Surface Area	54
V	CONCLUSIONS AND RECOMMENDATIONS	56
	5.1 Conclusions	56
	5.2 Recommendations	57
	REFERENCES	58

CHAPTER

PAGE

APPENDICES	63
Appendix A Pyrolysis Data	63
Appendix B Products Distribution	80
Appendix C Residence time calculations	83
Appendix D Correlation Factor of Light Hydrocarbons	84
using GC/FID	
Appendix E Pyrolysis Gas Compositions	85
Appendix F Lower Heating Value (LHV) of Gaseous Products	93
Appendix G True Boiling Point Distillation (°C)	95
Appendix H Asphaltene in Pyrolytic Oils (%wt)	112
Appendix I Calculation of Carbon number Distribution	113

CURRICULUM VITAE

•

.

. .

.

10-32

132

LIST OF TABLES

TABL	JE	PAGE	
2.1	Zeolites structure	5	
3.1	The compositions and volumes of mobile phases for	15	
	preparative separation of maltenes by liquid		
	chromatographic column		
4.1	Gas composition at various temperatures	19	
4.2	The ratio of light olefins to paraffin	29	
4.3	The boiling point and carbon ranges of refinery products	31	
4.4	Poly-aromatic hydrocarbon formation, wt% of maltene	37	
: 4.5	Zeolite properties	39	
4.6	BET surface area of Ru-loaded mordenite zeolites with	55	
	various percentages of Ru		
· Al	Non-catalytic pyrolysis 500°C 25 min residence time	63	
A2	Non-catalytic pyrolysis 700°C 25 min residence time	64	
A3	Non-catalytic pyrolysis 500°C 50 min residence time	65	
A4	Non-catalytic pyrolysis 700°C 50 min residence time	66	
A5	Non-catalytic pyrolysis 600°C 50 min residence time	67	
A6	Non-catalytic pyrolysis 500°C 75 min residence time	68	
A7	Non-catalytic pyrolysis 400°C 50 min residence time	69	
A8	Non-catalytic pyrolysis 700°C 75 min residence time	70	
A9	Non-catalytic pyrolysis 600°C 25 min residence time	71	
A10	Non-catalytic pyrolysis 600°C 75 min residence time	72	
A11	HMOR 500°C (Effect of amount of metal loading)	73	
A12	1.0%Ru/HMOR 500°C (Effect of catalyst supports)	74	
A13	1.0%Ru/HMOR 500°C (Effect of amount of metal loading)	75	
A14	0.3%Ru/HMOR 500°C (Effect of amount of metal loading)	76	
A15	1.2%Ru/HMOR 500°C (Effect of amount of metal loading)	77	
A16	0.7%Ru/HMOR 500°C (Effect of amount of metal loading)	78	

1

ix

TABLE

÷ 1

A17	1.0%Ru/HZSM5 500°C (Effect of catalyst supports)	79
Bl	Yields of pyrolysis products at various temperatures and	80
	residence time	
B2	Yields of pyrolysis products at different amounts of metal	80
	loading	
B3	Product distribution (Non-catalytic pyrolysis), g/100 g of	81
	tires	
B4	Product distribution (Catalytic pyrolysis), g/100 g of tires	82
El	Effect of residence time at 500°C	85
E2	Effect of residence time at 600°C	86
E3	Effect of residence time at 700°C	87
E4	Effect of pyrolysis temperature at 25 min residence time	. 88
E5	Effect of pyrolysis temperature at 50 min residence time	89
E6	Effect of pyrolysis temperature at 75 min residence time	90
E7	Effect of catalyst supports	91
E8	Effect of amount of metal loading	92
F1	Heating value of Gaseous products	93
F2	Heating Value (non-catalytic), LHV (Kcal/Nm ³)	94
F3	Heating Value (catalytic), LHV (Kcal/Nm ³)	94
Gl	Non-catalytic pyrolysis at 500°C 25 min residence time	95
G2	Non-catalytic pyrolysis at 500°C 50 min residence time	96
G3	Non-catalytic pyrolysis at 500°C 75 min residence time	97
G4	Non-catalytic pyrolysis at 600°C 25 min residence time	98
G5	Non-catalytic pyrolysis at 600°C 50 min residence time	99
G6	Non-catalytic pyrolysis at 600°C 75 min residence time	100
G 7	Non-catalytic pyrolysis at 700°C 25 min residence time	101
G8	Non-catalytic pyrolysis at 700°C 50 min residence time	102
G9	Non-catalytic pyrolysis at 700°C 75 min residence time	103
G 10	Catalytic pyrolysis with HMOR	104

