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ABSTRACT
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Polyethylene Modified by Chemical and Plasma-Assisted Processes.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan, Prof. Costas
Tzoganakis, Prof. Jirgen Engemann 186 pp.
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Post-reactor modifications of linear low density polyethylene (LLDPE) were
done upon (1) multi-phases processing and (ii) single-phase reactive processing. To
enhance the processability of LLDPE and, preferentially, prepare the new material
from existing polymers, the multi-phases processing was.represented by the blending
of LLDPE and natural rubber (NR), with and without epoxidized natural rubber
(ENR) and maleic anhydride (MA). Either good oxygen barrier films or highly
oxygen permeable films were obtained by controlling the blend ingredient and
processing parameters. Oxygen permeability was increased with draw ratio in the
case of reactive blend film due to void expansions, but the opposite results were
found for binary and ternary blend films. Therefore, changes in the properties of the
products were realized even within the same manufacturing process by changing the
ingredient.

For single-phase reactive processing of LLDPE, small amount of reactive
ingredient, dicumyl peroxide (DCP), was first focused as the ordinary route of
molecular structure modification. In this case, chemical initiator concentration as
well as its addition methods had a great influence on molecular characteristics which
was noticeable in the rheological characteristics such as melt flow index (MFL) and
power law index as supported by statistical analysis.

As another source of induced-radicals, the novel physico-chemical technigue
which was the plasma surface treatment was introduced in the present dissertation.



Two plasma approaches- an atmospheric pressure plasma jet (APPJ) and a planar
dielectric barrier discharge (DBD) were effectively utilized to provide the radicals or
reactive sites on the LLDPE surface. Since both types had their own pros and cons,
the DBD was, however, selected to support the practical bulk modification of LLDPE
via continuous reactive processing due to the simple application of atmospheric
ambient air,

Pre-treatment of LLDPE pellets via plasma technique prior to the melt
processing was comparable to the low-dose DCP modified LLDPE in term of
rheological alteration. Furthermore, the presence of both nitrogen and mainly oxygen
based functional groups inside the modified bulk LLDPE supported the superior
performance of in-situ modification. Plasma-assisted modified LLDPE performed
superior melt strength and elastic recovery while its film showed good oxygen barrier
property with high tensile strength and strain. Higher storage modulus at service
temperature range was another benefit of plasma-assisted continuous modification of
LLDPE.

The radicals induced via DBD treatment and the functional groups formed on
the surface during/after plasma exposure possibly influenced on the chemcial
peroxide reaction in melt state, subsequently affected to branch characteristics. The
combination of chemical and physico-chemical routes-did not show synergistic effect
since they performed poor melt strength and low elastic recovery with moderate
tensile properties. Hence, not only the branching characteristics but also the existence
of functional groups played significant roles on the product properties which were
rather complicated to be recognized in the case of plasma + peroxide modification.

Since the plasma-DBD device developed in our laboratory was operated at
atmospheric pressure using an ambient air as a process gas. It can be employed as
plasma-assisted polymer blending or recycling as well.
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