TABLE

Catalytic pyrolysis with 0.3% Ru/MOR	105
Catalytic pyrolysis with 0.7% Ru/MOR	106
Catalytic pyrolysis with 1.0% Ru/MOR	107
Catalytic pyrolysis with 1.2% Ru/MOR	108
Catalytic pyrolysis with Ru/MOR	109
Catalytic pyrolysis with Ru/ZSM5	110
Non-catalytic pyrolysis at 400°C 50 min residence time	111
Asphaltene in pyrolytic oils for non-catalytic pyrolysis	112
Asphaltene in pyrolytic oils for catalytic pyrolysis	113
Carbon number distributions of Non-catalytic pyrolysis at	115
500°C and 25 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	116
500°C and 50 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	117
500°C and 75 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	118
600°C and 25 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	119
600°C and 50 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	120
600°C and 75 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	121
700°C and 25 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	122
700°C and 50 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	123
700°C and 75 min residence time	
Carbon number distributions of Non-catalytic pyrolysis at	124
400°C and 50 min residence time	
	Catalytic pyrolysis with 0.3% Ru/MOR Catalytic pyrolysis with 0.7% Ru/MOR Catalytic pyrolysis with 1.2% Ru/MOR Catalytic pyrolysis with 1.2% Ru/MOR Catalytic pyrolysis with Ru/ZSM5 Non-catalytic pyrolysis at 400°C 50 min residence time Asphaltene in pyrolytic oils for non-catalytic pyrolysis Asphaltene in pyrolytic oils for catalytic pyrolysis Carbon number distributions of Non-catalytic pyrolysis at 500°C and 25 min residence time Carbon number distributions of Non-catalytic pyrolysis at 500°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 500°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 500°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 600°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 600°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 600°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 600°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 25 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 25 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 50 min residence time Carbon number distributions of Non-catalytic pyrolysis at 700°C and 50 min residence time

TABLE

- states

÷

I11	Carbon number distributions of catalytic pyrolysis with	125
	HMOR	
I12	Carbon number distributions of catalytic pyrolysis with	126
	0.3%Ru/MOR	
I13	Carbon number distributions of catalytic pyrolysis with	127
	0.7%Ru/MOR	
I14	Carbon number distributions of catalytic pyrolysis with	128
	1.0%Ru/MOR	
115	Carbon number distributions of catalytic pyrolysis with	129
	1.2%Ru/MOR	
I16	Carbon number distributions of catalytic pyrolysis with	130
	Ru/MOR	
117	Carbon number distributions of catalytic pyrolysis with	131
	Ru/ZSM5	

1.2

-e.

LIST OF FIGURES

FIGURE		PAGE
3.1	The autoclave reactor used in the experiment	13
3.2	The diagram of the pyrolysis process	13
4.1	G/L ratio at various residence times	18
4.2	Gas productions at different temperatures	20
4.3	Effect of temperature on the gas compositions at 25 min	21
	residence time	
4.4	Effect of temperature on the gas compositions at 50 min	22
	residence time	
4.5	Effect of temperature on the gas compositions at 75 min	: 22
	residence time	÷ *
4.6	Gas-heating values at different temperatures and residence	. 23
	time	
4.7	G/L ratio at various temperature	. 24
4.8	Gas composition obtained from pyrolysis reaction at 500°C	26
4.9	Gas composition obtained from pyrolysis reaction at 600°C	26
4.10	Gas composition obtained from pyrolysis reaction at 700°C	. 27
4.11	Light olefins production at different residence time and	28
	temperature. (a) Ethylene, and (b) Propylene	
4.12	Effect of pyrolysis temperature on the yield of ethylene and	30
	propylene	
4.13	Petroleum fractions in maltenes obtained from different	32
	residence time at the temperature of 500°C	
4.14	Petroleum fractions in maltenes obtained from different	32
	residence time at the temperature of 600°C	
4.15	Petroleum fractions in maltenes obtained from different	33
	residence time at the temperature of 700°C	

. .

xiii

-

4.16	Carbon number distribution of maltenes obtained from	33-34
	different temperatures and residence time	
4.17	Weight fractions of asphaltene in pyrolytic oils at difference	35
	residence time and temperature	
4.18	The ratio of saturated hydrocarbons to total aromatic	36
	hydrocarbons in maltenes obtained from various	
	temperatures and residence time temperatures at 25 min	
	residence time	
4.19	Aromatic and alkylaromatic formation by Diels-Alder	38
	reaction	
4.20	Product distributions for different catalysts	40
4.21	Gas compositions obtained from different catalysts	41
4.22	Total light olefin production obtained from different	41
	catalysts	
4.23	Chemical compositions in oil obtained from different	42
	catalysts	
4.24	Asphaltene formation from different catalysts	43
4.25	Gas to liquid ratio of bifunctional catalysts	44
4.26	Gas compositions for catalytic pyrolysis	45
4.27	Yields to gas component for different percentages of metal	46
	loading	
4.28	Yields to light olefins for different percentages of metal	46
	loading	
4.29	Petroleum fractions in maltenes obtained from non-catalytic	48
	and catalytic pyrolysis	
4.30	Carbon number distribution of maltene for non-catalytic and	49
	catalytic pyrolysis	

.

.

.

4.31	The ratio of saturated hydrocarbons to total aromatic	50
	hydrocarbons in maltene obtained from non-catalytic and	
	catalytic pyrolysis	
4.32	Chemical compositions in maltene for different amounts of	50
	metal loading	
4.33	Asphaltene reductions at different residence time and metal	51
	loading	
4.34	Example reaction of mono-aromatic and poly-aromatic	52
	formation from polar-aromatic molecule	
4.35	The XRD patterns of HMOR and Ru/HMOR with different	53
	amounts of loading	
4.36	The TEM images of of Ru/MOR : (a) 0.3% Ru/MOR, and	54
	(b) 0.7% Ru/MOR (c) 1.0% Ru/MOR, and (d) 1.2%	
	Ru/MOR.	
Al	Operating temperature of 500°C 25 min residence time	63
A2	Operating temperature of 700°C 25 min residence time	64
.A3	Operating temperature of 500°C 50 min residence time	65
A4	Operating temperature of 700°C 50 min residence time	66
A5	Operating temperature of 600°C 59 min residence time	67
A6	Operating temperature of 500°C 75 min residence time	68
A7	Operating temperature of 400°C 50 min residence time	69
A8	Operating temperature of 700°C 75 min residence time	70
A9	Operating temperature of 600°C 25 min residence time	71
A10	Operating temperature of 600°C 75 min residence time	72
A11	Catalytic pyrolysis: HMOR temperature of 500°C	73
A12	1.0%Ru/HMOR temperature of 500°C (Effect of catalyst	74
	supports)	
A13	1.0%Ru/HMOR temperature of 500°C	75
A14	0.3%Ru/HMOR temperature of 500°C	76

PAGE

A15	1.2%Ru/HMOR temperature of 500°C	77
A16	0.7%Ru/HMOR temperature of 500°C	78
A17	1.0%Ru/HZSM5 temperature of 500°C (Effect of catalyst	79
	supports)	
El	Pyrolysis gas composition obtained at 500°C for various	85
	residence time	
E2	Pyrolysis gas composition obtained at 600°C for various	86
	residence time	
E3	Pyrolysis gas composition obtained at 700°C for various	87
	residence time	
E4	Pyrolysis gas composition obtained at 25 min residence time	88
	for various temperatures	
E5	Pyrolysis gas composition obtained at 50 min residence time	89
	for various temperatures	
E6	Pyrolysis gas composition obtained at 75 min residence time	90
	for various temperatures	
E7	Pyrolysis gas composition obtained from different	91
	bifunctional catalysts	
E8	Pyrolysis gas composition obtained from different amounts	92
	of ruthenium loading	
Gl	True boiling point distillation (°C) for pyrolysis at 500°C	95
	and 25 min residence time	
G2	True boiling point distillation (°C) for pyrolysis at 500°C	96
	and 50 min residence time	
G3	True boiling point distillation (°C) for pyrolysis at 500°C	97
	and 75 min residence time	
G4	True boiling point distillation (°C) for pyrolysis at 600°C	98
	and 25 min residence time	

•

G5	True boiling point distillation (°C) for pyrolysis at 600°C	99
	and 50 min residence time	
G6	True boiling point distillation (°C) for pyrolysis at 600°C	100
	and 75 min residence time	
G7	True boiling point distillation (°C) for pyrolysis at 700°C	101
	and 25 min residence time	
G8	True boiling point distillation (°C) for pyrolysis at 700°C	102
	and 50 min residence time	
G9	True boiling point distillation (°C) for pyrolysis at 700°C	103
	and 75 min residence time	
G 10	True boiling point distillation (°C) for pyrolysis with HMOR	104
G11	True boiling point distillation (°C) for pyrolysis with 0.3%.	105
	Ru/MOR	
G12	True boiling point distillation (°C) for pyrolysis with 0.7%	106
	Ru/MOR	
G13	True boiling point distillation (°C) for pyrolysis with 1.0%	107
	Ru/MOR	
G14	True boiling point distillation (°C) for pyrolysis with 1.2%	108
	Ru/MOR	
G15	True boiling point distillation (°C) for pyrolysis with	109
	Ru/MOR	
G16	True boiling point distillation (°C) for pyrolysis with	110
	Ru/ZSM5	
G17	True boiling point distillation (°C) for pyrolysis at 400°C	111
	and 50 min residence time	
I 1	GC Calibration Curve of ASTM D2887	113

-

xvii